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Macrophages engulf and digest microbes, cellular debris, and various disease-
associated cells throughout the body. Understanding the dynamics of macrophage gene
expression is crucial for studying human diseases. As both bulk RNAseq and single
cell RNAseq datasets become more numerous and complex, identifying a universal
and reliable marker of macrophage cell becomes paramount. Traditional approaches
have relied upon tissue specific expression patterns. To identify universal biomarkers
of macrophage, we used a previously published computational approach called BECC
(Boolean Equivalent Correlated Clusters) that was originally used to identify conserved
cell cycle genes. We performed BECC analysis using the known macrophage marker
CD14 as a seed gene. The main idea behind BECC is that it uses massive database
of public gene expression dataset to establish robust co-expression patterns identified
using a combination of correlation, linear regression and Boolean equivalences. Our
analysis identified and validated FCER1G and TYROBP as novel universal biomarkers
for macrophages in human and mouse tissues.

Keywords: macrophage, CAD, gene expression, biomarker, Boolean analysis

INTRODUCTION

Macrophages are specialized cells involved in the detection, phagocytosis and destruction of
bacteria and other harmful organisms. In addition, they can also present antigens to T cells and
initiate inflammation by releasing molecules (known as cytokines) that activate other immune
effector cells. Further, Macrophages migrate to and circulate within almost every tissue, patrolling
for pathogens or eliminating dead or damaged cells. Critical for immune protection and tissue
homeostasis, macrophage functions can be corrupted in multiple disease processes (Wynn et al.,
2013). Disruption of normal macrophage biology is a hallmark of many diseases, including
diabetes (Huang et al., 2010; Eguchi et al., 2012), asthma (Gordon, 2003), metastatic cancer
(Qian and Pollard, 2010), tissue fibrosis (Murray and Wynn, 2011), and chronic inflammation
(Kamada et al., 2008; Hansson and Hermansson, 2011; Murray and Wynn, 2011). These
characteristics make understanding macrophage biology vital for studying disease pathogenesis.
Macrophages function in both tissue repair during homeostasis and in the innate immune response

Abbreviations: BECC, Boolean Equivalent Correlated Clusters; GEO, Gene Expression Omnibus; ImmGen, Immunological
Genome Project; NCI, National Cancer Institute; NIH, National Institute of Health.
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(Wynn et al., 2013). Inflammation, which can be triggered by
infection, is accompanied by a massive expansion of macrophages
in affected tissues. Macrophages resulting from inflammation
were thought to derive from hematopoietic stem cells in the
bone marrow. However, a recent study shows that macrophages
can initiate cell division and can self-replicate within various
tissues (Hoeffel and Ginhoux, 2015; Dick et al., 2019). These
functions are essential to protect against microbial infection
and to maintain tissue homeostasis (Sieweke and Allen, 2013).
These critical functionalities have propelled researchers to better
understand macrophage biology.

Recent advances in high-throughput sequencing technologies
have facilitated large collections of biological datasets. These
large datasets have enabled efforts to model the complexities
of macrophage biology. Macrophage expression data contains
diverse and variable patterns, even when examining established
and traditional markers of macrophage identity. Difficulty and
variability in experimental techniques and complex purification
strategies may have limited the ability to identify a reliable
universal macrophage biomarker. Commonly used markers for
macrophages such as CD14 (Ziegler-Heitbrock and Ulevitch,
1993), ITGAM (Swirski et al., 2009), CD68 (Falini et al., 1993),
and EMR1 (Austyn and Gordon, 1981) have shown variable
expression patterns in different tissues.

Large scale genomic profiling studies have identified
differences in macrophage gene expression based on
developmental stage, tissue location, and disease process.
Novel informatic analysis of these large datasets could leverage
the diversity of gene expression data and identify specific patterns
and pathways regulating macrophage biology. Collombet et al.
(2017) have proposed a dynamic logical model of blood cell
macrophages using a limited number of gene expression datasets.
Such a model may not be generalized as the authors did not
consider a wide range of datasets. Boolean modeling has been
proposed to study the complexities of macrophage polarization
and activation in experimental disease models and in vivo
systems by incorporating large numbers of available datasets
(Rex et al., 2016; Palma et al., 2018). Boolean modeling of the
NFκB pathway in bacterial lung infection has been explored
(Cantone et al., 2017).

In this paper, we will discuss a new strategy that leverages
massive amounts of public gene expression dataset to capture
robust co-expression patterns. Our strategy uses traditional
correlation and linear regression and augment the results by
new Boolean approaches which reliably distinguish asymmetric
vs. symmetric relationships. Asymmetric relationships are
discarded, and symmetric relationships are used to identify genes
that perfectly mirror each other with respect to their gene
expression pattern.

MATERIALS AND METHODS

Data Collection and Annotation
Publicly available microarray databases in Human U133 Plus 2.0
(n = 25,955, GSE119087), Mouse 430 2.0 (n = 11,758, GSE119085)
Affymetrix platform were downloaded from National Center for

Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) website (Edgar et al., 2002; Barrett et al., 2005, 2013).
Gene expression summarization was performed by normalizing
each Affymetrix platform by RMA (Robust Multichip Average)
(Irizarry et al., 2003a,b). One hundred ninety-seven published
macrophage samples from seven series assayed on the Human
U133 Plus 2.0 (GPL570), Human U133A 2.0 (GPL571) and
Human U133A (GPL96) platforms were re-analyzed and
deposited in GEO with accession no GSE134312. RMA was used
to normalize the macrophage CEL files using a modified CDF
file that contains the shared probes among the three different
platforms. The global human dataset GSE119087 included 106
macrophage samples from GSE134312 dataset. Mouse dataset
GSE119085 was also annotated with 327 macrophage samples
that were deposited in GEO with accession no GSE135324. In
addition to the above training datasets, several human and mouse
validation datasets were assembled from GEO. We validate our
markers in 39 distinct highly purified mouse hematopoietic stem,
progenitor, and differentiated cell populations covering almost
the entire hematopoietic system: Gene Expression Commons
(GEXC, GSE34723, n = 101) (Seita et al., 2012). In addition
to GEXC, we also used ImmGen datasets that are also purified
mouse blood cells (GSE15907 and GSE127267) (Painter et al.,
2011; Yoshida et al., 2019).

We put together four purified human macrophage datasets:
(GSE35449, n = 21) (Beyer et al., 2012), (GSE85333, n = 185)
(Regan et al., 2018), (GSE46903, n = 384) (Xue et al., 2014),
(GSE55536, n = 33) (Zhang et al., 2015).

GSE35449 (PBMC): CD14 + monocytes were isolated from
Peripheral blood mononuclear cells (PBMC) using CD14-specific
MACS beads and cultured in 6-well plates in media and provided
various stimuli: IFN-γ, TNF-α, ultrapure LPS, IL-4, IL-13, or
combinations thereof.

GSE85333 (PBMC): Primary human CD14+ monocytes were
isolated from the whole blood of six donors (three males,
three females). These were transformed in macrophages through
CSF-1 stimulation over a week. Cells were then subject to
an inflammatory stimulus with LPS or IFNa and without any
inflammatory stimulus.

GSE46903 (PBMC): Human monocytes were purified from
peripheral blood mononuclear cells by MACS, followed by
stimulation with GM-CSF or M-CSF for 72 h.

GSE55536 (iPSDMs and PBMC): Transcriptome analyses of
human induced pluripotent stem cell-derived macrophages
(IPSDMs) and their isogenic human peripheral blood
mononuclear cell-derived macrophage (HMDM) counterparts.

To validate our results in the mouse, we put together
four diverse mouse macrophage datasets: (GSE82158, n = 163)
(Misharin et al., 2017), (GSE38705, n = 511) (Orozco et al., 2012),
(GSE62420, n = 56) (Grabert et al., 2016), and (GSE86397, n = 12)
(Han et al., 2017).

GSE82158 (interstitial and alveolar): Monocytes, interstitial
macrophages, and alveolar macrophages were isolated from naïve
mice and RIPK3−/− mice.

GSE38705 (intraperitoneal lavage): Primary macrophages
were harvested using four mice per strain which were exposed
to either LPS or OxPAPC.
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GSE62420 (Brain Microglia): Microglia cells were extracted
from 4 regions: cerebellum, cortex, hippocampus, striatum using
a magnetic bead-based approach.

GSE86397 (Liver Kupffer cells): Primary Kupffer cells isolated
from mouse liver were treated with lipopolysaccharides or IL-4
and the gene expression patterns were analyzed by microarray.

We validated our results on following tissue resident
macrophages in human: tumor associated macrophage
(GSE117970, n = 116) (Cassetta et al., 2019); lung alveolar
macrophages (GSE116560, n = 68) (Morrell et al., 2019); lung
alveolar macrophages (GSE40885, n = 14) (Reynier et al., 2012);
cardiac macrophages (GSE119515, n = 18) (Dick et al., 2019);
vaginal mucosa and skin macrophages (GSE54480, n = 87)
(Duluc et al., 2014); skin macrophages (GSE74316, n = 77)
(Carpentier et al., 2016); peritoneal macrophages (GSE79833,
n = 12) (Irvine et al., 2016); microglia (GSE1432, n = 24) (Rock
et al., 2005); adipose tissue macrophages (GSE37660, n = 4)
(Eto et al., 2013).

