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1 |  INTRODUCTION

The analysis of point- referenced spatial data relies heavily on stationary Gaussian processes 
for modelling spatial dependence. Let y(s) be the outcome measured at a location s ∈  ⊂ ℝ

d, 
where  is a bounded region within ℝd. The outcome is customarily modelled as 

(1)y(s) = 𝜇(s) + w(s) + 𝜖(s), s ∈ S ⊂ ℝ
d,
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Abstract
Spatial process models popular in geostatistics often repre-
sent the observed data as the sum of a smooth underlying 
process and white noise. The variation in the white noise is 
attributed to measurement error, or microscale variability, 
and is called the ‘nugget’. We formally establish results on 
the identifiability and consistency of the nugget in spatial 
models based upon the Gaussian process within the frame-
work of in- fill asymptotics, that is the sample size increases 
within a sampling domain that is bounded. Our work ex-
tends results in fixed domain asymptotics for spatial mod-
els without the nugget. More specifically, we establish the 
identifiability of parameters in the Matérn covariogram 
and the consistency of their maximum likelihood estima-
tors in the presence of discontinuities due to the nugget. 
We also present simulation studies to demonstrate the role 
of the identifiable quantities in spatial interpolation.
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 where μ(s) models the trend, w(s) is a Gaussian process capturing spatial dependence, and ε(s) is 
a white noise process modelling measurement error or microscale variation. Matérn (1986) intro-
duced a flexible class of covariance functions for modelling w(s) that has been widely used in spatial 
modelling ever since it was recommended in Stein (1999). The finite dimensional realisations of ε(s) 
are modelled independently and identically as N(0, �2) over any finite collection of locations. The 
variance parameter �2 is called the ‘nugget’.

Our intended contribution in this article is to formally establish the identifiability and con-
sistency of the process parameters in Equation (1) in the presence of an unknown nugget under 
infill or fixed domain asymptotics, where the sample size increases with increasing numbers of 
locations within a domain that is fixed and does not expand. This distinguishes the article from 
existing results on inference for process parameters in Matérn models that have, almost exclu-
sively, been studied without the presence of an unknown nugget. Zhang and Zimmerman (2005) 
compared infill and expanding domain asymptotic paradigms and elucidate a preference for the 
former for analysing the limiting distributions of parameters in the Matérn family. Zhang (2004) 
showed that not all parameters in the Matérn family can be consistently estimated under infill 
asymptotics, but certain microergodic parameters, which play a crucial role in the identifiabil-
ity of Gaussian processes with the Matérn covariogram (see Section 2.1 for further details), are 
consistently estimable. Du et al. (2009) derived the asymptotic normality of the maximum like-
lihood estimator for such microergodic parameters. Kaufman and Shaby (2013) extended these 
asymptotic results to the case of jointly estimating the spatial range and the variance parameters 
in the Matérn family, and explored the effect of a prefixed range versus a joint estimated range 
on inference when having relatively small sample size. Recently, Bevilacqua et al. (2019) and Ma 
and Bhadra (2019) considered more general classes of covariance functions outside of the Matérn 
family and studied the consistency and asymptotic normality of the maximum likelihood estima-
tor for the corresponding microergodic parameters.

These studies have focused upon settings without the presence of a nugget. In practice, mod-
elling the measurement error, or nugget effect, in Equation (1) is prevalent in geostatistical mod-
elling. The main difference between the model without a nugget and that with a nugget hinges 
on the rate of asymptotic normality of the maximum likelihood estimator of microergodic pa-
rameters: the former has a universal rate of n1∕2, while the latter, as shown in Theorem 5, has a 
rate of n1∕(2+4�∕d) which depends on the model parameters. We also note that deriving the rate of 
n1∕(2+4�∕d) for a Matérn model with a nugget effect is not an obvious consequence of any afore-
mentioned results for Matérn or Matérn- like models without a nugget effect. Previous to this work, 
Zhang and Zimmerman (2005) offered some heuristic arguments for the consistency and asymp-
totic normality of the maximum likelihood estimators of microergodic parameters in Equation (1). 
Chen et al. (2000) demonstrated that the presence of measurement error can have a big impact on 
the parameter estimates for Ornstein– Uhlenbeck processes, that is, Matérn processes with ν = 1/2 
and d = 1, over bounded intervals. Their proof exploits the Markovian property and the explicit for-
mula for the maximum likelihood estimator of the one- dimensional Ornstein– Uhlenbeck process 
that are not available in the case of the Matérn model over ℝd with d ≥ 2.

Returning to (1), it will be sufficient for our subsequent development to assume that μ(s) = 0, 
that is, the data have been detrended. We specify {w(s): s ∈  ⊂ ℝ

d} as a zero- centred stationary 
Gaussian process with isotropic Matérn covariogram, 

(2)Kw(x;�
2, �, �) :=

�2(�‖x‖)�

Γ(�)2�−1
K�(�‖x‖), ‖x‖ ≥ 0 ,
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 where 𝜎2 > 0 is called the partial sill or spatial variance, ϕ > 0 is the scale or decay parameter, ν > 0 is 
a smoothness parameter, Γ(·) is the Gamma function and K�( ⋅ ) is the modified Bessel function of the 
second kind of order ν (Abramowitz & Stegun, 1965, Section 10). The corresponding spectral density is 

When ν = 1/2, the covariogram (2) simplifies to the exponential (Ornstein- =Uhlenbeck in one di-
mension) kernel 

For the measurement error, we assume {𝜖(s): s ∈  ⊂ ℝ
d} is Gaussian white noise with covario-

gram K�(y;�
2) := �2�0, where �0 is the indicator function at 0 and �2 is the nugget. The processes 

{w(s), s ∈ D ⊂ ℝ
d} and {𝜖(s), s ∈ D ⊂ ℝ

d} are independent. Hence, a Matérn model with mea-
surement error is a stationary Gaussian process with covariogram 

Our approach will depend upon identifying microergodic parameters in the above model. 
The remainder of the article evolves as follows. We review the discussion in Zhang (2004) for the 
Matérn model with measurement error, claiming that only � = {�2 �2� , �2} can have infill con-
sistent estimators when d ≤ 3. Subsequently, we establish that the maximum likelihood estimates 
for θ are consistent and are asymptotically normal. This extends the main results in Chen et al. 
(2000) to the case with dimension d ≤ 3. The asymptotic properties of interpolation are explored 
mainly through simulations, and we demonstrate the role of θ in interpolation. We conclude with 
some insights and directions for future work.

2 |  ASYMPTOTIC THEORY FOR ESTIMATION 
AND PREDICTION

2.1 | Identifiability

Zhang (2004) showed that for the Matérn model without measurement error, when fixing the smooth-
ness parameter ν > 0 and d ≤ 3, there are no (weakly) infill consistent estimators for either the partial 
sill �2 or the scale parameter ϕ. Such results rely upon the equivalence and orthogonality of Gaussian 
measures. Two probability measures P1 and P2 on a measurable space (Ω,  ) are said to be equivalent, 
denoted P1 ≡ P2, if they are absolutely continuous with respect to each other. Thus, P1 ≡ P2 implies 
that for all A ∈ , P1(A) = 0 if and only if P2(A) = 0. On the other hand, P1 and P2 are orthogonal, 
denoted P1 ⊥ P2, if there exists A ∈  for which P1(A) = 1 and P2(A) = 0. While measures may be 
neither equivalent nor orthogonal, Gaussian measures are one or the other. For a Gaussian probability 
measure P� indexed by a set of parameters θ, we say that θ is microergodic if P�1 ≡ P�2 if and only if 
�1 = �2. For further background, see Chapter 6 in Stein (1999) and Zhang (2012). Furthermore, two 
Gaussian probability measures defined by Matérn covariograms Kw( ⋅ ;�21, �1, �) and Kw( ⋅ ;�22, �2, �) 
are equivalent if and only if �2

1
�2�1 = �2

2
�2�2  (Theorem 2 in Zhang, 2004) and, consequently, one 

 cannot consistently estimate �2 or ϕ in the Matérn model (2) (Corollary 1 in Zhang, 2004).

(3)fKw (u) = C
𝜎2𝜙2𝜈

(𝜙2+u2)𝜈+d∕2
for some C > 0.

Kw(x;�
2, �) := �2exp( − �‖x ‖).

(4)K(x; �2, �2, �, �) := Kw(x;�
2, �, �) + K�(x; �

2).



4 |   TANG et al.

We first characterise identifiability for the Matérn model with measurement error, that is, with 
covariogram given by Equation (4). Over a closed set S ⊂ ℝ

d, let GS(m, K) denote the Gaussian 
measure of the random field on S with mean function m and covariance function K. Consider 
two different specifications for w(s) in Equation (1) corresponding to mean mi and covariogram 
Ki for i = 1, 2. The respective measures on the realisations of w(s) over S will be denoted by 
GS(mi, Ki) for i = 1, 2. If � = {s1, s2, …} is a sequence of points in S, then the probability mea-
sure for the sequence of outcomes over χ, that is, {y(sj): sj ∈ �}, is denoted G� (mi, Ki, �

2
i
) under 

model i. The following lemma is familiar.

Lemma 1 Let S be a closed set, w(s) be a mean square continuous process on S under 
GS(m1, K1) and χ be a dense sequence of points in S. Then, (i) if �2

1
≠ �2

2
, then 

G𝜒 (m1, K1, 𝜏
2
1
)⊥G𝜒 (m2, K2, 𝜏

2
2
); and (ii) if �2

1
= �2

2
, then G� (m1, K1, �

2
1
) ≡ G� (m2, K2, �

2
2
) 

if and only if GS(m1, K1) ≡ GS(m2, K2).

