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ABSTRACT OF THE DISSERTATION

Tackling Computation Uncertainty through Fine-grained and Predictable
Execution Adaptivity in Multicore Systems

by

Chengmo Yang
Doctor of Philosophy in Computer Engineering
University of California, San Diego, 2010

Professor Alex Orailoglu, Chair

The continued scaling of silicon fabrication technolodias enabled the integra-
tion of dozens of processing cores on a single chip in the caxputer generation. Our
ability to exploit such computational power, however, igckmated not only by limita-
tions of parallelism extraction techniques, but furtherenoy increasing levels axecu-
tion uncertaintywithin the system. As device feature sizes scale below 45eiapility
has rapidly moved to the forefront of concerns for leadingnisenductor companies,
with the main challenge being the scaling of system perfoaavhile meeting power
and reliability budgets. To make things worse, such an wabie computational fabric is
used to concurrently execute an increasing number of agijaits that constantly vie for
execution resources, thus furthermore making the exectetwironment more dynamic
and unpredictable.
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The unreliability in the electronic fabric, in conjunctievith the unpredictabil-
ity in the execution process, has motivated the incorpamatif execution adaptivity
in future multicore systems, so that computational resesigan be frequently renego-
tiated at run-time. The challenge, however, is to attairpaidiéy in conjunction with
the goals that designers already face, such as computdfiicierecy, power and thermal
management, and predictability of worst-case performafte traditional approaches
of providing adaptivity at runtime dynamically will fail tecale as we move to systems of
dozens of cores. Neither do static techniques that relyysotecompiler analysis deliver
efficient adaptivity though. Instead, | have proposed a Eebmpiler-directed run-time
optimizationtechniques that can combine the advantages of both, capbt#acting to
unpredictable events while at the same time exploitingisitee program information to
guide runtime decisions.

Technically, this thesis addresses the increasing levedxecution uncertainty
in future multicore systems induced by device failures le@dups, or resource com-
petitions from three aspects. It presents several tigtalypled techniques to either 1)
maximally mitigate a source of uncertainty, such as thestraks, or 2) precisely detect
resource variations, especially the ones induced by déaikees, and then 3) quickly
reconfigure the execution in a predictable manner with nameé on spare units. These
techniques are developed with the considerations of mmmgipower and performance
impact, localizing communication and migration so as tesgainterconnect constraints,
and ensuring high predictability so as to meet worst-cagéopeance constraints of
mission-critical applications. The successful incorpioraof these techniques in fu-
ture multicore systems, | believe, will engender adap®ealable architectures that can
seamlessly reshape execution paths and schedules in atizaoler; high-volume, fixed-
silicon fabric.
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Chapter 1
Introduction

Over the past several decades, advances in silicon fabndachnologies have
enabled dramatic advances in computer systems. Geonhetradimg of device sizes and
die sizes has enabled the number of transistors per chiputielmughly every 24 months
as stated in the well known Moore’s law. The tremendous nurobiansistors imposes
numerous technology challenges at the same time. Efficidi#ation of the existing
and ever increasing computational power necessitatestreapment of well organized
systems that can efficiently extract the potential paiahelof applications. Meanwhile,
technology scaling also makes devices more vulnerableriousfailure mechanisms,
imposing severe reliability challenges.

As single-processor systems built upon superscalar orlgagyinstruction word
(VLIW) architectures fail to respond to the well-known pléelism challenge, single-chip
implementations of multiprocessor SoCs including CPUsnorges and communication
architectures have become more and more popular. Exanmaleisie Stanford’s Hydra
[36], MIT’s Raw [84], IBM’s Cell [48], Sun’s Niagara [50], ahAMD’s Opteron [52].
With the number of cores per die projected to double everytegbnology generations
according to ITRS reports [2], chips of 100s to 1000s of caresexpected to be used
even in common consumer applications of the next decade [2].

While currently multicore platforms are preferentiallyeddor server and desktop
systems, in the near future, they are expected [2] to be wilaployed by various types
of systems, including defense, consumer, medical, andamnkimg/communication. The
drastic increase in the number of available cores tempigm&s to construct systems



that can run a large number of applications in parallel, @hildramatic increase in the
diversity and the complexity of these applications is alspeeted. Efficient utilization
of the ample hardware resources requires these applisatidre decomposed into fine-
grained concurrent tasks. Yet at different program phasese applications typically
exhibit diverse amounts of parallelism [92]. As a resulghievels of variability are
expected both in the number of applications and in the nurabeores an application
needs. In such a dynamic execution environment, compuatageds to be organized in
an adaptive manner so that resource demands of variousatpphs can be constantly
renegotiated at run-time.

Yet the issue of application diversity is not the only asjpleat is dictating the need
for an adaptive organization of computations. The afor@iapad degradation in device
reliability may end up creating large variations in run4imesource availability, thus re-
inforcing the need for execution adaptivity. With the devghrinking projected to reach
beyond 18nm in scale by 2015 [1], issues that were considesextcond-order effects
in the past, such as Soft-breakdowns (SBD) in device gatdepiegative Bias Temper-
ature Instability (NBTI) in PMOS threshold voltage, Ele:tWigration (EM) in copper
interconnects, and dielectric breakdown in léwnaterials [11], become clear threats for
systems in near future technologies. These accentuateogie effects may cause ir-
reversible damage to a device, leadingggsmanent faultsMeanwhile transient faults
which can be caused by alpha-particle strikes, cosmic mysdiation from radioactive
atoms [47], are also expected to increase by orders of mamdue to the reduced volt-
age and the resultant tighter noise margins. In fact, siegést upset caused by cosmic
particles has already been observed in large amounts in nyesystems and sequential
logic state elements. Similar transient faults have siaddoe observed in combinational
logic as well [47, 78].

Not only is the fault rate projected to be high, but also a highance in the
duration of fault manifestation is to be expected in futuoenputer systems. In par-
ticular, technology experts warn about an increasmtermittent faults— faults which
occur frequently and irregularly for a period of time, conmyodue to process varia-
tion or in-progress wear-out, combined with voltage andgerature fluctuations among
other factors [12, 22]. These factors together cause thatidarof fault manifestation to
vary across a wide range of timescales. For instance, wftagtuations are typically



short-lived, on the order of several to hundreds of nanos#x§l2, 43]. Temperature
fluctuations alter a device’s timing characteristics ovélisecond to second time scales
[69]. Finally, as wear-out progresses over the course of,dagnay even cause intermit-
tent faults to become frequent enough to be classified asgremm [22]. Such a diverse
behavior of fault manifestation brings further challengesystem designers. Fault tol-
erant solutions proposed solely for permanent or for tearidaults become insufficient,
as they rely on a fault to consistently manifest or never esifest itself. Instead, cost-
effective solutions capable of uniformly detecting alllfapidentifying the fault type, and
then adaptively recovering the execution are necessitated

