
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Tackling computation uncertainty through fine-grained and predictable execution adaptivity 
in multicore systems

Permalink
https://escholarship.org/uc/item/22w4j8gt

Author
Yang, Chengmo

Publication Date
2010
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/22w4j8gt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Tackling Computation Uncertainty through Fine-grained and Predictable
Execution Adaptivity in Multicore Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Engineering

by

Chengmo Yang

Committee in charge:

Professor Alex Orailoglu, Chair
Professor Fan Chung Graham
Professor Keith Marzullo
Professor Michael Taylor
Professor Charles W. Tu

2010



Copyright

Chengmo Yang, 2010

All rights reserved.



The dissertation of Chengmo Yang is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2010

iii



DEDICATION

To my grandmother.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Need for Execution Adaptivity . . . . . . . . . . . . . . . . . 3
1.2 Challenges to be Addressed . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions of This Thesis . . . . . . . . . . . . . . . . . . 9
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Resource Renegotiation . . . . . . . . . . . . . . . . . . . . . 13
2.2 Reliability Enhancement . . . . . . . . . . . . . . . . . . . . 16
2.3 Heat Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Adaptive System Overview . . . . . . . . . . . . . . . . . . . . .. 23
3.1 Compiler-directed Runtime Optimization . . . . . . . . . . . 23
3.2 Hybrid Scheduling for Resource Management . . . . . . . . . 26
3.3 Possible Scenarios for Adapting the Computation . . . . . .. 29

Chapter 4 Core-level Reconfiguration . . . . . . . . . . . . . . . . . . .. . . 32
4.1 Adaptive Static Schedules . . . . . . . . . . . . . . . . . . . 33

4.1.1 Band Partitions of Execution Schedules . . . . . . . . 33
4.1.2 Inter-task Dependence Variations . . . . . . . . . . . 35

4.2 Performance-oriented Core Reordering . . . . . . . . . . . . . 37
4.2.1 PE Reordering: Problem Formulation . . . . . . . . . 39
4.2.2 PE Reordering: L2R-free Mapping Identification . . . 41

4.3 Performance Enhancement . . . . . . . . . . . . . . . . . . . 44
4.3.1 Applied to Arbitrary Task Graphs . . . . . . . . . . . 45
4.3.2 Overcoming Variations in Inter-core Communication .47

v



4.4 Tolerating Multiple Resource Variations . . . . . . . . . . . .49
4.4.1 Band Partition Extension . . . . . . . . . . . . . . . . 49
4.4.2 Inter-task Dependence Constraints . . . . . . . . . . . 51
4.4.3 Core Binding Permutation . . . . . . . . . . . . . . . 53
4.4.4 Shiftable Core Identification . . . . . . . . . . . . . . 54

4.5 Algorithmic Implementation . . . . . . . . . . . . . . . . . . 56
4.5.1 Initial Schedule Generation . . . . . . . . . . . . . . . 57
4.5.2 Adaptive Schedule Optimization . . . . . . . . . . . . 61

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 62
4.6.1 Performance of single-core adaptive schedules . . . . 63
4.6.2 Performance of multi-core adaptive schedules . . . . . 67

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 5 Adaptivity-aware System Topology . . . . . . . . . . . . .. . . . . 71
5.1 Reconfiguration-induced Sharing Requirement . . . . . . . .72
5.2 Locally Shareable Storage Organization . . . . . . . . . . . . 73
5.3 Physical Topology and Application Mapping . . . . . . . . . 76

5.3.1 Topology instances and the associated properties . . .76
5.3.2 Topology instance selection . . . . . . . . . . . . . . 78
5.3.3 Task Placement Requirements . . . . . . . . . . . . . 81

5.4 Communication Overhead Minimization . . . . . . . . . . . . 82
5.4.1 Encoding-based Synchronization . . . . . . . . . . . . 83

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . 90
5.5.1 Impact of Topology on Task Scheduling . . . . . . . . 90
5.5.2 Efficiency of Encoding-based Synchronization . . . . 93

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 6 Architectural-level Fault Resilience . . . . . . . . .. . . . . . . . . 98
6.1 Full Resilience within Low Overhead . . . . . . . . . . . . . 99
6.2 Cache-based Fault Tolerance . . . . . . . . . . . . . . . . . . 101

6.2.1 Run-ahead Property for Workload Balance . . . . . . 101
6.2.2 Fault Detection . . . . . . . . . . . . . . . . . . . . . 102
6.2.3 Execution Checkpointing . . . . . . . . . . . . . . . . 103
6.2.4 Execution Recovery . . . . . . . . . . . . . . . . . . 106
6.2.5 Cache State Extension . . . . . . . . . . . . . . . . . 106
6.2.6 Requirements on Memory Access Order . . . . . . . . 107

6.3 Execution Asynchronicity Enhancement . . . . . . . . . . . . 108
6.3.1 Relaxed Thread Synchronization at Checkpoints . . . 108
6.3.2 Selective Split Capability of Cache Blocks . . . . . . 109
6.3.3 Synchronization Condition Analysis . . . . . . . . . . 113

6.4 Fault Tolerant MPSoC Organization . . . . . . . . . . . . . . 114
6.4.1 Checkpointing Tradeoffs in Multi-level Cache Design114
6.4.2 Checkpoint Coordination for Inter-thread Communi-

cations . . . . . . . . . . . . . . . . . . . . . . . . . 115

vi



6.4.3 Throughput Enhancement through Multi-threading . . 117
6.5 Cache Access Control Implementation . . . . . . . . . . . . . 118

6.5.1 Cache Access Control . . . . . . . . . . . . . . . . . 118
6.5.2 Implementation Efficiency . . . . . . . . . . . . . . . 121

6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 122
6.6.1 Checkpointing and Writeback Frequencies . . . . . . 123
6.6.2 Thread performance . . . . . . . . . . . . . . . . . . 125
6.6.3 Impact of Fault Rate on Thread Performance . . . . . 129
6.6.4 Checkpointing Tradeoffs for Memory Hierarchy . . . 130

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapter 7 Compiler-Directed Heat Reduction . . . . . . . . . . . . .. . . . . 132
7.1 Challenges in Register Access Balance . . . . . . . . . . . . . 133
7.2 Deterministic Register Shuffling . . . . . . . . . . . . . . . . 135

7.2.1 An illustrative example . . . . . . . . . . . . . . . . . 136
7.2.2 Destination register name adjustment . . . . . . . . . 137
7.2.3 Loop-carried dependence preservation . . . . . . . . . 139
7.2.4 Shiftable logical register identification . . . . . . . . .141
7.2.5 Physical register reallocability analysis . . . . . . . .142
7.2.6 Functional Evaluation . . . . . . . . . . . . . . . . . 144

7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.3.1 Static register name adjustment . . . . . . . . . . . . 146
7.3.2 Dynamic register name shuffling . . . . . . . . . . . . 147

7.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 149
7.4.1 Register Access Results . . . . . . . . . . . . . . . . 150
7.4.2 Temperature Results . . . . . . . . . . . . . . . . . . 152

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Chapter 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.1 Future Work Directions . . . . . . . . . . . . . . . . . . . . . 157

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

vii



LIST OF FIGURES

Figure 3.1: Collaborative Optimization Framwork . . . . . . . .. . . . . . . . . 24
Figure 3.2: Various scenarios for utilizing adaptive execution . . . . . . . . . . . 30

Figure 4.1: Reconfigurable static schedules: band structure . . . . . . . . . . . . 34
Figure 4.2: Regularity in task reassignment . . . . . . . . . . . . .. . . . . . . 35
Figure 4.3: Timing variations of inter-task dependences . .. . . . . . . . . . . . 36
Figure 4.4: Impact of PE reordering on dependence directions . . . . . . . . . . 38
Figure 4.5: PE reordering formulated as graph embedding . . .. . . . . . . . . 39
Figure 4.6: L2R-free mapping of DAG, basic loop and nested loops . . . . . . . 41
Figure 4.7: Mapping constraints of intersecting loops . . . .. . . . . . . . . . . 43
Figure 4.8: An adaptive schedule for an arbitrary task graph. . . . . . . . . . . 45
Figure 4.9: Band structure extension: the head and tail regions . . . . . . . . . . 46
Figure 4.10: Impact of PE rotation on inter-PE communications . . . . . . . . . . 48
Figure 4.11: Multi-band partitioning for increased amountof adaptivity . . . . . . 50
Figure 4.12: Inter-task dependence timing in a multi-band schedule . . . . . . . . 52
Figure 4.13: PE reordering in a multi-band schedule . . . . . . .. . . . . . . . . 54
Figure 4.14: PE shiftability constraints and a indirectly shiftable case . . . . . . . 55
Figure 4.15: Impact of PE-distance and communication latency on the earliest start

time of a sink task . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 4.16: Integrated task scheduling and core reordering flow . . . . . . . . . . 60
Figure 4.17: The benchmark task graphs . . . . . . . . . . . . . . . . . .. . . . 63
Figure 4.18: Impact of adaptivity degree and core reordering onpre-reconfiguration

schedule length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 4.19: Impact of adaptivity degree and core reordering on the amount of

L2R communications . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 4.20: Impact of adaptivity degree and core reordering on the amount of

critical L2R communications . . . . . . . . . . . . . . . . . . . . . 69
Figure 4.21: Impact of adaptivity degree and core reordering onpost-reconfiguration

schedule length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.1: Reconfiguration-induced sharing requirements. . . . . . . . . . . . 72
Figure 5.2: Bipartite graph representation of various topologies with distinct val-

ues of sharing degree and merging degree . . . . . . . . . . . . . . . 74
Figure 5.3: Various 2-dimensional locally shareable MPSoCtopologies . . . . . 77
Figure 5.4: Finer-grained cluster partitions and communication link utilization . . 79
Figure 5.5: Reconfiguration-induced memory sharing and data placement . . . . 82
Figure 5.6: Encoding of point-to-point inter-PE communications . . . . . . . . . 85
Figure 5.7: Implementation of the encoding-based synchronization scheme . . . 88
Figure 5.8: Total communication latency, assuming the average number of extra

cycles spent in waiting for the consumer thread of 50 . . . . . . .. . 95
Figure 5.9: Total communication latency, assuming an average memory access

latency of 10 cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



Figure 6.1: Differences between lockstep CMP, redundant multi-threading, and
the proposed cache-based detection/checkpointing scheme. . . . . . 100

Figure 6.2: Inconsistent access pattern caused by faults instore addresses . . . . 103
Figure 6.3: Loop with cache block dependences . . . . . . . . . . . .. . . . . . 105
Figure 6.4: Cache states extended for fault detection and checkpointing . . . . . 107
Figure 6.5: Strictly vs. loosely- synchronized checkpointing . . . . . . . . . . . 109
Figure 6.6: Adding asplit state to cache state diagram . . . . . . . . . . . . . . . 111
Figure 6.7: Hybrid detection and checkpointing policy in multi-level caches . . . 115
Figure 6.8: Applying the proposed shared cache organization to multi-core SoCs 116
Figure 6.9: Hardware extension to traditional cache . . . . . .. . . . . . . . . . 118

Figure 7.1: Cumulative register access ratio . . . . . . . . . . . .. . . . . . . . 134
Figure 7.2: A loop example obtained frombzip2. . . . . . . . . . . . . . . . . . 135
Figure 7.3: Register name adjustment in two consecutive iterations . . . . . . . . 140
Figure 7.4: Shiftability analysis of registerR1 . . . . . . . . . . . . . . . . . . . 141
Figure 7.5: Building a shuffle window through swapping register values at loop

entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 7.6: Gate-level logic for translating register names . . . . . . . . . . . . . 148
Figure 7.7: Reduction in peak temperature of the entire chip. . . . . . . . . . . 152
Figure 7.8: The processor floorplan used in simulation . . . . .. . . . . . . . . 153
Figure 7.9: Reduction in peak temperature of the entire chip. . . . . . . . . . . 154

ix



LIST OF TABLES

Table 4.1: Pre-reconfiguration schedule length . . . . . . . . . . . . . . . . . . 64
Table 4.2: Impact of adaptivity on inter-PE communications. . . . . . . . . . . 65
Table 4.3: Impact of PE reordering on L2R communications . . .. . . . . . . . 66
Table 4.4: Post-reconfigurationschedule length . . . . . . . . . . . . . . . . . 67

Table 5.1: The dynamic check/set of theR-colorsfor communication synchro-
nization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 5.2: Impact of MPSoC topology on schedule length . . . . .. . . . . . . . 91
Table 5.3: Impact of MPSoC topology on task mapping . . . . . . . .. . . . . . 92

Table 6.1: Impact of cache configuration on miss rate . . . . . . .. . . . . . . . 122
Table 6.2: Impact of cache configuration on checkpointing frequency . . . . . . . 123
Table 6.3: Overall writeback rate . . . . . . . . . . . . . . . . . . . . . .. . . . 124
Table 6.4: Checkpointing-induced writeback increase . . . .. . . . . . . . . . . 125
Table 6.5: Impact of thread synchronization and block spliton CPI increase (%):

16K-2way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 6.6: Impact of thread synchronization and block spliton CPI increase (%):

32K-4way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 6.7: Cache Block Split Efficiency . . . . . . . . . . . . . . . . . .. . . . 127
Table 6.8: Impact of counter and victim cache sizes on CPI increase (%) . . . . . 128
Table 6.9: Impact of fault rate on CPI increase (%) . . . . . . . . .. . . . . . . 129
Table 6.10: Memory hierarchy induced checkpointing tradeoffs . . . . . . . . . . 130

Table 7.1: The use of the two shuffle functions to shift register names in thebzip2
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Table 7.2: Access pattern-based register classification . .. . . . . . . . . . . . . 143
Table 7.3: The design complexity of GF multipliers . . . . . . . .. . . . . . . . 149
Table 7.4: The number of hot loops, their occupancy in execution time, and reg-

ister usage information . . . . . . . . . . . . . . . . . . . . . . . . . 151

x



ACKNOWLEDGEMENTS

I would like to express my deepest thanks to my advisor, Professor Alex Orailoglu,

for the great guidance he provided during my PhD years. Through multiple drafts, many

debates and many long nights, his guidance has proved to be invaluable. His enthusiasm

and intelligence in research is always a model for me to follow in my future research

work.

I would also express my special thanks to Professor Keith Marzullo, for his effort

in teaching me ukulele. The days we spent together playing and singing have brought a

lot of happiness to my PhD life.

Many thanks go to the other professors I have met during the seven years in UCSD,

as well as my academic siblings in theArchitecture, Reliability, and Testing(ART) group,

including Baris Arslan, Garo Bournoutian, Mingjing Chen, Kwangyoon Lee, Wenjing

Rao, Peter Petrov, and Ozgur Sinanoglu.

I also want to thank my friends, Zheng Wu, Shan Yan, Haichang Sui, Dayou Zhou,

Yuzhe Jin, Min Li, Junwen Wu, and many others, for sharing with me the unforgettable

life in San Diego.

In the end, I want to thank my parents and my grandparents, foralways being

there. Without their love, support, tolerance and advice, Iwould never have gone so far.

The text of Chapter 4, is in part a reprint of the material as itappears inC. Yang and

A. Orailoglu, “Predictable Execution Adaptivity through Embedding Dynamic Reconfig-

urability into Static MPSoC Schedules,” International Conference on Hardware/Software

Codesign and System Synthesis (CODES-ISSS), October 2007; in C. Yang and A. Orailoglu,

“Towards No-cost Adaptive MPSoC Static Schedules through Exploitation of Logical-to-

physical Core Mapping Latitude,” IEEE Design, Automation and Test in Europe (DATE),

April 2009; and inC. Yang and A. Orailoglu, “Fully Adaptive Multicore Architectures

through Statically-directed Dynamic Execution Reconfigurations,” International Confer-

ence on VLSI and System-on-Chip (VLSI-SoC), September 2010. The dissertation author

was the primary researcher and author of the publications [94], [97], and [98].

The text of Chapter 5, is in part a reprint of the material as itappears inC. Yang and

A. Orailoglu, “Light-weight Synchronization for Inter-processor Communication Accel-

xi



eration on Embedded MPSoCs,” International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems (CASES), October 2007. The dissertation author

was the primary researcher and author of the publication [93].

The text of Chapter 6, is in part a reprint of the material as itappears inC. Yang and

A. Orailoglu, “A Light-weight Cache-based Fault Detectionand Checkpointing Scheme

for MPSoCs Enabling Relaxed Execution Synchronization,” International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES), October 2008.

The dissertation author was the primary researcher and author of the publication [95].

The text of Chapter 7, is in part a reprint of the material as itappears inC. Yang and

A. Orailoglu, “Processor Reliability Enhancement throughCompiler-Directed Register

File Peak Temperature Reduction,” International Conference on Dependable Systems and

Networks (DSN), June 2009. The dissertation author was the primary researcher and

author of the publication [96].

xii



VITA

2003 B. S. in Microelectronics, Peking University, China

2005 M. S. in Computer Science, University of California, San Diego

2004 – 2010 Teaching Assistant. Department of Computer Science and Engi-
neering, University of California, San Diego

2004 – 2010 Research Assistant. Department of Computer Science and Engi-
neering, University of California, San Diego

2010 Ph. D. in Computer Engineering, University of California, San Diego

PUBLICATIONS

Journal papers

C. Yang and A. Orailoglu, “Full Fault Resilience and RelaxedSynchronization Require-
ments at the Cache-Memory Interface,” to appear inIEEE Trans. on Very Large Scale
Integration Systems (TVLSI)

C. Yang, M. Chen, and A. Orailoglu, “Minimizing On-chip CodeStorage in Microcoded
IPs while Delivering High Decompression Speed,” to appear in the special issue of the
Journal on Design Automation for Embedded Systems

C. Yang and A. Orailoglu, “Tackling Resource Variations through Adaptive MPSoC Ex-
ecution Frameworks,” submitted toIEEE Trans. on Computers

Conference papers

C. Yang and A. Orailoglu, “Fully Adaptive Multicore Architectures through Statically-
directed Dynamic Execution Reconfigurations,” to appear inInternational Conference on
VLSI and System-on-Chip (VLSI-SoC), September 2010

C. Yang, C. J. Xue, and A. Orailoglu, “Fine-grained AdaptiveCMP Cache Sharing through
Access History Exploitation” to appear inInternational Conference on VLSI and System-
on-Chip (VLSI-SoC), September 2010

C. Yang, M. Chen, and A. Orailoglu, “Squashing Microcode Stores to Size in Embedded
Systems while Delivering Rapid Microcode Accesses,” inInternational Conference on
Hardware/Software Codesign and System Synthesis (CODES-ISSS), pp. 249-256, Octo-
ber 2009 (best paper nomination)

C. Yang and A. Orailoglu, “Processor Reliability Enhancement through Compiler-Directed
Register File Peak Temperature Reduction,” inInternational Conference on Dependable
Systems and Networks (DSN), pp. 468-477, June 2009

xiii



C. Yang and A. Orailoglu, “Towards No-cost Adaptive MPSoC Static Schedules through
Exploitation of Logical-to-physical Core Mapping Latitude,” in IEEE Design, Automation
and Test in Europe (DATE), pp. 63-68, April 2009

C. Yang and A. Orailoglu, “A Light-weight Cache-based FaultDetection and Checkpoint-
ing Scheme for MPSoCs Enabling Relaxed Execution Synchronization,” in International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
pp. 11- 20, October 2008

C. Yang and A. Orailoglu, “Predictable Execution Adaptivity through Embedding Dy-
namic Reconfigurability into Static MPSoC Schedules,” inInternational Conference on
Hardware/Software Codesign and System Synthesis (CODES-ISSS), pp. 15-20, October
2007

C. Yang and A. Orailoglu, “Light-weight Synchronization for Inter-processor Communi-
cation Acceleration on Embedded MPSoCs,” inInternational Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), pp. 150-154, October 2007

C. Yang and A. Orailoglu, “Power-efficient Branch Prediction through Early Identifica-
tion of Branch Addresses,” inInternational Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), pp. 169-178, October 2006

C. Yang and A. Orailoglu, “Power-efficient Instruction Delivery through Trace Reuse,” in
the 15th International Conference on Parallel Architectures and Compilation Techniques
(PACT), pp. 192-201, September 2006

Workshop paper

C. Yang and A. Orailoglu, “Accelerating Coupled Applications through Register Level
Communication between Processing Elements,” inthe 4th Workshop on Application Spe-
cific Processors (WASP), pp. 51-59, September 2005

xiv



ABSTRACT OF THE DISSERTATION

Tackling Computation Uncertainty through Fine-grained and Predictable
Execution Adaptivity in Multicore Systems

by

Chengmo Yang

Doctor of Philosophy in Computer Engineering

University of California, San Diego, 2010

Professor Alex Orailoglu, Chair

The continued scaling of silicon fabrication technologieshas enabled the integra-

tion of dozens of processing cores on a single chip in the nextcomputer generation. Our

ability to exploit such computational power, however, is checkmated not only by limita-

tions of parallelism extraction techniques, but furthermore by increasing levels ofexecu-

tion uncertaintywithin the system. As device feature sizes scale below 45nm,reliability

has rapidly moved to the forefront of concerns for leading semiconductor companies,

with the main challenge being the scaling of system performance while meeting power

and reliability budgets. To make things worse, such an unreliable computational fabric is

used to concurrently execute an increasing number of applications that constantly vie for

execution resources, thus furthermore making the execution environment more dynamic

and unpredictable.

xv



The unreliability in the electronic fabric, in conjunctionwith the unpredictabil-

ity in the execution process, has motivated the incorporation of execution adaptivity

in future multicore systems, so that computational resources can be frequently renego-

tiated at run-time. The challenge, however, is to attain adaptivity in conjunction with

the goals that designers already face, such as computation efficiency, power and thermal

management, and predictability of worst-case performance. The traditional approaches

of providing adaptivity at runtime dynamically will fail toscale as we move to systems of

dozens of cores. Neither do static techniques that rely solely on compiler analysis deliver

efficient adaptivity though. Instead, I have proposed a set of compiler-directed run-time

optimizationtechniques that can combine the advantages of both, capableof reacting to

unpredictable events while at the same time exploiting intensive program information to

guide runtime decisions.

Technically, this thesis addresses the increasing levels of execution uncertainty

in future multicore systems induced by device failures, heat buildups, or resource com-

petitions from three aspects. It presents several tightly-coupled techniques to either 1)

maximally mitigate a source of uncertainty, such as thermalstress, or 2) precisely detect

resource variations, especially the ones induced by devicefailures, and then 3) quickly

reconfigure the execution in a predictable manner with no reliance on spare units. These

techniques are developed with the considerations of minimizing power and performance

impact, localizing communication and migration so as to satisfy interconnect constraints,

and ensuring high predictability so as to meet worst-case performance constraints of

mission-critical applications. The successful incorporation of these techniques in fu-

ture multicore systems, I believe, will engender adaptive,scalable architectures that can

seamlessly reshape execution paths and schedules in an amortizable, high-volume, fixed-

silicon fabric.

xvi



Chapter 1

Introduction

Over the past several decades, advances in silicon fabrication technologies have

enabled dramatic advances in computer systems. Geometrical scaling of device sizes and

die sizes has enabled the number of transistors per chip to double roughly every 24 months

as stated in the well known Moore’s law. The tremendous number of transistors imposes

numerous technology challenges at the same time. Efficient utilization of the existing

and ever increasing computational power necessitates the development of well organized

systems that can efficiently extract the potential parallelism of applications. Meanwhile,

technology scaling also makes devices more vulnerable to various failure mechanisms,

imposing severe reliability challenges.

As single-processor systems built upon superscalar or verylong instruction word

(VLIW) architectures fail to respond to the well-known parallelism challenge, single-chip

implementations of multiprocessor SoCs including CPUs, memories and communication

architectures have become more and more popular. Examples include Stanford’s Hydra

[36], MIT’s Raw [84], IBM’s Cell [48], Sun’s Niagara [50], and AMD’s Opteron [52].

With the number of cores per die projected to double every twotechnology generations

according to ITRS reports [2], chips of 100s to 1000s of coresare expected to be used

even in common consumer applications of the next decade [2].

While currently multicore platforms are preferentially used for server and desktop

systems, in the near future, they are expected [2] to be widely employed by various types

of systems, including defense, consumer, medical, and networking/communication. The

drastic increase in the number of available cores tempts designers to construct systems

1



2

that can run a large number of applications in parallel, while a dramatic increase in the

diversity and the complexity of these applications is also expected. Efficient utilization

of the ample hardware resources requires these applications to be decomposed into fine-

grained concurrent tasks. Yet at different program phases,these applications typically

exhibit diverse amounts of parallelism [92]. As a result, high levels of variability are

expected both in the number of applications and in the numberof cores an application

needs. In such a dynamic execution environment, computation needs to be organized in

an adaptive manner so that resource demands of various applications can be constantly

renegotiated at run-time.

Yet the issue of application diversity is not the only aspectthat is dictating the need

for an adaptive organization of computations. The aforementioned degradation in device

reliability may end up creating large variations in run-time resource availability, thus re-

inforcing the need for execution adaptivity. With the device shrinking projected to reach

beyond 18nm in scale by 2015 [1], issues that were consideredas second-order effects

in the past, such as Soft-breakdowns (SBD) in device gate oxide, Negative Bias Temper-

ature Instability (NBTI) in PMOS threshold voltage, Electro-Migration (EM) in copper

interconnects, and dielectric breakdown in low-k materials [11], become clear threats for

systems in near future technologies. These accentuated electronic effects may cause ir-

reversible damage to a device, leading topermanent faults. Meanwhile,transient faults,

which can be caused by alpha-particle strikes, cosmic rays,or radiation from radioactive

atoms [47], are also expected to increase by orders of magnitude due to the reduced volt-

age and the resultant tighter noise margins. In fact, singleevent upset caused by cosmic

particles has already been observed in large amounts in memory systems and sequential

logic state elements. Similar transient faults have started to be observed in combinational

logic as well [47, 78].

Not only is the fault rate projected to be high, but also a highvariance in the

duration of fault manifestation is to be expected in future computer systems. In par-

ticular, technology experts warn about an increase inintermittent faults– faults which

occur frequently and irregularly for a period of time, commonly due to process varia-

tion or in-progress wear-out, combined with voltage and temperature fluctuations among

other factors [12, 22]. These factors together cause the duration of fault manifestation to

vary across a wide range of timescales. For instance, voltage fluctuations are typically



3

short-lived, on the order of several to hundreds of nanoseconds [12, 43]. Temperature

fluctuations alter a device’s timing characteristics over millisecond to second time scales

[69]. Finally, as wear-out progresses over the course of days, it may even cause intermit-

tent faults to become frequent enough to be classified as permanent [22]. Such a diverse

behavior of fault manifestation brings further challengesto system designers. Fault tol-

erant solutions proposed solely for permanent or for transient faults become insufficient,

as they rely on a fault to consistently manifest or never re-manifest itself. Instead, cost-

effective solutions capable of uniformly detecting all faults, identifying the fault type, and

then adaptively recovering the execution are necessitated.

The aforementioned reliability issues become even more severe when the impact

of temperature is considered. While thermal buildup [55] even now is a significant con-

cern, it will exacerbate as a result of the continuous scaling of circuit current, clock speed

and device density. As higher temperature accelerates the chemical processes taking place

inside the chip, the system will become more vulnerable to failure mechanisms such as

electromigration and dielectric breakdown [11]. It has been reported that a mere 10 –

15°C rise in the operating temperature could halve the life span of the circuit [87]. Higher

temperature also reduces the mobility of the charge carriers, thus diminishing the switch-

ing speed of the transistors. The amount of delay faults is expected to double [34] for

every 10°C increase in temperature. Moreover, as every 20°C increase in temperature

causes a 5-6% increase in Elmore delay in interconnects [5],clock skew problems also

become noticeable for temperature spatial variations of around 20°C and above. Finally,

these reliability and performance issues are worsened by the positive feedback loop be-

tween temperature and leakage power; leakage current is exponentially related to temper-

ature, exacerbating further the effects of the positive feedback.

1.1 Need for Execution Adaptivity

The projected degradation in device reliability, in conjunction with the high vari-

ability in application resource utilization, imposes stringent requirements for future multi-

core and many-core systems to displayexecution adaptivity. In the face of failing cores, it

will be out of necessity to suspend the failing computation.In the face of thermal stress, it

is preferable to shut or cool down the cores approaching thermal buildup thresholds, thus



4

in turn diminishing the extent of the factors that contribute to fault occurrences. Finally, in

the face of resource competitions, the reallocation of one application’s resource in favor

of another application will boost overall throughput of thesystem. Not only will future

multicore platforms be adaptive in the sense of deallocating cores, but conversely they

will be adaptive in the sense of pulling cores back into operation once the fault durations

have elapsed, heat driven throttling needs have abated, or resource competition pressures

have diminished.

Frequent renegotiation of resources is not the only capability an adaptive system

needs to have, though. While renegotiation addresses runtime resource variations from

a “recovery” perspective, techniques capable of “detecting” resource variations or even

“precluding” their occurrences are also indispensable. Prevention anddetection may be

easily achievable for certain causes of variations, such asresource competitions, as they

can be directly monitored by the operating system (OS). If a global view of the application

resource requirements is available, the OS may even be able to pre-adjust resource foot-

prints to prevent a potential competition. In an analogous manner, heat-induced resource

variations can also be quickly detected, as long as on-chip temperature sensors have been

pre-fabricated. Moreover, as temperature is a function of power density and floorplan

characteristics [41], a potential thermal stress can be prevented through either reducing

power consumption in the most-overheated components, or deterministically controlling

their access activity to balance power density.

Compared to resource competitions and thermal stress, the occurrence of exe-

cution faults is completely unpredictable and cannot be directly prevented.1 Instead, a

highly efficient detection mechanism, capable of scaling tothe projected high fault rate

is necessitated. Given the highly variable fault duration,techniques proposed solely for

permanent faults [7, 79] or for transient faults [66, 72, 73]are insufficient. Circuit level

replication techniques, such as Razor [28], fail to respondto the challenges imposed by

the highly variable manifestations of the faults given their high cost and inflexibility. In-

stead, an architectural-level technique, capable of delivering full fault detection capability

within minimum performance and heat overhead is necessitated.

Finally, providing execution adaptivity, while a highly desirable goal, needs to

1An indirect prevention of execution faults is possible, though. For instance, temperature-induced fail-
ures can be diminished through temporarily suspending the computation on a core that is sustaining thermal
stress.



5

pay utmost attention to questions of performance, power, and system organization, if it is

to be industrially relevant. Performance, which has alwaysbeen of great importance, is

becoming even more crucial given the projected high resource variations. Upon the detec-

tion of a variation, it is essential to minimize both the overhead in making reconfiguration

decisions and the overhead in migrating computation, so as to reconfigure the execution

before the next resource variation occurs. Power consumption also needs to be strictly

controlled, since the solutions of variation detection andresource renegotiation should

not create significant power overhead that may end up intensifying local heat buildup.

Clearly, as performance, power and heat characteristics are largely determined by system

organization, especially the underlying fabric topology,efficient adaptivity solutions also

need to be topology-aware.

1.2 Challenges to be Addressed

Delivering the aforementioned execution adaptivity raises numerous technical chal-

lenges. In particular, the needs for resource renegotiation, reliability enhancement, and

heat reduction should be attained in conjunction with the goals that designers already

face, such as computation efficiency, power and thermal budget, and predictability of

worst-case performance.

Fast, predictable, and localized execution reconfiguration

An adaptive multicore system should be able to reconfigure its execution to ei-

ther withstand a core unavailability, or make use of a previously deallocated core once

the cause of unavailability has been cleared. As variationsof resource availability are

expected to be frequent, the reconfiguration process shouldbe as quick as possible. Pre-

dictability of worst-case performance also needs to be guaranteed, as multicore platforms

are expected to be commonly used by deadline-driven realtime applications [2]. Mean-

while, as the interconnect cost becomes increasingly expensive in terms of both power

and performance, workload migration should be confined within a neighborhood as well.

The strict requirement of fast and predictable reconfiguration cannot be straight-

forwardly attained through adopting pure run-time techniques [18, 26, 89]. Although

these techniques naturally deliver adaptivity, the dynamic reactions waste significant com-



6

putation power and, due to their sub-optimal nature, unpredictably impact each applica-

tion. Not only do these techniques need to collect workload information from every corner

of the chip, but furthermore, the quality of reconfigurationdecisions is determined by the

complexity of the scheduling algorithms employed. The resultant communication and

computation overhead drastically increases as the number of cores in the system grows,

thus limiting the applicability of these techniques to systems of 100s of cores.

Neither do static techniques [21, 33, 44] that rely solely oncompiler analysis de-

liver efficient adaptivity though. It is true that compared to pure run-time techniques,

compiler-directed scheduling is more predictable and costeffective. Sophisticated appli-

cation information can be extracted, and aggressive heuristics can be employed to globally

balance the workload. However, the quality of static schedules degrades significantly in

a dynamic environment. While it is possible for the compilerto generate multiple sched-

ules that match diverse resource availability constraints, the numerous adaptivity needs

are difficult to plan and compile for. The overall impact of a resource variation on a stati-

cally generated schedule is determined by the exact time at which a variation in resource

availability occurs, which is essentially infeasible to predict statically.

Given the inability of pure run-time and pure compile-time techniques to deliver

execution adaptivity efficiently, it is desirable to develop ahybrid approach that can com-

bine the advantages of both, capable of reacting to unpredictable events while at the same

time exploiting intensive program information to guide runtime decisions. Yet deliver-

ing this hybrid scheme also raises numerous technical challenges. What is the form of

compiler analysis that embeds numerous reconfiguration possibilities in static schedules

in a compact manner? How to localize task migration in the reconfiguration process?

How is the reconfiguration process controlled by the runtimesystem? How to organize

the underlying multicore fabric to minimize workload migration overhead? Addressing

these questions requires the development of a collaborative framework between the OS,

the compiler, and the architecture, with the constraint of adaptivity taking center stage in

the design process.

Full variation detection capability within minimum overhe ad

To sense that an execution rearrangement is to be effected, an adaptive system also

needs frugal technical support for detecting resource variations induced by faults, thermal



7

stress, and resource competitions. Among these various issues, the detection of execution

faults is most challenging. On one hand, the projected high fault rate [22, 34, 47] argues

for solutions of maximal efficiency. As full fault coverage is still necessitated, however,

techniques [32, 71, 88] that reduce fault detection overhead at the cost of significantly

increased rates of undetectable faults are not applicable.On the other hand, the diverse

behavior of fault manifestation argues for solutions capable of uniformly detecting all

faults and then identifying the fault type. As the duration of fault manifestation varies

over nanosecond to second time scales, detection mechanisms that rely on a fault to never

re-manifest [66, 72, 73] or consistently manifest [7, 79] itself become insufficient.

Unlike regular storage structures that can be efficiently protected using Error Cor-

recting Codes (ECC), computation at various pipeline stages typically exhibits irregular

patterns, thus requiring the entire execution to beduplicatedin order to detect arbitrary

faults. Unfortunately, traditional duplication-based fault detection approaches impose

significant overhead either in checking execution results,or in constantly synchronizing

two computation copies for value checking [91]. While extrabuffers [72, 62] can be

inserted into the architecture to relax synchronization conditions, these centralized hard-

ware structures need to be constantly accessed, thus possibly ending up becoming thermal

hotspots.

The projected high fault rate additionally imposes strict requirements on the de-

velopment of a light-weight checkpointing scheme. Whenever a fault is detected, the

computation needs to be restarted from a previously saved clean state, i.e., acheckpoint.

In order for the computation to progress, a new checkpoint should be established before

the next fault occurs. The higher the fault rate is, the more frequently the computation

needs to be checkpointed. Yet in order to checkpoint the computation more frequently, the

associated computational overhead needs to be strictly controlled. Typically a checkpoint

is imposed on the processor state and the corresponding memory footprint. Yet check-

pointing the memory, as OS needs to be involved in, is usuallya quite expensive process

[13, 57] that induces significant context switch overhead. Accordingly, the development

of a light-weight checkpointing scheme requires the memoryto be strictly protected from

being polluted by execution faults.

In summary, the development of an efficient fault detection scheme for future mul-

ticore systems of elevated rates and diverse types of faultsimposesthreerequirements,



8

namely, attaining full detection capability within a minimum level of result comparison

and hardware duplication, maximally relaxing checking-induced synchronization condi-

tions with no reliance on any centralized hardware buffer, and minimizing checkpointing

overhead through strictly protecting memory against execution faults.

Maximum mitigation of thermal stress

As the system fault rates exponentially increase as peak temperature rises, miti-

gation of thermal stress can in turn reduce resource unavailability induced by both heat

buildup and execution faults. However, as overall system performance is still of great

importance, temperature reduction should not be attained through globally stalling [15]

or slowing down [80, 81] the computation of an overheated core.

As temperature is determined by power density as well as the heat dissipation

speed, the temperature distribution on a chip is typically asymmetric. This asymmetry

can be observed at both the core-level and the microarchitectural-level; not only may

the tasks assigned to different cores exhibit diverse powerbehavior, but furthermore the

various components of a core exhibit distinct size and access characteristics. This obser-

vation implies that peak temperature of the entire chip can be reduced through shifting

computation from a hot resource to a relatively cool resource. In particular, in an adaptive

system, execution schedules should be generated in such a way that the “hot” tasks are

distributed across various cores at different time. Meanwhile, for each individual core,

the peak temperature of the most overheated module should bestrictly controlled as well.

To perform thermal-aware task scheduling, the scheduler needs to obtain extra

information regarding system topology and power consumption characteristics of tasks

[23]. The challenge, however, is for the scheduler to consider temperature constraints

simultaneously with the other scheduling constraints, such as communication minimiza-

tion, workload balance, and execution adaptivity. The resultant drastically increased

scheduling complexity would impose significant computation overhead, if the schedul-

ing process is to be performed at runtime. This observation in turn argues for ahybrid

scheduling approach, wherein the compiler can exploit intensive program information to

guide runtime decisions.

Controlling the peak temperature of each individual core requires the identifica-

tion of the most overheated module. Previous research [81] indicates that the register file,



9

due to its high utilization and relatively small area, is oneof the hardware units most likely

to overheat. Moreover, due to the fact that 90% of the execution time is spent on loops

where only a small subset of registers is repetitively accessed, register file accesses also

exhibit high asymmetry during program execution. This asymmetric register utilization

may lead to considerable temperature differentials. Yet pure static register reassignment

techniques [40, 100] cannot completely eliminate the access asymmetry to each individual

register, since such asymmetry directly derives from the asymmetric variable utilization

of the program.

Given the inability of the compiler to completely balance register accesses, a dy-

namic mechanism needs to be developed to physically remap heavily accessed logical

registers prior to local heat buildup. Yet this task cannot be accomplished through the use

of a hardware renaming table [77]. Not only does such a mapping table impose notable

levels of of energy consumption, but more crucially, the table needs to be accessed using

the skewed register names, at a frequency no lower than that of register file accesses, thus

ending up itself becoming a temperature “hotspot”. This observation indicates that the

challenge for temperature-aware register remapping is to achieve this goal in atable-free

manner; the system needs to deterministically keep track ofrun-time register usage and

register mapping information. It is therefore necessary toestablish an agreement between

the compiler and the runtime remapping hardware, so that regularity can be embedded

within consecutive register accesses.

1.3 Contributions of This Thesis

The development of an adaptive execution framework for the next generation of

computer systems is a challenging task. In particular, to address the technical challenges

identified in the last section, the system needs aggressive technical support from the OS,

the compiler, and the architecture. A collaborative optimization framework needs to be

established.

In light of this observation, we establish in this thesis acompiler-directed run-

time optimizationframework, capable of efficiently coupling static program information

with runtime optimizations. Under this optimization framework, we furthermore intro-

duce several tightly-coupled techniques that contribute to the development of reliable and



10

adaptive multicore systems from the perspectives ofvariation mitigation, variation de-

tection, execution recovery, as well asarchitectural reorganizationfor a cost-effective

implementation of all these functions. The contributions of these techniques are summa-

rized as follows:

• A compiler-directed task scheduling framework, capable ofspawning regular, trans-

formable, and high-quality execution schedules in the faceof unpredictable runtime

resource variations. The pre-optimized schedules can be adaptively applied upon

runtime resource variations, thus delivering high-speed and low-cost reconfigura-

tion without any rescheduling decisions needing to be made on the fly.

• A scalable and shareable storage organization, capable of delivering high-speed

communications within a neighborhood. This organization enables the simultane-

ous migration of multiple tasks between distinct cores without inducing any inter-

ferences or network congestion. The inherent redundancy furthermore assures the

connectivity of the entire platform in the case of core or interconnect failures.

• An efficient fault detection mechanism, capable of minimizing fault detection over-

head while at the same time delivering full fault detection capability. Through

performing fault detection and checkpointing at the cache-memory interface, two

threads are able to run independently without constantly synchronizing for value

checking, while the memory is strictly protected against execution faults.

• An approach to reduce system peak temperature, through exploiting useful appli-

cation information to fine-tune a microarchitectural component intelligently. This

technique balances power density in the most overheated components, to wit, the

register file in each individual core, thus attaining temperature reduction and hence

enhancing overall system reliability at almost no cost.

To ensure that adaptivity can be attained in conjunction with the goals that design-

ers already face, all the aforementioned techniques are developed with the considerations

of minimizing power and performance impact, ensuring high predictability of worst-case

performance, and localizing communication and migration so as to fulfill interconnect

constraints. The successful incorporation of these techniques in future multicore systems,

I believe, will engender adaptive, scalable architecturesthat can seamlessly reshape exe-

cution paths and schedules in an amortizable, high-volume,fixed-silicon fabric.