Proof.  See Theorem 6 in Chapter 4 of Stein (1999).

According to Stein (1999 p. 121) (or (Ibragimov & Rozanov, 1978, III.4.1)), two Gaussian mea-
sures GS(m, K) ≡ GS(0, K) if and only if the mean function m(·) can be extended to a square- 
integrable function on ℝd whose Fourier transform m̂(�) satisfies ∫

ℝd
|�m(𝜔)|2
fK (𝜔)

d𝜔 < ∞, where fK 

denotes the spectral density of the covariance function K. In such a situation, the mean function 
m(·) of the Gaussian process is not identifiable. A specific example is the Gaussian measure with 
m(x) = 𝛽⊤x , where � ∈ ℝ

d and K is the Matérn covariogram. From a practical inferential stand-
point, most of the insights obtained from the subsequent theoretical developments will apply to 
detrended processes. The following result adapts Lemma 1 to the Matérn model with measure-
ment error and summarises the identifiability issue with measurement error.

Theorem 1 Let S ⊂ ℝ
d be a compact set. For i = 1, 2, let Pi be the probability measure of the 

Gaussian process on S with mean zero and covariance K( ⋅ ; �2
i
, �2

i
, �i, �) defined by Equation 

(4). Then, (i) if �2
1
≠ �2

2
, then P1 ⊥ P2; and (ii) if �2

1
= �2

2
, then for d ≤ 3, P1 ≡ P2 if and only if 

�2
1
�2�1 = �2

2
�2�2 , and for d≥5, P1 ≡ P2 if and only if (�2

1
, �1) = (�2

2
, �2) .

Proof.  Denote Ki for Kw( ⋅ ;�2i , �i, �). It is easy to see that w(s) is mean square continuous on 
S under GS(0, Ki). From Lemma 1, we know that if �2

1
≠ �2

2
, for any dense sequence χ, 

G𝜒 (0, K1, 𝜏
2
1
) ⊥ G𝜒 (0, K2, 𝜏

2
2
). Therefore, P1 ⊥ P2. This proves (i).

Next, suppose �2
1
= �2

2
. From Theorem 2 in Zhang (2004), we know that for d ≤ 3 GS(0, K1) ≡ GS(0, K2) 

if and only if �2
1
�2�1 = �2

2
�2�2 . Corollary 3 in Anderes (2010) shows that, for d ≥ 5, GS(0, K1) ⊥ GS(0, K2) 

if {�2
1
, �1} ≠ {�2

2
, �2}. A straightforward application of Lemma 1 proves (ii).

Theorem 1 characterises equivalence and orthogonality of Matérn based Gaussian measures in 
terms of their parameters. Here it is instructive to distinguish between d ≤ 3 and d ≥ 5. The results 
in Zhang (2004) emerge as special cases when �2

1
= �2

2
= 0 and �2

1
�2�1 = �2

2
�2�2  for d ≤ 3. Combining 

Theorem 1 with the argument provided in Corollary 1 of Zhang (2004), we can conclude that �2 and 
ϕ are not consistently estimable. We provide this as an immediate corollary to Theorem 1.

Corollary 1 Let y(s), s ∈ S ⊂ ℝ
d, d ≤ 3 be a Gaussian process with a covariogram as in (4), and 

Sn, n ≥ 1 be an increasing sequence of subsets of S. Given observations of y(s), s ∈ Sn, there do 
not exist estimates �̂2n and �̂n that are consistent.
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Consequently, the joint maximum likelihood estimators of {�2, �} are not consistent estima-
tors. In contrast to {�2, �}, we show in Theorem 4 that the maximum likelihood estimator of the 
nugget �2 is consistent.

Turning to d ≥ 5, it follows from Theorem 1 that there exist joint estimates (�̂2n, �̂
2
n, �̂n) which 

converge to (�2, �2, �). For instance, letting ti,n =
i

n
1d, where 1d denotes the vector of 1’s in ℝd, we 

can take �̂2n =
1

2��
∑

i∈(y(ti+1,n)−y(ti,n))2, where  = {i ∈ ℤ: ti+1,n, ti,n ∈ S} and || is the cardi-
nality of . Furthermore, Anderes (2010) constructed consistent estimators of (�2, �) based on 
higher order increments of y. However, it is currently unknown whether the joint maximum 
likelihood estimators of (�2, �2, �) are consistent. Even for the Matérn model without a nugget 
(�2 = 0), the consistency of the joint maximum likelihood estimators of (�2, �) remains 
unresolved.

The characterisation of equivalence and orthogonality of P1 and P2 is also open in the critical 
dimension d = 4. The balance of this paper focuses on the asymptotic properties of the maximum 
likelihood estimates and predictions for the Matérn model with nugget when d ≤ 3 with addi-
tional discussions and results for d ≥ 5 in Section 2.5.

2.2 | Parameter estimation

Theorem 1 implies that if ν is fixed in the specification of w(s) in Equation (1), then �2�2� and 
the nugget �2 will be identifiable. In view of this, we consider the estimation of the microergodic 
parameter � := �2�2� and the nugget �2 with fixed decay ϕ. Our main results concern the consist-
ency and the asymptotic normality of the maximum likelihood estimators of κ and �2 when the 
observations are taken from y(·) modelled by Equation (1).

To proceed further, we need some notations. Let �n = {s1, …, sn} be the sampled points in S, 
yi := y(si), i = 1, …, n be the corresponding observations, and let Kn := {Kw(si− sj;�

2, �, �)}1≤i,j≤n 
denote the n × n Matérn covariance matrix over locations �n. Let {�(n)

i
, i = 1, …, n} be the eigen-

values of 1
�2
Kn in decreasing order. The covariance matrix of the observations y = (y1, …, yn)

⊤ 
is Vn = �2In + Kn, the likelihood is denoted by (�2, �2, �), and the (rescaled) negative log- 
likelihood is 

Let {�2
0
, �0, �

2
0
} be the true generating values of {�2, �, �2}, �0 = �2

0
�2�0 . Assume that the smooth-

ness parameter ν > 0 is known. For any fixed 𝜙1 > 0, let (�̂2n(�1), �̂
2
n(�1)) be the maximum likeli-

hood estimators of {�2, �2}. That is, 

where D = [a, b] × [c, d] with 0 < a < b < ∞ and 0 < c < d < ∞. To simplify notations, write �̂2n, �̂
2
n 

for �̂2n(�1), �̂
2
n(�1). Unlike the Matérn model (2), there is no explicit formula for �̂2n and �̂2n in the 

Matérn model with measurement error. Another difficulty of the analysis is that  is not concave, 
so the (rescaled) negative log- likelihood �(�2, �2, �1) may have local minima and stationary points. 
Nevertheless, we are able to establish the theorems regarding the consistency and asymptotic nor-
mality at these stationary points under some assumptions of the eigenvalue asymptotics.

(5)�(𝜏2, 𝜎2, 𝜙) := log detVn + y⊤V−1
n y.

(6)(�̂2n(�1), �̂
2
n(�1)) := argmax(�2,�2)∈D(�2, �2, �1) = argmin(�2,�2)∈D�(�

2, �2, �1)
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2.2.1 | Eigenvalue decay

We first give an upper bound for the eigenvalues �(n)
i

, which is of independent interest. The ar-
gument we provide below works for a large class of covariograms, including the Matérn model. 
In the sequel, the symbol ≍ indicates asymptotically bounded from below and above. We follow 
closely the presentation of Belkin (2018). Let Ω be a domain of ℝd, and K(·) be a positive definite 
radial basis kernel on ℝd. Denote  to be the reproducing kernel Hilbert space corresponding to 
the kernel K, which is also the native space associated to the kernel K. Given a probability meas-
ure μ on Ω, define the integral operator �: L

2
� → L2� by 

In particular, if � =
1

n

∑n
i=1 �si, � corresponds to the kernel matrix { 1

n
K(si− sj)}1≤i,j≤n. It is well 

known that �f ∈  for f ∈ L2�, and any function in  induces a function in L2� by restricting it to 
the support of μ (see Section 2 of Belkin (2018)). Call �:  → L2� the restriction operator.

The key idea of Belkin (2018) is to get a measure- independent upper bound for the eigenvalues of � 
for infinitely smooth kernels, while the argument can carry over to kernels with limited smoothness; that 
is, the spectral density of K satisfies f (u) ≍ u−�−d (β- smooth). By Equation (3), the Matérn covariogram 
is 2ν- smooth. Given 𝜒 = {s1, …, sn} ⊂ Ω, let S� :  →  be the interpolation operator defined by 

where (𝛼1, …, 𝛼n)
⊤ = K−1

n (f (x1), …, f (xn))
⊤ with Kn = {K(si− sj)}1≤i,j≤n. By letting 

h =maxs∈Smin1≤i≤n‖s − si‖, Santin and Schaback (2016 p. 985) proved that there exists C > 0 (in-
dependent of n) such that 

Here ‖ ⋅‖ → L2�
 denotes the operator norm. So (7) is a limited smoothness version of Belkin (2018 

Theorem A). The following result is adapted from Theorem 1 in Belkin (2018) to the β- smooth kernel.

Theorem 2 Suppose  : V →  is a map from a Banach space V to a reproducing kernel Hilbert 
space of functions on ℝd,  corresponding to a β- smooth radial basis kernel. Then there exists 
a map n from V to an n- dimensional linear subspace n ⊂ , such that 

for C > 0 independent of   and μ. Moreover, (1) the subspace n is independent of  ; (2) if   is 
linear operator, n is also a linear operator.