The aforementioned reliability issues become even morersavhen the impact
of temperature is considered. While thermal buildup [S9rexdow is a significant con-
cern, it will exacerbate as a result of the continuous sgadircircuit current, clock speed
and device density. As higher temperature acceleratehtmical processes taking place
inside the chip, the system will become more vulnerable taramechanisms such as
electromigration and dielectric breakdown [11]. It hasrbeeported that a mere 10 —
15°C rise in the operating temperature could halve the life spaémeocircuit [87]. Higher
temperature also reduces the mobility of the charge cartileus diminishing the switch-
ing speed of the transistors. The amount of delay faults jjeeted to double [34] for
every 10T increase in temperature. Moreover, as every20fcrease in temperature
causes a 5-6% increase in Elmore delay in interconnectglfidk skew problems also
become noticeable for temperature spatial variationsafrad 20T and above. Finally,
these reliability and performance issues are worsenedépdkitive feedback loop be-
tween temperature and leakage power; leakage currentamerpally related to temper-
ature, exacerbating further the effects of the positivelieek.

1.1 Need for Execution Adaptivity

The projected degradation in device reliability, in corgtion with the high vari-
ability in application resource utilization, imposesstyent requirements for future multi-
core and many-core systems to dispdagcution adaptivityin the face of failing cores, it
will be out of necessity to suspend the failing computatiarthe face of thermal stress, it
is preferable to shut or cool down the cores approachingrthieouildup thresholds, thus



in turn diminishing the extent of the factors that contrétd fault occurrences. Finally, in
the face of resource competitions, the reallocation of gpi@ation’s resource in favor
of another application will boost overall throughput of thestem. Not only will future
multicore platforms be adaptive in the sense of deallogatres, but conversely they
will be adaptive in the sense of pulling cores back into ofi@neonce the fault durations
have elapsed, heat driven throttling needs have abatedsource competition pressures
have diminished.

Frequent renegotiation of resources is not the only caipabih adaptive system
needs to have, though. While renegotiation addresseswangsource variations from
a “recovery perspective, techniques capable detecting resource variations or even
“precluding their occurrences are also indispensable. Preventiordatettion may be
easily achievable for certain causes of variations, suclkessurce competitions, as they
can be directly monitored by the operating system (OS). 1bba view of the application
resource requirements is available, the OS may even be@pletadjust resource foot-
prints to prevent a potential competition. In an analogoasmer, heat-induced resource
variations can also be quickly detected, as long as on-ehipérature sensors have been
pre-fabricated. Moreover, as temperature is a functionosfgyr density and floorplan
characteristics [41], a potential thermal stress can beepted through either reducing
power consumption in the most-overheated components,terrdmistically controlling
their access activity to balance power density.

Compared to resource competitions and thermal stress,dti@rence of exe-
cution faults is completely unpredictable and cannot beatly prevented. Instead, a
highly efficient detection mechanism, capable of scalintheoprojected high fault rate
is necessitated. Given the highly variable fault durattenhniques proposed solely for
permanent faults [7, 79] or for transient faults [66, 72, &34 insufficient. Circuit level
replication techniques, such as Razor [28], fail to responithe challenges imposed by
the highly variable manifestations of the faults given thegh cost and inflexibility. In-
stead, an architectural-level technique, capable of eletig full fault detection capability
within minimum performance and heat overhead is necesditat

Finally, providing execution adaptivity, while a highly sleable goal, needs to

LAn indirect prevention of execution faults is possible,uhb. For instance, temperature-induced fail-
ures can be diminished through temporarily suspendingdh®atation on a core that is sustaining thermal
stress.



pay utmost attention to questions of performance, powersgatem organization, if it is
to be industrially relevant. Performance, which has alwagesn of great importance, is
becoming even more crucial given the projected high resovadations. Upon the detec-
tion of a variation, it is essential to minimize both the dwed in making reconfiguration
decisions and the overhead in migrating computation, so esconfigure the execution
before the next resource variation occurs. Power consompiso needs to be strictly
controlled, since the solutions of variation detection aesburce renegotiation should
not create significant power overhead that may end up ifff@ngilocal heat buildup.
Clearly, as performance, power and heat characterisiéckagely determined by system
organization, especially the underlying fabric topologfficient adaptivity solutions also
need to be topology-aware.

1.2 Challenges to be Addressed

Delivering the aforementioned execution adaptivity raisemerous technical chal-
lenges. In particular, the needs for resource renegatiateiability enhancement, and
heat reduction should be attained in conjunction with thalgdhat designers already
face, such as computation efficiency, power and thermal dtudmd predictability of
worst-case performance.

Fast, predictable, and localized execution reconfiguratio

An adaptive multicore system should be able to reconfiggrexecution to ei-
ther withstand a core unavailability, or make use of a pnesiip deallocated core once
the cause of unavailability has been cleared. As variatafmesource availability are
expected to be frequent, the reconfiguration process ste@uésd quick as possible. Pre-
dictability of worst-case performance also needs to beaniaed, as multicore platforms
are expected to be commonly used by deadline-driven reakipplications [2]. Mean-
while, as the interconnect cost becomes increasingly estpeim terms of both power
and performance, workload migration should be confinediwdmeighborhood as well.

The strict requirement of fast and predictable reconfigomatannot be straight-
forwardly attained through adopting pure run-time techei|[18, 26, 89]. Although
these techniques naturally deliver adaptivity, the dymraactions waste significant com-



putation power and, due to their sub-optimal nature, unptaioly impact each applica-
tion. Not only do these techniques need to collect worklo&rmation from every corner

of the chip, but furthermore, the quality of reconfigurata®tisions is determined by the
complexity of the scheduling algorithms employed. The ltasti communication and

computation overhead drastically increases as the nunilweres in the system grows,
thus limiting the applicability of these techniques to syss of 100s of cores.

Neither do static techniques [21, 33, 44] that rely solelycompiler analysis de-
liver efficient adaptivity though. It is true that comparedpure run-time techniques,
compiler-directed scheduling is more predictable and effsttive. Sophisticated appli-
cation information can be extracted, and aggressive H@srsan be employed to globally
balance the workload. However, the quality of static schesldegrades significantly in
a dynamic environment. While it is possible for the compitegenerate multiple sched-
ules that match diverse resource availability constraihies numerous adaptivity needs
are difficult to plan and compile for. The overall impact oeaource variation on a stati-
cally generated schedule is determined by the exact timé&@hva variation in resource
availability occurs, which is essentially infeasible tegict statically.