To validate our results on single cell RNASeq data we used
following datasets: mouse inflammatory airway macrophages
(GSE120000, n = 1,142) (Mould et al., 2019), mouse CX3CR1-
derived macrophage from atherosclerotic aorta (GSE123587,
n = 5,355) (Lin et al., 2019), mouse dissociated whole lung
tissue (GSE111664, n = 41,898) (Aran et al., 2019), and
renal resident macrophages across species (GSE128993; human
n = 2,868, mouse n = 3,013, rat n = 3,935, pig n = 4,671)
(Zimmerman et al., 2019).

We also examined expression patterns in skin Langerhans
cell (GSE49475, n = 39) (Polak et al., 2014) and dermal
dendritic cells (GSE74316, human n = 77, mouse n = 74)
(Carpentier et al., 2016).

StepMiner Analysis
StepMiner is a computational tool that identifies step-wise
transitions in a time-series data (Sahoo et al., 2007). StepMiner
performs an adaptive regression scheme to identify the best
possible step up or down based on sum-of-square errors. The
steps are placed between time points at the sharpest change
between low expression and high expression levels, which gives
insight into the timing of the gene expression-switching event.
To fit a step function, the algorithm evaluates all possible step
positions, and for each position, it computes the average of the
values on both side of the step for the constant segments. An
adaptive regression scheme is used that chooses the step positions
that minimize the square error with the fitted data. Finally, a
regression test statistic is computed as follows:

F stat =
∑n

i=1(X̂i − X̄)2/(m− 1)∑n
i=1(Xi − X̂i)2/(n−m)

Where Xi for i = 1 to n are the values, X̂i for i = 1 to n are
fitted values. m is the degrees of freedom used for the adaptive
regression analysis. X̄ is average of all the values: X̂ = 1

n ∗∑n
j=1 Xj. For a step position at k, the fitted values X̂i are computed

by using 1
k ∗

∑n
j=1 Xj for i = 1 to k and 1

(n−k) ∗
∑n

j=k+1 Xj
for i = k+ 1 to n.

Boolean Analysis
Boolean logic is a simple mathematic relationship of two values,
i.e., high/low, 1/0, or positive/negative. The Boolean analysis of
gene expression data requires conversion of expression levels
into two possible values. The StepMiner algorithm is reused
to perform Boolean analysis of gene expression data (Sahoo
et al., 2008). The Boolean analysis is a statistical approach which
creates binary logical inferences that explain the relationships
between phenomena. Boolean analysis is performed to determine
the relationship between the expression levels of pairs of genes.
The StepMiner algorithm is applied to gene expression levels
to convert them into Boolean values (high and low). In this
algorithm, first the expression values are sorted from low to
high and a rising step function is fitted to the series to identify
the threshold. Middle of the step is used as the StepMiner
threshold. This threshold is used to convert gene expression
values into Boolean values. A noise margin of twofold change
is applied around the threshold to determine intermediate
values, and these values are ignored during Boolean analysis.
In a scatter plot, there are four possible quadrants based on
Boolean values: (low, low), (low, high), (high, low), (high,
high). A Boolean implication relationship is observed if any
one of the four possible quadrants or two diagonally opposite
quadrants are sparsely populated. Based on this rule, there
are six different kinds of Boolean implication relationships.
Two of them are symmetric: equivalent (corresponding to the
highly positively correlated genes), opposite (corresponding to
the highly negatively correlated genes). Four of the Boolean
relationships are asymmetric and each corresponds to one
sparse quadrant: (low ⇒ low), (high ⇒ low), (low ⇒ high),
(high ⇒ high). BooleanNet statistics (Figure 1A, Equations
listed below; Supplementary Figures S1A,B) is used to assess
the sparsity of a quadrant and the significance of the Boolean
implication relationships (Sahoo et al., 2008, 2010). Given a pair
of genes A and B, four quadrants are identified by using the
StepMiner thresholds on A and B by ignoring the Intermediate
values defined by the noise margin of 2 fold change (±0.5 around
StepMiner threshold). Number of samples in each quadrant are
defined as a00, a01, a10, and a11 (Figure 1A) which is different
from X in the previous equation of F stat. Total number of
samples where gene expression values for A and B are low is
computed using following equations.

nAlow = (a00 + a01) , nBlow = (a00 + a10) ,

Total number of samples considered is computed using following
equation.

total = a00 + a01 + a10 + a11

Expected number of samples in each quadrant is computed by
assuming independence between A and B. For example, expected
number of samples in the bottom left quadrant e00 = n̂ is
computed as probability of A low [(a00 + a01)/total] multiplied by
probability of B low [(a00 + a10)/total] multiplied by total number
of samples. Following equation is used to compute the expected
number of samples.

n = aij, n̂ =
(
nAlow/total ∗ nBlow/total

)
∗ total
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FIGURE 1 | Computational approach to identifying candidate universal macrophage biomarker. (A) BooleanNet Statistical test to identify Boolean Implication
relationship between gene A and B. Boolean equivalent relationship is found when both a01 and a10 is sparse. (B) A flow chart of the different steps of BECC
(Boolean Equivalence Correlated Clusters) to identify robust macrophage biomarker. (C) Overview of BECC illustrating input data, building networks, ranking and
filtering that finally selected 13 genes.

To check whether a quadrant is sparse, a statistical test for
(e00 > a00) or (n̂ > n) is performed by computing S00 and p00
using following equations. A quadrant is considered sparse if S00
is high (n̂ > n) and p00 is small.

Sij =
n̂− n
√
n̂

p00 =
1
2

(
a00

(a00 + a01)
+

a00

(a00 + a10)

)

We used a threshold of S00 > 3 and p00 < 0.1 to check sparse
quadrant. A Boolean implication relationship is identified when
a sparse quadrant is discovered using following equation.

Boolean Implication = (Sij > 3, pij < 0.1)

A relationship is called Boolean equivalent if top-left and bottom-
right quadrants are sparse.

Equivalent = (S01 > 3, P01 < 0.1, S10 > 3, P10 < 0.1)

Boolean opposite relationships have sparse top-right (a11) and
bottom-left (a00) quadrants.

Opposite = (S00 > 3, P00 < 0.1, S11 > 3, P11 < 0.1)

Boolean equivalent and opposite are symmetric relationship
because the relationship from A to B is same as from B to A.
Asymmetric relationship forms when there is only one quadrant
sparse (A low⇒ B low: top-left; A low⇒ B high: bottom-left; A
high⇒ B high: bottom-right; A high⇒ B low: top-right). These
relationships are asymmetric because the relationship from A to
B is different from B to A. For example, A low ⇒ B low and B
low⇒ A low are two different relationships.
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A low⇒ B high is discovered if bottom-left (a00) quadrant is
sparse and this relationship satisfies following conditions.

A low⇒ B high = (S00 > 3, P00 < 0.1)

Similarly, A low ⇒ B low is identified if top-left (a01)
quadrant is sparse.

A low⇒ B low = (S01 > 3, P01 < 0.1)

A high ⇒ B high Boolean implication is established if bottom-
right (a10) quadrant is sparse as described below.

A high⇒ B high = (S10 > 3, P10 < 0.1)

Boolean implication A high⇒ B low is found if top-right (a11)
quadrant is sparse using following equation.

A high⇒ B low = (S11 > 3, P11 < 0.1)

For each quadrant a statistic Sij and an error rate pij is computed.
Sij > 3 and pij < 0.1 are the thresholds used on the BooleanNet
statistics to identify Boolean implication relationships. Boolean
equivalent relationship between A and B is defined as sparse top-
left and bottom-right quadrants (S01 > 3, p01 < 0.1; S10 > 3,
p10 < 0.1) in the scatterplot between A and B. Boolean equivalent
relationships are heavily used in this paper.

BECC (Boolean Equivalent Correlated
Clusters) Analysis
BECC analysis is based on Boolean Equivalent relationships, pair-
wise correlation and linear regression analysis (Supplementary
Figure S1C). BECC analysis begins with a seed gene. For
identification cell cycle genes we used CCNB1 as seed gene
(Dabydeen et al., 2019). We used CD14 as a seed gene in this
paper. A selected probeset of a seed gene was used as a starting
point to identify a list of probesets (ProbeSet A) that are Boolean
Equivalent to the selected probeset. Next, this list was expanded
(ProbeSet B) by identifying other probesets that are Boolean
Equivalent to at least one of the probeset from ProbeSet A.
Probeset B were further expanded (ProbeSet C, L) by repeating
the same steps. All the genes identified in ProbeSet C are used to
perform for pair-wise correlation and linear regression analysis.
A score was computed for a pair of probesets from L by using the
correlation r and slope of fitted line s (if s > 1, 1/s was used as
slope).

score = r2
+ s2

The score is a number between 0 and 2 given r > 0 and s > 0.
A matrix of scores M was computed for all probesets in L. Every
row of this matrix was sorted based on the score in ascending
order. The whole matrix was then multiplied using a column
vector of ranks: [0 1 2 . . . len(L)-1]. In other words, the score for
the probeset in row i gsi was computed as follows:

gsi =
1

len(L)

len(L)−1∑
k=0

k ∗ scoreik/2

where scoreik is the kth smallest score for the probeset in row i.

