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ABSTRACT OF THE DISSERTATION

Deep Learning Models On Hand Pose Estimation and Mesh Reconstruction From RGB
Images

By

Deying Kong

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Xiaohui Xie, Chair

Estimating and reconstructing human hand pose is a crucial task involved in many real

world AI applications, such as human-computer interaction, augmented reality and virtual

reality. However, hand pose estimation is challenging because the hand is highly articulated

and dexterous, and hand pose estimation suffers severely from self-occlusion. To address the

challenges of hand pose estimation from RGB images, several algorithms would be proposed

in this thesis. In the first part, the task of 2D hand pose estimation from RBG images

would be investigated. We introduce new techniques that combine traditional graphical

probabilistic models with deep convolutional neural networks, and use these techniques to

incorporate structural constraints of the hand to improve hand pose estimation. Apart from

that, a novel graph neural network, spatial information aware GCN, would be proposed,

which can efficiently extract spatial information from heatmaps of hand keypoints and prop-

agate them through graph convolution. In the second part, the more challenging problem of

3D hand mesh reconstruction would be tackled. We will introduce an identity-aware hand

mesh estimation network and a novel method to perform hand model calibration from RGB

images. Extensive experiments have been conducted on multiple large-scale public datasets,

demonstrating the state-of-the-art performance.

xiii



Chapter 1

Introduction

Human hands play a very important role in our daily life. Understanding hand poses and

movements are critical to many applications in VR/AR and human computer interaction.

With the advent of deep neural networks, many algorithms have been proposed to solve the

problem of hand pose estimation and mesh reconstruction. However, since the hand is highly

articulated and often affected by object-occlusion or self-occlusion, the problem still remains

challenging, when only single view RGB images are available. In this chapter, we will give a

brief definition on the problem of interest and then present the outline of this dissertation.

1.1 Problem Definition

Given a RGB image of the hand, the goal of the 2D hand pose estimation is to find a mapping

f(·) from the image to the 2D positions of K = 21 keypoints,

f : I ∈ R3×w×h 7→ J ∈ RK×2, (1.1)

1



where I is the input image with width w and height h, and J is the 2D hand keypoints.

Similarly, the task of 3D hand mesh reconstruction is to derive a mapping g(·) from the

image to 3D positions of vertices on the hand surface, as

g : I ∈ R3×w×h 7→ V ∈ RN×3, (1.2)

where I is the input image with width w and height h, and V is the coordinates of N

predefined vertices on the hand mesh surface. The two tasks are illustrated in Fig. 1.1,

where the 2D hand keypoints and the projection of the 3D mesh are displayed on top of the

input RGB hand image.

Figure 1.1: Definition of the problem. Left: input RGB image of the hand. Middle: detected
2D keypoints overlaid on the image. Right: 3D hand mesh reprojected onto the image. [141]

1.2 Outline

The thesis is organized as following. Chapter 1 gives a brief introduction of the problem

of interest, i.e., human hand pose estimation, and the outline of the dissertation. Then,

some backgrounds are given in Chapter 2. Afterwards, 2D hand pose estimation is tackled

in Chapter 3, 4 and 5, by utilizing several techniques, e.g., probabilistic graphical models,

deep convolutional neural networks, graph neural networks. In the following Chapter 6,

the more challenging problem of 3D hand mesh reconstruction is investigated, where a novel

2



identity-aware network and a new hand model personalization pipeline are proposed. Finally,

Chapter 7 concludes the dissertation.

Chapter 2. In this chapter, traditional probabilistic graphical models would be introduced

first, followed by recent development of the powerful deep neural networks, including convo-

lutional neural networks and graph neural networks. After that, a popular 3D hand mesh

model, MANO, would be discussed.

Chapter 3. To alleviate the limitations of existing methods for 2D hand pose estimation

from RGB images, we propose a new architecture named Rotation-invariant Mixed Graphical

Model Network (RMGMN). Instead of using a single graphical model, we design a pool

of graphical models to accommodate different hand pose categories. The pose categories

are obtained via unsupervised learning through the algorithm of K-Means. Additionally,

motivated by the fact that a rotation of the input image should not change the graphical

model (or only to a rotational angle), we propose to use a rotation net to align the input

image before applying the graphical models.

This chapter was previously published in IEEE Winter Conference on Applications of Com-

puter Vision (WACV’20) [54].

Chapter 4. To further exploit the potential power of the graphical model, in this work, we

make the graphical model fully adaptive. By “fully adaptive”, we mean that the graphical

model is conditional on individual input images other than categories as that in Chapter 3.

The proposed Adaptive Graphical Model Network (AGMN) consists of two branches of deep

convolutional neural networks for calculating unary and pairwise potential functions both

conditioned on input images, followed by a graphical model inference module for integrating

unary and pairwise potentials. Unlike existing architectures proposed to combine DCNNs

with graphical models, our AGMN is novel in that the parameters of its graphical model are

conditioned on and fully adaptive to individual input images.

3



This chapter was previously published in Proceedings of the British Machine Vision Confer-

ence (BMVC’19) [53].

Chapter 5. Still focused on the task of 2D hand pose estimation, in this chapter, we resort

to another technology, Graph Neural Networks (GNN). GNNs generalize neural networks

from applications on regular structures to applications on arbitrary graphs, and have shown

success in many application domains such as computer vision, social networks and chemistry.

In this chapter, we extend GNNs along two directions: a) allowing features at each node to

be represented by 2D spatial confidence maps instead of 1D vectors; and b) proposing an

efficient operation to integrate information from neighboring nodes through 2D convolutions

with different learnable kernels at each edge. The proposed SIA-GCN can efficiently extract

spatial information from 2D maps at each node and propagate them through graph convo-

lution. By associating each edge with a designated convolution kernel, the SIA-GCN could

capture different spatial relationships for different pairs of neighboring nodes. When applied

on the task of 2D hand pose estimation, the nodes represent the 2D coordinate heatmaps of

keypoints and the edges denote the kinetic relationships between keypoints.

This chapter was previously published in Proceedings of the British Machine Vision Confer-

ence (BMVC’20) [55].

Chapter 6. This chapter handles the more challenging task of reconstructing 3D hand

mesh from RGB input images. This task has attracted increasing amount of attention

due to its enormous potential applications in the field of AR/VR. Most state-of-the-art

methods attempt to tackle this task in an anonymous manner. Specifically, the identity of

the subject is ignored even though it is practically available in real applications where the user

is unchanged in a continuous recording session. In this chapter, an identity-aware hand mesh

estimation model is proposed, which can incorporate the identity information represented by

the intrinsic shape parameters of the subject. The importance of the identity information

is demonstrated by comparing the proposed identity-aware model to a baseline which treats

4



subject anonymously. Furthermore, to handle the use case where the test subject is unseen,

a novel personalization pipeline is proposed to calibrate the intrinsic shape parameters using

only a few unlabeled RGB images of the subject.

This chapter was previously published in European Conference on Computer Vision (ECCV’22) [56].

Chapter 7. This chapter concludes the dissertation.

5



Chapter 2

Background

2.1 Probabilistic Graphical Models

Probabilistic graphical models are a class of statistical models which combine the rigour of a

probabilistic approach with the intuitive representation of relationships given by graphs [93].

In general, they are composed by two parts:

• A set X = {X1, X2, · · · , Xp} of random variables describing the quantities of interest.

• A graph G = (V , E) in which each node v ∈ V is associated with one of the random

variables in X . Edges e ∈ E are used to express the dependence structure of the

data [93].

Many traditional algorithms on human/hand pose estimation/tracking have been developed

by using the graphical models, several of which are introduced as follows.

In [103], a probabilistic method is developed for visual tracking of a three-dimensional ge-

ometric hand model from monocular image sequences. Using a graphical model of hand

6



kinematics, the hand’s motion is tracked using the nonparametric belief propagation algo-

rithm. In [24], a deformable template is proposed to detect and localize shapes in grayscale

images. The template is formulated as a Bayesian graphical model of a two-dimensional

shape contour, and it is matched to the image using a variant of the belief propagation

algorithm used for inference on graphical models. In [95], the 3D human body is represented

as a graphical model in which the relationships between the body parts are represented by

conditional probability distributions. Then the pose estimation problem is formulated as

one of probabilistic inference over a graphical model where the random variables correspond

to the individual limb parameters. The famous framework of pictorial structures has been

proposed in [29], whose key idea is to represent an object by a collection of parts arranged

in a deformable configuration. The appearance of each part is modeled separately, and the

deformable configuration is represented by spring-like connections between pairs of parts.

2.2 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (CNNs) have witnessed many successes in a range of

fields, e.g., image classification, image segmentation, object detection, pose estimation, in

recent years [98, 41, 57, 91, 87, 40, 89, 114? ]. In this section, we will introduce two popular

deep CNNs that are used in the field of 2D pose estimation, convolutional pose machine [124]

and stacked hour glass [75]. They are initially proposed for human pose estimation, but can

be also applied for the task of 2D hand pose estimation.

2.2.1 Convolutional Pose Machine

Convolutional Pose Machine (CPM) provides a sequential prediction framework for learning

rich implicit spatial models [124]. As shown in Fig. 2.1, the CPM refines heatmaps sequen-

7



tially, with increasing receptive fields in later stages. In the first stage, the network only

works on the image evidence, while in the following stages, the network operates on both

image evidence and the heatmap output from the previous stage. By doing so, the CPM

has the ability to implicitly model long-range dependencies between variables in structured

prediction tasks, which enables it achieve then state-of-the-art performance on 2D human

pose estimation.

Figure 2.1: Architecture and receptive fields of convolutional pose machine in [124].

2.2.2 Stacked Hourglass

Apart from the CPM, there is another popular architecture, stacked hourglass, that has been

proposed to tackle 2D pose estimation problem [75]. The motivation is that to understand

the pose, not only is local information necessary, but the knowledge of global information

is also essential. In the stacked hourglass networks, features are processed across all scales

and consolidated to best capture the various spatial relationships associated with the human

body, as shown in Fig. 2.2.
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Figure 2.2: The staked hourglass network for pose estimation consists of multiple modules
which allow for repeated bottom-up, top-down inference [75].

2.3 Integrating CNNs and Graphical Models

There is also a branch of works trying to combine deep CNNs and graphical models for pose

estimation [107, 19, 132], which are trained independently or end-to-end via the coordination

of back propagation and message-passing. The combination of DCNNs and GM has been

studied in several scenarios, i.e., human pose estimation in a vedio[99], multi-person pose

estimation [82, 43], multi-person pose tracking [42, 44]. Although these methods are mainly

proposed for the task of human body pose estimation, they can also be applied to hand pose

estimation.

The work in [107] is a pioneer in integrating deep neural networks and graphical models.

In [107], a new hybrid architecture has been proposed, which consists of a deep convolutional

network and a Markov random field. It has been shown that this architecture can be success-

fully applied to the challenging problem of articulated human pose estimation in monocular

images. The architecture can exploit structural domain constraints such as geometric rela-

tionships between body joint locations. Fig. 2.3 illustrates how the message passing works

between body joints and how the structual constraints are ultized.
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Figure 2.3: Didactic example of message passing between the face and shoulder joints [107].

2.4 Graph Neural Networks

Convolutional neural networks can only operate on regular Euclidean data, e.g, images (2D

grids) and texts (1D sequences) while these data structures can be regarded as instances of

graphs. Graph Neural Networks (GNNs) have been proposed to operate on unregular graphs

with applications in the fields of physics, chemistry, social networks and so on [137, 52, 94,

113, 27]. Among the many popular types of GNNs, we would introduce one spectral-based

GNN, Graph Convolutional Network (GCN) which is proposed by Kipf and Welling [52]

which has enjoyed great success on a variety of applications since its advent.

Given a graph G = (V , E) with N nodes vi ∈ V , edges (vi, vj) ∈ E , adjacency matrix

A ∈ RN×N , and a degree matrix D ∈ RN×N with Dii =
∑

j Aij, the layer-wise propagation

rule of GCN is characterized by the following equation

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
, (2.1)

where Ã = A+IN is the adjacency matrix of the undirected graph G with self-connections [52].

IN is the identity matrix, D̃ii =
∑

j Ãij. H
(l) ∈ RN×M is the matrix of activations in the lth

layer, or input feature matrix of the lth layer. The parameter W (l) is the trainable weight

matrix of layer l.
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2.5 Generative Hand Models

Many 3D hand models have been proposed in the past decades. For example, [76, 85, 88]

are among the methods that approximate the hand with shape primitives, by doing this, fast

evaluation of distances has been achieved. In [92], shape primitives are voxelized and signed

distance functions for local coordinated are computed. Another line of research resort to

triangulated mesh with linear blend skinning, which gives more realistic hand [92, 109, 90].

Recently, with the popularity of neural fields [127], the LISA hand model is proposed in

[23], which is defined by an articulated implicit representation learned from multi-view RGB

videos annotated with coarse 3D hand poses.

In this subsection, we would mainly introduce the widely used triangular mesh based MANO

hand model [90], which is extended from the 3D human model SMPL [65]. MANO is learned

from around 1000 high-resolution 3D scans of hands of 31 subjects in a wide variety of hand

poses. The model is realistic, low-dimensional, captures non-rigid shape changes with pose,

is compatible with standard graphics packages, and can fit any human hand [90].

The MANO model factorizes the hand mesh into two groups of parameters: the shape

parameters and the pose parameters. The shape parameters control the intrinsic shape of

the hand, e.g., size of the hand, thickness of the fingers, length of the bones, etc. The

pose parameters represent the hand pose, i.e., how the hand joints are transformed, which

subsequently deforms the hand mesh. Mathematically, the model is defined as below:

M(β, θ) = W (TP (β, θ), J(β), θ,W) (2.2)

where a skinning function W is applied to an articulated mesh with shape TP , joint locations

J , pose parameter θ, shape parameter β, and blend weights W [90]. Fig. 2.4 and Fig. 2.5

shows the PCA shape and pose spaces of the MANO model respectively.
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Figure 2.4: PCA shape space of MANO model [90].

Figure 2.5: PCA pose space of MANO model [90].
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Chapter 3

Rotation-invariant Mixed Graphical

Model Network

In this chapter, we propose a new architecture named Rotation-invariant Mixed Graphical

Model Network (R-MGMN) to solve the problem of 2D hand pose estimation from a monoc-

ular RGB image. By integrating a rotation net, the R-MGMN is invariant to rotations of

the hand in the image. It also has a pool of graphical models, from which a combination

of graphical models could be selected, conditioning on the input image. Belief propagation

is performed on each graphical model separately, generating a set of marginal distributions,

which are taken as the confidence maps of hand keypoint positions. Final confidence maps

are obtained by aggregating these confidence maps together. We evaluate the R-MGMN

on two public hand pose datasets. Experiment results show our model outperforms the

state-of-the-art algorithm which is widely used in 2D hand pose estimation by a noticeable

margin.
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3.1 Introduction

Hands play a central role in almost all daily activities of human beings. Understanding

hand pose is an essential task for many AI applications, such as gesture recognition, human-

computer interaction [102], and augmented/virtual reality [59, 83]. The task of estimating

hand pose has been investigated for decades, however, it still remains challenging due to the

complicated articulation, high dexterity and severe self-occlusion.