Given the inability of pure run-time and pure compile-tineeliniques to deliver
execution adaptivity efficiently, it is desirable to deyebbhybrid approach that can com-
bine the advantages of both, capable of reacting to unpedadecevents while at the same
time exploiting intensive program information to guide tiore decisions. Yet deliver-
ing this hybrid scheme also raises numerous technicalerigdls. What is the form of
compiler analysis that embeds numerous reconfiguratiosilpbses in static schedules
in a compact manner? How to localize task migration in theméguration process?
How is the reconfiguration process controlled by the runtaysem? How to organize
the underlying multicore fabric to minimize workload migom overhead? Addressing
these questions requires the development of a collaberfiimework between the OS,
the compiler, and the architecture, with the constraintdafdivity taking center stage in
the design process.

Full variation detection capability within minimum overhe ad

To sense that an execution rearrangement is to be effectedaptive system also
needs frugal technical support for detecting resourcatiars induced by faults, thermal



stress, and resource competitions. Among these variousssthe detection of execution
faults is most challenging. On one hand, the projected tagh fate [22, 34, 47] argues
for solutions of maximal efficiency. As full fault coveragestill necessitated, however,
techniques [32, 71, 88] that reduce fault detection ovetlaahe cost of significantly
increased rates of undetectable faults are not applic&ethe other hand, the diverse
behavior of fault manifestation argues for solutions cépaid uniformly detecting all
faults and then identifying the fault type. As the duratidrfault manifestation varies
over nanosecond to second time scales, detection mectsthanrely on a fault to never
re-manifest [66, 72, 73] or consistently manifest [7, 79¢If become insufficient.

Unlike regular storage structures that can be efficientyguted using Error Cor-
recting Codes (ECC), computation at various pipeline staggically exhibits irregular
patterns, thus requiring the entire execution talbplicatedin order to detect arbitrary
faults. Unfortunately, traditional duplication-basedilfadetection approaches impose
significant overhead either in checking execution resoltsn constantly synchronizing
two computation copies for value checking [91]. While ext&fers [72, 62] can be
inserted into the architecture to relax synchronizatiomdttions, these centralized hard-
ware structures need to be constantly accessed, thus lyassiing up becoming thermal
hotspots.

The projected high fault rate additionally imposes stregjuirements on the de-
velopment of a light-weight checkpointing scheme. Wheneavéault is detected, the
computation needs to be restarted from a previously saesthdtate, i.e., eheckpoint
In order for the computation to progress, a new checkpoiotishbe established before
the next fault occurs. The higher the fault rate is, the moggquently the computation
needs to be checkpointed. Yet in order to checkpoint the ctatipn more frequently, the
associated computational overhead needs to be stricttyatleal. Typically a checkpoint
is imposed on the processor state and the corresponding mdoadprint. Yet check-
pointing the memory, as OS needs to be involved in, is usaatjyite expensive process
[13, 57] that induces significant context switch overheadcadkdingly, the development
of a light-weight checkpointing scheme requires the menmbe strictly protected from
being polluted by execution faults.

In summary, the development of an efficient fault detectresne for future mul-
ticore systems of elevated rates and diverse types of femfissesthree requirements,



namely, attaining full detection capability within a minim level of result comparison
and hardware duplication, maximally relaxing checkindtioed synchronization condi-
tions with no reliance on any centralized hardware buffied, minimizing checkpointing

overhead through strictly protecting memory against etiendaults.

Maximum mitigation of thermal stress

As the system fault rates exponentially increase as peagdasature rises, miti-
gation of thermal stress can in turn reduce resource umdity induced by both heat
buildup and execution faults. However, as overall systenfopmance is still of great
importance, temperature reduction should not be attaimedigh globally stalling [15]
or slowing down [80, 81] the computation of an overheate@ cor

As temperature is determined by power density as well as ¢a¢ dissipation
speed, the temperature distribution on a chip is typicatlynanetric. This asymmetry
can be observed at both the core-level and the microarthitédevel; not only may
the tasks assigned to different cores exhibit diverse pd&bavior, but furthermore the
various components of a core exhibit distinct size and acclearacteristics. This obser-
vation implies that peak temperature of the entire chip camedluced through shifting
computation from a hot resource to a relatively cool reseulit particular, in an adaptive
system, execution schedules should be generated in sucl thatahe “hot” tasks are
distributed across various cores at different time. Mealewlfor each individual core,
the peak temperature of the most overheated module shoslditity controlled as well.

To perform thermal-aware task scheduling, the scheduleds¢o obtain extra
information regarding system topology and power consuomnptharacteristics of tasks
[23]. The challenge, however, is for the scheduler to carsidmperature constraints
simultaneously with the other scheduling constraintshagcommunication minimiza-
tion, workload balance, and execution adaptivity. The Itast drastically increased
scheduling complexity would impose significant computatiwverhead, if the schedul-
ing process is to be performed at runtime. This observatidarin argues for &ybrid
scheduling approach, wherein the compiler can exploiniitee program information to
guide runtime decisions.

Controlling the peak temperature of each individual corpnees the identifica-
tion of the most overheated module. Previous research figlidates that the register file,



due toits high utilization and relatively small area, is ofthe hardware units most likely
to overheat. Moreover, due to the fact that 90% of the exeoutme is spent on loops
where only a small subset of registers is repetitively aaegsregister file accesses also
exhibit high asymmetry during program execution. This aswatric register utilization
may lead to considerable temperature differentials. Yee gtatic register reassignment
techniques [40, 100] cannot completely eliminate the acasgmmetry to each individual
register, since such asymmetry directly derives from tlyenasetric variable utilization
of the program.

Given the inability of the compiler to completely balancgister accesses, a dy-
namic mechanism needs to be developed to physically remaglheccessed logical
registers prior to local heat buildup. Yet this task canrabcomplished through the use
of a hardware renaming table [77]. Not only does such a mgpaible impose notable
levels of of energy consumption, but more crucially, thddateeds to be accessed using
the skewed register names, at a frequency no lower thanfthegister file accesses, thus
ending up itself becoming a temperature “hotspot”. Thiseobation indicates that the
challenge for temperature-aware register remapping isheee this goal in gable-free
manner; the system needs to deterministically keep trackrefime register usage and
register mapping information. It is therefore necessagstablish an agreement between
the compiler and the runtime remapping hardware, so thatlagty can be embedded
within consecutive register accesses.

1.3 Contributions of This Thesis

The development of an adaptive execution framework for #d generation of
computer systems is a challenging task. In particular, thess$ the technical challenges
identified in the last section, the system needs aggresstmical support from the OS,
the compiler, and the architecture. A collaborative optation framework needs to be
established.