StepMiner algorithm was used to compute a threshold to
identify the high scoring probesets gsi. The result of the BECC
is this list of high scoring probesets.

Statistical Justification
Empirical distribution of the pair-wise gene scores were
computed for each of our dataset by randomly selecting pairs of
probesets. Using this distribution, average probeset score E[gsi]
and standard deviation can be estimated.

E
[
gsi
]
=

1
len (L)

len(L)−1∑
k=0

k ∗
E [scoreik]

2
= E [score] ∗

len (L)− 1
4

stddev(gsi) =

√
Variance [score] ∗

len (L)− 1
4

The p-value for the StepMiner identified threshold was computed
using a Z-test. All statistical tests were performed using R version
3.2.3 (2015-12-10).

RESULTS

BECC Identifies Macrophage Genes in
Humans
We previously published a computational tool called Boolean
Equivalent Correlated Clusters (BECC) for mining publicly
available gene expression datasets (n = 25,955 human samples,
GSE119087) (Dabydeen et al., 2019). BECC compares the
normalized expression of two genes across all datasets by
searching for two sparsely populated, diagonally opposite
quadrants out of four possible quadrants (high-low and
low-high), employing the BooleanNet algorithm (Sahoo
et al., 2008). The BECC algorithm only focuses on Boolean
Equivalent relationships (Figure 1A and Supplementary
Figure S1B) to identify potentially functionally related gene sets
(Supplementary Figure S1C).

To use BECC to identify potential macrophage-specific genes,
we identified CD14 as a seed gene as it is expressed in most
macrophage populations (Figure 1B) (Griffin et al., 1981; Passlick
et al., 1989). However, CD14 is not considered an ideal universal
marker of macrophages because of its variable expression
patterns among different types of macrophages (Griffin et al.,
1981; Passlick et al., 1989). Discovering universal biomarkers
for cells like macrophages that reside in many different tissue
types and disease states requires large gene expression datasets.
For these analyses, we obtained publicly available microarray
databases in Human U133 Plus 2.0 (n = 25,955, GSE119087)
Affymetrix platform from GEO.

The BECC algorithm was first used to identify a set of 9
probesets (ProbeSet A) that were Boolean-Equivalent to the
CD14 gene (201743_at probeset). Then, the same algorithm
was used to identify additional probesets that were Boolean-
Equivalent to ProbeSet A; pooling the hits in the second step
together with those in ProbeSet A resulted in ProbeSet B
comprised of 20 probesets. A third step was performed to
collect additional candidates and resulted in ProbeSet C with 33
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probesets (Figure 1B). BECC computes Boolean Equivalences
for three steps because any additional steps have the potential
to add significant noise. All probesets in ProbeSet C were then
comprehensively analyzed relative to each other to assess the
strength of their equivalences. A Boolean-Equivalence score for
each probeset within ProbeSet C was computed based on the
weighted average of the correlation coefficient and slope in
pair-wise analysis with all other probesets, as described in the
Methods. This effort resulted in a ranked list of 33 probesets,
corresponding to 21 unique genes with similar expression
patterns as CD14. The entire ranked list of genes can be accessed
online using our web-resource. StepMiner, an algorithm which
fits a step function to identify abrupt transitions in series
data, was used to compute a threshold on the BE score to
identify high-confidence macrophage genes. Imposition of the
threshold resulted in the identification of 18 significant probesets,
representing 13 unique genes (Figure 1C). These 13 genes
represent candidates for universal macrophage biomarkers.

We compared CD14 expression patterns with other known
markers such as CD16, CD64, CD68, CD71, CCR5 and ITGAM
(Supplementary Figures S2A–F). CD14 had better dynamic
range compared to these other genes. CD71 was weakly
correlated with CD14 suggesting that it may have other tissue
specific expression patterns. BECC analyses starting with seed
genes CD71 and CCR5 returned no results as none of the
genes had Boolean equivalent relationships. CD68 and ITGAM
returned too many results, prompting us to increase the threshold
(S > 50, p < 0.1) to generate specificity. Finally, we observed that
the results from seed gene CD64 had the most overlap with CD14
(Supplementary Figure S2G). Thus, the BECC results may vary
significantly depending which seed gene was used. We prioritized
genes with higher dynamic ranges of expression.

TYROBP and FCER1G Are Two Strong
Candidates for Universal Macrophage
Biomarkers
FCER1G was the top candidate and TYROBP was the fourth
candidate based on the BECC-ranking (Figure 1C). All 13 gene
candidates were evaluated on the human and mouse macrophage
datasets. FCER1G and TYROBP had the strongest correlation
patterns in both human and mouse datasets (Figures 2A,B).
We expected that the target biomarkers for macrophages would
be highly expressed in pure macrophages sample. Figures 2A,B
show scatterplots of TYROBP and FCER1G expression values
in both human and mouse datasets, with purified macrophage
samples highlighted in red color. We detected high expression
of both TYROBP and FCER1G in our carefully annotated
macrophage datasets (red color, Figures 2A,B). The orange color
samples in Figures 2A,B identified samples from diverse tissue
types, including normal, cancer and other diseases. If there
are two macrophage-specific genes expressed in all macrophage
subtypes in all tissues, their expression pattern would be tightly
correlated in bulk tissue datasets because the gene expression
values would be proportional to the amount (or number) of
macrophages present in each tissue sample. It is evident that
their expression pattern is extremely tightly correlated in all

bulk gene expression datasets in both human and mouse. This
type of expression patterns suggests that TYROBP and FCER1G
are expressed in similar contexts in all tissues. We conclude
that TYROBP and FCER1G expression patterns are equivalent.
Macrophages are present in every tissue, but the number of
macrophages varies dramatically between diverse tissue samples.
Ideally, a gene that is strongly correlated with the abundance of
macrophages in a tissue can be considered as a candidate for a
universal macrophage biomarker. However, it is hard to assess
the exact number of macrophages in every bulk tissue sample. We
observed that TYROBP and FCER1G both are highly expressed
in pure macrophage samples (red color, Figure 2) and they are
strongly correlated in every tissue samples in human and mouse.
Based on this, we hypothesize that TYROBP and FCER1G are
universally expressed in all macrophage populations within our
datasets. We next tested this hypothesis by validating TYROBP
and FCER1G expression in other immune cell types.

We analyzed Tyrobp and Fcer1g expression in GEXC
(Figures 2C,E) and ImmGen ULI RNASeq datasets
(Figures 2D,F). GEXC (Gene Expression Commons) features 39
distinct highly purified mouse blood cells (GSE34723, n = 101)
(Seita et al., 2012). ImmGen ULI is an open-source project
that features expression profiles of the purified immune cell
populations (Painter et al., 2011; Yoshida et al., 2019). We
observed that in both datasets, the expression patterns of Tyrobp
and Fcer1g were exclusively limited to macrophage-like cells and
NK cells. This validates our hypothesis that Tyrobp and Fcer1g
are universal candidate biomarkers for mouse macrophages.

FCER1G and TYROBP Are Highly
Expressed in Purified Macrophage
Datasets
To validate TYROBP and FCER1G as universal biomarkers, we
interrogated pure macrophage datasets collected from several
human and mouse tissues (Figure 3). We combined four purified
human macrophage datasets: (GSE35449, n = 21) (Beyer et al.,
2012), (GSE85333, n = 185) (Regan et al., 2018), (GSE46903,
n = 384) (Xue et al., 2014), (GSE55536, n = 33) (Zhang et al.,
2015), and four diverse mouse macrophage datasets: (GSE82158,
n = 163) (Misharin et al., 2017), (GSE38705, n = 511) (Orozco
et al., 2012), (GSE62420, n = 56) (Grabert et al., 2016), and
(GSE86397, n = 12) (Han et al., 2017).

We then analyzed the diverse human and mouse purified
macrophage datasets mentioned above. For each microarray or
RNASeq dataset, we computed the range of values observed
for different genes and assigned the limits of the x and y-axis
accordingly. The red lines in each plot represent the middle
of the range which were used as a threshold to separate high
and low values. As shown in Figures 3A,B, all the samples
had high-high expression patterns for both TYROBP and
FCER1G. This experiment supports our hypothesis and validates
TYROBP and FCER1G as candidate biomarkers for human and
mouse macrophages.