To address these problems, one possible way is to resort to multi-view camera systems [47, 77,

96]. However, such systems are expensive and not practical. Meanwhile, with the popular-

ization of low-cost depth sensors in recent years, a large number of RGB-D based approaches

have been proposed for 3D hand pose estimation [3, 31, 33, 74, 111, 112, 134]. Nonetheless,

RGB cameras are still the most popular and easily accessible devices. Researchers have

started performing 3D hand pose estimation directly from RGB images [6, 7, 32, 45, 73, 78,

101, 139]. Many proposed approaches involve a two stage architecture, i.e., first performing

2D hand pose estimation and then lifting the estimated pose from 2D to 3D [6, 73, 78, 139],

which makes 2D hand pose estimation itself still an important task. In this paper, we

investigate the problem of 2D hand pose estimation from a monocular RGB image.

The research field of 2D hand pose estimation is related closely to that of human pose estima-

tion. Spurred by developments in deep learning and large datasets publicly available [74, 96],

deep convolutional neural network (DCNN)-based algorithms have make this field advance

significantly. Convolutional Pose Machines (CPM) [124] is one of the most popular and well

known algorithms for human pose estimation, and it has been widely applied in 2D hand

pose estimation [96] yielding the state of the art performance.

Although the deep convolutional neural networks have the power to learn very good feature

representations, they could only learn spatial relationships among joints or keypoints implic-

itly, which often results in joint inconsistency [49, 99]. To model the correlation among joints

14



explicitly, several studies investigate the combination of Graphical Model (GM) and DCNN

in pose estimation. In most of the studies [99, 107, 132], a self-independent GM is imposed

on top of the score maps regressed by DCNN. The parameters of the GM are learned during

end-to-end training, then these parameters are fixed during prediction. However, pose can

be varied in different scene, a fixed GM is unable to model diverse pose. This shortage

could be even worse in hand pose estimation. In [19], image-dependent pairwise potentials

are introduced, however, the model does not support end-to-end training and the pairwise

potential is restrained to quadratic function.

In this paper, we propose a novel architecture for 2D hand pose estimation from monocular

RGB image, namely, the Rotation-invariant Mixed Graphical Model Network (R-MGMN).

We argue that different hand shapes should be associated with different spatial relationships

among hand keypoints, resulting to graphical models with different parameters. Also, a

powerful graphical model should have the ability to capture the same shape of the hands

when viewed from a different angle, i.e., the graphical model should be rotation-invariant.

The proposed R-MGMN consists of four parts, i.e., a rotation net, a soft classifier and a

pool which contains several different graphical models. The rotation net is inspired by the

Spatial Transformer Networks [46]. The goal of the rotation net is to rotate the input image

such that the hand would be in a canonical direction. Then, the soft classifier outputs

a soft class assignment vector (which sums up to 1), representing the belief on possible

shapes of the hand. Meanwhile, the unary branch generates heatmaps which would be

fed into the graphical models as unary functions. After that, inference is performed via

message passing on each graphical model separately. The inferred marginals are aggregated

by weighted averaging, using the soft assignment vector. This procedure could be viewed as a

soft selection of graphical models. The final scoremap is obtained by rotating the aggregated

marginal backwards to align with the original coordinate of the input image.

We demonstrate the performance of the R-MGMN on two public datasets, the CMU Panoptic
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Dataset [96] and the Large-scale 3D Multiview Hand Pose Dataset [35]. Our approach

outperforms the popularly used algorithm CPM by a noticeable margin on both datasets.

Qualitative results indicate our model could alleviate geometric inconsistency among hand

keypoints even when severe occlusion exists.

The main contributions of this paper are summarized as follows:

• We propose a new model named R-MGMN which combines graphical model and deep

convolutional neural network efficiently.

• Instead of only having one graphical model, the proposed R-MGMN has several in-

dependent graphical models which can be selected softly, depending on input image.

And it could be trained end-to-end.

• Our R-MGMN could alleviate the spatial inconsistency among predicted hand key-

points greatly and outperform the popularly used CPM algorithm by a notable margin.

3.2 Related Work

Human pose estimation from single RGB image. Studies on hand pose estimation

have been benefiting from that on human pose estimation for a long time. Since Deep-

Pose [108] pioneered the application of DCNN in pose estimation, DCNN-based algorithms

have dominated the field [118]. For example, the network proposed by Sun et al. [104] has

achieved the state-of-the-art score in many human pose estimation datasets [1, 63]. Early

DCNN-based algorithms try to regress the 2D coordinates of keypoints [115, 12]. Later algo-

rithms estimate keypoint heatmaps [124, 75, 22], which usually achieve better performance.

The main body of DCNN mainly adopts the high-to-low and low-to-high framework, option-

ally augmented with multi-scale fusion and intermediate supervision. However, the structure

information among the body joints captured by DCNN is implicit. Some approaches try to
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learn extra information besides heatmaps of joint position to provide structural constraints,

i.e. compound heatmaps [49] and offset fields [79]. Nonetheless, these methods still could

not fully exploit structural information.

Hand pose estimation. Recently, most studies of hand pose focus on 3D hand pose

estimation, which is much more challenging than body pose estimation, due to self-occlusion,

dexterity and articulation of the hand. The mainstream approaches usually resort to either

multi-view camera system [47, 77, 96] or depth data [3, 33, 111, 112, 134]. Nevertheless,

There is also a rich literature on 3D hand pose and reconstruction from single color image

using deep neural networks [6, 7, 32, 45, 73, 78, 101, 139] . Some studies fit their 3D hand

models from the estimated 2D joint locations [6, 73, 78, 139]. Thus the accuracy of 2D hand

pose estimation has a great impact on the performance of 3D hand pose.

Among a variety of DCNN-based models, CPM [124] is commonly used in 2D hand pose

estimation [96, 116, 139]. This architecture estimates the score maps via intermediate su-

pervision and the most likely location is selected as the maximum confidence of the corre-

sponding position in the confidence maps. In this paper, we choose CPM as the baseline for

comparison with our proposed model.

Graphical model in pose estimation. Graphical model has also been exploited in solving

human pose estimation tasks. By using GM, spatial constraints among body parts can be

modeled explicitly.

Recently, there is also a trend to combine DCNN and GM for pose estimation [107, 19, 99,

132]. The GM and the backbone DCNN are trained either independently or end-to-end via

the combination of back propagation and message-passing. However, studies in this field

usually apply a GM with fixed parameters, which limits its ability to model a variety of

pose, especially in hand pose estimation. The most recent work in [53] proposes to generate

adaptive GM parameters conditioning on individual input images.
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Figure 3.1: Pipeline overview of the proposed Rotation Mixture Graphical Model Network
(R-MGMN).

3.3 Methodology

3.3.1 Basic pipeline

The proposed Rotation-invariant Mixture Graphical Model Network (R-MGMN) mainly

consists of four components, i.e., the rotation net, the soft classifier, the unary branch and

the pool of graphical models, as shown in Fig. 3.1. The pipeline of the MGMN is given as

follows.

• The rotation net regresses a rotation degree from the input image.

• Then, using the obtained rotation degree, the image is rotated such that the hand in

the image would be in a canonical direction (e.g. the hand is upright).

• After that two parallel branches follow.

Branch 1:

– A deep neural network referred to as unary branch is applied onto the rotated

image. The output of the unary branch is a set of 2D heatmaps which represent
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the confidence of the hand keypoint positions.

– As unary potential functions, these 2D heatmaps are fed into the pool of graphical

models. Each graphical model performs inference separately. Then, the pool

outputs several sets of marginal probabilities of the keypoint positions.

Branch 2:

– The parallel branch contains a soft classifier which outputs a weight vector whose

entries sum up to one.

• Aggregated heatmaps are obtained as the weighted average of the marginal probabili-

ties, using the weight vector.

• Rotate heatmaps backwards according to previous rotation degree.

3.3.2 Model

Our R-MGMN could be broken down into two parts:

• The rotation part which controls the rotation of the image and the backward rotation

of the heatmaps.

• The MGMN, which performs handpose estimation on the rotated images.

Image rotation

The rotation angle α is regressed from the rotation net RT as

α = RT (I; θrt), (3.1)
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where θrt is the set of parameters of the rotation net, I is the input image. Then the rotated

image is given by

Irt = frt(I, α), (3.2)

where frt is the rotation function.

MGMN

Given the rotated image Irt, the handpose estimation problem could be formulated by using

a graph and it could be solved via probabilistic tools.

Let V = {v1, v2, · · · , vK} denote the set of all the hand keypoints, each of which is associated

with a random variable xi ∈ R2 representing its 2D position in image Irt. And let E represent

the set of pairwise relationships among the keypoints in V , to be more specific, (i, j) ∈ E if

and only if vi and vj (i < j) are neighbours. Then we could define a graph G = (V , E) with

V being its vertices and E being the edges. A basic probabilistic model of the handpose task

could be formulated by the following equation.

pbasic(X|Irt) =
∏

vi∈V

ϕ(xi|Irt)
∏

(j,k)∈E

ψ(xj, xk|Irt), (3.3)

where ϕ(xi) ∈ R is usually called the unary function, ψ(xj, xk) ∈ R is the pairwise function

and X denotes the positions of all hand keypoints, i.e., X = (x1, x2, · · · , xK) .

The naive model in Eq. (3.3) could be generalized to a mixed graphical model as

p(X|Irt) =
L∑

l=1

wl

∏

vi∈V

ϕl(xi|Irt)
∏

(j,k)∈E

ψl(xj, xk|Irt), (3.4)

where L graphical models are aggregated together, wl is the weight corresponding to the l-th

graphical model.
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Our proposed MGMN is obtained when the same unary function is shared for all L graphical

models, i.e.,

ϕl(xi|I) = η(xi|I), l = 1, 2, · · · , L (3.5)

where η(xi|I) is the output of the unary branch U with parameters θu in Fig. 3.1,

η(xi|I) = U(I, θu). (3.6)

The marginal probability p(xi|Irt) could be calculated by summing up the marginal proba-

bilities pl(xi|Irt) of each individual graphical models, as validated by the following equation,

p(xi|Irt) =
∑

∼xi

p(X|Irt) (3.7)

=
∑

∼xi

L∑

l=1

wl

∏

vi∈V

ϕl(xi|Irt)
∏

(j,k)∈E

ψl(xj, xk|Irt) (3.8)

=
L∑

l=1

wl

∑

∼xi

∏

vi∈V

ϕl(xi|Irt)
∏

(j,k)∈E

ψl(xj, xk|Irt) (3.9)

=
L∑

l=1

wl pl(xi|Irt), (3.10)

where
∑
∼xi

means to summing over all xk, k = 1, 2, · · · , K except xi. The marginal pl(xi|Irt)

of each graphical model could be calculated exactly or approximately using message passing

efficiently.

The marginal p(xi|Irt) could be taken as a confidence of the joint vi being located at the

specific position. For each keypoint vi, a confidence map or score map Si, which is a 2D

matrix, could be constructed by assigning the (m,n)-th entry of Si to be

Si[m,n] = p(xi = (m,n)|Irt), (3.11)
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where (m,n) is the 2D coordinate.

Inverse Rotation of Confidence Maps

The final confidence map of the keypoint vi’s position is given by

SF
i = frt(Si,−α), (3.12)

where α is given by the rotation net as in Eq. (3.1).

The predicted position of keypoint vi is obtained by maximizing the confidence map, as

x∗i = (m∗, n∗) = argmax
m,n

SF
i [m,n]. (3.13)

3.3.3 Detailed structure of the R-MGMN

In this subsection, we would describe the detailed structure of each component of the R-

MGMN.

Rotation Net

The rotation net consists of a ResNet18 and two additional layers to regress the rotation

degree α, as shown in Fig. 3.2.

ResNet18
FC

1000, 32
ReLu

FC

32, 1

Figure 3.2: Configuration of the rotation net.
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The output of ResNet18 is a 1000-dimensional vector, then it’s fed into two fully connected

(FC) layers with a ReLu function in between. Finally, a scalar representing the rotation

degree is obtained.

Unary Branch

The Convolutional Pose Machine (CPM) is adopted as our unary branch. To be more specific,

we follow the same architecture used in [96]. The convolutional stages of a pre-initialized

VGG-19 network up to conv4 4 are utilized as a feature extractor. Then, six cascaded stages

are deployed to regress the confidence maps repeatedly. Moreover, as in [9], convolutions of

kernel size 7 are replaced with 3 layers of convolutions of kernel 3 which are concatenated at

their end.

Soft Classifier

For the soft classifier we adopt the ResNet-152 followed by a softmax layer as in Fig. 3.3.

The output dimension of the ResNet-152 is set to be 20, which means we would like to expect

there are 20 clusters among the hands.

ResNet-152 Softmax

Figure 3.3: Configuration of the soft classifier.

Pool of Graphical Models

There are L = 20 tree-structured graphical models integrated in the pool of graphical models.

Each of the graphical model shares the same structure, but every single graphical model is
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associated with a different set of parameters. Marginal probabilities are inferred on each

individual graphical model, and then aggregated via a weight vector which comes from the

soft classifier.

Belief propagation. Sum-product message passing is a well known algorithm for perform-

ing inference on graphical models. It could calculate marginals of the random variables

efficiently. During the inference, vertices on the graph receive messages from and send mes-

sages to their neighbors iteratively, as in the following equation,

mij(xj) =
∑

xi

φi,j(xi, xj)ϕi(xi)
∏

k∈Nbd(i)\j

mki(xi) , (3.14)

where mij ∈ R is the message sent from vertex vi to vertex vj, which is the belief from the

vertex vi on the position of the j-th keypoint.

The message passing process in the above equation would be performed several iterations

until convergence or satisfaction of some other stop criteria. The estimated marginal distri-

bution p̂i(xi) is given by

p̂i(xi) ∝ ϕi(xi)
∏

k∈Nbd(i)

mki(xi) (3.15)

=
1

Z ′ϕi(xi)
∏

k∈Nbd(i)

mki(xi), (3.16)

where Z ′ is a normalization term such that the probabilities sum up to 1.

Message passing on tree-structured graphs. When the graph is tree-structured, the

estimated marginal equals the exact marginal. In our R-MGMN, tree-structured models

are utilized, as illustrated in Fig. 4.3. Each branch consisting of four same-colored circles

corresponds to a single finger.

By using a tree-structure, exact marginals could be inferred very efficiently by only two
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Figure 3.4: Tree-structured graphical model for hand keypoints.

passes of message passing. In the first step, starting from the leaf nodes, variables pass

messages sequentially towards the root node. Then in the second step, messages are passed

sequentially towards the leaf nodes, beginning at the root node.

Message passing as 2D convolution. For each iteration, the messagemij(xj) in Eq. (3.14)

could be rewritten as

mij(xj) =
∑

xi

φi,j(xi, xj)hi(xi), (3.17)

where

hi(xi) ≜ ϕi(xi)
∏

k∈Nbd(i)\j

mki(xi). (3.18)

If the pairwise potential function φi,j(xi, xj) only depends on the relative position between

the two neighboring keypoints, i.e.,

φi,j(xi, xj) = γi,j(xi − xj) . (3.19)

By compacting mi,j(·) and hi(·) into 2D matrices Mij and Hi (this is reasonable since xi
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corresponds to a 2D location), Eq. (4.16) is transformed to

Mij = Γi,j ⊛Hi , (3.20)

where Γi,j is a 2D matrix encoding the pairwise potential function γi,j(xi − xj), and the

notation ⊛ denotes convolution.