In light of this observation, we establish in this thesisampiler-directed run-
time optimizatioframework, capable of efficiently coupling static prograrformation
with runtime optimizations. Under this optimization frawmm@k, we furthermore intro-
duce several tightly-coupled techniques that contribmteé development of reliable and



10

adaptive multicore systems from the perspectivesasfation mitigation variation de-
tection execution recoveryas well asarchitectural reorganizatiorfor a cost-effective
implementation of all these functions. The contributiohthese techniques are summa-
rized as follows:

e A compiler-directed task scheduling framework, capabkgpafvning regular, trans-
formable, and high-quality execution schedules in the tdespredictable runtime
resource variations. The pre-optimized schedules can &gtidly applied upon
runtime resource variations, thus delivering high-spewsti law-cost reconfigura-
tion without any rescheduling decisions needing to be madaefly.

e A scalable and shareable storage organization, capableliotdng high-speed
communications within a neighborhood. This organizatinatdes the simultane-
ous migration of multiple tasks between distinct cores authinducing any inter-
ferences or network congestion. The inherent redundamntlyeiumore assures the
connectivity of the entire platform in the case of core oembnnect failures.

¢ An efficient fault detection mechanism, capable of minimggiault detection over-
head while at the same time delivering full fault detecti@pability. Through
performing fault detection and checkpointing at the cactesnory interface, two
threads are able to run independently without constanthglsyonizing for value
checking, while the memory is strictly protected againstoexion faults.

e An approach to reduce system peak temperature, througbigrgluseful appli-
cation information to fine-tune a microarchitectural comgat intelligently. This
technique balances power density in the most overheategaoents, to wit, the
register file in each individual core, thus attaining tenapre reduction and hence
enhancing overall system reliability at almost no cost.

To ensure that adaptivity can be attained in conjunctioh Wié goals that design-
ers already face, all the aforementioned techniques aedajsd with the considerations
of minimizing power and performance impact, ensuring higkdptability of worst-case
performance, and localizing communication and migratioras to fulfill interconnect
constraints. The successful incorporation of these tectas in future multicore systems,
| believe, will engender adaptive, scalable architecttinascan seamlessly reshape exe-
cution paths and schedules in an amortizable, high-voldiresl-silicon fabric.
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1.4 Roadmap

The rest of the thesis is organized as follows. Chapter 2wevithe current
state-of-art and analyzes the limitations of existing 8ohs of resource management,
fault tolerance, and heat reduction. Chapter 3 presentstarayoverview of the envi-
sioned adaptive multicore framework, focusing on the tatation between the OS, the
compiler, and the architecture. Chapter 4 introduces a denytrected task schedul-
ing framework, wherein adaptivity is directly embeddedistatic schedules and task
migration is localized to satisfy interconnect constrainthe corresponding storage or-
ganization for minimizing migration overhead and accedleganeighborhood-centered
communications is presented in Chapter 5. Chapter 6 presenarchitectural fault de-
tection and checkpointing scheme, wherein the cache déesigxtended to implement
fault detection, checkpointing and recovery. Chapter Bgmés a compiler-directed reg-
ister shuffling technique that effectively diminishes stgr access asymmetry with no
reliance on any hardware renaming table, thus preventicg loeat buildup. Finally,
Chapter 8 summarizes the adaptive multicore framework ahdexjuently outlines a set
of possible future research directions.



Chapter 2

Related Work

While the underlying computational fabrics become inaregly dynamic and
unreliable, the applications to be held by these fabricsosepstricter requirements of
durability and safety. Researchers therefore have startaddress the increasing levels
of computation uncertainty from various perspectives.

First of all, given the diversity of the possible causes af@Kion uncertainty,
researchers have focused on tieracterizationof the various causes of uncertainty,
including device failures and thermal stress, as well asnbhdelingof their effects on
system execution. Various circuit-level fault models hiagen built, architectural thermal
models have been constructed, and the system level faulfestation behavior has been
studied. Meanwhile, researchers have also developedugaterhniques to overcome
execution uncertainty through eithpreventinga cause of uncertainty from occurring,
or maskingits effect, ordetectinga cause and therecoveringthe system. There-
ventionstrategy has been adopted for the control of chip-wide teatpes, through the
adjustment of the floorplan and the layout of various haréwaodules, or through the
adjustment of execution schedules to distribute “hot” saméross diverse computational
resources. Thenaskingstrategy has been adopted for the toleration of deviceréslat
the circuit-level, while theletection-recovergtrategy has mainly been adopted for the
toleration of device failures at the architectural-lewsdt compared to thermal stress, the
toleration of device failures is more challenging, partcly due to the diverse behavior
in fault manifestation. A large number of fault detectionainanisms therefore have been
developed. These techniques target either faults in specifnponents, such as storage
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units or the control flow [65], or specific types of faults, Buas transient faults [72] or
permanent faults [79]. Additionally, once a fault has bemtisely identified, it is neces-
sary to isolate the corresponding components through andigmaconfiguratiorprocess.
Researchers have therefore examined the various posghitir reconfiguring the sys-
tem at various levels, for instance, at the component leveldask permanent faults [3],
or at the core level to migrate the workload [89].

Despite the existence of various types of solutions for aw&ing execution un-
certainty, these solutions fall short of addressing thdlehges induced by not only an
elevated rate, but furthermore a diverse behavior of ei@tuncertainty in future multi-
core and many-core systems. Due to the associated higheaddnd the lack of pre-
dictability, these solutions fail to deliver the envisidnexecution adaptivity in conjunc-
tion with the goals that designers already face, such as ctatipn efficiency, power
and thermal budget, and predictability of worst-case parémce. A detailed review of
the current state-of-art, as presented in the remainintg pthis chapter, clearly illus-
trates the limitations of existing resource renegotigtrehability enhancement, and heat
reduction techniques.

2.1 Resource Renegotiation

The increasing possibility of resource variations requaeeconsideration of the
critical issue of scheduling the tasks of an applicatiorodhe cores of the target sys-
tem. Traditionally task scheduling can be performed eithgramically at run time, or
statically during compilation. The former approach defvadaptivity straightforwardly,
yet the associated high overhead challenges its scajadnliive move to systems of 100s
of cores and similar magnitude of concurrent tasks. Therapproach is more cost-
effective and delivers worst-case predictability. Yet thanerous adaptivity needs are
difficult to plan and compile for.

Run-time solutions

In dynamic scheduling, the OS is typically employed to maniesource avail-
ability and schedule tasks (that are ready to be executdg)toravailable cores, thus
naturally delivering resource reallocation upon runtimagiations. In [18], upon a pro-
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cessor failure, @ynamicrescheduling approach is employed to reassign its workioad
the remaining available processors. A similar approachmgleyed in [89]. The OS is
configured to use more virtual processors than the numbehysigal cores, thus tol-
erating variations in the availability of physical coreshelTapproach proposed in [26]
adapts application execution to the varying CPU availghidir the purpose of minimiz-
ing the energy-delay product (EDP). It relies on a helpegabr running in parallel with
the application, to determine the ideal number of cores hadsystem configuration at
any given point in execution.