11

1.4 Roadmap

The rest of the thesis is organized as follows. Chapter 2 reviews the current

state-of-art and analyzes the limitations of existing solutions of resource management,

fault tolerance, and heat reduction. Chapter 3 presents a system overview of the envi-

sioned adaptive multicore framework, focusing on the collaboration between the OS, the

compiler, and the architecture. Chapter 4 introduces a compiler-directed task schedul-

ing framework, wherein adaptivity is directly embedded into static schedules and task

migration is localized to satisfy interconnect constraints. The corresponding storage or-

ganization for minimizing migration overhead and accelerating neighborhood-centered

communications is presented in Chapter 5. Chapter 6 presents an architectural fault de-

tection and checkpointing scheme, wherein the cache designis extended to implement

fault detection, checkpointing and recovery. Chapter 7 presents a compiler-directed reg-

ister shuffling technique that effectively diminishes register access asymmetry with no

reliance on any hardware renaming table, thus preventing local heat buildup. Finally,

Chapter 8 summarizes the adaptive multicore framework and subsequently outlines a set

of possible future research directions.



Chapter 2

Related Work

While the underlying computational fabrics become increasingly dynamic and

unreliable, the applications to be held by these fabrics impose stricter requirements of

durability and safety. Researchers therefore have startedto address the increasing levels

of computation uncertainty from various perspectives.

First of all, given the diversity of the possible causes of execution uncertainty,

researchers have focused on thecharacterizationof the various causes of uncertainty,

including device failures and thermal stress, as well as themodelingof their effects on

system execution. Various circuit-level fault models havebeen built, architectural thermal

models have been constructed, and the system level fault manifestation behavior has been

studied. Meanwhile, researchers have also developed various techniques to overcome

execution uncertainty through eitherpreventinga cause of uncertainty from occurring,

or maskingits effect, ordetectinga cause and thenrecoveringthe system. Thepre-

ventionstrategy has been adopted for the control of chip-wide temperature, through the

adjustment of the floorplan and the layout of various hardware modules, or through the

adjustment of execution schedules to distribute “hot” tasks across diverse computational

resources. Themaskingstrategy has been adopted for the toleration of device failures at

the circuit-level, while thedetection-recoverystrategy has mainly been adopted for the

toleration of device failures at the architectural-level.Yet compared to thermal stress, the

toleration of device failures is more challenging, particularly due to the diverse behavior

in fault manifestation. A large number of fault detection mechanisms therefore have been

developed. These techniques target either faults in specific components, such as storage

12



13

units or the control flow [65], or specific types of faults, such as transient faults [72] or

permanent faults [79]. Additionally, once a fault has been precisely identified, it is neces-

sary to isolate the corresponding components through a dynamic reconfigurationprocess.

Researchers have therefore examined the various possibilities for reconfiguring the sys-

tem at various levels, for instance, at the component level to mask permanent faults [3],

or at the core level to migrate the workload [89].

Despite the existence of various types of solutions for overcoming execution un-

certainty, these solutions fall short of addressing the challenges induced by not only an

elevated rate, but furthermore a diverse behavior of execution uncertainty in future multi-

core and many-core systems. Due to the associated high overhead and the lack of pre-

dictability, these solutions fail to deliver the envisioned execution adaptivity in conjunc-

tion with the goals that designers already face, such as computation efficiency, power

and thermal budget, and predictability of worst-case performance. A detailed review of

the current state-of-art, as presented in the remaining parts of this chapter, clearly illus-

trates the limitations of existing resource renegotiation, reliability enhancement, and heat

reduction techniques.

2.1 Resource Renegotiation

The increasing possibility of resource variations requires a reconsideration of the

critical issue of scheduling the tasks of an application onto the cores of the target sys-

tem. Traditionally task scheduling can be performed eitherdynamically at run time, or

statically during compilation. The former approach delivers adaptivity straightforwardly,

yet the associated high overhead challenges its scalability as we move to systems of 100s

of cores and similar magnitude of concurrent tasks. The latter approach is more cost-

effective and delivers worst-case predictability. Yet thenumerous adaptivity needs are

difficult to plan and compile for.

Run-time solutions

In dynamic scheduling, the OS is typically employed to monitor resource avail-

ability and schedule tasks (that are ready to be executed) only to available cores, thus

naturally delivering resource reallocation upon runtime variations. In [18], upon a pro-



14

cessor failure, adynamicrescheduling approach is employed to reassign its workloadto

the remaining available processors. A similar approach is employed in [89]. The OS is

configured to use more virtual processors than the number of physical cores, thus tol-

erating variations in the availability of physical cores. The approach proposed in [26]

adapts application execution to the varying CPU availability for the purpose of minimiz-

ing the energy-delay product (EDP). It relies on a helper thread, running in parallel with

the application, to determine the ideal number of cores and the system configuration at

any given point in execution.

While pure run-time techniques naturally deliverexecution adaptivity, the dy-

namic reactions waste significant computation power and, due to their sub-optimal nature,

unpredictably impact each application. More specifically,if a core becomes unavailable,

its workload can be migrated either straightforwardly to its neighbor(s), or to the cores

with minimum workload. The former ad-hoc decision incurs negligible overhead yet typ-

ically induces workload imbalance, since the adjacent cores may have already been as-

signed a significant amount of workload. In comparison, the latter decision displays more

intelligence, yet imposes significant communication and computation overhead. First of

all, to globally balance the workload, the dynamic scheduler needs to collect workload

information from every corner of the chip. Clearly, the associated overhead drastically

increases as the number of cores grows. Meanwhile, as the quality of migration decision

is determined by the complexity of the scheduling algorithmemployed, the generation

of high quality decisions also introduces significant runtime scheduling overhead, at an

amount superlinearly proportional to the number of concurrent tasks in the system. For

example, the helper thread proposed in [26] needs to monitorthe applications’ EDP val-

ues through collecting performance counter information, and to determine the next system

configuration through curve fitting methods. The resultant appreciable communication

and computation overhead limits the applicability of thesefunctions to future multi-core

and many-core systems wherein the interconnect cost is projected to be high.

Compile-time solutions

Compared to pure run-time techniques, static scheduling ismore cost effective,

as it imposes neither run-time scheduling overhead nor communication overhead for col-

lecting workload information. As scheduling is performed offline at compile time, not



15

only can sophisticated application information be extracted, but also aggressive heuristics

can be employed to globally balance the workload. As a result, commercial embedded

systems, such as MARS [51] and XBW [19], typically use staticscheduling to ensure

timing predictability and other safety-related properties, such as design simplicity and

testability. However, the quality of traditional static schedules degrades significantly in

a dynamic environment. In fact, when generated offline, static schedules are typically

confined to the case of a fixed number of PEs, implying that a resource reduction usually

dooms the entire schedule to uselessness.

To enable static schedules to tolerate resource variations, redundancyneeds to be

built within the system. As a result, traditional static scheduling techniques either keep

spare processors [21] that can be used to replace failing ones, or back up each task [33, 44]

so that upon the failure of the primary copy, the backup copy of the task can be invoked.

The schedule should also have sufficient timing slack embedded [46, 61] so that upon a

core variation, recovery and migration can be carried out before any of the tasks reaches

its deadline.

Maintaining spare cores would be an efficient solution for fully connected sys-

tems, wherein one spare core is able to replace any of the remaining cores. Unfortunately,

in future multicore systems of hundreds of cores, full connection is impossible, which

in turn limits the replacement capability of spare cores. Computation on a failing core

cannot be directly migrated to a spare core if the two are not physically adjacent. In such

systems, it would be preferable to allocate more spare coresto regions of higher levels of

resource variations. Unfortunately, such an allocation strategy is impossible to determine

at compile time. As examined before, a core may become unavailable due to various

reliability, thermal or resource competition reasons, with neither the occurrence nor the

duration of unavailability being predictablea priori.

In theprimary-backupapproach, schedules should be generated in such a way that

the primary and the backup copies are scheduled on distinct processors. To reduce the

associated replication cost, backup overloading and backup deallocation are introduced

in [75]. Backup copies of multiple independent tasks are allowed to be scheduled on the

same or overlapping time intervals on a processor, and the resources reserved for a backup

task are reclaimed when the corresponding primary tasks complete successfully. These

techniques effectively improve resource utilization, while they are restricted to tolerating



16

only a single fault among the tasks with overlapped backup schedules.

In [58], a hierarchical scheduling approach is proposed. Task graphs are parti-

tioned into disjoint regions, for which multiple scheduleswith diverse performance and

power characteristics are generated. Such schedules are adaptive applied at runtime so as

to explore energy-performance tradeoffs. At first sight, itseems that this approach can

also be employed to overcome runtime resource variations, through the static generation

of multiple schedules that match diverse resource availability constraints, followed up by

a dynamic switch to a new schedule upon a variation in core availability. Unfortunately,

the overhead for storing all these pre-optimized schedulesin memory is quite high. More

crucially, the numerous adaptivity needs are difficult to plan and compile for, since it is

infeasible to predicta priori the exact time at which a variation in resource availability

occurs. Due to this limitation, these pre-generated schedules exhibit no timing regularity;

the execution order of tasks is not necessarily identical throughout the various schedules,

implying that a switch between these schedules requires a search process for identifying

the exact starting point. Neither do these schedules exhibit spatial regularity; a task may

need to be shifted across multiple PEs during the reconfiguration process, thus inducing

significant migration overhead and hence unpredictabilityof worst-case execution.

2.2 Reliability Enhancement

Increasing research attention has been paid to the incorporation of reliability en-

hancement solutions into computation systems, not only because of the elevation in fault

rates, but also because durability and safety have been identified as an important design

criterion for systems that hold server, defense, or medicalapplications. Semiconductor

companies have started as well to incorporate reliability support into their newly-released

designs, such as IntelQuickPath, and IBMPower6[59].

Given the severe power and cost constraints of modern multicore architectures,

the need for maximally efficient fault tolerance methods becomes increasingly critical

and urgent. It is thus essential to evaluate a technique not only by its effectivenessin

detecting errors and recovering execution, but more importantly by itsefficiencyin terms

of the associated performance, energy and hardware overhead.



17

Fault detection

In general, the detection of faults necessitatesredundancy, at an amount inversely

proportional to the regularity of the hardware components.Storage structures, such as

caches and memory, have regular patterns, thus enabling theuse of Error Correcting

Codes (ECC) and parity bits. Faults in instructions or in control flow can also be ef-

fectively detected bysignature monitoringtechniques [65, 73] through exploiting inter-

nal redundancies. As a comparison, computation structurestypically exhibit irregular

patterns, thus requiring the entire execution to beduplicatedin order to detect arbitrary

faults at various pipeline stages.

Conventional duplication-based approaches employ eithera time redundancyor a

spatial redundancystrategy for fault detection. Time redundancy, achieved byexecuting

a task on thesamehardware multiple times, is only effective for transient fault detection.

For instance, a number of software-based fault detection techniques replicate each in-

struction and add checking instructions to compare the results [73, 66]. These techniques

offer the flexibility of turning redundancy on and off in the generated code, while at the

same time imposing significant performance overhead due to the replication and check-

ing of instructions. Some researchers have proposed a set oftechniques [99] capable of

reducing such overhead by 50%, yet at the cost of reduced fault coverage.

Space redundancytechniques, on the other hand, duplicate a single task on mul-

tiple processors. Not only transient, but furthermore intermittent and permanent faults

can be detected, albeit at a cost of sizable hardware overhead. In theCompaq NonStop

Himalayasystem [91], each pair of redundant instructions is executed on two tightly-

coupled cores on a cycle-by-cycle basis. An instruction cannot be committed until its

correctness has been verified. The Dynamic Implementation Verification Architecture

(DIVA) [7] employsk simple checker cores to detect errors in ak-wide superscalar pro-

cessor. The BulletProof pipeline [79] uses built-in self-test to detect and precisely identify

the faulty unit. As the technique relies on a fault to consistently manifest itself, it is only

effective for permanent faults but not transient faults.

To attain full detection capability, previous techniques usually check all the store

instructions, and hold an instruction off commitment untilits correctness has been veri-

fied. This highly synchronized execution model significantly increases the latency of a



18

single instruction, thus delaying the release of hardware resources, such as physical regis-

ters and ROB entries in the architecture. Moreover, in the case when two redundant tasks

are being executed on distinct cores [91], both copies incurmis-speculated branches and

cache misses independently, leading to less efficient resource utilization and unnecessary

power dissipation. To relax the lock-step execution model,extra buffers are necessitated

so as to enable one thread to forward data to the other. For instance, the redundant mul-

tithreading approach (originally proposed in [72] for SMT cores and extended to CMPs

in [62]) requires anoutput comparatorto verify execution results, as well as aninput

replicator to ensure that both threads read identical input data. Typically these two com-

ponents are implemented through two centralized shared structures, namely, aLoad Value

Queueand aStore Queue. However, even with these queues, the two threads still needto

synchronize, as the leading thread needs to be stalled if either queue is full and the trailing

thread needs to be stalled if either queue is empty.

To reduce duplication overhead, researchers have developed a set ofpartial redun-

dancytechniques. Opportunistic Fault Tolerance [32] duplicates instructions only during

periods of poor single-thread performance. ReStore [88] does not explicitly duplicate

instructions yet considers mispredictions among highly confident branch predictions as

symptoms of faults. Slipstream [71] combines partial duplication and confident predic-

tions through creating a reduced alternate thread wherein many instructions are replaced

with highly confident predictions. These techniques sizably reduce duplication overhead,

however, at the cost of significantly increased rates of undetectable faults; faults in non-

duplicated instructions cannot be detected, if they do not lead to branch mispredictions.

Execution recovery

In addition to fault detection, the achievement of fault resilience also necessi-

tatesexecution recoverytechniques, which should either preclude faults from modifying

computation states, or roll the execution back to a previously saved clean state, i.e., a

checkpoint upon a fault. The first strategy is typically employed together with highly-

synchronized value checking. For instance, in both redundant multithreading cores [86]

and lock-step multiprocessors [31], instruction results cannot be committed into registers

or the cache until their correctness has been confirmed. In contrast, thecheckpointing

and rollbackstrategy allows results to be written into registers and thememory hierarchy



19

without being compared, yet needs to constantly check and save the computation state.

Upon the detection of any fault, the system reloads the most recent checkpointed state to

recover computation.

To establish a checkpoint, one set of techniques utilizes the virtual memory trans-

lation hardware [13], to create a backup copy before modifying any memory page. An-

other standard technique consists of the use of a recovery cache to record all the data

written in memory that are part of a checkpoint state [57]. Every store to a memory

location must be preceded by a load to maintain the data in therecovery cache. These

hardware-oriented backup techniques impose not only storage but also performance over-

head constantly on the system. To reduce such overhead, the CARER scheme [42] uses a

normal cache with a writeback update policy to assist rapid rollback recovery. The work

is subsequently extended to shared-memory multiprocessors through synchronizing the

processors whenever one needs to take a checkpoint [45]. Software checkpointing [14]

has also been proposed, yet at the cost of additional supportrequired from the compiler

and/or the OS.

While a single task can be checkpointed independently, a parallel application re-

quires the coordination of dependent tasks in the checkpointing process.Coordinated

checkpointing[17, 82] can be attained by stalling and validating all computations and

communications in an ordered manner.Uncoordinated checkpointing[64], in contrast, is

performed independently on each core. While this strategy eliminates the global synchro-

nization requirement of coordinated checkpoints, multiple checkpoints need to be stored

on each core, and the rollback process furthermore requiresthe identification of a check-

point with a consistent state. To eliminate potentialdomino effectswherein no consistent

checkpoint can be found, researchers have introduced extraconstraints on checkpointing

sequences based on, for example, the communication patterns [37] of applications.

Another set of techniques aim to continue to use a core despite permanent faults,

through the use of finer-grained fault masking strategies. These techniques involve fine-

grained testing, diagnosis [29], and recovery of core components.Configurable isolation

[3] is a technique that performs reconfiguration at the micro-architectural level. When

a component suffers a fault, processor resources are reallocated and partitioned dynami-

cally so as to isolate the component and subsequently migrate its workload.StageNetSlice

[35] is a processor core comprised of networked pipeline stages. It relies on a reconfig-



20

urable network of replicated processor pipeline stages to maximize the useful lifetime of

the chip. In [68], the authors exploit cross-core redundancy, and use hardware to migrate

offending threads to another core that can execute the operation. Clearly, the reconfig-

urability offered by these techniques is at the component level; the faulty functional unit,

register, or cache block is isolated so that the core can still operate in a degraded perfor-

mance mode.

2.3 Heat Reduction

Modeling temperature and the effects of temperature on reliability is essential

for the simulation and analysis of heat reduction policies.The adverse impact of op-

erating temperature on system reliability has been studiedextensively. Researchers have

built either analytical or experimental models for temperature-induced fault rate increases,

such as delay violations [34], negative bias temperature instability [53], neutron-induced

latchup [27], and on-chip interconnect [5]. In comparison,thermal modeling is typically

accomplished by constructing an equivalent RC network of the given chip. Heat flow is

analogous to the current passing through a thermal resistance in the RC network. The

transient behavior of temperature is modeled by means of thethermal capacitance. Ar-

chitectural thermal models of this type, such as theHotSpot[41], have been developed for

calculating transient temperature response, for the givenfloorplan, package, and power

consumption characteristics of various components.

In general, temperature is determined by power density as well as the heat dissi-

pation speed. A traditional approach to accelerating the latter factor is through packaging

and cooling solutions. Yet such solutions have been typically targeted for the worst case

peak temperature, resulting in an extremely expensive packaging cost with the ever rising

temperatures (approximately $10 per Watt above 65°C). To keep the chip-wide tem-

perature within the thermal capacity of the cooling package, researchers have proposed

various architectural-level thermal management techniques to either reduce the access fre-

quency to an overheated unit, or physically redistribute accesses before heat gets locally

accumulated.



21

Access frequency reduction

System-levelDynamic Thermal Management(DTM) techniques control thermal

hotspots by keeping the temperature below a critical threshold. Once a core reaches the

thermal threshold, heat accumulation is slowed down eitherat fine granularity through

clock gating [60], fetch toggling [80], decode throttling [9], frequency and voltage scaling

[81], or at coarse granularity through periodically stopping the computation to induce

cooling [15]. Obviously, slowing down or stopping the entire computation engenders

significant performance degradation.

As different components exhibit diverse access and power consumption character-

istics, local “hotspots” may reach critical temperature levels regardless of average or peak

external package temperature of the entire chip. In particular, due to its high utilization

(accessed 2–3 times per instruction) and relatively small area, theregister filehas been

established as one of the most overheated hardware units in current processors [81]. Gate-

level techniques, such as single- or multi-level banking [24] and bit-partitioning [49], can

be employed to reduce the power consumed in each register fileaccess and, hence, the

peak temperature. Researchers have also proposed the incorporation of an extra register

file [81] to increase the average idle time. Unfortunately, maintaining a duplicated regis-

ter file requires the context of one register file to be periodically copied into the other. To

preclude local heat buildup, the two register files also needto be physically distributed,

thus engendering sizable increases in chip area and wiring complexity as well.

Although temperature increase is induced by power dissipation, it needs to be

noted that power reduction techniques do not necessarily offer temperature reduction.

For instance, the technique proposed in [8] switches the unused registers into hibernation

to save leakage power. Yet peak temperature cannot be reduced since frequently accessed

registers still consume power at levels identical to the original case. Another power-

reduction technique [63] unevenly partitions the registerfile into two banks and maps

the most frequently accessed registers into the smaller bank. However, as most accesses

are directed to the smaller bank, the power density difference between the two register

banks is enlarged, thus questioning its effectiveness in controlling peak temperature. The

review of these techniques indicates that a power reductiontechnique can be employed

for temperature control purposes if and only if the technique can reduce the peak power



22

consumption in one of the overheated components in a system.

Access redistribution

Another set of techniques aim to attain thermal management through shifting com-

putation from a hot resource to a relatively cool resource. These techniques are effective

because the temperature distribution on a chip is typicallyasymmetric; not only may the

tasks assigned to different cores exhibit diverse power behavior, but furthermore the var-

ious components of a core exhibit distinct size and access characteristics. In light of this

observation, researchers have proposed to either statically preadjust workload distribu-

tion [23], or dynamically migrate computation before heat gets locally accumulated, at

the granularity of functional units [39], pipelines [39], execution clusters [20], or even

cores on a single chip [69]. Overheated resources, such as the register file, can also be

physically distributed into multiple clusters [20] to accelerate heat dissipation.

A detailed examination into program execution indicates that register accesses

also exhibit high asymmetry. This is because 90% of the execution time is spent on loops

where only a small subset of registers is repetitively accessed. This asymmetric register

utilization furthermore leads to considerable temperature differentials, since most of the

heat generated within a microarchitectural block is dissipated vertically to the heat sink

rather than laterally to adjacent blocks [81]. To overcome this access asymmetry, thermal-

aware register reassignment techniques [40, 100] have beenproposed. Both techniques

reduce the level of asymmetry in register accesses through mapping the most frequently

accessed registers to distinct register banks. However, asboth techniques need to revisit

the NP-hard problem of register allocation, the quality of the solutions is determined by

the quality of their heuristic algorithms. More crucially,no matter how good the heuristics

are, such techniques cannot completely eliminate the access asymmetry to each register,

since such asymmetry directly derives from the asymmetric variable utilization of the

program. As a result, these techniques can only attain a coarse-grained access balance, at

the granularity of register file banks instead of individualregisters.



Chapter 3

Adaptive System Overview

The development of an efficient adaptive system addressing the technical chal-

lenges identified in Section 1.2 requires the construction of a collaborative optimization

framework with aggressive technical support from the OS, the compiler, and the architec-

ture. A compiler-directed run-time optimization frameworkis therefore proposed in this

thesis. At compile time, program information can be extracted and synthesized statically.

Such information is to be transferred to, and efficiently utilized by the runtime system,

so that the OS can make superior dynamic decisions and architectural components can be

fine tuned accordingly.

3.1 Compiler-directed Runtime Optimization

The proposed compiler-directed run-time optimization framework contributes to

the development of an efficient adaptive system in various aspects, as shown in Figure 3.1.

Perhaps most importantly, it can effectively reduce the overhead in adapting the compu-

tation upon unpredictable runtime variations. Such overhead consists of two parts, the

overhead in making runtime re-scheduling decisions, and the overhead in migrating the

code and the data sets of the tasks to be re-scheduled. The former type of overhead can be

reduced through constructing ahybrid scheduling frameworkbetween the compiler and

the OS. Through sophisticated static planning, the compiler can generate high-quality

adaptive execution schedules, with pre-optimized reconfiguration decisions statically em-

bedded. Upon resource variations, the OS can adaptively apply such schedules without

23



24

localized workload migration fast & predictable reconfiguration

thermal−aware scheduling

checkpointing

light−weight
fault detection &

thermal−aware register shuffling

OS

compiler

architecture

Figure 3.1: Collaborative Optimization Framwork

any rescheduling decisions needing to be made on the fly. In comparison, the latter type

of overhead can be reduced through a collaboration between the compiler and the archi-

tecture. In the face of the increasing interconnect cost in future systems, the compiler

can pre-optimize the adaptive schedules in such a way that task migration is localized yet

still sufficient for workload balance. Meanwhile, the system architecture, specifically, the

storage units (i.e., cache and memory) can be organized in a locally shareable manner,

thus allowing tasks to be migrated between adjacent cores with no reliance on physically

moving the code and data set around.

The exploitation of compiler-directed optimizations is additionally beneficial for

reducing system peak temperature. At the core level, it is clear that temperature can be

effectively balanced by the compiler; through performing aggressive thermal-aware task

scheduling, the compiler can, without imposing any runtimeoverhead, effectively prevent

any core from constantly being assigned “hot” tasks. Perhaps a more interesting observa-

tion is that within each individual core, the compiler can also diminish a local temperature

hotspot induced by unbalanced component accesses. Taking the register file for example,

the compiler can deterministically control the dynamic register remapping so as to balance

the accesses to individual registers for heat reduction purposes. Through exploiting the

fact that no fixed, preordained correspondence exists between program variables and reg-

ister names, the compiler can establish a certain property between consecutive accesses

to each register, thus enabling the hardware to redirect register accesses with no reliance

on a mapping table.

Among the various issues that may induce variations in resource availability, exe-

cution faults exhibit the highest level of unpredictability. As a result, compared to work-



25

load migration and heat reduction, the utilization of compiler-extracted application infor-

mation for fault detection purposes might be less effective. Although program informa-

tion such as execution invariants and the range of executionresults [76] can be utilized to

quickly identify a certain set of faults, due to the diverse behavior in fault manifestation,

such compiler-extracted information proves insufficient in providing full fault coverage.

Instead, an efficient achievement of full detection capability should rely on a dynamic

collaboration between the OS and the architecture, as shownin Figure 3.1. By provid-

ing architectural support for fault detection purposes, the OS can efficiently monitor core

availability and coordinate the checkpointing process of dependent tasks. Specifically,

an architectural examination indicates that caches, whichserve as temporary storage for

the main memory, can possibly be utilized to temporarily hold unconfirmed execution

results for fault detection purposes. The architecture canbe tuned in such a way that

two redundant tasks share a single cache, with one task capable of directly checking the

execution results of the other, thus efficiently deliveringfull fault detection capability.

Meanwhile, as only confirmed results are allowed to be written to the lower level storage,

the checkpointing overhead can be strictly controlled as well.

To provide a clearer picture of the proposed collaborative optimization framework,

we herein summarize the tasks to be performed by the compiler, the OS, and the hardware.

The compiler plays a crucial role in guiding runtime reconfiguration decisions

and preventing local heat buildups. In brief, it is responsible for:

• Generating task schedules with the consideration of both performance and reliabil-

ity constraints. The goal is not only to embed reconfigurability into the schedules,

but also to separate “hot” tasks into PEs that are not physically close to each other.

• Embedding regularity into static register names to enable adeterministic register

access balance for heat reduction purposes.

• Extracting the characteristics of the reconfigurable schedule to guide dynamic work-

load balance. These characteristics include the minimum and the maximum number

of cores needed to execute a schedule block, as well as the control and data depen-

dences between schedule blocks.

With the statically extracted scheduling information at hand, theOS support

needed in the proposed adaptive system is minimized. In brief, only a subset of standard



26

OS functionality is needed, including monitoring core availability and program resource

demands, and signaling adaptivity needs, if necessary.

• Monitoring the status of a core, which can be eitherbusy, or idle, or unavailable

due to thermal stress or device failures. The OS therefore needs to keep track of the

information regarding fault detection and the temperatureof each PE.

• Dispatching pre-optimized schedule blocks to a set of idle cores. The statically ex-

tracted information regardinginter-block dependenceswill be utilized to determine

if a schedule block is ready for execution, while the minimumand maximum num-

ber of cores needed for that schedule block will be utilized to select an appropriate

set of cores.

• Adjusting application resource footprints to handle unexpected resource requests

or unpredictable core failures. To effectively hide the decision-making latency, the

OS adopts a 2-step approach. At the beginning, a reconfiguration step is invoked

so that the corresponding application can isolate the problematic core. Then, the

OS will check the availability of cores and the predicted resource requirements of

various applications to make a globally optimized reallocation decision.

Finally, to support task migration, fault detection, and heat reduction, the under-

lying architecture needs to be extended in three directions.

• Reorganization of the system topology to locally share storage units among cores,

so as to mitigate task migration overhead and accelerate neighborhood-centered

communications.

• Extension to the cache design to implement a light-weight fault detection and check-

pointing scheme.

• Extension to the register file design to implement a deterministic register shuffling

mechanism.

3.2 Hybrid Scheduling for Resource Management

To concretely illustrate the advantages of the proposed optimization framework

in efficiently delivering adaptivity support, we here provide a system overview of the



27

proposed resource management approach, focusing on the collaboration between the OS

and the compiler.

To attainexecution adaptivityin a fast and predictable manner, the proposed multi-

core system employs a hybrid, hierarchical scheduling approach. At compile time, a static

scheduler is responsible for generating reconfigurable schedules capable of tolerating core

degradations for each application individually. Meanwhile, the information regarding the

minimum and the maximum number of cores needed to execute these schedules is ex-

tracted to guide dynamic workload balance. At runtime, withthe statically extracted

scheduling information at hand, the OS only needs to performscheduling at the applica-

tion level. Specifically, the OS is responsible for dispatching the pre-optimized schedule

blocks to a set of cores, monitoring core status, and adaptively adjusting application re-

source footprints upon variations in resource availability.

The collaboration between the static scheduler and the OS inadapting system ex-

ecution can be illustrated more clearly by considering an example wherein an unexpected

device failure occurs, resulting in one of the cores allocated to to the application, denoted

asApp R, to fail during execution. In general, the handling of this case can be parti-

tioned intothree major steps. Initially, upon a reduction in the number of available cores,

App R reconfigures its own execution to withstand this failure, with the reconfiguration

decisions made based on the compiler-generated adaptive schedules. Meanwhile,App R

reports the failure to the OS and sends a request for an extra core. Once the OS receives

this resource request, it determines whether or not to allocate an extra core toApp R.

Under the steady state assumption that all the cores are in use, the OS prioritizes through

system topology considerations by examining the cores thatare physically connected to

the remaining cores ofApp R. By comparing the reconfiguration overhead against the at-

tainable benefits of workload balance, the OS decides whether to reallocate a specific PE

and furthermore what the appropriate time instance for reallocation is. Finally, if the OS

has decided to reallocate the core currently used byApp S to App R, both applications

reconfigure their execution in order to deactivate or utilize the core in negotiation.

The hybrid scheduling policy can effectively combine the advantages of static

scheduling and dynamic scheduling. At compile time, the tasks of an application and

the associated communication patterns can be largely determined. This information can

be used for guiding resource reallocation decisions. The compiler can employ complex



28

algorithms, without imposing any runtime decision making overhead, to globally balance

the workload in the reconfigurable schedules. Meanwhile, through exploiting the extra

degree of freedom inherent in generating schedules, the compiler can embed regularity

into the schedule at almost no cost. The schedule can be optimized in such a way that

during the reconfiguration process, localized task migration is sufficient for workload

balance, thus fulfilling the strict interconnect requirements. At runtime, in comparison,

scheduling only needs to be performed at theapplication level, with context switches

performed on all the tasks of an application in a synchronized manner. Upon a variation

in resource availability, the OS only needs to signal one or more applications to perform

the pre-optimized reconfiguration process, thus significantly reducing runtime scheduling

overhead and hence improving system scalability.

As reconfigurable schedules are generated at compile time, they face the common

challenge of static scheduling, namely, the precise delineation of the schedule in the face

of dynamic variations intask execution time. In general, variations in task execution are

typically induced by three issues:unpredictable architectural events, resource competi-

tions, andinput-dependent computation variation. Yet a careful examination shows that

in the proposed hybrid scheduling scheme, these three sources of execution uncertainty

can be maximally diminished.

• Unpredictable architectural events, such ascache missesor branch mispredictions,

only result in variations of tens of cycles. Such small variations can be further re-

duced through architectural techniques such as data prefetching [101] or predicated

execution [67].

• Resource competition among applications may cause a task inexecution to be sus-

pended, thus inducing unpredictability in its execution time. However, as in the

proposed adaptive system, context switches are performed on all the tasks of an ap-

plication in a synchronized manner, this type of interference can also be completely

eliminated.

• As traditional parallelization techniques typically partition loops into a fixed num-

ber of tasks, the number of iterations in each task may be input-dependent, resulting

in sizable variations in execution latency. Yet in the proposed system, this source of

variation can be minimized throughfixing task granularityduring loop paralleliza-



29

tion. The execution time of these tasks therefore becomes largely identical, while

the number of tasks is input dependent. Yet the schedule is still highly predictable

at compile time, as such highly similar tasks can be capturedin repetitive blocks in

the schedule.

Utilizing the aforementioned techniques, the variations in task execution time can

be strictly controlled. During static scheduling, we can therefore assume a worst-case

execution time (WCET) [90] for each task to attain predictability, without resulting in

sizable amount of unnecessary performance degradation.

3.3 Possible Scenarios for Adapting the Computation

The aforementioned resource management scheme effectively delivers fine-grained

and predictable execution adaptivity in future multicore systems. The compiler-directed

reconfiguration process can be invoked for various purposes, such as fault tolerance, ther-

mal management, and workload balance purposes. To concretely illustrate the envisioned

adaptive system, we herein present a number of possible scenarios wherein the system

has neither idle nor spare cores, yet the proposed scheme canstill deliver superior perfor-

mance and predictability in the reconfiguration process. Toperform worst case analysis,

we only assume minimum reconfiguration capability of each schedule, that is, the sched-

ule generated for each application is only capable of tolerating single resource variation.

Tolerating single core degradation:This is the most straightforward case, as the sched-

ule of each application is capable of tolerating single coredegradation. With no need for

the OS to make any decision, only the application to which theunavailable core belongs

needs to go through a reconfiguration process. As an example,a comparison between Fig-

ures 3.2a and 3.2b shows thatP2 that used to belong to ApplicationA has been isolated

with no influence on the resource footprints of ApplicationsB andC. Clearly, if such a

degradation is not permanent, the core can be re-utilized once the cause of unavailability

(e.g. a thermal stress) is cleared.

Tolerating multiple core degradation: If each unavailable core belongs to distinct ap-

plications, it can be handled individually using the aforementioned scheme. If, on the

other hand, more than one core of an application become unavailable, the OS needs to ne-



30

P2P1 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12(e)

App A App B App C

P2P1 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P2 failed

P2P1 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P2P1 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12(c)

(d) P2P1 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

App A

App A

App A

App A

App B

App B

App B

App B

App C

App C

App C

App C

P2P1 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

App B App CApp AApp D

(f)

(b)

(a)

P1 reallocated

P2 & P3 avaiable

P3 failed
P5 reallocated

P9 reallocated

P6 reallocated

Figure 3.2: Various scenarios for utilizing adaptive execution

gotiate resources among applications that are physically adjacent. A concrete example is

shown in Figure 3.2c, whereinP2 andP3 that used to belong to ApplicationA have been

isolated. Assuming that the pre-optimized schedule of Application A can only tolerate

one core degradation, the OS needs to reallocate one more core toA. Therefore, not only

A but also one of its neighbors, namely, ApplicationB, needs to go through a reconfigu-

ration process. More generally, if each application is capable of tolerating a reduction of

up tom cores, the toleration of a reduction ofn cores requires⌈n/m⌉ applications to go

through a reconfiguration process.

Globally balancing workload: Once the system has encountered unpredictable resource

reductions, the application(s) with reduced resources mayend up dominating the exe-

cution time of the entire system. To re-balance the workload, the OS can periodically

invoke reconfiguration processes, so that a limited number of cores can be shared among

multiple adjacent applications using a time-multiplexingstrategy. This scenario is con-

cretely shown in Figures 3.2c, 3.2d, and 3.2e, whereinP9 is shared between Applications

B andC, while P6 is shared between ApplicationsA andB. It needs to be noted that

unlike traditional context switches, the overhead of this time-multiplexing is very limited,

as sharing is performed in a coarse-grained manner with onlya highly limited number of



31

cores involved.

Accommodating more application(s):When one more application is invoked, the num-

ber of free cores in the system may fall short. Traditional resource management tech-

niques would require cores to be time-multiplexed among multiple applications, engen-

dering in turn significant context switch overhead. In contrast, in the proposed adaptive

system, the OS can force each of the existing applications togo through a single recon-

figuration process and give up one core, until there are sufficient resources for the new

application to be executed. This scenario is concretely presented in Figure 3.2f. A com-

parison between Figures 3.2a and 3.2f shows that each of the three existing applications

yields one core, thus delivering a total number of 3 cores to ApplicationD. Clearly, this

solution delivers superior performance as compared to the traditional time-multiplexing

solution, as the distinct applications perform reconfiguration simultaneously.

Prevent potential thermal stress:One standard approach for the OS to mitigate thermal

stress is to force the corresponding application to performa reconfiguration process in

order to move the “hot” tasks scheduled on an over-heated core to other cooler cores.

However, because the heat of the hot core will be dissipated to its neighbors, in an extreme

case all the cores that are currently allocated to that specific application may also suffer

from a potentially high temperature. In this situation, theOS could benefit from the

allocation of an extra core to that application, with “hot” tasks thus being distributed into

more cores so as to increase the average idle time of each core, thus reducing the rate of

heat accumulation.



Chapter 4

Core-level Reconfiguration

After introducing the adaptive multicore platform and optimization framework,

we proceed to look into the various techniques needed in an adaptive multicore platform.

In the face of the highly unpredictable yet frequent occurrence of runtime resource vari-

ations, the fundamental requirement in an adaptive system is to rapidly make intelligent

execution reconfiguration decisions, with highly predictable impact on each individual

application. As mentioned before, this can be attained through acompiler-directed or-

derly reconfigurationtechnique.

The main advantage of the proposed technique is its ability to compactly capture

in readiness a set of possible execution schedules that match diverse resource availability

constraints. Such schedules can be adaptively applied uponrun-time resource variations,

thus delivering regular and predictable reconfiguration responses without any reschedul-

ing decisions being made on the fly. More importantly, theregularity inherent in the

proposed reconfiguration process ensures that most of the inter-task dependences can be

naturally preserved. For the remaining dependences, the compiler can also preserve them

at almost no cost, through the exploitation of theflexibility in scheduling tasks on non-

critical paths. Further schedule length reduction can be attained through acore reorder-

ing technique that exploits, during the scheduling process, the extra degrees of freedom

in assigning tasks to cores. As traditional schedules are generated with no regard to spe-

cific core positions, they offer the opportunity of manipulating core positions during the

scheduling process, which we exploit to maximally diminishthe adaptivity-induced per-

formance impact while retaining all the concomitant benefits.

32



33

In this chapter, we first illustrate the proposed approach for partitioning a sched-

ule into regular yet shiftablebandsto tolerate single core deallocations. Subsequently,

we present a core reordering technique for mitigating the impact of adaptivity on sched-

ule length, as well as various techniques for improving the performance of the proposed

scheduling approach when it is applied to arbitrary task graphs. In Section 4.4, the band

partition technique is extended and generalized to developgraded reconfigurability for

the toleration of multiple resource variations.

4.1 Adaptive Static Schedules

The success of the proposed adaptive execution framework hinges on the genera-

tion of adaptive static schedules, capable of tolerating core degradations. In this section

we illustrate the proposed scheduling ideas through the examination of acanonical sched-

ule example, wherein a parallel loop is decomposed into multiple tasks with largely iden-

tical execution time and inter-task communication latency. To simplify our analysis, we

herein focus on the toleration ofsingle core deallocations, in the context of a multicore

system with homogeneous processing elements (PEs). Yet it needs to be noted that by

individually applying the technique to various classes of processing units, the proposed

technique can be easily extended to heterogeneous MPSoCs.

4.1.1 Band Partitions of Execution Schedules

To incorporate dynamic reconfigurability directly into MPSoC schedules, we pro-

pose to statically partition a schedule into a set of regularyet shiftablebands. Essentially,

a schedule withn cores andm timing steps can be viewed as an × m rectangle. Upon

a resource reduction,schedule reconfigurationconsists of cutting the initial schedule into

multiple pieces, and reorganizing these pieces to form a(n − 1) × (m + 1) rectangle.

The challenge is to cut the initial schedule in an intelligent manner such that the shapes

of the pieces enable the development of a rapid reconfiguration process. This is attained

by adopting aBand & Block (BB) partition approach.

To concretely illustrate the proposed band-partition approach, a canonical sched-

ule example is presented in Figure 4.1, wherein 24 tasks of identical execution time are



34

band partition line

block partition line

0

2

4

6

0

2

4

6

8

0

2

4

6

P4 P3 P2 P1 P4 P3 P2 P1 P3 P2 P1

(b) Partitioned into LU blocks

12

8

4

16

20

24

11

7

3

23

15

19

10

6

2

18

22

14

5

1

9

13

17

21

L

L

time

R

R

9

12 11 10

8 7

4 6 5

3 2 1

15 14 13

16 18 17

20 19 21

24 23 22L

L

time

R

R

(c) Reconfigured schedule(a) Initial schedule

12

8

4

16

20

24

11

7

3

23

15

19

10

6

18

22

14

2

5

9

13

17

21

1

time

Figure 4.1: Reconfigurable static schedules: band structure

statically scheduled onto a multicore system consisting of4 processing elements(PEs).

Figure 4.1a presents the initial scheduling results, with each rectangle labeled with a num-

ber denoting a task and each column representing one PE. The band-level partition of the

initial schedule is presented in Figure 4.1b. As can be seen,the whole schedule ishor-

izontallydivided into twoBasic Reconfiguration (BR) blocks, with each BR block fur-

thermore partitioned into two bands, aLeft (L) bandand aRight (R) band. To form these

partitions, two distinct types of lines are conceptually imposed on the original schedule:

Block partition line: the straight horizontal line between two sequential BR blocks.

Band partition line: the staircase line between the L and the R band within the sameBR

block.

The outlined shape of the L and the R band enables a highly regular task reassign-

ment capability upon a dynamic resource variation. By comparing Figures 4.1b and 4.1c,

it can be clearly observed that in both thepre-and thepost-reconfiguration schedules,BR

blocks, the minimal reconfiguration units, are executedsequentially in the same order.