Thus, the set of parameters for each graphical model is given by

Θgm = {Γi,j|(i, j) ∈ E or (j, i) ∈ E} . (3.21)

The whole set of parameters of the pool of graphical models are

ΘGM = {Θgm
l | l = 1, 2, · · · , L} , (3.22)

where Θgm
l1

is independent of Θgm
l2

for l1 ̸= l2.

3.4 Learning

Since our R-MGMN contains several components, we follow a step-by-step training proce-

dure. First, the rotation net is trained. Then, while keeping the rotation net fixed, we train

the unary branch and the soft classifier separately. After that, the parameters of graphical

models are learned while keeping other parts frozen. Finally, the whole R-MGMN is jointly

trained. More details are given as following.
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3.4.1 Train Rotation Net

The rotation net is trained alone in the first phase of the training. The aim of the rotation

net is to rotate the input image such that the hand in the resulted image is upwards, i.e.,

the directional line connecting the 1-st keypoint and the 10-th keypoint is pointing upwards

as illustrated in Fig. 3.5.

Figure 3.5: Illustration of the rotation. Left image courtesy to [96] .

Almost no public dataset provides the ground truth rotation degree directly, however, it

could be obtained easily given the ground truth positions of hand keypoints. The ground

truth rotation degree α* could be derived by calculating the directional angle between the

vector v1 and v2, where

v1 = x10 − x1, (3.23)

with x10 and x1 representing the positions of the keypoints, and v2 is the unit vector whose

direction is vertically upwards.

During training, squared error is used for the loss function, which is

Lrn = (α− α∗)2 , (3.24)

where α is the regressed rotation degree from the rotation net.
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3.4.2 Train Unary Branch

The unary branch is trained with the help of the rotation net, while the rotation net is fixed

during this training phase. The unary branch is actually the convolutional pose machine,

which produces and refines the confidence maps repeatedly. Rotated image is fed into the

unary branch, which outputs a set of confidence maps. These confidence maps are then

rotated back so as to be aligned with the original coordinate of the input image before the

rotation net.

Denote St
k ∈ Rhu×wu as the aligned output confidence map of the k-th keypoint at the t-th

stage of the unary branch, the loss function used in this training phase is designed as

Lunary =
T∑

t=1

21∑

k=1

||St
k − S∗

k ||2F , (3.25)

where T is the number of stages in the unary branch, S∗
k ∈ Rhu×wu is the ground truth

confidence map of the k-th keypoint, and || · ||F represents the Frobenius norm. The ground

truth S∗
k is obtained by by putting a Gaussian peak at the keypoint’s ground truth location.

3.4.3 Train Soft Classifier

Again, there is no ground truth class label for the classification subtask. Thus, we resort to

unsupervised learning, especially the K-means clustering algorithm. To be fair, only training

dataset is utilized in this phase.

Given the pretrained rotation net in the first phase, we rotate the images and the keypoints’

position labels according to the estimated rotation degrees. Then, the K-means algorithm is

applied on the rotated images. The feature vector used in K-means is obtained by concate-

nating the relative positions of neighbouring keypoints. The number of the clusters is set to
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be 20.

The training set is further split into 70/30, on which the soft classifier is trained on. Standard

cross entropy is used for the loss function.

3.4.4 Train Graphical Model Parameters

Keeping all the other parts fixed, in this phase, we only train the parameters of the graphical

models, with the whole R-MGMN. The loss function is

LGM =
21∑

k=1

||S̃k − S̃∗
k ||2F , (3.26)

where S̃k ∈ Rho×wo is the k-th channel of the output of the R-MGMN. Since the confidence

map S̃k is actually a normalized probability distribution, the ground truth S̃∗
k ∈ Rho×wo is

also normalized (S̃∗
k is the normalized version of S∗

k from Eq. (3.25)).

3.4.5 Jointly Train All the Parameters

For the last phase, we use the same loss function as that in training the graphical model

paramters,

LJoint = LGM . (3.27)
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3.5 Experiments

We verify our approach on two public handpose datasets, i.e., the CMU Panoptic Hand

Dataset (CMU Panoptic) [96] and the Large-scale Multiview 3D Hand Pose Dataset (Large-

scale 3D) [30]. A comprehensive analysis of the proposed model is also carried out.

3.5.1 Experimental settings

Datasets.

The CMU Panoptic dataset contains 14817 annotations of hand images while the Large-scale

3D dataset contains 82760 anotations in total. The Large-scale 3D dataset provides a simple

interface to generate 2D labels from the 3D labels which come with the dataset. For both

datasets, we split them into training set (70%), validation set (15%) and test set (15%).

Since we focus on handpose estimation in this paper, we crop image patches of annotated

hands off the original images, thus leaving out the task of hand detection. A square bounding

box which is 2.2 times the size of the hand is used during the cropping.

Evaluation metric.

Probability of Correct Keypoint (PCK) [96] is a popular metric, which is defined as the

probability that a predicted keypoint is within a distance threshold σ of its true location.

In this paper, we use normalized threshold σ with respect to the size of hand bounding box,

and mean PCK (mPCK) with σ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}.
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Implementation Details.

All input images are resized to 368 × 368, then scaled to [0,1] and further normalized using

mean of (0.485, 0.456, 0.406) and standard derivation of (0.229, 0.224, 0.225). Batch size is

set to 32 for all training phases. Adam is used as the optimizer, and the initial learning rate

is set to be lr =1e-4 for each training phase. The rotation net is only trained for 6 epochs

at the fist training phase. With best models being selected basing on the performance of

the validation set, the unary branch and soft classifier are both trained for 100 epochs, after

which the parameters of graphical models are trained for 40 epochs, and finally the whole

network are trained end-to-end for 150 epochs.

3.5.2 Results

The PCK performance of our proposed model on two public datasets, i.e., the CMU Panoptic

dataset and the Large-scale 3D dataset, are shown in Fig. 3.6. It is seen that our model

outperforms the CPM consistently on both datasets. Detailed numerical results are given in

Table 4.1.

Figure 3.6: PCK performance on two public datasets.

On CMU Panoptic dataset, our model achieves a significant PCK improvement comparing
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Threshold of PCK, σ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK
CMU Panoptic Hand Dataset

CPM Baseline (%) 22.60 55.69 70.06 77.01 81.30 84.36 65.17
Ours 23.67 60.12 76.28 83.14 86.91 89.47 69.93

Improvement 1.07 4.43 6.22 6.13 5.61 5.11 4.76

Large-scale Multiview 3D Hand Pose Dataset
CPM Baseline (%) 38.27 81.78 91.54 94.84 96.39 97.27 83.35

Ours 41.51 85.97 93.71 96.33 97.51 98.17 85.53
Improvement 3.24 4.19 2.17 1.49 1.12 0.90 2.18

Table 3.1: Detailed numerical results of PCK performance.

Threshold of PCK, σ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK improvement

CPM Baseline (%) 22.60 55.69 70.06 77.01 81.30 84.36 65.17 -
CPM + Single GM 22.58 55.78 70.14 77.05 81.34 84.41 65.21 0.04

CPM + Mixture of GMs 23.39 57.53 71.95 78.49 82.28 85.02 66.44 1.27
Rotaion + CPM 1 22.70 57.91 72.95 79.94 83.90 86.71 67.35 2.18
Rotaion + CPM 2 21.97 57.59 74.53 81.98 86.21 88.83 68.52 3.35

R-MGMN 23.67 60.12 76.28 83.14 86.91 89.47 69.93 4.76

Table 3.2: Numerical results for ablation study on CMU Panoptic Hand Dataset.

to CPM. An absolute improvement of 6.22 percent is observed at threshold σ = 0.03. In

average, the mPCK is improved by 4.76 percent. The experiment result on Large-scale 3D

dataset also validates the advantage of our model. At threshold of σ = 0.02, there is a 4.19

percent improvement in PCK.

The reason why the improvement on Large-scale 3D dataset is not as much as that on

the CMU Panoptic dataset, probably lies in the fact that annotation settings of these two

datasets are slightly different. In Large-scale 3D dataset, the center of the palm is considered

as the root keypoint instead of the wrist. This would cause the reference vector v1 in

Eq. (3.23) to be relatively short, which in turn would cause the calculated rotation degree

to be prone to erroneous when noise exists.

Qualitive results are shown in Fig. 5.3. Images in the top row are the predicted results by
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Figure 3.7: Qualitative results. First row: CPM. Second row: our model.

CPM, while the bottom row corresponds to the prediction of our model. The results show

that our proposed R-MGNM could greatly reinforce the keypoints consistency, and generate

much more reasonable predictions than CPM.

Our model succeed to predict well even if the hand is severely occluded, as in the 4-th column

in Fig. 5.3. In this example, half of the right hand is occluded by the left hand. The CPM

fails to recover many of the keypoints. However, our R-MGMN correctly recovers the index

finger and thumb, even they are totally occluded.

3.5.3 Ablation study

To understand the proposed model, ablation study is also performed. Several experiments

are conducted as follows.

• CPM+Single GM. In this experiment, we only keep the unary branch and one single

graphical model from the R-MGMN. Both the rotation net and the soft classifier are

removed.

• CPM+Mixture of GMs. The rotation net is removed from the R-MGMN.

• Rotaion+CPM1. Only keep the rotation net and the unary branch, jointly trained

using the loss function in Eq. (3.25).
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• Rotaion+CPM2. First train the rotation net, then jointly the train the rotation net

and the unary branch.

All of the above experiments support end-to-end training. Numerical results are given in

Table 3.2. As indicated by the results, adding a single graphical model on top of CPM has

very little effect on the PCK performance. By adding a mixture of graphical models, there

is an improvement of 1.28 percent in mPCK. Properly tuned, the rotation net would help

improve the performance by 3.35 percent. By integrating the rotation net and the mixture of

graphical models together into our R-MGMN, final improvement of 4.76 percent is achieved.

3.6 Conclusion

A new architecture called Rotation-invariant Mixed Graphical Model Network (R-MGMN)

is proposed in this chapter. The R-MGMN combines the graphical model and deep convo-

lutional neural network in a new way, where a pool of graphical models could be selected

softly depending on input image. The R-MGMN could be trained end-to-end. Experiment

results validate that the proposed R-MGMN outperforms the widely used CPM algorithm

on two public datasets. Ablation study is also performed to see the functionality of each

part of the R-MGMN model.
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Chapter 4

Adaptive Graphical Model Network

In this chapter, we propose a new architecture called Adaptive Graphical Model Network

(AGMN) to tackle the challenging task of 2D hand pose estimation from a monocular RGB

image. The AGMN consists of two branches of deep convolutional neural networks (DCNN)

for calculating unary and pairwise potential functions, followed by a graphical model in-

ference module for integrating unary and pairwise potentials. Unlike existing architectures

proposed to combine DCNN with graphical models, our AGMN is novel in that the param-

eters of its graphical model are adaptive to individual input images. Experiments show that

our approach outperforms state-of-the-art methods used in 2D hand keypoints estimation

by a notable margin on two public datasets.

4.1 Introduction

Understanding human hand pose is a critical task for many real world AI applications, such

as human-computer interaction, augmented reality and virtual reality. However, hand pose

estimation remains very challenging because the hand is highly articulated and dexterous,
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and hand pose estimation suffers severely from self-occlusion. An intuitive approach is to

resort to multi-view RGB cameras [96, 48], which unfortunately requires expensive hardware

and strict environment configurations. For practical daily applications, many researchers

have also explored the problem under monocular RGB [139, 78, 7] or RGB-Depth [134, 3,

112] scenarios. Solving 3D pose estimation problem [139, 7] often relies on 2D hand pose

estimation, making 2D hand pose estimation itself an important task. In this paper, we

focus on the task of 2D hand pose estimation from a monocular RGB image.

The advent of Deep Convolutional Neural Networks (DCNNs) has enabled this field to make

big progress in recent years. For example, the Convolutional Pose Machine (CPM) [124]

is one of the most successful DCNNs that have been applied to 2D hand pose estimation

[96], although it was originally proposed for the task of human pose estimation. However,

despite the fact that DCNNs like CPM have the power to learn good feature representations,

they often fail to learn geometric constraints among joints, resulting in joint inconsistency

in the final prediction as observed in human pose estimation tasks [99, 50]. For 2D hand

pose estimation, the situation could be even worse, since there are more articulations and

self-occlusion is severer.

To model the relationships among joints, several studies have also explored the possibility

of combining DCNN and the Graphical Model (GM) in pose estimation tasks. Existing

methods [107, 19, 132, 99] all impose a self-independent GM on top of the score maps

regressed by DCNNs. The parameters of the GM are learned during end-to-end training,

then these parameters are fixed during prediction.

In this paper, we propose the Adaptive Graphical Model Network (AGMN), which is a brand

new framework for combining DCNNs and GM. By ”adaptive”, we mean that the parameters

of the GM should be able to adapt to different input images, instead of being fixed after

training procedure. We argue that a hand in the shape of a fist and a hand which is widely

open should have different spacial constraints among hand keypoints. Hands from different
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views should also have different geometric models. The adaptivity of the GM is achieved by

setting the parameters of the GM to be the output of a DCNN whose input is the image.

Another DCNN is used to regress score maps of each hand joint location. Then the regressed

score maps, which are treated as unary potential functions, are fed into the GM module.

Final score maps are inferred by the GM using techniques like message passing. The whole

AGMN architecture could be trained end-to-end.

We show the efficiency of our proposed framework on two public datasets: the CMU Panoptic

Hand Dataset [96] and the Large-scale Multiview 3D Hand Pose Dataset[30]. Our approach

outperforms the popularly used algorithm CPM by a noticeable margin on both datasets.

Qualitative results show our model could alleviate geometric inconsistency among predicted

hand keypoints significantly when severe occlusion exists.

The main contributions of this work are:

• We propose a novel framework integrating DCNNs and GM, making GM adaptive to

different input images. In our proposed AGMN, parameters of the GM depends on

individual input images directly, which distinguishes AGMN from existing architectures

that also combine CNNs and GM.

• By implementing the message passing algorithm as a sequence of 2D convolutions, the

inference is performed efficiently and the AGMN could be trained end-to-end.

• Our AGMN could reduce the inconsistency and ambiguity of hand keypoints signif-

icantly in scenarios of severe occlusion, as shown by experiments on two real world

hand pose datasets.
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4.2 Related Work

Human pose estimation. Research on hand pose estimation has benefited from the

progress in the study of human pose estimation. On one hand, DCNNs have been suc-

cessfully applied to human pose estimation [9, 40, 28] in recent years. The DCNN-based

algorithms are typically equipped with well crafted deep architectures [98, 41] and/or multi-

stage training technique[124, 75]. Since DCNNs have large receptive fields, they could learn

salient and expressive feature representations. However, DCNNs could only capture struc-

tural constraints among body parts implicitly, resulting in limited performance in practice

when severe occlusion and cluttering exist [99, 50]. Some approaches try to learn extra

tasks (e.g., offset fields [79], compound heatmaps [50]) besides heatmaps of joint positions,

with the purpose of providing more additional structural information. Nevertheless, these

methods still could not fully exploit structural information.

On the other hand, graphical model has also been exploited in solving human pose estimation

tasks [19]. By using GM, one can model spatial constraints among body parts explicitly.

