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RESEARCH ARTICLE

Standardizing and Centralizing Datasets  
for Efficient Training of Agricultural Deep 
Learning Models
Amogh  Joshi1,2,3, Dario  Guevara1,2,3, and Mason  Earles1,2,3*

1Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA. 2Department of 

Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA. 3AI Institute for 

Next-Generation Food Systems (AIFS), University of California, Davis, Davis, CA, USA.

*Address correspondence to: jmearles@ucdavis.edu

In recent years, deep learning models have become the standard for agricultural computer vision. Such 
models are typically fine-tuned to agricultural tasks using model weights that were originally fit to more 
general, non-agricultural datasets. This lack of agriculture-specific fine-tuning potentially increases 
training time and resource use, and decreases model performance, leading to an overall decrease in data 
efficiency. To overcome this limitation, we collect a wide range of existing public datasets for 3 distinct 
tasks, standardize them, and construct standard training and evaluation pipelines, providing us with a 
set of benchmarks and pretrained models. We then conduct a number of experiments using methods 
that are commonly used in deep learning tasks but unexplored in their domain-specific applications for 
agriculture. Our experiments guide us in developing a number of approaches to improve data efficiency 
when training agricultural deep learning models, without large-scale modifications to existing pipelines. 
Our results demonstrate that even slight training modifications, such as using agricultural pretrained 
model weights, or adopting specific spatial augmentations into data processing pipelines, can considerably 
boost model performance and result in shorter convergence time, saving training resources. Furthermore, 
we find that even models trained on low-quality annotations can produce comparable levels of performance 
to their high-quality equivalents, suggesting that datasets with poor annotations can still be used for 
training, expanding the pool of currently available datasets. Our methods are broadly applicable throughout 
agricultural deep learning and present high potential for substantial data efficiency improvements.

Introduction

Deep learning models have become standard for modern com-
puter vision-based agricultural tasks. Examples of common stand-
ard tasks now largely automated by deep learning include fruit 
detection [1,2], crop and weed segmentation [3,4], and plant 
disease classification [5,6]. Certain deep learning models have 
even been used for tasks beyond standard single-RGB-image pre-
dictions, involving hyperspectral and thermal imagery for various 
analyses [7,8] or tasks involving multiple scales of data, such as 
spatiotemporal crop yield prediction [9]. Existing approaches to 
such tasks often involve direct applications of state-of-the-art 
models developed for other tasks in the field of deep learning, 
which have been thoroughly evaluated by works such as [10].

A largely prevalent problem in the agricultural domain is a 
substantial deficiency of task-specific data. Transfer learning 
[11] is an approach undertaken when training large deep learn-
ing models, which attempts to offset this data deficiency, therein 
transferring knowledge from a source task to the new, reduced 
size target dataset. In practice, this generally consists of replac-
ing random weight initialization for model parameters with 
existing pretrained weights from a prior task, converting a 

complete training task into a fine-tuning task using existing 
pretrained models—for instance, many image classification and 
object detection tasks start off with pretrained weights from 
the ImageNet [12] and COCO [13] datasets, respectively. 
However, these datasets are mostly generalized to common 
objects in environments ranging from inside a home to the 
streets of a city. Such environments consist of a broad range of 
objects and conditions, allowing models to locate specific 
objects with relatively greater ease. In contrast, agricultural envi-
ronments are highly domain-specific, and these existing pre-
trained model approaches may not offer as consequential of a 
knowledge transfer for agricultural domains. An example of the 
contrast between the aforementioned conditions is shown in 
Fig. 1. This, in turn, suggests the potential need for alternative 
pretrained model approaches in order to improve data efficiency 
when training agricultural deep learning models. Previously, 
Nowakowski et al. [14], Moon and Son [15], and Shrivastava 
et al. [16] applied transfer learning to agricultural image classi-
fication tasks, demonstrating improved performance using 
pretrained weights on the ImageNet dataset, citing its large 
magnitude of data and certain specific classes relevant to agri-
culture. However, little to no prior work has been conducted 
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assessing the viability of transfer learning in other more rele-
vant agricultural tasks, like semantic segmentation and object 
detection. Furthermore, there does not exist a single central-
ized repository for agriculture-specific datasets, preventing a 
large-scale ImageNet-style dataset for agriculture from being 
developed. While work done by [17,18] have proposed new 
larger-scale datasets for agriculture, increasing progress toward 
such a goal, such datasets are usually specific to certain condi-
tions and designed for image classification, leaving other tasks 
without as much data. As a result, the potential for transfer 
learning as a viable improvement for data efficiency, at least in 
agriculture, is diminished.