On the other hand, in eachBR blockthe wholeL band is shifted in a regular manner

relative to theR band, that is, one timing step down and one PE to the right, as shown

in Figure 4.2a. This allows all the tasks within eachBR blockto be completed with one

less PE, albeit with an additional timing step after reconfiguration. More crucially, this

reassignment process displays high regularity, achievable independentof the PE being

removed. In comparison to Figure 4.2a, Figures 4.2b, 4.2c, and 4.2d respectively show the



35

P4 P3 P2 P1P4 P3 P2 P1P4 P3 P2 P1 P4 P3 P2 P1

(a) Isolate P4 (b) Isolate P3 (c) Isolate P2 (d) Isolate P1

R

L

R

L

R

L

R

L

Figure 4.2: Regularity in task reassignment

required task shifting directions for tolerating the deallocation ofP3, P2, andP1. It can be

seen that all the reassignment processes in Figure 4.2 are highly regular in that not only

does the entire band of tasks share an identical timing offset (temporalreassignment), but

also task transfers are only performed between adjacent PEs(spatialreassignment). Such

regularity thus enables a predictable reconfiguration process to be attained without any

rescheduling decisions being made on the fly, thus drastically reducing reconfiguration

overhead.

Another important benefit of the proposed adaptive schedules is that both thepre-

and thepost-reconfiguration schedules are able to makefull utilization of the available

hardware resource. This benefit is directly derived from thesize of each BR block. Each

BR block in Figure 4.1 contains4 ∗ (4 − 1) = 12 tasks, thus enabling it to be executed

either by 4 PEs in 3 timing steps (as in Figure 4.1b), or by 3 PEsin 4 timing steps (as

in Figure 4.1c). More generally, the attainment of full resource utilization requires the

following block size constraint to be imposed:

Block Size constraint: A full utilization of PEs in both the pre- and the post-

reconfiguration schedules requires eachBR block to containn ∗ (n − 1) tasks in

order to tolerate a deallocation of one out ofn PEs.

4.1.2 Inter-task Dependence Variations

One fundamental requirement for any reconfiguration technique is to preserve the

partial ordering imposed by inter-task data and control dependences. A significant benefit

of the proposed orderly reconfiguration scheme is that the regularity inherent in band

partitions enables most dependences to be naturally preserved. Specifically, as a result

of the proposed block and band partitions, the dependences among tasks can be naturally



36

R2L dependence
Intra−band dependence

L2R dependence

4

Pd Pc Pb Pa

5

9

7

23

12

Pd failed

Pb PaPc

64

3 2

12

7

5

9

(a) Pre−reconfiguration

R

L

(b) Post−reconfiguration

R

L

Figure 4.3: Timing variations of inter-task dependences

classified into four categories:inter-block dependences, intra-band dependences, R2L

dependencesand L2R dependences. Among these four categories, the first three can

be naturally preserved. In this section, we will first illustrate this natural preservation

property1, and subsequently outline a scheduling constraint for the preservation ofL2R

dependences.

As BR blocks are executed sequentially in the same order bothbefore and after

reconfiguration, the timing slack of aninter-block dependencewill never decrease. Mean-

while, dependent tasks lying within the same band retain their relative timing and spatial

positions during reconfiguration, implying thatintra-band dependencescan also be natu-

rally preserved. This property can be observed from the timing positions of tasks (2, 5)

and (7, 12) in Figure 4.3b.

As the L bands are shifted downwards relative to the R bands, the timing slack

of anR2L dependencewill always increaseafter reconfiguration, while the timing slack

of an L2R dependencewill always decrease. Accordingly,R2L dependencescan also

be naturally preserved, as confirmed by the timing positionsof tasks (2, 7) and (3, 7)

in Figure 4.3b. On the other hand, forL2R dependences, a violationmay occur if the

original timing slack is insufficient. As an illustrative example, in Figure 4.3a task 9 is

scheduled to be executed after the predecessor task 7, yet inFigure 4.3b these two tasks

are scheduled at exactly the same timing slot, thus incurring a reconfiguration-induced

semantic violation.

The analysis above clearly confirms that the regularity associated with the recon-

1To clearly illustrate the impact of reconfiguration, we decouple its timing andspatial impacts in our
analysis. Here we analyze itstiming impact, while the communication overhead is assumed to be negligible.
Thespatial impact of reconfiguration on communications will be analyzed in Section 4.3.2.



37

figuration process enables most inter-task dependences to be preserved naturally. As a

result, during the scheduling process, the compiler only needs to pay attention to the

L2R dependences. A potential dependence violation would only take place if two depen-

dent tasks not only straddle the left to right direction divide between bands, but also are

scheduled with no extra timing slack in between. This easilyrecognizable pattern can be

avoided by the compiler through imposing a certain amount oftiming slack between two

tasks that form anL2R dependence, such as tasks 4 and 9 in Figure 4.3a. This property

can be formalized as the followingspatial-temporal (S-T) constraint:

S-T constraint: to preserve the correct execution order after reconfiguration, two

tasks with an L2R dependence need to have an intervening slack of a single timing

step in the initial schedule.

4.2 Performance-oriented Core Reordering

As the aforementioned S-T constraint may increase the timing slack between two

dependent tasks forming L2R dependences, it may end up increasing the overall sched-

ule length of the entire schedule. However, such performance impact can be maximally

diminished by the compiler, through the exploitation of thefollowing two types of extra

flexibility inherent in task scheduling:

• As the tasks of a given application typically display varying amounts of criticality,

tasks on non-critical paths can be scheduled, if necessary,to straddle the left-to-

right direction partition while minimizing the performance impact on the overall

schedule length.

• In traditional task scheduling,the logical PE positionscan be adjusted with no

impact on the scheduling decisions. This degree of freedom is quite useful to the

technique we propose, since adjustments of PE positions caninduce desired band

relationships, thus varying the direction of a criticalL2R dependenceand hence

eliminating the potential performance impact.

The first type of flexibility, provided by the application, iseasily observable and

utilizable by the compiler through the manipulation of scheduling priorities. Specifically,



38

R2L dependence

Intra−band dependence
R2L dependence
Intra−band dependence

L2R dependence

Pd failed

PaPb Pd Pc

4

7

3

5

9

2

12

Pa

5

9

Pb Pc

2

4 3

7

12

Pd failed

4

Pd Pc

7

3

12

Pa Pb

5

9

2

4

3

12

7

9

2

5

Pc Pa Pb

(a) Switch Pa & Pb, pre− and post−reconfiguration schedules (b) Rotate Pb, Pc & Pd, pre− and post−reconfiguration schedules

R

L

R

L

R

L

R

L

Figure 4.4: Impact of PE reordering on dependence directions

the proposed framework schedules tasks one by one in a priority-ranked manner, with

higher priorities assigned to the more critical tasks whichcan in turn be scheduled earlier.

In other words, the more critical tasks are automatically offered more scheduling flexibil-

ity, thus exhibiting a larger chance to be assigned to PEs that create noL2R dependence.

The second type of flexibility is derived from the fact that intraditional task

scheduling, the adjustment of the logical PE positions has no impact on either the ex-

ecution latency or the communication latency2 of a task. In other words, the logical PE

positions do not affect the scheduling decisions, and hencecan be arbitrarily determined.

In contrast, in the proposed adaptive schedule, the logicalpositions of PEs directly de-

termine the band positions, which in turn induce the potential timing differences between

various categories of inter-task dependences. Accordingly, by logically reordering the

PEs, the compiler can effectively vary the direction of inter-task dependences. This po-

tential benefit oflogical PE reorderingcan be observed in Figure 4.4. The schedule in

Figure 4.4a is generated through switching the positions ofPa andPb in Figure 4.3a. A

comparison between the two schedules indicates that duringthe PE reordering process

the timing or the core assignments of each task are retained intact. Yet in Figure 4.4a

the (4→9) and the (7→9) dependences are no longerL2R dependences, and hence no

semantic violations would be incurred after reconfiguration.

To exploit the flexibility in manipulating logical PE positions, we propose herein

a PE reorderingtechnique, to be integrated into the scheduling flow. Initially, the logical

PE positions are determined arbitrarily. During scheduling, if the starting time of the

task currently under scheduling is constrained by a critical L2R dependence, the compiler

2For some systems, the affinity consideration results in the communication latency being a function
of the physical PE distance. In such systems, the proposed communication graph representation can be
extended to incorporate affinity constraints and capture only the extra amount of reordering flexibility.



39

O4

O4

Pd

O3

Pc

O2

Pb

O1

PaPc Pd

PaPb

O3 O2 O1

(a) tight comm paths (b) L2R−free comm paths (c) PE reordering

L R

Figure 4.5: PE reordering formulated as graph embedding

invokes thereordering procedureto quickly check whether this L2R dependence can be

eliminated through adjusting the current logical PE positions.

4.2.1 PE Reordering: Problem Formulation

The most crucial challenge in developing an effective PE reordering scheme is

to eliminate an L2R dependence while preserving the timing behavior of the remain-

ing dependences. As the reordering effect isglobally imposed on all the inter-PE task

dependences, an inappropriate reordering may engender newL2R dependencesin the

post-reordering schedule. As an example, the schedule in Figure 4.4 is generated through

rotating the positions ofPb, Pc andPd in Figure 4.3a. While the (4→6) and the (7→9) de-

pendences no longer constitute L2R dependences, the (2→5) and the (2→7) dependences

emerge as new L2R dependences as a result of the reordering effect. To preclude the cre-

ation ofpost-reordering L2R dependences, the reordering process shouldbe performed in

a globalmanner with all the inter-PE communications being considered. Specifically, all

the inter-PE communications that have no extra timing slack, denoted astight communi-

cations, should be precluded from being mapped as L2R dependences.

The aforementioned problem of mapping all thetight communicationsto L2R-free

communicationscan be formulated as embedding thetight communicationgraphG into

theL2R-free communicationgraphF . Thetight communicationgraphG = (P, Ec) is a

directed graph that captures alltight communication paths. Each nodepi ∈ P represents

a PE, while an edge(pi, pj) ∈ Ec indicates the existence of at least one tight commu-

nication from nodepi to pj. As an example, the graph representation of the inter-PE

communications in Figure 4.3 is presented in Figure 4.5a. The graph contains four edges,

as the (2→5), (2→7), (7→9), and (7→12) communications in Figure 4.3 exhibit no ex-

tra slack. In comparison, theL2R-free communicationgraphF = (O, Ev) captures all



40

the possibleL2R-freecommunication paths in an adaptive schedule. It can be observed

in Figure 4.3 that in anL2Rdependence, the source and the sink tasks not only straddle

a left to right divide, but furthermore are scheduled on non-adjacent PEs. Accordingly,

an L2R-free communicationgraph contains all the right-to-left edges, as well as all the

left-to-right edges between adjacent nodes. As an example,Figure 4.5b shows all the

L2R-free communication paths in a 4-PE adaptive schedule.

Utilizing these two directed graphs, the problem of embedding thetight commu-

nicationgraphG into theL2R-free communicationgraphF can be defined as follows:

Directed graph embedding:given two directed graphsG = (P, Ec) and F =

(O, Ev), G can be embedded intoF iff a node mapping(M : P → O) can be

found such that∀(pi, pj) ∈ Ec, (M(pi), M(pj)) ∈ Ev holds.

The amount of flexibility in PE reordering is strongly determined by the num-

ber of edges in thetight communicationgraphG. As each edge inG imposes an order

requirement, the more edges the graph has, the less flexibility is left for the reordering

process. To increase reordering flexibility, the graphG is considered when making the

scheduling decisions. In the proposed scheduling framework, the compiler would reas-

sign a task to a PE that can reuse an existing communication path (unless its starting time

suffers a consequent delay), thus effectively reducing thenumber of edges inG.

The difficulty of the outlined graph embedding problem is determined by the char-

acteristic of the target graphF . Embedding an arbitrary directed graph into a complete

directed graph is straightforward because of the latter’s full connectivity. On the other

hand, ifF is an arbitrary directed graph, the embedding problem is a hard problem for

which abranch-and-boundapproach is typically employed to search for a valid solution.

However, regarding the proposed PE reordering issue, the target graphF , as shown in

Figure 4.5b, contains all the right-to-left edges as well asthe left-to-right edges between

adjacent nodes. Such regularity allows us to develop a set ofembedding criteria which,

based on the connectivity characteristics of the tight communication graphG, directly

determine whether a valid L2R-free mapping exists or not. Inthe following parts of this

section, we outline a set of mapping criteria for various types of graphs, includingDAGs,

basic loops, nested loopsandintersecting loops.



41

PdPe

Pd Pc Pe Pb Pamapping

Pa

PcPb
0−slack
paths:

PdPe

Pa Pb Pc Pd Pemapping

Pa

Pb Pc
0−slack
paths:

Pc Pd Pe Pa Pbmapping
Pa

Pb Pc

PdPe

0−slack
paths:

PdPe

Pa Pb PcPd Pemapping

Pa

Pb Pc
0−slack
paths:L R

(a) DAG: all edges mapped as from right to left

L R

(b) Basic loop: one edge mapped as from right to left, others adjacent 

L R

(d) Nested loop: crossing edges display uniform directions

L R

(c) Nested loop: crossing edges display opposing directions

Figure 4.6: L2R-free mapping of DAG, basic loop and nested loops

4.2.2 PE Reordering: L2R-free Mapping Identification

Problem decomposition

The fundamental observation is that anL2R-freemapping can always be estab-

lished for a tight communication graph (G), if G is adirected acyclic graph(DAG). This

is because the outlinedL2R-free communicationgraph (F ) contains all the right-to-left

edges, and the acyclic property ofG enables all its communication edges to be naturally

mapped from right to left, as shown in the schedule example presented in Figure 4.6a.

In contrast, ifG is a cyclic directed graph, it can always be decomposed into a

set of disjoint strongly connected components3 (SCCs), with each SCC containing one or

multiple loops. Moreover, these SCCs are connected in an acyclic form, implying that the

tight communication paths corresponding to theinter-SCCedges can always be mapped

from right to left. Accordingly, the following strategy canbe employed to decompose the

mapping problem:

Problem decomposition:An L2R-free mapping can be established for a cyclic

directed graph (G), iff for each SCC ofG anL2R-freemapping can be established.

This decomposition policy indicates that each SCC ofG can be consideredin-

dependently. Mapping criteria thus only need to be developed forstrongly connected

directed graphs, which can further be classified as either abasic loop, or nested loops, or

intersecting loops.

3An SCC consists of a maximal set of nodes such that for every pair of nodespi andpj, there exists a
path (pi, pj) and a path (pj , pi).



42

Mapping of basic loops

A basic loopthat exhibits a single back edge and no crossing edge turns out to be

the most straightforward mapping case. An L2R-free mappingcan always be established,

by placing one edge of the loop (e.g.,(pe, pa) in Figure 4.6b) from right to left, and the

remaining edges adjacently from left to right.

Mapping of nested loops

The mapping policy ofbasic loopsdisplays a certain degree of flexibility; given

an L2R-free mapping (e.g., the one shown in Figure 4.6b), a set of isomorphic mappings

can be constructed through a clockwise rotation of all the nodes. This flexibility can be

utilized to construct an L2R-free mapping for nested loops with a singlecrossing edge.

The head PE of the crossing edge can be rotated to the rightmost position in the PE

sequence, thus allowing the crossing edge to be mapped from right to left.

If an SCC happens to be a nested loop with multiple crossing edges, whether an

L2R-free mapping can be established or not depends on the directions of the crossing

edges. A nested loop isunmappableif it includes multiple crossing edges ofopposing

directions. As an example, in Figure 4.6c, the two crossing edges(pc, pe) and (pe, pb)

exhibit opposingdirections such that the shared nodepe cannot be placed in betweenpc

andpb. If the first edge is mapped fromright to left, the second edge has to be mapped

from left to right and vice versa. In contrast, in Figure 4.6d, the two crossingedges

(pe, pc) and (pb, pe) can be simultaneously mapped from right to left, as they exhibit a

congruentdirection such that the two head nodespb andpe can be placed to the right of

the corresponding tail PEspe andpc simultaneously.

A detailed examination indicates that the question of whether two crossing edges

exhibit opposing directions can be settled through adepth-first searchof the tight com-

munication graphG. Two crossing edges(pi, pj) and(pu, pv) exhibit opposing directions

if both of the following conditions hold:

• All the backward paths4 of edge(pi, pj) (i.e., the path frompj to pi) need to go

through both nodespu andpv.

4As the graph is an SCC, there exists at least one path frompj to pi.



43

Pa PcPbPv Pu PiPj

(a) Two intersecting loops with common path a−>c

S2 S3S1

Pv

Pb

Pc Pj

Pu Pa Pi

Pi Pa Pc Pv PuPbPj

S2 S3S1

Pv

Pb

Pc Pj

Pu Pa Pi

(d) Inter−subpart crossing edges

S2 S3S1

Pv

Pb

Pc Pj

(c) Intra−subpart crossing edges

Pu Pa Pi

(b) Only two valid PE sequences: a−>c needs to be placed in the middle

Figure 4.7: Mapping constraints of intersecting loops

• All the backward paths of edge(pu, pv) need to go throughpi andpj.

Mapping of intersecting loops

The most complicated mapping case is the situation when an SCC is composed of

multiple intersecting loops. An illustrative example is presented in Figure 4.7a, wherein

two loops, (pu, pa, pb, pc, pv) and (pi, pa, pb, pc, pj), share the nodespa, pb, andpc in com-

mon.

In order for an L2R-free mapping to be possible, each loop individually should

refrain from containing crossing edges of opposing directions. Moreover, all the nodes

involved in a single loop need to be placed in contiguous positions so as to satisfy the

mapping rule of basic loops. This requirement, in conjunction with the intersection prop-

erty, implies that the shared nodes (pa, pb, andpc in Figure 4.7a) need to be placed in

contiguous positions that separate the disjoint parts of the two loops. As a result, there

exist only two possible node sequences corresponding to an L2R-free mapping of these

two intersecting loops, shown in Figure 4.7b.

The limited number of valid node sequences strongly constrains the possible di-

rections of crossing edges. To illustrate these constraints, we decompose the graph in

Figure 4.7a into three disjoint subparts,S1, S2 (shared between the two loops), andS3.

The crossing edges, as a result, can be classified as eitherintra-subpartor inter-subpart

edges. In order for an L2R-free mapping to be possible, all the intra-subpartcrossing

edges should display directionsin reverseto the loop edges of that subpart. Since the



44

loop edges are mapped as left-to-right edges between adjacent nodes, this requirement

ensures that these crossing edges can be mapped from right toleft, such as the edges

(pv, pu) and (pc, pa) in Figure 4.7c. As a counterexample, the edge (pa, pc) cannot be

mapped as a right-to-left edge, since its direction is consistent with the loop edges.

As for the inter-subpartcrossing edges, an L2R-free mapping requires them to

exhibit congruentdirections. For instance, given a crossing edge from subpart S1 to S2

(e.g., (pu, pc) in Figure 4.7d), only the first sequence shown in Figure 4.7bis valid. As a

result, crossing edges with ascending indices (i.e., fromSi to Sj, i < j) can be mapped

as right-to-left edges, such as the edges (pv, pi) and (pb, pi) in Figure 4.7d. In contrast,

crossing edges in the other direction (i.e., fromSi to Sj , i > j) cannot be mapped from

right to left.

In sum, anL2R-freemapping cannot be established for intersecting loops if anyof

the aforementioned requirements ofnode sharing, intra-subpartandinter-subpartcross-

ing edges is violated. The reordering procedure thus checksthe compatibility between

these requirements to detect an unmappable case.

4.3 Performance Enhancement

The last two sections have discussed the proposed orderly reconfiguration sched-

ule and the corresponding PE reordering for thecanonical case, wherein a program is

composed of multiple tasks with largely identical execution time and inter-task communi-

cation latency. While at first glance the canonical case would seem to be highly idealized,

it actually turns out to be a representative model for the parallel sections of data-intensive

applications. As a large fraction of these applications consists of regular data process-

ing loops with limited or possibly even no loop-carried dependences whatsoever [70],

they can be easily parallelized into a set of tasks with high regularity, as assumed in the

canonical case.

To further enhance the applicability of the proposed BB reconfiguration scheme

to various systems with diverse application sets, in this section we examine several issues

encountered when it is applied to arbitrary programs with diverse task execution time and

non-zero communication latency.



45

Pc Pb Pa Pb PaTask Graph

inter−PE
communication

schedule reconfig

2

4

7

108

5

2

4

7

10

8

5

9

6

3

1

8

5

9

1

3

6

9

6

3

11

5 6

2

4

108 9

3

7

L

R

L

R

L

R

R

L

Figure 4.8: An adaptive schedule for an arbitrary task graph

4.3.1 Applied to Arbitrary Task Graphs

The application of the orderly BB reconfiguration scheme to an arbitrary task

graph exposes several new characteristics that are not observed in the canonical case,

outlined as follows:

Idle PE cycles in the initial schedule

As inter-task dependences and communication overhead may strictly constrain

the earliest starting time of a task, the initial schedule may display significant under-

utilization in certain portions. This can be observed in Figure 4.8, in which the PEPc is

left idle across the entire timing period of the firstBR block.

The under-utilized portions of the initial schedule, as they have at least one idle

PE, require no reconfiguration and are directly applicable in the case of single PE degra-

dations. The exploitation of this property allows a sizablereduction in the length of the

post-reconfiguration schedule. Specifically, the originalBR blockcan be extended to con-

tain aheadand/or atail region, as shown in Figure 4.9. During reconfiguration, boththe

head and the tail regions remain intact, while only the bandsin the body regions need to

be shifted. The under-utilized portions of the initial schedule thus can be mapped into the

heador tail regions wherein the cost of reconfiguration is absolutely zero, while only the

fully parallel portions need to be mapped into thebody regions.



46

a

d

0
time

e

b

c
L

L

head

body

tail

e+max{b−a, c−b, d−c}

R R

reconfigure

Figure 4.9: Band structure extension: the head and tail regions

Irregularity of partition lines

As the tasks in an arbitrary task graph typically exhibit diverse execution time,

they create irregularity in partition lines. As can be observed from Figure 4.8, the heights

of the steps on aband partition lineare not necessarily identical, and the original hori-

zontalblock partition linesare not necessarily straight.

The aforementioned two types of irregularity may degrade performance by cre-

ating extra timing holes in the post-reconfiguration schedule. A detailed examination

indicates that for eachBR block, the reconfiguration penalty (in terms of schedule length

increase) is constrained by themaximum height of the steps on theband partition line.

This relationship is shown in the body region of the schedulein Figure 4.9. Assume the

body region is originally scheduled to commence at timea and end at timed, and the

positions of the intermediate two steps on the band partition line are at timeb and timec,

respectively. After reconfiguration, the length of the bodyregion increases to

max{(b − a) + (d − a), (c − a) + (d − b), (d − a) + (d − c)}

= (d − a) + max{b − a, c − b, d − c} (4.1)

Because of this relationship, in the process of generating the adaptive schedule, the

step height on the band partition lines should be maximally balanced. This can be attained

through an adjustment of the task starting times. Moreover,to perform this optimization

without increasing the length of the initial schedule, the compiler can exploit the flexibility

inherent in an adaptive schedule, namely, the timing slacksof the tasks on thenon-critical



47

paths. Such timing slacks can be easily calculated through the identification of the task

starting time in both theas-soon-as-possible(ASAP) and theas-late-as-possible(ALAP)

schedules.

4.3.2 Overcoming Variations in Inter-core Communication

Typically, a static scheduler prefers to assign dependent tasks on the same PE to

hide communication latency. Yet one crucial impact of reconfiguration, as a result of band

movement, is that two dependent tasks originally scheduledon the same PE may be sep-

arated onto two PEs or vice versa. These reconfiguration-induced variations in inter-core

communications can be clearly observed in Figure 4.8, wherein the (3→5) and the (7→9)

communications in the initial schedule disappear, and a newinter-PE communication

(6→9) is created after reconfiguration.

While the communication disappearance can be exploited forreducing the length

of the post-reconfiguration schedule, it is conversely highly crucial to provide mecha-

nisms for compensating for the extra communications created after reconfiguration, es-

pecially when an extra communication is created between twotightly scheduledtasks.

Figure 4.10a presents 8 pairs of tightly scheduled tasks that are separated into distinct

bands. Depending on the positions of the source and the sink tasks, a new inter-PE com-

munication may be created in onlytwo ways:

• The source task is in anR band, while the sink is in theL band of the same BR

block, such as the task pairs(3, 7), (6, 10), (15, 19) and(18, 22) in Figure 4.10.

• The source task is in anL band, while the sink is in theR band of the subsequent

BR block, such as the task pairs(10, 14) and(11, 15) in Figure 4.10.

A comparison between Figures 4.10a and 4.10b indicates thatthese two cases dis-

play diverse timing characteristics. In the former case, anadditional 1-step timing slack

is implicitly inserted between the two tasks (e.g., 3 and 7 inFigure 4.10b) after reconfigu-

ration, thus automatically compensating for the latency ofthe created communication. In

contrast, in the latter case the relative timing positions of the L band and the subsequent R

band remain intact. The created communication (e.g., 10→14 in Figure 4.10b) therefore

may result in insufficient time for the sink task to receive its input. However, as all the



48

131415

18 13

22

Pb failed

Rotate right

L L

L

Pd Pc Pb Pa Pd Pc Pa Pd Pc Pa

3

7

101112 9

6

7

101112

9

6

3

1415

1816

19

13

22

19

16

22

1415

1816

19

7

101112

9

6

3

(a) Tightly scheduled
interband task dependences

R

R
L

(b) Reconfiguration−induced 
spatial & timing variations

R

L
R

of right rotation
(c) Spatial & timing impact

L

R

R

Figure 4.10: Impact of PE rotation on inter-PE communications

communications of this type are created by shifting the source task right relative to the

sink task, they all display an identical offset in that the sink tasks (tasks 14 and 15 in Fig-

ure 4.10b) are located exactly one PE to theleft of the corresponding sources (tasks 10 or

11). This observation implies that this class of communications can be simply eliminated,

if the entire subsequent BR block can be dynamically rotatedone PE to the right in the

post-reconfiguration schedule, as shown in Figure 4.10c.

A comparison between Figures 4.10b and 4.10c confirms that each task still re-

tains its band partition, implying that the right rotation process does not impact the band

partition. Instead, only the logical-to-physical core binding is varied in a highly regular

manner. As this regular transformation of the schedule requires no global program infor-

mation, it can be performed dynamically during execution. The pre-generated adaptive

schedule can be loaded into the OS at the granularity of BR blocks; the schedule of the

subsequent BR block can be loaded during the execution of thecurrent BR block. In this

process, right rotation can be straightforwardly implemented through globally manipulat-

ing the core binding of the subsequent BR block. In a system with distributed memory

structure, the code and the data set of the tasks to be executed can be loaded into local

memory units in parallel with the schedule of the BR block.

By rotating the entire subsequent BR block one PE to the right, the spatial locality

of the tasks(10, 14) and(11, 15) can be naturally preserved. Yet two tasks that are sched-

uled in either twoL bands or twoR bands of consecutive BR blocks (e.g., tasks(9, 13)



49

and(12, 16) in Figure 4.10c) are to be separated, thus creating another class of inter-PE

communications in the post-reconfiguration schedule. However, as each BR block takes

one extra timing step for execution in the post-reconfiguration schedule, for this class

of communications an implicit timing slack will be automatically inserted between the

source and the sink tasks, thus compensating for the latencyof the created communica-

tions.

4.4 Tolerating Multiple Resource Variations

By now it should be clear that by partitioning each BR block into two bands, the

proposed adaptive schedule is capable of tolerating singlecore degradations. Yet given the

elevated rates of device faults, thermal stress, and resource competitions, numerous cores

may become unexpectedly unavailable during execution. An adaptive multicore system

therefore needsm-adaptive schedules, i.e., schedules that are capable of withstanding a

reduction ofm cores or making use ofm extra cores.

To generate adaptive schedules capable of tolerating multiple core variations, the

band partitioningtechnique needs to be extended so that numerous schedules can be

compactly engendered in readiness. More precisely, anm-adaptive scheduleneeds to

compactly engenderm + 1 schedules in readiness so as to deterministically respond to

the unpredictable resource variations. The partial execution order imposed by inter-task

dependences needs to be preserved in all thesem + 1 schedules, which in turns imposes

stricter constraints to be fulfilled during task scheduling.

4.4.1 Band Partition Extension

As each band individually offers the ability of tolerating the variation of a single

core, to tolerate a variation of up tom cores, eachBasic Reconfiguration(BR) block in an

m-adaptive schedule needs to be partitioned into(m+1) bands. A representative partition

is shown in Figure 4.11a, wherein each BR block is partitioned intothreebands to achieve

a 2-step adaptivity. As can be seen, the whole schedule ishorizontallydivided intotwo

Basic Reconfiguration (BR) blocks, each of which is furthermore partitioned intothree

bands in order to achieve an adaptivity degree of 2. While the lowest and highest bands



50

band 2band 1 band 3

P3P5 P1P2P4 P3P5 P1P2P4

P3 P1P2P4

P3 P1P2P4P3 P1P2P4
0

2

4

6 6

8

6

8

P3 failed

0

2

4

P5 failed
0

2

4

1

6

11

16

21

26

2

7

12

17

22

27

4

9

14

19

24

29

5

10

15

25

20

30

18

25

20

30

16

21

26

19

24

29

22

27

3

13

1

6

11

5

10

15

4 2

7

129

14

8

3

13

1

6

11

5

10

15

4 2

7

129

14

8

16

21

26

25

20

30

time

3

8

13

18

23

28 23

time

23

28

18

(d) Second−step reconfiguration(a) Block & band partitions (b) First−step reconfiguration

time

17

28

19

17

22

24

29

27

Figure 4.11: Multi-band partitioning for increased amount of adaptivity

should still be in triangle form, each of the middle(m − 1) bands should contain tasks

in a diagonal row of width1. Finally, two sequential reconfigured scheduling results are

respectively presented in Figures 4.11b and 4.11c.

The distinct schedules presented in Figure 4.11 clearly confirm that by dividing

each BR block into(m + 1) bands, a total number ofm distinct schedules (in addition to

the initial schedule) can be adaptively applied, thus enabling a toleration of up tom core

variations during execution. As can be seen in Figure 4.11b,in eachBR blockthe whole

leftmost band (Band 1) is shifted in a regular manner relative to the right two bands, that

is, one timing step down and one PE to the right, to accomplishthe first reconfiguration

step. Similarly, Figure 4.11c shows that if another PE,P3, becomes unavailable, further

reconfiguration would be accomplished through shifting thetwo left bands (Bands 1&2)

one timing step down relative to the rightmost band, while transferring tasks onP3 to

either of the adjacent PEsP2 or P4. This regular task reassignment capability can be

achievedindependentof the PE being removed.

The band partitioning approach introduced in Section 4.1 attainsfull resource uti-

lization in both schedules through forcing each BR block to containn ∗ (n − 1) tasks

that can be executed either byn PEs in(n − 1) timing steps or by(n − 1) PEs inn tim-

ing steps. Similarly, in a generalizedm-core adaptive schedule, each BR block needs to

containn ∗ (n − m) tasks so as to attainmaximumresource utilization. In this way, the

schedules withn and(n − m) cores can attainfull resource utilization, while the other

intermediate schedules would exhibit a small number of “individual PE stalls” in each



51

BR block. As an example, the two BR blocks in Figures 4.11a andthe second BR block

in Figure 4.11c deliver full utilization of the available cores, yet the schedule in Figure

4.11b exhibits a single stall onP1 in each BR block. In sum, the generalized block size

requirement and the number of stalls in the various schedules are formally specified as

follows:

• Block size:A maximum utilization of PEs in all them+1 distinct schedules requires

each BR block to containn ∗ (n − m) tasks.

• Resource usage:in the schedule with(n − k) cores(0 ≤ k ≤ m), a BR block

containingn ∗ (n−m) tasks can display up tok ∗ (m− k) “individual PE stalls”.

A crucial aspect of the proposed multi-step orderly reconfiguration technique is

that although the technique is presented in the context of core degradation toleration, it is

capable of conversely incorporating the use of additional cores allocated during execution

as well. This “m-core augmentable” property can be easily observed if we assume the 3-

core schedule in Figure 4.11c to be the initial one and the schedules in Figures 4.11b

and 4.11a to be the two subsequentpost-reconfiguration schedules. More generally, the

proposedm-adaptive schedule can be invoked as long as the MPSoC containsk cores with

(n − m ≤ k ≤ n). In other words, any of the(m + 1) compactly captured schedules can

be considered as the initial one, while at runtime the otherm schedules can be selectively

applied according to the varying resource availability in the target platform.

4.4.2 Inter-task Dependence Constraints

The capability of tolerating a variation ofm cores makes the satisfaction of this

requirement increasingly challenging, as the ordering semantics need to be preserved in

all them + 1 distinct execution schedules that can be spawned. However,the regularity

inherent in band partitions significantly simplifies this strict requirement.

In a manner analogous to the single-core degradable schedules, the inter-task de-

pendences in anm-adaptive schedule can be naturally classified into four categories:

inter-block dependences, intra-band dependences, right-to-left (R2L) dependencesand

left-to-right (L2R) dependences. Among these four types, the first two exhibit exactly

an identical property for both 1-core andm-core adaptive schedules. Specifically, as BR



52

P5 failed
P4 P3 P2 P1P3

R2L dependence
Intra−band dependence

L2R dependence

P5 P4 P2 P1
P1 failed

P3P4 P2

4

5

14

12 11

13

13

5

111214

4 1 1

4

5

14

12

11

1

13

Figure 4.12: Inter-task dependence timing in a multi-band schedule

blocks are executed sequentially in the same order and each band retains its shape in all

them + 1 distinct schedules, bothinter-block dependencesandintra-band dependences

(e.g., task pairs (5, 14) in Figure 4.12a) can be naturally preserved.

Unlike a single-core degradable schedule, anm-adaptive schedule exhibitsm lev-

els of R2L and L2R dependences, as the schedule is partitioned into (m + 1) bands. As

bands of smaller indices shift down relative to bands of larger indices, theR2L depen-

dences (e.g., task pairs (1, 12) and (1, 14) in Figure 4.12) can always be preserved in all

m + 1 distinct schedules, while anL2Rdependence (e.g., task pairs (4, 11) and (5, 11) in

Figure 4.12) may be violated if the original timing slack is insufficient. However, unlike

single-core degradable schedules, in anm-adaptive schedule, diverse L2R dependences

exhibit distinct levels of timing slacks, depending on the band positions of the source and

the sink tasks. For instance, in Figure 4.12, after the two reconfiguration steps, the timing

slack of dependence (5, 11) is reduced by 2, while the slack ofdependence (4, 11) is

only reduced by 1. To compensate for such a diverse slack reduction and hence preclude

potential dependence violations in all them+1 distinct schedules, the extra slack amount

of an L2R dependence should be set according to theband distancebetween the source

and the sink tasks, formally specified as follows:

• Minimum L2R timing slack: An L2R dependence between bandsi and(i+k) needs

a minimum slack ofk timing steps in the pre-reconfiguration schedule in order to

preserve the correct execution order in all the post-reconfiguration schedules.



53

4.4.3 Core Binding Permutation

The aforementioned minimum L2R timing slack drastically increases as the degra-

dation tolerance capability grows. The more bands a BR blockcontains, the larger slack

an L2R dependence may need, and the larger the amount by whichit may end up increas-

ing the entire schedule length of anm-adaptive schedule. To minimize this overhead, the

critical L2R dependences, that is, the ones that delay the correspondingsink tasks, should

be obviated as much as possible.

A strength of the proposed diagonal partitioning axis is that permutations of bind-

ing decisions have a strong and material impact on the direction of critical inter-task de-

pendences. This property has been successfully exploited through the PE mapping tech-

nique shown in Section 4.2 for single core deallocations. Yet the technique can only make

binary decisions regarding whether or not the extra timing slack of a critical dependence

can be completely eliminated, thus falling short of addressing the needs ofm-adaptive

schedules wherein such dependences exhibit graded levels of timing slacks. In compar-

ison, in this section we propose a novelcore binding permutationtechnique to directly

exploit the graded levels of dependence slacks to maximallydiminish the schedule length

overhead.

A noteworthy aspect is that L2R dependences in anm-adaptive schedule exhibit

graded levels of timing slacks. This property is clearly shown in Figure 4.13. The sched-

ule in Figure 4.13a contains twoL2Rdependences between task pairs (4, 11) and (5, 11).

Yet Figure 4.13b shows that by shiftingP1 to the left ofP2, the firstL2R dependence

can be completely eliminated, and theband distanceof the secondL2Rdependence can

be reduced. Even if the (5 → 11) dependence cannot be eliminated, the required timing

slack can still be reduced as long as thePE position distancebetween the corresponding

tasks can be reduced. This can be attained through either shifting the PE of the source

task (e.g.,P5) right, or shifting the PE of the sink task (e.g.,P1) left. Yet it needs to

be noted that the flexibility of PE shifting is constrained bythe remaining inter-PE task

dependences; an inappropriate permutation may create an additional L2R dependence in

the post-reordering schedule. As shown in Figure 4.13c, ifP1 is further shifted to the left

of P3, the L2R dependence between (5, 11) can be eliminated, yet a new L2R dependence

between (5, 13) is created.



54

(a) Pre−reordering schedule (b) Left shift of P1

shift P1

P3P5 P4 P2P1P3P5 P4 P2 P1 P3P5 P4 P2P1

New L2R dependence createdOne L2R dependence afterwards
(c) Left shift of P1

shift P1

Two L2R dependences

5 4

12

1

11 1313

5

1112

4 1

13

5 4

11 12

1

Figure 4.13: PE reordering in a multi-band schedule

4.4.4 Shiftable Core Identification

In this section, we analyze the various conditions for reducing the band distance

between two tasks, through shifting the PE of the source taskright and shifting the PE

of the sink taskleft. Essentially, each communication path in anm-adaptive schedule

imposes an order requirement for the two PEs involved. According to the aforementioned

L2R timing constraint, if two dependent tasks display an extra timing slackk in between,

the PE corresponding to the source task cannot be placed morethank + 2 PEs to theleft

of the sink. This constraint can be used to derive the left shift conditions for the sink PE

of a critical L2R dependence, denoted asPt. WhetherPt can be shifted to a position to

theleft depends on two sets of communication paths, the ones emanating fromPt, and the

ones across the target position.

Communication paths emanating fromPt

Each of these paths imposes a constraint on the maximum left-shift distance of

Pt. If such a distance is less than the distance betweenPt and the target position, shifting

Pt to the target position will create an L2R dependence. As an example, in Figure 4.14a,

there exists a communication path fromP1 to P2 with P2 just to the left ofP1. This

path constrains the maximum left shift distance ofP1 to be 2, implying thatP1 cannot be

shifted to the left ofP4 or P5, as confirmed by Figure 4.14c.

Communication paths across the target position

If any of these communication paths displaysno extra spatial slack,Pt cannot

be shifted to the target position. In Figure 4.14a, the communication path (P4 → P2)

displays no spatial slack, implying thatP1 cannot be placed into any position betweenP2



55

P3P5 P4 P2 P1

P5 P1 P4 P3 P2

P3

Comm Paths with tight slack:

P5 P4 P2 P1

P5 P3 P2P4 P1

(a) P5 is not shiftable because of 

Shift P1 Shift P1

constrained by P1 −> P2

P1 −> P2 and P4 −> P2 communication paths

be inserted in between P2 & P4 

(b) Left shift of P2,
P1 becomes shiftable afterwards

P5 P4 P1P2 P3

Shift P1

P5 P4 P1 P2 P3

No L2R dependence (c) Left shift distance of P1 (d) Due to P4 −> P2, P5 cannot 

5

1112

4 1

5

12

1 4

11

5

12

4 1

11

5

11

4 1

12

5 4 1

11 12

Figure 4.14: PE shiftability constraints and a indirectly shiftable case

andP4. As shown in Figure 4.14d, shiftingP1 to the left ofP3 forces the dependence

between Tasks 4 and 12 to become an L2R dependence with insufficient timing slack.

Indirect Shifting Possibilities

While the two left-shift constraints may preclude a corePt from beingdirectly

shifted to a left position, through exploiting the shiftable possibilities of the PEs that

impose these constraints,Pt may becomeindirectlyshiftable.

The indirectly shiftable condition is concretely illustrated in Figure 4.14b. The

analysis outlined above confirms that in Figure 4.14a,P1 is not directly shiftable due to

the aforementioned two constraints. Yet both constraints can be relaxed by shiftingP2

one position to the left. On one hand, asP2 constrains the maximum left-shift distance of

P1, shifting it one position to the left relaxes the maximum left-shift distance ofP1 by 2.

On the other hand, the left shift ofP2 also engenders one extra spatial slack in the com-

municationP4 → P2, thus enablingP1 to be inserted in between. The relaxation of these

two conditions thus makesP1 shiftable, as shown in Figure 4.14b. The post-reordering

schedule, generated by shiftingP1 to the left ofP2, exhibits no L2R dependences, thus

eliminating any possible reconfiguration-induced timing violations.



56

Right-shift conditions of source PEPs

So far we have examined thedirect and indirect conditions for shifting the sink

PE of a critical L2R dependenceleft. It turns out the conditions for shifting the source PE

of a critical L2R dependenceright are highly symmetric to the conditions for shifting the

sink PEleft. In sum, the source PE, denoted asPs, cannot be directly shifted to a position

to theright if either of the following two conditions holds:

• A communication pathterminatingat Ps imposes a maximum right-shift distance

less than the distance betweenPs and the target position.

• There exists a communication path across the target position from left to right with

no extra spatial slack in between.