Recently, there is also a trend to combine DCNN and GM for pose estimation [107, 19, 132].

The combination of DCNNs and GM has been studied in several scenarios, i.e., human pose

estimation in a vedio[99], multi-person pose estimation [82, 43], multi-person pose tracking

[42, 44]. However, graphical models in all of these approaches are not adaptive to individual

input images.

Hand pose estimation. The 3D hand pose estimation is a challenging task due to strong

articulation and heavy self-occlusion of hands. Some researcher try to solve the task effi-

ciently with the help of multi-view RGB cameras [96, 48]. However, this kind of approaches

are impractical for daily applications as they require expensive hardware and strict envi-

ronment configurations. To circumvent this limitation, other studies have been focused on

depth-based solutions [134, 3, 112] where RGB-D cameras are used. Due to the ubiquitous-
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ness of regular RGB cameras, researchers also have a great interest in solving hand pose

estimation from monocular RGB images [139, 78, 7].

2D hand pose estimation plays an important role in the task of estimating 3D hand pose,

since 3D estimation is often inferred from 2D estimation[139, 78, 7]. Current algorithms on

2D hand pose estimation often directly deploy DCNN-based human pose estimators. Among

a variety of DCNN-based models, CPM is commonly used in 2D hand pose estimation[96,

139, 78, 7], yielding state-of-art performance. Thus, in this work, we choose CPM as the

baseline for comparison with our proposed model.

4.3 Method

4.3.1 Basic Framework of Adaptive Graphical Model Network

As shown in Fig. 4.1 (a), due to lack of explicit structural information, CPM fails when the

hand is occluded severely, resulting in hand keypoints’ spatial inconsistency. To alleviate this

problem, we propose the novel adaptive graphical model network (AGMN), the efficiency of

which could be seen from the right image of Fig. 4.1 (a). The model contains two DCNN

branches, the unary branch and the pairwise branch, and a graphical model inference module,

as depicted in Fig. 4.1 (b). The unary branch would output intermediate score maps of K

hand keypoints. Any existing DCNN-based pose estimator that regresses score maps could

be used as the unary branch. The pairwise branch produces parameters that characterize

pairwise spatial constraints among K hand keypoints. These parameters would be later used

in the graphical model. It is the pairwise branch that makes our model distinguish from

existing models [107, 19, 132, 99] which also try to combine graphical model with DCNNs.

In our approach, the parameters of the graphical model are not independent parameters.

Instead, they are closely coupled with the input image via a DCNN and they are adaptive
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to different input images. In approaches from [107, 19, 132, 99], once the graphical model

parameters are learned, they would be fixed and used for different input images in future

prediction.

Module of 
Graphical 

Model
Image

Pairwise Branch DCNN, ΘpΘp

Unary Branch DCNN, ΘuΘu

as unary function

as parameters

U(I; Θu)U(I; Θu), |V| channels

P(I; Θp)P(I; Θp), |EE| channels

(a)

(b)

Hand pose predicted by CPM Hand pose predicted by AGMN

Figure 4.1: Basic flow diagram of adaptive graphical model network.

The hand pose estimation problem could be formulated by using a graph. Let G = (V, E)

denote a graph with a vetex set V and an edge set E , where V = {v1, v2, · · · , vK} corresponds

to the set of hand keypoints and E ⊆ V ×V is the set of edges between neighboring keypoints.

Let the discrete variable xi ∈ R2 denote the 2D position of the keypoint associated with vi.

The joint probability distribution of a hand pose configuration is given by

p(X|I; Θ) =
1

Z

∏

i

ϕi(xi|I; Θu)
∏

(i,j)∈E

φi,j(xi, xj|I; Θp), (4.1)

where X = {x1, x2, · · · , xK} represents positions of all the keypoints, I stands for the input

image and Z is the partition function. The whole set of AGMN’s prameters Θ consists of

two components, parameters for the unary branch and that for the pairwise branch, i.e.,

Θ = {Θu,Θp}.

40



Unary Terms. The non-negative term ϕi(xi|I; Θu) ∈ R is the local confidence of the

appearance of the i-th keypoint at location xi. Let U(I; Θu) ∈ R|V |×hu×wu denote the output

of the unary branch in Fig. 4.2, where |V | is the cardinality of the set V , wu and hu are the

width and height of the output heatmap. We define

ϕi(xi|I; Θu) = max
(
0,U i

xi
(I; Θu)

)
, (4.2)

where U i
xi

(I; Θu) ∈ R is the value of the i-th channel of U(I; Θu) evaluated at location xi.

Pairwise Terms. The term φ(xi, xj|I,Θp) ∈ R represents the pairwise potential function

between the i-th and j-th keypoints, if (i, j) forms an edge in the graphical model. It encodes

spatial constraints between two neighboring keypoints. The pairwise term is given by

φi,j(xi, xj|I; Θp) = F(xi, xj; θ
(i,j)), (4.3)

θ(i,j) = max(0,P(i,j)(I; Θp)), (4.4)

where P(I; Θp) ∈ R|E|×hp×wp is the output of the pairwise branch in Fig. 4.2, P(i,j)(I; Θp) ∈

Rhp×wp is a channel of P(I; Θp) corresponding to the pair of the i-th and j-th keypoints.

Function F (·) is defined as F(xi, xj; θ
(i,j)) = θ

(i,j)
xi−xj

, which is an entry of the matrix θ(i,j) ∈

Rhp×wp , indexed by the relative position of the i-th keypoint with respect to the j-th keypoint.

One can also design θ(i,j) as a set of parameters of a spring model , and then define F(·) as

a quadratic function as in [19, 132, 99] . In this work we follow the idea in [107] and design

θ(i,j) to be a 2D matrix, which has a much larger parameter space.

Inference. The final score maps generated by AGMN are the marginal distributions of

p(X|I; Θ) given in Eq.(5.1). The marginals are defined as

pi(xi|I; Θ) =
∑

V \xi

p(X|I; Θ), (4.5)
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which is computed in the module of graphical model. Finally, the predicted position of hand

keypoint i is obtained by maximizing its marginal probability as

x∗i = argmax
xi

pi(xi|I; Θ). (4.6)

In summary, the complete parameters in the AGMN model is given by Θ = {Θu,Θp},

consisting the parameters from the unary branch and pairwise branch.

4.3.2 Detailed Structure of AGMN
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Figure 4.2: More detailed inllustration of adaptive graphical model network.

The detailed structure of AGMN is shown in Fig. 4.2.

Unary branch. The structure of the unary branch is the same as the CPM detection ar-

chitecture used in [96]. A pre-initialized VGG-19 network [98] up to conv4 4 and additional

convolutions are used to produce the 128-channel features, then several prediction stages fol-

lows. The output of the unary branch is a 21-channel score map, each channel corresponding

to one keypoint of the hand.

Pairwise branch. The pairwise branch follows the similar structure of the unary branch.

The only difference is that the pairwise branch outputs a 40-channel kernel instead of a 21-
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channel score map. This 40-channel kernel would later be utilized in the module of graphical

model. The reason why the channel of this kernel is designed to be 40 would be clear after we

talk about message passing later. There are also some information flowing from the unary

branch to the pairwise branch, as indicated by the arrows between the unary branch and

pairwise branch in Fig. 4.2. We found that adding such information flows would benefit the

performance.

Inference. Message Passing. Sum-product algorithm is widely used for efficient calculation

of marginals in a graphical model. Vertices receive messages from and send messages to their

neighbors. The sum-product algorithm updates the message sent from hand keypoint i to

keypoint j as follows:

mij(xj) =
∑

xi

φi,j(xi, xj)ϕi(xi)
∏

k∈Nbd(i)nj

mki(xi). (4.7)

Let Mij denote the complete message sent from keypoint i to j, then Mij ∈ Rhu×wu , since

since xj could take values from a set of grid points which has the size of hu × wu. After

several iterations or convergence, the marginal probabilities are approximated by

pi(xi) ≈
1

Z ′ϕi(xi)
∏

k∈Nbd(i)

mki(xi), (4.8)

where Z ′ is just a normalization term.

Tree Structured Graphical Model. In our implemented AGMN, a tree-structured graphical

model is used. One advantage of tree-structured model is that exact marginal probability in

Eq.(4.8) could be obtained by belief propagation. The tree-structured hand model is shown

in Fig. 4.3. By passing messages from leaves to root (upwards) and then from root to leaves

(downwards), the exact marginal can be reached. The numbers along side each arrow in

Fig. 4.3 indicates the schedule of massage updates. In total, we only need pass messages 40
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times to obtain exact marginals.
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Message updates as convolution operations. When implementing Eq. (4.7), one way to avoid

the for loop in the summation is to use matrix product. However, if we write φi,j(xi, xj)

compactly in to a matrix, the dimension of this matrix is huge. Since xi and xj could both

take hu×wu different values, The matrix storing φi,j(xi, xj) would have the size of (hu×wu)2.

To save memories during the inference, we resort to convolution operations when performing

message passing.

The message update formula in Eq. (4.7) could be rewrittern as

mij(xj) =
∑

xi

φi,j(xi, xj)hi(xi), (4.9)

hi(xi) = ϕi(xi)
∏

k∈Nbd(i)nj

mki(xi). (4.10)

We could rewrite Eq. (4.9)in a form of 2D convolution, if (i, j) ∈ E ,

Mij = θi,j ∗Hi, Mji =
(
θi,j

)T ∗Hj, (4.11)

where Mij ∈ Rhu×wu , θi,j ∈ Rhp×wp , θ ∈ R|E|×hp×wp , Hi ∈ Rhu×wu . The matrix Hi is the

44



compact matrix formed by values of hi(xi). Appropriate zeroing padding is required on Hi

to make the shape of Mij is the same as that of Hi. The similar idea is also used in [107].

Kernel θi,j could be interpreted as the probability of where keypoint j would be with respect

to keypoinjt i, and it encodes the information of relative positions between the keypoint i

and j. In our implementation in Fig. 4.2, to avoid the transpose operation in Eq.(4.11), we

let the pairwise branch produce an output Q ∈ R2|E|×hp×wp which has 2× |E| = 40 channels.

4.4 Leaning

Since there are two branches of DCNN in the proposed AGMN, we utilize a 3-stage training

strategy. Firstly, the unary branch is trained. Then, the pairwise branch is trained with the

unary branch fixed. Finally, the whole AGMN is finetuned end-to-end.

Train unary branch. The unary branch is trained alone first. As in [124, 96], intermediate

supervision is used during the training. Each stage of the unary branch is trained to repeat-

edly produce the score maps (or belief maps) for the locations of each of the hand keypoints.

The ground truth score map of keypoint i, denoted as S∗
i ∈ Rhu×wu , is created by putting a

Gaussian peak at its ground truth location. The cost function at each stage t of the unary

branch is defined by

ft =
21∑

k=1

||St
k − S∗

k ||2F , (4.12)

where St
k is the score map of keypoint k generated by the t-th stage in the unary branch.

Notation || · ||F represents the Frobenius norm which is defined as the square root of the sum

of the squares of its elements. If we have T stages, then ST
k = Uk(I; Θu) in Eq.(4.2). By

adding up the cost functions at each stage, the final loss function of the unary branch is

Lunary =
T∑

t=1

ft. (4.13)
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Train pairwise branch. The pairwise branch is trained with the help of the unary branch,

since there are some information flowing from the unary branch to the pairwise branch as

shown in Fig. 4.2. Parameters of the unary branch are frozen during this training phase.

The goal of the pairwise branch is to learn relative positions between hand keypoints. The

pairwise branch produces an output Q of 40 channels, with each channel corresponding to

one directed edge in the message passing schedule. The ideal output (ground truth) Q∗

of the pairwise branch is computed from relative positions of each pair of neighboring hand

keypoints which share a common edge in the tree structure. For example, if the k-th directed

edge (right side of Fig. 4.3) incidents on two hand keypoints i and j, say starting from i

to j, the relative position of these two keypoints is computed as rk = lj − li, where li and

lj are length-2 vectors representing the ground truth positions of the keypoints. Then, the

ground truth of the k-th channel of Q∗, i.e., Q∗
k, is created by putting a Gaussian peak at

the location which is rk away from the center of the 2D matrix.

We use a similar loss function as that in training the unary branch

Lpairwise =
T∑

t=1

40∑

k=1

||Qt
k −Q∗

k||2F . (4.14)

Fine tune the whole AGMN. Since the final outputs of the AGMN are marginal probabil-

ities, the ground truth for the final score map of keypoint k, FS∗
k is set to be the normalized

version of S∗
k used in Eq.(4.12). The loss function defined by the final score maps is given by

Llast =
21∑

k=1

||FSk − FS∗
k ||2F , (4.15)

where FSk is the k-th channel of the output of the AGMN.

The whole AGMN is fine tuned with a loss function which is a weighted sum of loss functions
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from the unary branch, pariwise branch and module of graphical model as following

L = α1L
unary + α2L

pairwise + α3L
last. (4.16)

4.5 Experiments

In this section, we demonstrate the performance of our proposed algorithm on two real-world

hand pose datasets. Comparative analysis is also carried out.

4.5.1 Experimental settings

Datasets. We evaluate our model on two public datasets, the CMU Panoptic Hand Dataset

(referred to as “CMU Panoptic”)[96], and the Large-scale Multiview 3D Hand Pose Dataset

(referred to as “Large-scale 3D”) [30]. (i) The CMU Panoptic dataset contains 14817 anno-

tations of right hands in images of persons from Panoptic Studio. Since our focus is on hand

pose estimation other than hand detection, we cropped image patches of annotated hands

off the original images using a square bounding box which is 2.2 times the size of the hand.

Then, we randomly split the whole dataset into training set (80%), validation set (10%) and

test set (10%). (ii) The Large-scale 3D dataset contains 82760 images in total. We follow

the same preprocessing procedure on this dataset and take care of the keypoints ordering.

Although this is a 3D dataset, it provides an interface to get 2D annotations by performing

projection. The whole Large-scale 3D dataset is split it into training set (60000 images),

validation set (10000 images) and test set (12760 images).

Evaluation metric. We consider the ”normalized” Probability of Correct Keypoint (PCK)

metric from [96]: the probability that a predicted keypoint is within a distance threshold σ

of its true location. We use a normalized threshold σ which ranges from 0 to 1, with respect
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to the size of hand bounding box.

All images are resized to 368 × 368 before fed into the AGMN, yielding a final score map

of size 46 × 46 for each keypoint. Also, after being scaled to [0,1], all the images are then

normalized using mean = (0,485, 0,456, 0,406) and std = (0,229, 0,224, 0,225). During

training, the batch size is set to 32. The gaussian peaks used to generate ground truth

during training all have standard deviation of 1. Learning rate is set to 1e-4 when training

the unary branch and pairwise branch. When finetuning the whole AGMN, learning rate is

set to 1e-5 and the coefficients in Eq.(4.16) are set to α1 = 1, α2 = 0.1, α3 = 0.1.

4.5.2 Results

Fig. 4.4 shows our model’s performance on above mentioned datasets. Detailed numerical

results are summarized in Table. 4.1. It is seen that our model outperforms CPM consistently.

