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Leading-Order Auxiliary Field Theory of the Bose-Hubbard Model

John F. Dawson,1, ∗ Fred Cooper,2, 3, † Chih-Chun Chien,4, ‡ and Bogdan Mihaila4, 5, §
1Department of Physics, University of New Hampshire, Durham, NH 03824

2Department of Earth and Planetary Science, Harvard University,Cambridge, MA 02138
3The Santa Fe Institute, Santa Fe, NM 87501, USA

4Los Alamos National Laboratory, Los Alamos, NM 87545
5National Science Foundation, Arlington, VA 22230

(Dated: April 25, 2013, 12:39am EST)

We discuss the phase diagram of the Bose-Hubbard (BH) model in the leading-order auxiliary field
(LOAF) theory. LOAF is a conserving non-perturbative approximation that treats on equal footing
the normal and anomalous density condensates. The mean-field solutions in LOAF correspond to
first-order and second-order phase transition solutions with two critical temperatures corresponding
to a vanishing Bose-Einstein condensate, Tc, and a vanishing diatom condensate, T ?. The second-
order phase transition solution predicts the correct order of the transition in continuum Bose gases.
For either solution, the superfluid state is tied to the presence of the diatom condensate related to
the anomalous density in the system. In ultracold Bose atomic gases confined on a three-dimensional
lattice, the critical temperature Tc exhibits a quantum phase transition, where Tc goes to zero at a
finite coupling. The BH phase diagram in LOAF features a line of first-order transitions ending in
a critical point beyond which the transition is second order while approaching the quantum phase
transition. We identify a region where a diatom condensate is expected for temperatures higher
than Tc and less than T0, the critical temperature of the non-interacting system. The LOAF phase
diagram for the BH model compares qualitatively well with existing experimental data and results
of ab initio Monte Carlo simulations.

PACS numbers: 03.75.Hh, 05.30.Jp, 67.85.Bc

I. INTRODUCTION

The Bose-Hubbard (BH) model has been the subject
of broad theoretical [1–7] and experimental [8–10] inter-
est. In addition to being a challenge for many-body theo-
ries [11], its realization in ultracold atoms [9] opened op-
portunities for studying the BH model in a controllable
and accurate way. Developing and improving mean-field
descriptions for the BHmodel has been an important task
since Fischer et al. [1] discussed the zero-temperature
mean-field phase diagram for the BH model. Studies
of the BH model have been summarized in many text-
books [12–14]. One may also test various many-body
theoretical techniques using the BH model and bench-
mark those methods. Here we follow this tradition and
study the BH model using a well-developed theoretical
framework.

Recently, we introduced a leading-order auxiliary field
(LOAF) theory for a homogeneous system of ultracold
gas of bosonic atoms [15, 16]. To derive this formal-
ism, we used the Hubbard-Stratonovitch transforma-
tion [17, 18] to introduce auxiliary fields related to the
normal and anomalous density condensates. Path inte-
gral methods were used to obtain a leading-order expan-
sion of the partition function using the auxiliary fields

∗ john.dawson@unh.edu
† fcooper@fas.harvard.edu
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to organize the expansion method. The resulting non-
perturbative mean-field theory produces a conserving
and gapless approximation that is applicable to large in-
terval of coupling-constant values, satisfies the Goldstone
theorem, yields a Bose-Einstein transition that is second
order, and predicts a positive shift in the critical tem-
perature, Tc, consistent with other similar methods [19].
The relation of the LOAF theory to the Goldstone theo-
rem and the Higgs mechanism was discussed in Ref. 20.
The behavior of the LOAF theory near the critical point
is discussed in Ref. 21 and the relation to superfluidity
and the Josephson relation is discussed in Ref. 22, where
we showed that the superfluid density in LOAF is propor-
tional with the square of the anomalous-density diatom
condensate. The latter is analogous with the Cooper-pair
condensate in the BCS mean-field theory of dilute Fermi
gases [23].

In this paper we develop the LOAF theory of the Bose-
Hubbard model, which has been used to study the physics
of ultracold Bose atoms in optical lattices [4–7]. Per-
haps the most salient feature of the BH model is the
prediction of a superfluid to Mott insulator phase tran-
sition. The latter was demonstrated experimentally in
three-dimensional optical lattices by Trotzky et al. [10]
by observing the suppression of the critical temperature
for superfluidity near the Mott transition. These ex-
perimental results were showed to compare nicely with
theoretical predictions based on quantum Monte Carlo
simulations [5]. Monte Carlo also predicted the critical
interaction strength for which the critical temperature
goes to zero and the phase transition is purely quantum
in character [5].
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We will show that below the critical temperature,
Tc, where the usual Bose-Einstein condensate vanishes,
LOAF is identical with the Hamiltonian version of LOAF
introduced recently by Kleinert, Narzikulov, and Rakhi-
mov [24] and referred to as the “two-collective” field the-
ory for the BH model. Above Tc, LOAF has two pos-
sible solutions corresponding to first-order and second-
order phase transitions, respectively. For both solu-
tions, the superfluid state is indicated by the presence
of an anomalous-density diatom condensate in the sys-
tem. In ultracold Bose atomic gases confined on a three-
dimensional lattice, LOAF predicts that the critical tem-
perature Tc exhibits a quantum phase transition (QPT),
where Tc goes to zero at a finite coupling. The BH phase
diagram in LOAF features a line of first-order transitions
ending in a critical point beyond which the transition
is second order while approaching the QPT limit. We
identify a region where a diatom condensate is expected
for temperatures Tc < T < T0. Here, T0 is the critical
temperature of the non-interacting system. Overall, the
LOAF phase diagram is very similar to the superfluid
to Mott insulator transition in systems of ultracold Bose
atoms trapped in optical lattices and compares qualita-
tively well with results of ab initio Monte Carlo simula-
tions [5] and available experimental data [10]. We ana-
lyze numerically the properties of the LOAF theory in
the weak-coupling limit.