To test if TYROBP and FCER1G were expressed in human
tissue resident macrophages in human, we analyzed nine other
datasets (Supplementary Figure S3): (A) tumor associated
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FIGURE 2 | FCER1G and TYROBP expression patterns in human and mouse datasets. (A) A scatterplot of TYROBP and FCER1G in human microarray dataset
(n = 25,955, GSE119087) with macrophage samples (A subset of GSE134312, n = 106) are highlighted in red and the rest of them are in orange color. Every point in
the scatterplot is a microarray experiment in Human U133 Plus 2.0 Affymetrix platform. (B) A scatterplot of Tyrobp and Fcer1g in mouse microarray dataset
(n = 11,758, GSE119085) in Affymetrix Mouse 430 2.0 platform. Similar to panel A, macrophage samples (GSE135324, n = 327) are highlighted in red color and the
rest of them are in orange color. (C) Expression patterns of Tyrobp in gene expression commons (GEXC). (D) Tyrobp gene expression in Immunological Genome
Project (ImmGen) ULI RNASeq dataset (GSE127267) obtained using skyline data viewer from ImmGen website. (E) Expression patterns of Fcer1g in gene
expression commons (GEXC). (D) Fcer1g gene expression in ImmGen ULI RNASeq dataset (GSE127267) obtained using skyline data viewer from ImmGen website.
(C,E) The data is organized in terms of hematopoietic stem cell differentiation hierarchy and heatmap color code is specified in the figure. (D,F) Gene skyline from
ImmGen shows the different purified hematopoietic cell types that were profiled using RNASeq approach.
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FIGURE 3 | Validation of TYROBP and FCER1G as a universal biomarker of macrophage. (A) Expression patterns of TYROBP and FCER1G in four purified human
macrophage datasets: (GSE35449, n = 21), (GSE85333, n = 185), (GSE46903, n = 384), (GSE55536, n = 33). (B) Expression patterns of Tyrobp and Fcer1g in four
purified mouse macrophage datasets: (GSE82158, n = 163), (GSE38705, n = 511), (GSE62420, n = 56), and (GSE86397, n = 12). (C) Standard deviation of
TYROBP and FCER1G is compared (F-test) to commonly used macrophage biomarker CD68, EMR1, ITGAM, CD14 in purified macrophage datasets in human and
mouse, Only pooled macrophage dataset (GSE134312, n = 197) was part of training data and the rest are independent validation dataset. (D) Pearson’s correlation
analysis of Fcer1g, Cd68, Emr1, Itgam, Cd14 with Tyrobp shown as a barplot below the scatterplot between Tyrobp and Fcer1g in three independent bulk tissue
datasets. Red colored points represent purified macrophage samples while the orange points represent other cell of tissue types.
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macrophage (GSE117970, n = 13) (Cassetta et al., 2019); (B) lung
alveolar macrophages (GSE116560, n = 68) (Morrell et al., 2019);
(C) lung alveolar macrophages (GSE40885, n = 14) (Reynier et al.,
2012); (D) cardiac macrophages (GSE119515, n = 18) (Dick et al.,
2019); (E) vaginal mucosa and skin macrophages (GSE54480,
n = 70) (Duluc et al., 2014); (F) skin macrophages (GSE74316,
n = 12) (Carpentier et al., 2016); (G) peritoneal macrophages
(GSE79833, n = 12) (Irvine et al., 2016); (H) microglia (GSE1432,
n = 24) (Rock et al., 2005); (I) adipose tissue macrophages
(GSE37660, n = 2) (Eto et al., 2013). In all cases, we observed have
high-high expression patterns for both TYROBP and FCER1G.

We observed differences in expression patterns with respect
to skin Langerhans cells (LCs) which are part of the mononuclear
phagocyte system and it is reasonable to classify LCs within the
macrophage lineage (Deckers et al., 2018). We observed low
FCER1G and high TYROBP expression in some human skin LCs
(Supplementary Figures S4A,B): (A) human skin Langerhans
cells (GSE49475, n = 9) (Polak et al., 2014); (B) human skin
Langerhans cells (GSE74316, n = 13) (Carpentier et al., 2016).
However, mouse skin LCs showed high-high expression patterns
for both Tyrobp and Fcer1g (GSE74316, n = 5) (Carpentier et al.,
2016). Dendritic cells (DC) are also mononuclear phagocytes of
both lymphoid and myeloid origin. We observed that certain
human dermal DCs (CD141+) presented variable expression
patterns with respect to FCER1G (GSE74316, n = 7) (Carpentier
et al., 2016). Despite heterogeneity in FCER1G expression
patterns, TYROBP expression patterns remained high in most
mononuclear phagocyte cell types.

FCER1G and TYROBP Performed Better
Than ITGAM, CD68, and EMR1
ITGAM (Swirski et al., 2009), CD68(Falini et al., 1993),
and EMR1 (F4/80) (Austyn and Gordon, 1981) are currently
established universal biomarkers for macrophages. We analyzed
gene expression patterns for the above genes and compared them
with TYROBP and FCER1G. Our hypothesis was that a universal
biomarker should have stable gene expression patterns in pure
macrophage samples. We tested this hypothesis using our pooled
human macrophage cohorts (GSE134312, n = 197) by measuring
the standard deviation of gene expression patterns (Figure 3C).
TYROBP and FCER1G both had significantly (p < 0.0001)
lower standard deviation compared to the other established
biomarkers. However, since this dataset was part of training
data for this analysis, we next used two other independent
human datasets GSE13896 (n = 170) (Shaykhiev et al., 2009),
and GSE40885 (n = 14) (Reynier et al., 2012), and three other
mouse datasets GSE62420 (n = 56) (Grabert et al., 2016),
GSE69607 (n = 8) (Jablonski et al., 2015), and GSE81922 (n = 6)
(Jiang et al., 2017). These macrophage datasets had variable
expression patterns for the established biomarkers. However,
TYROBP and FCER1G had stable, high, and homogeneous
expression patterns across diverse macrophage samples. To
further demonstrate homogeneity, we performed Pearson’s
correlation analysis (Figure 3D) of Tyrobp and Fcer1g in three
independent mouse datasets with different tissue and cell types
(orange color = tissue sample, red color = purified macrophages

sample): GSE15907 (microarray, n = 678) (Painter et al., 2011),
GSE54650 (microarray, n = 288) (Zhang et al., 2014), GSE54651
(RNASeq, n = 96) (Zhang et al., 2014). Additionally, a comparison
of Fcer1g, Cd68, Emr1, Itgam, and Cd14, revealed that Fcer1g
remained the top correlated genes with Tyrobp in these three
diverse mouse bulk tissue datasets (Figure 3D).

FCER1G and TYROBP Are Highly
Expressed in Macrophage Single Cell
RNASeq Datasets
We examined expression patterns of FCER1G and TYROBP in
several publicly available single cell RNASeq datasets (Figure 4):
(A) renal resident macrophages across species (GSE128993;
human n = 2,868, mouse n = 3,013, rat n = 3,935, pig
n = 4,671) (Zimmerman et al., 2019), (B) mouse CX3CR1-
derived macrophage from atherosclerotic aorta (GSE123587;
n = 5,355) (Lin et al., 2019), (C) mouse inflammatory airway
macrophages (GSE120000; n = 1,142) (Mould et al., 2019),
and (D) mouse dissociated whole lung tissue (GSE111664;
n = 41,898) (Aran et al., 2019). We computed the percentage
of single cell sample shows high-high expression patterns
with respect to both FCER1G and TYROBP. Renal resident
macrophages showed 81, 91, 97, and 85% co-expression in
human, mouse, rat, and pig respectively (Figure 4A). Mouse
CX3CR1-derived macrophages from atherosclerotic aorta and
inflammatory airway macrophages showed 98% (Figure 4B) and
92% (Figure 4C) high-high respectively. However, single cell
RNASeq data from dissociated mouse whole lungs showed 20%
high-high, likely because this sample contained a mixture of cell
types including both the epithelial cells and the macrophages.
We computed the percentage of samples that demonstrate high
expression pattern for all 13 genes identified by BECC analysis
with seed gene CD14, and the common macrophage genes such
as CD16 (FCGR3A), CD64 (FCGR1A), CD68, CD71 (TFRC),
CCR5, EMR1, ITGAM, in the single cell RNASeq datasets
(Figure 4E). We observed that TYROBP and FCER1G expression
patterns were consistently high in all datasets, and other genes
show significant heterogeneity in their expression patterns.