Proof.  The proof follows immediately from Theorem 1 in Belkin (2018) by substituting Theorem 
A therein with the bound in Equation (7).

�f (x) := �ΩK(x − z)f (z)�(dz).

S� f (x) =

n∑

i=1

�iK(xi − x),

(7)‖� − S�‖→L2�
≤ Ch(�+d)∕2.

‖ − n‖V→L2�
≤ C‖ ‖V→n−

�+d
d
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The following theorem is adapted from Theorem 2 in Belkin (2018) for β- smooth kernels.

Theorem 3 Let K be a β- smooth radial basis kernel, and �i(�) be the ith largest eigenvalue of �. 
Then there exists C > 0 such that 

Proof.  The proof follows by combining Theorem 2 above with Lemma 1 in Belkin (2018).

Corollary 2 Assume that maxs∈Smin1≤i≤n‖s − si‖ ≍ n−1∕d. There exists C > 0 independent of n 
such that 

Proof.  This follows immediately from applying Theorem 3 with � =
1

n

∑n
i=1 �si and β = 2ν.

Here, it is natural to enquire about a matching lower- bound for the eigenvalues �(n)
i

 under a 
suitable condition on the sampled point locations. To develop a rigorous framework, we lay down 
the following assumptions and provide heuristics and numerical evidence to show why these 
assumptions are expected to be true.

Assumption 1 Assume that min1≤i≠j≤n‖si − sj ‖ ≍ n−1∕d. There exists c > 0 such that 

The lower bound (9) holds for the largest eigenvalues. A lesser known result of Schaback 
(1995) shows that (9) also holds for the smallest eigenvalues with i ≍ n. However, there is no 
rigorous result for the lower bound of eigenvalues in full generality. Particularly interesting cases 
are i ≍ n� for 0 < α < 1, which leave the lower bound (9) open. In Figure 1, we plot the val-
ues of �(n)

i
∕(ni−2�−1) with sampled points on the regular grid [0, 1) ∩ n−1ℤ for ν = 0.9, 1.5, n 

�i(�) ≤ Ci−
�+d
d .

(8)�
(n)
i

≤ Cni−2�∕d−1 for all i = 1, …, n.

(9)�
(n)
i

≥ cni−2�∕d−1 for all i = 1, …, n.

F I G U R E  1  Trend of �(n)
i
∕(ni−2�∕d−1) for i = n� when the points are sampled on the regular grid [0, 1) ∩ n−1ℤ.  

Parameters ϕ and �2 in Matérn covariogram are set to be 1.0 and 1.0, respectively

0.00

0.05

0.10

0.15

0 1000 2000 3000
n

ν = 0.9 , α = 0.5

ν = 0.9 , α = 0.75

ν = 0.9 , α = 0.9

ν = 1.5 , α = 0.5

ν = 1.5 , α = 0.75

ν = 1.5 , α = 0.9
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ranging from 100 to 3000, and i = n0.5, n0.75, n0.9. Consistent with Assumption 1, the profile plots 
of �(n)

i
∕(ni−2�∕d−1) get flat as n increases. Furthermore, we see that when the points are sampled 

on [0, 1) ∩ n−1ℤ, the quantity �(n)
i
∕(ni−2�−1) tends to converge as n, i become large. This observa-

tion leads to the following stronger conjecture.

Assumption 2 Let �n = [0, 1)d ∩ n−1∕dℤd be the regular grid. There exists A = A(ϕ, ν, d) > 0 
such that 

Besides the numerical evidence, let us explain heuristics underlying this assumption from a 
theoretical viewpoint. First, Assumption 2 has been rigorously proved in Chen et al. (2000) for 
Ornstein– Uhlenbeck processes, corresponding to the case of ν = 1/2 and d = 1. Furthermore, 
for the regular grid �n, the scaled covariance matrix 1

n�2
Kn is viewed as the discretisation of the 

integral operator 

where f is a test function. The integral operator  has eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ > 0. Intuitively, 
�
(n)
i
∕n ≍ �i which is at least true for fixed i. Santin and Schaback (2016) observed that �i = h2

i−1
, with 

hi the i- width of the unit Sobolev ball in the L2 space. Using a differential operator approach, Jerome 
(1972) showed that limi→∞i

2�+d
2d hi = C�. The above two results imply that limi→∞i

2�∕d+1�i = C�2. 
Thus, we expect that �(n)

i
∕(ni−2�∕d−1) ≍ i2�∕d−1�i ≍ C�2 as n, i → ∞, though the error |�(n)

i
∕n − �i| is 

not easy to estimate.
To proceed further, we need the following lemma which is proved by elementary calculus.

Lemma 2 Assume that maxs∈Smin1≤i≤n‖s − si‖ ≍ n−1∕d and min1≤i≠j≤n‖si − sj ‖ ≍ n−1∕d . Let 
ani = 1∕(�̂2n + �̂

2
n�

(n)
i
), bni = �

(n)
i
∕(�2

0
+ �̂

2
n�

(n)
i
), a0

ni
= 1∕(�2

0
+ �2�

(n)
i
), and b0

ni
= �

(n)
i
a0
ni

.

1. There exists C  >  0 such that 

2. Under Assumption 1, 

3. Under Assumption 2, there exist c1(𝜎), c2(𝜎), c3(𝜎) > 0 such that as n → ∞, 

(10)�
(n)
i
∕(ni−2�∕d−1)→ A as n, i→∞

f (x) := �[0,1]dKw(s − t;1,�, �)f (t)dt,

n∑

i=1

a2ni ≍ n ,

n∑

i=1

�
(n)
i
a2ni ≤ Cn

1
2�∕d+1 ,

n∑

i=1

bni ≤ Cn
1

2�∕d+1 ,

n∑

i=1

b2ni ≤ Cn
1

2�∕d+1 .

n∑

i=1

�
(n)
i
a2ni ≍ n

1
2�∕d+1 ,

n∑

i=1

bni ≍ n
1

2�∕d+1 ,

n∑

i=1

b2ni ≍ n
1

2�∕d+1 .

1

n

n∑

i=1

(a0ni)
2
→ c1(�),

1

n

n∑

i=1

(a0ni)
4
→ c2(�),

1

n1∕(1+2�∕d)

n∑

i=1

(b0ni)
2
→ c3(�).
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2.2.2 | Consistency of the maximum likelihood estimator

We begin our development of the consistency of the maximum likelihood estimator of the nugget 
�̂
2
n and the microergodic parameter �̂2n�

2�
1  under Assumption 1. We point out that the consist-

ency of the nugget �̂2n is true without Assumption 1 on the lower bound for eigenvalues, and �̂2n 
remains consistent even when �2 and ϕ are misspecified.

Theorem 4 Assume that (�2
0
, �2

0
) ∈ D, �n := {s1, …, sn} satisfy 

Let P0 be the probability measure of the Matérn model with covariogram K( ⋅ ; �2
0
, �2

0
, �0, �). Then 

�̂
2
n → �2

0
 almost surely under P0. Further assume that the conditions in Assumption 1 hold. Then 

�̂
2
n�

2�
1 → �0 almost surely under P0.

Proof.  Let P1 be the probability measure corresponding to K( ⋅ ; �2
0
, �2

1
, �1, �), where 

�2
1
:= �0∕�

2�
1 . We first prove that �̂2n → �2

0
 almost surely under P0. From Theorem 1 we 

know that P0 ≡ P1. Hence, it suffices to prove that �̂2n → �2
0
 almost surely under P1. Under 

P1, we can rewrite (5) as 

where Wi
iid
∼ (0, 1). The maximum likelihood estimator �̂2n of �2 satisfies 

where ani = 1∕(�̂2n + �̂
2
n�

(n)
i
). By Lemma 2 (1), we have 

∑n
i=1 a

2
ni
≍ n and 

∑n
i=1 �

(n)
i
a2
ni

≤ Cn1∕(2�∕d+1) 
for some C > 0. Using the argument of Etemadi (2006), we obtain 

 Combining the above with (12), we have �̂2n → �2
0
 almost surely under P1.

Next, we show that �̂2n�
2�
1 → �0 almost surely under P0. Since �̂2n → �2

0
 almost surely under P0 

and �2
1
= �0∕�

2�
1 , it suffices to show that �̂�2n := argmin�2∈[c,d]�(�

2
0
, �2, �1) converges almost surely 

to �2
1
 under P0. Again, since P0 ≡ P1, it suffices to show �̂′2n → �2

1
 almost surely under P1. Under P1, 

max
s∈S

min
1≤ i≤n‖s − si‖ ≍ n−1∕d and min

1≤ i≠ j≤n‖si − sj ‖ ≍ n−1∕d.

(11)�(�2, �̂2n,�1) =

n∑

i=1

�2
0
+ �2

1
�
(n)
i

�2 + �̂
2
n�

(n)
i

W 2
i +

n∑

i=1

log(�2 + �̂
2
n�

(n)
i
),

(12)(�20 − �̂
2
n) ⋅

n∑

i=1

W 2
i a

2
ni =

n∑

i=1

�̂
2
n(1 −W 2

i )a
2
ni +

n∑

i=1

(�̂2n − �21W
2
i )�

(n)
i
a2ni.