II. THE BOSE-HUBBARD MODEL

We consider the case of N bosonic atoms trapped in a
three-dimensional cubic lattice.

A. Real time formulation

The path integral for the boson field φ(x, t) is given by

Z[ j, j∗ ] = eiW [ j,j∗ ]/~ =

∫∫
DφDφ∗ eiS[φ,φ∗;j,j∗ ]/~ ,

S[φ, φ∗; j, j∗ ] =

∫
dt L[φ, φ∗; j, j∗ ] , (1)

where the Lagrangian is

L[φ, φ∗; j, j∗ ] (2)

=
i~
2

∫
d3x

{
φ∗(x, t) [∂tφ(x, t)]− [∂tφ

∗(x, t)]φ(x, t)
}

−
∫

d3xφ∗(x, t)
[
−~2∇2

2m
+ V (x)

]
φ(x, t)

− 1

2

∫∫
d3xd3x′ φ∗(x, t)φ∗(x′, t)U(x,x′)φ(x′, t)φ(x, t)

+

∫
d3x

[
j∗(x, t)φ(x, t) + j(x, t)φ∗(x, t)

]
.

Variation of the action yields a Schrödinger equation for
the field φ(x, t). Here V (x) is the parodic potential cre-
ated by the optical lattice and U(x,x′) is the interaction

energy between atoms. The tight-binding approximation
assumes that the field φ(x, t) can be expanded in nor-
malized eigenfunctions ψ(x) of an atom trapped in the
lattice at positions xi = a i,

φ(x, t) =
∑
i

φi(t)ψ(x− xi) , (3)

where ψ(x) satisfies

[
−~2∇2

2m
+ V (x)

]
ψ(x) = E ψ(x) , (4)

where E is the ground state energy of a trapped atom of
mass m. Here i = (ix, iy, iz) are triplets of integers, each
running from 1 to Ns. Inversion of (3) gives

φi(t) =

∫
d3xψ∗(x− xi)φ(x, t) . (5)

So using expansion (3), and keeping overlaps with nearest
neighbors, we find∫

d3xφ∗(x, t)
[
−~2∇2

2m
+ V (x)

]
φ(x, t) (6)

≈
∑
i

{
E |φi(t)|2

− J
∑
κ

[
φ∗i (t)φi+κ(t) + φ∗i+κ(t)φi (t)

] }
,

where κ = (1, 0, 0), (0, 1, 0), (0, 0, 1) is the displacement
by one unit in the (x, y, z)-directions, and J is the overlap
integral,

J = −
∫

d3xψ(x + a)V (x)ψ(x) > 0 . (7)

The particle-particle interaction is assumed to be a short
range contact interaction,

1

2

∫∫
d3x d3x′ φ∗(x, t)φ∗(x′, t)U(x,x′)φ(x′, t)φ(x, t)

≈ U

2

∑
i

|φi(t) |4 . (8)

So in the tight-binding approximation, the Lagrangian is
given by

L[φi , φ
∗
i ; ji , j

∗
i ] (9)

=
i~
2

∑
i

{
φ∗i (t) [∂t φi (t)]− [∂t φ

∗
i (t)]φi (t)

}
−
∑
i

{
E |φi(t)|2 − J

∑
κ

[
φ∗i (t)φi+κ(t) + φ∗i+κ(t)φi (t)

]}
− U

2

∑
i

|φi(t) |4 +
∑
i

[
j∗i (t)φi (t) + ji (t)φ∗i (t)

]
,
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which we can write as:

L[φi , φ
∗
i ; ji , j

∗
i ] (10)

=
i~
2

∑
i

{
φ∗i (t) [∂t φi (t)]− [∂t φ

∗
i (t)]φi (t)

}
−
∑
i

(E − 2d J ) |φi(t)|2 −
U

2

∑
i

|φi(t) |4

− J
∑
i,κ

{
2 |φi(t)|2 −

[
φ∗i (t)φi+κ(t) + φ∗i+κ(t)φi (t)

] }
+
∑
i

[
j∗i (t)φi (t) + ji (t)φ∗i (t)

]
,

Here d is the number of spatial dimensions. The constant
energy term proportional to E − 2dJ can be eliminated
by changing variables to

