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Abstract 

People can estimate numerical quantities, like the number of 

grapes in a bunch, using the Approximate Number System 
(ANS). Individual differences in this ability (ANS acuity) are 
emerging as an important predictor in research areas ranging 

from math skills to judgment and decision making. One 
commonly used ANS acuity metric is the size of the 
Numerical Distance Effect (NDE): the amount of savings in 

RT or errors when distinguishing stimuli values as the 
numerical distance between them increases. However, the 
validity of this metric has recently been questioned. Here, we 

model the relationship between the NDE-size and ANS 
acuity. We demonstrate that the relationship between NDE-
size and ANS acuity should not be linear, but rather should 

resemble an inverted J-shaped distribution, with the largest 
NDE-sizes typically being found for near average ANS 
acuities.  

Keywords: Numerical Distance effect; Estimation; 
Approximate Number system 

Introduction 

People can evaluate non-symbolic numerical magnitudes 

(i.e., which pack has more wolves) without counting (Taves, 

1941). Indeed, people can respond based on these perceived 

magnitudes without necessarily linking these values to 

symbolic numbers (Kaufman, Lord, Reese, & Volkmann, 

1949). The system that makes these non-symbolic numerical 

magnitude evaluations is herein referred to as the 

Approximate Number System (ANS). Essentially, the ANS 

allows us to perceive numerical magnitudes from the world 

in an analog fashion, similarly to how we perceive other 

magnitudes, like size (Kaufman et al.). The facility of the 

ANS to make numerical magnitude judgements (ANS 

‘acuity’) is thought to vary among individuals, such that 

some individuals can make faster and more accurate 

judgments with smaller magnitude ratios than other 

individuals (Halberda & Feigenson, 2008). Better ANS 

acuity has been linked to better math skills in elementary 

schools and better performance on standardized tests 

(Gilmore, McCarthy, & Spelke, 2010; Halberda et al., 

2008). Recent work has even suggested that the ability  to 

understand the magnitude of numbers, a skill at least 

partially grounded in ANS acuity, influences judgment and 

decision making in adults (Peters, et al., 2008; Schley & 

Peters, 2014). As such, it is important that researchers use 

valid and reliable measures to assess ANS acuity. 

Unfortunately, while assessments of mathematical skill are 

well understood, being similar to math tests one might take 

at school (e.g. Cokely, Galesic, Schulz, Ghazal, & Garcia-

Retamero, 2012; Lipkus, Samsa, & Rimer, 2001; Weller, 

Dieckmann, Tusler, Mertz, Burns & Peters, 2013), metrics 

of individual differences in ANS acuity are less well 

investigated.  

 One widely used metric of ANS acuity is the ‘size’ of the 

Numerical Distance Effect (NDE): The difference in 

reaction time or accuracy between distinguishing values that 

are close to each other and distinguishing values that are 

more distant from each other. In a practice which seems to 

have which originated with Sekuler and Mierkiews (1977), 

researchers will measure the speed and accuracy of 

numerical comparisons (e.g. “Which is larger?”) at smaller 

(harder) and larger (easier) distances. Bigger differences in 

speed and accuracy between these easier and harder trials 

are interpreted as evidence of poorer ANS acuity (see Price, 

Palmre, Battista, & Ansari, 2012 for discussion). Recently, 

NDE-size has come under fire, with several studies 

questioning both its reliability, and its ability to distinguish 

individual differences in ANS acuity (Gilmore, Attride, & 

Inglis, 2011; Holloway & Ansari, 2009; Inglis & Gilmore, 

2014; Maloney, Risko, Preston, Ansari, & Fugelsang, 2010; 

also see Sasanguie, Defever, Van den Bussche, & Reynvoet, 

2011). Given the extent of the use of NDE-size in past 

literature as a metric of ANS acuity and the growing 

collection of recent publications that questions its validity, 

we believe it critical to examine the theoretical support as to 

whether NDE-size has the potential to serve as a metric of 

ANS acuity. Here, we model the theoretical relationship 

between ANS acuity and NDE-size. To foreshadow our 

conclusions, we do not find evidence that NDE-size can 

serve as a general measure of ANS acuity. 