∑n
i=1W

2
i
a2
ni∑n

i=1 a
2
ni

→ 1,

∑n
i=1 �̂

2
n(1 −W 2

i
)a2
ni∑n

i=1 a
2
ni

→ 0 and

∑n
i=1 (�̂

2
n − �2

1
W 2

i
)�(n)
i
a2
ni∑n

i=1 a
2
ni

→ 0.

(13)�(�20, �
2, �1) =

n∑

i=1

�2
0
+ �2

1
�
(n)
i

�2
0
+ �2�

(n)
i

W 2
i +

n∑

i=1

log(�20 + �2�
(n)
i
).
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 Taking the derivative of (13) with respect to �2 and equating to zero, we obtain 

with bni = �
(n)
i
∕(�2

0
+ �̂

�2
n �

(n)
i
). It suffices to prove that 

∑n
i=1 bni(W

2
i
− 1)∕

∑n
i=1 b

2
ni
W 2

i
 converges al-

most surely to 0. Since 

and 
∑n

i=1 bni ≍ n1∕(2�∕d+1), 
∑n

i=1 b
2
ni

≍ n1∕(2�∕d+1) by Lemma 2 (2), we get 

Combining the above estimates with (14), we have �̂′2n → �2
1
 almost surely under P1.

It is difficult to establish the consistency of the joint maximum likelihood estimates of {�, �2, �} 
(i.e. ϕ is not fixed). A related result can be found in Theorem 2 of Kaufman and Shaby (2013) 
without a nugget effect. In the presence of a nugget effect, constructing such a proof becomes 
difficult due to the analytic intractability of the maximum likelihood estimators for {�, �2, �} . 
Nevertheless, our simulation studies in Section 3.3 seem to support consistent estimation of 
{�, �2} even when ϕ is not fixed.

2.2.3 | Asymptotic normality of the maximum likelihood estimator

Given the consistency of the maximum likelihood estimators, we turn to their asymptotic distri-
butions. For simplicity of presentation, we let S = [0, 1]d in the following theorem. The asymp-
totic normality described below holds for any compact set S ⊂ ℝ

d.

Theorem 5 Assume that n is the dth power of some positive integer, �n = [0, 1)d ∩ n−1∕dℤd, and 
the conditions in Assumption 2 hold. Let 

 There exist constants c1, c2, c3 > 0 such that as n → ∞, 

 We have 

 and 

(14)
n∑

i=1

bni(W
2
i − 1) = (�̂�2n − �21)

n∑

i=1

b2niW
2
i .

∑n
i=1 bni(W

2
i
− 1)

∑n
i=1 b

2
ni
W 2

i

=

∑n
i=1 bni(W

2
i
− 1)

∑n
i=1 bni

⋅

∑n
i=1 bni∑n
i=1 b

2
ni

⋅

∑n
i=1 b

2
ni∑n

i=1 b
2
ni
W 2

i

,

∑n
i=1 bni(W

2
i
− 1)

∑n
i=1 bni

⟶ 0 and

∑n
i=1 b

2
ni∑n

i=1 b
2
ni
W 2

i

⟶ 1 a. s.

a0ni := 1∕(�20 + �21�
(n)
i
) and b0ni := �

(n)
i
a0ni for 1 ≤ i ≤ n.

(15)1

n

n∑

i=1

(a0ni)
2
→ c1,

1

n

n∑

i=1

(a0ni)
4
→ c2,

1

n1∕(1+2�∕d)

n∑

i=1

(b0ni)
2
→ c3.

(16)√
n(�̂2n − �20)

(d)
⟶ (0, 2�40c2∕c

2
1),

(17)n1∕(2+4�∕d)(�̂2n�
2�
1 − �0)

(d)
⟶ (0, 2�4�1 ∕c3),
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under P1 corresponding to the Matérn model with covariogram K( ⋅ ; �2
0
, �2

1
, �1, �), with 

�2
1
:= �0∕�

2�
1 .

Proof.  With Assumption 2, the limits in Equation (15) follow from Lemma 2 (3). By Equation 
(12) and Theorem 4, we have 

We know that 
∑n

i=1W
2
i
(a0
ni
)2∕

∑n
i=1 (a

0
ni
)2 ⟶ 1. In addition, 

where the first term on the right hand side converges to  (0, 1) by Lindeberg’s central limit theo-
rem, and the second term converges to �2

0

√
2c2∕c1. Similarly, 

where the first term on the right hand side converges to  (0, 1), and the second term converges to 0 
since 

∑n
i=1 (�

n
i )
2(a0

ni
)4 ≍ n1∕(1+2�∕d). Combining (18), (19) and (20) leads to (16).

By Equation (14) and Theorem 4, we get 

Moreover, 

where the first term on the right- hand side converges to  (0, 1), the second term converges to √
2∕c3 and the third term converges to 1. Combining (21) and (22) yields (17).

Du et al. (2009) showed that for the Matérn model without measurement error, the maximum 
likelihood estimator �̂2n converges to �2

1
 at a 

√
n- rate. Theorem 5 shows that in the presence of 

measurement error, the maximum likelihood estimator �̂2n has a 
√
n- rate while �̂2n has a slower 

n1∕(2+4�∕d)- rate. This echoes the results of Ying (1991), Chen et al. (2000) with � = 1

2
 and d = 1 for 

the Ornstein- Uhlenbeck process, where the maximum likelihood estimator �̂2n converges at a 
√
n

- rate without measurement error, but at a 4
√
n- rate in the presence of measurement error.

(18)
√
n(�20 − �̂

2
n) = (1 + o(1))

�2
0

√
n
∑n

i=1 (1 −W 2
i
)(a0

ni
)2 + �2

1

√
n
∑n

i=1 (1 −W 2
i
)�ni (a

0
ni
)2

∑n
i=1W

2
i
(a0
ni
)2

.

(19)
�2
0

√
n
∑n

i=1 (1 −W 2
i
)(a0

ni
)2

∑n
i=1 (a

0
ni
)2

=

∑n
i=1 (1 −W 2

i
)(a0

ni
)2

�
2
∑n

i=1 (a
0
ni
)4

⋅

�2
0

�
2n

∑n
i=1 (a

0
ni
)4

∑n
i=1 (a

0
ni
)2

(d)
⟶ (0, 2�40c2∕c

2
1),

(20)
�2
1

√
n
∑n

i=1 (1 −W 2
i
)�ni (a

0
ni
)2

∑n
i=1 (a

0
ni
)2

=

∑n
i=1 (1 −W 2

i
)�ni (a

0
ni
)2

�
2
∑n

i=1 (�
n
i )
2(a0

ni
)4

⋅

�2
1

�
2n

∑n
i=1 (�

n
i )
2(a0

ni
)4

∑n
i=1 (a

0
ni
)2

⟶ 0,

(21)n1∕(2+4�∕d)(�̂2n − �21) = (1 + o(1))
n1∕(2+4�∕d)

∑n
i=1 b

0
ni
(W 2

i
− 1)

∑n
i=1 (b

0
ni
)2W 2

i

.

(22)
n1∕(2+4�∕d)

∑n
i=1 b

0
ni
(W 2

i
−1)

∑n
i=1 (b

0
ni
)2W 2

i

=

∑n
i=1 b

0
ni
(W 2

i
−1)

�
2
∑n

i=1 (b
0
ni
)2

⋅

√
2n1∕(2+4�∕d)

�∑n
i=1 (b

0
ni
)2

⋅

∑n
i=1 (b

0
ni
)2

∑n
i=1 (b

0
ni
)2W 2

i

(d)
⟶ (0, 2∕c3),
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2.3 | Interpolation at new locations

We now turn to predicting the value of the process at unobserved locations. Without the nugget (i.e. 
τ = 0 in (1)), Stein (1988, 1993, 1999) establish that predictions under different measures tend to agree 
as sample size n → ∞. However, in the presence of a nugget effect, the predictive variance of y(s) at 
an unobserved location may not decrease to zero with increasing sample size. In fact, the squared 
prediction error for any linear predictor is expected to be at least �2. For example, let �y0 = v⊤y be 
a linear predictor of y0 = y(s0) at the unobserved location s0, s0 ∉ �n. Let w = {w(s1), …, w(sn)},  
� = {�(s1), …, �(sn)}, w0 = w(s0) and �0 = �(s0). The expected squared prediction error satisfies 

To see whether there can be a consistent linear (unbiased) estimate of the underlying process w(·) at 
unobserved locations, consider the universal kriging estimator at an unobserved location s0 given by 

 where {�n(�2, �)}i := Kw(s0 − si;�
2, �, �), and {Γn(�2, �2, �)}ij := Kw(si − sj;�

2, �, �) + �2�0(i − j) 
for i, j = 1, …, n. The interpolant Ẑn(�2, �2, �) provides a best linear unbiased estimate of w0 under 
the Matérn model with measurement error (4). By letting {Kn(�)}ij := Kw(s0 − si; 1, �, �), we have 
the mean squared error of the estimator (23) follows 

where {�2
0
, �2

0
, �0} are the true generating values of {�2, �, �2}. Setting (�2, �2, �) = (�2

0
, �2

0
, �0) in 

Equation (24) yields 

 Theorem 8 in Chapter 3 of Stein (1999) characterises the mean squared error of the best linear unbiased 
estimate at location 0 as (2�c)1∕�

� sin(�∕�)

(
��2

)1−1∕� with observations at δj for j ≠ 0. Here α  := 2ν+1 and 

c := C�2�2� with C defined in Equation (3). Following the same argument, it is not hard to see that the 
mean squared error of the best linear unbiased estimate (based on data in ℝd) is of order �2�∕(2�+d). 
Stein (1999) proved this for observations on the whole line (with a typo in the expression (44) of Stein 
(1999)). He also conjectured that the above expression for the mean- square error holds for data on any 
finite interval. We conduct simulations in Section 3.4 with the nugget effect to corroborate this.