φi(t) = e−i(E−2dJ) t/~ φ̃i(t) , (11)

which simply changes the energy scale. Then in terms of
these new variables, (10) becomes

L[ φ̃i , φ̃
∗
i ; j̃i , j̃

∗
i ] (12)

=
i~
2

∑
i

{
φ̃∗i (t) [∂t φ̃i (t)]− [∂t φ̃

∗
i (t)] φ̃i (t)

}
− J

∑
i,κ

{
2 |φ̃i(t)|2 −

[
φ̃∗i (t) φ̃i+κ(t) + φ̃∗i+κ(t) φ̃i (t)

] }
− U

2

∑
i

|φ̃i(t) |4 +
∑
i

[
j̃∗i (t) φ̃i (t) + j̃i (t) φ̃∗i (t)

]
.

Eq. (12) is the usual form of the Bose-Hubbard La-
grangian. From now on we drop the tilde notation.

B. Imaginary time formulation

The imaginary time action is obtained from the real
time action by the mapping t 7→ −i~τ and L 7→ −LE.
The partition function Z for the BHmodel is then written
as

Z[ j, j∗ ] = e−β Ω[ j,j∗ ] =

∫∫
DφDφ∗ e−SE[φ,φ∗;j,j∗ ] ,

SE[φ, φ∗; j, j∗ ] =

∫ β

0

dτ LE[φ, φ∗; j, j∗ ] , (13)

where the Euclidean Lagrangian is

LE[φ, φ∗; j, j∗ ] (14)

=
∑
i

{ 1

2

{
φ∗i (τ) [∂τφi(τ)]− [∂τφ

∗
i (τ)]φi(τ)

}
+ J

∑
κ

{
2 |φi(t)|2 −

[
φ∗i (τ)φi+κ(τ) + φ∗i+κ(τ)φi (τ)

] }
+
U

2
|φi(τ) |4 − µ |φi(τ)|2 − j∗i (τ)φi (τ)− ji (τ)φ∗i (τ)

}
.

Here we have dropped the tilde notation and introduced
a chemical potential µ.

III. LOAF FORMALISM

In the leading-order auxiliary field (LOAF) method, we
introduce two auxiliary fields χi(τ) and ∆i(τ) by means
of the Hubbard-Stratonovitch transformation [17, 18]. In
our case, the auxiliary-field Lagrangian density takes the
form

Laux[ Φ,∆ ] =
∑
i

{ 1

2U

∣∣Ai(τ)− U φ2
i (τ)

∣∣2 (15)

− 1

2U

[
χi(τ)− U

√
2 |φi(τ)|2

]2 }
,

which we add to Eq. (14). We show in Ref. 16 that this
choice, in the weak coupling limit, agrees with Bogoli-
ubov theory [25, 26]. The action is then becomes

SE[Φ,∆; J,K] (16)

=
1

2

∫ β

0

dτ

∫ β

0

dτ ′
∑
i,j

Φ†i (τ)G−1
i,j (τ, τ ′) Φj(τ

′)

−
∫ β

0

dτ
∑
i

{ χ2
i (τ)− |Ai(τ)|2

2U
+ J†i (τ) Φi (τ)

+K†i (τ) ∆i (τ)
}
,

with

G−1
i,j (τ, τ ′) (17)

= δ(τ, τ ′)

(
hi,j + δi,j ∂τ , −δi,jAi(τ)

−δi,jA∗i (τ) , hi,j − δi,j ∂τ

)
,

where

hi,j = J ∇i,j + δi,j [
√

2χ(τ)− µ ] , (18a)

∇i,j =
∑
κ

{
2 δi,j −

[
δi,j+κ + δi+κ,j

] }
. (18b)

Here we have introduced currents which we write as Ji(τ)
and Ki(τ) and a notation,

Φi(τ) =

(
φi(τ)
φ∗i (τ)

)
, Ji(τ) =

(
ji(τ)
j∗i (τ)

)
(19)

for the particle fields and currents, and a notation

∆i(τ) =

Ai(τ)
χi(τ)
A∗i (τ)

 , Ki(τ) =

 ki(τ)
k0 i(τ)
k∗i (τ)

 , (20)

for the auxiliary fields and currents. The generating func-
tional for the fields is written as a path integral over all
the fields

Z[J,K] = e−βΩ[J,K] =

∫∫
DΦD∆ e−SE[ Φ,∆;J,K ] . (21)

The action is now quadratic in the φi(τ) which can be
integrated out, giving

Z[J,K] =

∫
D∆ e−Seff[ ∆;J,K ] , (22)
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where now

Seff[ ∆;J,K ] (23)

= −1

2

∫∫ β

0

dτ dτ ′
∑
i,j

J†i (τ)Gi,j(τ, τ ′) Jj(τ ′)

−
∫ β

0

dτ
∑
i

{ χ2
i (τ)− |Ai(τ)|2

2U
+K†i (τ) ∆i (τ)

− 1

2
Tr[ ln[G−1

i,i (τ, τ) ] ]
}
.