Another common approach in deep learning that attempts 
to offset a deficiency of data is the use of data augmentations. 
For computer vision tasks, this refers to the transformation of 
an input image along with its corresponding annotations, with 
the stated intent of increasing diversity of data. Standard aug-
mentations include rotation or flipping of an input image, or 
adjustment of visual parameters like saturation or brightness. 
The usefulness of augmentations has been studied in a general 
case in works such as [19]; however, these applications have 
largely been focused either on general image classification 
tasks or for a specific domain that is not similar with agricul-
ture. Agricultural environments are largely different than gen-
eral environments and are often more complex, involving less 
quantities of obvious features and more irregular and incon-
sistent shapes [20]. Certain studies of augmentations have 
been conducted in works such as [21], where custom color-
spaces and vegetation indexes were used when processing 
input data in order to boost performance on agricultural data-
sets, but there has not been done any large-scale analysis of 
augmentation effectiveness for agricultural environments. In 
fact, a potential benefit of the domain constraints of agricul-
tural data is the prospect for assessing features specific to these 
environments. This can be used to both develop data process-
ing pipelines specific to agriculture, using such approaches, 
and adapt existing model architectures to agricultural tasks 

using methods like transfer learning. Standing in the way of 
this development is a lack of a large-scale centralized database 
for agricultural data.

Bringing together datasets from previous studies, we pres-
ent a novel set of centralized and standardized public agricul-
tural datasets and benchmarks using state-of-the-art deep 
learning models. This collection of datasets is composed of 
real data collected from agricultural datasets across 3 different 
tasks: image classification, semantic segmentation, and object 
detection. For each task, we develop a standard data format 
and training pipeline, which we use to generate benchmarks 
and pretrained models for each dataset.These pipelines and 
models enable us to conduct a set of experiments in which we 
adapt existing methods for improving data efficiency, such as 
transfer learning and image augmentation, as described above, 
for agricultural environments. We first conduct an assessment 
of agricultural models for transfer learning by (a) assessing 
data efficiency and performance when using agricultural pre-
trained weights for fruit detection models. We apply this study 
further by (b) assessing data efficiency and performance when 
using pretrained weights for backbones of agricultural seman-
tic segmentation models for fruit and plant segmentation. These 
2 experiments provide us with a quantifiable way to improve 
data efficiency for agricultural models. Following our analysis 
of methods to improve models, we continue our study by eval-
uating methods to improve data, by (c) assessing the effective-
ness of standard spatial and visual image augmentations for 
improving model performance on fruit detection and fruit 
segmentation tasks. Finally, we note that while our methods 
suggest methods to improve data, there exists a pool of low- 
quality data that may potentially be disregarded, and we (d) 
assess the effect of annotation quality—by observing the per-
formance of models when reducing the quantity of bounding 
boxes (thus reducing the quality of these annotations)—on 
fruit detection tasks. Through these experiments, we find a 
strong potential for improving data efficiency for agricultural 
deep learning models without considerable modifications to 

Fig. 1. Sample of images from the COCO dataset (row 1) and from assorted agricultural datasets (row 2), showcasing the contrast between the general environment of COCO 
imagery and the specific environment of agricultural imagery. These images are displayed in their original aspect ratio.
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existing pipelines, with potential implications for a broad 
range of tasks. Furthermore, we open-source our standardized 
datasets and pretrained models through our framework AgML 
(https://github.com/Project-AgML/AgML) to facilitate the 
adoption of our described methods.

Methods and Experiments
To provide a baseline for our experiments, we have collected a 
set of agricultural datasets and developed a novel set of stand-
ard benchmarks and pretrained models on these datasets. These 
datasets have been standardized by task and are included in the 
dataset catalog in the open-source agricultural machine learn-
ing framework called AgML. We discuss our methodology in 
developing a standard task-based data processing pipeline for 
training agricultural machine learning models, and our models’ 
results on these datasets. These pipelines are designed to be 
adaptable for the experiments conducted later in this research, 
and serve as our primary tool for them.

Collecting datasets
For the purposes of this work, we restrict datasets to 3 tasks: 
image classification, semantic segmentation, and object detec-
tion. Furthermore, we focus on datasets with only a single 
3-channel RGB image input in order to facilitate the creation 
of benchmarks for a variety of datasets using standard deep 
learning models without any architectural modifications, allow-
ing easier accessibility for a broader range of future applica-
tions. We compile datasets from a number of sources, with the 
majority coming from [22]. We provide a full listing of each of 
the datasets used in this dataset as well as key details and ref-
erences in Table 1, which also contains benchmark perfor-
mance on metrics as detailed later in the “Models and methods” 
section.

Data in AgML’s collection of public data sources were 
sourced from each of the 6 human-inhabited continents, includ-
ing the United States, Brazil, France, Germany, Greece, Uganda, 
China, and Australia. Furthermore, these data cover a wide 
variety of conditions, including lightning, camera angle, and 
amount of obfuscation. We illustrate this diversity in 2 examples. 
Figure 2 contains an image from each of the object detection 
datasets used in our research. Each of the datasets contains a 
varying set of conditions, ranging from environmental differ-
ences, such as day versus night, to camera parameters—includ-
ing ground-level versus drone captures—to the type of fruit (the 
images shown include apple, grape, mango, and cantaloupe). 
Similarly, Fig. 3 displays examples of imagery from 3 semantic 
segmentation datasets used in our research. We note the varia-
tion of agricultural tasks within these datasets, with one dedi-
cated to solely weed segmentation, one being a combination of 
plant and weed segmentation, and another being flower seg-
mentation. Furthermore, the difference in camera angle and 
environmental conditions is also present in these datasets.