On CMU Panoptic dataset, by training the unary branch and pairwise branch separately,

we see an absolute PCK improvement of 2.12% at threshold σ = 0.05. A final improvement

of 3.45% is obtained after finetuning the unified AGMN. On Large-scale 3D dataset, our

AGMN obtains its highest improvement 3.27% at thresholds σ = 0.01. The authors in [107]

stated that “Spatial-Model has little impact on accuracy for low radii threshold”. However,

based on the results in Fig. 4.4(b), it is observed that our adapitve spatial model has the

power of increasing accuracy for low radii threshold.

The reason why AGMN achieves highest improvement on CMU Panoptic dataset at higher

threshold σ than that of Large-scale 3D dataset, probably lies in the fact that CMU Panoptic

dataset is a much harder dataset where a lot more occlusions exist.

We also conducted an experiment where the ground truth of the relative positions among

hand keypoints (Q∗ in Eq.(4.14)) are given to the AGMN, with pre-trained unary branch.
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Figure 4.4: Model performance.
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The result of this experiment is actually the upper bound of our AGMN’s performance given

specific unary branch. The result is drawn as the blue dashed lines in Fig. 4.4.

Threshold of PCK, σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
CMU Panoptic Hand Dataset

CMP Baseline (%) 22.88 58.10 73.48 80.45 84.27 86.88 88.91 90.42 91.61 92.61
AGMN Sep. Trained 21.52 56.73 73.75 82.06 86.39 89.10 91.00 92.35 93.63 94.50

AGMN Finetuned 23.90 60.26 76.21 83.70 87.72 90.27 91.97 93.23 94.30 95.20
Improvement 1.02 2.16 2.73 3.25 3.45 3.39 3.06 2.81 2.69 2.59

Large-scale Multiview 3D Hand Pose Dataset
CMP Baseline (%) 38.11 82.48 92.37 95.50 96.97 97.75 98.24 98.58 98.84 99.02

AGMN Sep. Trained 40.22 84.94 93.57 96.29 97.53 98.24 98.68 98.97 99.17 99.34
AGMN Finetuned 41.38 85.67 93.96 96.61 97.77 98.42 98.82 99.10 99.29 99.43

Improvement 3.27 3.19 1.59 1.11 0.80 0.67 0.58 0.52 0.45 0.41

Table 4.1: Detailed numerical results.

Examples in Fig. 4.5 show that our AGMN could greatly reinforce the keypoints consistency

and reduce ambiguities in prediction. Note that the first keypoint in Large-scale 3D dataset

is the center of the palm.

4.6 Conclusion

This chapter provides a new direction on how deep convolutional neural networks can be

combined and integrated with graphical models. We propose an adaptive framework called

AGMN for hand pose estimation, which contains two branches of DCNN, one for regressing

the score maps of hand keypoint positions, the other for regressing the parameters of graph-

ical model, followed by a graphical model for inferring the final score maps through message

passing. Experiment results show that the proposed AGMN outperforms the commonly used

CPM algorithm on two public hand pose datasets. The proposed framework is general and

50



Figure 4.5: Predicted hand keypoint positions. For each pair of images, the top image shows
the result of CPM and the bottom image shows that of AGMN.

can also be applied to other deep learning applications where performance can benefit by

considering structural constraints.
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Chapter 5

SIA-GCN: A Spatial Information

Aware Graph Neural Network with

2D Convolutions

Graph Neural Networks (GNNs) generalize neural networks from applications on regular

structures to applications on arbitrary graphs, and have shown success in many application

domains such as computer vision, social networks and chemistry. In this paper, we extend

GNNs along two directions: a) allowing features at each node to be represented by 2D spatial

confidence maps instead of 1D vectors; and b) proposing an efficient operation to integrate

information from neighboring nodes through 2D convolutions with different learnable kernels

at each edge. The proposed SIA-GCN can efficiently extract spatial information from 2D

maps at each node and propagate them through graph convolution. By associating each

edge with a designated convolution kernel, the SIA-GCN could capture different spatial

relationships for different pairs of neighboring nodes. We demonstrate the utility of SIA-GCN

on the task of estimating hand keypoints from single-frame images, where the nodes represent

the 2D coordinate heatmaps of keypoints and the edges denote the kinetic relationships
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between keypoints. Experiments on multiple datasets show that SIA-GCN provides a flexible

and yet powerful framework to account for structural constraints between keypoints, and can

achieve state-of-the-art performance on the task of hand pose estimation.

5.1 Introduction

Hand pose estimation is a long standing research area in computer vision, given its vast

potential applications in computer interaction, augmented reality, virtual reality and so

on [25]. It aims to infer 2D or 3D positions of hand keypoints from a single input image

or a sequence of images, which could possibly take the form of RGB, RGB-D or grayscale.

Although 3D hand pose estimation is drawing increasing attention in the research com-

munity [119, 68, 128, 111, 134, 33], 2D hand pose estimation still remains a valuable and

challenging problem [96, 116, 53]. A plentiful of 3D hand pose estimation algorithms rely on

their 2D counterparts [7, 139], attempting to lift 2D predictions to 3D space. In this paper,

we investigate the problem of 2D handpose estimation from single RGB image.

The progress in hand pose estimation research has been boosted greatly by the invention of

deep Convolutional Neural Networks (CNNs). Deep CNN models like Convolutional Pose

Machine [124] and Stacked Hourglass [75] have been successfully applied to 2D hand pose

estimation, though they are originally proposed to solve the task of human pose estimation.

Some methods [54, 53, 19] also integrate deep CNNs with probabilistic graphical model to

harvest both the powerful representation ability of deep CNNs and the capability of explicitly

expressing spatial relationships attributed to graphical model.

In contrast to CNN, graph neural network has the ability to handle irregular structured data.

The joints of a human body, and keypoints of a hand can be conveniently considered as

irregular graphs, giving possibilities of applying Graph Convolutional Network (GCN) [52]
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on human/hand pose estimation tasks. However, in the vanilla GCN [52], all the nodes

share the same one-hop propagation weight matrix, which makes it unready to be applied to

pose estimation task because different human body joints and bones should have different

semantics. Authors in [26, 136, 8] have proposed different variants of the vanilla GCN

from [52] for the purpose of human or hand pose estimation. However, all these methods

take as input a one dimensional vector for each node, and the node feature at each layer is

always a one dimensional vector. Thus, they are not ready to process 2D confidence map.

Although, in [26, 136, 8], modifications are made to vanilla GCN, they still do not allow full

independence among the edges.

In this paper we propose the Spatial Information Aware Graph Neural Network with 2D

convolutions (SIA-GCN). In SIA-GCN, the feature of each node is a two dimensional matrix,

and the information propagation to neighboring nodes are carried out via 2D convolutions

along each edge. By using 2D convolutions instead of flattening the 2D feature map to a

1D vector and then performing linear multiplications, the spatial information encoded in

the feature map is reserved and appropriately exploited. We also propose to use different

2D convolutional kernels on different edges, aiming to capture different spatial relationships

for different pairs of neighboring nodes. The SIA-GCN is very flexible and could be easily

combined with off-the-shelf 2D pose estimators. In this work, we demonstrate the efficacy

of SIA-GCN on 2D hand pose estimation. For this application, the 2D feature maps at the

nodes are actually the confidence maps of the hand keypoint positions. With a designated

matrix for each edge, the SIA-GCN has the ability to capture various spatial relationships

between different pairs of hand keypoints.

Our main contributions are threefold:

• We propose the novel SIA-GCN which can process 2D confidence maps for each node

efficiently and effectively, by integrating graph neural networks and 2D convolutions.

Using 2D convolutions, our SIA-GCN can exploit and harvest the spatial information
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provided in the 2D feature maps.

• By assigning different convolutional kernels on different edges, the SIA-GCN has the

property of full edge-awareness. Distinct spatial relationships can be learned on differ-

ent edges.

• We deploy SIA-GCN in the task of hand pose estimation. Utilizing SIA-GCN, the

constructed neural network can achieve state-of-the-art performance.

5.2 Related Work

There exists a vast amount of research focusing on topics of human/hand pose estimation [96,

119, 68, 128, 111, 122, 134, 3, 112, 33, 74, 31] and graph neural networks [96, 26, 136, 8]. In

the related work, we focus on 2D hand pose estimation from single RGB images and graph

convolutional network [96]’s applications to pose estimation tasks.

2D hand pose estimation. Studies of RGB image based 2D hand pose estimation has long

benefited from that of human pose estimation, where deep Convolutional Neural Networks

(CNNs) have enjoyed great success [108, 124, 75, 126, 21, 104]. Among these deep CNN

models, Convolutional Pose Machines [124] and Stacked Hourglass [75] are commonly used

in various RGB-based 2D hand pose estimation methods [96, 54, 53, 20, 116]. Compared

with deep CNNs, Graphical Model (GM) has also played a significant role in solving the

pose estimation task. GM has the power of modeling spatial constraints among the joints

explicitly. Recently, several works in pose estimation combine GM and neural network to

fully exploit the structural information [107, 19, 99, 132, 53, 54]. Traditionally, GM with fixed

parameters [107, 99, 19] are applied to the pose estimation task, while the most recent work

in [53, 54] propose to adopt GM with adaptive parameters conditioning on input images.

Although all take advantage of structural information, our proposed method is based on

graph convolutional network while these previous works [53, 54] are based on graphical
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models.

Graph convolutional network. Graph Convolutional Network (GCN), which generalizes

deep CNNs to graph structured data, have attracted increasing attention in recent years.

One main research direction is to define graph convolutions from the spectral perspective [94],

while the other works on the spatial domain [52]. For a comprehensive survey on GCN, we

refer readers to [125]. The most related works to ours are [26, 136, 8], in which variants of

spatial GCNs have been proposed and applied to human/hand pose estimation tasks in the

computer vision field. In the following, we discuss the key differences between our SIA-GCN

and those in [26, 136, 8].

In [8], the authors have proposed to classify neighboring nodes according to their semantic

meanings and use different kernels for different neighboring nodes. The purpose of their

proposed GCN is to regress 3D position vectors from 2D position vectors, and the input to

the GCN for each node is a one dimensional R2 vector, representing predicted 2D position

of a corresponding body joint. However, our proposed SIA-GCN aims to handle two dimen-

sional confidence maps for each node. The confidence map inherently contains much more

information than the two-element position vector. Our goal is to refine final 2D predictions,

other than lifting 2D predictions to 3D space. Besides, instead of classifying nodes into

different classes, we treat every edge independently and attach a designate weight kernel to

each edge.

In [26], the authors directly adopt the propagation rule from [52] with the modification

that, instead of using a predefined adjacency matrix, they have proposed to use an adap-

tive adjacency matrix which could be learned from data. The feature for each node is a

one dimensional vector. Our method differs from [26] in that edge-dependent weights are

considered explicitly and our SIA-GCN works on 2D confidence maps for each node.

In [136], the proposed Semantic Graph Convolution (SemGConv) adds a learnable weighting
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matrix to conventional graph convolutions from [52]. The weight matrix serves as a weighting

mask on the edges of a node when information aggregation is performed. The SemGConv

is inherited from ST-GCN [129], but is equipped with additional important features such as

softmax non-linearity and channel wise masks. The weighting mask adds a scalar importance

weight (or a vector if it’s channel wise) to each edge. However, in SIA-GCN, we directly

attach to each edge a fully independent convolution matrix. Besides, our SIA-GCN works

on 2D node features with spatial information awareness.

5.3 Methodology

In this section, we present the SIA-GCN, and its application to hand pose estimation. We

refer to the resulted pose estimator as SiaPose, which is illustrated in Fig 5.1.
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Figure 5.1: System diagram of the SiaPose, utilizing SIA-GCN.

The SiaPose takes as input a RGB image, to which a preliminary pose estimator is ap-

plied. The preliminary pose estimator could be any 2D pose estimator, such as the famous

Convolutional Pose Machine [124] and Stacked Hourglass [75], which would output a set of
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confidence maps of keypoint positions. Then, at the top branch, the confidence maps are

fed into a block of multi-head SIA-GCNs. Each SIA-GCN processes a copy of the confidence

maps parallelly and independently. Meanwhile at the bottom branch, the input image goes

through a pointer network, which gives a weight vector, indicating which head is impor-

tant in the multi-head SIA-GCNs. Finally, at the information fusion stage, confidence maps

output from the multi-head SIA-GCNs are aggregated according to the weight vector.

In the following subsections, we revisit the graph convolutional network first, and discuss

the motivation for our SIA-GCN. Then, we present a compact formulation of our proposed

edge-aware graph convolutional layers in SIA-GCN, and demonstrate how to implement it

efficiently using 2D convolutional operations. Finally, we describe the training procedure of

the SiaPose.

5.3.1 Revisiting Graph Convolutional Network

The Graph Convolutional Network (GCN) proposed in [52] has enjoyed great success on a

variety of applications since its advent. Given a graph G = (V , E) with N nodes vi ∈ V ,

edges (vi, vj) ∈ E , adjacency matrix A ∈ RN×N , and a degree matrix D ∈ RN×N with

Dii =
∑

j Aij, the layer-wise propagation rule is characterized by the following equation

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
, (5.1)

where Ã = A+IN is the adjacency matrix of the undirected graph G with self-connections [52].

IN is the identity matrix, D̃ii =
∑

j Ãij. H
(l) ∈ RN×M is the matrix of activations in the lth

layer, or input feature matrix of the lth layer. The parameter W (l) is the trainable weight

matrix of layer l.

In the scenario of human and hand pose estimation, it is well studied that probabilistic
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graphical models could be deployed to enhance structural consistency [107, 54, 19]. The

graphical model could take in some preliminarily generated 2D confidence maps of each

body joint or hand points. These confidence maps are usually considered as the unary

potential functions by the graphical model. Then the graphical model could impose some

learned pairwise potential functions on the initial confidence maps, thus enforcing spatial

consistency of the body joints/keypoints. Can we also apply GCN to the confidence maps

and then enhance spatial consistency?

The answer is positive, but it’s not trivial. To apply the above GCN to pose estimation,

some modifications are needed due to the dimensionality. In Eq. (5.1), the activation matrix

H(l) ∈ RN×M is a two dimensional matrix, corresponding to N nodes and each node is

associated with a 1-d feature of size M . However, for the case of 2D pose estimation,

each graph node (usually corresponding to a joint or keypoint) can be associated with a

two dimensional confidence map. This discrepancy could be handled by flattening the two

dimensional confidence map to a single long vector and then perform layer propagation

according to Eq. (5.1). However, this would result in very large feature size, significantly

increase the computational complexity (imagine that a 64 × 64 matrix would result in a

one dimensional vector of size 4069). Besides, by flattening the confidence map, spatial

information encoded in the confidence map would be corrupted. Thus, we propose to use

2D convolutional operations directly on 2D confidence maps when propagating information

along the edges.

Moreover, in Eq. (5.1), since all the node share the same weight matrix W (l) and information

aggregation is only controlled by the adjacency relationships between nodes, it would be

difficult for the propagation rule in Eq. (5.1) to characterize different positional relationships

for different pairs of neighboring joints. For example, the positional information propagation

between two neighboring thumb joints should be different from that between the neighboring

joints on the middle finger. One simple reason is that the bones from the thumb and middle
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finger actually have different lengths.

5.3.2 SIA-GCN

To resolve the above mentioned concerns, we propose the spatial information aware graph

neural network with 2D convolutions (SIA-GCN), where each edge of the graph is associated

with an individual learnable 2D convolutional kernel. A toy example of a graph consisting

of four nodes is shown in Fig. 5.2, where green matrices represent 2D features (heatmaps)

at each node and red matrices represent designated 2D kernels associated with each edge.