Expanding the effective action,

Seff[ ∆;J,K ] = Seff[ ∆̄; J,K ] (24)

+

∫ β

0

dτ
∑
i

[ δSeff[ ∆;J,K ]

δ∆i(τ)

]
∆̄

( ∆i(τ)− ∆̄i(τ) )

+
1

2

∫∫ β

0

dτ dτ ′
∑
i,j

[ δ2Seff[ ∆;J,K ]

δ∆i(x) δ∆j(x′)

]
∆̄

× ( ∆i(τ)− ∆̄i(τ) )( ∆j(τ
′)− ∆̄j(τ

′) ) + · · ·

about the stationary points ∆ = ∆̄, defined by[ δSeff[ ∆;J,K ]

δ∆i(τ)

]
∆̄

= 0 , (25)

and computing the remaining path integral by the
method of steepest descent, we find

β Ω[ J,K ] = Seff[ ∆̄; J,K ] (26)

+
1

2

∫ β

0

dτ
∑
i

Tr[ ln[D−1
i,i [τ, τ ] ] ] + · · · ,

= −1

2

∫∫ β

0

dτ dτ ′
∑
i,j

Φ̄†i (τ)G−1
i,j (τ, τ ′) Φ̄j(τ

′)

−
∫ β

0

dτ
∑
i

{ χ̄2
i (τ)− |Āi(τ)|2

2U
+K†i (τ) ∆̄i(τ)

− 1

2
Tr[ ln[G−1

i,i (τ, τ) ] ]− 1

2
Tr[ ln[D−1

i,i (τ, τ) ] ]
}

where

D−1
i,j (τ, τ ′) =

[ δ2Seff[ ∆;J,K ]

δ∆i(τ) δ∆j(τ ′)

]
∆̄
. (27)

Here Φ̄i(τ) is defined as the solution of

Φ̄i(τ) =

∫ β

0

dτ ′
∑
j

Gi,j(τ, τ ′) Jj(τ ′) , (28)

and is a functional of the currents (J,K). Explicitly,
the stationary points are defined by the solutions of the
equations

χ̄i(τ)

U
=

1

2
Φ̄†i (τ) Φ̄i(τ) +

1

2
Tr[Gi,i(τ, τ) ] + k0 i(τ) ,

(29a)
Āi(τ)

2U
=

1

2
Φ̄†i (τ)σ+Φ̄i(τ) +

1

2
Tr[σ−Gi,i(τ, τ) ]− ki(τ) ,

(29b)

and are functionals of the currents and σ± are the Pauli
matrices. Introducing the Legendre transformation,

β Veff[ Φ,∆ ] =

∫ β

0

dτ
∑
i

[
J†i (τ) Φi(τ) +K†i (τ) ∆i(τ)

]
− β Ω[ J,K ] , (30)

we obtain the thermodynamic effective potential,

Veff[ Φ,∆ ] =
1

2β

∫∫ β

0

dτ dτ ′
∑
i,j

Φ†i (τ)G−1
i,j (τ, τ ′) Φj(τ

′)

+
1

β

∫ β

0

dτ
∑
i

{ χ2
i (τ)− |Ai(τ)|2

2U
(31)

+
1

2
Tr[ ln[G−1

i,i (τ, τ) ] ]
}
,

where we have dropped the trace-log term involved the D
propagator, which is higher order in our expansion. The
currents are now given by derivatives of Veff[ Φ,∆ ] with
respect to the fields,

J†i (τ) = βN
∂Veff[ Φ,∆ ]

∂Φi(τ)
, K†i (τ) = βN

∂Veff[ Φ,∆ ]

∂∆i(τ)
.

The thermodynamic potential is evaluated at zero cur-
rents, which is at the minimum of Veff[ Φ,∆ ]. The aver-
age particle number is given by

N = −∂Veff[ Φ,∆ ]

∂µ
(32)

evaluated at the minimum of the effective potential.

IV. HOMOGENEOUS SYSTEMS

For homogeneous lattice systems in equilibrium, the
fields are independent of τ and i. Expanding the inverse
Green function in a three dimensional Fourier series,

G−1
i,j (τ, τ ′) =

1

βN3
s

∑
k,n

G̃−1
k,n e

i[ 2πk·(i−j)/Ns−ωn (τ−τ ′) ] ,

(33)
where ωn = 2πn/β are the Bose Matsubara frequencies.
Here k = (kx, ky, kz) is a triplet of integers, each running
from −Ns/2 to Ns/2 − 1. The total number of sites in
the cubic box is N3

s and the filling factor, ν, is defined
to be the number of particles per site, ν = N/N3

s . From
Eq. (6), the Fourier transform of the Green function is
given by

G̃−1
k,n =

(
εk + χ′ − iωn −A
−A∗ εk + χ′ + iωn

)
, (34)

where we have put χ′ =
√

2χ−µ, and the kinetic energy
is written in terms of the lattice momentum, k̂, as

εk = J k̂2 = 2J
∑

s=x,y,z

[ 1− cos(2π ks/Ns) ] , (35)
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Using standard techniques,