2.4 | Covariance tapering

Covariance tapering (Du et al., 2009; Furrer et al., 2006; Kaufman et al., 2008) approximates the 
likelihood by setting certain entries of the covariance matrix to zero to introduce sparsity and, 
hence, achieve computational benefits. In the presence of a nugget, we explore parameter esti-
mation for the Matérn model (4) with covariance tapering, which, too, have been investigated 

�[(�y0−y0)
2] = �[{(v⊤w−w0)+ (v

⊤𝜖−𝜖0)}
2] = �[(v⊤w−w0)

2] + �[(v⊤𝜖−𝜖0)
2] ≥ 𝜏2.

(23)�Zn(𝜏
2, 𝜎2, 𝜙) := 𝛾n(𝜎

2, 𝜙)⊤Γn(𝜏
2, 𝜎2, 𝜙)−1y ,

(24)

var𝜏2
0
,𝜎2
0
,𝜙0

{�Zn(𝜏
2, 𝜎2,𝜙)−w0}=𝜎20{1−2𝛾n(𝜎

2,𝜙)⊤Γn(𝜏
2, 𝜎2,𝜙)−1𝛾n(𝜎

2
0,𝜙0)

+𝛾n(𝜎
2,𝜙)⊤Γn(𝜏

2, 𝜎2,𝜙)−1Kn(𝜙0)Γn(𝜏
2, 𝜎2,𝜙)−1𝛾n(𝜎

2,𝜙)}

+𝜏20𝛾n(𝜎
2,𝜙)⊤Γn(𝜏

2, 𝜎2,𝜙)−2𝛾n(𝜎
2,𝜙),

(25)var𝜏2
0
, 𝜎2

0
, 𝜙0

{�Zn(𝜏
2
0, 𝜎

2
0, 𝜙0) − w0} = 𝜎20{1 − 𝛾n(𝜎

2
0, 𝜙0)

⊤Γn(𝜏
2
0, 𝜎

2
0, 𝜙0)

−1𝛾n(𝜎
2
0, 𝜙0)}
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without the nugget by Wang et al. (2011). Let Ktaper(x; �) be a tapering function, which is an iso-
tropic correlation function such that Ktaper(x; �) = 0 for |x| > γ. The tapered covariogram of the 
Matérn model with measurement error is given by 

where K(x; �2, �2, �, �) is defined in Equation (4). Recalling the notations from Section 2.2, we 
obtain the tapered covariance matrix of the observations y = (y1, …, yn)

⊤ as 

and the (rescaled) negative log- likelihood is �̃(𝜏, 𝜎2, 𝜙) := log detṼ n + y⊤ Ṽ
−1
n y, where T(γ) is the 

n × n matrix with (i, j)- th entry Ktaper(si − sj; �) and ∘ denotes the element- wise (Schur or Hadamard) 
matrix product. For any fixed 𝜙1 > 0, let (�̂2taper,n(�1), �̂

2
taper,n(�1)) be the maximum likelihood esti-

mators of the tapered Matérn model, i.e., 

To address the identifiability issue of the tapered Matérn model, we require the following assump-
tion on the tapering function which is due to Kaufman et al. (2008).

Assumption 3 The spectral density ftaper(u) of the tapering function Ktaper( ⋅ ; �) exists, and 
that there exist 𝜀 > max{d

4
, 1 − 𝜈} and M𝜀 < ∞ such that 

Theorem 6 For d ≤ 3, let S ⊂ ℝ
d be a compact set. For i = 1, 2, let P̃i be the probability measure 

of the Gaussian process on S with mean zero and covariance K̃( ⋅ ; �2
i
, �2

i
, �i, �, �) defined 

by Equation (26). Under the conditions in Assumption 3, we have the following results: (i) if 
�2
1
≠ �2

2
, then P̃1 ⊥ P̃2; and (ii) if �2

1
= �2

2
, then P̃1 ≡ P̃2 if and only if �2

1
�2�1 = �2

2
�2�2 .

Proof.  We know (Kaufman et al., 2008, Theorem 1) that P̃i ≡ Pi for i = 1, 2 under Assumption 
3. Therefore, the proof is an immediate consequence of our Theorem 1 in Section 2.

To progress further, we recall the crucial role of the eigenvalues of 1
�2
Kn in analysing the maxi-

mum likelihood estimators of the Matérn covariogram parameters with measurement error. With 
covariance tapering, we need estimates on the eigenvalues of 1

�2
Kn◦T(�). Let {�̃(n)i , i = 1, …, n} 

be the eigenvalues of 1
�2
Kn◦T(�) in decreasing order. Under Assumption 3, the spectral density 

f̃  of the tapered Matérn model with covariogram (26) satisfies f̃ (u) ≍ f (u) ≍ u−2�−d ((B.1) in 
Kaufman et al. (2008)). By applying Theorem 3, we have for maxs∈Smin1≤i≤n‖s − si‖ ≍ n−1∕d, 

In order to further study the maximum likelihood estimates of the tapered Matérn model, we need 
some assumptions on the eigenvalues {�̃(n)i , i = 1, …, n}. The following two assumptions are ana-
logues of Assumptions 1 and 2.

(26)K̃(x; �2, �2, �, �, �) = K(x; �2, �2, �, �)Ktaper(x; �),

(27)Ṽ n = Vn◦T(�) = �2In + Kn◦T(�),

(28)(�̂2taper,n(�1), �̂
2
taper,n(�1)) = argmin(�2,�2)∈D �̃(�

2, �2,�1) .

(29)ftaper(u) ≤ M�

(1+u2)�+
d
2
+�
, u ≥ 0.

(30)�̃
(n)
i ≤ Cni−2�∕d−1 for all i = 1, …, n.
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Assumption 4 Assume that min1≤i≠j≤n‖si − sj ‖ ≍ n−1∕d. There exists c > 0 such that 

Assumption 5 Let �n = [0, 1)d ∩ n−1∕dℤd be the regular grid. There exists A = A(ϕ, ν, d) > 0 
such that 

In Figure 2, we plot the values of �̃(n)i ∕(ni−2�−1) with sampled points on the regular grid 
[0, 1) ∩ n−1ℤ for ν = 0.9, 1.5, n ranging from 500 to 4000, and i = n0.7, n0.8, n0.9. The tapering function 
for obtaining �̃(n)i  is a stationary Wendland function Ktaper(x; �) = (1− |x|∕�)4+(1 + 4|x|∕�) where 
γ=0.5 (Wendland, 1995). Consistent with Assumption 4 and 5, the profile plots of �̃(n)i ∕(ni−2�∕d−1) 
flatten as n increases and the quantity �̃(n)i ∕(ni−2�−1) tends to converge as n, i become large.

Now we state the consistency results for the maximum likelihood estimators of the tapered 
Matérn model.

Theorem 7 Assume that (�2
0
, �2

0
) ∈ D, �n := {s1, …, sn} satisfy 

and the conditions in Assumption 3 hold. Let P̃0 be the probability measure of the tapered Matérn model 
with covariogram K̃( ⋅ ; �2

0
, �2

0
, �0, �, �).

1. We have �̂2taper,n → �2
0
 almost surely under P̃0.

2. Assume that the conditions in Assumption 4 hold. Then �̂2taper,n�
2�
1 → �0 almost surely under P̃0

3. Assume that n is the dth power of some positive integer, �n = [0, 1)d ∩ n−1∕dℤd, and the con-
ditions in Assumptions 3 and 5 hold. Let ã0

ni
:= 1∕(�2

0
+ �2

1
�̃
(n)
i ) and b̃0ni := �̃

(n)
i a0

ni
 for 1 ≤ i ≤ n. 

Then, there exist constants c̃1, c̃2, c̃3 > 0 such that as n → ∞, 

(31)�̃
(n)
i ≥ cni−2�∕d−1 for all i = 1, …, n.

(32)�̃
(n)
i ∕(ni−2�∕d−1)→ A as n, i→∞

max
s∈S

min
1≤ i≤n‖s − si‖ ≍ n−1∕d and min

1≤ i≠ j≤n‖si − sj ‖ ≍ n−1∕d,

F I G U R E  2  Trend of �̃(n)
i
∕(ni−2�∕d−1) for i = n� when the points are sampled on the regular grid [0, 1) ∩ n−1ℤ.  

Parameters ϕ and �2 in Matérn covariogram are set to be 1.0 and 1.0, respectively

0.04

0.06

0.08

0.10

0.12

1000 2000 3000 4000
n

ν = 0.9 , α = 0.7

ν = 0.9 , α = 0.8

ν = 0.9 , α = 0.9

ν = 1.5 , α = 0.7

ν = 1.5 , α = 0.8

ν = 1.5 , α = 0.9



   | 15TANG et al.

We also have 

and 

Proof.  Let P̃1 be the probability measure corresponding to the tapered Matérn covariogram 
K̃( ⋅ ; �2

0
, �2

1
, �1, �, �), where �2

1
:= �0∕�

2�
1 . From Theorem 6, we know that P̃0 ≡ P̃1. Under 

P̃1, the (rescaled) negative log- likelihood is written as 

where Wi
iid
∼ (0, 1). The remainder of the proof follows analogouly to Theorems 4 and 5 by using 

Assumptions 4 and 5 instead of Assumptions 1 and 2.