Individual Differences, ANS Acuity, and the NDE 

Since Halberda et al.’s (2008) seminal work retrospectively 

predicting elementary school math ability from ANS acuity 

in fourteen-year-olds, a flurry of studies have linked ANS 

acuity to mathematical and academic success in children, 

adolescents, and adults (see Chen & Li, 2014, for meta-

analysis and review). This connection between ANS acuity 

and other numerical skills can be explained by a mapping 

between non-symbolic ANS magnitudes and symbolic 

numbers. Humans, unlike other animals, have resources 

beyond the ANS to help them evaluate numbers. People can 

represent numbers verbally (e.g., “three thousand”) and with 

other symbols (e.g., 3000) and do so with much greater 

precision than the ANS can achieve: The symbolic number 

3000 is distinguished from 2999, but one cannot perceive 

the magnitude difference between 3000 and 2999 grains of 
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rice. However, there is  strong evidence that people invoke 

ANS-based analog magnitudes when considering symbolic 

numbers (Dehaene, Bossini, & Pascal, 1993; Moyer & 

Landaur, 1967). In Moyer and Landaur’s (1967) seminal 

study, it was demonstrated that people show distance effects 

when making judgments about the quantities referenced by 

symbolic magnitudes. For example, people are faster at 

determining 6 is smaller than 9 than that 7 is smaller than 8. 

Such effects would result from neither use of symbolic 

look-up tables nor sequential-count based comparison 

processes, but (as discussed below) are a classic pattern in 

analog magnitude comparisons (Moyer & Landaur).  

 If symbolic number processing involves the ANS, one 

could therefore predict that performance on tasks involving 

symbolic numbers may be influenced by individual 

differences in ANS acuity. Moreover, as higher order 

mathematical skills build off one’s understanding of 

symbolic numbers, one could further posit that these 

mathematical skills may be predicted by one’s ANS acuity. 

Following this logic, some tasks used to assess individual 

differences in the ANS use symbolic numbers rather than 

non-symbolic numerical magnitudes (e.g., Holloway & 

Ansari, 2009; Seilger & Opfer, 2003; Sekuler & Mierkiews, 

1977), even though symbolic numbers access ANS 

magnitudes only indirectly. Indeed, it appears that Moyer 

and Landaur’s now classic approach of using the presence 

of distance effects to demonstrate that the ANS is invoked 

in symbolic magnitude comparisons inspired the later use of 

NDE-size as an ANS acuity metric (Sekuler & Mierkiews). 

ANS Theory and NDE-Size 

The exact nature of the ANS has yet to be completely 

determined, but it is well established that the perception of 

non-symbolic numerical magnitudes obeys Weber’s law 

(Cordes, Gelman, Gallistel, & Whalen, 2001; Dehaene, 

Izard, Spelke, & Pica, 2008; Mechner, 1958; Meck & 

Church, 1983; Whalen, Gallistel, & Gelman, 1999). As is 

typically the case for magnitude perception (see Kingdom & 

Prins, 2009), numerical magnitudes are not perceived 

exactly, but rather percepts are normally or quasi-normally 

distributed around a mean value (which may itself be 

biased). The ability to distinguish between two quantities is 

dependent on the amount of overlap between their perceived 

magnitude distributions. Importantly, the overlap in the 

distributions of any two values - and thus the ease with 

which two values can be distinguished - is dependent upon 

their ratio, rather than upon the absolute distance between 

them. As a result, one can observe both size effects and 

distance effects in magnitude discriminations. ‘Distance 

effects’ refers to the observation that, within a given range, 

it is easier to distinguish numerical quantities that are more 

distant from each other (6 dots [:::] vs. 12 dots [::::::]) than 

those that are closer together (8 dots [::::] vs. 10 dots [:::::]). 