Figure 5.2: A simple illustration of SIA-GCN.

For the task of hand pose estimation, we could define a graph G = (V , E) where V =

{v1, v2, · · · vK} is the set of nodes corresponding to K hand keypoints, and E is the set of edges

encoding the neighboring relationships among the keypoints. Each node vi is associated with

a 2D confidence map Xi ∈ Rh×w, which encodes the positional information of ith keypoint.

We could stack all {Xi} for i = 1, 2, .., K in a 3D matrix, and denote it as X ∈ RK×h×w.

One important feature of our SIA-GCN is that each edge in E is associated with an individual

weight matrix or 2D convolutional kernal, Fj ∈ Rh′×w′
, j = 1, 2, · · · , |E|. Again, we compact
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all {Fj} into a single matrix F ∈ R|E|×h′×w′
, which is actually the set of learnable parameters

of the edge-aware graph convolutional layer. The information propagated from node i to node

j along edge ei,j is obtained by calculating the 2D convolution of Xi ⊛ Fei,j . Then, all the

information propagated into node i are aggregated according to the adjacency matrix. The

propagation rule could be presented compactly in matrix multiplications and convolutions

as

X(l+1) = σ
(
Â
(
(BX(l))⊛̃F (l)

))
, (5.2)

where the superscript l and l + 1 denote the lth layer and l + 1th layer respectively, ⊛̃ is the

channel-wise 2D convolution operator, and σ(·) is the non-linear activation function. The

matrix B ∈ R|E|×K is the broadcast matrix, which broadcasts node features to its outgoing

edges. Note that the matrix multiplication BX(l) results in a shape of |E| × h×w, whereas

originally the dimension of X(l) is K × h × w. In other words, the operation BX(l) simply

prepares the input along each edge for the following channel-wise convolution, (BX(l))⊛̃F (l).

Finally, the matrix Â ∈ RK×|E| is the aggregation matrix, which harvests all the information

from the incoming edges to the graph nodes.

It is worth pointing out that, in Eq. (5.2), only F (l) is the learnable parameter, while the

broadcast matrix B and the aggregation matrix Â are both determined and constructed

from the graph’s adjacency matrix A by Algorithm 1. In Algorithm 1, we assume the input

adjacency matrix A is already included with self connections.

5.3.3 SiaPose and its training procedure

With SIA-GCN, we propose the SiaPose for 2D hand pose estimation, as in Fig. 5.1. The

preliminary pose estimator could be any off-the-shelf 2D hand pose estimator. Multiple

heads of SIA-GCN would benefit capturing different positional informations due to different

hand shapes in the input images. Assume there are M heads in the multi-head SIA-GCNs,
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Algorithm 1 Broadcast and Aggregation Matrices Construction

1: procedure ConstructMatrices(A) ▷ Input A is the adjacency matrix

2: Find the number of directed edges, |E|, from A
3: Find the number of nodes, K, from A

4: Initialize ▷ Initialization for B and Â
5: B as a zero matrix of size |E| ×K
6: Â as a zero matrix of size K × |E|
7: e as a zero vector of size |E|
8: m = 1

9: for i in 1, 2, · · · , K do ▷ Calculate for B
10: for j in 1, 2, · · · , K do
11: if Aj,i == 1 then ▷ If j is the starting node of edge m
12: Bm,j = 1
13: e[m] = i ▷ Record the end node of edge m
14: m = m+ 1

15: for m in 1, 2, · · · , |E| do ▷ Calculate for Â
16: Âe[m],m = 1

17: Construct the diagonal degree matrix D, with Dii =
∑

j Âij.

18: Set Â = D−1Â ▷ Normalize Â

19: return B, Â

then, we could denote the output of the multi-head SIA-GCNs as Y ∈ RM×K×h×w and the

output at the mth SIA-GCN as Ym ∈ RK×h×w. The pointer network, whose input is the

image, is a regression network which generate a soft pointer vector w ∈ RM . The weight

vector w actually indicates the importance of the information generated at different heads.

Finally, at the information fusion stage, the aggregated confidence map is given by

Ȳ = w · Y =
M∑

m=1

wmYm, (5.3)

which is a weighted sum of Ym. The final predictions of the keypoint positions are obtained

by taking the argmax of Ȳ .

The training procedure of the SiaPose is simple and could be conducted in an end-to-end
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fashion. The total loss function is defined as

L = αL1 + L2 = α
T∑

t=1

K∑

k=1

∥∥St
k − Y ∗

k

∥∥2

F
+

K∑

k=1

∥∥Ȳk − Y ∗
k

∥∥2

F
. (5.4)

The first loss L1 is responsible for the output of the preliminary pose estimator, while the

second loss L2 is added at the final output. The preliminary pose estimator itself (e.g. CPM

and Stacked Hourglass) might consist of T multiple stages. The term St
k ∈ Rh×w is the

confidence map of kth keypoint generated by the tth stage of the preliminary pose estimator,

while Ȳ is the final confidence output of the SiaPose as in Eq.(5.3). Besides, Y ∗
k ∈ Rh×w is

the ground truth confidence map of kth keypoint, created by placing a Gaussian peak at its

ground truth position. The coefficient α serves as a balancing weight between the two loss

functions.

5.4 Experiments

Datasets. We evaluate our proposed method on three public hand pose datasets, the CMU

Panoptic Hand Dataset (Panoptic) [96], the MPII+NZSL Hand Dataset [96] and the Large-

scale Multiview 3D Hand Pose Dataset (MHP) [30]. For Panoptic (˜15k images) and MHP

(˜82k images), we follow the setting of [54] and randomly split all samples into training set

(70%), validation set (15%) and test set (15%). Since our contribution mainly focus on pose

estimation instead of detection, we crop square image patches of annotated hands off the

original images. A square bounding box which is 2.2 times the size of the hand is applied

for cropping as in [96, 54, 53].

Evaluation metrics. The Probability of Correct Keypoint (PCK) [96] is utilized as our

evaluation metric. In this paper, we use normalized threshold with respect to the size of

square bounding box. We report the performance under different thresholds, δ = {0.01, 0.02,
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0.03, 0.04, 0.05, 0.06}, and also their average (mPCK). More formally, for a single cropped

input image of size s× s, the PCK at δ can be defined as

PCK(δ) = N(δ)/K, (5.5)

where N(δ) is the number of predicted keypoints which are within an interval threshold δ · s

of its correct location and K is the total number of keypoints.

Implementation details. In the experiments, two baselines, i.e., six-staged Convolutional

Pose Machine (CPM) as in [96] and eight-staged Stacked Hourglass (SHG) are used as

preliminary pose estimators in our SiaPose. For the SIA-GCN, we use 5 edge-aware graph

convolutional layers defined in Eq. (5.2), which adopts a tree structured graph according

to the kinematic structure of the hand skeleton, adding self connections. The size of the

convolutional kernels in Eq. (5.2) is set to 45. ResNet-18 is used as the backbone of the

pointer network. The input image is resized to 368 × 368 and 256 × 256 for the cases of

CPM and SHG, respectively. Images are then scaled to [0,1], and normalized with mean of

(0.485, 0.456, 0.406) and standard deviation of (0.229, 0.224, 0.225). We use Adam as our

optimizer. For SHG-based SiaPose, the initial learning rate is set to 7.5e-4 while for the

CPM-based SiaPose, we set it to 1e-4. For both cases, we train the model for 100 epochs,

with learning rate reduced by a factor of 0.5 at milestones of the 60-th and 80-th epoch.

The weight coefficient α in loss function Eq. (5.4) is set to drop from 1.0 to 0.1 at the 40th

epoch.

Comparison with baselines. In Table 5.1 and Table 5.2, we compare the performance

of our SiaPose with two baselines, CPM and SHG. (1) First, we conduct an experiment

where edge-unaware GCN is utilized, where a shared weight matrix is used for all the edges.

Interestingly, it performs worse than the baseline models. This is reasonable, because it’s not

appropriate to assume that relative positions of neighboring keypoints are always the same.
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For example, index finger and thumb naturally have bones with different lengths. (2) Then

we conduct experiments with our edge-aware SIA-GCNs, where different numbers of heads

are explored. The results demonstrate that our proposed SiaPose could consistently improve

both baselines noticeably. The ablative study on different numbers of heads validates the

benefit of multi-heads and the effectiveness of the proposed SIA-GCN. For SHG, there is a

2.12 percent improvement at threshold δ = 0.01 and for CPM, a 1.95 percent improvement

is seen at threshold δ = 0.04. (3) Also, inspired by the state-of-the-art algorithm [54], by

adding a rotation network into our SiaPose (R-SiaPose) and using a similar training strategy,

the performance of our method is further boosted, leading to significant improvements from

baselines. Improvements of about 5 percent for SHG and nearly 4 percent for CPM are

observed. We would also compare our model with that proposed in [54] in next subsection.

Table 5.1: SHG based SiaPose on Panoptic Dataset.

PCK@ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK

SHG Baseline 35.85 71.47 83.15 88.21 91.10 92.92 77.12

SharedWeight GCN 34.76 69.66 81.33 86.19 89.14 90.95 75.34

1-head SiaPose 35.78 71.16 83.57 88.98 92.00 93.84 77.55
5-head SiaPose 37.53 73.07 84.60 89.51 92.14 93.85 78.45
10-head SiaPose 37.97 73.53 84.95 89.70 92.26 93.91 78.72

Improvement 2.12 2.06 1.80 1.49 1.16 0.99 1.60

10-head R-SiaPose 39.46 77.22 88.45 92.97 94.85 96.09 81.48
Improvement 3.61 5.75 5.30 4.76 3.75 3.17 4.36

Table 5.2: CPM based SiaPose on Panoptic Dataset.

PCK@ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK

CPM Baseline 25.73 62.77 77.80 84.35 88.11 90.57 71.55

SharedWeight GCN 25.14 61.76 77.13 83.60 86.97 89.20 70.63

1-head SiaPose 25.90 63.36 78.98 85.69 89.44 91.90 72.55
5-head SiaPose 26.36 64.05 79.11 85.74 89.38 91.78 72.74
10-head SiaPose 26.45 64.19 79.67 86.30 89.83 92.20 73.11

Improvement 0.72 1.42 1.87 1.95 1.72 1.63 1.56

10-head R-SiaPose 26.62 65.80 81.60 88.02 91.39 93.36 74.47
Improvement 0.89 3.03 3.80 3.67 3.28 2.79 2.92

Comparison with state-of-the-art methods. We further compare our approach with
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the current state-of-the-art methods [54, 53]. Probabilistic graphical models are deployed

in [54] and [53], where the output confidence maps from CPM are utilized as unary potential

functions. The CPM used in [54] and [53] is the version where 7 × 7 convolutional kernels

are replaced by three 3 × 3 convolutional kernels. To make fair comparison, we follow

their configurations and use their version of CPM as our preliminary pose estimator. The

fundamental difference between our method and [54] is that we have adopted our SIA-

GCN instead of graphical models. As observed from Table 5.3, our method outperforms

both [54, 53] on the Panoptic dataset. On the MHP dataset, our SiaPose also achieves

the state-of-the-art level performance. The size of the MHP dataset is about five times

the size of the Panoptic, making the MHP dataset an easier task and allows less room

for improvement. Methods focused on modeling structural relationships between keypoints

would benefit more from smaller and challenging datasets that require models to extrapolate

beyond pose templates seen in the training data.

Complexity analysis. Regarding the size of the proposed models, the 5-head and 10-head

models increase the model size by about 30% and 40%, respectively, compared to the 1-head

model. The increment of the model size from 1-head to multiple heads is primarily due to the

added pointer network, which is drawn in Fig. 5.1. However, going from 5-head to 10-head

does not significantly increase model complexity. This is because the pointer network only

needs to output 5 more scalers and the overall overhead mostly comes from adding more

GCN layers, which are shallow and not associated with too many parameters (note that

we use “channel-wise” 2D convolutions). It’s also worth to point out that, using a 10-head

SIA-GCN, our model is about 80% and 60% the size of those in [53] and [54], respectively.

Domain generalization of our model. Table 5.4 demonstrates the domain generalization

ability of our model. All the models in Table 5.4 are pretrained on Panoptic dataset, and

then finetuned for about 40 epochs on the MPII+NZSL dataset. Consistent improvements

over baselines are seen for all the ranges of PCK thresholds.
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Qualitative results. Some qualitative examples are given in Fig. 5.3, which indeed shows

that the SIA-GCN helps to enhance structural consistency and alleviate the spatial ambi-

guity. For example, in the third column, although the right hand is partially occluded by

the earphone, our model could still correctly predict the position of all keypoints. We also

show some failure cases of our model in Fig. 5.4, which are due to very heavy occlusion and

foreshortened view of a fist.

Table 5.3: Comparison to state-of-the-art methods.

PCK@ 0.01 0.02 0.03 0.04 0.05 0.06 mPCK

CMU Panoptic Hand Dataset
R-MGMN [54] 23.67 60.12 76.28 83.14 86.91 89.47 69.93

AGMN [53] 23.90 60.26 76.21 83.70 87.72 90.27 70.34
R-SiaPose (Ours) 24.94 62.08 77.83 84.91 88.78 91.34 71.65

Large-scale Multiview 3D Hand Pose Dataset (MHP)
R-MGMN [54] 41.51 85.97 93.71 96.33 97.51 98.17 85.53

AGMN [53] 41.38 85.67 93.96 96.61 97.77 98.42 85.63
R-SiaPose (Ours) 41.27 85.89 93.82 96.43 97.61 98.29 85.56

Table 5.4: Domain generalization of our model to MPII+NZSL from Panoptic Dataset.

PCK@ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

CPM 8.05 23.78 37.74 48.00 55.65 61.68 66.58 70.82
R-SiaPose (Ours) 8.40 24.71 39.33 50.31 59.04 66.01 71.29 75.63

Improvement 0.35 0.93 1.59 2.31 3.39 4.33 4.71 4.81

SHG 11.72 30.85 44.82 54.71 62.35 68.48 73.47 77.61
R-SiaPose (Ours) 12.19 33.34 49.13 59.86 67.83 73.69 78.26 81.72

Improvement 0.47 2.49 4.31 5.15 5.48 5.21 4.79 4.11

Figure 5.3: Qualitative results of baseline (top) and our model (bottom) on Panoptic and
MPII.
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Figure 5.4: Failure cases of our model. Each pair contains an input image and its prediction.

5.5 Conclusion

In this chapter, we propose a novel spatial information aware graph neural network with 2D

convolutions (SIA-GCN), which has the advantage of processing 2D spatial features for each

node, with additional capability of learning different spatial relationships for different pair

of neighboring nodes. We show the efficacy of our SIA-GCN in the 2D hand pose estimation

task, by implementing a network which achieves the state-of-the-art performance. The SIA-

GCN has the potential to generalise well to other tasks.
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Chapter 6

Identity-Aware Hand Mesh

Estimation and Personalization from

RGB Images

6.1 Introduction

Reconstructing 3D hand meshes from monocular RGB images has attracted increasing

amount of attention due to its enormous potential applications in the field of AR/VR. Most

state-of-the-art methods attempt to tackle this task in an anonymous manner. Specifically,

the identity of the subject is ignored even though it is practically available in real appli-

cations where the user is unchanged in a continuous recording session. In this paper, we

propose an identity-aware hand mesh estimation model, which can incorporate the identity

information represented by the intrinsic shape parameters of the subject. We demonstrate

the importance of the identity information by comparing the proposed identity-aware model

to a baseline which treats subject anonymously. Furthermore, to handle the use case where
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the test subject is unseen, we propose a novel personalization pipeline to calibrate the intrin-

sic shape parameters using only a few unlabeled RGB images of the subject. Experiments

on two large scale public datasets validate the state-of-the-art performance of our proposed

method.