DISCUSSION

We have developed a computational approach to identify
universal genes expressed in diverse macrophage populations.
The results are somewhat sensitive to the choice of seed gene. We
used CD14 to identify universal macrophages markers. However,
choosing alternative seed genes could instead identify markers
of macrophage differentiation and polarization, including M1
or M2 cellular phenotypes (Martinez et al., 2006). Seed genes
must have good dynamic range and macrophage specificity to
perform well. Details of the method, source code and working
principles can be found in Supplementary Figure S1. The
method filters out asymmetric relationships (Supplementary
Figure S2A, CD14 vs. CD16 is an example) and focuses only
on the symmetric relationships by using Boolean Implication
analysis. The difference between Boolean, correlation and linear
regression is that Boolean approach discovers six types of
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FIGURE 4 | Validation of TYROBP and FCER1G in single cell RNASeq datasets. Scatterplots of expression patterns for TYROBP and FCER1G is shown in several
public single cell RNASeq datasets. Red color points denote TYROBP high and FCER1G high samples. Percentage of red points are computed for each scatterplot.
Homologous genes are considered for data in mouse, rat and pig. (A) renal resident macrophages across species (GSE128993; human n = 2,868, mouse
n = 3,013, rat n = 3,935, pig n = 4,671), (B) mouse CX3CR1-derived macrophage from atherosclerotic aorta (GSE123587; n = 5,355), (C) mouse inflammatory
airway macrophages (GSE120000; n = 1,142), and (D) mouse dissociated whole lung tissue (GSE111664; n = 41,898). (E) A bar plot of gene expression values for
all 13 genes identified by BECC analysis with seed gene CD14, and the common macrophage genes such as CD16 (FCGR3A), CD64 (FCGR1A), CD68, CD71
(TFRC), CCR5, EMR1, ITGAM, in all the above single cell RNASeq datasets. TYROBP and FCER1G are highlighted in red color.

relationships (two symmetric and four asymmetric) whereas
correlation and linear regression discovers two types (positive
correlation and negative correlation; positive slope and negative
slope) of relationships both of which are symmetric. The
mathematics used for correlation and linear regression are
inherently symmetric. Thus, traditional approaches that are
purely based on correlation coefficients or linear regression
cannot distinguish symmetric vs. asymmetric relationships
(Sahoo et al., 2008). A macrophage differentiation marker will
likely define a subset of macrophages and therefore, in the
scatterplot between these genes in Y axis and a universal marker

in X axis they may follow asymmetric Boolean Implications: X
low⇒ Y low or Y high⇒ X high.

Using CD14 as seed gene, we discovered TYROBP (TYRO
protein tyrosine kinase-binding protein) and FCER1G (Fc
fragment of IgE receptor Ig) as ideal candidates for robust,
universal macrophage markers. TYROBP is an adapter protein
which non-covalently associates with activating receptors found
on the surface of a variety of immune cells. TYROBP functions
to mediate signaling and cell activation following ligand binding
by the receptors (Lanier et al., 1998a,b; Dietrich et al., 2000).
Interaction of an allergen with FCER1G triggers cell activation,
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which induces the release of numerous mediators involved
in allergic responses (Blank et al., 2003). Extremely tight
correlation was observed between these two genes in all human
and mouse macrophage microarray datasets (Figures 2A,B).
In the GEXC dataset that contain 39 highly purified cell
subsets from mouse blood, Tyrobp and Fcer1g expression were
highest in macrophages and NK cells (Figures 2C,E). B cell
and T cell progenitors also show slightly higher expression
patterns for Tyrobp and Fcer1g compared to other cell subset
such as hematopoietic stem cell (HSC), megakaryocyte (MkP)
and erythrocyte (pre-CFU-E) progenitors. Immgen skyline
data viewer restricted Tyrobp and Fcer1g expression patterns
to granulocytes, microglia and macrophages (Figures 2D,F).
Immgen data showed low expression in natural killer (NK) and
dendritic cells (DCs). Both PBMC-derived and tissue resident
macrophages showed high expression for TYROBP and FCER1G
in diverse settings including single-cell data, adding significant
strength to our hypothesis (Figures 3, 4). TYROBP and FCER1G
emerged as superior in direct head-to-head comparison with
all 13 genes identified by BECC using CD14 as seed gene,
and common macrophage markers such as CD16, CD64,
CD68, CD71, CCR5, EMR1 and ITGAM (Figure 4D). One
exception was found in human skin Langerhans cells and dermal
dendritic cells which showed FCER1G low and TYROBP high
(Supplementary Figure S4). These data suggested that TYROBP
is superior to FCER1G in identifying all mononuclear phagocytes
in human samples irrespective of their lymphoid or myeloid
origin. Further validation is needed to establish TYROBP
and FCER1G as universal markers of macrophages. Literature
review showed a computational approach named correlation-
based feature subset (CFS) identified TYROBP as part of the
hub genes in kidney cancer samples using protein-protein
interaction network (Wang et al., 2019). Another study reported
that microglia in IDH-mutants are mainly pro-inflammatory,
while anti-inflammatory macrophages that upregulate genes
such as FCER1G and TYROBP predominate in IDH-wild type
GBM (Poon et al., 2019). Tyrobp and Fcer1g was found to
be differentially expressed in Alzheimer’s disease (AD) mouse
models that demonstrated strong correlation between cortical Aβ

amyloidosis and the neuroinflammatory response (Castillo et al.,
2017). FCER1G was part of a hub gene in a meta-analysis of lung
cancer samples (Guo et al., 2019).

Normalization is key to perform a reliable high-throughput
data analysis. To perform large scale gene expression
analysis, all samples from a dataset must be in the same
measurement platform. Microarray and RNASeq technologies
allow the monitoring of expression levels for thousands of
genes simultaneously. However, in these experiments, many
undesirable systematic variations are observed even in replicated
experiments. Normalization is the process of removing some
sources of variation which affect the measured gene expression
levels. It is easier to normalize microarray data in one platform.
It is much harder to normalize data across platforms due to
platform-related technical bias. We have pooled all publicly
available Affymetrix datasets in U133A, U133A_2 and U133
Plus 2.0 platform for human samples, and in Affymetrix Mouse
Genome 430 2.0 Array for mouse samples. We normalized

all Affymetrix microarrays using RMA (Robust Multiarray
Average) in their respective platforms separately (Irizarry et al.,
2003a,b). However, Affymetrix datasets in U133A, U133A_2
and U133 Plus 2.0 were pooled into one dataset by using a
modified CDF file that contains shared probesets from these
three different platforms.

Macrophage dysfunction can lead to many human diseases
and pathologies, including impaired wound healing, fibrosis
(Murray and Wynn, 2011), chronic inflammatory diseases
(Kamada et al., 2008; Hansson and Hermansson, 2011; Murray
and Wynn, 2011), diabetic complications (Huang et al., 2010;
Eguchi et al., 2012), and cancer (Qian and Pollard, 2010).
They play central roles during development (Pollard, 2009),
homeostatic tissue processes (Wynn et al., 2013), tissue repair
(Wynn et al., 2013), and immunity (Phan et al., 2017).
Macrophages play a vital role in chronic inflammatory diseases
such as atherosclerosis (Hansson and Hermansson, 2011) and
chronic kidney disease (Henaut et al., 2019). Due to their
large involvement in the pathogenesis of several types of
human diseases, macrophages are relevant therapeutic targets
(Advani et al., 2018). Macrophage biology, mechanisms of
action, and activation phenotypes have been studied extensively
in recent years. Macrophages have a strong tendency to
adapt to the microenvironment and to rapidly change in
response to environmental stimuli. Thus, it is difficult to
design a unique therapeutic strategy based on macrophage
modulation that is easily applicable to different kinds of human
pathologies. However, our approach appears to identify universal
biomarkers that restrict macrophages to a homogeneous state.
Our experiments suggest that the variable expression patterns
demonstrated by the established macrophage biomarkers is
seen within macrophages across different tissues. However, in
sharp contrast, TYROBP and FCER1G maintain homogeneity of
expression patterns within macrophages across different tissues.
These candidates would be golden targets of several human
diseases as the macrophages would have hard time adapt to
any intervention that targets their fundamental properties. The
proposed method can be applied in other biological context
following the success of macrophage targeting.

DATA AVAILABILITY STATEMENT

All the data generated in the described analyses are submitted
to GEO: GSE119085 (mouse), GSE119087 (human), GSE119128
(collections), GSE134312 (human macrophages), and GSE135324
(mouse macrophages).

DATA ACCESS

GSE119085 – Mouse Boolean Implication Network.
GSE119087 – Human Boolean Implication Network.
GSE119128 – An unbiased Boolean analysis of public gene
expression data for cell cycle gene classification.
GSE134312 – Pooled macrophage datasets from GEO.
GSE135324 – Pooled mouse macrophage datasets from GEO.

Frontiers in Physiology | www.frontiersin.org 11 April 2020 | Volume 11 | Article 275

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00275 April 6, 2020 Time: 18:16 # 12

Dang et al. Computational Analysis Discovers Macrophage Biomarkers

AUTHOR CONTRIBUTIONS

DS contributed to the conceptualization, the data curation,
the computation, the formal analysis, the investigation, the
methodology, the project administration, the validation, the
visualization, the writing of the original draft, the review
and editing of the manuscript, the funding acquisition, the
resources, and the supervision. LP contributed to the review
and editing of the manuscript, the funding acquisition, and the
resources. PG contributed to the data curation, the analysis,
the validation, the review and editing of the manuscript, the
funding acquisition, and the resources. SD contributed to
the data curation, the validation, the review and editing of
the manuscript, the funding acquisition, and the resources.
ST contributed to the data curation, validation, and writing.
DD contributed to the coordination, the data curation, the
investigation, analysis, the validation, and the writing of
the manuscript.