‘Size effects’ refers to the observation that it is easier to 

distinguish numerical quantities at the same distance in 

smaller magnitude ranges (6 dots [:::] vs. 8 dots [::::]) than 

in larger magnitude ranges (14 dots [:::::::] vs. 16 dots 

[::::::::]). ANS magnitude comparisons yield standard 

psychophysical functions: The likelihood that an individual 

will successfully discriminate between two magnitudes will 

increase curvilinearly from chance to asymptote at or near 

100% accuracy, as the ratio of the larger to the smaller value 

increases. RTs similarly decrease with the comparison ratio 

(Whalen et al., 1999, see Kingdom & Prins, 2009, for a 

discussion of psychophysical functions). 

 To put it simply, Weber’s law implies that a) the standard 

deviation (SD) of the distribution around an estimated 

magnitude is proportional to that magnitude’s mean (M) and 

b) this proportion is constant. This constant proportion is, by 

definition, the Weber Fraction (w) of the perceiver’s ANS. 

Thus, ANS acuity is defined by an individual’s ‘Weber 

Fraction’ (Cordes et al., 2001; Deheane, et al., 2008; 

Halberda, Mazzocco, & Feigenson, 2008, Seigler & Opfer, 

2003; Whalen et al., 1999). After accounting for other 

biases, this w determines the variability in the representation 

of a particular magnitude, which in turn determines the 

amount of overlap between any two magnitudes, which 

finally determines how likely it is that an individual will be 

able to tell two non-symbolic magnitudes apart (ANS 

acuity). The smaller an individual’s w, the better an 

individual will be at discriminating between non-symbolic 

numerical magnitudes, because there is less overlap in their 

numerical magnitude perceptions. Also, following Weber’s 

Law, there is greater overlap in the magnitude distributions 

perceived from stimuli at smaller ratios (::::/:::, 1.33) than at 

larger ratios (::::::/ :::, 2). 

 It follows that the ANS’ contribution to an individual’s  

NDE-size should be a function of the specific magnitudes 

being compared and the individual’s ANS acuity (their 

Weber fraction, w). Thus, we can model the relative size of 

the ANS’ contribution to NDE-size for any specific task and 

any given w by calculating the proportion of overlap of the 

distributions for any set of magnitude comparison pairs, and 

then calculating the savings in overlap for longer distances. 

For example, we can find the predicted ANS magnitude 

distribution overlap at short distances (4 vs. 5, 5 vs. 6) and 

at long distances (1 vs. 5, 5 vs. 9) for a given acuity level 

(w) and then find the differences between these overlaps. As 

long as judgments are based on ANS distributions, error 

rates and RTs should be functionally related to the amount  

of overlap in these distributions.  

Model 

As previously discussed, the ANS obeys Weber’s Law. We 

follow the Linear Model of these phenomena here, which 

claims magnitudes perceived from stimuli are normally 

distributed, such that the means of perceived magnitude 

distributions increase linearly with the size of the stimuli 

and that the standard deviations of these distributions are 

proportional to their means (Cordes et al., 2001). Thus, the 

Coefficient of Variation (CV = SD/M) is constant for a 

given individual on a given task. This constant CV is the w 

of the individual’s ANS: their ANS acuity. We model this 

here by representing perceived magnitudes as Gaussian 
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distributions about unbiased means equal to the ‘stimulus’ 

value (M), where SD = w * M. As a result, the overlap in 

modeled ANS distributions is a function of the stimulus 

ratio and the Weber fraction (w) of the ANS: As SD is 

proportional to M, the overlap of the distributions derived 

from 8 and 10 is the same as that derived from 80 and 100. 

(Note that while the model presented in this manuscript 

treats magnitude representations as  linearly spaced, with 

scalar variability, they might alternatively be modeled as 

logarithmically spaced with constant variability. However, a 

Logarithmic model would yield similar findings.) 