2.5 | Consistency and asymptotic normality for d ≥ 5

In contrast to d ≤ 3, the parameters {�2, �2, �} are consistently estimable for d ≥ 5. It is, therefore, 
of interest to establish if the maximum likelihood estimators of {�2, �2, �} are consistent in d ≥ 5. 
Here we consider a slightly weaker version of the problem which should offer sufficient insights 
into methods for Gaussian processes for d ≥ 5.

Recall the development in Section 2.2. Since the scale parameter �0 is consistently estimable, 
there exists an estimator �̂

′

n such that �̂
′

n → �0 almost surely (�̂
′

n can be any consistent estimator 
of �0). Let (�̂2(�̂

′

n), �̂
2
n(�̂

′

n)) be the maximum likelihood estimators based on the estimator �̂
′

n: 

 The next theorem establishes consistency of the maximum likelihood estimators (�̂2(�̂
′

n), �̂
2
n(�̂

′

n)).

Theorem 8 Assume that (�2
0
, �2

0
) ∈ D and the locations in �n := {s1, …, sn} satisfy 

 Let P0 be the probability measure of the tapered Matérn model with covariogram K( ⋅ ; �2
0
, �2

0
, �0, �).

1. We have �̂2(�̂
′

n) → �2
0
 almost surely under P0.

(33)1

n

n∑

i=1

(ã0ni)
2
→ c̃1,

1

n

n∑

i=1

(ã0ni)
4
→ c̃2,

1

n1∕(1+2�∕d)

n∑

i=1

(b̃
0
ni)

2
→ c̃3.

(34)
√
n(�̂2taper,n − �20)

(d)
⟶ (0, 2�40 c̃2∕c̃

2
1),

(35)n1∕(2+4�∕d)(�̂2taper,n�
2�
1 − �0)

(d)
⟶ (0, 2�4�1 ∕c̃3).

(36)�(�2, �̂2taper,n,�1) =

n∑

i=1

�2
0
+ �2

1
�̃
(n)
i

�2 + �̂
2
taper,n �̃

(n)
i

W 2
i +

n∑

i=1

log(�2 + �̂
2
taper,n �̃

(n)
i ),

(37)(�̂2(�̂
�

n), �̂
2
n(�̂

�

n)) = argmin(�2, �2)∈D�(�
2, �2, �̂

�

n).

max
s∈S

min
1≤ i≤n‖s − si‖ ≍ n−1∕d and min

1≤ i≠ j≤n‖si − sj ‖ ≍ n−1∕d.
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2. Under Assumption 1, �̂2n(�̂
′

n) → �2
0
 almost surely under P0.

3. Let n be the dth power of some positive integer, �n = [0, 1)d ∩ n−1∕dℤd, and suppose Assumption 
2 holds. Let a0ni := 1∕(�2

0
+ �2

0
�
(n)
i
) and b0ni := �

(n)
i
a0ni for 1 ≤  i ≤  n. Then, there exist constants 

c1, c2, c3 > 0 such that as n → ∞, 

We also have

and 

Proof.  To study the asymptotic properties of (�̂2(�̂
′

n), �̂
2
n(�̂

′

n)), it suffices to consider 
(�̂2(�0), �̂

2
n(�0)) = argmin(�2,�2)∈D�(�

2, �2, �0). Recalling that P0 is the probability mea-
sure of the Matérn model with covariogram K( ⋅ ; �2

0
, �2

0
, �0, �), the (rescaled) negative log- 

likelihood (5) is written as 

under P0, where Wi
iid
∼ (0, 1). The reasoning in Theorems 4 and 5 shows that (�̂2(�0), �̂

2
n(�0)) are 

consistent and are asymptotically normal under various assumptions. As a result, the same holds for 
(�̂2(�̂

′

n), �̂
2
n(�̂

′

n)). This completes the proof.

3 |  SIMULATIONS

3.1 | Set- up

The preceding results help explain the behaviour of the inference from Equation (1) as the sample 
size increases within a fixed domain. Here, we present some simulation experiments to illustrate 
statistical inference for finite samples. We simulate data sets based on (1) in a unit square setting 
ν = 1/2 and �2 = 1. We pick three different values of the nugget, �2 ∈ {0, 0.2, 0.8}, and choose 
the decay parameter ϕ so that the effective spatial range is 0.15, 0.4 or 1, that is the correlation 
decays to 0.05 at a distance of 0.15, 0.4 or 1 units. Therefore, we consider 3 × 3 = 9 different pa-
rameter settings. For each parameter setting, we simulate 1000 realisations of the Gaussian pro-
cess over n = 1600 observed locations. The observed locations are chosen from a perturbed grid. 
We construct a 67 × 67 regular grid with coordinates from 0.005 to 0.995 in increments of 0.015 
in each dimension. We add a uniform [−0.005, 0.005]2 perturbation to each grid point to ensure 
at least 0.005 units separation from its nearest neighbour. We then choose n = 1600 locations out 

(38)1

n

n∑

i=1

(a0ni)
2
→ c1,

1

n

n∑

i=1

(a0ni)
4
→ c2,

1

n1∕(1+2�∕d)

n∑

i=1

(b
0

ni)
2
→ c3.

(39)√
n(�̂2(�̂

�

n) − �20)
(d)
⟶ (0, 2�40c2∕c

2
1),

(40)n1∕(2+4�∕d)(�̂2n(�̂
�

n) − �20)
(d)
⟶ (0, 2∕c3).

(41)�(�2, �2,�0) =

n∑

i=1

�2
0
+ �2

0
�
(n)
i

�2 + �2�
(n)
i

W 2
i +

n∑

i=1

log(�2 + �2�
(n)
i
)
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of the perturbed grid. Codes for studies in this Section are available on https://github.com/LuZha 
ngsta t/nugget_consistency.

3.2 | Likelihood comparisons

Theorem 1 suggests that it is difficult to distinguish between the two Matérn models with meas-
urement error when their microergodic parameters {�, �2} are close to each other. This prop-
erty should be reflected in the behaviour of the likelihood function for a large finite sample. To 
see this, we plot interpolated maps of the log- likelihood among different grids of parameter val-
ues. We consider the three values of �2

0
 in Section 3.1 and �0 = 7.49, which implies an effective 

spatial range of approximately 0.4 units, and pick n = 900 observations from the first realisation 
generated from Equation (1). This yields three different data sets corresponding to the three 
values of �2

0
. We map the negative one- half of the log- likelihood in Equation (5).

The interpolated maps of the log- likelihood are provided in Figure 3 as a function of 
(�2, �) in the first two rows and of (�2, �) in the third row. The first column presents cases 
with �0 = 0 , while the second and the third columns are for �0 = 0.2 and 0.8, respectively. 
The grid for ϕ ranges from 2.5 to 30 so that the effective spatial ranges between 0.1 and 
1.2. We specify the range of �2 and �2 to be (0.0, 1.0) and (0.2, 4.2), respectively, so that 
the pattern of the log- likelihood map around the true generating values of parameters 
can be captured. All the interpolated maps, including the contour lines, are drawn to the 
same scale.

The first row of Figure 3 corresponds to �2 = �2
0
= 1, the second row corresponds to � = �0 and the 

third row corresponds to �2 = �2
0
. In the first row, we observe that similar log- likelihoods are located 

along parallel lines � + �2 = Const. This suggests that one can identify the maximum with either a 
fixed ϕ or �2 when �2 = �2

0
. In the second row, we find that contours for high log- likelihood values are 

situated around the actual generating value of the nugget, supporting the identifiability of the nug-
get as provided in Theorem 1. The log- likelihood along the ϕ- axis has a flat tail as ϕ decreases when 
fixing the nugget, which indicates having the same value of the microergodic parameter � = �2�2� 
can result in equivalent probability measures (Theorem 1). Finally, the third row reveals that the log- 
likelihood closely follows the curve �2� = Const, thereby corroborating Theorem 1.

3.3 | Parameter estimation

We use maximum likelihood estimators to illustrate the asymptotic properties of the parameter 
estimates. To find the maximum likelihood estimators of {�2, �2, �, �}, we use the log of the 
profile likelihood for ϕ and � = �2∕�2, given by 

 where log{(�, �)} = log[sup
�2

{(�2, �, �)}], ρ(ϕ) is the correlation matrix of the underlying pro-

cess w(·) over observed locations �n. We optimise (42) to obtain maximum likelihood estimators �̂ 
and �̂. The maximum likelihood estimator for �2 is �𝜎2n = y⊤{𝜌(�𝜙)+�𝜂In}

−1y∕n. Calculations were 

(42)
log{(𝜙, 𝜂)}∝ −

1

2
log[det{𝜌(𝜙)+𝜂In}]−

n

2
−
n

2
log

[
1

n
y⊤{𝜌(𝜙)+𝜂In}

−1y
]

https://github.com/LuZhangstat/nugget
https://github.com/LuZhangstat/nugget
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executed using the R function optimx using the Broyden– Fletcher– Goldfarb– Shanno algorithm 
(Fletcher, 2013) with ϕ > 0 and η > 0, and η = 0 for models without a nugget.