1

2β

∫ β

0

dτ
∑
i

Tr[ ln[G−1
i,i (τ, τ) ] ] =

1

2β

∑
k,n

Tr[ ln[ G̃−1
k,n ] ]

=
1

2β

∑
k,n

ln[ det[ G̃−1
k,n ] ] =

1

2β

∑
k,n

ln[ω2
n + ω2

k ]

=
∑
k

{ ωk
2

+
1

β
ln[ 1− e−βωk ]

}
, (36)

where

ωk =
√

( εk + χ′ )2 − |A|2 . (37)

The effective potential (31) for the homogeneous case
then becomes

Veff[ Φ,∆ ]/N3
s (38)

= χ′ |φ|2 − 1

2
[Aφ∗ 2 +A∗φ2 ]− (χ′ + µ )2

4U
+
|A|2

2U

+
1

N3
s

∑
k

{ 1

2
[ωk − εk − χ′ ] +

1

β
ln[ 1− e−βωk ]

}
.

Here we have renormalized the effective potential by sub-
tracting the zero-point energy. The coupling constant is
finite and does not need to be renormalized. Minimizing
the effective potential with respect to the fields gives

(χ′ −A∗ )φ = 0 , (39a)
χ′ + µ

2U
= |φ|2 +

1

N3
s

∑
k

{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
,

(39b)
A

U
= φ2 +

A

N3
s

∑
k

[ 2nk + 1 ]

2ωk
, (39c)

where nk = 1/[ eβωk−1 ], and with the filling factor given
by

ν =
N

N3
s

= − 1

N3
s

∂Veff[ Φ,∆ ]

∂µ
=
χ′ + µ

2U
. (40)

Because of the U(1) invariance of the Lagrangian, at the
minimum of the potential we can choose φ to be real.
Then, from (39a) A is also real since χ′ is real. We inter-
pret |φ|2 as the number of condensed particles per site,
and put

|φ|2 = φ2 = ν0
N0

N3
s

= ν n0 , (41)

with the condensate fraction, n0 = N0/N . The sums
over k then omit the k = 0 mode. The gap equations
then become

ν = νn0 +
1

N3
s

∑
k

′
{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
, (42a)

A

U
= νn0 +

A

N3
s

∑
k

′ [ 2nk + 1 ]

2ωk
, (42b)

where ωk is given in Eq. (37) with εk given by Eq. (35).
For comparison purposes, we note that the LOAF ef-

fective potential per unit volume for the continuum case
is:

Veff[ Φ,∆ ]/V (43)

= χ′ |φ|2 − 1

2
[Aφ∗ 2 +A∗φ2 ]− (χ′ + µ )2

4λ
+
|A|2

2λ

+

∫
d3k

(2π)3

{1

2

[
ωk − εk − χ′ +

|A|2

2λ

]
+

1

β
ln[ 1− e−βωk ]

}
.

which gives the equations

(χ′ −A∗ )φ = 0 , ρ =
χ′ + µ

2λ
, (44a)

χ′ + µ

2λ
= |φ|2 +

∫
d3k

(2π)3

{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
,

(44b)
A

λ
= φ2 +

∫
d3k

(2π)3

{ 1

2ωk
[ 2nk + 1 ]− 1

2εk

}
. (44c)

where the kinetic energy is the usual εk = ~2k2/(2m).
The differences between the two theories reduce to the
naive substitution of the integral with the sum over the
allowed momenta, an extra term in the renormalization
of the effective potential, and the kinetic energy modifi-
cation on the lattice. The continuum coupling constant,
λ = 4π~2 a0/m, corresponds to the Hubbard parameter,
U , on the lattice. Here a0 is the s-wave scattering length
in the dilute atomic Bose gas. The solutions II(i) and
II(ii) correspond to first-order and second-order phase
transitions, respectively.

V. RESULTS AND DISCUSSIONS

The numerical analysis of the solutions space for
Eqs. (42), leads to three distinct regions in the Bose-
Hubbard model phase diagram:

I. The broken symmetry case where φ 6= 0 and χ′ =
A. Then ω =

√
εk(εk + 2χ′). In this region, we

solve the equations [27]:

ν = νn0 +
1

N3
s

∑
k

′
{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
, (45a)

χ′

U
= νn0 +

χ′

N3
s

∑
k

′ [ 2nk + 1 ]

2ωk
. (45b)

II. The case when φ = 0 so that n0 = 0, and either

(i) A = 0 so that ωk = εk + χ′ and

ν =
1

N3
s

∑
k

′ nk . (46)

This solution corresponds to a first-order
phase transition. Eq. (46) does not depend on
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FIG. 1. (Color online) Temperature dependence of the con-
densate fraction, νn0, scaled auxiliary fields, χ′ and A, scaled
chemical potential, µ, and effective potential, Veff, for a Hub-
bard interaction parameter value, U/J = 10, at unity filling,
ν = 1. Here, the temperature, T , is scaled by T0, the criti-
cal temperature of the ideal (non-interacting) Bose-Hubbard
model. Solutions II(i) and II(ii), corresponds to first- and
second-oreder phase transitions, respectively.

the interaction strength and applies for tem-
peratures, T ≥ Tc, where Tc is the critical
temperature defined by the zero condensate
faction limit, n0 → 0, in Eqs. (45).