 Here, we calculated the proportion of overlap between 

modeled magnitude distributions. Additionally, following 

the method used by Halberda et al. (2008), we used the erfc 

(the complementary error function) to determine the rate at 

which a given pair of magnitudes will not be distinguished. 

Assuming there are no  other sources of error (such as bias 

or inattention), this erfc should be equal to twice the error 

rate of ANS-based magnitude judgments, as the observer 

would be presumed to choose the correct answer by chance 

on half of such trials. The equations used are given in the 

Appendix in the same Matlab code format we used for our 

calculations. 

 We seek to establish the theoretically maximal 

relationship between ANS and NDE-size, assuming no 

interfering factors or noise. Thus, we model theoretically 

ideal NDE-size at a given w for a given comparison pair as 

simply the differences between the overlaps  or between the 

erfcs of different comparison ratios given that w. Real-world 

data would involve other sources of RT and error (attention 

to task, non-decision time, etc.) and make this relationship 

less clear.  However, as these factors are separate from the 

ANS, they are excluded from this ideal model. 

Results 

The Relationship Between Overlap, ERFC, and W  

In Figure 1, we illustrate the modeled ideal overlap of ANS 

magnitudes at various ratios (greater/lesser) as well as the 

calculated erfc. Recall, when controlling for total 

magnitude, smaller ratios map to smaller distances, and 

larger ratios map to larger distances. Smaller ratios have 

greater overlaps and greater error rates than larger ratios. 

The drop in both overlaps and erfcs is initially steep, but 

then “turns the corner” to asymptote to 0. Smaller ws (better 

acuity) and larger ws (worse acuity) both yield this same 

pattern, but the initial drop is steeper and the asymptote is 

reached faster for smaller ws. Using these values, the 

theoretical maximum contribution of ANS acuity to NDE-

size can be found for any w on any particular NDE task. 

  

The Relationship Between NDE-Size and W  

As discussed above, an individual’s NDE-size (i.e., savings 

in error rate and RT when comparing numerical magnitudes 

at large vs. small distances) should be functionally related to 

the difference in the amount of overlap between the 

comparison values’ distributions, which is in turn related to 

the comparison ratios involved and the individual’s w. We 

thus model NDE-size for a given w and pair of stimulus 

ratios as the difference in the model overlaps or erfcs: 
 

 NDE-size calculation for: 

Overlap:  Overlap(small ratio) – Overlap(large ratio) 

erfc:   erfc(small ratio) – erfc(large ratio) 
 

 We first model the ideal relationship between NDE-size 

and w for a comparison-pair set based on the distance effect 

paradigm originally developed by Moyer and Landauer 

(1967), and later expanded upon by researchers intending to 

measure NDE-size (see Sekuler & Mierkiews, 1977; Peters 

et al., 2008). In Moyer and Landaur’s original paradigm, 

participants saw all possible pairs of non-equal integers 

between 1 and 9, and indicated which was larger. Although, 

it was Moyer and Landauer’s intent simply to demonstrate 

that symbolic number comparisons yield distance effects, 

researchers often use modified forms of this procedure when 

measuring NDE-size (see Peters et al., 2008). A participant 

is shown a stimulus value and asked to indicate whether that 

value is greater or less than a central comparison value. The 

Figure 1: The modeled ANS magnitude distribution overlaps (left) and erfcs (right) for ws ranging from .04 (excellent 

acuity) to .48 (poorer acuity), at High/Low comparison value ratios ranging from 1 (equal values) to 5 (e.g., 50 vs. 10) 
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stimuli follow a 2x2 design, varying both distance and 

direction from the central comparison value (e.g., 5). Half of 

the values are less (e.g., 1, 4) and half are greater (e.g., 6, 9) 

than the central value. Also, half are close (e.g., 4, 6) and 

half are far (e.g., 1, 9) from the central value. An 

individual’s NDE-size is operationalized as the difference in 

accuracy and/or RT on close vs. far trials.   