While pure run-time techniques naturally delivxecution adaptivitythe dy-
namic reactions waste significant computation power aneltaltheir sub-optimal nature,
unpredictably impact each application. More specificéllg core becomes unavailable,
its workload can be migrated either straightforwardly srieighbor(s), or to the cores
with minimum workload. The former ad-hoc decision incurgliggble overhead yet typ-
ically induces workload imbalance, since the adjacentaray have already been as-
signed a significant amount of workload. In comparison, #ttet decision displays more
intelligence, yet imposes significant communication anehjgotation overhead. First of
all, to globally balance the workload, the dynamic schednéeds to collect workload
information from every corner of the chip. Clearly, the asated overhead drastically
increases as the number of cores grows. Meanwhile, as ttiéyqafanigration decision
is determined by the complexity of the scheduling algoritamployed, the generation
of high quality decisions also introduces significant romrgischeduling overhead, at an
amount superlinearly proportional to the number of corenirtasks in the system. For
example, the helper thread proposed in [26] needs to mahikoapplications’ EDP val-
ues through collecting performance counter informatio,t@ determine the next system
configuration through curve fitting methods. The resultggraciable communication
and computation overhead limits the applicability of thigections to future multi-core
and many-core systems wherein the interconnect cost isqiegj to be high.

Compile-time solutions

Compared to pure run-time techniques, static schedulimgoige cost effective,
as it imposes neither run-time scheduling overhead nor aamzation overhead for col-
lecting workload information. As scheduling is performeftlioe at compile time, not
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only can sophisticated application information be extrdcbut also aggressive heuristics
can be employed to globally balance the workload. As a resaihmercial embedded
systems, such as MARS [51] and XBW [19], typically use statiheduling to ensure
timing predictability and other safety-related propestisuch as design simplicity and
testability. However, the quality of traditional statichedules degrades significantly in
a dynamic environment. In fact, when generated offlinejcstthedules are typically
confined to the case of a fixed number of PEs, implying that@ures reduction usually
dooms the entire schedule to uselessness.

To enable static schedules to tolerate resource variatietisndancyneeds to be
built within the system. As a result, traditional static edhling techniques either keep
spare processors [21] that can be used to replace failirgy onback up each task [33, 44]
so that upon the failure of the primary copy, the backup cdpgh@task can be invoked.
The schedule should also have sufficient timing slack emdx {46, 61] so that upon a
core variation, recovery and migration can be carried otdreeany of the tasks reaches
its deadline.

Maintaining spare cores would be an efficient solution fdlyfaonnected sys-
tems, wherein one spare core is able to replace any of thenmggaores. Unfortunately,
in future multicore systems of hundreds of cores, full catioa is impossible, which
in turn limits the replacement capability of spare coresm@otation on a failing core
cannot be directly migrated to a spare core if the two are hgsigally adjacent. In such
systems, it would be preferable to allocate more spare ¢tomegions of higher levels of
resource variations. Unfortunately, such an allocaticategy is impossible to determine
at compile time. As examined before, a core may become uahl@idue to various
reliability, thermal or resource competition reasonshwieither the occurrence nor the
duration of unavailability being predictabdepriori.

In theprimary-backuppproach, schedules should be generated in such a way that
the primary and the backup copies are scheduled on distincepsors. To reduce the
associated replication cost, backup overloading and lmadkallocation are introduced
in [75]. Backup copies of multiple independent tasks arevedld to be scheduled on the
same or overlapping time intervals on a processor, and sloeirees reserved for a backup
task are reclaimed when the corresponding primary taskpletensuccessfully. These
techniques effectively improve resource utilization, Mtihey are restricted to tolerating
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only a single fault among the tasks with overlapped backbpdules.

In [58], a hierarchical scheduling approach is proposedsk Taaphs are parti-
tioned into disjoint regions, for which multiple schedulegh diverse performance and
power characteristics are generated. Such schedulesagravadapplied at runtime so as
to explore energy-performance tradeoffs. At first sighgeéms that this approach can
also be employed to overcome runtime resource variationsugih the static generation
of multiple schedules that match diverse resource avéithabonstraints, followed up by
a dynamic switch to a new schedule upon a variation in coriadnitity. Unfortunately,
the overhead for storing all these pre-optimized schedalegemory is quite high. More
crucially, the numerous adaptivity needs are difficult tarpand compile for, since it is
infeasible to predica priori the exact time at which a variation in resource availability
occurs. Due to this limitation, these pre-generated sdeedixhibit no timing regularity;
the execution order of tasks is not necessarily identicaluiphout the various schedules,
implying that a switch between these schedules requirearats@rocess for identifying
the exact starting point. Neither do these schedules exdphtial regularity; a task may
need to be shifted across multiple PEs during the recontigararocess, thus inducing
significant migration overhead and hence unpredictalolityorst-case execution.

2.2 Reliability Enhancement

Increasing research attention has been paid to the inadrporof reliability en-
hancement solutions into computation systems, not onlgumee of the elevation in fault
rates, but also because durability and safety have beetifiddras an important design
criterion for systems that hold server, defense, or medipplications. Semiconductor
companies have started as well to incorporate reliabilippsrt into their newly-released
designs, such as Int€8uickPath and IBM Power6[59].

Given the severe power and cost constraints of modern ratgtiarchitectures,
the need for maximally efficient fault tolerance methodsamees increasingly critical
and urgent. It is thus essential to evaluate a technique migthy its effectivenesm
detecting errors and recovering execution, but more inapdist by itsefficiencyin terms
of the associated performance, energy and hardware owkrhea
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Fault detection

In general, the detection of faults necessita¢esindancyat an amount inversely
proportional to the regularity of the hardware compone/@®rage structures, such as
caches and memory, have regular patterns, thus enablingsthef Error Correcting
Codes (ECC) and parity bits. Faults in instructions or intoarflow can also be ef-
fectively detected bgignature monitoringechniques [65, 73] through exploiting inter-
nal redundancies. As a comparison, computation structypsally exhibit irregular
patterns, thus requiring the entire execution talbplicatedin order to detect arbitrary
faults at various pipeline stages.

Conventional duplication-based approaches employ edthisre redundancygr a
spatial redundancgtrategy for fault detection. Time redundancy, achieveexscuting
a task on thesamehardware multiple times, is only effective for transienilfaletection.
For instance, a number of software-based fault detectiomniques replicate each in-
struction and add checking instructions to compare thdtsesi8, 66]. These techniques
offer the flexibility of turning redundancy on and off in themgerated code, while at the
same time imposing significant performance overhead dueetoeplication and check-
ing of instructions. Some researchers have proposed a ssthofiques [99] capable of
reducing such overhead by 50%, yet at the cost of reduceticiaxgrage.