Hand pose estimation has been one of the most popular computer vision problems because

of its critical role in many applications, including hand gesture recognition, virtual and

augmented reality, sign language translation and human-computer interaction [5]. With

recent advances in deep learning techniques [41, 97, 75] and development of large hand pose

datasets [96, 133, 141, 140], 2D hand pose estimation has been extensively investigated and

deployed in real-time applications with compelling results [10, 53, 96]. However, 3D hand

pose estimation still remains a challenging problem due to the diversity of hand shapes,

occlusion and depth ambiguity when monocular RGB image is used.

Current state-of-the-art methods for 3D hand reconstruction from RGB images either try to

directly regress 3D vertices of the hand mesh [32, 58, 18, 61, 62], or utilize the parametric

MANO model [90] by regressing the low-dimensional parameters [6, 135, 4, 39, 131]. While

these methods could generalize reasonably across different subjects, nearly all of them esti-

mate the 3D hand pose in an anonymous manner. The identity information of the subject,

which is practically available in real applications, is typically ignored in these methods. In

many real-world use cases, such as virtual and augmented reality, the device is often personal

and the user is typically identifiable.

We ask the question, can 3D hand reconstruction from RGB images be further improved with

the help of identity information? If so, how should we calibrate the personalized hand model

for unseen subjects during the test phase, using only RGB images? In depth image based

hand tracking systems, the hand model personalization has been well studied and its benefits

on improving hand tracking performance has been demonstrated [105, 106]. However, using

only RGB images to perform personalization is underexplored.
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To close this gap and answer the above question, we investigate the problem of hand model

personalization from RGB images and design a simple yet effective network to incorporate

the identity information. Specifically, we propose an identity-aware hand mesh estimation

model, which can take in the personalized hand model along with the input RGB image.

Motivated by MANO [90], we choose to use MANO shape parameters to represent the

hand model. To enable a fair comparison, we then construct a strong baseline by adapting

our proposed identity-aware network slightly. Instead of being given the groundtruth hand

shape parameters, the baseline regresses the shape parameters directly from the input image

via a multi-layer perceptron. We show through experiments that with ground truth shape

parameters, more accurate 3D hand reconstruction can be obtained. Lastly, we propose a

novel personalization method which can calibrate the hand model for unseen subjects, using

only unannotated RGB images. The calibrated hand model can then be utilized in our

identity-aware network. Our main contributions are summarized as follows:

• Our work is the first to systematically investigate the problem of hand mesh person-

alization from RGB images and demonstrate its benefits to hand mesh and keypoints

reconstruction.

• For unknown subjects that are not seen in training, we develop a novel hand model

personalization method that is capable of calibrating the hand model using a few

unannotated images of the same subject.

• We demonstrate that our method outperforms existing methods on two large-scale

public datasets, showing the benefit of utilizing the identity information, which is an

underexplored topic in the field.

• We design a simple but competitive baseline that features the same optimization aug-

mented inference step and further validate the effectiveness of leveraging the identity

information.
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6.2 Related Work

There are many research works on human/hand pose estimation [123, 121, 120, 61, 62, 70, 69,

66, 117, 15, 14, 16, 17, 67], including well-developed 2D hand pose estimation algorithms [116,

53, 10, 96, 54, 20, 55] and fast developing 3D hand pose estimation algorithms [2, 139, 34,

7, 100]. In this section, we will mainly discuss literature on 3D hand mesh reconstruction.

Model-based methods. The popular model-based method usually rely on the MANO

model [90], developed from the SMPL human model [65]. As a parameterized model, the

MANO model factorizes the hand mesh into shape and pose parameters, by utilizing principal

component analysis. Massive literature has tried to predict the MANO parameters in order

to reconstruct the hand mesh. Boukhayma et al [6] regressed the MANO shape and pose

parameters from 2D keypoint heatmaps. This was the first end-to-end deep learning based

method that can predict both 3D hand shape and pose from RGB images in the wild.

Zhang et al [135] proposed to use an iterative regression module to regress the MANO

parameters in a coarse-to-fine manner. Baek et al [4] also exploited iterative refinement. In

addition to that, a differentiable renderer was also deployed, which can be supervised by 2D

segmentation masks and 3D skeletons. Hasson et al [39] exploited the MANO model to solve

the task of reconstructing hands and objects during manipulation. Yang et al [131] proposed

a multi-stage bisected network, which can regress the MANO params using 3D heatmaps

and depth map.

Model-free methods. In [70], Moon et al designed I2L-MeshNet, an image-to-lixel pre-

diction network. Many other works are based on graph convolutional network, directly

regressing the vertex locations. In [32], Ge et al proposed a graph neural network based

method to reconstruct a full 3D mesh of hand surface. In [60], Lim et al proposed an effi-

cient graph convolution, SpiralConv, to process mesh data in the spatial domain. Leveraging

spiral mesh convolutions, Kulon et al [58] devised a simple and effective network architec-
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ture for monocular 3D hand pose estimation consisting of an image encoder followed by a

mesh decoder. Most recently, Chen et al [18] exploited the similar architecture, with more

advanced designs. They divide the camera-space mesh recovery into two sub-tasks, i.e.,

root-relative mesh recovery and root recovery. To estimate the root-relative mesh, the au-

thors proposed a novel aggregation method to collect effective 2D cues from the image, and

then are decoded by a spiral graph convolutional decoder to regress the vertex coordinates.

Apart from graph neural network, Transformer [110] has also been introduced into the field

of computer vison, solving different tasks [64, 11, 130]. Several methods [61, 62, 37, 80] have

been proposed for hand pose and mesh reconstruction.

Hand model personalization. Tan et al [105] and Tkach et al [106] studied hand model

personalization in the scenario where multiple depth images are available, and successfully

demonstrated its importance in hand tracking. Hampali et al [36] used the same method

to generate annotations when creating a new dataset. However, hand model personlization

from RGB images has been underexplored. Qian et al [86] focused on hand texture personal-

ization from RGB images. While hand model (mesh) personalization is also performed, the

effectiveness of mesh personalization is not validated by quantitative results. There is also

no investigation on whether the personalized mesh model can be used to improve hand pose

estimation. Moon et al [71] proposed to personalize each subject using a randomly generated

Gaussian vector. The subject ID vectors were generated prior to training and experiments

were performed where all subjects in the test set were already seen in the training set. The

trained model is only applicable to known subjects and there exists no principle way to han-

dle unseen subjects during the testing phase. MEgATrack [38] is a multi-view monochrome

egocentric hand tracking system that calibrates the hand model for unseen users, but the

calibration is limited to a single hand scaling factor.

To our best knowledge, our work is the first to systematically investigate the hand model

personalization from RGB images and its benefits to 3D hand pose estimation and mesh
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reconstruction.

6.3 Method

We first review the MANO hand model which is used extensively in this work, and then

propose our identity-aware hand mesh estimation method that takes as input the identity

information represented by the hand MANO shape parameters along with the input image.

Next, by a slight modification of our method, we propose the baseline which would be

compared with. Lastly, to address the practical use case where the hand model is not

provided for the test subject, we propose a novel personalization pipeline that estimates the

hand model for an unseen subject using only a few unannotated images.

6.3.1 MANO Model

MANO [90] is a popular parameterized hand model extended from the 3D human model

SMPL [65]. The MANO model factorizes the hand mesh into two groups of parameters:

the shape parameters and the pose parameters. The shape parameters control the intrinsic

shape of the hand, e.g., size of the hand, thickness of the fingers, length of the bones, etc.

The pose parameters represent the hand pose, i.e., how the hand joints are transformed,

which subsequently deforms the hand mesh. Mathematically, the model is defined as below:

M(β, θ) = W (TP (β, θ), J(β), θ,W) (6.1)

where a skinning function W is applied to an articulated mesh with shape TP , joint locations

J , pose parameter θ, shape parameter β, and blend weights W [90].
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Figure 6.1: Overview of our proposed identity-aware hand mesh estimation model. The
model mainly contains three parts, i.e., the iterative pose regressor, the 2D detector and
the optimization module. Note that in our proposed model, along with the RGB image, we
also feed the user’s identity information, i.e. the ground truth or calibrated MANO shape
parameters of the user.

6.3.2 Identity-aware Hand Mesh Estimation

Existing methods assume that the subject in every image frame is anonymous, even though

the input is recorded in a continuous session. To fully leverage the fact that the subject

is often fixed within each recording session in real applications, we propose a new hand

mesh estimation pipeline. In addition to the input image, we also feed the user’s identity

information into the network.

There are various ways to represent the identity of a subject. The most straightforward

method is to label each subject with a unique identifier, such as a high-dimensional random

vector [71]. However, identity information that does not have physical meaning can be

hard for the model to utilize. More importantly, models trained with this type of identity

information usually only generalize to known subjects included in the training set. In this

work, we are interested in an identity representation that allows generalizing to unseen

subjects.
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Inspired by MANO model [90], we utilize the MANO shape parameters as the identity

information for a specific subject. As shown in Fig. 6.1, our proposed identity-aware hand

mesh estimator takes in directly the ground truth or calibrated MANO shape parameters,

enabling the network to be subject-aware. The main parts of our proposed model is explained

as follows.

MANO pose parameter regressor. Motivated by [135], the pose parameter θ is obtained

by using an iterative pose regressor. We include the global rotation in θ, and use the 6D

rotation representation [138] to represent the rotation of each joint. With 15 hand joints

and the global rotation, θ is a vector in R96. Let F ∈ RN denote the image feature after

the encoder and θ(i) denote the estimated pose after i iterations. Initially, we set θ(0) as the

rotation 6D representation of identity matrices. Then, the pose is predicted iteratively as

follows

∆θ(i) = MLPθ

(
cat(F , θ(i−1))

)
(6.2)

θ(i) = ∆θ(i) ⊕ θ(i−1), (6.3)

where ⊕ means adding the new rotation increment onto the predicted rotation from the

previous iteration. The operator ⊕ is implemented by transforming both ∆θ(i) and θ(i−1)

from rotation 6D representations to rotation matrices, then multiplying them, and finally

converting the result back to rotation 6D representation. We adopt three iterations in the

experiments.

Optimization Augmented Inference. During inference time, we can further improve the

estimated hand mesh by enforcing the consistency between the 3D pose and the 2D pose pre-

dictions. The 2D predictions are obtained via a stacked hourglass-style neural network [75].

Let xd ∈ R21×2 denote the 2D keypoints predictions, fMANO(·) represent the mapping func-

tion from (β, θ) to 3D keypoints positions, P(·) denote the projection operator from 3D
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space to image space, and r ∈ R3 denote the root-position of the hand. We aim to optimize

the following energy function

E(θ, r, β) =
∥∥xd − P(fMANO(β, θ) + r)

∥∥
2
. (6.4)

We adopt a two-stage optimization procedure. In the first stage, we optimize r only. In

the second stage, we optimize θ and r jointly. Note that the MANO parameters are not

optimized from scratch. The prediction from the MANO parameter regressor is used as the

initial guess.

6.3.3 Baseline Method

To further validate that the accuracy improvement of hand mesh reconstruction is a result

of leveraging the identity information, we construct a baseline by slightly modifying our

identity-aware model. Instead of feeding ground truth/calibrated shape parameters into the

model, we use an extra MLP to regress the shape parameters from the input image. For a fair

comparison, all the other modules from our identity-aware model are kept the same in this

baseline model. Formally, let F ∈ RN denote the image feature produced by the encoder.

The MANO shape parameter β ∈ R10 is directly regressed by a multilayer perceptron from

F as

β = MLPβ(F). (6.5)

6.3.4 Personalization Pipeline

In most practical applications, the test subject is usually unknown and there is no corre-

sponding hand model (shape parameters) available for the proposed identity-aware hand

mesh estimation pipeline. To handle this practical issue, we propose a novel hand model
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Figure 6.2: Proposed personalization pipeline with attention mechanism. Images used for
personalization capture the same subject who is never seen during training.

personalization method, which could calibrate the hand model from a few unannotated RGB

images.

Confidence Predictor.

Our personalization pipeline takes in multiple images of a same subject and perform a joint

attention-based optimization to get the personalized shape parameter. Naively, the images

can be treated equally and contribute the same weight during the optimization. However,

images usually differ from each other in terms of quality, view angles, occlusions and so

on. Thus, the images should be attended with different importance. To achieve this goal,

we propose a light weight confidence predictor on top of the baseline network, as shown in

Fig. 6.2 (a). The confidence predictor takes as input the feature extracted by the ResNet50

encoder and outputs a scalar via one fully connected layer. The predicted confidence value

indicates the quality of the predicted shape parameter from the input image. Note that

our confidence predictor is only trained on the training split. Subjects in the test split are
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different from the training split and are not seen during the training phase.

Joint Optimization with Attention.

Fig. 6.2 (b) illustrates the whole process during the personalization phase. Denote the

collection of K unannotated images from the same user as I = {I1, I2, · · · , IK}. The images

are fed into the baseline model equipped with confidence predictor, which outputs {ci, β̂i, θ̂i}

for each image Ii, where ci ∈ R is the confidence value, β̂i, θ̂i are the predicted MANO shape

and pose parameters. The confidence values {ci}Ki=1 then go through a SoftMax layer, which

generates the attention weights {wi}Ki=1 as following

wi =
eci/T∑K
k=1 e

ck/T
, (6.6)

where T is the temperature parameter. Afterwards, {wi, β̂i, θ̂i}Ki=1 are sent into the attention

based optimization module, where the following optimization is solved

min
β̃

K∑

k=1

wk · ∥M(β̃, θ̂k) −M(β̂k, θ̂k)∥F , (6.7)

where M(·) is the MANO model. Note that, now all the K images from the same subject

share same shape parameter β̃. After the personalization process, β̃ would be used as the

identity information for the subject.

6.3.5 Loss Functions

The baseline. To train the baseline, we apply loss terms on the predicted 3D hand mesh,

following [18], and also on the predicted MANO shape and pose parameters.

a) Loss functions on hand mesh. Denote the vertices and faces of the hand mesh as V and
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Ω. We impose L1 loss on the predicted hand mesh, and also deploy edge length loss and

normal loss, following [18]. The loss functions on the mesh can be expressed as

Lmesh =
N∑

i=1

∥V̂i − Vi∥1

Lnorm =
∑

ω∈Ω

∑

(i,j)⊂ω

∣∣∣∣∣
V̂i − V̂j

∥V̂i − V̂j∥2
· nω

∣∣∣∣∣

Ledge =
∑

ω∈Ω

∑

(i,j)⊂ω

∣∣∣∥V̂i − V̂j∥2 − ∥Vi − Vj∥2
∣∣∣ ,

(6.8)

where the nω is the unit normal vector of face ω ∈ Ω.

b) Loss function on MANO parameters. We use Lpose = ∥θ̂ − θ∥1 and Lshape = ∥β̂ − β∥1,

where θ and β are ground truth MANO pose and shape parameters. The θ̂ is the predicted

pose parameter from the last iteration of the iterative pose regressor.

c) Loss function on 2D heatmap. A binary cross entropy function is imposed on 2D heatmaps

of hand keypoints as in Lpose2D = BCE(Û , U), where Û and U are the predicted and ground

truth 2D heatmaps of each keypoint, respectively. The groud-truth heatmap U is generated

with a Gaussian distribution.