Models and methods
We select our model architectures with 2 primary focuses: state-
of-the-art performance and ease of access using existing deep 
learning frameworks. This approach allows us to construct 
standard pretrained models with both high-scoring bench-
marks as well as ease of reproducibility and application to future 
tasks. We assess state-of-the-art performance using traditional 

performance benchmarks, namely, ImageNet [12] for image 
classification, CityScapes [23] for semantic segmentation, and 
COCO test-dev [13] for object detection. Similarly, we define 
the best-case scenario for ease of access to be the scenario where 
a model is contained entirely within the PyTorch [24] library 
family, to reduce external dependencies. We now elaborate on 
our training procedure for each category of deep learning tasks.

Image classification
When selecting an image classification model, we only eval-
uate those available in the torchvision library in order to 
facilitate our goal of ease-of-use and reduction of external 
dependences. The EfficientNet family of models has the high-
est performance out of all models in the library. So, we select 
EfficientNetB4 as our model for image classification, con-
sidering its high ImageNet top-1 accuracy of 82.9% with a 
similar number of parameters to traditional state-of-the-art 
models like ResNet50. We select categorical cross-entropy 
loss as our criterion, defined as

where n is the number of classes, yi is the ground truth, and ŷ  
is the prediction. We evaluate model performance using cate-
gorical accuracy.

Semantic segmentation
We again evaluate models within torchvision library and select 
the DeepLabV3 model with a ResNet50 backbone, as described 
in the original implementation (and as is available in the library). 
We select a loss function based on the number of classes in 
the dataset being trained upon. For binary segmentation tasks, 
involving only a single class, we use binary cross-entropy loss 
with logits, defined as

over each pixel, where y represents the ground truth value and 
ŷ  represents the predicted value. For multi-class segmentation 
tasks, we use dice loss [25]:

where y again represents the ground truth and ŷ  represents the 
predicted value. We evaluate model performance using the 
mean intersection-over-union (mIoU) metric:

where n is the number of classes and pij is the number of pixels 
of class i predicted to belong to class j.

Object detection
Here, we expand our reach beyond the torchvision library due 
to the reduced amount of object detection models available 
in it. We select the EfficientDet family of models—keeping 
in line with our prior selection of EfficientNet for image 
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∑n
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(2)LBCE= −

(

y log ŷ+
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classification—choosing the EfficientDetD4 model, due to its 
high performance of 49.3% mAP on the COCO evaluation data-
set, with a comparable number of parameters to traditional state-
of-the-art models like YOLOv3. We use the open source effdet 
library (see https://github.com/rwightman/efficientdet-pytorch) 
as our implementation of the EfficientDetD4 model. The loss 

function used is focal loss [26] with α = 0.25 and γ = 1.5, as 
described in the original implementation, and given by:

where pt = p if y = 1; otherwise, pt = 1 − p (and p is the estimated 
probability for the class y). We evaluate model performance using 

(5)LF = −

(

1−pt
)�
log

(

pt
)

Table 1. A listing of publicly available agricultural datasets used as part of this research (as described in Dataset Name), along with their 
number of images (Images), agricultural task (Ag. Task), and corresponding benchmark performance for the models described above on a 
testing set (Benchmark).

Dataset Name Images Classes Ag. Task Benchmark

Image classification Accuracy

bean_disease_uganda 1,295 3 B 96.90%

plant_seedlings_aarhus [39] 5,539 12 A 94.39%

soybean_weed_uav_brazil [40] 15,336 4 A 100.0%

sugarcane_damage_usa [41] 153 6 B 100.0%

crop weeds_greece [42] 508 4 A 100.0%

rangeland_weeds_australia [43] 17,509 10 A 97.94%

leaf_counting_denmark [44] 9,372 9 C 88.90%

plant_village_classification [45] 55,448 39 B 98.91%

plant_doc_classification [46] 2,336 28 B 89.27%

Semantic segmentation mIoU

carrot_weeds_germany [47] 60 2 D 52.18%

sugarbeet weed segmentation 
[48]

125 2 D 53.59%

apple_flower_segmentation [49] 148 1 E 68.38%

apple_segmentation_minnesota 
[50]

670 1 F 79.08%

rice_seedling_segmentation [51] 224 2 D 52.20%

peachpear_flower_segmentation 
[49]

42 1 E 72.58%

red_grapes_and_leaves 
segmentation [52]

258 2 F 49.18%

white_grapes_and_leaves 
segmentation [52]