FUNDING

This work was supported by the National Institutes of Health
(NIH) grant #R00-CA151673 to DS, 2017, DK107585 to SD,
2016, AI141630 to PG, 2019, HL126703 to LP, Padres Pedal
the Cause/Rady Children’s Hospital Translational PEDIATRIC
Cancer Research Award (Padres Pedal the Cause/RADY
#PTC2017) to DS, 2017, Padres Pedal the Cause/C3 Collaborative
Translational Cancer Research Award [San Diego NCI Cancer
Centers Council (C3) #PTC2017] to DS, and the Gerber
Foundation (20180324) to LP.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2020.00275/full#supplementary-material

REFERENCES
Advani, R., Flinn, I., Popplewell, L., Forero, A., Bartlett, N. L., Ghosh, N.,

et al. (2018). CD47 blockade by Hu5F9-G4 and rituximab in Non-hodgkin’s
lymphoma. N. Engl. J. Med. 379, 1711–1721. doi: 10.1056/NEJMoa180
7315

Aran, D., Looney, A. P., Liu, L., Wu, E., Fong, V., Hsu, A., et al. (2019).
Reference-based analysis of lung single-cell sequencing reveals a transitional
profibrotic macrophage. Nat. Immunol. 20, 163–172. doi: 10.1038/s41590-018-
0276-y

Austyn, J. M., and Gordon, S. (1981). F4/80, a monoclonal antibody directed
specifically against the mouse macrophage. Eur. J. Immunol. 11, 805–815. doi:
10.1002/eji.1830111013

Barrett, T., Suzek, T. O., Troup, D. B., Wilhite, S. E., Ngau, W. C., Ledoux, P.,
et al. (2005). ). NCBI GEO: mining millions of expression profiles–database and
tools. Nucleic Acids Res. 33, D562–D566. doi: 10.1093/nar/gki022

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky,
M., et al. (2013). NCBI GEO: archive for functional genomics data sets–update.
Nucleic Acids Res. 41, D991–D995. doi: 10.1093/nar/gks1193

Beyer, M., Mallmann, M. R., Xue, J., Staratschek-Jox, A., Vorholt, D., Krebs, W.,
et al. (2012). High-resolution transcriptome of human macrophages. PLoS One
7:e45466. doi: 10.1371/journal.pone.0045466

Blank, U., Jouvin, M. H., Guerin-Marchand, C., and Kinet, J. P. (2003). The high-
affinity IgE receptor: lessons from structural analysis. Med. Sci. 19, 63–69.
doi: 10.1051/medsci/200319163

Cantone, M., Santos, G., Wentker, P., Lai, X., and Vera, J. (2017). Multiplicity of
mathematical modeling strategies to search for molecular and cellular insights
into bacteria lung infection. Front. Physiol. 8:645. doi: 10.3389/fphys.2017.
00645

Carpentier, S., Vu Manh, T. P., Chelbi, R., Henri, S., Malissen, B., Haniffa, M.,
et al. (2016). Comparative genomics analysis of mononuclear phagocyte subsets
confirms homology between lymphoid tissue-resident and dermal XCR1(+)
DCs in mouse and human and distinguishes them from Langerhans cells.
J. Immunol. Methods 432, 35–49. doi: 10.1016/j.jim.2016.02.023

Cassetta, L., Fragkogianni, S., Sims, A. H., Swierczak, A., Forrester, L. M.,
Zhang, H., et al. (2019). Human tumor-associated macrophage and monocyte
transcriptional landscapes reveal cancer-specific reprogramming. Biomarkers,
and Therapeutic Targets. Cancer Cel. 35, 588.e1–602.e10. doi: 10.1016/j.ccell.
2019.02.009

Castillo, E., Leon, J., Mazzei, G., Abolhassani, N., Haruyama, N., Saito, T., et al.
(2017). Comparative profiling of cortical gene expression in Alzheimer’s disease
patients and mouse models demonstrates a link between amyloidosis
and neuroinflammation. Sci. Rep. 7:17762. doi: 10.1038/s41598-017-
17999-3

Collombet, S., van Oevelen, C., Sardina Ortega, J. L., Abou-Jaoude, W., Di Stefano,
B., Thomas-Chollier, M., et al. (2017). Logical modeling of lymphoid and
myeloid cell specification and transdifferentiation. Proc. Natl. Acad. Sci. U.S.A.
114, 5792–5799. doi: 10.1073/pnas.1610622114

Dabydeen, S. A., Desai, A., and Sahoo, D. (2019). Unbiased Boolean analysis of
public gene expression data for cell cycle gene identification. Mol. Biol. Cell 30,
1770–1779. doi: 10.1091/mbc.E19-01-0013

Deckers, J., Hammad, H., and Hoste, E. (2018). Langerhans cells: sensing the
environment in health and disease. Front. Immunol. 9:93. doi: 10.3389/fimmu.
2018.00093

Dick, S. A., Macklin, J. A., Nejat, S., Momen, A., Clemente-Casares, X., Althagafi,
M. G., et al. (2019). Self-renewing resident cardiac macrophages limit adverse
remodeling following myocardial infarction. Nat/ Immunol. 20, 29–39. doi:
10.1038/s41590-018-0272-2

Dietrich, J., Cella, M., Seiffert, M., Buhring, H. J., and Colonna, M. (2000).
Cutting edge: signal-regulatory protein beta 1 is a DAP12-associated
activating receptor expressed in myeloid cells. J. Immunol. 164, 9–12. doi:
10.4049/jimmunol.164.1.9

Duluc, D., Banchereau, R., Gannevat, J., Thompson-Snipes, L., Blanck, J. P.,
Zurawski, S., et al. (2014). Transcriptional fingerprints of antigen-presenting
cell subsets in the human vaginal mucosa and skin reflect tissue-specific
immune microenvironments. Genome Med. 6:98. doi: 10.1186/s13073-014-
0098-y

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene expression omnibus: NCBI
gene expression and hybridization array data repository. Nucleic Acids Res. 30,
207–210. doi: 10.1093/nar/30.1.207

Eguchi, K., Manabe, I., Oishi-Tanaka, Y., Ohsugi, M., Kono, N., Ogata, F., et al.
(2012). Saturated fatty acid and TLR signaling link beta cell dysfunction
and islet inflammation. Cell Metab. 15, 518–533. doi: 10.1016/j.cmet.2012.
01.023

Eto, H., Ishimine, H., Kinoshita, K., Watanabe-Susaki, K., Kato, H., Doi, K., et al.
(2013). Characterization of human adipose tissue-resident hematopoietic cell
populations reveals a novel macrophage subpopulation with CD34 expression
and mesenchymal multipotency. Stem Cells Dev. 22, 985–997. doi: 10.1089/scd.
2012.0442

Falini, B., Flenghi, L., Pileri, S., Gambacorta, M., Bigerna, B., Durkop, H., et al.
(1993). PG-M1: a new monoclonal antibody directed against a fixative-resistant
epitope on the macrophage-restricted form of the CD68 molecule.Am. J. Pathol.
142, 1359–1372.

Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3,
23–35. doi: 10.1038/nri978

Grabert, K., Michoel, T., Karavolos, M. H., Clohisey, S., Baillie, J. K., Stevens, M. P.,
et al. (2016). Microglial brain region-dependent diversity and selective regional
sensitivities to aging. Nat. Neurosci. 19, 504–516. doi: 10.1038/nn.4222

Frontiers in Physiology | www.frontiersin.org 12 April 2020 | Volume 11 | Article 275

https://www.frontiersin.org/articles/10.3389/fphys.2020.00275/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2020.00275/full#supplementary-material
https://doi.org/10.1056/NEJMoa1807315
https://doi.org/10.1056/NEJMoa1807315
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1002/eji.1830111013
https://doi.org/10.1002/eji.1830111013
https://doi.org/10.1093/nar/gki022
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1371/journal.pone.0045466
https://doi.org/10.1051/medsci/200319163
https://doi.org/10.3389/fphys.2017.00645
https://doi.org/10.3389/fphys.2017.00645
https://doi.org/10.1016/j.jim.2016.02.023
https://doi.org/10.1016/j.ccell.2019.02.009
https://doi.org/10.1016/j.ccell.2019.02.009
https://doi.org/10.1038/s41598-017-17999-3
https://doi.org/10.1038/s41598-017-17999-3
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1091/mbc.E19-01-0013
https://doi.org/10.3389/fimmu.2018.00093
https://doi.org/10.3389/fimmu.2018.00093
https://doi.org/10.1038/s41590-018-0272-2
https://doi.org/10.1038/s41590-018-0272-2
https://doi.org/10.4049/jimmunol.164.1.9
https://doi.org/10.4049/jimmunol.164.1.9
https://doi.org/10.1186/s13073-014-0098-y
https://doi.org/10.1186/s13073-014-0098-y
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1016/j.cmet.2012.01.023
https://doi.org/10.1016/j.cmet.2012.01.023
https://doi.org/10.1089/scd.2012.0442
https://doi.org/10.1089/scd.2012.0442
https://doi.org/10.1038/nri978
https://doi.org/10.1038/nn.4222
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00275 April 6, 2020 Time: 18:16 # 13