We calculate estimators for {�2, �, �2, �} for each realisation with sample sizes 400, 900 and 
1600. For each parameter setting and sample size, there are 1000 estimators for {�2, �, �2} and κ. 
Figure 4 depicts the histograms for the maximum likelihood estimators for �2, ϕ, �2 and κ obtained 
from simulations with the parameter setting {�0, �20} = {7.49, 0.2}. There is an obvious shrinkage 
of the variance of estimators for �2 and κ as we increase the sample size from 400 to 1600. We also 
observe that their distribution becomes more symmetric with an increasing sample size. In contrast, 
the variance of the estimators for �2 and ϕ do not have a significant decrease as sample size increases. 
This is supported by the infill asymptotic results. The maximum likelihood estimators for �2 and κ 
are consistent and asymptotically normal. The maximum likelihood estimators for ϕ and �2 are not 
consistent and, hence, their variances do not decrease to zero with increasing sample size.

Tables 1– 4 list percentiles, biases, and sample standard deviations for the estimates of �2, ϕ, 
�2 and κ for each of the 9 parameter settings and offer further insights about the finite sample 
inference. When the spatial correlation is strong (ϕ is small), �̂2 tends to be more precise, while 
�̂
2 tends to have more variability. Unsurprisingly, the measurement error is easily distinguished 

F I G U R E  3  Interpolated maps of the log- likelihood. Darker shades indicate higher values. The first row 
corresponds to �2 = �2

0
= 1, the second row corresponds to �2� = �0 = 7.49, and the third row corresponds to 

�0 = �2
0
. The columns correspond to �0 = 0.0, �0 = 0.2, and �0 = 0.8, respectively
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from a less variable latent process w(·). Highly correlated realisations of w(·) results in less precise 
inference for �2. If the nugget is larger, then the estimators for ϕ, �2 and κ are less precise; the 
presence of measurement error weakens the precision of the estimates.

F I G U R E  4  Histograms of �2 (top row), �2 (second row), ϕ (third row) and � = �2�2� (fourth row) obtained 
from simulation experiments with �0 = 7.49, �2

0
= 0.2
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3.4 | Interpolation

We use the kriging estimator in Equation (23) and its mean squared prediction error (MSPE) 
in Equation (24) to explore spatial interpolation in the presence of the nugget. We use (23) to 
predict the underlying process w(·) over unobserved locations. From Theorem 8 in Chapter 3 of 
Stein (1999), we expect a clear trend of convergence for d = 1. Let ν = 1/2, �2

0
= 0.2, �2

0
= 1.0 and 

�0 = 7.49. We use (1) to generate observations over 12,000 randomly picked locations in [0, 1]. 
We compute the MSPE using three hold- out points {0.25, 0.5, 0.75}  ∈  [0, 1] for different subsets 
of the data with sample sizes ranging from 500 to 12,000. Figure 5a shows that the MSPE tends 
to approach 0 as sample size increases. This corroborates Stein’s conjecture that the underlying 
process w(·) in (1) can be consistently estimated on a finite interval.

Next, we use the simulated data set with n  =  1600 locations over the unit square used in 
Section 3.3. We calculate the MSPE using (24) and (25) over a 50 × 50 regular grid of locations 
over [0, 1]2. This is repeated for different data sets with sample sizes varying between 400 and 
1600. Figure 5b shows that the MSPE decreases as sample size increases. This trend still holds 
when the predictor is formed under misspecified models, a finding similar to those in Kaufman 
and Shaby (2013) without the nugget. If ν is fixed at the true generating value, then predictions 
under any parameter setting are consistent and asymptotically efficient with no nugget effect. 
The proof in Kaufman and Shaby (2013) is based on Stein (1993), hence their results do not carry 
over to our setting due to the discontinuity in our covariogram at 0. (This technical difficulty 
was also pointed out by (Yakowitz & Szidarovszky, 1985, p. 38).) However, their results suggest 
empirical studies to explore the asymptotic properties of interpolation.

T A B L E  1  Summary of estimates of �2: percentiles, bias and sample standard deviations (SD)

�2
0

�0 n 5% 25% 50% 75% 95% BIAS SD

0.200 19.972 400 0.000 0.111 0.189 0.269 0.382 −0.007 0.112

900 0.102 0.159 0.197 0.235 0.289 −0.004 0.056

1600 0.141 0.175 0.199 0.221 0.252 −0.002 0.035

7.489 400 0.110 0.162 0.197 0.232 0.281 −0.003 0.053

900 0.157 0.181 0.198 0.216 0.238 −0.002 0.025

1600 0.170 0.187 0.199 0.211 0.227 −0.001 0.017

2.996 400 0.152 0.177 0.196 0.217 0.248 −0.003 0.029

900 0.173 0.188 0.199 0.212 0.227 0.000 0.017

1600 0.182 0.191 0.200 0.208 0.219 0.000 0.012

0.800 19.972 400 0.321 0.619 0.777 0.903 1.090 −0.047 0.229

900 0.615 0.725 0.792 0.861 0.974 −0.009 0.110

1600 0.682 0.746 0.795 0.841 0.910 −0.006 0.069

7.489 400 0.582 0.714 0.789 0.859 0.974 −0.015 0.114

900 0.689 0.752 0.794 0.835 0.897 −0.006 0.065

1600 0.725 0.768 0.799 0.826 0.869 −0.003 0.044

2.996 400 0.662 0.738 0.789 0.845 0.931 −0.007 0.081

900 0.720 0.766 0.797 0.828 0.871 −0.004 0.047

1600 0.737 0.775 0.799 0.823 0.856 −0.002 0.036
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To compare with results in Kaufman and Shaby (2013 Section 2.3), we examine two ratios 

 Figure 5c compares the ratio defined by (i). This ratio tends to approach 1 only when �2
1
= �2

0
 and � = �0. 

Unlike the case with no nugget, asymptotic efficiency is only observed when the estimator is fitted under 
models with Gaussian measures equivalent to the generating Gaussian measure. Figure 5d plots the ratio 
defined by (ii). As in Figure 5c, this ratio also tends to approach 1 only when �2

1
= �2

0
 , � = �0.

Based on our simulation study, we posit that the asymptotic efficiency and asymptotically 
correct estimation of MSPE hold only when �2

1
= �2

0
, � = �0 .

(i)
var�2

0
, �2

0
, �0

{ẑn(�
2
1
, �2

1
, �1) − w0}

var�2
0
, �2

0
, �0

{ẑn(�
2
0
, �2

0
, �0) − w0}

, and (ii)
var�2

1
, �2

1
, �1

{ẑn(�
2
0
, �2

1
, �1) − w0}

var�2
0
, �2

0
, �0

{ẑn(�
2
0
, �2

1
, �1) − w0}

.

T A B L E  2  Summary of estimates of ϕ: percentiles, bias and sample standard deviations (SD)

�2
0

�0 n 5% 25% 50% 75% 95% BIAS SD

0.000 19.972 400 16.151 18.355 19.992 21.798 25.003 0.223 2.708

900 16.706 18.642 20.072 21.548 23.928 0.182 2.185

1600 17.077 18.800 20.041 21.403 23.557 0.144 1.968

7.489 400 5.237 6.680 7.643 8.830 10.792 0.324 1.672

900 5.430 6.722 7.659 8.655 10.382 0.280 1.511

1600 5.520 6.730 7.664 8.687 10.245 0.255 1.450

2.996 400 1.584 2.489 3.297 4.315 5.859 0.479 1.339

900 1.605 2.468 3.316 4.298 5.792 0.463 1.299

1600 1.624 2.490 3.259 4.279 5.613 0.448 1.281

0.200 19.972 400 13.626 17.185 20.058 23.260 28.138 0.358 4.427

900 15.117 17.938 20.059 22.188 26.097 0.221 3.321

1600 15.749 18.328 19.972 21.728 25.02 0.158 2.779

7.489 400 4.596 6.271 7.757 9.377 12.430 0.535 2.364

900 5.081 6.521 7.820 9.179 11.572 0.480 1.998

1600 5.195 6.557 7.774 9.079 11.391 0.410 1.838

2.996 400 1.436 2.291 3.244 4.415 6.725 0.563 1.707

900 1.534 2.383 3.243 4.269 6.405 0.48 1.518

1600 1.570 2.420 3.217 4.208 6.130 0.453 1.424

0.800 19.972 400 11.804 16.533 20.359 24.806 33.859 1.315 6.932

900 14.650 17.405 20.077 23.065 27.831 0.490 4.175

1600 15.340 17.911 20.197 22.544 26.195 0.396 3.352

7.489 400 3.878 6.029 7.754 9.866 14.034 0.670 3.038

900 4.468 6.266 7.745 9.317 12.249 0.475 2.402

1600 4.691 6.430 7.735 9.142 11.663 0.405 2.157

2.996 400 1.259 2.281 3.279 4.723 7.385 0.681 1.975

900 1.443 2.364 3.249 4.38 7.199 0.603 1.771

1600 1.479 2.382 3.216 4.263 6.591 0.509 1.602
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3.5 | Bayesian inference from finite samples

The asymptotic results in the preceding sections imply that a misspecified value of ϕ does not 
violate the consistency and asymptotic normality of the maximum likelihood estimator of the 
nugget �2 or of the microergodic parameter � = �2�2�. In order to assess the extent to which 
these asymptotic results can guide practical implementation of model fitting for finite samples, 
we conduct a sensitivity test to check the stability of the inferences of �2 and κ from finite samples 
under different specifications for ϕ. Here, we present inferences for �2 and κ based on a Bayesian 
analysis using finite samples.