273 2 F 51.93%

Object detection mAP@0.5

fruit_detection_worldwide [1] 565 7 G 70.35%

apple_detection_usa [53] 2,290 1 G 94.16%

apple_detection_spain [54] 967 1 G 86.65%

apple_detection_drone_brazil 
[55]

689 1 G 79.62%

mango_detection_australia [56] 1,242 1 G 95.32%

grape_detection_californiaday 
[57]

126 1 G 69.01%

grape_detection_californianight 
[57]

150 1 G 63.99%

Task legend        
A, B{Weed, Disease/Damage} Classification,  

CLeaf CountingD, E, F{Weed, Flower, Fruit} Segmentation, GFruit Detection

https://doi.org/10.34133/plantphenomics.0084
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the mean average precision metric at an IoU threshold of 0.5 
(which we denote as mAP@0.5).

Model training parameters
For each of the 3 deep learning tasks, we develop training pipe-
lines that are adaptable to each of the different agricultural 
datasets. These training pipelines are used both for our bench-
mark and pretrained model development and for our exper-
iments, proving their versatility in adapting to a number of 

different agricultural deep learning tasks. We summarize the 
main training parameters for each task in Table 2. Data pre-
processing is minimal; our only step involves resizing images 
to the image size in Table 2 and model-specific preprocessing, 
namely, normalization for image classification and semantic 
segmentation and bounding box format conversion for object 
detection. In addition, for semantic segmentation and object 
detection, we decay the initial learning rate by γ = 0.75 every 
8 epochs. All models are trained using the PyTorch Lightning 
library [27] on an NVIDIA Titan RTX GPU.

Fig. 2. Sample images from a collection of the object detection datasets used in this research, containing the original image with annotated fruit bounding boxes. The dataset 
from which each image is sourced from is annotated on top of it. These images are displayed in their original aspect ratio.

Fig. 3. Sample images from a collection of the semantic segmentation datasets used in this research, containing the original image with annotated segmentation masks. The 
dataset from which each image is sourced from is annotated on top of it. These images are displayed in their original aspect ratio.

https://doi.org/10.34133/plantphenomics.0084


Joshi et al. 2023 | https://doi.org/10.34133/plantphenomics.0084 6

Agricultural model weights for object detection
Object detection models are traditionally trained using domain- 
generic weights: either random initialization or a common 
benchmark like the COCO dataset. For highly specified envi-
ronments like agriculture, however, datasets are often of a much 
smaller magnitude. In many cases, as explored in [22], datasets 
may only consist of a few hundred images, common in the case 
of object detection where data annotation takes a substantial 
amount of time. In turn, using domain-specific agricultural 
weights as a starting point for deep learning models can signif-
icantly boost data efficiency, leading to models attaining high 
performance with less data and less training time.

To assess the performance of agricultural pretrained weights, 
we fine-tune an EfficientDetD4 model on the fruit_detection_
worldwide dataset and evaluate a set of 5 distinct pretrained model 
approaches: COCO, GRAPE, GRAPENIGHT, APPLEDRONE, and 
NONE. The parameters of these different models are summarized 
in Table 3. NONE and COCO serve as our baselines for traditional 
pretrained weight approaches, while GRAPE, GRAPENIGHT, 
and APPLEDRONE represent agricultural pretrained models 
trained for different types of environments—GRAPE for daytime, 
GRAPENIGHT for nighttime, and APPLEDRONE for drone as 
opposed to ground imagery.

We then use these pretrained models for 2 experiments 
involving the fruit_detection_worldwide dataset. We first fine-
tune a model on each of its 7 classes (specifically, 7 one-class 
models) and then one on the entire 7-class dataset (one 7-class 

model)—enabling an assessment of the results of pretrained 
weights on not only fruit localization but also classification. Our 
experimental method and pipeline is carried from the “Object 
detection” section, although we restrict our evaluation to the 
first 50 epochs to obtain a better picture of data efficiency.

Agricultural backbone weights for semantic 
segmentation
In contrast to the standard available pretrained weights for 
object detection, tasks like semantic segmentation often do not 
have even a domain-general set of pretrained weights available 
for training—especially due to the fact that a network with a 
certain number of classes cannot properly utilize the pretrained 
weights from one with a different number of classes, unlike in 
object detection. In such cases, pretrained weights are only used 
for the backbone, a feature extraction model that is used as the 
input stem into a semantic segmentation network. For instance, 
in our DeepLabV3 model, the backbone was ResNet50, a model 
otherwise used for image classification tasks. Traditionally, such 
classifiers are trained on the ImageNet dataset [12]. However, 
as we intend to demonstrate, using agricultural domain-specific 
weights for even the backbone can performance gain for the 
larger network as a whole.