4.5 Algorithmic Implementation

Up until now we have presented the conceptual mechanisms underpinning the

compiler-directed dynamic reconfiguration scheme. It needs to be noted that the effec-

tiveness of these techniques does hinge on the class of the underlying static scheduling

algorithm. In this section we implement the proposed orderly reconfiguration scheme

through applying the outlined scheduling constraints and reordering conditions to one of

the representative classes of scheduling heuristics, namely, list scheduling.

Given a parallel application represented as a weighteddirected acyclic graph

(DAG), the scheduling problem can be formalized as the association of a start time and

a core with each node of the DAG. A list scheduling algorithm is typically composed

of two phases, namely, atask prioritizationphase, wherein the scheduling order of each

node is determined, and aprocessor assignmentphase, wherein each node is assigned

to a PE that minimizes its start time. The main difference of the various list scheduling

heuristics (e.g., DCP [54], CPND [4], etc) is the determination of the scheduling order.

In our implementation, the Dynamic Critical Path (DCP) algorithm [54] is selected as the

baseline algorithm.



57

4.5.1 Initial Schedule Generation

The concrete implementation of the integrated static task scheduling and core re-

ordering procedure is shown in Algorithm 1. To implementtask prioritization, the al-

gorithm maintains an ordered list of all the ready tasks, from which the task with the

highest priority, denoted asVs, is selected for scheduling. The content of the ready list

and furthermore the scheduling priorities of all the ready tasks are updated dynamically

upon the scheduling of the current task, shown from Line 11 to16 in Algorithm 1. Mean-

while, a communication path graph, employed to record the minimum amount of timing

slack of all existing inter-PE communication paths, is updated (Line 10 in Algorithm 1)

if the scheduling ofVs either creates a new edge in the graph, or reduces theweightof an

existing edge.

Algorithm 1 Task Scheduling with PE Reordering
1: Readylist= {all root tasks};

2: while Readylist6= φ do

3: Vs = vi ∈ Readylistwith highest priority;

4: Readylist= Readylist−{Vs};

5: {Vs.PE, Vs.startT ime} = ScheduleT (Vs, PEOrder);

6: if extra timing slack has delayedVs.startT ime then

7: save = ReorderP (Vs.PE, PEOrder, CommPath);

8: Vs.startT ime = Vs.startT ime− save;

9: end if

10: UpdateComm(Vs, CommPath);

11: AdjustPriority(Readylist);

12: for vi ∈ Child(Vs) do

13: if all parents ofvi has scheduledthen

14: Readylist= Readylist+{vi};

15: end if

16: end for

17: end while



58

Scheduling process

To schedule the selected taskVs, the procedureScheduleT (line 5 in Algorithm

1), corresponding to theprocessor assignmentphase of the baseline algorithm, iteratively

placesVs on every PE to calculate the earliest starting time. This scheduling process of

taskVs, with the timing constraints ofL2R dependencesincorporated, is formally repre-

sented in the following equations:

STmin(Vs) = min
k

{STmin(Vs, Pk)} (4.2a)

STmin(Vs, Pk) = max{FT (Pk), RT (Vs, Pk)} (4.2b)

RT (Vs, Pk) = max
vj∈pre(Vs)

{FT (vj, PE(vj)) + c(ejs) + Tex} (4.2c)

As shown in Equation (4.2a), the earliest start times ofVs on each PE, denoted as

STmin(Vs, Pk), are compared during the scheduling ofVs. Equation (4.2b) shows that the

start time ofVs on PEPk is furthermore constrained by either the current availabletime of

the PE, denoted asFT (Pk), or the ready time of incoming data, denoted asRT (Vs, Pk).

The latter factor is constrained by the last incoming communication, calculated by adding

c(ejs), the communication latency between a predecessor taskvj andVs, to the finish

time ofvj , as shown in Equation (4.2c). The value ofc(ejs) is set to zero ifVs andvj are

scheduled on the same PE, that is, ifPE(vj) = Pk.

L2R timing constraint incorporation

The most critical modification to the baseline algorithm is the incorporation of the

timing constraint ofL2R dependences outlined in Section 4.1.2. As shown in Equation

(4.2c), this is implemented through adding an extra timing slack, denoted asTex, to the

data ready timeof Vs if it is placed onPk that is at least two PEs to the right of the

predecessorvj .

The value ofTex is a function of thePE-distancebetweenPk andPE(vj) as well

as thecommunication latencyc(ejs). To concretely illustrate this relationship, Figure

4.15 shows the earliest positions of a sink task on the various PEs under three distinct

values of communication latency. As can be seen, a larger value ofc(ejs) constrains the

earliest starting time ofVs on eachPk, which may in turn preclude it from being placed



59

P7 P6 P5 P4 P3 P2
0

4

2

6

P8 P1

P7 P6 P5 P4 P3 P2
0

4

2

6

8

reconfig
latency
Comm= 0

P8 P7 P6 P5 P4 P3 P2 P1
0

4

2

6

P7 P6 P5 P4 P3 P2
0

4

2

6

8

reconfig
latency
Comm= 1

0

4

2

6

P8 P7 P6 P5 P4 P3 P2 P1

P7 P6 P5 P4 P3 P2
0

4

2

6

8

reconfig
latency
Comm= 2

Source task Earliest positions of a 
dependent task on each core communication latency

Positions invalidated by Band 3Band 2Band 1

time

time

time

time

time

time

Figure 4.15: Impact of PE-distance and communication latency on the earliest start time
of a sink task

at a band with a larger index, thus incurring less amount of additional slack. Specifically,

assuming a single-step timing slack ofTb, theTex value, as a function of the PE-distance

d = PE(vj) − Pk and the communication latencyc, can be determined by Equation

(4.3a).

Tex(c, d) =























0 if d ≤ ⌈ c
Tb
⌉

m ∗ Tb if d ≥ ⌈ c
Tb
⌉ + 2m

⌊d−⌈c/Tb⌉
2

⌋ ∗ Tb otherwise.

(4.3a)

Tb = Tµ + Tσ (4.3b)

Equation (4.3a) indicates thatTex is only imposed ifd ≥ 2, that is, the sinkPk

is at least two PEs to the right of the sourcePE(vj). For a given value ofc(ejs), the

value ofTex is proportional to the PE distanced, with the upper bound constrained by the

maximum number of reconfiguration stepsm.

As for the value of a single-step timing slack, i.e.,Tb, ideally it should equal the

maximum height of the steps on theband partition line. Yet at this point of the scheduling

process, the initial schedule has not been fully generated,and neither have theBR blocks



60

Updatecomm path

with highest priority
Schedule the task

detected?
A critical LtoR

Insert slack

Adjust task priority

YesNo

YesCore reordering
helpful?

No

Reorder cores More SCCs?

Task affects
an SCC?

YesNo

Reorder cores

mapping?
Any L2R−freeYes No

YesNo

through DFS
Edge classification

PE remapping

No

Maximally  shift
sink PE left

Any source PE
to shift?

Yes

Identify source PEs
of critical LtoR 

Shift the leftmost
source PE right

PE shifting

(a) Integrated scheduling and PE reordering framework (b) PE remapping procedure for 2−band schedules (c) PE shifting procedure for multi−band schedules

Figure 4.16: Integrated task scheduling and core reordering flow

been formed. The value ofTb therefore needs to be estimated. We therefore make the

assumption that the task execution time forms anormal distributionwith meanTµ and

varianceT 2
σ . As shown in Equation (4.3b), we setTb to Tµ + Tσ to approximate the

relative delay of the L band after reconfiguration.

As Equation (4.2a) selects the minimal start time ofVs among all the PEs, in most

cases the reconfiguration-induced increase (Tex) in data ready time would not delay the

start time of TaskVs, but instead results inVs being scheduled onto a PE that creates

no L2R dependence. However, if the start time ofVs is unfortunately delayed byTex,

the scheduler invokes the reordering procedureReorderP (Line 7 in Algorithm 1) to

determine whether the current PE order can be adjusted to eliminate this slack.

PE reordering flexibility exploitation

The PE reordering flow, integrated into the scheduling process, is shown in Figure

4.16a. Essentially, the reordering procedure identifies PEreordering possibilities accord-

ing to the connectivity characteristics of the tight communication graph. Depending on

the amount of adaptivity degree, the procedure either employs thePE remappingalgo-

rithm for 2-band schedules, or thePE shiftingalgorithm for multi-band schedules. As

shown in Figure 4.16b, if the former is used, the reordering procedure first performs a

depth-first search to classify the edges, and then iteratively checks all the strongly con-

nected components whose connectivity is affected by the task just being scheduled. If the



61

checking results indicate the existence of anL2R-free mappingfor all the tight communi-

cation paths in that SCC, the current PE binding order will beupdated subsequently.

Figure 4.16c shows that if thePE shiftingalgorithm is used to exploit the PE

reordering possibility inm-core adaptive schedules, the procedure first checks whether

the sink PE, i.e., the one thatVs is scheduled on, can be shifted left. This is because if the

start time ofVs is constrained by multiple critical L2R dependences, the left shift of the

sink PE cansimultaneouslyreduce the band distances and hence the timing slacks of these

dependences. Once the sink PE has been maximally shifted left through the exploitation

of the direct and indirect shift conditions, a number of criticalL2R dependences may

have already been eliminated. Subsequently, the reordering procedure tries to shift all the

source PEs (the ones onto which the predecessors ofVs are scheduled) of the remaining

critical L2R dependences right. In this process, the sourcePE at the leftmost position is

shifted first, as this shifting may in turn eliminate or relaxthe shifting constraints among

the multiple source PEs. Specifically, an L2R communicationpath (i → j) between two

source PEsi andj may precludej from being shifted right. Therefore, by performing the

right shift of PEi earlier than the right shift ofj, the right-shift distance of PEj can be

maximized.

4.5.2 Adaptive Schedule Optimization

The outlined task scheduling and core reordering process precludes potential vio-

lations ofL2R dependencesin the initial schedule. Yet the implementation of the proposed

orderly reconfiguration scheme still requires the following functions to be incorporated

into the static task scheduling process:

• Exploiting under-utilized portions of the initial schedule.

• Balancing step heights onband partition lines.

• Compensating extra inter-PE communication overhead.

To incorporate these three optimizations, aschedule partitionphase is appended

to the baseline algorithm to perform the block and band partitioning in three steps. The

fully parallel regions of the initial schedule are first identified. Subsequently, the band

and blockpartition linesare determined, and the step heights on eachband partition line



62

are maximally balanced. Finally, thePE rotationapproach is used to compensate for the

extra inter-PE communication overhead, if any.

The positions of the fully parallel regions in the initial schedule determine the

total number of BR blocks as well as the position of thebodyregion of each BR block,

thus strongly impacting the length of the post-reconfiguration schedule. For instance, if

the initial schedule has no fully parallel regions, no change of initial schedule is needed

in the case of a single processor deallocation.

More generally, in anm-adaptive schedule that originally utilizesn cores, if a

search of the initial schedule identifies at least one regionthat utilizes more thann − m

cores, theband and block partition linesof each BR block will subsequently be deter-

mined. The goal of this step is to minimize the occurrence possibility of extra inter-PE

communications. Consequently, each pair of dependent tasks tightly scheduled on the

same PE is placed into the same band as much as possible.

Once the band partition lines have been determined, the nextstep is to balance

the step height. To retain the length of the initial scheduleintact, only the tasks onnon-

critical pathscan be delayed. Here, the timing slack of each taskvj is determined through

calculating its starting time in both theas-soon-as-possible(ASAP) and theas-late-as-

possible(ALAP) schedules, as shown in the following equation.

Slack(vj) = ALAP (vj , PE(Vj)) − ASAP (vj , PE(Vj))} (4.4)

At this point in the scheduling process, the shape of each band has been deter-

mined. If, as a result of band partitioning, two dependent tasks tightly scheduled on the

same PE are separated into anL and a subsequentR band, the proposed PE rotation

technique is applied. Aright rotation hint is inserted between any such two BR blocks,

so that the entire subsequent BR block can be rotated right atrun-time in forming the

post-reconfiguration schedule.

4.6 Experimental Results

In this section, the proposed adaptive scheduling and core reordering scheme is

evaluated. The scheduling algorithm outlined in the last section is implemented in C,



63

V1

V6

V7 V9

V2 V3 V4 V5

V10

V8

V2 V3

V4 V5 V6 V7

V1

V9V8 V10 V11

V12 V13 V14 V15 V9

V3V2

V5V4 V6

V1

V7 V8

V1

V2

V5

V6 V7

V8

V9

V3 V4

V1

V2 V3 V4 V5

V6

V7 V8 V9

V11

V10

V12

V1 V2 V3 V4

V5 V6

V7 V7V6V5V4

V3V2

V1

(g) Laplace equation solver(f) LU−decomposition(d) FFT (e) Gaussian elimination(c) fork−join

(a) in−tree (b) out−tree

Figure 4.17: The benchmark task graphs

while theDynamic Critical Path(DCP) algorithm [54] is selected as the baseline schedul-

ing policy.

The application set under test is composed of standard parallel task graphs, in-

cludingfork-join, LU decomposition, Laplace equation solver, Gaussian elimination, and

FFT. DAG representations of these task graphs are shown in Figure 4.17. Meanwhile, to

evaluate the effectiveness of the proposed technique when applied to various non-standard

parallel applications, we use TGFF [25] to further generatea number of random task

graphs representative of a large spectrum of possible parallel applications. The number

of tasks varies from 40 up to 160. Thevariation in task execution time is controlled by

setting the ratio of the upper to lower bound of task execution time to 2. Additionally, the

frequency of inter-task dependences is controlled throughvarying the value of the average

out-degree(the number of communications per task), while the communication overhead

is controlled through varying the averagecommunication-to-computation ratio.

4.6.1 Performance of single-core adaptive schedules

As the primary goal of the proposed reconfiguration scheme isto retain the per-

formance of the initial schedule intact, we first evaluate the pre-reconfiguration schedule

lengths. To evaluate the impact of both adaptivity and core reordering, we have exper-

imentally compared the length of three schedules, the baseline (non-adaptive) schedule,



64

Table 4.1: Pre-reconfiguration schedule length

Pre-reconfigurationschedule length overhead
standard graph random, 1-outdegreerandom, 3-outdegree

cores w/o→ w/ reorder w/o→ w/ reorder w/o→ w/ reorder
3 3.14% → 1.90% 0.51% → 0.19% 1.12% → 0.48%
4 2.70% → 1.94% 2.00% → 1.00% 6.01% → 1.54%
5 -0.63% → -1.81% 0.22% → 0.15% 2.74% → 1.93%
6 1.41% → 0.67% 3.50% → 1.25% 5.37% → 2.28%
7 3.53% → 2.15% 0.73% → 0.40% 3.76% → 2.26%
8 5.32% → 2.31% 3.96% → 1.23% 4.55% → 2.51%

average 2.58% → 1.19% 1.82% → 0.70% 3.93% → 1.83%

the adaptive schedule without core reordering, and the adaptive schedule with core re-

ordering. Meanwhile, to evaluate the effectiveness of the proposed technique for various

workloads, we compare the schedule length results of standard parallel applications and

the results of randomly generated task graphs with two distinct values ofout-degree(i.e.,

the number of out-going communications per task). The results in pre-reconfiguration

schedule length overhead achieved with and without PE reordering are reported in Table

4.1, as the number of cores considered in our experiments is varied from 3 to 8.

The results in Table 4.1 confirm that the overhead in pre-reconfiguration sched-

ule length is insignificant. More precisely, without core reordering, the incorporation of

adaptivity introduces roughly a 1.8–3.9% overhead on the schedule length, while the core

reordering technique can further reduce such overhead to 0.7–1.8%. A more detailed ex-

amination shows that as the number of PEs increases, the amount of L2R dependences

increases, which in turn causes the schedule length overhead to grow slightly.

A comparison between the two random workloads shows that thePE reorder-

ing technique delivers a relatively lower reduction in schedule length overhead for the

high out-degree case. This is because an application with strong inter-task dependences

exhibits a large number of edges in the communication path graph, thus limiting the pos-

sible reordering choices. A comparison between the standard and the random workloads

shows that the two sets of results are highly similar, implying that the proposed adap-

tive scheduling and core reordering techniques are effective for a large spectrum of stan-

dard and non-standard parallel applications. Another noteworthy aspect is that during the

scheduling process, a task is reassigned, if its starting time is not delayed thereafter, to a



65

Table 4.2: Impact of adaptivity on inter-PE communications

Non-adaptive Adaptive w/o PE reorder
Cores Total Adjacent / R2L / L2R Total Adjacent / R2L / L2R

3 56.3% 0.503 / 0.237 / 0.260 54.1% 0.505 / 0.251 / 0.244
4 57.9% 0.405 / 0.275 / 0.320 57.9% 0.413 / 0.300 / 0.287
5 60.1% 0.340 / 0.304 / 0.356 59.3% 0.354 / 0.344 / 0.302
6 60.6% 0.293 / 0.316 / 0.391 61.1% 0.316 / 0.373 / 0.311
7 61.4% 0.260 / 0.329 / 0.411 62.1% 0.290 / 0.401 / 0.309
8 61.5% 0.235 / 0.336 / 0.429 62.6% 0.271 / 0.423 / 0.306

average 59.6% 0.339 / 0.361 / 0.300 59.5% 0.358 / 0.293 / 0.349

PE that can reuse an existing communication path. As a result, in some cases (such as the

“5-core” case of the standard task graphs, for example), theadaptive schedules may even

display a shorter length than the non-adaptive schedule.

As the quality of an adaptive schedule is largely determinedby the amount of

L2R communications, we additionally report the ratio of total inter-PE communications,

as well as the communication breakdown information (i.e., the percentages ofadjacent,

R2L, andL2R communications) in Tables 4.2 and 4.3. Similarly, the number of cores

varies from 3 to 8, while for each case three schedules are reported, namely, thenon-

adaptive, theadaptive without reordering, and theadaptive with reorderingschedules.

The results in Tables 4.2 and 4.3 confirm that as the number of PEs increases, both

adaptive schedules display a slightly increased amount of inter-PE communications as

compared to the non-adaptive schedule. Regarding the amount of L2R communications,

in the non-adaptive schedule, the value increases linearlyas the number of PEs grows.

Yet in both adaptive schedules, the amount of L2R communications is less sensitive to

the number of cores. Compared to the non-adaptive schedule,a significant reduction (6-

31%) in L2R communications is attained even without core reordering. This is because

during task scheduling, as shown in Equation (4.2a), the scheduler selects the minimal

start time of a taskVs among all the PEs, thus resulting inVs being scheduled onto a PE

that creates no L2R dependence. In comparison, the PE reordering technique reduces the

amount of L2R communications by an additional amount of 5–7%.

At first sight the results in Tables 4.2 and 4.3 seem to indicate that the core re-

ordering technique makes an insignificant contribution to reducing the amount of L2R

communications. However, it needs to be noted that the core reordering procedure is in-



66

Table 4.3: Impact of PE reordering on L2R communications

Communication breakdown Critical L2R
Cores Total Adjacent / R2L / L2R w/o→ w/ reorder

3 55.2% 0.510 / 0.261 / 0.229 0.87% → 0.18%
4 57.7% 0.417 / 0.313 / 0.270 1.54% → 0.41%
5 60.0% 0.357 / 0.367 / 0.277 1.96% → 0.66%
6 61.0% 0.318 / 0.396 / 0.286 2.34% → 0.80%
7 62.0% 0.288 / 0.426 / 0.286 2.59% → 0.89%
8 62.4% 0.269 / 0.446 / 0.285 2.71% → 0.99%

average 59.7% 0.360 / 0.272 / 0.368 2.00% → 0.65%

voked only uponcritical L2R dependencesthat delay the earliest start time of the task

under scheduling. The ratios of critical L2R communications (to the total amount of

inter-PE communications) in both adaptive schedules are reported in Table 4.3 as well.

As can be seen, the core reordering technique delivers a 63–79% reduction in the critical

L2R communications. Such a significant reduction in turn leads to a sizable improvement

in schedule quality, as confirmed by the results of schedule length in Table 4.1. These

results thus clearly confirm the effectiveness of the proposed core reordering technique in

mitigating L2R dependences and in minimizing schedule length overhead.

Subsequently, we report the post-reconfiguration schedulelengths in Table 4.4.

It needs to be noted that the adaptive schedules reported in the “k-core” row, as they

utilize k-1 cores after reconfiguration, are actually compared to thebaseline schedule

of k-1 cores to ensure fairness in schedule quality evaluation.The results in Figure 4.4

show that the overhead in post-reconfiguration schedule length sizably decreases as the

number of PEs increases. This is because the use of more PEs results in a larger part of

under-utilized portions in the initial schedule that needsno reconfiguration in the case of a

single PE deallocation. However, without PE rotation, the post-reconfiguration schedule

length overhead is still significant, ranging from 12% to 23%. In comparison, the PE

rotation technique, applied on the adaptive schedules optimized through PE remapping,

can effectively reduce such overhead to the range of 4.5–9.6%. These results thus clearly

confirm the criticality and the attainable benefit of the proposed PE rotation technique in

helping generate adaptive schedules.



67

Table 4.4: Post-reconfigurationschedule length

Post-reconfigurationschedule length overhead
standard graph random, 1-outdegreerandom, 3-outdegree

cores w/o→ w/ reorder w/o → w/ reorder w/o→ w/ reorder
3 23.2% → 11.4% 37.3% → 9.80% 21.0% → 10.9%
4 17.3% → 11.7% 23.5% → 2.36% 14.0% → 5.69%
5 8.25% → 4.22% 23.1% → 7.21% 13.1% → 8.85%
6 3.62% → 0.45% 17.0% → 4.00% 12.1% → 7.00%
7 9.19% → 6.02% 15.6% → 8.49% 12.4% → 8.93%
8 10.4% → 6.02% 12.8% → 5.72% 11.9% → 8.09%

4.6.2 Performance of multi-core adaptive schedules

To evaluate the impact of increased reconfiguration steps, we have experimen-

tally compared the performance ofm-adaptive schedules against the baseline schedule

(without adaptivity), with values ofm ranging from 1 to 3. For each adaptivity degree,

we furthermore evaluate the impact of PE reordering. A totalnumber of 7 schedules is

therefore reported in Figure 4.18. The number of cores considered in these experiments is

varied from 5 to 8, while the schedule length values are normalized to the schedule length

of the baseline algorithm generated for 5 PEs.

The results in Figure 4.18 confirm that the toleration of morecore variations de-

grades the performance of the pre-reconfiguration schedules. Without core reordering,

the overhead in schedule length increases linearly as the amount of adaptivity degree in-

creases. Yet the core reordering technique can significantly reduce the schedule length

overhead, especially in the high adaptivity-degree case. More precisely, when the adap-

tivity degree increases from 1 to 3, the schedule length overhead increases from 1.7%

to 4.9%without core reordering, and from 0.8% to 1.6%with core reordering. These

results clearly confirm the necessity of core reordering, aswell as the effectiveness of the

proposed reordering technique in minimizing the overhead of m-adaptive schedules.

Figures 4.19 and 4.20 respectively report the ratios of L2R communications and

critical L2R communications (to the total amount of inter-PE communications) in all the

m-adaptive schedules. It can be observed that the schedules with a larger value ofm

display less amount of L2R communications. Same as in the 1-core adaptive schedules,

a significant reduction in L2R communications is attained even without core reordering.



68

5 6 7 8
0.6

0.7

0.8

0.9

1

1.1
Pre−reconfiguration Schedule Length

 

 

base
1 w/o
1 w/
2 w/o
2 w/
3 w/o
3 w/

# of cores

Figure 4.18: Impact of adaptivity degree and core reordering onpre-reconfiguration
schedule length

5 6 7 8
0.2

0.25

0.3

0.35

0.4

0.45
L2R Communication ratio

 

 

base
1 w/o
1 w/
2 w/o
2 w/
3 w/o
3 w/

# of cores

Figure 4.19: Impact of adaptivity degree and core reordering on the amount of L2R
communications

On average, a 18% and a 22% reduction in L2R communications (over baseline sched-

ules) is attained without and with core reordering, respectively. Yet the results regarding

the critical L2R communications confirm that the core reordering technique delivers a

61% reduction in the critical L2R communications for 1-adaptive schedules, and a 55%

reduction for 3-adaptive schedules. Such a significant reduction in turn leads to a sizable

improvement in schedule quality, as confirmed by the resultsin Figure 4.18.

Finally, the post-reconfiguration schedule lengths are reported in Figure 4.21. To

ensure fairness in comparison, anm-adaptive schedule ofn cores needs to be compared

to the baseline schedule ofn − m cores. Accordingly, in Figure 4.21, the results listed

in the “k-core” column with an adaptivity degree ofm actually usek + m cores in the

pre-reconfiguration schedule. As can be seen, the overhead in schedule length increases



69

5 6 7 8
0

0.005

0.01

0.015

0.02
Critical L2R Communication ratio

 

 

1 w/o
1 w/
2 w/o
2 w/
3 w/o
3 w/

# of cores

Figure 4.20: Impact of adaptivity degree and core reordering on the amount of critical
L2R communications

4 5 6 7
0.6

0.7

0.8

0.9

1

1.1

1.2
Post−reconfiguration Schedule Length

 

 

base
1 w/o
1 w/
2 w/o
2 w/
3 w/o
3 w/

# of cores

Figure 4.21: Impact of adaptivity degree and core reordering onpost-reconfiguration
schedule length

as the amount of adaptivity degree increases, yet at a much slower slope as compared

to pre-reconfiguration schedules. Using the core reordering technique, the overhead in

schedule length is reduced from 13% to 6% for 1-adaptive schedules, and from 15% to

10% for 3-adaptive schedules. These results therefore clearly confirm the criticality and

the attainable benefit of the proposed reordering techniquein helping generatem-adaptive

schedules.

4.7 Conclusions

In this chapter, we have presented an effective technique that allows reconfigura-

bility to be incorporated into static schedules to withstand resource variations at runtime



70

due to unpredictable device failure, thermal stress, resource competitions or preemptions.

Such adaptivity, in a nutshell, is delivered by expanding the conventional static schedul-

ing techniques to embed the concept of partitioned bands, which enable the compiler to

compactly engender in readiness numerous execution schedules. Such schedules can be

adaptively applied upon run-time resource variations, with no reliance on any run-time

rescheduling decision. Moreover, through novel permutation approaches on the task al-

location space regarding the logical core positions, a set of core reorderingtechniques

can effectively mitigate the reconfiguration-induced performance overhead. This advan-

tage is confirmed by the experimental results, which show that an overhead strictly less

than 2.5% is imposed on the length of the initial, pre-reconfiguration schedule to ac-

complish the highly regular and predictable reconfiguration scheme for the toleration of

three core degradations. The confluence of these approachesthus delivers a fixed-silicon

architecture capable of extracting intensive static analysis that complements dynamic re-

configurations in the face of arbitrarily large resource variations. The emerging resource

variation-based unpredictability in future multicore systems is thus tamed to deliver an

orderly and deterministic adaptivity to address the futureneeds of both general-purpose

and embedded system architectures alike.

The text of Chapter 4, is in part a reprint of the material as itappears inC. Yang and

A. Orailoglu, “Predictable Execution Adaptivity through Embedding Dynamic Reconfig-

urability into Static MPSoC Schedules,” International Conference on Hardware/Software

Codesign and System Synthesis (CODES-ISSS), October 2007; in C. Yang and A. Orailoglu,

“Towards No-cost Adaptive MPSoC Static Schedules through Exploitation of Logical-to-

physical Core Mapping Latitude,” IEEE Design, Automation and Test in Europe (DATE),

April 2009; and inC. Yang and A. Orailoglu, “Fully Adaptive Multicore Architectures

through Statically-directed Dynamic Execution Reconfigurations,” International Confer-

ence on VLSI and System-on-Chip (VLSI-SoC), September 2010. The dissertation author

was the primary researcher and author of the publications [94], [97], and [98].



Chapter 5

Adaptivity-aware System Topology

The compiler-directed reconfiguration scheme introduced in Chapter 4 allows

tasks to be transferred among a set of PEs in a regular manner with no reliance on any

dynamic rescheduling decisions, thus completely eliminating the runtime decision mak-

ing overhead. However, to minimize the overall reconfiguration overhead, such a pre-

dictable reconfiguration process still needs to be supported by a flexible customization of

the underlying system topology so as to effectively hide theoverhead in transferring tasks

between PEs.

One of the main benefits of the proposed compiler-directed reconfiguration pro-

cess is that execution migration only involves a limited setof adjacent PEs, regardless of

the PE being isolated. This property holds for both single-core and multi-core adaptive

schedules, as can be clearly observed from the reassignmentdirections shown in Figures

4.2 and 4.11. This high locality indicates that reconfiguration-induced code/data transfer

can be eliminated even in a distributed architecture that isenvisioned as the dominant

architecture for future multi-core and many-core systems.By providing neighborhood-

centered, dedicated communication links, PEs that are physically adjacent can access and

share a single storage unit in common, thus enabling tasks tobe directly migrated among

these PEs without any physical movement of the code/data set. Such alocally shareable

storage organization in turn enables the development of a light-weight, neighborhood-

centered communication scheme to accelerate task execution as well.

In this chapter, we first analyze the reconfiguration-induced sharing requirement

on storage units. Subsequently, we present a version of a locally shareable storage orga-

71



72

P1 P2 P3 P4
P1 P2 P3

or P3P2 P4
P1 P2 P3 P4

M i M ii M iii

reconfig

(a) Pre− and post− reconfiguration schedules
(b) 1−degree memory sharing, implemented using

 direct communication interconnects

5

1

9 12

8

4

10

6

2

11

7

3

9

5

1

12

8

42 3

7

6

10 11

L

R

L

R

Figure 5.1: Reconfiguration-induced sharing requirements

nization model, an appealing compromise capable of responding to the twin requirements

of scalability and shareability for future multi-core systems. At the system level, a set

of 2-dimensional physical topologies can be developed, with diverse sharing degree em-

bedded that matches different levels of reconfiguration andcommunication needs. We

furthermore outline a set of topology selection criteria aswell as the associated task

placement decisions. Finally, we propose a static-encoding based distributed synchro-

nization mechanism which, through the utilization of the dedicated communication links,

effectively accelerates inter-task communications.

5.1 Reconfiguration-induced Sharing Requirement

To illustrate the sharing requirement imposed by the BB reconfiguration, we first

consider the single-core adaptive schedule shown in Figure5.1a, wherein 12 tasks are

partitioned into two bands. Each column of the post-reconfiguration schedule can be

executed either on corePi or Pi+1, depending on the position of the deallocated PE. A

detailed comparison of the pre- and post-reconfiguration schedules indicates that a task

initially executed on PEPi may need to be migratedright to PEPi+1, if the task is in

theL band. Similarly, if the task is in theR band, it may need to be migratedleft to PE

Pi−1. As an example, ifP3 fails, among the tasks that were initially scheduled on it, Task

7 needs to be migrated toP2 , while Task 11 needs to be migrated toP4.

The examination above ofsingle-core adaptive schedules indicates that task mi-

gration is only performed betweentwo adjacent PEs, implying that the sharing of a single

storage unit between two PEs suffices for eliminating the reconfiguration-induced task

movements. A more general examination into themulti-core adaptive schedules indicates

that the maximum task migration distance is linearly proportional to the amount of recon-



73

figuration steps embedded within the schedule. More precisely, for a schedule capable

of tolerating a variation ofm cores, reconfiguration-induced task movement can be com-

pletely eliminated as long as a single storage unit is sharedbetween everym + 1 adjacent

PEs. This sharing requirement can be formally specified through a parameter ofsharing

degree, defined as follows:

Sharing degree: the extra number of cores with which a corePi shares a single

storage unit.

Under this definition, theminimumamount of sharing degree required in am-core

adaptive schedule ism. In comparison, assuming that the multicore platform contains a

total number ofN PEs, the traditional distributed and centralized memory organizations

can be viewed as two extreme cases with sharing degrees of 0 and N − 1, respectively.

Clearly, the distributed organization falls short of fulfilling the reconfiguration-induced

sharing requirements. The centralized organization, on the other hand, offers overmuch

sharing capability and hence suffers from the crucial limitation of the lack ofscalability.

It is therefore necessary to develop alocally shareablestorage organization, wherein ded-

icated communication links are provided within a neighborhood to attain the right amount

of sharing degree.

5.2 Locally Shareable Storage Organization

In the proposed locally shareable organization, storage units (SUs) are still orga-

nized in a distributed form across the entire platform, while sharing is achieved through

enabling each PE to directly access multiple SUs. These SUs,which can be either L2

caches or on-chip memory units, are connected through a conventionalon-chip network

for the support of long-distance communications, while thePEs and SUs are directly

connected throughpoint-to-point communication links. These communication links,

enable multiple tasks to besimultaneouslymigrated between distinct PEs without induc-

ing any interferences or network congestion. As these linksare highly localized, they

impose negligible hardware cost and routing overhead.

Clearly, the number of communication links is directly determined by the amount

of sharing degree. By definition, a sharing degree ofs directly implies that each single



74

(a) sharing degree = 1, merging degree = 1, PE : SU = 1 : 1

(c) sharing degree = 2, merging degree = 1, PE : SU = 1 : 1

(b) sharing degree = 1, merging degree = 2, PE : SU = 2 : 1

(d) sharing degree = 2, merging degree = 2, PE : SU = 2 : 1

P1 P4P2 P3 P5 P6

M iiiM i M ii

P1 P4P2 P3 P5 P6

M i M ii M iii

P1 P4P2 P3 P5

M iiiM i M ii M iv

P6

M v M vi

P1 P4P2 P3 P5

M iiiM i M ii M iv

P6

M v M vi

P7

P7 P7

P7

Figure 5.2: Bipartite graph representation of various topologies with distinct values of
sharing degree and merging degree

SU is accessible tos + 1 PEs. Given an MPSoC platform with a total number ofN PEs

andN SUs, the interconnect network thus exhibits the following characteristics:

Average interconnects per PE= s + 1 (5.1a)

Average interconnects per SU= s + 1 (5.1b)

Total interconnects= (s + 1) · N (5.1c)

Equations (5.1a) and (5.1b) indicate that each PE and each SUare connected to

multiple direct communication links. Yet this many-to-many interconnect network can

still be attained without increasing the number of read/write ports for each PE. As a PE

does not access distinct SUs simultaneously, a single read/write port, together with a set

of decoders and multiplexers, suffices for the accesses froma single PE to multiple SUs.

This type of organization is concretely illustrated in Figure 5.1b that shows 4 PEs with a

sharing degree of 1.

As each direct communication link connects a PE with an SU, the entire intercon-

nect network can be modeled as abipartite graph1 between two disjoint sets of nodes, the

PEs and the SUs. The bipartite graph representations of MPSoC platforms with sharing

degree values of 1 and 2 are respectively shown in Figures 5.2a and 5.2c. As can be seen,

in Figure 5.2a, any two PEs with consecutive indices (Pi andPi+1) share a single SU

in common, while in Figure 5.2c, any three PEs with consecutive indices (Pi, Pi+1, and

Pi+2) share a single SU in common. On the other hand, this increased sharing capacity of

1For simplification purposes, the direct communication links in the subsequent parts of this paper are
shown in the bipartite graph format instead of the format presented in Figure 5.1b.



75

the storage units is attained at a cost of increased interconnects, as Figure 5.2b displays

more communication links than 5.2a. This property is also confirmed by Equation (5.1c),

which indicates that the total number of point-to-point communication links in this locally

shareable organization is linearly proportional to the amount of sharing degrees.

The larger the sharing capability is, the more the communication links needed in

the system and the higher the consequent cost would be. The consideration of scalabil-

ity requires the reduction of the total number of communication links, however, without

sacrificing the sharing capacity. To attain this goal, we exploit the flexibility of merging

a number of adjacent SUs together, which in turn enables a combination of the commu-

nication links emanating from a single PE to these SUs. Here,we formally define the

parametermerging degreeas follows:

Merging degree: the number of SUs that have been merged to form a single SU,

which is equal to the ratio of the number of PEs over the current number of SUs.

Figures 5.2b and 5.2d present the bipartite graphs generated through merging ev-

ery two contiguous SUs in Figures 5.2a and 5.2c, respectively. The comparisons between

Figures 5.2a and 5.2b, and between Figures 5.2c and 5.2d confirm that link merging re-

duces the total number of SUs and the total number of interconnects, while increasing the

number of PEs that share an SU in common. More formally, by mergingk adjacent SUs

into a single one, every set ofs + k PEs shares an SU in common, while the total number

of SUs is reduced fromN to N/k. The interconnect network thus exhibits the following

properties as a result of the link merging:

Average interconnects per PE= s/k + 1 (5.2a)

Average interconnects per SU= s + k (5.2b)

Ports per SU = k (5.2c)

Total interconnects= (s/k + 1) · N (5.2d)

A comparison between Equations (5.1c) and (5.2d) clearly confirms that link

merging can effectively reduce the total number of direct communication links byk times.

In an extreme case, if the values of thesharing degreeand themerging degreeare set to

be equal (s = k), the total number of communication links will always equal2N , inde-

pendent of thes andk values. As a concrete example, in Figure 5.2a the bipartite graph



76

(s = k = 1) contains 12 links, while in Figure 5.2d the bipartite graph(s = k = 2) also

contains 12 links.

The sharing of an SU among multiple PEs offers the extra benefit of adaptive

resource allocation. Each PE does not necessarily to have the same amount of storage.

Instead, the allocation of storage cells to different PEs can be determined according to

the total amount of storage required by each PE. Clearly, theamount of flexibility in stor-

age allocation is proportional to themerging degree. However, it needs to be noted that a

merged SU needs to serve accesses from more PEs simultaneously, implying that the num-

ber of ports per SU needs to increase linearly as a function ofthe merging degree. Such an

increased complexity in turn imposes upper bounds on the value of themerging degree.

5.3 Physical Topology and Application Mapping

After introducing the properties of the proposedlocally shareablestorage model,

we subsequently examine the various topology instances that fulfill the locally shareable

property. As such a property is independent of a particular topological structure, distinct

2-dimensional topologies that exhibit a varying amount ofsharing degreeand themerging

degreecan be developed.

5.3.1 Topology instances and the associated properties

Figure 5.3 presents two representative 2-dimensional physical topologies corre-

sponding to the bipartite graph representations shown in Figures 5.2a and 5.2d. PEs and

SUs are connected through the direct inteconnect links, while all the SUs are connected

through an underlying on-chip network for the support of long-distance communication

and data transfer. It can be observed that these topology instances exhibit the following

properties:

• In a topology with a sharing degree ofs, everys+1 cores with consecutive indices

(Pi, Pi+1, ..., andPi+s) consistently hold in common an SU.

• In both topologies, each PE has at leasttwo direct communication links, thus re-

taining its connectivity in the case of single failures of communication links.



77

On−chip network

Direct interconnect links

PE

12

3 4

5

7 8

6

9 10

1112

13 14

1516

(a) sharing degree = 1, merging degree = 1

SU

12

3 4

5

7 8

6

9 10

1112

13 14

1516

(d) sharing degree = 2, merging degree = 2

Figure 5.3: Various 2-dimensional locally shareable MPSoC topologies

The first property indicates that the proposed topologies are not only able to toler-

ate core failures but furthermore able to minimize the execution reconfiguration overhead.

As every set ofs + 1 adjacent cores consistently hold in common an SU, the platform is

able to obviate any transfer of code or data set among anys + 1 adjacent PEs. In other

words, for all the possible reconfiguration processes embedded in anm-core adaptive

schedule, the platform is able to obviate any transfer of code or data set as long asm ≤ s.

If, on the other hand,m > s, the platform is able to tolerate a reduction ofs cores with no

reliance on any data movements during task migration, whilethe toleration of the remain-

ing m − s cores requires data to be transferred through the underlying on-chip network

that connects all the SUs.

The ability of anys + 1 cores with consecutive indices to hold in common an SU

furthermore simplifies resource allocation in the proposedadaptive system. By definition,

anm-core adaptive schedule can be executed byn, n−1, ...,n−m cores. To execute this

pre-optimized schedule, the OS only needs to find a consecutive “window” of i idle cores

such thatn−m ≤ i ≤ n. Such flexibility in window selection furthermore precludes any

possible fragmentation in resource allocation. Even in thecase when the total number of

consecutive idle cores is insufficient (i.e.,i < n − m), the OS can force the applications

that is using the adjacent cores to go through a reconfiguration process and give up a

limited number of resources. This scenario of execution adaption for resource allocation

has already been examined in Section 3.

The second property guarantees that the topologies shown inFigures 5.3 can tol-

erate single failures of direct communication links, as single failures can block at most



78

one of the communication paths. A detailed examination indicates that this fault tolerant

capability is directly determined by the sharing degrees and the merging degreek. More

precisely, a merging ofk out ofs+1 links may reduce the minimum number of intercon-

nects per PE tos − k + 1. Accordingly, as long ass − k ≥ 0 each PE is guaranteed to

have at least 2 direct communication links.

Finally, in contrast to PE and communication links, SUs are composed of multiple

storage elements of high regularity. The failure of a set of storage cells would hardly have

any impact on the connectivity of the entire multicore platform. Standard error detection

and correction techniques can be furthermore employed to attain fault tolerance at a low

cost.

The examination above confirms that all the MPSoC topologiesshown in Figure

5.3 deliver the capability of tolerating device failures inthe PEs, the SUs, and the com-

munication links, thus enabling them to be employed by various application sets to attain

fault tolerance and adaptive execution.