Dang et al. Computational Analysis Discovers Macrophage Biomarkers

Griffin, J. D., Ritz, J., Nadler, L. M., and Schlossman, S. F. (1981). Expression of
myeloid differentiation antigens on normal and malignant myeloid cells. J. Clin.
Invest. 68, 932–941. doi: 10.1172/jci110348

Guo, T., Ma, H., and Zhou, Y. (2019). Bioinformatics analysis of microarray data
to identify the candidate biomarkers of lung adenocarcinoma. PeerJ 7:e7313.
doi: 10.7717/peerj.7313

Han, Y. H., Kim, H. J., Na, H., Nam, M. W., Kim, J. Y., Kim, J. S., et al. (2017).
RORalpha Induces KLF4-Mediated M2 Polarization in the liver macrophages
that protect against nonalcoholic steatohepatitis. Cell Rep. 20, 124–135. doi:
10.1016/j.celrep.2017.06.017

Hansson, G. K., and Hermansson, A. (2011). The immune system in
atherosclerosis. Nat. Immunol. 2011 12, 204–212. doi: 10.1038/ni.2001

Henaut, L., Candellier, A., Boudot, C., Grissi, M., Mentaverri, R., Choukroun,
G., et al. (2019). New insights into the roles of monocytes/macrophages in
cardiovascular calcification associated with chronic kidney disease. Toxins
11:529. doi: 10.3390/toxins11090529

Hoeffel, G., and Ginhoux, F. (2015). Ontogeny of tissue-resident macrophages.
Front. Immunol. 6:486. doi: 10.3389/fimmu.2015.00486

Huang, W., Metlakunta, A., Dedousis, N., Zhang, P., Sipula, I., Dube, J. J., et al.
(2010). Depletion of liver Kupffer cells prevents the development of diet-
induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357. doi:
10.2337/db09-0016

Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., and Hobbs, B. (2003a). Speed
TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res.
31:e15.

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., and
Scherf, U. (2003b). Speed TP. Exploration, normalization, and summaries of
high density oligonucleotide array probe level data. Biostatistics 4, 249–264.
doi: 10.1093/biostatistics/4.2.249

Irvine, K. M., Banh, X., Gadd, V. L., Wojcik, K. K., Ariffin, J. K., Jose, S., et al. (2016).
CRIg-expressing peritoneal macrophages are associated with disease severity in
patients with cirrhosis and ascites. JCI Insight. 1:e86914. doi: 10.1172/jci.insight.
86914

Jablonski, K. A., Amici, S. A., Webb, L. M., Ruiz-Rosado Jde, D., Popovich, P. G.,
Partida-Sanchez, S., et al. (2015). Novel markers to delineate murine M1 and
M2 macrophages. PLoS One 10:e0145342. doi: 10.1371/journal.pone.0145342

Jiang, L., Li, X., Zhang, Y., Zhang, M., Tang, Z., and Lv, K. (2017). Microarray
and bioinformatics analyses of gene expression profiles in BALB/c murine
macrophage polarization. Mol. Med. Rep. 16, 7382–7390. doi: 10.3892/mmr.
2017.7511

Kamada, N., Hisamatsu, T., Okamoto, S., Chinen, H., Kobayashi, T., Sato, T., et al.
(2008). Unique CD14 intestinal macrophages contribute to the pathogenesis
of Crohn disease via IL-23/IFN-gamma axis. J. Clin. Invest. 118, 2269–2280.
doi: 10.1172/JCI34610

Lanier, L. L., Corliss, B. C., Wu, J., Leong, C., and Phillips, J. H. (1998a).
Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved
in activating NK cells. Nature 391, 703–707. doi: 10.1038/35642

Lanier, L. L., Corliss, B., Wu, J., and Phillips, J. H. (1998b). Association of DAP12
with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701. doi:
10.1016/s1074-7613(00)80574-9

Lin, J. D., Nishi, H., Poles, J., Niu, X., McCauley, C., Rahman, K., et al.
(2019). Single-cell analysis of fate-mapped macrophages reveals heterogeneity,
including stem-like properties, during atherosclerosis progression and
regression. JCI Insight. 4:e124574. doi: 10.1172/jci.insight.124574

Martinez, F. O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional
profiling of the human monocyte-to-macrophage differentiation and
polarization: new molecules and patterns of gene expression. J. Immunol.
177, 7303–7311. doi: 10.4049/jimmunol.177.10.7303

Misharin, A. V., Morales-Nebreda, L., Reyfman, P. A., Cuda, C. M., Walter,
J. M., McQuattie-Pimentel, A. C., et al. (2017). Monocyte-derived alveolar
macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp.
Med. 214, 2387–2404. doi: 10.1084/jem.20162152

Morrell, E. D., Bhatraju, P. K., Mikacenic, C. R., Radella, F. II, Manicone, A. M.,
Stapleton, R. D., et al. (2019). Alveolar macrophage transcriptional programs
are associated with outcomes in acute respiratory distress syndrome. Am. J.
Respir. Crit. Care Med. 200, 732–741. doi: 10.1164/rccm.201807-1381OC

Mould, K. J., Jackson, N. D., Henson, P. M., Seibold, M., and Janssen, W. J.
(2019). Single cell RNA sequencing identifies unique inflammatory airspace
macrophage subsets. JCI Insight 4:e126556. doi: 10.1172/jci.insight.126556

Murray, P. J., and Wynn, T. A. (2011). Protective and pathogenic functions of
macrophage subsets. Nat. Rev. Immunol. 11, 723–737. doi: 10.1038/nri3073

Orozco, L. D., Bennett, B. J., Farber, C. R., Ghazalpour, A., Pan, C., Che, N., et al.
(2012). Unraveling inflammatory responses using systems genetics and gene-
environment interactions in macrophages.Cell 151, 658–670. doi: 10.1016/j.cell.
2012.08.043

Painter, M. W., Davis, S., Hardy, R. R., Mathis, D., and Benoist, C. (2011).
Immunological Genome Project C. Transcriptomes of the B and T lineages
compared by multiplatform microarray profiling.J. Immunol. 186, 3047–3057.
doi: 10.4049/jimmunol.1002695

Palma, A., Jarrah, A. S., Tieri, P., Cesareni, G., and Castiglione, F. (2018). Gene
regulatory network modeling of macrophage differentiation corroborates the
continuum hypothesis of polarization states. Front. Physiol. 9:1659. doi: 10.
3389/fphys.2018.01659

Passlick, B., Flieger, D., and Ziegler-Heitbrock, H. W. (1989). Identification
and characterization of a novel monocyte subpopulation in human
peripheral blood. Blood 74, 2527–2534. doi: 10.1182/blood.v74.7.2527.
bloodjournal7472527

Phan, A. T., Goldrath, A. W., and Glass, C. K. (2017). Metabolic and epigenetic
coordination of t cell and macrophage immunity. Immunity 46, 714–729. doi:
10.1016/j.immuni.2017.04.016

Polak, M. E., Thirdborough, S. M., Ung, C. Y., Elliott, T., Healy, E., Freeman,
T. C., et al. (2014). Distinct molecular signature of human skin Langerhans
cells denotes critical differences in cutaneous dendritic cell immune regulation.
J. Invest. Dermatol. 134, 695–703. doi: 10.1038/jid.2013.375

Pollard, J. W. (2009). Trophic macrophages in development and disease. Nat. Rev.
Immunol. 9, 259–270. doi: 10.1038/nri2528

Poon, C. C., Gordon, P. M. K., Liu, K., Yang, R., Sarkar, S., Mirzaei, R., et al. (2019).
Differential microglia and macrophage profiles in human IDH-mutant and -
wild type glioblastoma. Oncotarget 10, 3129–3143. doi: 10.18632/oncotarget.
26863

Qian, B. Z., and Pollard, J. W. (2010). Macrophage diversity enhances tumor
progression and metastasis. Cell 141, 39–51. doi: 10.1016/j.cell.2010.03.014

Regan, T., Gill, A. C., Clohisey, S. M., Barnett, M. W., Pariante, C. M., Harrison,
N. A., et al. (2018). Effects of anti-inflammatory drugs on the expression of
tryptophan-metabolism genes by human macrophages. J. Leukoc Biol. 103,
681–692. doi: 10.1002/JLB.3A0617-261R

Rex, J., Albrecht, U., Ehlting, C., Thomas, M., Zanger, U. M., Sawodny, O.,
et al. (2016). Model-based characterization of inflammatory gene expression
patterns of activated macrophages. PLoS Comput. Biol. 12:e1005018. doi: 10.
1371/journal.pcbi.1005018

Reynier, F., de Vos, A. F., Hoogerwerf, J. J., Bresser, P., van der Zee, J. S., Paye,
M., et al. (2012). Gene expression profiles in alveolar macrophages induced by
lipopolysaccharide in humans. Mol. Med. 18, 1303–1311. doi: 10.2119/molmed.
2012.00230

Rock, R. B., Hu, S., Deshpande, A., Munir, S., May, B. J., Baker, C. A., et al. (2005).
Transcriptional response of human microglial cells to interferon-gamma. Genes
Immun. 6, 712–719. doi: 10.1038/sj.gene.6364246