(ii) or 0 ≤ A ≤ χ′ so that ωk =
√

(εk + χ′)2 −A2,
and

ν =
1

N3
s

∑
k

′
{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
, (47a)

1

U
=

1

N3
s

∑
k

′ 1

2ωk
[ 2nk + 1 ] . (47b)

This solution corresponds to a second-order
phase transition.

III. the normal case where φ = 0 and A = 0. In this
case we solve Eq. (46) as in case II(i) above.
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FIG. 2. (Color online) LOAF scaled critical temperatures, Tc

and T ?, and the corresponding scaled normal-density aux-
iliary fields, χ′c = χ′c(ii), χ

′?, and χ′c(i), and effective po-
tentials, as a function of the Bose-Hubbard model coupling
constant, (U/J), at unity filling, ν = 1. We note that only
the critical temperature, Tc, features a downturn with the
interaction strength and leads to a quantum phase transi-
tion (QPT) for (U/J)c u 56.07 where Tc goes to zero. In
addition, the normal-density auxiliary field χ′c(i) for solu-
tion II(i) is not defined for Tc < T0, where T0 u 5.59 is
the critical temperature of the non-interacting Bose system.
Therefore, LOAF predicts a critical point (CP) at coordi-
nates TCP = T0 and (U/J)CP = 46.02. For coupling values
(U/J)CP < (U/J) ≤ (U/J)c, the transition is second-order
and LOAF predicts a diatom condensate A 6= 0 in the absence
of the usual Bose-Einstein condensate fraction for tempera-
tures Tc < T < T0. Because T ? > T0, the system is in the
normal phase for T > T0 in this region. For coupling con-
stants (U/J) < (U/J)CP the transition is first-order because
Veff,c(i) < Veff,c(ii) in that region.

We note that the LOAF solutions for the cubic lattice
are identical with the LOAF solutions for the continuum
system [15, 16, 20].

To make contact with Ref 24, we convert the finite
sums over k to integrals by defining q = 2k/Ns, so that
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FIG. 3. (Color online) Interaction strength dependence of
the zero-temperature condensate fraction, νn0, and the cor-
responding scaled normal-density auxiliary field, χ′0, at unity
filling, ν = 1.

formally in Eqs. (42) we substitute

1

N3
s

∑
k

⇒
∫∫∫ +1

−1

d3q

8
=

∫∫∫ +1

0

d3q . (48)

This substitution is exact in the limit Ns → ∞. In the
following, all quantities other than the filling factor, ν,
and the condensate fraction, n0, can be scaled by J with-
out loss of generality.

We define the critical temperature Tc as the point in re-
gion I where the usual condensate fraction, n0, vanishes.
The second critical temperature, T ?, is the temperature
where the diatom condensate, A, vanishes in region II(ii).
In the non-interacting limit, U → 0, we have T ? → Tc.

The critical temperature Tc and fields χ′c = Ac are
given by the solution of Eqs. (46) in region I when n0 = 0:

ν =

∫∫∫ +1

0

d3q
{ εq + χ′c

2ωq
[ 2nq + 1 ]− 1

2

}
, (49a)

1

U
=

∫∫∫ +1

0

d3q
[ 2nq + 1 ]

2ωq
, nq =

1

eωq/Tc − 1
, (49b)

with ωq =
√
εq(εq + 2χ′c) [28]. From Eqs. (49), the criti-

cal value of the Hubbard parameter, (U/J)c, is obtained
by taking the limit Tc → 0. For ν = 1 we obtain the
critical Hubbard parameter value (U/J)c u 56.076, to
be compared with the critical value of 29.34(2) obtained
by ab initio quantum Monte Carlo simulations [5].
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FIG. 4. (Color online) Comparison of the coupling constant
dependence of the LOAF critical temperature, Tc, at unity fill-
ing, ν = 1, with experimental [10] and quantum Monte Carlo
(QMC) results [5]. The LOAF value of the critical Hubbard
parameter value, (U/J)c = 56.076, should be compared to the
QMC critical value, (U/J)c = 29.34(2), reported in Ref. 5.
LOAF also predicts a critical point at (U/J)CP = 46.02.
The solid and dashed lines indicate first- and second-order
phase transitions predicted by LOAF theory, respectively.
The shaded area depicts the region where a diatom conden-
sate without the usual Bose-Einstein condensate is expected.
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The critical temperature T ? and field χ′? are defined
by the solution of Eqs. (47) when n0 = 0 and A = 0:

ν =

∫∫∫ +1

0

d3q nq , nq =
1

eωq/T? − 1
, (50a)

1

U
=

∫∫∫ +1

0

d3q
[ 2nq + 1 ]

2ωq
, (50b)

with ωq = εq + χ′?.
In Fig. 1 we illustrate the temperature dependence of

the condensate fraction, νn0, scaled auxiliary fields, χ′
and A, scaled chemical potential, µ, and effective po-
tential, Veff, for a Hubbard interaction parameter value,
U/J = 10, at unity filling, ν = 1. We find that in
region II, we have two possible solutions of the LOAF
equations, as discussed above. The solution II(i) gives
rise to discontinuities in the temperature dependence of
the auxiliary fields and chemical potential that lead to
a discontinuity in the effective potential as well. This
behavior is characteristic to a first-order phase transi-
tion. In contrast, the solution II(ii) corresponds to a
second-order phase transition, because the temperature
dependence of χ′, A, µ, and Veff is smooth across Tc.