The 2D detector is trained by using Lpose2D . The other parts are trained under the following

loss function

Ltotal = Lmesh + 0.1 · Lnorm + Ledge + Lpose + Lshape. (6.9)

Our identity-aware model. Since for our identity-aware model, the subject identity

information (the MANO shape parameter) is provided, either ground truth or calibrated,

the loss function is given by Eq. (6.10) with the shape loss removed,

L
′

total = Lmesh + 0.1 · Lnorm + Ledge + Lpose. (6.10)
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Confidence Predictor. We use margin ranking loss for training of the confidence pre-

dictor. Given Nb images in the batch, the baseline model equipped with confidence pre-

dictor would output confidence values {ci}Nb
i=1 and MANO shape parameter predictions

{β̂i}Nb
i=1. With ground truth shape parameters {βi}Nb

i=1, the difference li between the pre-

dicted and ground truth shape parameters can be calculated as li = |βi − β̂i|1. We generate

Nb × (Nb − 1)/2 pairs of {(ci, li), (cj, lj)}, and calculate ranking loss on each pair [84]. The

total loss is the sum of ranking losses from all pairs.

6.4 Experiments

6.4.1 Experimental Setups

Datasets. We conduct experiments on two large-scale public hand pose datasets, i.e.,

HUMBI [133] and DexYCB [13]. There are two major reasons why these two datasets are

chosen. First, they both have a diverse collection of subjects, which allows us to split the

datasets into different subject groups for training and evaluating our identity-aware pipeline.

More importantly, they annotate the shape parameters of the same subject in a consistent

way. Each hand image in the dataset is associated with a subject ID and all the hands from

the same subject share the same MANO shape annotation. Note that our method cannot be

directly evaluated on other popular benchmarks such as FreiHAND [141] or InterHand [72]

because they either do not associate images with subject IDs or guarantee consistent shape

parameters for the same subject.

HUMBI is a large multiview image dastaset of human body expressions with natural cloth-

ing. For each hand image, the 3D mesh annotation is provided, along with the fitted MANO

parameters. The shape parameters are fitted across all instances of the same subject. This

means that the same shape parameters are shared among all the hand meshes from the same
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subject. In our experiments, we use all the right hand images from the released dataset. We

split the dataset into training (90%) and test (10%), by subjects. The split results into 269

subjects (474,472 images) in the training set and 30 subjects (50,894 images) in the test set.

Note that none of the subjects in the test set appear in the training set.

DexYCB is a large dataset capturing hand grasping of objects. The dataset consists of

582K RGB-D frames over 1,000 sequences of 10 subjects from 8 views. It also provides

MANO parameters for each hand image. Same as the HUMBI dataset, the hand shape

parameters for each subject are calibrated and fixed throughout each subject’s sequences.

While object pose estimation is beyond the scope of this work, extra occlusions introduced

by the objects makes the DexYCB dataset more challenging for hand mesh estimation. In

our experiments, similar to the set up for the HUMBI dataset, we use the provided split

in [13] which splits the dataset by subjects. In this set up, there are 7, 1, 2 subjects in the

training, validation and test set, respectively.

Metrics for 3D Hand Estimation. Following the protocol used by existing methods, we

use the following two metrics, both in millimeter.

a) Mean Per Joint Position Error (MPJPE) measures the Euclidean distance between the

root-relative prediction and ground truth 3D hand keypoints.

b) Mean Per Vertex Position Error (MPVPE) measures the Euclidean distance between the

root-relative prediction and groud-truth 3D hand mesh.

Metrics for Hand Shape Calibration. We propose three metrics to evaluate the

performance of the calibrated hand shape.

a) MSEmano measures the mean square error between the estimated MANO shape parame-

ters and the ground truth values.
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b) W-error measures the mean hand width error between the calibrated hands and the

ground truth hands at the flat pose, which is defined as the distance between the metacar-

pophalangeal joints of index finger and ring finger.

b) L-error measures the mean hand length error between the calibrated hands and the

ground truth hands at the flat pose, which is defined as the distance between the wrist joint

and the tip of middle finger as the hand length.

Implementation Details. We implement our model in PyTorch [81] and deploy ResNet50 [41]

as our encoder. Input images are resized to 224×224 before being fed into the network. We

use the Adam optimizer [51] and a batch size of 32 to train all the models except for the

confidence predictor. For a fair comparison, both the baseline model and our proposed

identity-aware model are trained using the same learning rate schedule. On the HUMBI

dataset, both models are trained for 15 epochs, with an initial learning rate of 1e-4 which

is dropped by a factor of 10 at the 10-th epoch. On the DexYCB dataset, models are also

trained for 15 epochs, with the same initial learning rate, while the learning rate is dropped

at the 5-th and 10-th epochs. With the baseline model trained and frozen, the lightweight

confidence predictor is trained with a batch size of 128, with the intuition that larger batch

size allows more image pairs to train the ranking loss. The temperature parameter is set to

0.33 in Eq. (6.6). During all the training, input images are augmented with random color

jitter and normalization. In the inference stage, we use the Adam optimizer in PyTorch to

optimize Eq. (6.4). Specifically, 200 and 60 iterations are performed with learning rate of

1e-2 and 1e-3 in the first and second optimization stages, respectively. On one Titan RTX

graphics card, it takes 8 minutes to process all test images (50k) in HUMBI dataset, and 7.5

minutes for those (48k) in DexYCB dataset. We emphasize again that all our experiments

are conducted in the scenarios where there is no overlap between the subjects in the test

set and the training set.
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Table 6.1: Numerical results on DexYCB and HUMBI datasets.

Method
DexYCB HUMBI

MPJPE ↓ MPVPE ↓ MPJPE ↓ MPVPE ↓
CMR-PG [18] 20.34 19.88 11.64 11.37

Without Optimization at Inference Time
Baseline 21.58 20.95 12.13 11.82
Ours, GT shape 18.83 18.27 11.41 11.11
Ours, Calibrated 18.97 18.42 11.51 11.21

With Optimization at Inference Time
Baseline 18.03 17.92 10.75 10.60
Ours, GT shape 16.60 16.29 10.17 9.94
Ours, Calibrated 16.81 16.55 10.31 10.28

Table 6.2: Comparison with existing methods on Dex-
YCB.

Methods MPJPE↓ MPVPE ↓
Boukhayma et al. [6] 27.94 27.28

Spurr et al [100] + ResNet50 22.71 -
Spurr et al [100] + HRNet32 22.26 -

Boukhayma et al. [6] † 21.20 21.56
CMR-PG [18] 20.34 19.88

Metro [61] 19.05 17.71
Ours, Calibrated 16.81 16.55

Table 6.3: Performance of hand
model calibration.

Metrics HUMBI DexYCB
MSEmano 0.07 0.04

W-error (mm) 0.88 1.02
L-error (mm) 1.71 1.20

6.4.2 Quantitative Evaluation

3D Hand Estimation. We evaluate the benefit of our pipeline under two settings, i.e.,

with and without the optimization module during inference time. As shown in Table 6.1,

our proposed pipeline improves the baseline consistently across different datasets. With

calibrated hand model, our proposed method can achieve close performance to that with

ground truth hand model, which validates the effectiveness of our personalization pipeline.

Furthermore, our method also achieves the state-of-the-art performance, as shown by Ta-

ble 6.1 and Table 6.2. To ensure fair comparison, same data augmentation are applied to all
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the methods, i.e., random color jitter and normalization. All the models are trained for 15

epochs including ours, with the exception of Metro [61] which is trained for 70 epochs, as

transformers are much harder to converge. The superscript † in Table 6.2 means adding our

optimization module on top of the original method. It shows that our optimization module

can be generalized to other model-based methods efficiently. We emphasize that, none of the

existing methods produces consistent shape estimation across images originating from the

same subject. In contrast, our method guarantees shape consistency with zero hand shape

variation.

Hand Shape Calibration. Table 6.3 reports the performance of our personalization

pipeline, which achieves less than 2 mm in terms of hand width and hand length errors,

by calibrating on 20 unannotated images.

Our proposed method inherently guarantees the hand shape consistency among different

images from the same subject. Fig. 6.3 demonstrates this advantage of our method over

the baseline model. As shown in Fig. 6.3, for a specific subject, the baseline model outputs

hand meshes with big variations in terms of hand length, up to 20 mm. This is because

the baseline model is subject-agnostic and predicts hand shape parameters based on a single

input image. Even if the input images are from the same user, the baseline model could

predict hand meshes with big variations in size. In contrast, our proposed method outputs

consistent hand shape inherently, with zero hand shape variation across images from the

same user. Also shown in Fig. 6.3, the hand size calibrated by our proposed method stays

close to the ground truth hand size in most cases.

6.4.3 Ablation Study

Number of images used for personalization. Fig. 6.4 shows hand size errors (in mm)

when different number of images are utilized during calibration. With K = 20 images, the
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Figure 6.3: Hand shape consistency comparison between our proposed method and the
baseline. The x-axis corresponds to different subjects in the test dataset, while the y-axis
corresponds to the length of the hand of each subject.
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Figure 6.4: Impact of the number of images used in calibration.

hand model can already be well calibrated with length error less than 2 mm and width

error less than 1 mm. In all the other experiments, we use K = 20 images for hand model

calibration.

Attention during calibration. During the calibration, different weights are imposed

across the input images according to their confidence values, as formulated in Eq. (6.7). We

compare the calibration performance of our attention-based method with the non-attention

method, as shown in Table. 6.4. Specifically, non-attention means to treat each image equally

and set wi = 1/K in Eq. (6.7) for all images. As shown by Table. 6.4, our attention-based

calibration can improve the performance by a noticeable margin comparing to the naive
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Table 6.4: Effectiveness of confidence-valued based attention mechanism.

Metrics MSEmano W-error (mm) L-error (mm)
No attention 0.084 1.00 1.93

Ours, with attention 0.070 0.88 1.71
Improvement 16% 12% 11%

Table 6.5: Evaluating models trained with 3D keypoints instead of mesh supervision on
DexYCB and HUMBI datasets.

Method
DexYCB HUMBI

MPJPE↓ MPVPE ↓ MPJPE ↓ MPVPE ↓
Without Optimization at Inference Time

Baseline 21.85 20.26 12.34 12.02
Ours, GT Shape 18.92 18.35 11.61 11.30

With Optimization at Inference Time
Baseline 17.71 17.58 10.80 10.95
Ours, GT Shape 16.63 16.32 10.37 10.12

calibration.

Optimization augmented inference from scratch. In this experiment, we remove the

MANO parameter regressor from the model in Fig. 6.1. Without being initialized by the

MANO parameter regressor, the initial pose is set to the neutral pose prior to optimization.

This pure optimization procedure results in an MJPJE > 50mm on both DexYCB and

HUMBI datasets. This validates the necessity of the MANO parameter regressor, which can

give good initial values of MANO parameters for later optimization.

Training model with 3D keypoints instead of 3D mesh supervision. In Table. 6.5, we

report the performance of the baseline and our proposed identity-aware model when trained

with 3D keypoints supervision, instead of 3D mesh. Under this setting, our identity-aware

method still improves the accuracy.
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Figure 6.5: Qualitative results. a) Left: calibrated hand model versus ground truth hand
model. b) Right: visualization of our identity-aware hand mesh estimator. From top row to
bottom row are the input RGB images, the projected ground truth meshes, the projected
predicted meshes, and the predicted meshes viewed from two different angles.

Qualitative Results. The qualitative results of our personalization method and the

identity-aware hand mesh estimator are shown in Fig. 6.5. On the left side, it can be seen

that the calibrated hand mesh is very close to the ground truth hand mesh. On the right

side, qualitative results of our identity-aware model are demonstrated. When generating the

third row, we align the predicted mesh with ground truth root position before projecting the

mesh back to the image space. As seen from Fig. 6.5, our model can robustly recover the

hand mesh under moderate occlusion and can handle a wide range of hand poses.

Limitations. The guarantee of consistent hand shape primarily comes from explicitly in-

corporating a 3D hand model i.e., the MANO in our pipeline. A future direction is to explore

model free approaches to enforce shape consistency at inference time. We also observe that

images with severe occlusions and blurs may affect the quality of shape calibration. We cur-

rently mitigate this issue by predicting confidence values, which helps lower the importance

of these suboptimal images greatly. A better approach might be to detect and remove these

88



images prior to the calibration step.

6.5 Conclusion

In this chapter, we propose an identity-aware hand mesh estimation pipeline for 3D hand

mesh recovery from monocular images. Different from existing methods which estimate the

hand mesh anonymously, our method leverages the fact that the user is usually unchanged

in real applications and identity information of the subject can be utilized for 3D hand mesh

recovery. More specifically, our model not only takes as input the RGB image, but also

the identity information represented by the intrinsic shape parameters of the subject. We

also design a novel personalization pipeline, through which the intrinsic shape parameters

of an unknown subject can be calibrated from a few RGB images. With the personalization

pipeline, our model can operate in scenarios where ground truth hand shape parameters

of subjects are not provided, which are common in real world AR/VR applications. We

experimented on two large-scale public datasets, HUMBI and DexYCB, demonstrating the

state-of-the-art performance of our proposed method.
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Chapter 7

Conclusion

In this thesis, several algorithms are proposed to tackle the problem of human hand pose es-

timation and 3D mesh reconstruction from RGB images. To explicitly enforce the structural

constraints among the hand keypoints, we firstly propose to utilize the probabilistic graph-

ical models. On top of combining the graphical models with newly developed deep CNNs,

we propose to make the graphical models adaptive to input images, either fully adaptive in

the sense that each input image has its own graphical model or semi adaptive when images

are clustered and a pool of a fixed number of graphical models are used. Further more, we

also resort to graph neural networks, which has a relaxed constraints comparing to graphical

models. A novel graph convolutional network has been proposed, where the spatial infor-

mation along each edge of the graph is utilized. When tackling the more challenging hand

mesh reconstruction problem, we propose to utilize the identity information of the subject,

which enables the hand shape consistency among different images from the same person.

Additionally, a personalization method is proposed for the use case in practical scenarios.

Extensive experiments have been conducted to validate the efficacy of our proposed methods.
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Future research. Apart from the progress discussed above, there are still many open

problems that are very interesting for future research.

• Hand-object interaction. In the scenario of hand-object interaction, reconstructing the

hand mesh and the object mesh together is much more challenging since additional

factors have to be taken into consideration, for example, the penetration issue and the

dedicate mesh deformation around the contact area.

• Generalization of the models. The ability of models to generalize to wild images is

still somewhat limited. Improving the generalization ability of the models is key to

applications in real world scenarios. This might be achieved by designing new pose

estimation algorithms or new techniques of collecting hand data in the wild.

• More advanced hand models. Currently, MANO is the de facto state-of-the-art hand

model which is widely used in the research field. With the popularity of neural fields

and other new techniques like diffusion model, more advanced hand models may be

proposed.
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