Sahoo, D., Dill, D. L., Gentles, A. J., Tibshirani, R., and Plevritis, S. K.
(2008). Boolean implication networks derived from large scale, whole genome
microarray datasets. Genome Biol. 9:R157. doi: 10.1186/gb-2008-9-10-r157

Sahoo, D., Dill, D. L., Tibshirani, R., and Plevritis, S. K. (2007). Extracting binary
signals from microarray time-course data. Nucleic Acids Res. 35, 3705–3712.
doi: 10.1093/nar/gkm284

Sahoo, D., Seita, J., Bhattacharya, D., Inlay, M. A., Weissman, I. L., Plevritis,
S. K., et al. (2010). MiDReG: a method of mining developmentally regulated
genes using Boolean implications. Proc. Natl. Acad. Sci. U.S.A. 107, 5732–5737.
doi: 10.1073/pnas.0913635107

Seita, J., Sahoo, D., Rossi, D. J., Bhattacharya, D., Serwold, T., Inlay, M. A.,
et al. (2012). Gene Expression Commons: an open platform for absolute
gene expression profiling. PLoS One 7:e40321. doi: 10.1371/journal.pone.004
0321

Shaykhiev, R., Krause, A., Salit, J., Strulovici-Barel, Y., Harvey, B. G.,
O’Connor, T. P., et al. (2009). Smoking-dependent reprogramming of alveolar
macrophage polarization: implication for pathogenesis of chronic obstructive
pulmonary disease. J. Immunol. 183, 2867–2883. doi: 10.4049/jimmunol.090
0473

Sieweke, M. H., and Allen, J. E. (2013). Beyond stem cells: self-renewal of
differentiated macrophages. Science 342:1242974. doi: 10.1126/science.1242974

Frontiers in Physiology | www.frontiersin.org 13 April 2020 | Volume 11 | Article 275

https://doi.org/10.1172/jci110348
https://doi.org/10.7717/peerj.7313
https://doi.org/10.1016/j.celrep.2017.06.017
https://doi.org/10.1016/j.celrep.2017.06.017
https://doi.org/10.1038/ni.2001
https://doi.org/10.3390/toxins11090529
https://doi.org/10.3389/fimmu.2015.00486
https://doi.org/10.2337/db09-0016
https://doi.org/10.2337/db09-0016
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1172/jci.insight.86914
https://doi.org/10.1172/jci.insight.86914
https://doi.org/10.1371/journal.pone.0145342
https://doi.org/10.3892/mmr.2017.7511
https://doi.org/10.3892/mmr.2017.7511
https://doi.org/10.1172/JCI34610
https://doi.org/10.1038/35642
https://doi.org/10.1016/s1074-7613(00)80574-9
https://doi.org/10.1016/s1074-7613(00)80574-9
https://doi.org/10.1172/jci.insight.124574
https://doi.org/10.4049/jimmunol.177.10.7303
https://doi.org/10.1084/jem.20162152
https://doi.org/10.1164/rccm.201807-1381OC
https://doi.org/10.1172/jci.insight.126556
https://doi.org/10.1038/nri3073
https://doi.org/10.1016/j.cell.2012.08.043
https://doi.org/10.1016/j.cell.2012.08.043
https://doi.org/10.4049/jimmunol.1002695
https://doi.org/10.3389/fphys.2018.01659
https://doi.org/10.3389/fphys.2018.01659
https://doi.org/10.1182/blood.v74.7.2527.bloodjournal7472527
https://doi.org/10.1182/blood.v74.7.2527.bloodjournal7472527
https://doi.org/10.1016/j.immuni.2017.04.016
https://doi.org/10.1016/j.immuni.2017.04.016
https://doi.org/10.1038/jid.2013.375
https://doi.org/10.1038/nri2528
https://doi.org/10.18632/oncotarget.26863
https://doi.org/10.18632/oncotarget.26863
https://doi.org/10.1016/j.cell.2010.03.014
https://doi.org/10.1002/JLB.3A0617-261R
https://doi.org/10.1371/journal.pcbi.1005018
https://doi.org/10.1371/journal.pcbi.1005018
https://doi.org/10.2119/molmed.2012.00230
https://doi.org/10.2119/molmed.2012.00230
https://doi.org/10.1038/sj.gene.6364246
https://doi.org/10.1186/gb-2008-9-10-r157
https://doi.org/10.1093/nar/gkm284
https://doi.org/10.1073/pnas.0913635107
https://doi.org/10.1371/journal.pone.0040321
https://doi.org/10.1371/journal.pone.0040321
https://doi.org/10.4049/jimmunol.0900473
https://doi.org/10.4049/jimmunol.0900473
https://doi.org/10.1126/science.1242974
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00275 April 6, 2020 Time: 18:16 # 14

Dang et al. Computational Analysis Discovers Macrophage Biomarkers

Swirski, F. K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V.,
Panizzi, P., et al. (2009). Identification of splenic reservoir monocytes and their
deployment to inflammatory sites. Science 325, 612–616. doi: 10.1126/science.
1175202

Wang, Y., Zheng, B., Xu, M., Cai, S., Younseo, J., Zhang, C., et al. (2019).
Prediction and analysis of hub genes in renal cell carcinoma based on CFS
Gene selection method combined with Adaboost algorithm. Med. Chem. doi:
10.2174/1573406415666191004100744 [Epub ahead of print].

Wynn, T. A., Chawla, A., and Pollard, J. W. (2013). Macrophage biology in
development, homeostasis and disease. Nature 496, 445–455. doi: 10.1038/
nature12034

Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., et al. (2014).
Transcriptome-based network analysis reveals a spectrum model of human
macrophage activation. Immunity 40, 274–288. doi: 10.1016/j.immuni.2014.
01.006

Yoshida, H., Lareau, C. A., Ramirez, R. N., Rose, S. A., Maier, B., Wroblewska,
A., et al. (2019). Immunological Genome P. The cis-Regulatory atlas of the
mouse immune system. Cell 176, 897.e20–912.e20. doi: 10.1016/j.cell.2018.
12.036

Zhang, H., Xue, C., Shah, R., Bermingham, K., Hinkle, C. C., Li, W., et al. (2015).
Functional analysis and transcriptomic profiling of iPSC-derived macrophages
and their application in modeling Mendelian disease. Circ. Res. 117, 17–28.
doi: 10.1161/CIRCRESAHA.117.305860

Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E., and Hogenesch, J. B. (2014).
A circadian gene expression atlas in mammals: implications for biology and
medicine. Proc. Natl. Acad. Sci. U.S.A. 111, 16219–16224. doi: 10.1073/pnas.
1408886111

Ziegler-Heitbrock, H., and Ulevitch, R. (1993). CD14: cell surface receptor and
differentiation marker. Immunol. Today 14, 121–125. doi: 10.1016/0167-
5699(93)90212-4

Zimmerman, K. A., Bentley, M. R., Lever, J. M., Li, Z., Crossman, D. K., Song, C. J.,
et al. (2019). Single-Cell RNA sequencing identifies candidate renal resident
macrophage gene expression signatures across species. J. Am. Soc. Nephrol. 30,
767–781. doi: 10.1681/ASN.2018090931

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Dang, Taheri, Das, Ghosh, Prince and Sahoo. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org 14 April 2020 | Volume 11 | Article 275

https://doi.org/10.1126/science.1175202
https://doi.org/10.1126/science.1175202
https://doi.org/10.2174/1573406415666191004100744
https://doi.org/10.2174/1573406415666191004100744
https://doi.org/10.1038/nature12034
https://doi.org/10.1038/nature12034
https://doi.org/10.1016/j.immuni.2014.01.006
https://doi.org/10.1016/j.immuni.2014.01.006
https://doi.org/10.1016/j.cell.2018.12.036
https://doi.org/10.1016/j.cell.2018.12.036
https://doi.org/10.1161/CIRCRESAHA.117.305860
https://doi.org/10.1073/pnas.1408886111
https://doi.org/10.1073/pnas.1408886111
https://doi.org/10.1016/0167-5699(93)90212-4
https://doi.org/10.1016/0167-5699(93)90212-4
https://doi.org/10.1681/ASN.2018090931
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Computational Approach to Identifying Universal Macrophage Biomarkers
	Introduction
	Materials and Methods
	Data Collection and Annotation
	StepMiner Analysis
	Boolean Analysis
	BECC (Boolean Equivalent Correlated Clusters) Analysis
	Statistical Justification

	Results
	BECC Identifies Macrophage Genes in Humans
	TYROBP and FCER1G Are Two Strong Candidates for Universal Macrophage Biomarkers
	FCER1G and TYROBP Are Highly Expressed in Purified Macrophage Datasets
	FCER1G and TYROBP Performed Better Than ITGAM, CD68, and EMR1
	FCER1G and TYROBP Are Highly Expressed in Macrophage Single Cell RNASeq Datasets

	Discussion
	Data Availability Statement
	Data Access
	Author Contributions
	Funding
	Supplementary Material
	References