Image classification datasets are largely different from seman-
tic segmentation datasets—while most of our semantic segmen-
tation datasets in Table 1 are for locating fruits or weeds, many 
of our image classification datasets are for distinguishing between 
leaves and weeds. For a thorough examination of the viability of 
agricultural weights, we select 3 different agricultural image clas-
sification datasets to use as pretrained models, summarized in 
Table 4. VILLAGE is our largest image classification dataset, with 
over 55,000 images for species and disease classification, while 
COUNTING is a much smaller dataset focused on a largely dif-
ferent application—leaf counting. We assess these 4 pretrained 
backbones on 3 different datasets: apple_flower_segmentation, 
apple_segmentation_minnesota, and rice_seedling_segmentation. 
Our experimental method and pipeline is the same as in the 
“Semantic segmentation” section, although we restrict our eval-
uation to only the first 20 epochs of training.

Effectiveness of augmentations for generating 
diverse data
A standard procedure for improving the performance and, in 
particular, generalizability of deep learning models is to apply 

Table 2. Summary of core training parameters for each task.

Task Image size Optimizer
Learning 

rate
Epochs

Image 
classifica-
tion

224 Adam 0.001 100

Semantic 
segmenta-
tion

512 NAdam [12] 0.005 50

Object 
detection

512 AdamW [31] 0.0002 100

Table 3. Summary of pretrained model approaches for single- 
class detection.

Model name Datasets pretrained on

NONE None

COCO COCO [13]

GRAPE grape_detection_californiaday

GRAPENIGHT grape_california_night

APPLEDRONE apple_detection_drone_brazil

Table  4. Summary of pretrained backbones for semantic seg-
mentation. Note that in contrast to object detection, the num-
ber of classes of the image classification models is not relevant, 
as they are being used as feature extractors.

Model name Datasets pretrained on

NONE None

IMAGENET ImageNet [12]

VILLAGE plant_village_classification

COUNTING leaf_counting_denmark

https://doi.org/10.34133/plantphenomics.0084
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visual and spatial augmentations to the input data, with the 
intended goal of increasing the diversity of the input data. 
Standard spatial augmentations include rotation, distortion 
(such as affine transforms), and cropping, while standard visual 
augmentations range from saturation and brightness contrast 
to Gaussian noise addition. For agricultural deep learning mod-
els, generalizability is a crucial goal, as environmental condi-
tions vary considerably in different scenarios.

In turn, we conduct a robust analysis of various augmenta-
tions across a number of datasets in order to collect insight into 
the most viable augmentations for improving generaliza-
bility for agriculture. Performance is assessed on a collection 
of different augmentations on a set of different datasets across 
our 3 different tasks—image classification, semantic segmenta-
tion, and object detection—to provide a greater insight into 
each augmentation’s effectiveness. Our analysis only involves 
the usage of a single augmentation per trial, without combina-
tions, in order to provide an insight into the capability of each 
augmentation independently, relevant to our goal of assessing 
augmentations in an agricultural context. Additionally, we col-
lect final metric scores early in training, after only 20 epochs. As 
noted from our prior observations, most models begin approach-
ing the relative peak of their performance at this threshold. So, 
a better analysis of the effectiveness of augmentations is done by 
analyzing their performance improvements earlier in training. 
We use the albumentations [28] library for our augmentations, 
noting its seamless integration into our existing PyTorch training 
pipeline. The augmentations we use, alongside model perfor-
mance corresponding to the datasets we select, are summarized 

in Table 5 to eliminate redundancy. Furthermore, we provide a 
visual example of each of the augmentations we use in Fig. 4.

Effects of annotation quality on learning
Data annotation is a heavily time-consuming task within deep 
learning. In the field of agriculture, this is an especially preva-
lent issue, due to the present nuance and even simply the quan-
tity of objects such as fruits that need to be annotated in fruit 
detection tasks. Oftentimes, the amount of effort needed to 
annotate a certain dataset can result in that dataset being gen-
erated with imperfect and even obviously inaccurate annota-
tions, potentially leading to them being unusable for deep 
learning tasks. However, with the already present scarcity of 
agricultural data, any loss of existing data has larger impacts 
on the open-source data community. Thus, we now assess how 
the quality of annotations on agricultural data affects models’ 
overall performance. In particular, we aim to observe whether 
models are capable of achieving high performance without 
perfect annotations, potentially leading to less strict annotation 
requirements for deep learning models in the future.

We use 3 fruit detection datasets for this stage, namely, 
grape_detection_californiaday, apple_detection_drone_brazil, 
and fruit_detection_worldwide. For each dataset, we set aside 
a common test set. For the remaining data, we create a set of 
datasets with reduced quality annotations, removing a certain 
percentage of bounding boxes for each image. This procedure 
is conducted for retention of only 30% of annotations, to 90% 
of annotations, with 10% increments. Using our object detec-
tion pipeline from the “Object detection” section, we train for 

Table 5. Summary of performance of different augmentations on the aforementioned semantic segmentation and object detection data-
sets. Bold indicates the highest performance for a certain dataset.