 Recall, the overlap of ANS magnitude distributions (and 

thus the projected savings in RT and error rate) are 

dependent on the ratio of the values being compared, not 

their absolute distances. Thus, in this paradigm, although 

the absolute distances of the stimuli are symmetrical around 

the central comparison value, the ratios are asymmetrical. 

For the stimuli greater than the central value, the ratios are 

6/5 (1.2) for the close value and 9/5 (1.8) for the far value. 

For the stimuli less than the central value, the ratios are 

5/4(1.25) for the close values and 5/1 (5) for the far values. 

The spread of near and far ratios is thus much greater for the 

stimuli below than above the comparison value. However, 

the standard analyses used in the literature classify stimuli 

merely as near and far, and thus collapse across these ratio 

differences. We note that our model would yield the same 

NDE-sizes for any task using these same stimuli ratios  and 

calculation methods regardless of the overall stimulus 

magnitudes invoked: The same pattern would be predicted 

for comparing 10, 40, 60, and 90 to a central value of 50. 

 The modeled NDE-sizes are presented in Figure 2. As can 

be seen, the relationship between w and NDE-size is not 

linear. Rather, it follows an inverted J shaped curve. NDE-

size initially increases with w, slows to a peak, and then 

decreases with w. A strong positive linear relationship 

between w and NDE-size only exists for ws ranging 

between ~.05 and ~.20, quickly rising from near 0 savings 

to a 40% overlap savings, and 45% erfc savings. Both 

overlap and erfc then are near flat between ws of .20 and 

.60, with overlap savings peaking at 49% for ws of .39 and 

efrc savings peaking at 54% for ws of .34. Savings in 

overlap and erfc decline slowly with ws past these peaks. 

Clearly, the general presumption that larger NDE-sizes 

correlate with larger ws does not always hold. One could 

only expect to find a positive correlation with NDE-size and 

w if the target population’s ws were located between .05 and 

.20. Indeed, depending on the population’s w distribution, 

one could predict a positive, negative, or non-existent 

correlation between NDE-size and w. 

 An alternative method of gauging NDE-size is to look at 

the slope of the regression of RTs or error rates on ratio or 

distance, treating distance in a continuous fashion, rather 

than dichotomizing it to ‘close’ and ‘far’ (see Sekuler & 

Mierkiewicz, 1977). Negative slopes indicate the presence 

of a distance effect as larger comparison ratios 

(higher/lower) and – within a given magnitude range – 

larger distances would typically yield faster RTs and fewer 

errors than smaller ratios and distances. “Larger” (i.e., more 

strongly negative) absolute slopes are treated as indicating 

larger ws, and thus poorer ANS acuity.  

 Here we model the theoretically ideal NDE-slopes one 

would predict based on both the ratios and the absolute 

distances used for the dot-array comparison task developed 

by Chesney, Bjälkebring, and Peters (2015). This task used 

ratios between 1 and 2.6, with the total number of dots in an 

array ranging between 10 and 30. As illustrated in Figure 3, 

the same pattern emerges here as with the dichotomized 

analysis: a J-shaped curve. A strong linear relationship 

between w and slope only holds between ws of .08 and .2. 

Moreover, this difference in overlap begins to decrease with 

w as w exceeds .32. Although the exact location of these 

inflection points will vary depending on the stimuli used in 

a particular study, those we show in Figure 3 align very 

closely to those we modeled for paradigms finding the 

“slope” of the NDE, where RTs (here, overlaps) are 

regressed on the distances between compared values for all 

possible unequal parings of the values 1-9 (see Sekuler & 

Mierkiewicz, 1977).  We also demonstrate regressions using 

ratio as the IV yield a stronger relationship between NDE-

slope and w, but in either case this relationship is non-linear. 