Space redundandgchniques, on the other hand, duplicate a single task on mul
tiple processors. Not only transient, but furthermorerimigent and permanent faults
can be detected, albeit at a cost of sizable hardware owkriedahe Compaq NonStop
Himalayasystem [91], each pair of redundant instructions is execotetwo tightly-
coupled cores on a cycle-by-cycle basis. An instructiomoame committed until its
correctness has been verified. The Dynamic Implementatesification Architecture
(DIVA) [7] employs k simple checker cores to detect errors ik-aide superscalar pro-
cessor. The BulletProof pipeline [79] uses built-in selttto detect and precisely identify
the faulty unit. As the technique relies on a fault to corsitliy manifest itself, it is only
effective for permanent faults but not transient faults.

To attain full detection capability, previous techniqussially check all the store
instructions, and hold an instruction off commitment uiislcorrectness has been veri-
fied. This highly synchronized execution model significamticreases the latency of a
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single instruction, thus delaying the release of hardweseurces, such as physical regis-
ters and ROB entries in the architecture. Moreover, in tise @eghen two redundant tasks
are being executed on distinct cores [91], both copies imiarspeculated branches and
cache misses independently, leading to less efficient resauilization and unnecessary
power dissipation. To relax the lock-step execution moebdka buffers are necessitated
So as to enable one thread to forward data to the other. Ranices, the redundant mul-
tithreading approach (originally proposed in [72] for SMdres and extended to CMPs
in [62]) requires arputput comparatotto verify execution results, as well as arput
replicator to ensure that both threads read identical input data. &jlpithese two com-
ponents are implemented through two centralized sharectstes, namely, boad Value
Queueand aStore QueueHowever, even with these queues, the two threads still teeed
synchronize, as the leading thread needs to be stalletié@rejueue is full and the trailing
thread needs to be stalled if either queue is empty.

To reduce duplication overhead, researchers have devktoget opartial redun-
dancytechniques. Opportunistic Fault Tolerance [32] duplisatstructions only during
periods of poor single-thread performance. ReStore [88sdwt explicitly duplicate
instructions yet considers mispredictions among highlyfident branch predictions as
symptoms of faults. Slipstream [71] combines partial dzgilon and confident predic-
tions through creating a reduced alternate thread wheramynmstructions are replaced
with highly confident predictions. These techniques sizadtiuce duplication overhead,
however, at the cost of significantly increased rates of tewdable faults; faults in non-
duplicated instructions cannot be detected, if they doeead ko branch mispredictions.

Execution recovery

In addition to fault detection, the achievement of faultilresce also necessi-
tatesexecution recovertechniques, which should either preclude faults from monlif
computation states, or roll the execution back to a preWosaved clean state, i.e., a
checkpoint upon a fault. The first strategy is typically eaygld together with highly-
synchronized value checking. For instance, in both redoinchaltithreading cores [86]
and lock-step multiprocessors [31], instruction resudtisrot be committed into registers
or the cache until their correctness has been confirmed. rirasi, thecheckpointing
and rollbackstrategy allows results to be written into registers andrieenory hierarchy
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without being compared, yet needs to constantly check aveltb@ computation state.
Upon the detection of any fault, the system reloads the neasint checkpointed state to
recover computation.

To establish a checkpoint, one set of techniques utilizesittual memory trans-
lation hardware [13], to create a backup copy before maalfyainy memory page. An-
other standard technique consists of the use of a recoveheda record all the data
written in memory that are part of a checkpoint state [57].effigvstore to a memory
location must be preceded by a load to maintain the data inett@very cache. These
hardware-oriented backup techniques impose not onlygedrat also performance over-
head constantly on the system. To reduce such overheadAIRER scheme [42] uses a
normal cache with a writeback update policy to assist raplidack recovery. The work
is subsequently extended to shared-memory multiprocessoyugh synchronizing the
processors whenever one needs to take a checkpoint [45jwaéefcheckpointing [14]
has also been proposed, yet at the cost of additional supgmprired from the compiler
and/or the OS.

While a single task can be checkpointed independently, @lphapplication re-
qguires the coordination of dependent tasks in the checkipgimprocess.Coordinated
checkpointing17, 82] can be attained by stalling and validating all cotagions and
communications in an ordered manngncoordinated checkpointin@4], in contrast, is
performed independently on each core. While this stratégyreates the global synchro-
nization requirement of coordinated checkpoints, mutigdteckpoints need to be stored
on each core, and the rollback process furthermore reqthiegslentification of a check-
point with a consistent state. To eliminate potendiamino effectsvherein no consistent
checkpoint can be found, researchers have introduced @xtistraints on checkpointing
sequences based on, for example, the communication paf8athof applications.

Another set of techniques aim to continue to use a core aegpitmanent faults,
through the use of finer-grained fault masking strategié®esé techniques involve fine-
grained testing, diagnosis [29], and recovery of core campts.Configurable isolation
[3] is a technique that performs reconfiguration at the manchitectural level. When
a component suffers a fault, processor resources arecatdbband partitioned dynami-
cally so as to isolate the component and subsequently raigsatorkload.StageNetSlice
[35] is a processor core comprised of networked pipelingestalt relies on a reconfig-
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urable network of replicated processor pipeline stagesaximmze the useful lifetime of
the chip. In [68], the authors exploit cross-core redungiazed use hardware to migrate
offending threads to another core that can execute the tiqeraClearly, the reconfig-
urability offered by these techniques is at the componest¢he faulty functional unit,
register, or cache block is isolated so that the core cdropirate in a degraded perfor-
mance mode.

2.3 Heat Reduction

Modeling temperature and the effects of temperature oabily is essential
for the simulation and analysis of heat reduction policidfie adverse impact of op-
erating temperature on system reliability has been stughéshsively. Researchers have
built either analytical or experimental models for tempera-induced fault rate increases,
such as delay violations [34], negative bias temperatwtiility [53], neutron-induced
latchup [27], and on-chip interconnect [5]. In comparisthrermal modeling is typically
accomplished by constructing an equivalent RC network efgilren chip. Heat flow is
analogous to the current passing through a thermal resestanthe RC network. The
transient behavior of temperature is modeled by means ahtrenal capacitance. Ar-
chitectural thermal models of this type, such asHio¢Spof41], have been developed for
calculating transient temperature response, for the dgieemplan, package, and power
consumption characteristics of various components.