Augmentation A B C D E F

mAP@0.5 mIOU

original (0) 64.08% 53.62% 75.11% 69.78% 78.52% 51.04%

horizontal-flip (1) 62.76% 58.32% 74.46% 66.97% 79.19% 51.35%
vertical-flip (2) 68.45% 56.12% 74.48% 62.48% 75.35% 49.19%

shear (3) 63.31% 58.28% 80.96% 65.61% 77.54% 51.04%

rotate (4) 60.77% 61.06% 84.42% 64.51% 73.96% 49.75%

translate (5) 65.53% 53.05% 86.60% 66.26% 79.22% 48.57%

brightness (6) 59.01% 52.69% 78.80% 66.45% 77.72% 44.50%

hsv-shift (7) 56.51% 49.32% 82.39% 51.34% 73.12% 42.95%

gaussian-blur (8) 65.17% 57.09% 84.60% 69.25% 78.61% 50.96%

rain (9) 60.44% 42.25% 81.20% 69.49% 73.09% 50.11%

fog (10) 65.35% 48.66% 78.81% 62.73% 70.81% 44.31%

sun-flare (11) 65.92% 55.87% 80.72% 49.86% 74.70% 43.63%

Dataset legend

 Agrape_detection_californiaday

 Bgrape_detection_californianight

 Capple_detection_drone_brazil

 Dapple_segmentation_minnesota

 Eapple_flower_segmentation

 Frice_seedling_segmentation
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25 epochs on each dataset and record their mAP@0.5 on the 
aforementioned test sets.

Results and Discussion

Standard benchmarks for agricultural datasets
The performance of each of our task-based models on the 
datasets we have collected is summarized in Table 1. Our stand-
ard pipelines enable our models to achieve comparable per-
formance with existing benchmarks on our collected datasets, 
in certain cases even exceeding them. As mentioned in the 
“Models and methods” section, these datasets, along with 
pretrained models that achieved these benchmarks, are avail-
able through the open-source framework AgML, enabling fur-
ther research on developing even more efficient data and model 
pipelines.

Performance of agricultural pretrained weights for 
object detection
A summary of the results of our experiments using agricultural 
pretrained weights for object detection is shown in Fig. 5, with 

each of the fruits representing the 7 one-class models, and com-
plete representing the one 7-class model. For all of the 7-class 
models, the pretrained agricultural models substantially out-
perform the COCO and NONE baselines. We observe that the 
agricultural models tended to plateau at their maximum mean 
average precision before 10 epochs, for most fruits—some, like 
strawberry, avocado, and mango, see this plateau as early as 5 
epochs. On the other hand, COCO, the standard baseline, usu-
ally takes between 25 to 40 epochs to reach its own maximum 
value, while the NONE model fails to even break zero mean 
average precision for 5 out of 7 fruits, and only reaches a com-
parable score to COCO for one. For the 7-class model, we see 
that the agricultural pretrained models follow a similar trajec-
tory to COCO, taking around or over 30 epochs to plateau at 
their maximum mean average precision.

A number of observations can be drawn from these results. 
Pretrained weights are clearly a better approach when training 
object detection models, as they converge markedly faster than 
random weights, saving time and resources in training. The poor 
performance of the NONE model demonstrates the value of 
transferring prior knowledge when training on new tasks. 
Furthermore, for agricultural domain-specific detection tasks, 

Fig. 4. An example image from grape_detection_californiaday with each of the augmentations used in this research applied to it. The original image is not resized, while the 
augmented images are (as they would be in an actual training pipeline).
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using agricultural pretrained weights can provide, at minimum, 
comparable performance to COCO, or other standard weights, 
but at best, even better performance and much faster conver-
gence. Our results are consistent with previous observations for 
other tasks, such as [29], where agricultural pretrained weights 
were found to increase performance. Our results are further 
consistent with previous observations specifically for object 
detection such as in [30], where using pretrained fruit detection 
weights from similar environments resulted in a considerable 
performance increase. A key insight from our work, however, 
is the fact that agricultural environment played little role in per-
formance improvement—all 3 models, despite their distinct 
environments, achieved similar performance on a dataset in yet 
another noticeably different environment. Furthermore, each 
agricultural pretrained model followed a similar performance 
trajectory, corroborating our observations that using agricul-
tural pretrained weights of any form results in not only higher 
performance but also faster convergence. In turn, this approach, 
which only requires a slight modification to existing pipelines, 
can notably improve training results for future agricultural deep 
learning work.

Performance of agricultural backbone weights for 
semantic segmentation
Similar to the previous section, we summarize the results of 
our semantic segmentation models in Fig. 6. We find that our 
models with agricultural pretrained backbones, VILLAGE and 
COUNTING, tend to outperform models with the existing 
NONE and IMAGENET backbones to a measureable degree. 
For the datasets apple_segmentation_minnesota and rice_
seedling_segmentation, our agricultural pretrained models 
reach their maximum mIoU almost within the first couple of 
epochs, while the other 2 models either take between 10 and 

15 epochs to reach a similar degree of performance or do not 
reach it at all. For apple_flower_segmentation, our models 
reach similar levels of performance as COCO, but maintain 
a more consistent trajectory of performance increase, while 
COCO and NONE see a spike in performance followed by a 
quick drop, suggesting relative inconsistency.