5.3.2 Topology instance selection

While the topology instances presented in Figure 5.3 provide a varying amount of

sharing capability, they all exhibit a regular structure; the sharing and merging conditions

of each PU are identical such that every set ofs+k cores with consecutive indices consis-

tently hold in common a single PU. Such regularity enables these topological structures to

be adopted as fixed-silicon MPSoC platforms, thus providingthe benefits of high-volume

amortization. Meanwhile, the regular topological structures also deliver flexible redef-

initions of the platform to match parallelism characteristics and resilience needs of the

application.

The selection of the most suitable topologies for diverse application sets can be

based on two considerations. On one hand, the values ofsharing degreeand themerging

degreeshould be determined according to the required reconfiguration needs as well as the

inter-PE communication patterns. On the other hand, consideration of design complexity

constrains the maximum number of interconnects as well as the number of interconnects

per SU, which in turn imposes upper bounds on the values of thesharing degreeand the

merging degree.



79

(b)  4−cluster partitioning(a)  2−cluster partitioning

12

3 4

5

7 8

6

9 10

1112

13 14

1516

(d)  5−cluster partitioning

12

3 4

5

7 8

6

9 10

1112

13 14

1516

(c)  4−cluster partitioning

12

3 4

5

7 8

6

9 10

1112

13 14

1516 12

3 4

5

7 8

6

9 10

1112

13 14

1516

Figure 5.4: Finer-grained cluster partitions and communication linkutilization

Parallelism consideration

While the number of PEs in each of the four topologies in Figure 5.3 is fixed

to 16, this parameter can be easily customized to other values without impacting the

structures of the bipartite graphs. Topologies with a larger number of PEs can be used

to hold applications with large amount of thread-level parallelism. On the other hand,

if the application cannot be parallelized into dozens of independent threads, the PEs can

be partitioned into a number offiner-grainedclusters so as to concurrently hold several

applications.

Upon the scheduling of an application, the corresponding maximum resource uti-

lization can be straightforwardly obtained. In the case of an underutilization of the re-

sources, the target MPSoC can be partitioned intofiner-grainedclusters. Figure 5.4

presents four distinct ways for partitioning the 16 PEs into2, 4 and 5 clusters. More

formally, the 16 PEs in the proposed topology instances can be partitioned into 2 to 8

disjoint clusters, with each cluster containing no less than 2 cores so as to attain fault

tolerance. During execution, communications are only performed within each cluster,

implying that only the direct communication links within a cluster need to be activated

(the bold lines in Figures 5.4) and the inter-cluster communication links can be deacti-

vated (the dashed lines in Figures 5.4). Yet upon the failureof a communication link, the

platform can berepartitionedso as to utilize a different set of communication links. This

property can be observed through a comparison between Figures 5.4b and 5.4c. While in

both figures the PEs are partitioned into 4 clusters, the setsof active communication links

(highlighted in bold) used in these two partitions are disjoint.



80

Reconfiguration and communication consideration

To select an appropriate topology instance for an application, both the reconfigu-

ration needs and the communication frequency of each application should be considered.

First of all, to completely eliminate the reconfiguration-induced data transfer among SUs

in anm-core adaptive schedule, the number of PEs that can directlyaccess a single SU,

i.e., the value ofs + k, should be no less than the adaptivity degreem. Clearly, this

topology selection criterion can be directly determined, once the adaptivity degree has

been determined according to the occurrence frequency of core unavailability within the

system.

In comparison, the second topology selection criterion that concerns the commu-

nication characteristics is application-specific. More precisely, to completely hide com-

munication overhead, the number ofdirect neighborsof a PE should be no less than the

maximum number of tasks involved in a single communication,that is, theout-degreeof

the corresponding task graph. Here, thedirect neighborsof a PEPi are defined as the PEs

that share an SU withPi.

Obviously, the value of thedirect neighborsof a PE is determined by thesharing

degreeand themerging degree. By definition, a sharing degree ofs directly implies that

everys + 1 cores with consecutive indices consistently share a singleSU in common.

Accordingly, corePi always has at least2s direct neighbors with contiguous indices,

ranging fromPi−s to Pi+s. This property can be observed in the topologies shown in

Figure 5.3, wherein the direct neighbors of PEP3 are shown in pink. In Figure 5.3a

P3 hasP2 andP4 as its direct neighbors as the corresponding sharing degreeis 1. In

comparison, in Figures 5.3bP3 hasP1, P2, P4, andP5 as its direct neighbors as the

corresponding sharing degree is 2. Meanwhile, as the link merging process increases the

number of PEs that share a single SU, in Figure 5.3bP3 additionally hasP6 as its direct

neighbors. In sum, a detailed examination indicates that the average number of direct

neighbors of a PE is2s + k − 1.

Design complexity consideration

Although the consideration of reconfiguration and communication needs argues

for a topology with larger values ofsharing degreeandmerging degree, the consideration



81

of design complexity, on the other hand, constrains the maximum number of interconnects

as well as the number of interconnects per SU. As mentioned before, a larger value of

the sharing degreeincreases the total number of interconnects, while a largervalue of

the merging degreerequires both the size and the number of ports of the SU to scale

proportionally. These considerations therefore impose upper bounds on the values of the

sharing degreeand themerging degree.

5.3.3 Task Placement Requirements

Upon the selection of the most suitable topology for an application, the associated

task placement decisions can be made. As each PE can access multiple SUs in the pro-

posed system organization, there exist multiple choices for placing the code and data set

of each task. Given the pre-generated adaptive schedule, task placement decisions need

to be made in such a way that the potential reconfiguration-induced data movement can

be completely eliminated.

As we examined before, in a single-core adaptive schedule, atask initially sched-

uled onPi may either need to be migratedright to PEPi+1 if it is in the L band, or need to

be migratedleft to PEPi−1 if it is in the R band. Task placement decisions can therefore

be made accordingly. In brief, tasks in the L band should be placed in the SU shared be-

tweenPi andPi+1, while tasks in the R band should be placed in the SU shared between

Pi andPi−1. These placement decisions can be observed in Figure 5.5b, which shows

the overall data placement of the schedule presented in Figure 5.5a. Taking PEP2 as an

example, among the three tasks originally scheduled on it, Task 2, as it lies in the R band,

is placed in the SU shared betweenP1 andP2. Tasks 6 and 10, as they lie in the L band,

are placed in the SU shared betweenP2 andP3. Yet in both cases, task migration is only

performed betweentwo adjacent PEs, implying that the sharing of a single storage unit

between two PEs suffices for hiding the reconfiguration latency completely.

If there exist multiple valid selections for the placement of a task, the decisions

are made so as to balance the amount of storage. This case occurs if the sharing degree

of the selected MPSoC topology exceeds the maximum reconfiguration step needed by

the application. For instance, the bipartite graph shown inFigure 5.5c exhibits a sharing

degree of 2. The tasks in Figure 5.5a that will never be executed byP1 or P4, namely,



82

P1 P2 P3
or P3P2 P4P1 P2 P3 P4

reconfig

(a) Pre− and post− reconfiguration schedules

P4P3P2P1P4P3P2P1

(b) 1−degree memory sharing and data placement (c) 2−degree memory sharing and data placement

9

5

1

12

8

42 3

7

6

10 11

5

1

9 12

8

4

10

6

2

11

7

3

L

R

L

R

1

5 9

2

12

11 4

8

6

10

3

7

1

5 9

2 3

7 12

11 4

8

6

10

Figure 5.5: Reconfiguration-induced memory sharing and data placement

Tasks 3, 6, 7, and 10, can be placed in either SU. These tasks therefore can be evenly split

into the two SUs in various ways, with one possible solution shown in Figure 5.5c. The

only constraint here is to separate Tasks 6 and 7. This is because the placement of Tasks

6 and 7 in the same SU would require an increase in the number ofaccess port, as the two

tasks are executed at the same timing step in the pre-reconfiguration schedule.

The aforementioned data placement decisions are made underthe assumption that

the selected MPSoC topology exhibits a merging degree of 1. Clearly, these decisions

display the finest granularity, thus resulting in their applicability to an MPSoC of merging

degreek > 1, as the data placement can also be merged along with the SUs. In an extreme

case, the PEs that can be utilized by an application share an SU in common (due to the

lack of parallelism), implying that no data placement decisions need to be made.

5.4 Communication Overhead Minimization

Once the topology of the target MPSoC platform is determined, the static sched-

uler can utilize the direct communication links offered by the selected topology instance

to minimize communication overhead.

Essentially, communications in the target MPSoC platform can be performed in

two ways. Two PEs that share no SU in common need to communicate through a con-

ventional on-chip network [10] that connects all the SUs. This type of communication,

denoted asremotecommunication, requires data to be transferred between SUsthrough

the underlying network. On the other hand, two PEs with a shared SU can directly com-

municate through one PE directly reading the data written bythe other. This type of com-

munication is denoted aslocal communication. Compared withremotecommunications,

the overhead oflocal communications can be effectively hidden, if a cheap yet efficient



83

synchronization scheme is provided. Unfortunately, traditional synchronization mecha-

nisms, such asspin locksandbarriers, falls short of fulfilling this requirement. They

ensure mutual exclusion through continuous polling of a shared variable, thus not only

imposing large contention on the on-chip network, but also requiring memory accesses to

be serialized.

To overcome this limitation, we additionally propose a light-weight distributed

synchronization mechanismfor the proposed locally shareable storage model. Rather than

explicitly inserting synchronization variables to serialize the transmission of data through

a shared memory location, we propose a mechanism to encode dependence information

within each memory access, thus enabling synchronization to be combined together with

data communication. Furthermore, by utilizing staticallyextracted application informa-

tion, a sharp reduction in the number of code bits needed is attained through the proposed

reference coloring algorithm, thus enabling an implementation within negligible hardware

overhead.

5.4.1 Encoding-based Synchronization

As each communication is composed of a write operation followed by a read op-

eration to the same memory location, the dependence information between these memory

accesses can be statically extracted and explicitly encoded. These code words can be

written/read together with the data in transfer. During execution, a dynamic checking of

the encoded dependence information enables the identification of the status of the data

in communication, based on which the read operation can be suspended to achieve se-

mantically correct communication, thus completely eliminating the accesses to explicit

synchronization variables.

While statically encoding data dependences of each communication to reduce syn-

chronization overhead is desirable, an effective encodingmechanism is still necessitated

in order to capture the dependences within a highly constrained number of code bits, as

otherwise the overhead of writing/reading the code words would be comparable to the

overhead of writing/reading an explicit synchronization variable. Previous studies [85]

have shown that most applications display highly similar and static communication pat-

terns in that each thread regularly communicates with a small and fixed subset of the rest



84

of the threads. More crucially, a large portion of the communication is performed via

point-to-point communication, that is, consistent communication between two proces-

sors. This property of restrictive communication patternsenables the design of a highly

effective encoding mechanism. In light of this observation, we propose a novelrefer-

ence coloring algorithm, which can encode global dependence information in arbitrary

access contexts within only a2-bit overhead for each memory access in a point-to-point

communication.

When two PEs access the same location in the shared SU, due to unpredictable

run-time events, such as cache misses in the data subsystem and branch execution in the

control subsystem, they may access the shared data out of order. Semantically correct

communication necessitates obviously in-order executionof all theseglobally dependent

instructions. In general, a pair of globally dependent memory access instructions consists

of either a store and a load(RAW dependence), or a load and a store(WAR dependence),

or a store and a store(WAW dependence). Considered from the aspect of inter-PE com-

munications, aRAW dependenceensures that the read operation in each communication

obtains the correct data, while aWAR dependenceensures that the data of an incomplete

communication will not be overwritten by a write operation in a subsequent communi-

cation. AWAW dependencebetween consecutive memory accesses, on the other hand,

implies a redundant usage of the shared memory location, as the value stored by the first

write operation is not consumed by any read operation.

Redundant accesses to the same location in a shared SU may cause threads to un-

necessarily wait on each other, thus necessitating their elimination to avoid performance

degradation. The absence of redundant usage of globally shared memory locations is

presumed in the proposed synchronization framework, a taskeasily achieved by standard

compiler techniques. In sum, two types of access patterns can be classified as redundant

usage of a global shared memory location:

• Two consecutivestore instructions. As the value stored by the firststore is not

consumed by anyload instruction, the firststoreis redundant.

• Multiple load instructions from the same PE that depend on the samestore. As

the firstload instruction will load the data in communication into a localregister of

that PE, subsequentload instructions emanating from the same PE are redundant.



85

write

read

write

read

write

�
�
�

�
�
�

�
�
�
�

�
�
�
�

RAW dependence
WAR dependence

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

opcode

r1

r8

dest source

r10

r3

r6 r10

r10

r10

r10

St

Ld

St

Ld

St

Inst 1

Inst 2

Inst 3

Inst 4

Inst 5

immediate

0

0

0

0

0r7

WAR I−colorInterPE Comm?

RAW I−color

(b) Encoding of RAW and WAR I−colors

Ld r6, 0 (r10)

St r1, 0 (r10)

St r3, 0 (r10)

Ld r8, 0 (r10)

St r7, 0 (r10)

Inst 2

Inst 4

Inst 5

Inst 1

Inst 3

P I P II

(a) Access sequence to CR1

Figure 5.6: Encoding of point-to-point inter-PE communications

Static encoding of global access dependence

Once the two redundant cases have been eliminated, dependent tasks executed

on different PEs will communicate by using the store/load instructions in analternating

order to access a shared storage location. This property can be observed clearly in Figure

5.6a, which presents an instruction sequence executed on PEs P I andP II to access the

memory locationMEM [r10]. More crucially, this highly regular access pattern enables

a highly efficient encoding technique to preserve the data dependence information.

Figure 5.6b presents the incorporation of the proposed static encoding technique

into standard data transfer instructions.2 As can be seen, our static encoding technique

uses one bit to distinguish global load/store instructions, together with two additional bits

to encode globalRAWandWARdependences.

To preserve semantic correctness of aRAW dependence, a read operation (e.g.

Inst 4 in Figure 5.6a) should be blocked if it attempts to access thedata earlier than

the corresponding producer (e.g.Inst 3 in Figure 5.6a). This can be achieved through

forcing each producer to write a distinct “signature” together with the data in communi-

cation, and forcing each read to verify the proper signaturebefore it obtains the data. One

straightforward solution would consist of the explicit specification of the address of the

corresponding producer in each read. However, the encodingoverhead of this solution is

2The format of the data transfer instructions shown in the figure is used by a wide range of embedded
architectures [38], such asARM, Hitachi SuperH, andMitsubishi M32R.



86

nontrivial, as the instruction address typically incurs atleast a 32-bit overhead. Further-

more, writing/reading a 32-bit signature at run-time may impose an overhead comparable

to the write/read of an explicit synchronization variable.

We propose instead a more efficient encoding solution by exploiting the regular-

ity of access patterns for the shared data. More specifically, because only two PEs are

involved in each point-to-point communication, as long as two adjacent write operations

can be differentiated, RAW violations can be precluded. Accordingly, we propose a ref-

erence coloring algorithm which alternatingly uses twoRAW I-colorsduring the static

compilation process to make sure adjacent write operationshave distinctRAW I-colors.

This property can be observed by examining the behavior ofInst 1, Inst 3 andInst 5 in

Figure 5.6b. During execution, each write operation will write its RAW I-colortogether

with the data in communication, enabling each read operation to check the RAW color to

ensure the completion of the execution of its producer. Accordingly, each read operation

is assigned the sameRAW I-coloras its producer, as can be observed fromInst 2andInst

4 in Figure 5.6b.

The preservation ofWAR dependencesensures that the data of an incomplete com-

munication will not be overwritten by a write operation in a subsequent communication.

As traditionally each producer may have more than one consumer, in general the preser-

vation of WAR dependencesencounters additional challenges in that a write operation

cannot be performed until all the previous read operations,that is, the consumers of a

previous producer, have been executed. However, for point-to-point communication each

producer has a single corresponding consumer only, thus enabling a further reduction in

the number of code bits needed. More specifically, WAR violations can be prevented in

the same way as RAW violations, through the usage of twoWARI-colors. The encoding

results can be observed in Figure 5.6b, whereinInst 2 and Inst 3 share the sameWAR

I-color, which differs from theWARI-color shared byInst 4andInst 5.

A pseudocode for a slight extension to the compiler in order to incorporate the

necessary updates for generating the suggested I-colors can be undertaken as described in

Algorithm 2. It can be easily seen that no more than two RAW andtwo WAR I-colors are

needed, implying that a total oftwo bits, one RAW and one WAR I-color bit, suffice to

encode all the dependences. These two bits, together with the bit that is used to indicate

whether a memory access is involved in inter-processor communication, constitute the



87

only static encoding overhead of the proposed synchronization mechanism.

Dynamic checking and access blocking

The aforementioned reference coloring scheme explicitly encodes the dependence

information between memory accesses involved in inter-PE communications at compile

time. At runtime when a memory access instruction is executed, if the static encoded

“inter-PE comm” bit is on, the PE will check the status of the data in communication

using either theRAW I-coloror theWAR I-color, based on which the execution flow is

blocked if necessary to preclude a potential semantic violation.

Algorithm 2 Reference Coloring
1: for each memory locationM ∈ point-to-point communicationdo

2: order all the inter-PE communication accesses toM ;

3: for i = 1 to n − 1 [n = total inter-PE communication accesses toM ] do

4: if two consecutive accessesi andi + 1 are reads, writes, or a write followed by

a read emanating from the same PEthen

5: prune them

6: end if

7: end for

8: for all the remaining write accesses toM do

9: assign oneRAW I-color and oneWAR I-color to each write, with the property

that two adjacent writes have distinct RAW and WAR I-colors;

10: end for

11: for all the remaining read accesses toM do

12: color each read using the sameRAW I-color as the write immediatelypreceding

it, and the sameWAR I-color as the write justfollowing it.

13: end for

14: end for

The hardware implementation of the dynamic checking mechanism is presented

in Figure 5.7, with Figure 5.7a presenting the extra hardware added to record the status

of the data in communication, and Figure 5.7b presenting thecorresponding control state

diagram. As can be seen, two extra bits, denoted as theRAWR-color and theWARR-



88

Check/Set R colors
Read/Write data for load/store
Record/Obtain waiting PE ID

data PE ID

...... ...

data PE ID

...

Processor

Memory

Operations:

(a) Hardware extension and operations

Free set WAR R

R block

Occupy

W block
Cache waiting PE

Cache waiting PE

set RAW R

Unblock waiting PE

Unblock waiting PE

(b) Control state diagram

write, WAR I != R
read, RAW I != R read, RAW I = R

write, WAR I != R
read, RAW I != R

read, RAW I = R

write, WAR I = R

write, WAR I = R

RAW I−color WAR I−color

RAW R−color WAR R−color

Figure 5.7: Implementation of the encoding-based synchronization scheme

color bits, are added to record the status of the data in communication. This can be clearly

seen in Figure 5.7. Moreover, in order to eliminate a continuous polling of theR-color

bits, aPEID field is also added to record whether a PE is waiting to access the data in

communication, thus enabling a light-weight mechanism to await a blocking PE. As only

two PEs are involved in each point-to-point communication,at most one PE needs to be

blocked, implying that onePEID field suffices.

In the process of executing a global load/store instruction, two synchronization

functions need to be performed in order to record the status of the data in communication:

the checking and thesetting of the R-colors. Furthermore, if an instruction attempts

to access the data in a semantically incorrect order, two extra synchronization functions

need to be performed: theblocking and theunblocking of the specific instruction. The

following two cases delineate the detailed functions performed when executing load and

store instructions, respectively.

• Load instruction: Before reading the data, the PE checks if theRAWR-color bit

has the same color as theRAWI-color statically encoded in the load instruction. If

so, the instruction can proceed to execution. Otherwise theinstruction needs to be

stalled, and the PE’s ID will be recorded in thePEID field. The blocking of the

load continues until a subsequent store instruction has updated theRAWR-color.

Once the execution of the load instruction has been completed, the PE sets the

WARR-color bit of the memory location to theWARI-color encoded in the load



89

instruction. Furthermore, if thePEID field shows that a store instruction emanating

from the alternative PE is waiting to update the data, the store will be unblocked.

• Store instruction: Before reading the data, the PE checks if theWARR-color bit

has the same color as theWARI-color statically encoded in the store instruction.

If so, the instruction can proceed to execution. Otherwise the instruction needs to

be stalled, and the PE’s ID will be recorded in thePEID field. The blocking of the

store continues until a subsequent load instruction has updated theWARR-color.

Once the execution of the store instruction has been completed, the PE sets the

RAWR-color bit of the memory location to theRAWI-color encoded in the store

instruction. Furthermore, if thePEID field shows that a load instruction emanating

from the alternative PE is waiting to obtain the data, the load will be unblocked.

The above analysis clearly indicates that the execution of load and store instruc-

tions is symmetric. This property can also be clearly observed in Figure 5.7b, which

presents the control state diagram in implementing the dynamic checking mechanism. As

can be seen, the control of synchronization is composed of two pairs of symmetric states:

theOccupy and theFreestages, as well as theR block and theW block stages.

TheOccupystage indicates that the shared memory location has just been updated

by a write operation, implying that the access expected nextis a read. If the expected read

(identified through comparing the encoded RAWI-color with the RAW R-color stored

with the data) arrives next, the control state will advance to theFree state, implying that

the current communication has terminated and the operationexpected next is the write

operation of a subsequent communication. On the other hand,if the current state is the

Occupy while the next access is not the expected read operation, thecontrol state will

advance to theR block state, and the blocked PE will be recorded in thePEID field.

The PE is unblocked only when the expected read arrives, resulting in the control state

advancing from theR block to theFree state.

The analysis presented above examines three transitions presented in Figure 5.7b:

transitions from theOccupy to theFree, from theOccupy to theR block, and from theR

block to theFree. The remaining three transitions are performed in an analogous manner

because of the symmetric property.

To illustrate the dynamic execution of these four functionsmore concretely, let



90

Table 5.1: The dynamic check/set of theR-colorsfor communication synchronization

Step Instrction Operation Control state
R-color

RAW WAR
1 Inst 1(W) CheckWAR R-color= blue? Free Purple Blue
2 Inst 1 SetRAW R-color⇐ red Occupy Red Blue
3 Inst 2(R) CheckRAW R-color= red? Occupy Red Blue
4 Inst 2 SetWAR R-color⇐ green Free Red Green
5 Inst 4(R) CheckRAW R-color= purple? Free Red Green
6 Inst 4 Block, record PEID⇐ P II W block Red Green
7 Inst 3(W) CheckWAR R-color= green? W block Red Green
8 Inst 3 Read PEID, unblockP II W block Red Green
9 Inst 3 SetRAW R-color⇐ purple Occupy Purple Green
10 Inst 4(R) CheckRAW R-color= purple? Occupy Purple Green
11 Inst 4 SetWAR R-color⇐ blue Occupy Purple Blue

us consider the example presented in Figure 5.6a once more. Assume that the twoRAW

I-colors used by the reference coloring algorithm arered andpurple, while the twoWAR

I-colors are green and blue. Accordingly, the reference coloring algorithm executed

during the compilation process will encode theRAWandWARI-colors of the first four

instructions as presented in Table 5.1. An illustrative case can be examined if we assume

that an unpredictable cache miss inP I occurred afterInst 1 has caused the first four

instructions to have a dynamic access order of (1, 2, 4, 3) to the locationMEM(r10).

The operation performed and the status of theRAWandWARR-color bits are presented3

in Table 5.1. As can be seen, although instructions try to accessMEM(r10) in the

semantically incorrect order of (1, 2, 4, 3), they are in actuality forced to be executed in

the semantically correct order of (1, 2, 3, 4) with the help ofthe statically encodedRAW

andWAR I-colors.

5.5 Experimental Evaluation

5.5.1 Impact of Topology on Task Scheduling

To evaluate the efficacy of the proposed locally shareable model, the various topol-

ogy instances presented in Figure 5.3 are modeled. The algorithm outlined in Section 4.5

3Please note that Step 10 is a replay of step 5 since the blocking condition has been cleared through the
execution of step 8.



91

Table 5.2: Impact of MPSoC topology on schedule length

Schedule length

Benchmark Task # Baseline TP1-1 TP1-2 TP2-1 TP2-2
In-tree 63 11 0.73 0.64 0.64 0.64

Out-tree 63 11 0.73 0.64 0.64 0.64
Gaussian 100 37 0.51 0.51 0.51 0.51

FFT 95 17 0.82 0.71 0.65 0.59
Fork-join 45 17 1.00 1.00 0.88 0.88

LU 77 27 0.89 0.81 0.81 0.81
Laplace 75 25 0.88 0.80 0.80 0.80

has been employed for generating adaptive static schedules. The application set under test

is composed of typically parallel algorithms, such asLU decomposition, Laplace equation

solver, andGaussian elimination. DAG representations of these task graphs are shown in

Figure 4.17.

To illustrate the impact of MPSoC topology on task scheduling, the selected

benchmarks are scheduled onto each of the 4 topologies. An MPSoC with a traditional

distributed memory model is considered as thebaseline. The obtained results are pre-

sented in Table 5.2, wherein we report the number of tasks in each application, the

length of the baseline schedule, as well as the length of the adaptive schedule (normal-

ized to the schedule length of the baseline MPSoC). Herein, “TPs-k” denotes a topology

with sharing degrees and merging degreek. For all the four topologies, the amount of

reconfiguration-induced data movement is consistently 0.

The experimental results show that the top 4 benchmarks can be effectively accel-

erated by the proposed locally shareable memory model. The fundamental reason for this

significant improvement is that all the four applications display a large amount of paral-

lelism and a limited number of out-going communications pertask, implying that most of

the inter-task communications can be performed through thedirect communication links.

To illustrate this property, we additionally report, in Table 5.3, the total number ofactive

links in the topology that each benchmark can utilize. The resultsshow that the first four

benchmarks can utilize more than 60% of the direct communication links, and hence the

schedule lengths have been reduced by 37% on average. Thein-treeand theout-treeex-

hibit identical results due to the high similarity in their task graphs. In comparison, in

the bottom 3 benchmarks, a task may fork a large number of dependent tasks that can-



92

Table 5.3: Impact of MPSoC topology on task mapping

Active links SU over-utilization
Benchmark TP1-1 TP1-2 TP2-1 TP2-2TP1-1 TP1-2 TP2-1 TP2-2

In-tree 14 23 23 23 5 3 0 0
Out-tree 14 23 23 23 5 3 0 0
Gaussian 18 14 14 13 9 9 0 0

FFT 16 23 23 23 11 5 0 0
Fork-join 0 0 0 0 1 1 0 0

LU 4 6 6 6 3 3 0 0
Laplace 4 6 6 6 2 2 0 0

not simultaneously be placed on direct neighbors of the corresponding PE. The schedule

length is thus constrained by the longest remote communication. The results show these

benchmarks can only utilize less than 10% of direct communication links, and the average

reduction of schedule length is around 14%.

The values reported in Table 5.2 confirm that the proposed locally shareable topolo-

gies offer multiple design points for the designer to trade off between the schedule length

and the number of direct communication links, as a reductionin the former can generally

be attained through increasing the value of the latter. On the other hand, it is not cost-

effective if a negligible reduction in the scheduling length requires a significant number of

communication links. According to this criterion, TP 2-2 can be considered as the most

appropriate topology forFFT andFork-join, while TP 1-2 the most appropriate topology

for the remaining 5 applications.

By default the number of ports per SU equals the merging degree of the topology,

as shown in Equation (5.2c). However, the data placement decisions, made for eliminating

reconfiguration-induced data movement, may result in over-utilization of the memory

throughput. Several tasks that are executed at the same timing step may end up being

placed into a single SU. This conflicting usage of the memory bandwidth can be observed

in Figure 5.5a, wherein Tasks 1 and 2 are both placed in the same SU and executed at the

same timing step in Figure 5.1a.

The total occurrences of SU over-utilizations for each benchmark have been re-

ported in Table 5.3 in the last group of columns. A relativelylarger amount of over-

utilization can be observed in the top 4 benchmarks, as theirschedules are more dense

due to the relatively higher amount of parallelism. More importantly, the results show



93

that SU over-utilization can be completely eliminated by increasing the sharing degree,

that is, inserting more communication links into the topology. This is because the addi-

tional communication links create flexibility in making data placement decisions, which

in turn enables two concurrent tasks to be separated into distinct SUs.

5.5.2 Efficiency of Encoding-based Synchronization

We evaluate the proposed light-weight synchronization mechanism by theoreti-

cally comparing the number of memory accesses necessitatedin the proposed synchro-

nization to the number of memory accesses necessitated in conventional spin-lock and

barrier synchronization schemes.

Theoretical comparison

For each of the three synchronization schemes two cases are examined: the case

wherein the producer thread updates the data earlier than the consumer thread, and the

case wherein the consumer thread needs to wait for the producer thread.

1. Spin-lock based point-to-point communication. In a point-to-point commu-

nication, one pair of memory accesses are performed to obtain the data in communication,

while another pair of memory accesses are performed to set and readflag if the commu-

nication has been statically scheduled appropriately so that the read operation does not

need to wait for the write of data. If the producer and the consumer threads compete to

accessflag, however, the analysis in [38] shows that a total of2i + 1 bus transactions are

needed for theith thread to set and read theflag. In this case, the total number of memory

accesses (Tall) needed to perform a spin-lock based communication amongn threads is:

Tall = 2 +
n

∑

i=1

(2i + 1) = 2 + n2 + 2n (5.3)

This equation clearly shows that for a spin-lock based point-to-point communica-

tion between two PEs, the total number of memory accesses needed is 8.

2. Barrier based point-to-point communication. A typical implementation of a

barrier can be done with two spin locks: one to protect a counter that tallies the processes

arriving at the barrier and one to hold the processes until the last process arrives at the



94

barrier. According to the analysis in [38], theith thread needs to perform3i + 4 bus

transactions, while the last process to reach the barrier requires one less. Thus, for a

communication involvingn threads, the total number of memory accesses (Tall) is:

Tall = 2 +
n

∑

i=1

(3i + 4) − 1 = 1 +
3n2 + 11n

2
(5.4)

This equation clearly shows that for a barrier based point-to-point communication

between two PEs, the total number of memory accesses needed is 18. As can be seen,

since the barrier synchronization scheme is developed for globally synchronizing multiple

threads at a time, it is not efficient for a point-to-point synchronization.

3. Proposed light-weight synchronization. The discussion presented in the last

section clearly shows that the memory accesses for synchronization are combined to-

gether with the memory accesses for data transmission. Accordingly, if the communi-

cation has been statically scheduled appropriately so thatthe consumer thread does not

need to wait for the producer thread, only a total of 2 memory accesses need to be per-

formed. If an unpredictable run-time event causes the producer thread to be delayed, the

consumer will be blocked once and unblocked later, with no need to spin on a shared

variable. Consequently, the total number of memory accesses (Tall) needed to perform an

encoding-based point-to-point communication is:

Tall =







2 if producer arrives earlier than consumer,

3 otherwise.
(5.5)

Simulation results

To illustrate the performance improvement provided by the proposed synchro-

nization method more clearly, we randomly generate a sequence of 1000 point-to-point

communications, of which the average communication latency is computed for each syn-

chronization scheme.

In general, the communication latency is a function of the memory access latency,

the total number of memory accesses involved in communication, as well as the number

of extra cycles spent in waiting for the consumer thread. In our experimental framework,



95

5 10 15 20 25 30
0

100

200

300

400

500

600
Total communication latency

average memory access latency

# 
of

 c
yc

le
s

spin−lock
barrier
encoding−based

Figure 5.8: Total communication latency, assuming the average numberof extra cycles
spent in waiting for the consumer thread of 50

the memory access latency is varied from 5 to 30 cycles, whilethe average number of ex-

tra cycles spent in waiting for the consumer thread is variedfrom 0 to 50. The results are

plotted in Figures 5.8 and 5.9. As can be seen, the proposed synchronization scheme out-

performs both the spin-lock and the barrier synchronization schemes in reducing commu-

nication overhead. This is because the proposed encoding-based synchronization scheme

significantly reduces the number of memory accesses needed in point-to-point commu-

nications. As all the memory accesses involved in synchronization and communication

need to be serialized through sequential bus transactions which require tens of cycles, the

significant reduction in the number of memory accesses directly implies a significant per-

formance improvement enabled by the proposed encoding-based synchronization scheme.

5.6 Conclusions

As computational resources may increasingly become unavailable at runtime, a

fast and predictableexecution reconfigurationstep is necessitated upon a resource vari-

ation, which in turn requires the development of advanced MPSoC topologies that can

effectively hide task migration overhead. To attain this goal, we have proposed a locally

shareable storage organization for adaptive multicore platforms. Through making each

storage unit directly accessible to a set of adjacent PEs, tasks can be directly migrated

among these PEs without data movement. As such a local sharing property is indepen-



96

0 10 20 30 40 50
0

40

80

120

160

200

240
Total communication latency

average # of extra waiting cycles of the consumer thread

# 
of

 c
yc

le
s

spin−lock
barrier
encoding−based

Figure 5.9: Total communication latency, assuming an average memory access latency
of 10 cycles

dent of a particular topological structure, a set of fault tolerant MPSoC topologies have

furthermore been proposed. Such topological structures can be adopted as fixed-silicon

but dynamically reprogrammable MPSoC platforms, wherein decisions regarding topol-

ogy selection and task placement can be made according to parallelism characteristics of

the application and reconfiguration requirements of the system. The experimental results

confirm that the proposed MPSoC topologies can even halve theexecution time of paral-

lel applications, while the reconfiguration-induced data movements between adjacent PEs

can be completely eliminated.

The proposed MPSoC organization in turn enables the development of a light-

weight distributed synchronization scheme to accelerate communications between adja-

cent PEs. Rather than employing a generic solution that allows any producer to send

data to any consumer, we have developed a cost-efficient solution that differentiates

neighborhood-centered communications from long-distance communications and accel-

erates the former. The synergistic collaboration between the compiler, responsible for

statically identifying and encoding global data dependences between memory accesses

involved in inter-PE communications, and the hardware extension of the conventional

storage organization provide a novel synchronization framework. This light-weight syn-

chronization mechanism allows dependent threads to frequently exchange data during

execution, in turn enabling the exploration of fine-grainedparallelism for applications

with strong dependences.



97

The text of Chapter 5, is in part a reprint of the material as itappears inC. Yang and

A. Orailoglu, “Light-weight Synchronization for Inter-processor Communication Accel-

eration on Embedded MPSoCs,” International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems (CASES), October 2007. The dissertation author

was the primary researcher and author of the publication [93].



Chapter 6

Architectural-level Fault Resilience

In the face of the projected high elevation of fault rates,fault resilienceneeds to

be considered as a primary design constraint, especially for systems dedicated to mission

critical applications, such as server, defense, or medicalapplications. The adaptive static

schedules discussed in Chapter 4 contribute to multicore reliability by delivering pre-

dictable execution reconfigurability upon core failures. Yet to attain full fault resilience,

such schedules still need to be supported by an efficient fault detection mechanism.

As mentioned in Section 1.2, the development of an efficient fault detection scheme

for future multicore systems imposes threechallenges, namely, attaining full detection

capability within a minimum level of result comparison and hardware duplication, maxi-

mally relaxing checking-induced synchronization conditions with no reliance on any cen-

tralized hardware buffer, and minimizing checkpointing overhead through strictly pro-

tecting memory against execution faults. Yet the review of the state-of-art in Section 2.2

indicates software-based techniques [76], although they can extract program information

such as execution invariants and the range of execution results to quickly identify a certain

set of faults, are insufficient for providing full fault coverage. On the other hand, tradi-

tional duplication-based fault detection and recovery approaches, although they provide

high fault coverage, impose significant overhead either in checkpointing execution results,

or in constantly synchronizing two threads for value checking. To make these approaches

suitable for future multicore systems, further overhead reduction is still necessitated.

In this chapter, we first examine the fundamental causes of the limitations of tra-

ditional duplication-based solutions, and then present a technique that exploits the idea of

98



99

comparing and checkpointing at thecache-memoryinterface to attain light-weight fault

detection and checkpointing. Subsequently, a set of performance optimizations, as well

as the technical support for incorporating the proposed fault detection into a multicore

platform are discussed in Sections 6.3, and 6.4, respectively.

6.1 Full Resilience within Low Overhead

Given the projected high fault rate, the fundamental challenge in developing a

cost-effective fault tolerant multicore system is to minimize the overhead of fault detec-

tion and recovery simultaneously, as optimizing only one side of the problem may result

in the complexity being shifted to the other. More crucially, due to the diverse behavior of

fault manifestation, full fault coverage is still necessitated. Accordingly, overhead reduc-

tion should not be attained through partial redundancy techniques [32, 71, 88] that reduce

duplication overhead at the cost of significantly increasedrates of undetectable faults.

To attain full fault resilience, traditional approaches typically employ aduplicate-

comparestrategy to detect faults, as well as acheckpoint-rollbackstrategy to restore the

computation to a previously saved cleancheckpoint(composed of the processor state

and the corresponding memory footprint). Yet one fundamental obstacle to the adoption

of such techniques has been the associated high comparison/checkpointing cost. More

specifically, traditional duplication-based fault tolerance techniques perform the compar-

ison and checkpointing process either at thetask-levelor at theinstruction-level. In the

former case, a task needs to be duplicated on distinct cores,and each duplicated copy

needs distinct memory regions. The operating system is typically involved in comparing

and checkpointing all the modified memory pages, thus imposing significant overhead. In

contrast, in the latter case, memory is prevented from beingpolluted by execution faults,

yet instruction results cannot be committed until their correctness has been verified, as

shown in Figure 6.1a. As discussed in Section 2.2, this highly synchronized execution

model significantly increases the latency of a single instruction, thus delaying the release

of hardware resources. The synchronization requirements can be relaxed, however, at the

cost of duplicating each load/store value of the leading thread in extra centralized buffers

[62, 72] for the trailing thread to access, as shown in Figure6.1b.



100

Cache Cache

Core I Core II

Memory

cycle by cycle
comparison

(a) Lockstep CMPs

Queue
Load value

Queue
Store

Queue
Branch

SMT core

Memory

Cache

trailingleading

(b) Redundant multi−threading

Core I Core II

Cache

Memory

compare & checkpoint

trailingleading compare &
checkpoint

(c) Proposed scheme

Figure 6.1: Differences between lockstep CMP, redundant multi-threading, and the pro-
posed cache-based detection/checkpointing scheme

The examination presented above indicates that a cost-effective fault tolerance

scheme needs to attain full detection capability in aloosely-synchronizedmanner wherein

two redundant threads can be executed independently, however, with no reliance on siz-

able hardware buffers. An architectural examination indicates thatcaches, which serve

as temporary storage for the main memory, can possibly be utilized to temporarily hold

unconfirmed execution results for fault detection purposes. By sharing a single data cache

between two redundant threads, one thread can directly check the execution results of the

other, thus completely eliminating the necessity of dedicated hardware queues to capture

load and store values. In this way, one thread can end up running ahead of the other in

execution, in turn effectively relaxing the execution synchronization requirements.

In an execution environment displaying elevated fault rates, checkpoints need to

be established more frequently so as to reduce the amount of computation to be rolled

back upon a fault. Yet to prevent an application from spending most of its time and energy

taking checkpoints, checkpointing overhead should be strictly controlled. As discussed

before, significant complexity and overhead will be incurred in the checkpointing process,

if unconfirmed data are allowed to be written into the main memory. Accordingly, a

light-weight checkpointing scheme should strictly protect memory from being polluted

by execution faults, thus motivating the proposal of checkpointing at thecache-memory

interface. As shown in Figure 6.1c, while the cache holds unconfirmed results of the two

threads, these results are written to the lower level storage in the memory hierarchy only

when the two threads agree. In this way, a checkpoint only needs to be established when



101

a dirty cache line needs to be replaced, and only theprocessor state, i.e., the program

counter and the register values,1 needs to be checkpointed.

6.2 Cache-based Fault Tolerance

In the face of diverse behavior of fault manifestation, the proposed fault detec-

tion scheme duplicates a task into two thread copies that aresimultaneously executed on

different cores to detect not only transient, but also intermittent and permanent faults.

Meanwhile, storage structures such as caches, register files, and the main memory are

protected using ECC, while buses are presumed to be protected using parity. This safe

storage is therefore utilized to store the checkpoints, so that execution can be recovered

to a clean state upon the detection of any computation fault.

In the remaining parts of this section, we discuss various aspects of the proposed

cache-based fault detection and recovery framework, including thread execution, fault

detection, checkpointing, as well as execution recovery.

6.2.1 Run-ahead Property for Workload Balance

As two threads generate identical memory access patterns inthe fault free case, a

single data cache can be shared between them to achieve more efficient resource utiliza-

tion. This organization furthermore enables the attainment of a more balanced workload,

through ensuring that theLeadingthread never falls behind theTrailing thread. The L

thread brings data into cache upon misses and initiates a checkpointing request upon the

replacement of a dirty cache line, while the T thread managesfault detection through

reading and comparing the values written by the L thread. Only the L thread encounters

misses in the shared cache, while only the T thread needs to compare store values, thus

effectively balancing the workload.

A noteworthy aspect of the outlined run-ahead requirement is that it is not im-

posed on a cycle-by-cycle basis, but only for memory access instructions. In other words,

the two threads can execute non-memory access instructionsindependently, yet before

executing a load/store, the T thread needs to ensure that theinstruction has already been

1Some branch handling and exception taking techniques may necessitate a few special purpose registers
to be additionally saved.