In general, temperature is determined by power density #sawé¢he heat dissi-
pation speed. A traditional approach to accelerating ttterléactor is through packaging
and cooling solutions. Yet such solutions have been tyfyitaitgeted for the worst case
peak temperature, resulting in an extremely expensiveguacg cost with the ever rising
temperatures (approximately $10 per Watt above(§5°To keep the chip-wide tem-
perature within the thermal capacity of the cooling packagsearchers have proposed
various architectural-level thermal management tectesdo either reduce the access fre-
guency to an overheated unit, or physically redistributaeases before heat gets locally
accumulated.
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Access frequency reduction

System-leveDynamic Thermal Manageme(@TM) techniques control thermal
hotspots by keeping the temperature below a critical tlolelstOnce a core reaches the
thermal threshold, heat accumulation is slowed down e#lhdine granularity through
clock gating [60], fetch toggling [80], decode throttlirg] [ frequency and voltage scaling
[81], or at coarse granularity through periodically stogpthe computation to induce
cooling [15]. Obviously, slowing down or stopping the eatcomputation engenders
significant performance degradation.

As different components exhibit diverse access and powewuoption character-
istics, local “hotspots” may reach critical temperatureels regardless of average or peak
external package temperature of the entire chip. In pdaticdue to its high utilization
(accessed 2-3 times per instruction) and relatively sma#,aheregister filehas been
established as one of the most overheated hardware unisrent processors [81]. Gate-
level techniques, such as single- or multi-level banking] ghd bit-partitioning [49], can
be employed to reduce the power consumed in each registexcctiess and, hence, the
peak temperature. Researchers have also proposed thparetosn of an extra register
file [81] to increase the average idle time. Unfortunatelgjmtaining a duplicated regis-
ter file requires the context of one register file to be pedaltly copied into the other. To
preclude local heat buildup, the two register files also rtedak physically distributed,
thus engendering sizable increases in chip area and wiomplexity as well.

Although temperature increase is induced by power digsipait needs to be
noted that power reduction techniques do not necessairfty tdfmperature reduction.
For instance, the technique proposed in [8] switches theethtegisters into hibernation
to save leakage power. Yet peak temperature cannot be kekdinoe frequently accessed
registers still consume power at levels identical to thgjiogl case. Another power-
reduction technique [63] unevenly partitions the regigilerinto two banks and maps
the most frequently accessed registers into the smallde. baowever, as most accesses
are directed to the smaller bank, the power density difiezdmetween the two register
banks is enlarged, thus questioning its effectivenessntroling peak temperature. The
review of these techniques indicates that a power redutéidmique can be employed
for temperature control purposes if and only if the techaigan reduce the peak power
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consumption in one of the overheated components in a system.

Access redistribution

Another set of techniques aim to attain thermal managerhemigh shifting com-
putation from a hot resource to a relatively cool resourdeesk techniques are effective
because the temperature distribution on a chip is typi@siymmetric; not only may the
tasks assigned to different cores exhibit diverse poweavweh but furthermore the var-
ious components of a core exhibit distinct size and accemscteristics. In light of this
observation, researchers have proposed to either shatprabdjust workload distribu-
tion [23], or dynamically migrate computation before heatsglocally accumulated, at
the granularity of functional units [39], pipelines [39kexution clusters [20], or even
cores on a single chip [69]. Overheated resources, sucheagdgster file, can also be
physically distributed into multiple clusters [20] to aterate heat dissipation.

A detailed examination into program execution indicatest tlegister accesses
also exhibit high asymmetry. This is because 90% of the di@ttime is spent on loops
where only a small subset of registers is repetitively asegs This asymmetric register
utilization furthermore leads to considerable tempegatifferentials, since most of the
heat generated within a microarchitectural block is destg@ vertically to the heat sink
rather than laterally to adjacent blocks [81]. To overcomgdccess asymmetry, thermal-
aware register reassignment techniques [40, 100] havefreposed. Both techniques
reduce the level of asymmetry in register accesses throwgipimg the most frequently
accessed registers to distinct register banks. Howevégtastechniques need to revisit
the NP-hard problem of register allocation, the qualityha solutions is determined by
the quality of their heuristic algorithms. More crucialhg matter how good the heuristics
are, such techniques cannot completely eliminate the a@®ssnmetry to each register,
since such asymmetry directly derives from the asymmetiitable utilization of the
program. As a result, these techniques can only attain seaarained access balance, at
the granularity of register file banks instead of individtegisters.



Chapter 3

Adaptive System Overview

The development of an efficient adaptive system addresbmdeichnical chal-
lenges identified in Section 1.2 requires the constructioa aollaborative optimization
framework with aggressive technical support from the O8 ctbmpiler, and the architec-
ture. Acompiler-directed run-time optimization framewasktherefore proposed in this
thesis. At compile time, program information can be exgdand synthesized statically.
Such information is to be transferred to, and efficientlyized by the runtime system,
so that the OS can make superior dynamic decisions andectinidl components can be
fine tuned accordingly.

3.1 Compiler-directed Runtime Optimization

The proposed compiler-directed run-time optimizatiomfeavork contributes to
the development of an efficient adaptive system in variopsets, as shown in Figure 3.1.
Perhaps most importantly, it can effectively reduce thetowad in adapting the compu-
tation upon unpredictable runtime variations. Such ovadheonsists of two parts, the
overhead in making runtime re-scheduling decisions, aadtierhead in migrating the
code and the data sets of the tasks to be re-scheduled. Therftype of overhead can be
reduced through constructinghgbrid scheduling frameworketween the compiler and
the OS. Through sophisticated static planning, the comp#@& generate high-quality
adaptive execution schedules, with pre-optimized recardigpn decisions statically em-
bedded. Upon resource variations, the OS can adaptively apph schedules without
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Figure 3.1 Collaborative Optimization Framwork

any rescheduling decisions needing to be made on the fly.rpadson, the latter type
of overhead can be reduced through a collaboration betweecompiler and the archi-
tecture. In the face of the increasing interconnect cosuiaré systems, the compiler
can pre-optimize the adaptive schedules in such a way tslatagyration is localized yet
still sufficient for workload balance. Meanwhile, the systarchitecture, specifically, the
storage units (i.e., cache and memory) can be organizedadnadlyf shareable manner,
thus allowing tasks to be migrated between adjacent cortesnwireliance on physically
moving the code and data set around.

The exploitation of compiler-directed optimizations id@wnally beneficial for
reducing system peak temperature. At the core level, itaardhat temperature can be
effectively balanced by the compiler; through performimggeessive thermal-aware task
scheduling, the compiler can, without imposing any runtowerhead, effectively prevent
any core from constantly being assigned “hot” tasks. Perlaapore interesting observa-
tion is that within each individual core, the compiler casadliminish a local temperature
hotspot induced by unbalanced component accesses. Takimgdister file for example,
the compiler can deterministically control the dynamidsegy remapping so as to balance
the accesses to individual registers for heat reductiopga@s. Through exploiting the
fact that no fixed, preordained correspondence exists leetywegram variables and reg-
ister names, the compiler can establish a certain propettyden consecutive accesses
to each register, thus enabling the hardware to rediretezgaccesses with no reliance
on a mapping table.