For convenience, we denote by χ′c(i) the value of the
normal-density auxiliary field corresponding to the first-
order phase transition solution II(i) (see Eq. (46)) for
T = Tc, and we introduce the notation χ′c(ii) = χ′c to
indicate the value of χ′ at Tc corresponding to the second-
order phase transition solution II(ii). We have, χ′c(i) →

χ′c(ii) in the non-interacting limit, U → 0. We recall
that Eq. (46) is independent of the Hubbard parameter
U and is restricted to temperatures T ≥ Tc. In the non-
interacting limit we have Tc → T0, where T0 is the critical
temperature of the non-interacting lattice Bose system,
and the non-interacting limit corresponds to χ′ → 0. So,
we find that χ′c(i) → 0 in the limit {U → 0, Tc → T0}.
Therefore a first-order phase transition may occur at Tc
only for an interaction strength, U , that gives a critical
temperature Tc ≥ T0. Furthermore, the solution II(i) is
only possible for a temperature T ≥ T0. We will use this
important observation next.

The coupling constant dependence of the LOAF crit-
ical temperatures, Tc and T ?, the corresponding scaled
normal-density auxiliary fields, χ′c(i), χ

′
c(ii)=χ

′
c, and χ′?,

and the corresponding effective potentials at Tc are de-
picted in Fig. 2. We find that the critical temperature T ?
increases monotonically with the BH model coupling con-
stant, (U/J), whereas the critical temperature, Tc, in-
creases with the interaction strength for U/J . 10 and
then decreases with (U/J). At unity filling, ν = 1, the
critical temperature, Tc, goes to zero, for a critical value,
(U/J)c u 56.076. It is important to note that in the con-
tinuum case of a homogenous system of ultracold Bose
atomic gases neither of the two critical temperatures Tc
and T ? goes to zero in LOAF [21]. It appears that in
LOAF the presence of a quantum phase transition is re-
lated to the reduction in the allowed momentum-vector
phase space. The latter is a consequence of the bosonic
atoms being spatially confined on the lattice.

For completeness in Fig. 3 we illustrate the scaled
Hubbard parameter, U/J , dependence of the zero-
temperature condensate fraction, νn0, and the corre-
sponding scaled normal-density auxiliary field, χ′0, at
unity filling, ν = 1.

As discussed above, the normal-density auxiliary field
χ′c(i) for the first-order phase transition solution II(i) is
not defined for Tc < T0. That leads to the possibility
of a critical point (CP) at coordinates TCP = T0 and
(U/J)CP u 46.02.

Recalling that in LOAF the superfluid density is pro-
portional to the square of the anomalous-density auxil-
iary field, A (see discussion in Ref. 22), it follows that
the phase diagram of the Bose-Hubbard model in LOAF
features two regions: First, for coupling values (U/J) <
(U/J)CP, both solutions II(i) and II(ii) are possible and
we may have either a first-order or a second-order phase
transition solution. Because Veff,c(i) < Veff,c(ii), LOAF
predicts a first-order phase transition from the super-
fluid to the normal phase in this region. This scenario
corresponds to the solution II(i). Second, for coupling
values (U/J)CP < (U/J) < (U/J)c, we have Tc < T0

and the solution II(i) is not possible for temperatures
Tc < T < T0. Hence, the transition is second-order as
described by solution II(ii). Because T ? > T0 for all
couplings, solution II(ii) applies only for temperatures
Tc < T < T0. In this temperature range LOAF predicts
a diatom condensate A 6= 0 in the absence of the usual
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Bose-Einstein condensate fraction and the system is in
a superfluid state for all temperatures 0 < T < T0. As
seen in Fig. 1, for all temperatures Tc < T < T ? we have
Veff,(i) < Veff,(ii). Therefore at T0 the system undergoes
a first-order phase transition from the superfluid to the
normal phase.

The LOAF phase diagram for the BH model can
be compared with predictions of quantum Monte Carlo
(QMC) simulations [5]. The depression in the critical
temperature was observed experimentally in ultracold
Bose atom systems in three-dimensional lattices [10] and
the QMC compares well with experiments for couplings
(U/J) . 20. The QPT predicted by Monte Carlo occurs
for (U/J)c = 29.34(2), so about half the critical value
predicted by LOAF. In Fig. 4 we show that our LOAF
results compare qualitatively well with existing experi-
mental and ab initio QMC results [5, 10]. The shaded
area in Fig. 4 is the region where a diatom condensate
is expected to be present in the system in the absence of
the usual Bose-Einstein condensate [29].