102

executed by the L thread. This requirement can be fulfilled through the use of anaccess

counterto globally track the difference in the memory access counts; the counter value is

incremented whenever the L thread executes a load/store, and decremented whenever the

T thread executes a load/store. The execution of the T threadis stalled if the value of the

counter is 0, thus fulfilling the run-ahead requirement.

6.2.2 Fault Detection

The proposed fault detection scheme consists of two parts:storeverification and

registerverification. The sharing of a single cache enables the T thread to directly check

the store values produced by the L thread with no need of any dedicated hardware queues.

During execution, the L thread directly writes its results into cache, while each write

initiated by the T thread is changed into aread of the corresponding cache block and

a comparisonof the two values. Meanwhile, the two threads also record their register

valuesindividually at each checkpoint, thus enabling a comparison of the two processor

states to detect execution faults. The combination of thestoreverification and theregister

verification therefore ensures that any execution fault, ifit has not been masked during

computation, will be detected eventually.

Traditionally a valid cache block can either be ‘clean’ or ‘ dirty’, depending on

whether its value has been updated or not. To support fault detection, an extra ‘verified’

state is maintained so as to differentiate whether or not thedata in cache has been verified

by the T thread. A store initiated by the L thread would therefore make a cache block

dirty, while the same store later initiated by the T thread would make the cache block

verified, if the two store values match.

With this extra state, any mismatch in a pair of store values can be directly de-

tected through the aforementioned cache access strategy. Meanwhile, execution faults

that propagate through dependence chains to storeaddressescan also be indirectly de-

tected. If an execution fault causes a store address to change fromCx to Cy, both cache

blocks (Cx and Cy) would exhibit a mismatch in the number of store instructions, as

shown in Figure 6.2. This mismatch typically would cause either cache block to enter

a state contradicting with the run-ahead property, which can be monitored by the cache

controller. In sum, a “fault-detected” signal will be generated for any of the following



103

L T
Write  A

Write  B

Write  D

Write  E

Write  A

Write  B

Write  C

Write  D

L T
Write  A

Write  B

Write  D

Write  E

Write  A

Write  B

Write  C xy

Not in verified stateNot in dirty state

(a) Additional write by the T thread (b) Additional write by the L thread 

Figure 6.2: Inconsistent access pattern caused by faults in store addresses

three types of fault observations:

• Disagreeing register values:When the T thread reaches the checkpoint, its register

values do not match the register values recorded by the L thread.

• Disagreeing store values:When the T thread is about to write adirty cache block,

the value to be written does not match the value in the block produced by the L

thread.

• Inconsistent store sequences:As the L thread always runs ahead of the T thread,

two cases will indicate the existence of a mismatch in store sequences: 1) when the

T thread is about to execute a store, it misses in the cache, orthe corresponding

cache block is not in the ‘dirty’ state, indicating that the L thread has not written

to that block yet (Figure 6.2a). 2) When the T thread reaches the checkpoint, there

exists a ‘dirty’ block in the cache, indicating that the T thread has not verified the

data written by the L thread (Figure 6.2b).

These three cases clearly confirm that the proposed technique can detect un-

masked execution faults that propagate through a dependence chain to either store values,

or store addresses, or register values at a checkpoint. Masked faults, on the other hand,

would not affect the correctness of the computation. Such a full detection capability in

turn enables the design of a light-weight checkpointing androllback scheme.

6.2.3 Execution Checkpointing

Upon the detection of a fault, the computation needs to be restored to a previously

saved clean state. Acheckpoint, which records complete information about the computa-



104

tion state, typically consists of processor state and the corresponding memory footprint.

To reduce checkpointing overhead, however, the proposed fault tolerance scheme main-

tains no extra copies for values written into memory. Instead, only the processor state is

checkpointed whenever data needs to be written into memory,thus ensuring the consis-

tency of the processor and the memory states.

In write-through caches, each store value needs to be written into memory, thus

requiring the processor state to be recorded on every store instruction. This checkpointing

frequency can become intolerably high. In contrast, the proposed fault tolerance scheme

employs a write-back cache, implying that a checkpoint onlyneeds to be established

upon a write-back, that is,whenever a dirty cache line is to be replaced. Clearly, under

this policy the checkpoint frequency is determined by the writeback frequency, which

is in turn determined by the cachesize, associativity, as well asthe replacement policy.

Yet given the low checkpointing overhead of the proposed scheme, the checkpointing

frequency in high fault-rate systems can be adaptively scaled up so that upon a fault,

less amount of computation needs to be rolled back. For instance, a checkpoint can be

established upon the execution ofK instructions, with the value ofK determined by the

projected fault rate.

Checkpointing request initiation

As the L thread always runs ahead of the T thread and as a cache block will not be

replaced if it exhibits a pending access of the T thread, onlythe L thread will encounter

cache misses. Checkpointing requests therefore will always be initiated by the L thread

upon the replacement of a modified cache line. The processor state to be checkpointed

is the current processor state of the L thread, that is, the computation point at which

the checkpointing request is initiated. To establish a consistent checkpoint, not only the

dirty cache line selected for replacement, but all the otherdirty cache lines that have been

updated since the last checkpoint need to be written into memory.

The aforementioned checkpointing initiation strategy canbe illustrated more clearly

by considering the loop example presented in Figure 6.3. In this loop, each array element

A[i] is first read at the(i−1)th iteration, and then written at theith and(i+1)th iterations.

To simplify the analysis, we assume that the cache is a directly mapped cache with 8 lines,

with each line holding a single array element. As all the cache blocks are invalid at the



105

for (i=1; i<MAX; i++) {
A[i] = A[i+1] + i;
A[i-1] = 2*i;

}

Figure 6.3: Loop with cache block dependences

beginning of loop execution, the execution of the first six iterations (i = 1 to 6) causes

the 8 cache lines to be filled withA[0], ..., A[7], respectively. At the7th iteration,A[8]

needs to be brought into the cache and to replaceA[0]. Since the value ofA[0] has been

modified, this block needs to be written back into memory, engendering in turn a check-

pointing request. The processor state to be checkpointed isthe computation point when

the L thread is about to replaceA[0] (at the7th iteration). Accordingly, not onlyA[0], but

also the other dirty cache blocks,A[1], ...,A[6], should be written into the memory.

Checkpoint establishment

When the L thread reaches a checkpoint, the T thread is still in the process of

verifying store values. To monitor whether the T thread has also reached that checkpoint,

the proposed scheme tracks both the PC value and the difference between the number

of memory accesses of the two threads. Specifically, if both threads have performed the

same amount of memory accesses (i.e., the value of theglobal access counteris 0), the

PC of the T thread is compared against the PC of the checkpoint. In the fault-free case, a

match of the two PC values, indicating the arrival of the T thread at that checkpoint, can

always be obtained. In contrast, if no match has been reported before the T thread issues

a subsequent load/store, an execution fault will be reported.

Once the T thread also arrives at the checkpoint with no intervening error detec-

tion, a new checkpoint is established by saving the processor state into reliable storage

(either a dedicated hardware buffer or a fixed location in main memory) and copying all

verifiedcache lines into memory. However, this copying would generate a burst of mem-

ory requests that may appreciably degrade system performance. To overcome this issue,

we employ the idea of making these linesunchangeable, originally proposed in [42] for

single processors. Specifically, an extra ‘retired’ state is maintained for each cache line,

and all the ‘verified’ cache lines are marked as ‘retired’ once the T thread reaches the



106

checkpoint. The use of this extra state enables a distribution of the write back ofretired

blocks: during subsequent execution, aretired block is written back into memory upon a

replacement of that block, or upon the first subsequentwrite-hit on that block.

6.2.4 Execution Recovery

As the memory is strictly protected against execution faults, the recovery process

is highly efficient, attained through recovering only the processor state and invalidating

only the cache lines that have been modified since the last checkpoint, namely, thedirty

andverified blocks. In contrast, no invalidation is needed if a cache block is either in

thecleanstate, indicating no update whatsoever, or in theretired state, indicating that the

block was updated before the last checkpoint. Once this invalidation process is completed,

the register values as well as the PC value saved at the last checkpoint can be reloaded so

as to resume the execution of both threads.

The aforementioned strategy effectively rolls the execution back to a previously

saved clean computation state, thus completely recoveringa transient or intermittent fault

if its fault duration has elapsed. On the other hand, if during the re-execution same fault

occurs for a second time, an execution migration step is necessitated in the recovery pro-

cess. The band-level reconfiguration approach outlined in Chapter 4, can be utilized to

isolate both suspect cores. In this case, the proposed technique also effectively reduces the

cost of task migration, which can be accomplished through migrating the processor state

and committingretiredcache blocks into the main memory. During subsequent execution,

the two cores can be separately paired with healthy cores to achieve a complete fault iden-

tification. Upon a complete differentiation of the faulty and the fault-free core, the latter

can be pulled back into execution through another band-level reconfiguration process.

6.2.5 Cache State Extension

The complete cache state diagram supporting fault detection, checkpointing and

recovery is shown in Figure 6.4. Each cache block can be in anyof five possible states:

the three traditional states ofinvalid, cleananddirty, as well as the two extra states of

verifiedandretired. The transitions among these five states accomplishfour fundamental

functions of the proposed fault tolerance scheme:



107

Invalid

Retired

Dirty Verified

fault detected

fault detected

L write miss

write back

established
CKPT

L read miss

Clean

L wt

L wt

T wt & value match

Replaceable

Unreplaceable

Figure 6.4: Cache states extended for fault detection and checkpointing

Fault detection: A store performed by the L thread will make the correspondingcache

block dirty, while the same store performed by the T thread will make the cache block

verified if the two store values match. A fault will be reported if the two store values

differ.

Checkpoint initiation: The invalid, theclean, and theretired states are marked asre-

placeable, indicating a checkpoint-free replacement for any of theseblocks. In contrast,

if a dirty or averifiedblock is selected for replacement upon a cache miss, a new check-

pointing request will be initiated by the L thread.

Checkpoint establishment: Once the T thread reaches a checkpoint and no fault has

been reported, all theverifiedcache blocks will be marked as ‘retired’. During subsequent

execution, a replacement or the first subsequent write-hit of a retired cache block requires

the data to be written into memory, which in turn makes that block clean.

Execution rollback: Upon the detection of any fault, alldirty andverifiedcache blocks

will be marked asinvalid.

6.2.6 Requirements on Memory Access Order

Clearly, the aforementioned fault detection and checkpointing semantics can be

naturally preserved if each core performs the memory accesses non-speculativelyand

in-order. Yet it turns out that these semantics can also be preserved in an execution

environment with out-of-order memory accesses. In fact, the fault detection semantics

only necessitate the stores to a single cache block to be performed in order. Clearly,

this requirement is already obeyed by every processor, evenif an out-of-order execution

mechanism is employed. In comparison, as read operations donot pollute the cache



108

content, the proposed scheme forgoes the monitoring of the load values, and hence each

core can perform loadsout-of-order. Yet it is more desirable for each core to perform

loadsnon-speculativelyso that between two consecutive write operations to a singlecache

block, the total number of loads to the block remains identical.

6.3 Execution Asynchronicity Enhancement

While the proposeddual-core-shared-cachefault tolerance scheme effectively re-

laxes thread synchronization, the maximum run-ahead offset of the L thread and hence

the attainable performance benefit is constrained by the synchronization requirement at

each checkpoint as well as the cache-line dependences between the two threads. To relax

these constraints, we outline in this section two performance enhancement techniques,

namely, arelaxed thread synchronization model, as well as a cache blockselective split

capability.

6.3.1 Relaxed Thread Synchronization at Checkpoints

Because of the run-ahead execution strategy, once the L thread initiates a check-

pointing request, it typically needs to await the T thread toestablish the checkpoint. In a

straightforward case, a new checkpoint can be establishedsynchronouslyby forcing the

L thread to await the completion of the fault detection process and the isochronism of the

two threads. Both threads will simultaneously be allowed toproceed upon the completion

of the checkpointing process.

The strictly-synchronizedcheckpointing strategy offers a benefit in that at any

time only a single checkpoint needs to be maintained, however, at a cost of unnecessarily

forcing the L thread to await the T thread to fully catch up. Incontrast, if the T thread has

verified the correctness of the data to be replaced and no moreread accesses are pending,

the L thread can proceed to replace the block. The data to be replaced, however, should

be stored in a dedicated buffer rather than being written back into memory immediately.

Meanwhile, the old checkpoint cannot be overwritten, sincethe new checkpoint has not

been established yet.



109

RM(A[8])
time

time

store results

W(A[0])

Compare

Trailing

Leading
W(A[0])

R(A[8])

R(A[8])

Compare
register values

Strictly−synchronized checkpointing

RM(A[8])
time

time

W(A[0])

Compare
store results

Leading

Trailing

W(A[0])

R(A[8])

R(A[8])

Compare
register values

Loosely−synchronized checkpointing

1

1

1

1

1

1

1

Dirty

0

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

Data
RM(A[8])

Cache footprint at CKPT

Write A[i]
A CKPT

W(A[i]): R(A[i]):
RM(A[i]): Read miss on A[i]

Read A[i]
:

Figure 6.5: Strictly vs. loosely- synchronized checkpointing

The differences between the two synchronization schemes can be observed more

clearly in Figure 6.5, wherein both strategies are applied to the loop example shown in

Figure 6.3. A checkpointing request is initiated when the L thread encounters the read

miss onA[8] at the7th iteration. In the strictly-synchronized checkpointing scheme, the

L thread waits until the T thread also reaches this computation point, and then writes

A[0] into memory and bringsA[8] into the cache. In contrast, in the loosely-synchronized

checkpointing scheme, the L thread only needs to await the T thread’s verification of the

correctness ofA[0], that is, the completion of the store instruction at the1st iteration.

Then, the value ofA[0] and the processor state of the L thread will be stored in safe

storage, and the L thread will proceed to bringA[8] into the cache.

In sum, the loosely-synchronized scheme reduces the waiting time of the L thread

by allowing it to proceed beyond a pending checkpoint, yet necessitates extra storage to

record the data to be replaced and the processor state of the Lthread. More importantly,

if the checkpoint is still pending to be established, the L thread should not be allowed to

write to the cache, as doing so would either overwrite adirty cache block or change a

clean/verifiedblock to dirty, both of which would cause a fault to be reported by the T

thread. These two potential semantic violations constrainthe L thread to proceed only in

a restricted manner without performing any cache write operation, if the new checkpoint

is still pending to be established.

6.3.2 Selective Split Capability of Cache Blocks

While sharing a single data cache between two duplicated threads delivers cost-

effective fault detection and checkpointing, this sharingdoes create a critical issue of



110

pseudo cache block dependences, which may force the L thread to constantly await the

T thread. Taking the loop presented in Figure 6.3 for example, as the L thread may run

one iteration ahead of the T thread, two types of pseudo dependences may be created.

The L thread writesA[i] before the T thread reads the old value (aWAR dependence),

thus causing the T thread to obtain an incorrect value, or overwritesA[i− 1] before the T

thread checks the old value (aWAW dependence), thus causing the T thread to incorrectly

report the detection of an error.

Although both types ofpseudo cache block dependencescan be preserved by forc-

ing the L thread to await the T thread, this extra synchronization requirement may reduce

the performance benefit that could be obtained by therun-aheadexecution model. An-

other possible yet exceedingly inefficient solution (employed by redundant multithreading

processors [72]) is to buffer each load/store value for the Tthread to access. In contrast,

our work aims at attaining execution asynchronicity withinminimal hardware duplication.

Instead of buffering all the load and store values, we propose to duplicate a cache block

only upon the detection of a pseudo dependence, through incorporating aselective split

capability into the cache design; whenever a block dependence is detected, the L thread

is allowed to update the regular cache block, while the old value is placed in a victim

cache for the T thread to read or to verify. The cache access controller is thus extended to

incorporatethree functions:detectingboth types of cache block dependences,splittinga

block into two versions, andmergingthe two versions if later the T thread catches up to

the L thread in the execution progress.

Split Condition Detection

The fundamental issue encountered in implementing theselective split capability

is the detection of a pending read or write of the T thread. Thelatter case can be easily

detected through monitoring the block state: adirty state indicates the existence of a

pending write of the T thread. The detection of a pending readcan be attained through a

pure dynamic technique, through maintaining aread counterfor each cache block. The

counter value, initialized tozero upon a store by the L thread, is incremented upon a

load by the L thread and decremented upon a load by the T thread. The L thread is only

allowed to overwrite a cache block if the corresponding readcounter is zero. If the counter

is non-zero, however, a pending read of the T thread is detected.



111

Retired

Verified

fault detected

fault detected

L read miss established
CKPT

DirtyInvalid

Clean Split T catchup

L wt

L write miss

write back

L wt before T rd

L wt before T rd/wt

L wt before T rd

T wt & value match

L wt

fault detected

Replaceable

Unreplaceable

Figure 6.6: Adding asplit state to cache state diagram

Cache Block Split and Accesses

Upon the detection of a pending read/write by the T thread, the cache block can

be split into two if there exists a free entry in the victim cache: the old value will be saved

in the victim cache for the T thread to access, while the L thread can proceed to overwrite

the block in the regular cache. To differentiate such blocks, an extrasplit state is added to

the cache state diagram, as shown in Figure 6.6. A write initiated by the L thread would

cause a block to enter thesplit state if the current state isdirty, or if the current state is

cleanor verifiedyet the read count is nonzero. This state diagram exhibits notransition

from theretired state to thesplit state, since a write-hit to aretired cache block requires

the data to be first written into memory, thus making the blockclean.

Once a cache block has been split into two, thread execution becomesindependent

in that each thread has its own place to write, and each threadwould read the data written

by itself. This independence furthermore implies that the Lthread can issuemultiple

write operations ahead of the T thread to a single cache block, while only two versions of

data need to be buffered. More precisely, if the number of outstanding write operations

is k, the proposed technique only needs to buffer the0th value for the T thread and the

kth value for the L thread. The intermediatek − 1 values, as they have been overwritten,

are never written back into memory and hence need no comparisons for fault detection.

Even if a fault in thesek − 1 values propagates through load instructions to subsequent

computation, the fault will also propagate to subsequent store instructions if it is not

masked during execution, and will eventually be detected once those store values are

compared.



112

Merge Condition Detection

While the selective split capability can effectively enlarge the run-ahead offset of

the L thread, it also increases the latency of the T thread, whose accesses to a split block

need to be redirected to the victim cache. To reduce such overhead and hence reduce the

required size of the victim cache, a victim cache block should be deallocated, if the T

thread catches up to the L thread in execution.

Accomplishment of the merging capability requires the inter-thread execution off-

set to be monitored so as to determine whether two split data copies are produced by the

same store of the two threads. Aversion counteris therefore added to each block in the

victim cache. The counter value, initialized to1 upon the split of a cache block, is incre-

mented upon a store by the L thread and decremented upon a store by the T thread. If a

store by the T thread changes the version counter value to0, the T thread will additionally

trigger a comparison of the two split data copies. If the two values match, the entry in the

victim cache will be deallocated, while the corresponding regular cache block will be set

to the ‘verified’ state, as shown in Figure 6.6. It needs to be noted that in this solution, two

split blocks are only checked for merging possibility upon astoreby the T thread, since

read accesses would not alter the value of the version counter of a victim cache block.

Once two split blocks are merged together, the read counter value in the regular

cache should be set to the difference between the read countsof the two threads. As

merging is checked upon the completion of a store of the T thread, the read count of the

corresponding victim cache block is always 0, implying thatno read counterneeds to be

maintained for a victim cache block. Accordingly, for asplit cache block, only the read

count of the L thread needs to be maintained, and the read counter value remains constant

during the merge process.

Block Split upon a Clean Replacement

So far, we have discussed the approach to split a cache block upon the detection

of a WARor WAW cache block dependence. Another situation that also necessitates the

split of a cache block is when the L thread intends to replace acleanor retired block, yet

the old value is still pending to be read by the T thread. Replacing acleanor retired block

does not create a checkpoint request. However, if the L thread is allowed to replace the



113

data, a pending read by the T thread would encounter a cache miss, which is considered as

an “inconsistent store sequence” case by the fault detection scheme discussed in Section

6.2.2.

To preclude this potential semantic violation, whenever the L thread selects a

cleanor retired cache block for replacement, the old value needs to be written into the

victim cache if the read counter of that block is nonzero. Thecorresponding read count

also needs to be written into theversion counterfield of the victim cache so that the T

thread can decrement the read count upon subsequent read accesses, and the block can be

freed once the counter becomes 0.

6.3.3 Synchronization Condition Analysis

The two execution asynchronicity enhancement techniques enable the two threads

to be executed independently most of the time. In this process, the T thread is forced to

await the L thread if and only if the value of theaccess counteris 0. The L thread, on the

other hand, is forced to await the T thread in the following five cases:

1. The L thread tries to execute a load/store, while theaccess counterreaches its upper

bound.

2. The L thread tries to read a cache block, while the corresponding read counter

reaches its upper bound.

3. The L thread tries to write a cache block, while a checkpoint is pending to be

established.

4. The L thread tries to split a cache block, while the victim cache is full.

5. The L thread tries to update asplit cache block, while the correspondingversion

counterreaches its upper bound.

These five cases constrain the maximum run-ahead offset of the L thread. Nonethe-

less, except for the third one, the occurrence frequency of the remaining cases can be re-

duced by increasing the sizes of the counter and/or the victim cache. Yet this increase does

not necessarily lead to an improvement in the average execution time of the two threads.

While the conditions for blocking the L thread are relaxed, alarger counter and/or victim



114

cache also results in more cache blocks being split, thus causing the T thread to spend

more cycles accessing the victim cache.

The five conditions for blocking the L thread contradict the condition for blocking

the T thread, implying thatno deadlock would occur in the fault-free case. However,

in a faulty case a deadlock condition may occur due to a mismatch in memory access

patterns. For instance, execution faults may cause the L thread to perform a number of

extra read accesses and hence block the L thread upon aread counterreaching its upper

bound. This blocking condition cannot be cleared by the T thread, as it would not perform

these read accesses. Meanwhile, the T thread would also be blocked once the value of the

globalaccess counterreaches 0, thus creating a cyclic waiting condition. This condition,

however, would never occur in the fault-free case, since theT thread is always able to

unblock the L thread if the latter is blocked on any read counter. In sum, the proposed

cache controller will report an error whenever it detects a cyclic waiting condition, in turn

causing the execution to be rolled back to the most recent checkpoint.

6.4 Fault Tolerant MPSoC Organization

When applying the proposed cache-based fault tolerance scheme to a multicore

platform with multiple applications executed concurrently, both the achievable perfor-

mance and design complexity are highly influenced by themulti-core, multi-threadex-

ecution environment. In this section we specifically examine three issues, namely, the

impact of memory hierarchy on the checkpointing strategy, the impact of inter-thread de-

pendences on fault detection semantics, as well as the impact of multi-threading on the

overall execution throughput.

6.4.1 Checkpointing Tradeoffs in Multi-level Cache Design

An important design decision for systems with a multi-levelcache hierarchy is to

determine the interface at which checkpoints should be established. If an MPSoC con-

tains two levels of caches and both the L1 and the L2 caches canbe shared between a pair

of cores (such as in the Intel Hyperthreading architecture), checkpoints can be established

at either the L1/L2 interface or the L2/memory interface. Inthe former case, only the L1



115

L1 cache

Checkpoint

L2 cache

Memory

Compare

data only
Verified

L1 extended for comparison & split,  
Data verified before written to L2
Checkpoint at L2/Mem interface

& split

Figure 6.7: Hybrid detection and checkpointing policy in multi-levelcaches

cache design needs to be extended to include the extra statesfor fault detection, check-

pointing, and block split. In contrast, if checkpointing isperformed at the L2/memory

interface, both the L1 and the L2 caches may contain dirty blocks when a checkpointing

request is initiated. To verify all these blocks, result comparison and checkpointing need

to be performed in both caches, which in turn requires an extension of both cache designs

to include the extra states for fault detection, checkpointing, and block split.

While checkpointing at the L2/memory interface significantly reduces the check-

pointing frequency and consequently the overall checkpointing overhead, it also increases

the complexity of the L2 cache design. To reduce this overhead, we propose ahybrid fault

detection and checkpointing solution, shown in Figure 6.7.Here, onlyverifieddata are

allowed to be written into the L2 cache, while a checkpointing request is initiated when

an L2 cache line is written to the memory. In this way, only theL1 cache needs to be

extended to implement fault detection and block split. The L2 cache, which needs neither

a victim cache nor any value comparison, only contains blocks of thefour possible states,

namely, theinvalid, clean, verified, andretired states. This hybrid checkpointing strategy

therefore can significantly reduce checkpointing frequency within a minimum hardware

extension of the L2 cache design.

6.4.2 Checkpoint Coordination for Inter-thread Communications

When a set of dependent tasks are concurrently executed in a multicore platform,

communication data need to be protected from being pollutedby execution faults. If



116

(b) Ring−sharing: 4 cores execute
 8 threads concurrently

Memory

Cache Cache Cache Cache

Core I Core II Core III Core IV

1.T

4.L 1.L

2.T

2.L

3.T

3.L

4.T

Core I
I $

Core II

I $

Core IIICore IV

I $
Ctrl
FTI $ D$

D$

D$

D$

(c) Layout of a 4−core MPSoC
with locally shared caches

(a) Pairwise: 2 cores execute
 4 threads concurrently

Core I

1.L

2.T

Memory

Core II

2.L

1.T

CacheCache

Figure 6.8: Applying the proposed shared cache organization to multi-core SoCs

inter-core communications are performed through an on-chip network, the checkpointing

scheme outlined in Section 6.2.3 can be extended so that a checkpointing request will be

initiated upon the communication of any modified data. In this way, the dependent tasks

can be checkpointed and recoveredindependently. No domino effectwould be induced

in the recovery process, since execution faults produced inone task cannot propagate to

dependent tasks through a communication chain.

In shared memory architectures, the protection of communication data against

execution faults therefore requires the cooperation of theproposed fault tolerance scheme

with cache coherency protocols. To preclude faulty data from being propagated among

various cores, the ownership information maintained by a coherency protocol is updated

only when the T thread verifies the correctness of a value, that is, when a write of theT

thread causes a transition from thedirty or thesplit state to theverifiedstate in Figure 6.6.

Meanwhile, a third core that tries to modify a cache block through the cache coherency

protocol should be prevented from polluting the cache states. Specifically, a third core

should not be allowed to modify a cache block, if the block is pending to be verified by

the T thread, or if the block is pending to be read by the T thread. Accordingly, in the

proposed fault tolerance scheme, a write initiated by the cache coherency protocol is only

performed if the corresponding cache block is at neither thedirty nor thesplit stage, and

the block exhibits a balanced number of read accesses from the two threads, i.e., the read

counter is 0. If any of these conditions fails to hold, the L thread is forced to await the T

thread until all these conditions are fulfilled, and then thewrite operation is triggered.



117

6.4.3 Throughput Enhancement through Multi-threading

The analysis in Section 6.3.3 indicates that the two performance enhancement

strategies reduce the frequency of execution synchronization, but cannot fully eliminate

it. Obviously, the time that the two threads spend on waitingcan be utilized to execute

another independent process/thread. In other words, as long as the corresponding cores

offer a multithreading capability and a light-weightcontext switchbetween independent

threads can be attained, thethroughputof the target multicore system can be improved.

An important benefit of thedual-core-shared-cachefault tolerance scheme is its

potential in minimizing the context switch overhead between processes/threads. Each

core in a dual-core system can be employed to simultaneouslyexecute two processes,

specifically, the L thread of one and the T thread of the other.If the L thread needs to be

blocked, the core can switch to execute the T thread of the other process, and vice versa.

More importantly, the contexts of these threads can be captured separately in different

caches, thus enabling context switches to be performed withno consequent interferences

in the cache. Thisdual-core-dual-cacheorganization is concretely shown in Figure 6.8a.

The aforementioned 2-core-4-thread organization can be directly employed in a

multi-core platform for throughput enhancement, through partitioning the cores into a set

of disjoint clusters, with each cluster containingtwo cores. Meanwhile, this organization

can also be extended into aring-sharingmanner such that the L and the T threads of the

ith process are executed on theith and the(i + 1)th cores, respectively. In this way, an

n-core MPSoC can be used to concurrently execute2n redundant threads, as shown in

Figure 6.8b. The cache that holds the context of theith process is shared between theith

and the(i + 1)th cores. As this sharing is only required between adjacent cores, the extra

interconnects required on the chip can still be organized ina localized manner. As an

illustrative example, a 4-core MPSoC with aring-sharingcache organization is presented

in Figure 6.8c.

Another noteworthy aspect of the aforementioned ring-sharing organization is its

potential fault identification capability. Typically, upon a result mismatch, the exact faulty

version of computation cannot be directly identified. However, in the ring-sharing orga-

nization, theith core is employed to execute two different processes, whose results are

respectively compared against the(i − 1)th and the(i + 1)th cores. If a result mismatch



118

Invalid
Clean
Dirty

000DSV=
010
110 101 Split

001
011

Retired
Verified

Victim cache

Tag Data

CPU address

Version #

DataTag
Read #

DSV

CKPT cache

Free

Victim

FT Ctrl CKPT
Cache

Core I

miss

miss

Core II

CKPT

CKPT

leading trailing

Memory

(a) Architectural overview (b) CKPT cache and victim organization

Figure 6.9: Hardware extension to traditional cache

has been detected for each process, theith core can be directly identified as faulty under

a single fault assumption. This extra information inherentin fault detection can thus be

exploited to differentiate transient and permanent faultsand to further develop an adaptive

fault recovery scheme accordingly.

6.5 Cache Access Control Implementation

6.5.1 Cache Access Control

To implement the proposed fault detection and checkpointing scheme, the tradi-

tional cache design is extended, as shown in Figure 6.9. A small fully associative victim

cache is employed to implement the split capability. A smallcounter is added to each

regular cache block to record the read count, and to each victim cache block to record the

version count. Meanwhile, thevalid and thedirty bits used in a traditional cache are re-

placed by aDirty-Shared-Verified (DSV)vector that records block states. The encoding

presented in Figure 6.9 is assigned in such a way that theD bit is on if and only if the

block is at thedirty or thesplit state. As a result, when the T thread reaches a checkpoint,

the cache controller can globally check whether any block isin thedirty or thesplit state

for fault detection purposes. This encoding scheme furthermore enables the use of the

following logic expressions to check whether a block has been split and whether a block

is replaceable:



119

Algorithm 3 L thread: write hit

1: if a CKPT is pendingthen

2: Stall the thread

3: else

4: Write current value into memory ifBLKhit state =retired

5: if BLKhit state =split then

6: version counter⇐ version counter+ 1

7: else ifread counter6= 0 then

8: Write current value into victim cache

9: version counter⇐ 1

10: BLKhit state⇐ split

11: else{BLKhit state6= split and read counter= 0}

12: BLKhit state⇐ dirty

13: end if

14: Perform regular cache write

15: read counter⇐ 0

16: end if

Split = D · V (6.1a)

Replaceable = D + SV (6.1b)

In the proposed framework, the L thread is allowed to performa read/write if the

globalaccess counterhas not reached its upper bound, while the T thread is allowedto

perform a read/write if the counter value is nonzero. Based on the values of the DSV

vector and the counter, all the unblocked read/write accesses to each cache block can be

controlled as follows:

• Miss by the L thread: If an non-replaceableblock is selected for replacement, a

checkpointing request is initiated; otherwise, a regular cache replacement is per-

formed, while the old value needs to be first written into the victim cache if the read

counter of that block is nonzero.

• Read hit by the L thread: A regular cache read is performed. The block state

remains constant, while the read counter is incremented by 1.



120

• Write hit by the L thread: The control logic, shown in Algorithm 3, is ex-

tended to implementthree functions, namely, the loosely-synchronized checkpoint-

ing scheme (lines 1–2), the additional writeback of retiredblocks (line 4), the se-

lective split capability (lines 5–10), as well as the block update for fault detection

purposes (line 12).

• Miss by the T thread: A fault is reported upon a write miss, and upon a read miss if

the corresponding data is not in the victim cache. It the readhits in the victim cache,

theversion counter(used to record the read count in this case) is decremented by

1, and the victim cache entry is released if the counter valuechanges to 0.

• Read hit by the T thread: If the block has been split, the read operation is redi-

rected to the victim cache; otherwise, a regular cache read is performed, and the

read counter of that block is decremented by 1.

Algorithm 4 T thread: write hit

1: if BLKhit state =split then

2: Write to victim cache

3: version counter⇐ version counter−1

4: if version counter= 0 then

5: Perform a regular cache read

6: if T value 6= L value then

7: Report a fault

8: else

9: Release victim cache entry

10: BLKhit state⇐ verified

11: end if

12: end if

13: else{BLKhit state6= split}

14: Perform a regular cache read

15: if BLKhit state6= dirty or L value 6= T valuethen

16: Report a fault

17: else

18: BLKhit state⇐ verified

19: end if

20: end if



121

• Write hit by the T thread: The control logic, shown in Algorithm 4, is extended

to implement fault detection and the selective split capability. A write operation

is changed to a read and a comparison, and a fault is reported either upon a value

mismatch or upon an access sequence mismatch (lines 5–7, 14–16). Accesses to

a split cache block are redirected to the victim cache (lines 1–3), while the block

merge condition is checked once the version counter equals 0(lines 4–12).

6.5.2 Implementation Efficiency

The aforementioned access strategy can be implemented as a small state machine.

While a fair amount of complexity is added to the logic for controlling misses and write

hits, these accesses are not on the critical path. In contrast, no extra condition is intro-

duced for the performance-critical read hits of the L thread, and the read hits of the T

thread can be directly controlled based on the DSV vector using the condition shown in

Equation (6.1a). The performance overhead introduced by this state machine is practi-

cally nonexistent since the decoding of the DSV vector can beperformed in parallel with

the comparison of tag values for hit/miss checking. In fact,only the accesses to asplit

block performed by the T thread will be delayed by one clock cycle, since these reads

need to be redirected to the victim cache.

The organization presented in Figure 6.9 indicates that theproposed cache design

can be implemented within a limited amount of extra hardware. Typically the victim

cache only needs to contain 16 blocks. A 2-bit counter would suffice to record either the

read count or the version number, if the corresponding cacheblock is not continuously

read/written within a short period. The 3-bit DSV vector replaces thevalid and thedirty

bits in the traditional cache. As a result, for an8K byte L1 data cache with2K blocks,

the extra storage required by the proposed fault tolerance technique equals(3 − 2 + 2) ∗

2K + 32 ∗ 16 = 6.5K bits. Redundant multi-threading processors [31], in comparison,

need to not only enlarge the reorder buffer, but also employ three centralized queues (so

as to record load values, store values, and branch outcomes)with a total size of(128 +

20 + 96) ∗ 32 = 7.6K bits according to the queue sizes reported in [31].

The proposed fault tolerance technique is also more power- and heat-friendly than

redundant multi-threading processors. The centralized queues [31] therein are constantly



122

Table 6.1: Impact of cache configuration on miss rate

Miss rate %
16K-dm 16K-2w (L/C) 32K-2w (L/C) 32K-4w (L/C)

adpcm 0.203 0.203 / 0.203 0.198 / 0.198 0.198 / 0.198
epic 5.340 4.104 / 4.421 3.898 / 4.049 3.793 / 3.899
gsm 0.023 0.006 / 0.006 0.003 / 0.003 0.003 / 0.003

mpeg2 4.753 0.621 / 3.644 0.264 / 1.482 0.253 / 0.606
art 43.00 42.76 / 42.81 42.76 / 42.77 42.76 / 42.77
eon 2.962 1.004 / 1.129 0.334 / 0.405 0.113 / 0.162

facerec 13.61 8.051 / 8.119 7.586 / 7.651 7.235 / 7.278
gzip 4.782 4.437 / 4.459 3.930 / 3.938 3.936 / 3.897

accessed by both threads, thus not only consuming a large amount of energy, but also

ending up becoming thermal hotspots which may degrade the reliability of the entire

chip. In contrast, the proposed fault tolerance technique only employs a single centralized

structure, i.e., the victim cache, which is accessed solelywhen the corresponding cache

block has been split. The remaining extra storage, i.e., thecounters and the DSV vectors,

is distributed into every cache block. Each cache access only needs to read several extra

bits, thus refraining from imposing significant power or heat overhead on the overall

system.

6.6 Simulation Results

To evaluate the proposed fault detection and checkpointingscheme, we have per-

formed a set of experimental studies on theMediabench[56] benchmarks, as well as

a number of graphics and compression programs selected fromthe SPEC 2000set, as

for such application domains, reliability has been identified as a critical concern. The

entire SPEC2000 programs are executed undertest inputs so as to collect checkpoint-

ing information under different execution phases while saving simulation time. As these

benchmarks display diverse cache access behaviors with miss rates ranging from 0.01%

to 43%, they constitute a representative workload set for evaluating the proposed cache-

based fault tolerance scheme.

The proposed fault tolerance scheme is evaluated in a dual-core execution envi-

ronment. In this way, we can significantly reduce simulationcomplexity while thoroughly



123

Table 6.2: Impact of cache configuration on checkpointing frequency

Checkpointing frequency (K insts/ckpt)
16K-dm 16K-2w (L/C) 32K-2w (L/C) 32K-4w (L/C)

adpcm 3346 3346 / 3346 - / - - / -
epic 1.755 24.05 / 62.75 65.31 / 137.4 89.59 / 186.5
gsm 121.6 1229 / 1326 117327/117327 234653/234653

mpeg2 1.769 22.48 / 149.1 99.67 / 506.1 418.5 / 2140
art 1.905 3.184 / 3.938 6.238 / 7.992 6.810 / 8.769
eon 0.903 5.393 / 74.51 6.773 / 136.7 246.7 / 1693

facerec 0.963 10.62 / 16.52 22.21 / 37.50 31.40 / 81.46
gzip 1.839 9.791 / 13.10 17.49 / 23.72 40.62 / 72.98

evaluating the checkpointing frequency, the writeback overhead, and thread performance,

with the only exception being the performance overhead thatmay be induced by the cache

snooping protocol. The SimpleScalar toolset [6] has been extended to model two con-

currently executed threads, with dedicated issue logic, register file, and functional units

provided to each thread. Each core is a single-issue, in-order processor, while a 4K-entry

BTB and a 4Kgsharebranch predictor are shared by the two cores. An 8-bitglobal ac-

cess counteris used to keep track of the execution offset between the two threads so as

to ensure that the L thread always runs ahead of the T thread. To model the proposed

cache controller, the cache design is extended to incorporate the extra states shown in

Figure 6.6, the checkpointing capability and the block split capability. In line with the

fault tolerance literature [62, 31], we focus our experimental efforts on measuring the

performance impact on the system.

6.6.1 Checkpointing and Writeback Frequencies

The checkpointing frequency of the proposed fault tolerance scheme is determined

by the frequency at which a dirty cache line is replaced, which is in turn determined by

the cachemiss rateand thereplacement policy. To evaluate such an impact, we retain

the remaining architectural parameters, while simulating4 distinct configurations for the

L1 data cache: 16K directly mapped and 2-way associative, 32K 2-way and 4-way asso-

ciative. For each set-associative cache, we furthermore simulate two distinct replacement

algorithms: the standardLRU, and aClean-firstpolicy that selects clean cache lines over



124

Table 6.3: Overall writeback rate

Writeback rate % ((WBex + WBori)/REFtotal)
16K-dm 16K-2w (L/C) 32K-2w (L/C) 32K-4w (L/C)

adpcm 0.023 0.024 / 0.024 - / - - / -
epic 2.149 1.773 / 1.728 1.695 / 1.681 1.679 / 1.664
gsm 0.280 0.081 / 0.078 0.000 / 0.000 0.000 / 0.000

mpeg2 0.579 0.295 / 0.160 0.174 / 0.137 0.030 / 0.125
art 15.37 15.34 / 15.33 15.33 / 15.33 15.33 / 15.33
eon 8.309 4.857 / 0.553 4.351 / 0.386 0.288 / 0.175

facerec 9.315 6.447 / 6.171 4.834 / 4.767 4.317 / 4.115
gzip 4.048 2.996 / 2.872 2.746 / 2.631 2.432 / 2.235

dirty lines. The results on miss rate and checkpointing frequency are respectively listed

in Tables 6.1 and 6.2, with a pair of values listed for each set-associative cache so as to

clearly show the impact of replacement policies.

It can be easily seen from Table 6.2 that for most cases, the proposed scheme only

imposes a checkpoint frequency of less than 1 per 10,000 instructions.Mediabenchpro-

grams usually exhibit a smaller checkpointing frequency (for adpcmno checkpoints are

ever taken for the latter two cache configurations) thanSPEC 2000benchmarks, since the

L1 cache is able to absorb most of the load/store requests during execution. The check-

pointing frequency of directly-mapped caches is usually high due to the large amount

of conflict misses. Increasing the associativity from direct-mapped to 2-way, even if it

cannot appreciably reduce the miss rate for some applications (such asadpcm, epicand

gzip), can still sizably reduce the number of checkpoints by approximately an order of

magnitude. Moreover, for set-associative caches, theClean-firstreplacement algorithm

can significantly reduce the checkpointing frequency by 2 to10 times, yet at the cost of an

increased miss rate, especially for 2-way associative caches. This is because the selection

of a clean line over a dirty line for replacement may overwrite the clean data that has just

been brought into the cache. However, except formpeg2, the miss rate increase of the

remaining benchmarks is negligible.