Semantic segmentation is a unique task due to the required 
level of data annotation required for it—each pixel in an image 
must be assigned to a certain class. This is reflected in the reduced 
size of segmentation datasets, an example of which can be seen 
in the image counts of Table 1. As a result, there is potentially 
not enough available data to generate a large-scale pretrained 
network for semantic segmentation, especially when noting the 
potential difference in classes between a pretrained network and 
an applied, task-specific network—resulting in loss of knowl-
edge in weights that cannot be transferred. This is noted in 
works like [31,32], where standard domain-general weights are 
used in lieu of their agricultural equivalents. However, image 
classification datasets are in relative surplus in comparison 
to semantic segmentation, and most segmentation models use 
classification models as their feature extractors, representing 
the encoder module for a typical encoder–decoder architecture. 
For most tasks, a standard approach is to freeze weights for this 
feature extraction module, the encoder, and only update param-
eters for the segmentation head, the decoder. This is inspired 
by the fact that the feature extraction model obtains the most 
relevant information regarding the location of the objects being 
segmented—however, for agricultural networks, this approach 
seems largely counterintuitive, as the feature extractor is usually 
trained on domain-general images and this unables to recognize 
the most relevant features for plants. Using agricultural pre-
trained weights, on the other hand, can improve the localization 
performance of the feature extractor, in turn improving the 
network’s performance as a whole. Our results show that using 

Fig. 5. Comparison of mAP@0.5 values on 7 different individual fruits from the fruit detection worldwide dataset, alongside the complete dataset (listed as complete, the 
bottom right plot).
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agricultural weights for feature extractors serves as a potential 
workaround for the lack of a standard semantic segmentation 
pretrained model, still enabling improved performance and 
reduced training time.

Augmentation effectiveness
We summarize the performance of each of the augmentations 
used in this work, on 6 different datasets (A, B, C object detec-
tion, and D, E, F semantic segmentation), in Table 5. When 
using a single augmentation, as in our experiments, observe 
that spatial augmentations—namely, augmentations (1) to (5) 
as denoted in the table, when used independently—generally 
outperform visual augmentations—(6) to (11)—for all of the 
datasets used in this experiment. The augmentations that pro-
vide the largest performance increase are all spatial, while the 
visual augmentations, in many cases, fail to even provide any 
performance increase whatsoever. For our subsequent analysis, 
we refer to each dataset using its key in the table (A refers to 
grape_detection_californiaday, and so on).

Our next key observation regards the effect of different aug-
mentations on different environments and conditions. For 
instance, datasets A and B consist of the same fruit in the same 
environment, simply in day conditions versus night conditions. 
While certain visual augmentations, such as rain and fog, pro-
vide a performance boost for A, they actually considerably 
reduce performance for B, indicating that certain factors, such 
as rain and fog, are less valuable information in nighttime envi-
ronments as opposed to daytime environments. Another exam-
ple of the effects of different augmentations, this time for spatial 
augmentations with reference to camera positioning, is found 
when observing the results for C. While A and B, the other 
object detection datasets, consist of ground cameras capturing 
images of plants, C consists of aerial imagery captured by a 
drone. In turn, augmentations like rotation and translation 
provide a better opportunity for the model to generalize to 
different aerial camera positions, as opposed to less distortive 
augmentations like horizontal and vertical flips. For semantic 
segmentation tasks, we observe a less obvious boost in perfor-
mance from augmentations. In fact, for D, no augmentations 
provide the best result, while for E and F the performance boost 
is within 1% of no augmentations. This potentially stems from 
the different conditions of semantic segmentation tasks as 
opposed to object detection tasks—semantic segmentation 
tasks, especially for fruit or leaf segmentation, like D and E, 
can come down to individual pixels, and such precision may 
likely be distorted by spatial augmentations. In all tasks, while 

visual augmentations appear to provide less of an obvious ben-
efit as opposed to spatial augmentations, our results still pro-
vide some insight into their potential viability. In particular, 
augmentations that affect the hue of an image, such as HSV 
shift and brightness or contrast shifts, tend to actually decrease 
performance, as they result in a model adapting to those input 
colors. On the contrary, Gaussian blurring provides a consist-
ent, though sometimes minute, performance increase relative 
to the input. This suggests that a reduction of features, as done 
by adding a slight blur to the input, can in fact increase per-
formance by potentially having the model learn more general 
features in the input environment.