Just like in the continuum case, the LOAF results for
the lattice show that the critical temperature, Tc, departs
from the ideal gas result (see Fig. 1). Numerical results
depicted in Fig. 5 show that in the weak-coupling limit
(∆Tc) increases linearly with the coupling (U/J) with
a slope parameter u 0.0737. Furthermore, we find that
the critical value of the auxiliary field, χc, is proportional
with the square of the coupling, (U/J)2.

Finally, in Fig. 6 we plot the ideal gas critical temper-
ature, T0, critical value of the scaled Hubbard parame-
ter, (U/J)c, and the corresponding critical value of the
scaled normal-density auxiliary field, χ′c, as a function of
the filling factor, ν.

VI. CONCLUSIONS

In this paper we developed the leading-order auxiliary
field approximation (LOAF) for the Bose-Hubbard model
corresponding to a system of Bose atoms confined in a
three-dimensional lattice. The auxiliary-field formalism
treats on equal footing condensates associated with the
normal and anomalous densities.

For temperatures T < Tc we showed that LOAF is the
same as the “two-collective” field theory introduced by
Kleinert et al. [24]. Here Tc is the temperature where
the usual Bose-Einstein condensate vanishes. For tem-
peratures T > Tc, LOAF has two possible solutions cor-
responding to either a first-order or a second-order phase
transition. For both solutions, the superfluid state is in-
dicated by the presence of an anomalous-density diatom
condensate in the system.

The BH phase diagram in LOAF features a line of first-
order transitions ending in a critical point at TCP = T0

and a finite coupling (U/J)CP. In the first-order phase
transition solution, the diatom condensate auxiliary field
A vanishes at Tc, so the system evolves from a superfluid
to a normal phase. First-order phase transition solutions

are limited to temperatures T > T0, where T0 is the
critical temperature of the non-interacting system.

Beyond the critical point, the transition is second or-
der. In the case of the second-order phase transition,
the diatom condensate auxiliary field, A, goes to zero
smoothly and vanishes at the critical temperature, T ?.
For Tc < T < T ?, the system is still in the superfluid
phase, because in LOAF the superfluid density is pro-
portional to the square of A, and not to the usual con-
densate fraction, n0. For T > T ?, we have A = 0 and
the system is in the normal phase. This scenario pro-
vides for the second-order phase transition known to take
place in liquid helium and dilute gases of Bose atoms.
The critical temperature T ? does not vanish either in
the continuum or the lattice cases. In the case of the
BH model, T ? is always greater than T0, so the system
never reaches T ?, but rather exhibits a first-order phase
transition at T0 from the superfluid to the normal phase.
Contrary to the conclusions of Kleinert et al. [24], for
couplings (U/J)CP < (U/J) < (U/J)c and temperatures
Tc < T < T0 we have a region where a diatom conden-
sate is expected in the absence of the usual Bose-Einstein
condensate.

For Bose systems on a lattice the critical temperature
Tc goes to zero for a finite value of the Hubbard inter-
action parameter, (U/J)c, indicating a quantum phase
transition (QPT) similar to the superfluid to Mott in-
sulator transition. For continuum systems, Tc does not
vanish [21] and LOAF predicts no QPT in the case of
infinite Bose matter. So in LOAF the QPT is due to
the spatial confinement of the Bose atoms on the lattice.
The LOAF phase diagram of the BH model compares
qualitatively well with existing experimental and ab ini-
tio quantum Monte Carolo results [5, 10].

It is clear that in order to understand the LOAF phase
diagram of strongly interacting systems of particles it is
necessary to extend this non-perturbative theory beyond
the mean-field level of approximation discussed so far.
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Appendix A: Non-interacting case

The non-interacting case, U/J = 0, is recovered by
setting χ → 0 and A → 0 in Eq. (38). Then χ′ = −µ,
ωk → εk − µ, and the effective potential becomes

Veff[ z, T ] =
1

β

∑
k

ln[ 1− ze−βεk ] (A1)

=
1

β
ln[ 1− z ] +

1

β

∑
k

′ ln[ 1− ze−βεk ] ,
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where the primed sum omits the k = 0 term and the
fugacity z is defined by

z = eβµ , 0 ≤ z ≤ 1 . (A2)

The particle number is

N = −∂Veff[ z, T ]

∂µ
= −βz ∂Veff[ z, T ]

∂z
(A3)

= N0 +
∑
k

′ z

eβεk − z
,

with N0 = z/(1 − z). Dividing by N3
s and replacing the

sums over k by an integral over d3q gives

ν = νn0 + F (z, T ) , (A4a)

F (z, T ) =
1

N3
s

∑
k

′ z

eβεk − z
→
∫∫∫ +1

0

d3q
z

eβεq/T − z

The critical point is where z → 1, in which case

ν = νn0 + F (1, T ) (A5)

is an equation giving the condensate fraction n0 as a func-
tion of T . The maximum value of T = T0 is when n0 = 0,
and is the solution of the equation

ν = F (1, T0) (A6)

for fixed value of ν. For ν = 1, we have T0/J = 5.591 as
expected [5].
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