Compared to a traditional write-back cache, the proposed cache needs to write a

modified block back into memory not only upon areplacement, but additionally upon a

subsequentwrite-hit if the block is at theretired state. To show this impact, Tables 6.3

and 6.4 respectively report the overall writeback rate as well as the ratio of the extra write-



125

Table 6.4: Checkpointing-induced writeback increase

Writeback increase (WBex/WBori)
16K-dm 16K-2w (L/C) 32K-2w (L/C) 32K-4w (L/C)

adpcm 0.017 0.016 / 0.016 - / - - / -
epic 0.043 0.062 / 0.042 0.075 / 0.071 0.064 / 0.060
gsm 26.17 30.62 / 30.40 0.514 / 0.514 0.630 / 0.630

mpeg2 0.678 1.053 / 0.233 0.401 / 0.132 0.858 / 0.047
art 0.002 0.001 / 0.001 0.000 / 0.000 0.000 / 0.000
eon 7.400 16.53 / 2.080 38.47 / 7.063 3.944 / 2.144

facerec 0.322 0.508 / 0.448 0.196 / 0.181 0.127 / 0.075
gzip 0.837 0.477 / 0.420 0.464 / 0.406 0.309 / 0.212

back requests. As can be seen, the overall writeback rate decreases as the cache size or as-

sociativity increases. In most cases the extra writeback requests caused by checkpointing

only creates a small increase (≤ 50%) in the overall writeback rate. Significant increases

(≥5 times) are only reported forgsmandeonin the case of direct-mapped caches, and 2-

way associative caches with an LRU policy. Even for these twobenchmarks, the amount

of extra writebacks can be sizably reduced if theClean-firstreplacement algorithm is em-

ployed. This algorithm, which heavily reduces the checkpointing frequency, can in turn

reduce the average writeback rate of set-associative caches to around 1%.

6.6.2 Thread performance

The proposed fault tolerance scheme affects the overall performance of the mul-

ticore system in that the L thread needs to be blocked under the conditions outlined in

Section 6.3.3, while the T thread needs to spend extra time inaccessing the victim cache

and checkpointing the regular cache. Accordingly, the overall performance overhead is

strongly affected by theinitial execution offsetbetween the two threads. Too small of an

offset would result in the T thread quickly catching up to theL thread, thus causing the

T thread to also wait for the missing data. In contrast, too large of an offset would result

in the L thread splitting a large number of cache blocks, thuscausing the T thread to con-

stantly access the victim cache. Taking both effects into consideration, during simulation

we initiate the execution of the T thread upon any of the following conditions: 1) The L

thread splits a cache block; 2) The read count of a block is half full; 3) The global access

counter is half full; 4) The L thread generates a checkpoint request.



126

Table 6.5: Impact of thread synchronization and block split on CPI increase (%): 16K-
2way

16K-2way-LRU 16K-2way-Clean first
None Async Split Both None Async Split Both

adpcm 0.074 0.074 0.008 0.008 0.074 0.074 0.008 0.008
epic 3.100 2.882 0.898 1.075 3.316 3.249 1.088 1.022
gsm 19.04 19.04 2.920 2.919 19.04 19.04 2.929 2.918

mpeg2 9.282 5.091 5.054 0.158 1.378 12.98 12.97 9.285
art 0.397 0.363 0.245 0.160 0.325 0.296 0.173 0.132
eon 9.094 8.852 6.679 6.427 4.022 4.011 1.362 1.347

facerec 3.250 3.091 2.259 2.086 3.106 2.990 2.107 1.985
gzip 8.353 8.323 5.449 5.460 8.188 8.161 5.154 5.008

average 2.615 2.534 0.913 0.891 2.590 2.539 0.937 0.887

To evaluate the two optimization techniques outlined in Section 6.3, i.e., the

loosely-synchronized checkpointing modeland theselective split capability, the proposed

fault tolerance technique is simulated infour different ways, with either of these opti-

mizations, with both or with neither. Here, according to theresults of checkpointing and

writeback frequency, we select two representative cache configurations, 16K-2way and a

32K-4way, for performance simulation. The checkpointing latency is set to 80 and 120

cycles for the 16K and 32K caches, respectively, while the cache miss penalty is set to 30

cycles in both configurations. The baseline MPSoC employs the LRU replacement policy,

while the fault tolerant MPSoC employs both the LRU and theClean-firstpolicies so as

to clearly show the impact of the latter.

The obtained results of CPI increase are listed in Tables 6.5and 6.6, with the

minimum performance overhead for each cache configuration highlighted in bold. As

can be seen, except forepic andmpeg2, the minimum performance overhead of all the

other benchmarks is attained in the “Both” column, implying that both of the performance

optimizations are quite effective. The average values (computed as geometric means)

presented at the last row indicate that theselective split capabilityis more effective than

the loosely-synchronized checkpointing model: the former can reduce the performance

overhead by 64–75% while the latter only offers a reduction of 2–3%. Moreover, the

performance benefit offered by the proposedselectively splittechnique is achieved at a

minimum amount of duplication cost. To illustrate this property, we additionally report

in Table 6.7 the ratio of store instructions that induce split requests, and the number of



127

Table 6.6: Impact of thread synchronization and block split on CPI increase (%): 32K-
4way

32K-4way-LRU 32K-4way-Clean first
None Async Split Both None Async Split Both

adpcm 0.073 0.073 0.007 0.007 0.073 0.073 0.007 0.007
epic 2.984 2.910 0.727 0.653 3.066 3.044 0.774 0.751
gsm 19.01 19.01 2.884 2.884 19.01 19.01 2.884 2.884

mpeg2 4.962 4.960 0.878 0.875 5.864 5.863 1.792 1.792
art 0.309 0.285 0.155 0.113 0.209 0.185 0.056 0.022
eon 3.766 3.764 1.130 1.127 3.799 3.798 1.157 1.156

facerec 2.041 1.968 0.943 0.868 1.743 1.707 0.646 0.608
gzip 7.958 7.951 4.873 4.839 7.742 7.737 4.870 4.498

average 2.107 2.070 0.561 0.525 2.012 1.973 0.520 0.452

Table 6.7: Cache Block Split Efficiency

Split Store (%) Store/split block
16K 32K 16K 32K

adpcm 0.415 0.418 1.929 1.920
epic 11.94 15.96 1.003 1.229
gsm 18.33 18.32 2.243 2.244

mpeg2 5.830 11.82 2.158 2.123
art 0.449 0.446 1.001 1.001
eon 5.331 6.398 1.284 1.436

facerec 3.937 4.017 1.132 1.130
gzip 18.60 19.95 2.710 2.610

average 4.177 4.902 1.570 1.621

write operations mapped to each split block. As can be seen, in most benchmarks, only

a small ratio of store instructions (≤15%) induce split requests for the corresponding

cache block. Sizable amounts of split requests are only reported for gsmandgzip that

display intensive loop-carried dependences in frequentlyexecuted loops. Yet for these

benchmarks, on average each split block in the victim cache is able to capture more than

2 store instructions. These results therefore confirm that the proposedselectively split

technique imposes far less duplication cost than redundantmultithreading processors [62]

that typically duplicate each store value in hardware buffers.

When theselective split capabilityis incorporated into the cache design, the over-

all performance of the fault-tolerant MPSoC is also affected by the victim cache size and



128

Table 6.8: Impact of counter and victim cache sizes on CPI increase (%)

16K-2way 32K-4way
2C-16V 3C-16V 3C-32V 2C-16V 3C-16V 3C-32V

adpcm 0.008 0.005 0.005 0.007 0.004 0.004
epic 0.898 0.746 0.679 0.653 0.515 0.430
gsm 2.918 2.435 2.135 2.884 2.400 2.095

mpeg2 1.158 1.118 1.119 0.875 0.933 0.956
art 0.132 0.132 0.132 0.022 0.081 0.021
eon 1.347 1.175 1.175 1.127 0.810 0.997

facerec 1.985 1.962 1.962 0.608 0.629 0.571
gzip 5.008 4.956 4.955 4.498 4.640 4.537

average 0.673 0.592 0.576 0.405 0.411 0.339

the counter size. To evaluate such an impact, we additionally simulatethree distinct con-

figurations, a 16-entry victim cache with 2-bit or 3-bit counters, and a 32-entry victim

cache with 3-bit counters. The obtained performance overhead results (in terms of CPI

increase) are presented in Table 6.8, generated under theminimum performance overhead

configuration highlighted in Table 6.5. In general, as indicated by the average values

shown in the last row, an increase in the counter size and/or the victim cache size can

relax the conditions for blocking the L thread and hence reduce the performance over-

head. Yet this property does not hold for each benchmark. In certain cases (e.g.,mpeg2,

gzip), a larger counter and victim cache would slightly degrade performance, as it ends

up creating more split cache blocks. The T thread needs to spend more cycles accessing

the victim cache, while the L thread needs to await the T thread for more cycles at each

checkpoint.

In terms of the replacement policy, Table 6.2 shows that compared toLRU, the

Clean-firstpolicy sizably reduces the checkpointing frequency, yet slightly increases the

miss rate. Accordingly, this policy induces a diverse impact on the overall thread perfor-

mance, confirmed by the values reported in Table 6.5. Specifically, compared toLRU,

theClean-firstpolicy imposes a negligible impact onadpcmandgsm, reduces the perfor-

mance overhead of all the SPEC2000 benchmarks except foreonin the 32K-4way case,

yet degrades the overall performance ofepicand especiallympeg2of whose miss rate is

increased significantly.



129

Table 6.9: Impact of fault rate on CPI increase (%)

16K-2way-LRU 32K-4way-LRU
1E-5 3E-5 1E-4 1E-5 3E-5 1E-4

adpcm 0.008 0.008 43.96 0.007 0.007 33.68
epic 1.298 1.744 1.892 0.899 1.349 1.717
gsm 4.231 9.792 33.24 332.0 566.8 2205

mpeg2 2.129 4.042 9.888 12.35 28.28 82.84
art 0.348 1.467 3.696 0.425 0.778 3.405
eon 6.447 6.509 6.723 2.604 5.532 14.21

facerec 2.220 2.830 3.594 1.464 2.537 5.906
gzip 5.556 5.924 6.912 5.206 5.861 8.583

In sum, with the two performance optimizations applied, theproposed scheme

causes an average increase of 0.45% to 0.9% to the non-fault-tolerant single thread per-

formance. This technique outperforms the lock-step CMP that typically exhibits a per-

formance overhead of 15% to 19% according to the data reported in [31], and incurs

additional hardware costs, to boot.

6.6.3 Impact of Fault Rate on Thread Performance

The performance overhead of a checkpointing-based recovery scheme is deter-

mined not only by the checkpointing latency and frequency, but additionally by the fault

rate in the system. To evaluate this impact, we simulate the proposed checkpointing

scheme under distinct fault rates, ranging from10−5 to 10−4. We randomly insert faults

in store instructions under the rate assumptions of 5% manifestation of device failures

in the pipeline and 20% propagation of incorrect results through the dependence chain

to store instructions. The results, obtained for two representative cache configurations,

are presented in Table 6.9. As can be seen, the performance overhead linearly increases

as the fault rate grows. For most benchmarks the CPI increaseis insignificant (≤10%),

as the corresponding checkpoint frequency is 10 times higher than the fault rate. Yet

significant overhead can be observed foradpcm, gsm, andmpeg2when the fault rate is

high, especially in 32K caches. This is because for such cases, as shown in Table 6.2, the

checkpointing frequency is comparable to the fault rate, thus resulting in a large amount

of computation being rolled back upon failures.



130

Table 6.10: Memory hierarchy induced checkpointing tradeoffs

M insts/ckpt CPI increase (%)
L1 Hybrid L1 Hybrid

adpcm 3.3455 - 0.008 0.007
epic 0.0241 6.5963 1.075 0.533
gsm 1.2285 - 2.919 2.917

mpeg2 0.0225 24.658 1.378 1.144
art 0.0032 0.0840 0.160 0.028
eon 0.0054 450.75 6.427 5.609

facerec 0.0106 0.0788 2.086 2.003
gzip 0.0098 5.7294 5.460 2.575

6.6.4 Checkpointing Tradeoffs for Memory Hierarchy

As outlined in Section 6.4.1, checkpointing at the L2/memory interface instead

of the L1/L2 interface can significantly reduce the checkpointing frequency. To evaluate

this impact, we additionally simulate the hybrid checkpointing strategy outlined in Sec-

tion 6.4.1. The L1 cache is 16KB 2-way associative, while theL2 cache is 512KB 4-way

associative, and both caches employ an LRU replacement algorithm. The obtained results

in term ofcheckpointing frequencyandCPI increase (%)are listed in Table 6.10. As can

be seen, the hybrid checkpointing scheme significantly reduces the checkpointing fre-

quencies for most programs, with a minimum reduction of 7.5 times reported forfacerec.

In terms of performance overhead, the hybrid method offers asizable reduction (of more

than 50%) forepic, art, andgzip that display relatively high checkpointing frequency in

the L1 cache. In comparison, a negligible performance impact is observed inadpcmand

gsmthat already display a highly limited number of checkpointsin the L1 cache.

6.7 Conclusions

In this chapter, we have presented an integrated fault detection and checkpoint-

ing framework that simultaneously delivers full fault resilience and relaxed execution

synchronization. Through sharing a single cache between two redundant threads, one

thread can directly verify the execution results of the other, thus delivering light-weight

fault detection while at the same time strictly protecting the memory against execution



131

faults. Meanwhile, detection-induced synchronization requirements are drastically re-

laxed through allowing unconfirmed results to be written into the cache, as well as se-

lectively splitting a constantly updated cache block and skipping the comparison of the

intermediate values. Further performance improvements inmulticore systems can be

attained through the utilization of multi-level caches to simultaneously minimize check-

pointing and synchronization requirements, as well as the utilization of multithreading to

increase overall computation throughput. The simulation results show that the average

checkpointing frequency is as low as 1 per 30,000 instructions, with only a slight increase

in the write-back rate and a less than 10% degradation in CPI under≤ 10−4 fault rates.

The diminution of checkpointing frequency, in conjunctionwith the negligible overhead

in detection and checkpointing, introduces the possibility of efficient fault resilience in-

sertion in various architectures.

The text of Chapter 6, is in part a reprint of the material as itappears inC. Yang and

A. Orailoglu, “A Light-weight Cache-based Fault Detectionand Checkpointing Scheme

for MPSoCs Enabling Relaxed Execution Synchronization,” International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES), October 2008.

The dissertation author was the primary researcher and author of the publication [95].



Chapter 7

Compiler-Directed Heat Reduction

As the system fault rates exponentially increase as peak temperature rises, miti-

gation of thermal stress can in turn reduces resource unavailability induced by both heat

buildup and execution faults. Typically the chip-wide temperature exhibits a quite unbal-

anced distribution. Peak temperature of the entire chip therefore can be reduced through

shifting computation from a hot component to a relatively cool component. Previous re-

search has shown that at the core level, temperature can be effectively balanced by the

compiler, through the generation of thermal-aware execution schedules [23]. Without im-

posing any runtime overhead, the compiler can generate execution schedules in such a

way that the “hot” tasks are distributed across various cores at different time.

A more interesting observation is that the temperature within each individual core

also exhibits a unbalanced distribution. In particular, due to its high utilization (accessed

2–3 times per instruction) and relatively small area, theregister filehas been established

as one of the hardware units most likely to overheat in current processors [81]. This

localized “hotspot” can reach critical temperature levelsregardless of average or peak

external package temperature, thus ending up constrainingthe overall performance and

reliability of the whole chip. More crucially, due to the fact that 90% of the execution time

is spent on loops where only a small subset of registers is repetitively accessed, register

file accesses also exhibit high asymmetry during program execution. This asymmetric

register utilization furthermore leads to considerable temperature differentials, since most

of the heat generated within a microarchitectural block is dissipated vertically to the heat

sink rather than laterally to adjacent blocks [81].

132



133

The aforementioned register file access characteristics indicate that the peak tem-

perature within a register file, the hottest spot of a modern processor, can be effectively

controlled through distributing the accesses uniformly throughout the register file. To

achieve this goal, the register names obtained at the decodestage cannot be directly used

to access the register file. Instead, a register shuffling technique that physically remaps

heavily accessed logical registers prior to local heat buildup is necessitated. To attain

this goal, in this chapter we introduce acompiler-directed deterministic register shuffling

technique. A post-compilation adjustment of the register names allowsregularity to be

embedded within register accesses, so that accesses to eachregister can be evenly bal-

anced across loop iterations with no need of any hardware mapping table to keep track

of register usage or register mapping information. This extremely low hardware over-

head therefore enables an easy incorporation of the proposed technique into low-power

embedded processors to attain temperature control.

7.1 Challenges in Register Access Balance

The design of a dynamic register shuffling process to reduce the register file peak

temperature and, hence, to improve chip reliability, is motivated by the observation that

the code generated by the compiler exhibits highly asymmetric register access activity. A

traditional register allocation scheme in a temperature-unaware compiler initially assumes

an infinite set ofvirtual registersfor representation, and subsequently maps these virtual

registers into a fixed number ofarchitectural registers. The decision regarding which

physical registers in particular are to be allocated, however, does not take into consider-

ation the access distribution, thus leading to a highly asymmetric register access activity.

Figure 7.1, which presents the cumulative register access ratios of a set ofSPEC2000

(shown in the first 4 bars of Figure 7.1) andmediabenchprograms (the second 4 bars),

provides experimental confirmation. As can be seen, both sets of benchmarks exhibit an

appreciable amount of imbalance in that 48% to 71% of the total register accesses are to

4 registers.Mediabenchprograms display a higher amount of imbalance as compared to

SPEC2000benchmarks. On the average, a set of 12 out of a total of 32 registers is able

to capture more than 90% of the total register accesses.

The asymmetric register utilization shown in Figure 7.1 confirms that by evenly



134

art bzip2 eon mcf adpcm epic gsm mpeg2 Average
0

0.2

0.4

0.6

0.8

1

 

 

4 regs
8 regs
12 regs
16 regs
20 regs
32 regs

Figure 7.1: Cumulative register access ratio

distributing the accesses to each individual register within frequently executed loops, the

peak power density and hence the peak temperature can be effectively reduced. However,

such a balancing cannot be directly attained through an assignment of register names

during code generation, as the access asymmetry directly derives from the asymmetric

variable utilization of the program. This limitation can bemore concretely illustrated by

a representative code fragment presented in Figure 7.2a, anunrolled loop composed of

13 instructions that accounts for more than 25% of the total execution time ofbzip2. The

corresponding register live range and access pattern are respectively presented in Figures

7.2b and 7.2c. As can be seen, this loop exhibits a quite unbalanced register utilization

as it only accesses 6 (a5, t8–t11, ra) out of 32 general purpose registers. Among these 6

registers,a5, t9, andt10 are accessed most frequently. While the compiler may be able

to use more registers by separating multiple definitions of asingle register (a5 andt9) or

further unrolling the loop, individual register accesses would still remain skewed due to

the existence of singly assigned yet frequently referred registers, such ast10.

Since the static register allocation process cannot completely balance the accesses

to each individual register, a dynamic mapping needs to be established between the en-

coded register names, denoted as thelogical registers, and the register instances in the

register file, denoted as thephysical registers, to physically remap heavily accessed log-

ical registers prior to local heat buildup. At first sight, itseems that this task could be

achieved through using a hardwaremapping table, such as the one used in conventional

superscalar processors. Unfortunately, such a mapping table imposes a notable amount

of hardware complexity, energy consumption and performance overhead. More crucially,



135

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

14.

mov
ldbu
addl
lda
stb
xor
beq
mov
ldbu
addl
stb
xor
bne

1(t10)
0x1, t8

ra, a5

a5

2(t10)
−1(t10)

next
a5
0(t10)
0x1, t8
0(t10)
ra, a5
loop

a5t9 t8 t10 t11 ra

t9:
a5:
t8:
t10:

ra:
t11:

(w, r)
(w, r, r)
(r, w)
(r, r)
(w, r)
(r)

t9:
a5:
t8:
t10:
ra:

(w, r, w, r)
(r, w, r)
(r, w)
(r, r, w, r)
(r)

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

i1 i2 i3 i4iter:

t10

t11

t12

t12

t10

t12

a5

t12

t11

t11

t12
t11

t12
t11

t10

t10

t12
t11
t10t9

a5
t8

t9

t9
a5
t8 a5

t9

t8

t9

t9

a5
t9

t9

a5t8

(d) Shift of destination regs

loop:

next: stb

t9,
a5,
t8,

t9,
t9,

a5,

t9,
t9,

t8,
t9,
t11,

a5,

t11,

t10,

(a) Code fragment

B1

B2

(c) Reg access pattern(b) Register live range

8(sp)

Figure 7.2: A loop example obtained frombzip2

as the table needs to be accessed using logical register names at a frequency no lower

than that of register file accesses, this small hardware unititself would hence become a

temperature “hotspot” with skewed access distribution. This significant energy and heat

overhead confirms that a temperature-aware register file should be able to evenly dis-

tribute accesses to each register withno reliance on a hardware mapping table. Moreover,

as no hardware mapping table is used to keep track of run-timeregister usage or register

mapping information,regularityneeds to be embedded within register accesses so that the

mapping between logical and physical register names can be controlled in adeterministic

manner. Specifically, the following two tasks need to be accomplished through an easily

computable dynamic mapping that deterministically controls the renaming process:

• Select a free physical register for each write accesswith no dynamic register usage

information;

• Redirect each read access to the corresponding physical register with no dynamic

mapping information.

7.2 Deterministic Register Shuffling

The fundamental goal of the proposed register shuffling technique is to evenly

balance register accesses across loop iterations with no reliance on a hardware mapping

table. Accordingly, not only adynamiclogical-to-physical register mapping needs to be



136

established, but furthermoredeterminismneeds to be embedded within such a dynamic

mapping.

To attain a deterministic register remapping, the proposedtechnique exploits the

fact that no fixed, preordained correspondence exists between program variables and reg-

ister names. The compiler can therefore establish a certainproperty between consecutive

accesses to each register, thus enabling the hardware to redirect register accesses with no

reliance on a mapping table.

7.2.1 An illustrative example

To deterministically select a free physical register for each write access register,

the proposed technique exploits the fact that during loop execution, the physical register

used at thepreceding iterationbecomes free whenever a new physical register is allocated

as the destination of an instruction. Taking the code fragment presented in Figure 7.2a

as an example, upon a new iteration, if a free register (t12 for example) is used as the

destination of instruction 1, the old destination,t9, becomes free thereafter. As a result,t9

can be used as the new destination of instruction 2, which in turn frees upa5, allowing it

to be used for instruction 3, and so on and so forth. This shiftin register assignments can

be clearly seen in thei2 column of Figure 7.2d. Finally, at the end of this iteration,t11 has

been freed, thus allowing it to be used as the new destinationof instruction 1 at the next

loop iteration. The remapping of the destination registersduring the first 4 consecutive

iterations is summarized in Figure 7.2d.

It can be seen from the register names presented in Figure 7.2c that the proposed

register remapping process exhibits the following two properties:

• Across loop iterations, a logical register is sequentiallymapped to all the physical

registers before it shuffles back to the initial mapping.

• Within a single iteration, all the assignments of a single logical register are mapped

to the same physical register, thus establishing a one-to-one mapping between log-

ical and physical register names.

The first property indicates that the proposed technique caneffectively balance

accesses to individual registers across loop iterations. Although this technique does not



137

reduce the energy consumed in each register access, it stilleffectively prevents local heat

buildup since heavily accessed logical registers, such asa5, t9 and t10 in the example,

are mapped to distinct physical registers across loop iterations. As temperature takes at

least 0.1 million cycles to rise by 0.1 °C [81], this balanced access activity, achieved at

the granularity of loop iterations, enables an effective reduction of the register file peak

temperature.

The second property enables the proposed remapping scheme to attain access de-

terminism. Specifically, by ensuring that a one-to-one mapping is established between

logical and physical register names within a single iteration, the physical register names

can completely determined according to the static name and the loop iteration count, thus

eliminating the necessity of a hardware table to record dynamic register mapping.

7.2.2 Destination register name adjustment

At each iteration, the proposed scheme deterministically remaps thekth logical

destination register to the physical register used as the(k − 1)th destination in the last it-

eration. This recursive relationship can be formalized as follows, withDN(Ri
k) denoting

the dynamic name of thekth destination register at iterationi:

DN(Ri
k) = DN(Ri−1

k−1) = DN(Ri−2
k−2) = ... = DN(R0

k−i) (7.1)

Equation (7.1) illustrates a crucial property of the proposed register shuffling tech-

nique: during loop execution all the logical destination registers are iteratively mapped

to the same set of physical registers in the sameshifting order. The shifting order of the

bzip2example, represented by the arrows in Figure 7.2d, is (t9, t12, t11, t10, t8, a5, t9).

Moreover, this shifting order happens to be thereverseof the order in which each logical

register appears as a destination within the loop body.

The reverse-orderproperty indicates that if a fixed offset has been imposed be-

tween any twoconsecutive yet distinct destination register names, any twoconsecutive

mappings of a logical registerwould also exhibit a fixed offset. More formally, by impos-

ing a fixed offset ofO′ between the static names of thekth and the(k − 1)th destination

registers, the dynamic name of registerRk at iterationi, denoted asDN(Ri
k), can be gen-

erated through shufflingDN(Ri−1
k ) by a fixed offset ofO. UsingV α

O to denote the shuffle



138

of a valueV by an offsetO for α times, this fixed-offset relationship can be formalized

into the following equations, withO andO′ being complements in that(V α
O )α

O′ = V for

any positive integersV andα.

DN(Ri
k) = DN(Ri−α

k )α
O = SN(Rk)

i
O (7.2a)

SN(Rk) = SN(Rk−α)α
O′ = SN(R0)

k
O′ (7.2b)

According to Equation (7.2), at iterationi, the dynamic name of registerRk can be

generated through shuffling the corresponding static register nameSN(Rk) by an offset

of O for i times, whileSN(Rk) should be generated through shuffling the static name of

the0th destination registerSN(R0) by an offset ofO′ for k times. These equations clearly

confirm that at each iteration, the dynamic register names can be completely determined

by the compiler.

To effectively balance register accesses while minimizingthe hardware complex-

ity, a light-weight shuffling function is furthermore necessitated. Given ashuffle window

composed of a set of contiguous physical registersB, B+1, ...,B+T−1, an effective shuf-

fling function needs to ensure that each logical destinationregisterRk will be sequentially

mapped to each physical register within the window before itshuffles back to the initial

mapping. In other words, the shuffling function needs to establish a one-to-one mapping

from V 1
O, V 2

O, ..., V T
O , theT consecutive dynamic names of registerRk, to theT distinct

valuesB, B+1, ...,B+T−1, within the shuffle window. According to this requirement,

two shuffle functions, namely, a modulo addition and aGalois fieldmultiplication, can

be employed to attain a deterministic register shifting, assummarized in the following

equation.

SN(Rk) = Bk
O′ =







B ⊗ 2T−(k∗O)%T , T = 2n − 1;

(B − k ∗ O)%T, GCD(O, T ) = 1.
(7.3)

In moduloT addition, the static register name ofRk is generated as(B−k∗O)%T .

The values of the offsetO and the window sizeT should be relativelyprime so as to

ensure the assignment of distinct physical names to different logic registers within a single

iteration. In hardware, this addition function can be implemented using aj-bit modulo

T adder for each register access port, assuming a total of2j registers provided in the



139

Table 7.1: The use of the two shuffle functions to shift register names in thebzip2example

Modulo Addition GF (23) Multiplication
i0 i1 i2 i3 i4 i5 i6 i0 i1 i2 i3 i4 i5 i6

t9→B 1 2 3 4 5 6 7 1 2 4 3 6 7 5
a5→B1

O′ 7 1 2 3 4 5 6 5 1 2 4 3 6 7
t8→B2

O′ 6 7 1 2 3 4 5 7 5 1 2 4 3 6
t10→B3

O′ 5 6 7 1 2 3 4 6 7 5 1 2 4 3
t11→B4

O′ 4 5 6 7 1 2 3 3 6 7 5 1 2 4
DN(Ri

k) = (SN(Rk) + i)%7 = SN(Rk) ⊗ 2i

SN(Rk) = (SN(R0) − k)%7 = SN(R0) ⊗ 27−k

architecture. On the other hand, if the value of the window size T equals2n − 1, a

more efficient shuffle function can be implemented so thatBk
O′= B ⊗ 2T−(i∗O)%T , with

⊗ denoting the multiplication operators defined in the extension Galois fieldof GF (2n).

The hardware implementation of this multiplication function is comparatively cheaper as

no modulo adders but only a limited number ofxor gates are required.

The differences between these two functions are concretelyillustrated in Table

7.1, which shows the mapping of the five destination registers of thebzip2example in

7 consecutive iterations, withB, O andT respectively set to 1, 1, and 7, and the field

generating polynomial ofGF (23) set tox3 + x + 1.

7.2.3 Loop-carried dependence preservation

As the new name of each logical destination register can be determined using

Equation (7.3), the names of source registers can be determined accordingly. Since the

mapping of a logical register varies across iterations, read accesses before and after the

first assignment within the loop body should be directed to distinct physical registers.

Specifically, all the read accesses following the first writeoperation, as it remaps the log-

ical register, should be directed to the new allocated physical register. In contrast, all the

read accesses preceding the first write operation should obtain the value produced at the

prior iteration, thus requiring the compiler to additionally shuffle the register name byO′.

The aforementioned name adjustment of source registers canbe illustrated more

clearly by considering the logical registera5 in thebzip2loop presented in Figure 7.2a. As

shown in the first column of Table 7.1, the name ofa5 is adjusted toB1
O′ by the compiler.

Sincea5 is remapped by instruction 2, all the subsequent read accesses toa5 within the



140

1(      )t10

ra, a5
−1(t10)

a5

loop

0x1,
2(      )t10

t8

loop:
ldbu
addl
lda
stb
xor

t10,

a5,
t8,

t9,
t9,
t9,

mov t9,

bne

1.
2.
3.
4.
5.
6.
7.
8. stb a5,

Code fragment

Static name adjustment

mov
mov
mov

loop: mov
ldbu
addl
lda
stb
xor

R1,

R1,
loop: mov

ldbu
addl
lda
stb
xor

stb

bne.s

bne.s

register names
If taken, shuffle

variables
Initialize live−in a5

loop

1(      )
0x1,
2(      )

loop

0x1,

t8
t10

2(      )

a5
t8
t10

R1t9
R7
R6
R5

R7,
R6

R6,
R5,
R4,

R4
R6, R5
R5, R4 iter 1

iter 2

R1, −1(R5)
R1, ra, R7

R2, R7
R1, 1(      )R5
R7, R6
R6, R5
R2, −1(R6)
R2, ra, R1
R2,
R1,

8(sp)

8(sp)

Figure 7.3: Register name adjustment in two consecutive iterations

loop body should be directed toB1
O′. On the other hand, instruction 1, which readsa5

before it is remapped, should obtain the value produced at the prior iteration wherein the

name ofa5 is notB1
O′ but B2

O′. Accordingly, the compiler should adjust the name ofa5

appearing in instruction 1 by an additional amount ofO′ so as to preserve this loop-carried

dependence.

An additional shuffle ofO′ to the names of thelive-in variables allows register

values to be effectively passed across loop boundaries during execution. Therefore, se-

mantic correctness can be naturally guaranteed as long aslive-in variables, such asa5, t8

andt10 in thebzip2loop, are correctly initialized prior to entering the loop.This task can

be attained simply through the insertion of extramoveinstructions to transfer register val-

ues prior to entering the loop. These few registermoveinstructions, as they are executed

quite rarely outside the loop body, introduce no overhead inpractice, neither in terms of

performance nor in terms of energy.

To concretely illustrate the aforementioned name adjustment policy for destina-

tion and source registers, it has been applied to a non-unrolled version of thebzip2loop

presented in Figure 7.3. Using themodulo additionin Table 7.1 as the shuffle function,

Figure 7.3 presents the register names in the first two iterations of the transformed code.

As can be seen, the compiler has globally adjusted register names according to the order

in which they appear as destinations. The names of adjacent yet distinct register desti-

nations differ by an offset ofO′=−1, while an extra offset ofO′ is added to each live-in



141

(a) Shiftable

B1

B2

B3

read R1

(b) Shiftable

B1

B2

B3

(c) Shiftable

B1

B2

B3

B1

B2

B3

(d) Not shiftable

write R1
read R1 read R1 read R1

write R1 write R1 write R1 write R1

write R1

Figure 7.4: Shiftability analysis of registerR1

read reference shown in instructions 1, 2, 3, and 4. Meanwhile, a hint is inserted into

instruction 7, the loop branch, so that once the branch is taken, each register name, except

for the read-only registerra, will be shifted by an additional offset ofO=1. Finally, three

registermov instructions have been inserted prior to entering the loop so as to initialize

the live-in registersa5, t8, andt10, respectively.

7.2.4 Shiftable logical register identification

The proposed register shuffling scheme requires a detailed examination of register

access patterns so as to determine whether a logical register accessed within the loop body

is shiftableor not. In general, the characteristics of the proposed register shuffling scheme

preclude its application totwo types of logical registers. Firstly, as a logical register is

remapped upon the first assignment,read-onlyregisters, such asra in thebzip2example,

become unshiftable. A more complex case is that of registersexhibiting conditional def-

initions within the loop body; as the compiler needs to identify for each read access the

exact iteration at which the value is produced, a logical register cannot be shuffled if its

value is not certifiably updated at each loop iteration, thatis, if it exhibitswrite accesses

only in conditionally executed basic blocksbut readaccesses outside those blocks.



142

Conditionally defined registers create an issue ofnondeterministic loop-carried

dependences, which can be illustrated more clearly throughexamining the four cases pre-

sented in Figure 7.4. These four cases share the same controlflow yet exhibit a variety

of access patterns to registerR1within the loop body. In Figure 7.4a, the write access in

basic blockB2 constitutes a conditional definition. However,R1 is still shiftablesince it

is read within the same basic block following such a write access, thus allowing identical

register names to be assigned to both accesses. In Figure 7.4b, R1 is also shiftable as the

write access inB1 constitutes an unconditional definition, thus indicating that the read

access inB1 should always obtain the value defined in the preceding iteration. Similarly,

in Figure 7.4c, while neither of the write accesses inB2 andB3 is guaranteed to be exe-

cuted, the two accesses in conjunction constitute an unconditional definition, thus making

R1shiftable. In comparison, in Figure 7.4d,R1 is only written on the fall-through path

of the branch, resulting in the read access inB1 obtaining a value defined in either the

preceding iteration or an even earlier iteration, depending on the branch outcome. As a

result, for such a read access inB1, the compiler cannot statically determine the exact

iteration at which the value is produced, resulting inR1beingunshiftable.

An unshiftablelogical register does not need to be remapped, if it is not accessed

frequently within the loop body. However, in the extreme case of an unshiftable register

being frequently accessed,two approaches can be adopted to prevent local heat buildup.

In a hardware-oriented approach, the value of such a register can be duplicated into a

dedicated buffer for access, instead of the power-hungry register file. In a software-

oriented approach, an extramoveinstruction can be inserted within the loop body to

make itshiftable. If this register happens to be a conditionally defined register (for ex-

ample,R1 in Figure 7.4d), such amoveinstruction can be inserted into the basic block

executed on the other path of the branch (B3 in Figure 7.4d). If, on the other hand, the

frequently accessed yet unshiftable register happens to bea read-only register, the extra

moveinstruction needs to be inserted into an unconditionally executed basic block.

7.2.5 Physical register reallocability analysis

The example presented in Section 7.2.1 indicates that the proposed deterministic

shuffling approach requires the existence of at leastone free extra register, such ast12 in



143

Table 7.2: Access pattern-based register classification

Shiftable
Unconditionallywritten
Conditionallywrittenandreadon the same path

Unshiftable
Read-only
Conditionallywrittenyet unconditionallyread

Free Not-accessed, eitherdeador live

Figure 7.2c, for the shuffle of the first destination within the loop body. As most execution

hotspots are composed of nested loops consisting of only a limited number of instructions,

the requirement of one free register can be naturally satisfied since typically only a subset

of registers is accessed during loop execution. Thebzip2example presented in Figure

7.2a clearly confirms this property in that only 6 out of the total 32 registers are accessed

within the loop body.

While theoretically the shuffle window only needs to includeone extra free regis-

ter in addition to the shiftable destination registers, thesearch for an increasingly balanced

register access distribution motivates the maximization of the number of free registers

within the shuffle window. A detailed examination indicatesthat according to the access

pattern, all the logical registers and hence, the corresponding physical registers, can be

classified into three categories:shiftable, unshiftable, andnot-accessed. For the third

type, a physical register not accessed within the loop body can be directly remapped, if it

is not used to hold a live variable with infinite lifetime across the execution of the whole

loop. As an example, in thebzip2loop all thenot-accessedregisters except forspare free

for remapping. Registersp, on the other hand, holds its lifetime across the whole loop as

it is directly read after exiting the loop. However, even this type ofnot-accessedyet live

registers can be freed up through employing extra store and load instructions to check-

point and restore the original value at loop entries and exits, respectively. The introduced

performance overhead is practically nonexistent since this checkpointing and restoration

process is performed outside the loop execution.

By checkpointing and restoringlive yet not-accessedregister values, all the reg-

isters that are not accessed within the loop body become available for remapping. Ac-

cordingly, among the three classes of registers listed in Table 7.2, both theshiftableand

the free registers are included in the shuffle window, while only theunshiftableregisters

need to be placed outside the shuffle window. The size of the shuffle window therefore



144

Loop exitLoop bodyLoop entry
Initialize

Value swapping
Restore

Value reswapping

Figure 7.5: Building a shuffle window through swapping register valuesat loop entry and
exit

can be maximized, thus enabling the achievement of a more balanced access distribution

and, hence, a further reduction in peak temperature.

The identified shiftable and free registers mayscatteracross the entire register file.

As the shuffle window should be composed of a set ofcontiguousregisters, at the entry

and the exit of each frequently executed loop, some registervalues need to be swapped so

that the identifiedshiftableandfree registers can be placed at contiguous positions. This

process is concretely presented in Figure 7.5. At the loop entry the live-in register values

need to be preserved, implying thatunshiftableregisters within the shuffle window need

to be swapped out, whileshiftableyet live-in registers outside the window need to be

swapped in. On the other hand, at the loop exit, a register re-swapping process needs to

be performed to preserve thelive-out register values, both within and outside the shuffle

window. Both the register swapping and reswapping processes are accomplished by the

compiler through the insertion of extramoveinstructions which, as they are executed

outside the loop body, introduce no overhead in practice.

7.2.6 Functional Evaluation

We have discussed the proposed deterministic register shuffling technique from

three vantage points, namely, the dynamic shuffling functions, the adjustment of logic

register names, as well as the identification of the shiftable and free registers. Since the

proposed technique only remaps register names across loop iterations, it can be indepen-

dently applied on each execution hotspot, i.e., a frequently executed loop. Due to the iter-



145

ative nature and the relatively short static code size of each loop, the proposed technique

delivers maximum benefit at minimal cost, as only 10% of the code needs to be analyzed

while balanced register accesses for 90% of execution time can be accomplished.

Compared to the thermal-aware register reassignment approaches [24, 100], the

proposed deterministic register shuffling technique requires no revisitation of the NP-hard

register allocation problem to perform live range reassignment. Therefore, the adjustment

of logic register names can be implemented as a procedure to be performed subsequent to

the conventional register allocation phase, thus retaining all the concomitant benefits of

the latter. Moreover, a detailed examination indicates that neither of the two techniques

can fully balance the accesses to each individual register at each loop iteration. Instead,

both techniques attain a relativelycoarse-grainedaccess balance, yet one exploits the

spatial domain while the other exploits the temporal domain. The thermal-aware register

reassignment approaches attain aspatialbalance at the granularity of register sub-banks,

thus restricting their applicability solely to multi-bankregister files. In contrast, the pro-

posed technique aims to attain atemporalbalance for each individual register at the gran-

ularity of loop iterations. As temperature takes at least 0.1 million cycles to rise by 0.1 °C

[81], this iteratively balanced access activity thus enables an effective reduction of peak

temperature even for single-bank register files.

As the proposed technique deterministically shuffles register mapping across iter-

ations, the attainable benefits in terms of reliability enhancement are maximized when it

is applied to single processor architectures with no explicit register renaming support. For

architectures with pure dynamic register renaming, such asconventional superscalar pro-

cessors, a large hardware mapping table needs to be maintained so as to eliminate pseudo

register name dependences. As this mapping table needs to beaccessed using logical

register names at a frequency no lower than that of register file accesses, it becomes a

temperature “hotspot” with skewed access distribution. Inthis case, the proposed tech-

nique can be employed to evenly distribute the accesses to different entries within the

mapping table.

Additionally, future computer systems are expected to intensively use multicore

architectures, for which thermal induced reliability aspects have already been identified as

a grand challenge. As such systems typically scale upwards in the number of cores but not

necessarily in the complexity of each core, the proposed technique despite the possible



146

absence of the renaming logic, can be employed to effectively reduce the register file peak

temperature for each core and hence, to improve the reliability of the entire system.

7.3 Implementation

The implementation of the proposed deterministic registershuffling technique

consists of two collaborative parts, a compilation procedure that embeds regularity into

static register names, as well as a hardware implementationof a shuffling function that

dynamically determines the name of a register at each iteration.