We generate data over n = 1600 observed locations situated on the perturbed grid described in 
Section 3.1. We use a zero- centred Matérn model with measurement error to generate the data, 
where ν = 1/2, �2 = 1, �2 = 0.5 and ϕ = 9.98. We fit the simulated data through a zero- centred 

T A B L E  3  Summary of estimates of �2: percentiles, bias and sample standard deviations (SD)

�2
0

�0 n 5% 25% 50% 75% 95% BIAS SD

0.000 19.972 400 0.835 0.928 0.992 1.063 1.172 −0.004 0.103

900 0.859 0.938 0.997 1.063 1.155 0.001 0.091

1600 0.865 0.942 0.998 1.057 1.151 0.002 0.087

7.489 400 0.721 0.860 0.976 1.109 1.374 0.000 0.198

900 0.724 0.872 0.980 1.104 1.344 0.001 0.192

1600 0.733 0.871 0.978 1.111 1.356 0.002 0.189

2.996 400 0.527 0.700 0.905 1.217 1.856 0.014 0.446

900 0.532 0.708 0.900 1.216 1.843 0.010 0.427

1600 0.537 0.705 0.914 1.204 1.845 0.011 0.423

0.200 19.972 400 0.735 0.890 1.012 1.127 1.280 0.009 0.167

900 0.830 0.928 1.001 1.085 1.203 0.008 0.114

1600 0.860 0.941 1.000 1.071 1.170 0.008 0.097

7.489 400 0.706 0.848 0.978 1.129 1.435 0.006 0.22

900 0.732 0.855 0.972 1.128 1.373 0.002 0.203

1600 0.731 0.857 0.970 1.116 1.374 0.000 0.195

2.996 400 0.527 0.700 0.905 1.217 1.856 0.014 0.446

900 0.532 0.708 0.900 1.216 1.843 0.010 0.427

1600 0.537 0.705 0.914 1.204 1.845 0.011 0.423

0.800 400 19.972 0.653 0.874 1.025 1.208 1.531 0.050 0.265

900 0.761 0.911 1.014 1.110 1.257 0.011 0.149

1600 0.826 0.931 1.009 1.085 1.197 0.009 0.113

7.489 400 0.640 0.848 1.004 1.174 1.487 0.027 0.263

900 0.701 0.862 0.990 1.146 1.421 0.016 0.225

1600 0.710 0.860 0.985 1.129 1.413 0.012 0.215

2.996 400 0.482 0.715 0.955 1.254 1.916 0.047 0.482

900 0.517 0.720 0.950 1.240 1.874 0.044 0.462

1600 0.524 0.735 0.968 1.250 1.839 0.045 0.449
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Matérn model with measurement error with IG(2, 1/2) and IG(2, 1) priors for �2 and �2, respec-
tively. When assuming ϕ is unknown, we use a Gamma prior with shape 2 and rate 2∕�0 for ϕ, 
where �0 is the true value of ϕ for the simulated data. We specified prior distributions with means 
equal to the data generating parameter values. We also fit the model with ϕ equal to 0.2, 0.5, 1, 2, 
and 5 times the value of �0. We randomly select n = 400, 900 and 1600 samples for model fitting. 
The posterior inferences are based on 4 MCMC chains, each with 500 iterations for burn- in and 500 
iterations for sampling. All models are implemented in cmdstanr (Gabry & Češnovar, 2020). The 
reported R̂ (R- hat) values for all parameters are no more than 1.02 and the reported effective sample 
size for all parameters are greater than 400, showing adequate convergence of all MCMC chains.

Figure 6 illustrates the posterior distributions of �2 and κ. As expected from Theorem 7, the 
variance of the posterior distributions decrease with increasing values of n. The posterior dis-
tributions for κ and �2 approach the truth as n increases, but the inference can be highly biased 

T A B L E  4  Summary of estimates of κ: percentiles, bias and sample standard deviations (SD)

�2
0

�0 n 5% 25% 50% 75% 95% BIAS SD

0.000 19.972 400 17.200 18.596 19.752 21.117 23.197 −0.045 1.881

900 18.098 19.221 19.957 20.798 21.974 0.035 1.177

1600 18.764 19.457 19.973 20.531 21.399 0.039 0.805

7.489 400 6.538 7.092 7.499 7.943 8.568 0.032 0.619

900 6.903 7.236 7.500 7.784 8.146 0.018 0.387

1600 7.061 7.317 7.491 7.680 7.979 0.013 0.280

2.996 400 2.666 2.869 3.004 3.158 3.369 0.018 0.213

900 2.780 2.915 3.001 3.103 3.254 0.012 0.142

1600 2.841 2.935 3.000 3.077 3.191 0.011 0.106

0.200 19.972 400 11.760 16.227 20.111 24.691 31.242 0.677 6.052

900 14.827 17.806 19.879 22.566 26.735 0.313 3.693

1600 16.421 18.434 19.943 21.624 24.404 0.186 2.528

7.489 400 5.116 6.546 7.552 8.825 11.045 0.268 1.802

900 5.999 6.843 7.605 8.404 9.645 0.177 1.110

1600 6.197 7.033 7.585 8.141 9.085 0.105 0.850

2.996 400 2.010 2.546 3.040 3.533 4.322 0.092 0.716

900 2.282 2.706 3.028 3.343 3.900 0.055 0.493

1600 2.434 2.779 3.012 3.292 3.724 0.040 0.384

0.800 19.972 400 8.846 15.161 20.858 28.202 47.108 3.314 12.319

900 12.700 16.839 20.077 24.320 31.399 0.830 5.715

1600 14.846 17.751 20.215 22.941 26.997 0.530 3.888

7.489 400 4.080 5.980 7.677 9.679 13.537 0.591 2.929

900 5.084 6.394 7.626 8.923 10.918 0.269 1.808

1600 5.598 6.675 7.622 8.546 10.030 0.169 1.361

2.996 400 1.708 2.444 3.093 3.849 5.432 0.259 1.175

900 1.999 2.626 3.114 3.666 4.534 0.185 0.789

1600 2.210 2.712 3.086 3.478 4.210 0.129 0.618
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F I G U R E  5  The MSPE for w(·) at (a) unobserved locations with study domain [0, 1] (b) a 50 × 50 grid over 
[0, 1]2. The ratio of mean square predict error (ratio) for testing asymptotic efficiency (c) and asymptotically 
correct estimation of MSPE (d)
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when ϕ is misspecified. The results for κ are similar to those reported by Kaufman and Shaby 
(2013) for a zero- centred Matérn model without measurement error. We observe stabler posterior 
inference of �2 than κ for the cases when ϕ is unknown or fixed at values no more than �0. The 
case when � = 5�0 calls for some additional remarks. Here, the effective spatial range (i.e. the 
distance beyond which the spatial correlation drops to 0.05) is only about 4% of the maximum 
inter- site distance in our domain. Hence, the spatial correlation is negligible making it difficult 
to distinguish the nugget �2 from the ‘partial sill’ �2 and inference is sensitive to the prior specifi-
cation. This is a plausible explanation for the poorer estimates of �2 when � = 5�0.

4 |  DISCUSSION

We have developed insights into inference under infill asymptotics of Gaussian process parameters 
in the context of spatial or geostatistical analysis in the presence of the nugget effect. Our work can 

F I G U R E  6  Posterior distributions for (a) �2 and (b) κ obtained from the simulation studies in Section 5. 
The decay parameter is either estimated via MCMC sampling (unknown), fixed at the true value �0, or fixed at 
a multiples of �0, viz. {0.2�0, …, 5�0}. The three boxplots in each group correspond to sample sizes of n = 400, 
900, and 1600 reading from left to right. The dashed line indicates the true value
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be regarded as an extension of similar investigations without the nugget effect. While geostatistical 
modelling usually applies to ℝd with d ≤ 3, we have also developed some new insights into d ≥ 5, 
where consistency of the MLE’s for the Matérn model remains unresolved even without the nugget.

We have discussed the complications in establishing consistency and asymptotic efficiency in 
parameter estimation and spatial prediction due to the discontinuity introduced by the nugget. 
Tools in standard spectral analysis no longer work in this scenario. Understanding the behaviour 
of such processes will enhance our understanding of identifiability of process parameters. For 
example, the failure to consistently estimate certain (non- microergodic) parameters can also be 
useful for Bayesian inference where we can conclude that the effect of the likelihood will never 
overwhelm the prior when calculating the posterior distribution of non- microergodic parame-
ters. Section 3.5 presented some insights into the behaviour of Bayesian estimates for the nugget 
in the presence of a misspecified range parameter. Formal investigations into the consistency of 
the posterior distributions of Matérn covariogram parameters are certainly of interest and can be 
built upon some of our developments in the current manuscript.

We anticipate further research in variants of geostatistical models with the nugget. For example, 
one can explore whether some results, such as Theorem 2 in Kaufman and Shaby (2013) where ϕ 
is estimated, will hold for the Matérn model with the nugget. Our simulations also suggest further 
research in asymptotic efficiency provided in Theorem 3 of Kaufman and Shaby (2013) in the pres-
ence of the nugget. With recent interest in scalable Gaussian process models, we can investigate 
asymptotic properties of approximations indicated on the lines of Vecchia (1988) and Section 10.5.3 
in Zhang (2012); (also see Banerjee, 2017, for scalable spatial process models in Bayesian settings). In 
Bayesian contexts, understanding posterior consistency for the nugget will offer insights into classes 
of priors. Finally, we point out that the conditions in Assumptions 1 and 2 about eigenvalue esti-
mates are expected and their rigorous proofs will constitute future research, as will further theoret-
ical explorations on Gaussian processes in ℝd for all values of d.. In particular, a rigorous proof of 
Assumption 2 is challenging and will be of interest in general kernel methods and bandit problems.
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