A major benefit of augmentations is their ability to generate 
data potentially modified for a large variety of conditions, ena-
bling greater generalizability for agricultural models. Existing 
state-of-the-art work done for domain transfer often involves 
the usage of generative adversarial networks (GANs), such as 
[33], who developed a GAN for transferring sample imagery 
between day and night domains, and [34], who used a CycleGAN 
network to edit the fruits present in imagery while maintaining 
the environmental conditions. While augmentations may not 
necessarily be able to provide an entire domain transfer as in 
the prior methods, they can still provide a generalization of 
conditions—for instance, rain and fog augmentations, as used 
in our research, can generalize data to a broader range of com-
mon conditions across the world. Other augmentations, like 
sun flare, can reduce the impact of edge cases where images are 
obscured. We note that certain augmentations expand beyond 
a single data point, potentially involving multiple images being 
transformed together. This is the case in common augmenta-
tions such as mosaic and patch, as explored in their applications 
for agricultural robotics in [35]. While we do not include these 
augmentations in our research, as they involve larger modifica-
tions to our pipelines, they do present potential further perfor-
mance improvements for agricultural models. If used properly 
based on the input environment, augmentations provide an 
efficient way to produce a larger set of environments for agri-
cultural data, improving generalizability of models.

Annotation quality
The performance of each of our annotation quality models is 
recorded in Fig. 7, which displays the performance of models 
relative to the quality of annotations on the datasets they are 
trained on. For the datasets grape_detection_californiaday and 
apple_detection_drone_brazil, we find a consistent increase in 
performance as the quality of annotations increases. Notably, 

Fig. 6. Comparison of mIoU values for 4 different pretrained backbones on 3 different evaluation datasets. The y axis is on a consistent scale, although each dataset has its 
models converge to a different range of values.
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we do not observe a one-to-one correspondence between qual-
ity of annotations and level of performance: e.g., 30% of anno-
tations actually correspond to over 50% of peak performance, 
suggesting that models trained on lower quality annotations 
are, at least to some extent, able to localize similar objects to a 
slightly higher than expected degree. We provide a sample of 
predicted bounding boxes for each grape_detection_californiaday 
iteration in Fig. 8. This observance, however, does not hold for 

fruit_detection_worldwide, which has a distinction of being 
a multi-class dataset in contrast to the prior 2. Surprisingly, 
for this dataset, we find that our models achieve maximum 
performance with only 50% of annotations. This example, in 
turn, provides an insight into the hazardous potential of using 
lower-quality annotations. At 50% of annotations, our model 
may have only learned general features, thus allowing it to still 
perform much better on other sample images. However, higher 

Fig. 7. Performance of models on 3 different datasets dependent on the percentage of bounding box annotations retained per image.

Fig. 8. Sample predictions by models trained on different levels of annotation quality. The percentages above each image reflect the amount of bounding boxes retained for 
the data used in training that specific model.

https://doi.org/10.34133/plantphenomics.0084


Joshi et al. 2023 | https://doi.org/10.34133/plantphenomics.0084 12

percentages of still low-quality annotations may result in a 
model learning to distinguish between different instances of 
the same fruit by extremely nuanced features, overfitting on the 
samples on which it is trained. This serves as an interesting case 
study in and of itself—for instance, on sample images from the 
fruit_detection_worldwide dataset, the corresponding bench-
mark model is able to predict fruits that are not annotated, as 
displayed in Fig. 9.

A number of methods have been proposed in recent work 
to try and automate the data annotation process, which is one 
of the major bottlenecks for agricultural deep learning. Some 
approaches, such as [36], use robotic systems to capture data 
from a wider range of angles and automatically annotate bound-
ing boxes knowing the location of plants in controlled envi-
ronments. Other approaches [37,38] involve semi-supervised 
learning, taking advantage of highly precise data to train high- 
performance models that in turn improve predictions on unla-
beled images. Such approaches show potential for not only 
making new high-quality agricultural datasets but also even 
potentially improving upon existing datasets, annotating missed 
fruits or other objects that may have been missed out on. 
Nevertheless, our work demonstrates that fruit detection mod-
els can still obtain relatively high performance with some fruits 
unannotated. In turn, potential new approaches may involve 
using lower-quality datasets in coordination with better data-
sets, expanding the pool of available data for agricultulture 
and further boosting model performance.

Conclusion
In our work, we have developed a novel set of standardized and 
centralized agricultural datasets, alongside benchmarks and 
pretrained models using state-of-the-art models. Our custom 
pipelines achieve comparable performance with existing bench-
marks using no extensive data or architectural modifications, 
making them widely applicable to a variety of agricultural deep 
learning tasks. We have also assessed a number of existing 
methods for improving model performance domain-specific 
to agriculture, including using agricultural pretrained model 
weights and image augmentations. Furthermore, we have even 

explored the viability of traditionally overlooked lower-quality 
data, potentially expanding the data pool for agriculture. Our 
results demonstrate that slight training modifications can sub-
stantially boost model performance and result in shorter con-
vergence time. We have open-sourced our standardized and 
centralized versions of the datasets used in our work, alongside 
our pretrained models and benchmarks, to guide easier adop-
tion of our described methods.
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