7.3.1 Static register name adjustment

Algorithm 5 Register Name Adjustment
1: for each proceduredo

2: for each frequently executed loopdo

3: Differentiateshiftableandunshiftableregisters;

4: CalculateAveAccessCnt;

5: if AccessCnt(Rj) > AveAccessCnt for aunshiftableRj then

6: Insert an extramovto makeRj shiftable;

7: end if

8: Insert extrastoreandload to free upnot-accessedyet live registers;

9: T = Ntotal − Nunshiftable, and selectB andO thereafter;

10: Order the shiftable destination registers;

11: Globally adjust register names such that the static name of thekth registerSN(Rk) =

Bk
O′ ;

12: Shuffle the name of eachlive-in variable by an extra offsetO′;

13: Insert a hint in the loop branch;

14: Insert extramovto initialize live-in variables at loop entry and restorelive-outvariables

at loop exit;

15: end for

16: Globally perform register coalescing outside the renamed loops to eliminate redundantmov

instructions;

17: end for



147

The pseudo-code for adjusting logic register names is outlined in Algorithm 5.

This procedure only relies on the profiling information regarding theexecution counts

of each basic block, based on which a set of functions have been developed to accom-

plish static register name adjustment. Specifically, each frequently executed loop is trans-

formed in the following 5 steps:

• Partition shiftable and unshiftable registers (lines 3-7);

• Free upnot-accessed yet liveregisters (line 8);

• Determine shuffle functions (line 9);

• Sequentially adjust names of destination and source registers (lines 10-13);

• Initialize live-in variables and restorelive-outvariables at loop entry and loop exit,

respectively (line 14);

As the goal of the register shuffling technique is to precludelocal heat buildup

through iterative mapping of a hot logical register to distinct physical registers, the algo-

rithm inserts extramoveinstructions to shuffle a frequently accessed register (line 6), if it

is detected to be unshiftable (line 5). Thesemoveinstructions, together with thestoreand

load instructions inserted for freeing upnot-accessed yet liveregisters (line 8) and the

moveinstructions inserted forlive-in or live-out variables (line 14), constitute the over-

head of the proposed technique. As most of these extra instructions are executed outside

the loop body, the overhead in execution time is negligible.Such overhead can be further

reduced through performing an extra step of register coalescing [30] on the transformed

code (line 16) so as to eliminate redundant move instructions.

7.3.2 Dynamic register name shuffling

Using the code transformation support outlined in Algorithm 5, a deterministic

register shuffling process can be accomplished during execution, as long as the hardware

is informed by the compiler about theshuffle vector, <B, O, T>, prior to entering a

frequently executed loop.

Using theGF (23) multiplication in Table 7.1 as the shuffle function, the circuit

presented in Figure 7.6 can be employed to convert logical register names to physical

register indices for thebzip2example. As can be seen, during loop execution each logical



148

a0b0

a1b0
a0b1

a1b2
a2b1

a0b2
a1b1
a2b0

c0

c1

c2

a2b2Another iteration?

D Q D Q D Q

iteration?
Another

LFSR
Offset

static reg name

mult

mux

MSB

dynamic reg name 
To RF

Figure 7.6: Gate-level logic for translating register names

register name is multiplied by the value of the offset register. The offset value is multiplied

by 2 whenever a loop branch is encountered, implemented through shifting the 3-bit LFSR

one bit to the right. Meanwhile, as in this example the shufflewindow is composed of

registers from R1 to R7, the most significant bits of the static encoded register name are

used to differentiate whether the register falls within theshuffle window. If it is, the

register is shiftable, resulting in the use of the multiplier’s result as the physical register

index. Otherwise, the logical name of the unshiftable register is directly used to access

the register file.

It needs to be noted that the implementation shown in Figure 7.6 corresponds to

the example shown in Figure 7.3. The implementation parameters are for illustrative pur-

poses only, and can be customized according to the register utilization characteristic of

the application. More concretely, it can be clearly seen from Figure 7.6 that the proposed

register shuffling technique requires no hardware mapping table but only an-bit GF mul-

tiplier and an-bit 2-to-1 multiplexer for each register access port, together with a single

n-bit LFSR to record the shuffling offset. Moreover, with the selection of an appropriate

field generating polynomial, GF multipliers can be efficiently implemented using a small

set of AND and XOR gates. For 3 to 7 bits parallel field multipliers, the cost-effective

polynomial as well as the total gate count and longest path ofthe corresponding imple-

mentation have been listed in Table 7.3.

The GF multipliersshown in Table 7.3 require a size of2n − 1 registers for the

shuffle window. In contrast, themodulo additioncan be employed more generally as the

shuffling function for shuffle windows of other sizes. In thiscase, the proposed register



149

Table 7.3: The design complexity of GF multipliers

Window size Field polynomial Gates Longest path
7 regs x3 + x + 1 15 1 AND + 2 XOR

15 regs x4 + x + 1 25 1 AND + 2 XOR
31 regs x5 + x2 + 1 37 1 AND + 2 XOR
63 regs x6 + x + 1 54 1 AND + 3 XOR

127 regs x7 + x + 1 72 1 AND + 3 XOR

shuffling technique requires an-bit modulo adder, an-bit comparator, and an-bit 2-to-1

multiplexer for each register access port, together with a single n-bit adder and an-bit

register to calculate and record the shuffling offset. Although this additional necessitated

hardware is more complex than thexor gate based implementation of theGF multipliers,

it is still negligibly small compared to the mapping tables used in conventional register

renaming techniques.

As both the logic and the physical register names preserve all the true data depen-

dences within the loop body, the behavior of the rest of the pipeline, such as the forward-

ing logic, would not be affected by the register shuffling process. Moreover, since register

write accesses are typically performed at a later pipeline stage, the translation of register

names can be performed in parallel with the calculation of the instruction result. Even

for register read accesses, the access latency of the small translation logic can also be

effectively hidden, since in the typical case cache accesses constitute the longest pipeline

stage.

7.4 Simulation Results

In this section we experimentally evaluate the efficacy of the proposed register

rotation technique in balancing register accesses, reducing the chip-wide peak tempera-

ture, and improving processor reliability. To evaluate theproposed technique for different

types of applications, a set of experimental studies have been performed on both the Me-

diabench [56] and the SPECint 2000 benchmarks.



150

7.4.1 Register Access Results

The discussions presented in Sections 7.2.4 and 7.2.5 clearly show that the parti-

tion of shiftable/unshiftable registers and, hence, the effectiveness of the proposed register

shuffling technique are strongly related to register accesscharacteristics. As a result, the

first step in our experimental evaluation is the examination, for each loop, of the numbers

of read-onlyregisters,conditionally definedyet unconditionally referredregisters, and

registersnot accessedin the loop. This is achieved through using ATOM [83] to instru-

ment the assembly code to identify execution hotspots (i.e., frequently executed loops)

and to generate register usage profiles. The control flow and register usage information

of each loop are analyzed thereafter.

The collected profiling results are presented in Table 7.4. Only the profiling results

for the selected SPEC 2000 benchmarks are presented, since these benchmarks exhibit a

more balanced register utilization than the Mediabench [56] programs due to their rela-

tively larger working sets. For each benchmark, we report the number of hot loops that

have been identified, their occupancy in the total executiontime, as well as six sets of

register usage data. Table 7.4 lists the maximal, the average, and the minimal number

of not-accessedregisters andlive not-accessedregisters, as well as the maximal and the

average number ofread-only, hot read-only, cond-defined, andhot cond-definedregisters.

The minimal values are not listed for the last four sets sincethese values are always 0.

The results regarding the minimal number ofnot-accessedregisters indicate that

all the hot loops identified by ATOM have at least 1 free register,thus clearly confirm-

ing the wide applicability of the proposed register shuffling technique. Due to the small

code size, the average number of registers accessed within aloop body is less than 9. This

highly skewed register utilization clearly confirms the necessity for register shuffling tech-

niques, such as the one we herein propose, so as to deliver a more balanced access distri-

bution. Meanwhile, Table 7.4 also shows that on average a loop contains only 2read-only

registers, and only 1 of them needs to be rotated to prevent local heat buildup. The num-

ber ofconditionally definedyetunconditionally referredregisters is even less, as most hot

loops are composed of a limited number of basic blocks. Thesevalues clearly confirm that

a highly limited number of extramovinstructions (less than two on average) would suffice

to make this small set ofhot read-onlyandhot conditionally definedregisters shiftable.



151

Table 7.4: The number of hot loops, their occupancy in execution time,and register usage
information

Benchmark art bzip2 mcf twolf
Hot loop # 32 60 29 61

Execution time 79.8% 78.3% 64.8% 71.9%
max 28 29 29 29

Not-accessed# aver 25.34 22.33 23.66 22.56
min 14 13 13 1
max 20 13 13 19

Live not-accessed# aver 10.47 5 3.76 5.98
min 0 0 1 0

Read-only#
max 6 6 7 7
aver 1.91 2.33 2.24 2.02

Hot read-only#
max 4 4 3 3
aver 1 1.73 1.14 1.08

Cond-defined#
max 1 3 3 3
aver 0.06 0.17 0.28 0.21

Hot cond-defined#
max 1 1 1 3
aver 0.06 0.03 0.03 0.11

According to the register usage profiles generated by ATOM, the new register

names are statically determined, based on which the SimpleScalar toolset [6] is modified

to implement the proposed register shuffling technique on top of an in-order 2-way pro-

cessor. We furthermore compare the proposed technique withthe thermal-aware register

reassignment technique [100]. Assuming that the register file is composed of 8 sub-banks,

two sets of data are reported, namely, the access distribution to eachindividual register

and the access distribution to eachsub-bank. The cumulative ratios of the most frequently

accessed registers and sub-banks are shown in Figure 7.7.

As can be seen, for the four SPEC2000 benchmarks, the proposed technique can

achieve a more balanced access distribution to each individual register as compared to

the thermal-aware register reassignment technique [100].More concretely, initially 81%

to 94% of all the register accesses are mapped to 12 registerswhich, in a completely

balanced case, should only capture12/32 = 37.5% of total accesses. Using static reg-

ister reassignment (the top-left quadrant in Figure 7.7), 64% to 80% of total accesses

are mapped to 12 registers, while using the proposed register shuffling technique (the

top-right quadrant), only 50% to 60% of total accesses are mapped to 12 registers.



152

art bzip2 mcf twolf
0

0.2

0.4

0.6

0.8

1

 

 

4 regs
8 regs
12 regs
16 regs
20 regs
32 regs

art bzip2 mcf twolf
0

0.2

0.4

0.6

0.8

1

 

 

art bzip2 mcf twolf
0

0.2

0.4

0.6

0.8

1
Cumulative Access Ratio to Sub−banks

1bank
2banks
3banks
4banks
5banks
6banks
7banks
8banks

art bzip2 mcf twolf
0

0.2

0.4

0.6

0.8

1
Cumulative Access Ratio to individual register

Figure 7.7: Reduction in peak temperature of the entire chip

If the access distribution is evaluated at the granularity of register sub-banks, both

techniques can achieve a quite balanced access distribution in that only 38% to 40% of

all the register accesses are mapped to 12 registers. Compared to the reassignment [100]

technique, the proposed shuffling technique results, formcf andtwolf, in a slightly ele-

vated amount of accesses (less than 2%) hitting the first subbank. This is because register

R0, which cannot be rotated since its value corresponds strictly to 0, happens to be a fre-

quently accessed register within several loop bodies. In the reassignment [100] technique,

R0 can be placed into a subbank with a set of “cold” registers so as to balance the access

counts to that subbank. However, in the proposed technique,these “cold” registers are it-

eratively mapped to “hot” logical registers. The increasedamount of accesses thus results

in the corresponding subbank being accessed slightly more frequently than the remaining

subbanks.

7.4.2 Temperature Results

Our next step of evaluation focuses on the generation of temperature profiles.

WATTCH [16] is modified to generate energy profiles of each hardware resource, espe-

cially each register within the register file. The power consumed by the small 5-bit adder

and multiplexer is also included in each register file access. The aggressive clock gating



153

falu btb

ul1

dl1
ialu

ireg

itlb

il1

decoderfreg

dtlb

Figure 7.8: The processor floorplan used in simulation

provided by WATTCH is used to avoid unnecessary power consumption. Using these

energy profiles, Hotspot [81] is employed to sample the transient temperature of each

hardware resource. This sampling interval is set to 20,000 instructions, which is substan-

tially less than the thermal time constant of any hardware resource. An Itanium-like [74]

processor shown in Figure 7.8 is used as the floorplan input toHotspot. The die size is set

to 8mm × 8mm, and the initial temperature is set to 60°C.

The obtained reduction in chip-wide peak temperature is presented in Figure 7.9.

As can be seen, the proposed register file access balancing technique can achieve a re-

duction of 3.1 to 7.4°C in chip-wide peak temperature. The highest reduction is achieved

in art, while the lowest reduction occurs inmcf. These temperature results are consistent

with the register access results, since a more balanced access distribution is achieved in

art, as compared tomcf.

The simulation results confirm that by targeting the register file, one of the most

overheated hardware units in a processor, the proposed technique can effectively reduce

the chip-wide peak temperature during program execution. While the amount of temper-

ature reduction seems to be insignificant at first sight, it actually can effectively reduce

the fault rate of the entire chip, since the fault rate doubles for every 10°C increase in

temperature [55]. Meanwhile, previous studies have shown that a large number of delay

violations would occur if the peak temperature exceeds 85°C [34, 81]. It can be seen

from the results that for most benchmarks, the proposed algorithm can effectively reduce

the peak temperature to below 84°C. On average, the proposed technique achieves a

reduction from 88.8°C to 83.5°C.



154

art bzip2 mcf twolf adpcm epic gsm mpeg2 average
75

80

85

90

95

 

 

Baseline RegShuffle

Figure 7.9: Reduction in peak temperature of the entire chip

7.5 Conclusions

In this chapter, we have presented a technique for improvingthe reliability of an

entire chip, through reductions in the peak temperature of the register file, one of the most

overheated modules in a core. Peak temperature can be effectively controlled through a

register shuffling process that physically remaps the heavily accessed logical registers be-

fore heat gets locally accumulated. Furthermore, through the exploitation of application-

specific access profiles, the compiler can deterministically control the register shuffling

process, thus maximizing peak power reduction within a limited hardware budget and

negligible performance degradation. This highly reduced hardware complexity enables

the proposed technique to be easily incorporated into most embedded processors so as to

effectively reduce peak temperature of the entire chip. Simulation results of SPEC2000

and mediabench programs furthermore confirm that the proposed register shuffling tech-

nique can achieve a 1.5 to 3 times more balanced access distribution and a reduction of 3.1

to 7.4°C in chip-wide peak temperature. Such a temperature reduction in turn effectively

reduces the amount of run-time faults, thus improving the reliability of the entire chip.

The text of Chapter 7, is in part a reprint of the material as itappears inC. Yang and

A. Orailoglu, “Processor Reliability Enhancement throughCompiler-Directed Register

File Peak Temperature Reduction,” International Conference on Dependable Systems and

Networks (DSN), June 2009. The dissertation author was the primary researcher and

author of the publication [96].



Chapter 8

Conclusions

As devices scale beyond deep sub-micron while the number of cores on a sin-

gle chip doubles every two generations, the capability of tolerating execution uncertainty

induced by execution faults, thermal stress, and resource competitions is becoming a

severe requirement for future multi-core and many-core systems. These sources of un-

certainty demand flexible ways to reorganize the computation, which is addressed in this

thesis through the introduction of a computational framework with fine-grained and pre-

dictableexecution adaptivitysupport. In this framework, computational resources can be

frequentlyrenegotiatedupon a dynamic, unpredictable event, with predictable execution

migration attained through statically capturing a set of possible schedules in a compact

form. Sources of execution uncertainty that display a certain amount of predictability,

such as thermal stress, are maximallymitigated. Sources of execution uncertainty that

are completely unpredictable, such as device failures, canbe efficientlydetectedregard-

less of their diversity in manifestation. These techniquesare furthermore integrated into

a scalable, fixed-silicon, yet dynamically reprogrammableMPSoC platform, thus provid-

ing the benefit of high-volume amortization while at the sametime delivering flexible

redefinitions of the platform.

To attain execution adaptivity in conjunction with the goals that designers already

face, the various techniques presented in this thesis are furthermore developed with the

considerations of minimizing power and performance impact, ensuring high predictability

of worst-case performance, and localizing communication and migration for the satisfac-

tion of interconnect constraints. The employment of the compiler to compactly engender

155



156

in readiness numerous execution schedules enables the development of a fast, predictable,

and highly regular reconfiguration process, without any runtime decision making over-

head. The regularity inherent in the reconfiguration process, in conjunction with a flexible

customization of the underlying system topology, furthermore enables multiple tasks to be

simultaneously migrated between distinct PEs without inducing any interference or net-

work congestion. Meanwhile, through the use of a shared, fault-tolerant cache, full fault

detection capability is attained within a minimum level of hardware duplication, with no

reliance on threads to constantly synchronize for value-checking. Additionally, the chip-

wide peak temperature can be effectively reduced through a deterministic shuffling of the

accesses to the most overheated module in each core, to wit, the register file. The em-

ployment of the compiler to embed regularity into register names enables the hardware to

redirect register accesses with no reliance on a mapping table.

The fundamental intellectual merit of this thesis is a novelapproach for coupling

intensive static information extraction to dynamic systemcontrol and organization. The

various techniques underpinning the proposed adaptive framework relies on the develop-

ment of a collaborative optimization between the compiler,the OS, and the architecture.

The compiler is responsible for embedding regularity into static register names, generat-

ing adaptive execution schedules with the consideration oftemperature and workload bal-

ance, and extracting the characteristics of the reconfigurable schedule to guide dynamic

workload balance. The OS is responsible for monitoring resource availability, dispatching

pre-optimized application schedules to cores, and globally adjusting application resource

footprints to prevent potential thermal stress and resource competitions. Finally, archi-

tectural support is needed for extending the cache design toperform light-weight fault

detection and checkpointing, extending the register file design to perform deterministic

register shuffling, and reorganizing the system topology tolocally share storage units

among cores, so as to mitigate task migration overhead and accelerate neighborhood-

centered communications.

The thesis delivers not only theoretical breakthroughs butalso practical solutions

to current and future multicore systems. For instance, the compiler-directed execution

reconfiguration framework is particularly suitable for adoption by the IBM CELL [48]

architecture. This architecture contains a power processor element (PPE) that can be

used to control the execution of a set of specialized coprocessors called synergistic pro-



157

cessor elements (SPEs). At runtime, the PPE can be employed as a hardware resource

manager, to ascertain the operational health of each SPE, and signal a reconfiguration

process to deactivate or reactivate an SPE during execution. These functions can be ac-

complished in a highly regular and extremely efficient manner, through the development

of post-compilation scheduling tools for the CELL compilerto generate execution sched-

ules for the SPEs, with various degrees of reconfiguration steps embedded. In addition,

the outlined register shuffling technique is also particularly suitable for the SPEs. In the

CELL architecture, each SPE contains a large register file, while the data-intensive nature

of the workload induces highly asymmetric register utilization. Compiler optimizations

can therefore be developed for the CELL architecture to embed regularity into the register

names. As the execution in various SPEs is synchronized in a single-instruction-multiple-

data manner, all the SPEs can benefit from a single shuffling ofthe register names, thus

delivering maximum heat reduction benefits.

In sum, the successful completion of the fine-grained and predictable adaptive

multicore platform that I have proposed herein, I believe, will engenderadaptive, scalable

architectures that can seamlessly reshape execution pathsand schedules in an amortiz-

able, high-volume, fixed-silicon fabric, thus providing avenues for effectively addressing

thermal buildups, possible fault occurrences and even resource competition among mul-

tiple applications executing simultaneously.

8.1 Future Work Directions

As process technologies continue to evolve, the issue of execution uncertainty

is exacerbated as we negotiate the end of the CMOS era and moveonto the world of

nanoelectronics. The thesis work opens up multiple directions for future explorations

on the design of many-core systems with aggressive yet predictable execution adaptivity

support.

The exploitation ofcompileroptimizations andon-line testingtechniques enables

further reductions in run-time decision-making overhead.In particular, the various types

of device unreliability impose a crucial obstacle in multicore systems, namely, ambiguity

in fault manifestation rates and in fault types. While the proposed fault detection tech-

nique can uniformly detect these various types of faults, precise identification of the faulty



158

component and the fault type still requires the use of on-line testing and diagnosis tech-

niques. Additionally, application information regardingexecution invariants can be used

for property checking which may provide precise identification for system integrity in a

cost-effective manner.

Interactions with VLSI design and OSs can be exploited to further improve the

determinism of the overall system. VLSI design techniques can significantly impact var-

ious aspects of the proposed adaptive multicore platform, including cost-effective heat

removal, design testability and reliability enhancement,and the achievement of execution

predictability in the face of device variability. Real-time OSs determine the efficiency of

design and maintenance of real-time systems for which determinism and responsiveness

are important product requirements. Based on statically extracted information regarding

variations in resource requirements, real-time OSs can attain resource reallocation within

a small and predictable timing overhead. Additionally, hardware components that would

facilitate the OS to efficiently dispatch the statically generated schedule blocks to a cluster

of cores will be a valuable direction for future research.

Finally, as CMOS scaling is approaching its physical limits, nanotechnology has

been widely acknowledged as the foundation for the next generation of computer sys-

tems. Yet the level of execution uncertainty in nanoelectronic systems is ever higher,

since the fabrication process in nano environments is proneto defects due to the small

scale of devices and the bottom-up self-assembly process. The issues of fault detec-

tion, execution reconfiguration and communication cost reduction should be addressed,

however, with consideration of the particular characteristics of such systems. One char-

acteristic to consider is the expected high variance in the fault rate, which in turn leads

to significant differences in performance, robustness, as well as noise immunity among

the devices. This clustering behavior should be consideredin the development of fault

tolerance approaches, together with other effects such as transient/permanent character-

istics, temperature-induced fault rate increases, and testing-induced device damage. An-

other characteristic to consider is the strict interconnect constraint, which forces localized

communication to become a critical criterion. Efficient topology and structure for such

nanoelectronic systems, together with power-aware and reliable ways to communicate

data across the chip, constitute significant obstacles thatneed to be overcome.



159

In sum, the design of an adaptive computational fabric capable of responding to

the uncertainty challenges expected in the late CMOS, earlynanoelectronic era creates

a highly exciting research dimension. A complete realization of such a fully adaptive

system requires the exploration of interactions between architectures and various other

disciplines of computer science, computer engineering, and electrical engineering. I am

eager to carry out my future research work in pushing the development of this new area,

with extensive communication and collaboration with the research experts across multiple

disciplines and universities.



Bibliography

[1] International Technology Roadmap for Semiconductors (ITRS) 2009 edition: Ex-
ecutive summary.

[2] International Technology Roadmap for Semiconductors (ITRS) 2009 edition: Sys-
tem drivers.

[3] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Isolation in commodity
multicore processors.IEEE Trans. Comput., 40(6):49–59, 2007.

[4] I. Ahmad and Y.-K. Kwok. On exploiting task duplication in parallel programming
scheduling.IEEE Trans. Parallel Distrib. Syst., 9(7):872–892, Aug. 1998.

[5] A. H. Ajami, K. Banerjee, and M. Pedram. Modeling and analysis of nonuniform
substrate temperature effects on global ULSI interconnects. IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., 24(6):849–861, June 2005.

[6] T. Austin, E. Larson, and D.Ernst. Simplescalar: an infrastructure for computer
system modeling.IEEE Computer, 35(2):59–67, Feb. 2002.

[7] T. M. Austin. DIVA: a reliable substrate for deep submicron microarchitecture
design. In32nd Intl. Symp. Microarchitecture (MICRO), pages 196–207, Nov.
1999.

[8] J. L. Ayala. Power Estimation and Power Optimization Policies for Processor-
Based Systems. PhD thesis, Technical University of Madrid, 2005.

[9] A. Baniasadi and A. Moshovos. Instruction flow-based front-end throttling for
power-aware high-performance processors. InProc. Intl. Symp. Low Power Elec-
tron. & Design (ISLPED), pages 16–21, Aug. 2001.

[10] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. D. Micheli. NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip.IEEE Trans. Parallel Distrib. Syst., 16(2):113–129, 2005.

[11] R. Blish and N. Durrant. Semiconductor device reliability failure models. Techni-
cal report, International SEMATECH, May 2000.

160



161

[12] S. Borkar, T. Karnik, J. Tschanz, A. Keshavarzi, , and V.De. Parameter variations
and impact on circuits and microarchitecture. In45th Design Autom. Conf. (DAC),
pages 338–342, June 2003.

[13] N. S. Bowen and D. K. Pradhan. Virtual checkpoints: Architecture and perfor-
mance.IEEE Trans. Comput., 41:516–525, May 1992.

[14] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M.Schulz. Application-
level checkpointing for shared memory programs. In11th Intl. Conf. Archit. Sup-
port for Program. Lang. & OSs (ASPLOS), pages 235–247, Mar. 2004.

[15] D. Brooks and M. Martonosi. Dynamic thermal managementfor high-performance
microprocessors. In7th Intl. Symp. High Perform. Comput. Archit. (HPCA), pages
171–182, Jan. 2001.

[16] D. Brooks, V. Tiwari, and M. Martonosi. WATTCH: A framework for architectural-
level power analysis and optimizations. In27th Intl. Symp. Comput. Archit. (ISCA),
pages 83–94, May 2000.

[17] G. Cao and M. Singhal. On coordinated checkpointing in distributed systems.
IEEE Trans. Parallel Distrib. Syst., 9(12):1213–1225, Dec. 1998.

[18] S. Chabridon and E. Gelenbe. Failure detection algorithms for a reliable execution
of parallel programs. In14th Intl. Symp. Reliable Distrib. Syst. (SRDS), pages
229–238, Oct. 1995.

[19] V. Chaesson, S. Poledna, and J. Soderberg. The XBW modelfor dependable real-
time systems. In4thIntl. Conf. Parallel & Distrib. Syst. (ICPADS).

[20] P. Chaparro, J. Gonzalez, and A. Gonzalez. Thermal-aware clustered microarchi-
tectures. InProc. Intl. Conf. Comput. Design (ICCD), pages 48–53, Oct. 2004.

[21] M. Chean and J. A. B. Fortes. The Full-Use-of-Suitable-Spares (FUSS) approach to
hardware reconfiguration for fault-tolerant processor arrays.IEEE Trans. Comput.,
39(4):564–571, Apr. 1990.

[22] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE Micro,
23(4):14–19, July 2003.

[23] A. K. Coskun, T. S. Rosing, K. Whisnant, and K. Gross. Dynamic temperature-
aware scheduling for multiprocessor SoCs.IEEE Trans. VLSI Syst., 16(9):1127–
1140, Sept. 2008.

[24] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham. Multiple-banked register
file architectures. In27th Intl. Symp. Comput. Archit. (ISCA), pages 316–325, June
2000.

[25] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: Task graphs for free. InWorkshop
on Hardware/Software Codesign, pages 97–101, 1998.



162

[26] Y. Ding, M. Kandemir, P. Raghavan, and M. J. Irwin. A helper thread based EDP
reduction scheme for adapting application execution in CMPs. In22nd Intl. Conf.
Parallel & Distrib. Process. Symp. (IPDPS), pages 1–14, Oct. 2008.

[27] P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, and G. Hash. Neutron-induced
latchup in SRAMs at ground level. In41st Intl. Reliability Physics Symp. Proc.
(IRPS), pages 51–55, Apr. 2003.

[28] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on
circuit-level timing speculation. In36th Intl. Symp. Microarchitecture (MICRO),
pages 7–18, Dec. 2003.

[29] D. J. S. F. A. Bower and S. Ozev. Online diagnosis of hard faults in microproces-
sors.ACM Trans. Archit. Code Optim., 4(2), 2007.

[30] L. George and A. W. Appel. Iterated register coalescing. ACM Trans. Program.
Lang. Syst., 18(13):300–324, May 1996.

[31] M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz. Transient-fault
recovery for chip multiprocessors.IEEE Micro, 23(6):76–83, Nov. 2003.

[32] M. A. Gomaa and T. N. Vijaykumar. Opportunistic transient-fault detection. In
32th Intl. Symp. Comput. Archit. (ISCA), pages 172–183, 2005.

[33] C. Gond, R. Melhem, and R. Gupta. Loop transformations for fault detection in
regular loops on massively parallel systems.IEEE Trans. Parallel Distrib. Syst.,
7(12):1238–1249, Dec. 1996.

[34] H. Goto, S. Nakamura, and K. Iwasaki. Experimental fault analysis of 1Mb SRAM
chips. In15th Proc. VLSI Test Symp. (VTS), pages 31–36, Apr. 1997.

[35] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. A. Mahlke. StageNetSlice: a
reconfigurable microarchitecture building block for resilient CMP systemss. In
Intl. Conf. Compilers, Archit. & Synthesis for Embedded Syst. (CASES), pages 1–
10, Oct. 2008.

[36] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Olukotun.
The Stanford Hydra CMP.IEEE Micro, 20(2):71–84, 2000.

[37] J.-M. Helary, A. Mostefaoui, R. H. B. Netzer, and M. Raynal. Preventing useless
checkpoints in distributed computations. volume 0, pages 183–190, Oct. 1997.

[38] J. L. Hennessy and D. A. Patterson.Computer architecture: A quantitative ap-
proach (4th edition). Morgan Kaufmann Publishers, Jan. 2007.

[39] S. Heo, K. Barr, and K. Asanovic. Reducing power densitythrough activity mi-
gration. In Proc. Intl. Symp. Low Power Electron. & Design (ISLPED), pages
217–222, Aug. 2003.



163

[40] W.-W. Hsieh and T.-T. Hwang. Thermal-aware post compilation for VLIW archi-
tectures. In14th Asia & South Pacific Design Autom. Conf. (ASP-DAC), pages
606–611, Jan. 2009.

[41] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. Stan.
Hotspot: A compact thermal modeling methodology for early-stage VLSI design.
IEEE Trans. VLSI Syst., 14(5):501–513, May 2006.

[42] D. B. Hunt and P. N. Marinos. A general purpose cache-aided rollback error recov-
ery (CARER) technique. InIntl. Symp. Fault-Tolerant Computing (FTCS), pages
170–175, 1987.

[43] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to eliminate voltage
emergencies in high performance processors. In9th Intl. Symp. High Perform.
Comput. Archit. (HPCA), pages 79–90, Jan. 2003.

[44] T. T. K. Hashimoto and T. Kikuno. A multiprocessor scheduling algorithm for low
overhead fault-tolerance. In17th Intl. Symp. Reliable Distrib. Syst. (SRDS), pages
186–194, Oct. 1998.

[45] W. K. F. K.-L. Wu and J. H. Patel. Error recovery in sharedmemory multiproces-
sors using private caches.IEEE Trans. Parallel Distrib. Syst., 1(2):231–240, Apr.
1990.

[46] N. Kandasamy, J. P. Hayes, and B. T. Murray. Transparentrecovery from intermit-
tent faults in time-triggered distributed systems.IEEE Trans. Comput., 52(2):113–
125, Feb. 2003.

[47] T. Karnik, P. Hazucha, and J. Patel. Characterization of soft errors caused by
single event upsets in CMOS processes.IEEE Trans. Dependable Secure Comput.,
1(2):128–143, 2004.

[48] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication net-
work: Built for speed.IEEE Micro, 26(3):10–23, 2006.

[49] M. Kondo and H. Nakamura. A small, fast and low-power register file by bit-
partitioning. In11th Intl. Symp. High Perform. Comput. Archit. (HPCA), pages
40–49, Jan. 2005.

[50] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded
Sparc processor.IEEE Micro, 25(2):21–29, 2005.

[51] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C.Senft, and R. Zain-
linger. Distributed fault-tolerant real-time systems: The MARS approach.IEEE
Micro, 9(1):25–40, 1989.

[52] R. Kota and R. Oehler. Horus: large-scale symmetric multiprocessing for Opteron
systems.IEEE Micro, 25(2):30–40, 2005.



164

[53] H. Kufluoglu and M. A. Alam. A computational model of NBTIand hot carrier
injection time-exponents for MOSFET reliability.J. Comput. Electron., 3(3):165–
169, Oct. 2004.

[54] Y.-K. Kwok and I. Ahmad. Dynamic critical-path scheduling: an effective tech-
nique for allocating task graphs to multiprocessors.IEEE Trans. Parallel Distrib.
Syst., 7(6):506–521, June 1996.

[55] C. J. Lasance. Thermally driven reliability issues in microelectronic systems:
Status-quo and challenges.Microelectron. Reliab., 43(12):1969–1974, Dec. 2003.

[56] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool for eval-
uating and synthesizing multimedia and communications systems. In30th Intl.
Symp. Microarchitecture (MICRO), pages 330–335, Dec. 1997.

[57] P. A. Lee, N. Ghani, and K. Heron. A recovery cache for thePDP-11.IEEE Trans.
Comput., 29:546–549, 1980.

[58] Z. Ma and F. Catthoor. Scalable performance-energy trade-off exploration of em-
bedded real-time systems on multiprocessor platforms. InDesign Autom. & Test
in Europe (DATE), pages 1073–1078, Apr. 2006.

[59] M. J. Mack, W. M. Sauer, S. B. Swaney, and B. G. Mealey. IBMPower6 reliability.
51:763–774, Nov. 2007.

[60] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:Speculation control for
energy reduction. In25th Intl. Symp. Comput. Archit. (ISCA), pages 132–141, June
1998.

[61] D. Mosse, R. Melhem, and S. Ghosh. A nonpreemptive real-time scheduler with
recovery from transient faults and its implementation.IEEE Trans. Softw. Eng.,
29(8):752–767, Aug. 2003.

[62] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detaileddesign and evaluation of
redundant multithreading alternatives. In29th Intl. Symp. Comput. Archit. (ISCA),
pages 99–110, May 2002.

[63] R. Nalluri, R. Garg, and P. R. Panda. Customization of register file banking archi-
tecture for low power. InIntl. Conf. VLSI Design, pages 239–244, Jan. 2007.

[64] R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for consistent global
snapshots.IEEE Trans. Parallel Distrib. Syst., 6(2):165–169, Feb. 1995.

[65] N. Oh, P. P. Shirvani, and E. J. McCluskey. Control-flow checking by software
signatures.IEEE Trans. Rel., 51(1):111–122, Mar. 2002.

[66] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by duplicated instruc-
tions in super-scalar processors.IEEE Trans. Rel., 51(1):63–75, Mar. 2002.



165

[67] C. Panis, U. Hirnschrott, and A. Krall. FSEL – selectivepredicated execution for
a configurable DSP core. InIEEE Symp. on VLSI, pages 317–320, Feb. 2004.

[68] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Architectural core sal-
vaging in a multi-core processor for hard-error tolerance.In 36th Intl. Symp. Com-
put. Archit. (ISCA), pages 93–104, Jule 2009.

[69] M. D. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-run: Leveraging SMT
and CMP to manage power density through the operating system. In 11th Intl.
Conf. Archit. Support for Program. Lang. & OSs (ASPLOS), pages 260–270, Oct.
2004.

[70] P. Ranganathan, S. Adve, and N. P. Jouppi. Performance of image and video pro-
cessing with general-purpose processors and media ISA extensions. In26th Intl.
Symp. Comput. Archit. (ISCA), pages 124–135, May 1999.

[71] V. K. Reddy, S. Parthasarathy, and E. Rotenberg. Understanding prediction-based
partial redundant threading for low-overhead, high-coverage fault tolerance. In
12th Intl. Conf. Archit. Support for Program. Lang. & OSs (ASPLOS), pages 83–
94, Mar. 2006.

[72] S. K. Reinhardt and S. S. Mukherjee. Transient-fault detection via simultaneous
multithreading. In27th Intl. Symp. Comput. Archit. (ISCA), pages 25–36, June
2000.

[73] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. SWIFT:
software implemented fault tolerance. In3rd Intl. Symp. Code Gener. & Optim.
(CGO), pages 243–254, Mar. 2005.

[74] S. Rusu and G. Singer. The first IA-64 microprocessor.IEEE J. Solid-State Cir-
cuits, 35(11):1539–1544, Nov. 2000.

[75] R. M. S. Ghosh and D. Mosse. Fault-tolerance through scheduling of aperiodic
tasks in hard real-time multiprocessor systems.IEEE Trans. Parallel Distrib. Syst.,
8(3):272–284, Mar. 1997.

[76] S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V. Adve, V. S. Adve, , and Y. Zhou. Us-
ing likely program invariants to detect hardware errors. InIntl. Conf. Dependable
Syst. & Netw. (DSN), pages 70–79, June 2008.

[77] R. Sangireddy. Reducing rename logic complexity for high-speed and low-power
front-end architectures.IEEE Trans. Comput., 55(6):672–685, June 2006.

[78] P. Shivakumar, S. W. Keckler, D. Burger, M. Kistler, andL. Alvisi. Modeling the
effect of technology trends on the soft error rate of combinational logic. In Intl.
Conf. Dependable Syst. & Netw. (DSN), pages 389–398, June 2002.



166

[79] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin. Ultra low-cost
defect protection for microprocessor pipelines. In12th Intl. Conf. Archit. Support
for Program. Lang. & OSs (ASPLOS), pages 73–82, Mar. 2006.

[80] K. Skadron, T. Abdelzaher, and M. Stan. Control-theoretic techniques and thermal-
RC modeling for accurate and localized dynamic thermal management. In8th Intl.
Symp. High Perform. Comput. Archit. (HPCA), pages 17–28, Feb. 2002.

[81] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tar-
jan. Temperature-aware microarchitecture. In30th Intl. Symp. Comput. Archit.
(ISCA), pages 2–12, June 2003.

[82] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. SafetyNet: im-
proving the availability of shared memory multiprocessorswith global check-
point/recovery. In29th Intl. Symp. Comput. Archit. (ISCA), pages 123–134, May
2002.

[83] A. Srivastava and A. Eustace. ATOM: A system for building customized program
analysis tools. Technical report, Western Research Lab, 1994.

[84] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
men, P. Johnson, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The RAW microprocessor: a com-
putational fabric for software circuits and general-purpose programs.IEEE Micro,
22(2):25–35, 2002.

[85] J. S. Vetter and F. Mueller. Communication characteristics of large-scale scientific
applications for contemporary cluster architecture. In16th Intl. Conf. Parallel &
Distrib. Process. Symp. (IPDPS), pages 27–36, Apr. 2002.

[86] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault recovery using simul-
taneous multithreading. In29th Intl. Symp. Comput. Archit. (ISCA), pages 87–98,
May 2002.

[87] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur.Thermal performance
challenges from silicon to systems. Technical report, Technology and Manufactur-
ing Group, Intel Corp., 2000.

[88] N. J. Wang and S. J. Patel. ReStore: Symptom-based soft error detection in micro-
processors.IEEE Trans. Dependable Secure Comput., 3(3):188–201.

[89] P. M. Wells, K. Chakraborty, and G. S. Sohi. Adapting to intermittent faults in
multicore systems. In13th Intl. Conf. Archit. Support for Program. Lang. & OSs
(ASPLOS), pages 255–264, Mar. 2008.

[90] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenstrom. The worst-case execution-time problem–overview



167

of methods and survey of tools.ACM Trans. Embedded Comput. Syst., 7(3), Apr.
2008.

[91] A. Wood. Data integrity concepts, features, and technology. White Paper.

[92] C. Xue, Z. Shao, and E. H.-M. Sha. Maximize parallelism minimize overhead for
nested loops via loop striping.J. Sig. Process. Syst., 47:153–167, May 2007.

[93] C. Yang and A. Orailoglu. Light-weight synchronization for inter-processor com-
munication acceleration on embedded MPSoCs. InIntl. Conf. Compilers, Archit.
& Synthesis for Embedded Syst. (CASES), pages 150–154, Sept. 2007.

[94] C. Yang and A. Orailoglu. Predictable execution adaptivity through embedding
dynamic reconfigurability into static MPSoC schedules. In5th Intl. Conf. HW/SW
Codesign & Syst. Synthesis (CODES-ISSS), pages 15–20, Sept. 2007.

[95] C. Yang and A. Orailoglu. A light-weight cache-based fault detection and check-
pointing scheme for MPSoCs enabling relaxed execution synchronization. InIntl.
Conf. Compilers, Archit. & Synthesis for Embedded Syst. (CASES), pages 11–20,
Oct. 2008.

[96] C. Yang and A. Orailoglu. Processor reliability enhancement through compiler-
directed register file peak temperature reduction. InIntl. Conf. Dependable Syst. &
Netw. (DSN), pages 468–477, June 2009.

[97] C. Yang and A. Orailoglu. Towards no-cost adaptive MPSoC static schedules
through exploitation of logical-to-physical core mappinglatitude. InDesign Au-
tom. & Test in Europe (DATE), pages 63–68, Apr. 2009.

[98] C. Yang and A. Orailoglu. Fully adaptive multicore architectures through
statically-directed dynamic execution reconfigurations.In Intl. Conf. VLSI &
System-on-Chip (VLSI-SoC), Sept. 2010.

[99] J. Yu, M. J. Garzaran, and M. Snir. Efficient software checking for fault tolerance.
In 22nd Intl. Conf. Parallel & Distrib. Process. Symp. (IPDPS), pages 1–5, Apr.
2008.

[100] X. Zhou, C. Yu, and P. Petrov. Compiler-driven register reassignment for register
file power-density and temperature reduction. In45th Design Autom. Conf. (DAC),
pages 750–753, June 2008.

[101] D. F. Zucker, R. B. Lee, and M. J. Flynn. Hardware and software cache prefetching
techniques for MPEG benchmarks.IEEE Trans. Circuits Syst. Video Technol.,
10(5):782–796, Aug. 2000.