Figure 2. The modeled NDE-sizes for overlaps (left) and erfcs (right), based on values calculated for close 

distances (5 vs. 4 or 6) minus those calculated for far distances (5 vs. 1 or 9) distances for low ranges 

 ([5 vs. 4] – [5 vs. 1]), high ranges ([6 vs. 5] – [9 vs. 5]), and their average. 
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Discussion 

Despite the fact that the presence of numerical distance 

effects can indicate the involvement of the ANS in a task, it 

is becoming apparent that NDE tasks have limited utility for 

measuring individual differences in ANS acuity. With this 

model, we provide a novel theoretical exploration of the 

reasons why this is the case: Even under ideal conditions, 

one cannot expect NDE-size and ANS acuity to be linearly 

related. Rather, NDE-size initially increases, but then 

decreases with ANS acuity, with small NDE-sizes expected 

both for individuals with particularly small and particularly 

large ws. Our model demonstrates that the relationship 

between NDE-slope or NDE-size and w is dependent on 

both the ratio range of the stimuli and the w range in the 

population. This can be illustrated by considering the 

modeled NDE values in Figure 1. For example, if the target 

population’s ws range between .04 and .20 and stimuli-pair 

ratios range between 1.25 and 2, one could indeed predict 

large NDE-sizes for larger ws (worse acuity), because the 

smaller ws would have already neared asymptote for this 

range of ratios, and would thus have small slopes . However, 

if the target population’s ws ranged from .2-.4 and the 

stimuli ratios ranged from 1.05-1.2, the opposite pattern 

would emerge. These stimuli ratios are sufficiently small 

that all of these ws would be in the initial drop-off range, 

with smaller ws dropping faster: Smaller ws, (better acuity) 

would yield larger slopes . 

 For typical NDE-tasks, our model shows peak NDE-size 

is approached at ws of ~.2-.3. The location of this peak is a 

real concern, given the distribution of ANS ws in the normal 

population. Several studies with educated adult participants 

have found that their ws typically center around ~.22 (e.g., 

Cordes et. al, 2001; Whalen et al., 1999). Moreover, other 

studies of educated adults have found mean ws of .11 

(Dehaene et al., 2008), and studies with infants have found 

ws of 1.0 (Xu & Spelke, 2000). Thus, one cannot expect that 

the range of ws for the population under test will coincide 

with the range of ws for which the relationship of w to 

NDE-size is quasi-linear on a standard task. Neither can 

researchers a priori assume a particular w distribution in a 

novel population, so as to be able to adjust their NDE tasks 

to yield a theoretically supported prediction of a linear 

relationship between NDE-size and w. This is problematic 

to the literature as a whole, and particularly for research 

attempting to draw conclusions about the nature of ANS 

acuity’s involvement in other cognitive tasks. 

Conclusions 

Individual differences in ANS acuity have increasingly 

come to be considered an important predictor of human 

cognition and behavior. As such, it is important that the 

measures used to assess individual differences in ANS 

acuity are both reliable and valid. We recommend that 

future researchers assess ANS acuity via tasks whose 

reliability has been established. We specifically recommend 

against using NDE tasks to assess ANS acuity, as the 

validity of such measures is in doubt. 
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Appendix 

The Matlab code used to calculate the proportion of overlap 

in the ANS distributions of any two values, given w:  
 

invCdf = 1- normcdf((High - Low)/(w*(High+Low)),0,1)  

overlap = (2*invCdf)/(2-(2*invCdf))  
 

The Matlab code used to find the erfc – the value of the 

complimentary error function – which is the rate at which 

the ANS values will not be distinguished and thus double 

the ideal error rate:  
 

erfc(abs(High-Low)/(sqrt((High^2)+(Low^2))*sqrt(2)*w)) 
  

“High” referred to the higher value in a comparison pair 

(e.g., 6), while “Low” referred to the lower value in the pair 

(e.g., 5). “w” referred to ANS acuity (Weber fraction, w).  
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