Among the various issues that may induce variations in rescavailability, exe-
cution faults exhibit the highest level of unpredictalilifs a result, compared to work-
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load migration and heat reduction, the utilization of colepextracted application infor-
mation for fault detection purposes might be less effectdhough program informa-
tion such as execution invariants and the range of exectgguits [76] can be utilized to
quickly identify a certain set of faults, due to the divergdavior in fault manifestation,
such compiler-extracted information proves insufficienproviding full fault coverage.
Instead, an efficient achievement of full detection cajiglbdhould rely on a dynamic
collaboration between the OS and the architecture, as showigure 3.1. By provid-
ing architectural support for fault detection purposes,@$s can efficiently monitor core
availability and coordinate the checkpointing process eahdent tasks. Specifically,
an architectural examination indicates that caches, wéethe as temporary storage for
the main memory, can possibly be utilized to temporarilydh@hconfirmed execution
results for fault detection purposes. The architecturelmatuned in such a way that
two redundant tasks share a single cache, with one taskleapiadhirectly checking the
execution results of the other, thus efficiently deliverfnfj fault detection capability.
Meanwhile, as only confirmed results are allowed to be writtethe lower level storage,
the checkpointing overhead can be strictly controlled d& we

To provide a clearer picture of the proposed collaboratptenuization framework,
we herein summarize the tasks to be performed by the comihiee©S, and the hardware.

The compiler plays a crucial role in guiding runtime reconfiguration demns
and preventing local heat buildups. In brief, it is respblesfor:

e Generating task schedules with the consideration of bafloymeance and reliabil-
ity constraints. The goal is not only to embed reconfigurighihto the schedules,
but also to separate “hot” tasks into PEs that are not phijjsidase to each other.

e Embedding regularity into static register names to enaliletarministic register
access balance for heat reduction purposes.

e Extracting the characteristics of the reconfigurable salestd guide dynamic work-
load balance. These characteristics include the minimwhtlemaximum number
of cores needed to execute a schedule block, as well as tirlcamd data depen-
dences between schedule blocks.

With the statically extracted scheduling information antéhathe OS support
needed in the proposed adaptive system is minimized. I, lordy a subset of standard
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OS functionality is needed, including monitoring core #aaility and program resource

demands, and signaling adaptivity needs, if necessary.

e Monitoring the status of a core, which can be eithasy or idle, or unavailable
due to thermal stress or device failures. The OS therefads® keep track of the
information regarding fault detection and the temperatfieach PE.

e Dispatching pre-optimized schedule blocks to a set of idles. The statically ex-
tracted information regardinigter-block dependenceasll be utilized to determine
if a schedule block is ready for execution, while the minimama maximum num-
ber of cores needed for that schedule block will be utilizeddlect an appropriate
set of cores.

e Adjusting application resource footprints to handle urestpd resource requests
or unpredictable core failures. To effectively hide theigsien-making latency, the
OS adopts a 2-step approach. At the beginning, a reconfigarstep is invoked
so that the corresponding application can isolate the proatic core. Then, the
OS will check the availability of cores and the predictecorese requirements of
various applications to make a globally optimized realtmradecision.

Finally, to support task migration, fault detection, an@theduction, the under-
lying architecture needs to be extended in three directions.

e Reorganization of the system topology to locally shareagferunits among cores,
SO as to mitigate task migration overhead and acceleraghlpeihood-centered
communications.

e Extensionto the cache design to implement a light-weighit tetection and check-
pointing scheme.

e Extension to the register file design to implement a detastioregister shuffling

mechanism.

3.2 Hybrid Scheduling for Resource Management

To concretely illustrate the advantages of the proposemnigztion framework
in efficiently delivering adaptivity support, we here prodgia system overview of the



27

proposed resource management approach, focusing on tabaraition between the OS
and the compiler.

To attainexecution adaptivitin a fast and predictable manner, the proposed multi-
core system employs a hybrid, hierarchical schedulingagar. At compile time, a static
scheduler is responsible for generating reconfigurabledidies capable of tolerating core
degradations for each application individually. Meanwhihe information regarding the
minimum and the maximum number of cores needed to execuse sehedules is ex-
tracted to guide dynamic workload balance. At runtime, with statically extracted
scheduling information at hand, the OS only needs to pergwineduling at the applica-
tion level. Specifically, the OS is responsible for dispatgtthe pre-optimized schedule
blocks to a set of cores, monitoring core status, and adaptadjusting application re-
source footprints upon variations in resource availgbilit

The collaboration between the static scheduler and the @8apting system ex-
ecution can be illustrated more clearly by considering amgXe wherein an unexpected
device failure occurs, resulting in one of the cores alledab to the application, denoted
as App R, to fail during execution. In general, the handling of these can be parti-
tioned intothree major steps. Initially, upon a reduction in the number ofilakde cores,
App R reconfigures its own execution to withstand this failurethwhe reconfiguration
decisions made based on the compiler-generated adaptiedides. Meanwhiledpp R
reports the failure to the OS and sends a request for an extea ©nce the OS receives
this resource request, it determines whether or not to atkoan extra core tapp R.
Under the steady state assumption that all the cores arejnhesOS prioritizes through
system topology considerations by examining the coresatgaphysically connected to
the remaining cores olpp R. By comparing the reconfiguration overhead against the at-
tainable benefits of workload balance, the OS decides whtihieallocate a specific PE
and furthermore what the appropriate time instance fotaeation is. Finally, if the OS
has decided to reallocate the core currently usedilyy S to App R, both applications
reconfigure their execution in order to deactivate or witize core in negotiation.

The hybrid scheduling policy can effectively combine thevaattages of static
scheduling and dynamic scheduling. At compile time, thé&gad an application and
the associated communication patterns can be largelyndieted. This information can
be used for guiding resource reallocation decisions. Tiepder can employ complex
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algorithms, without imposing any runtime decision makingrhead, to globally balance
the workload in the reconfigurable schedules. Meanwhileudh exploiting the extra
degree of freedom inherent in generating schedules, theitemcan embed regularity
into the schedule at almost no cost. The schedule can beiaptm such a way that
during the reconfiguration process, localized task migrats sufficient for workload

balance, thus fulfilling the strict interconnect requirertse At runtime, in comparison,
scheduling only needs to be performed at épplication level with context switches

performed on all the tasks of an application in a synchrahim@anner. Upon a variation
in resource availability, the OS only needs to signal one orenapplications to perform
the pre-optimized reconfiguration process, thus signifigaeducing runtime scheduling
overhead and hence improving system scalability.

As reconfigurable schedules are generated at compile th@agféace the common
challenge of static scheduling, namely, the precise dafioe of the schedule in the face
of dynamic variations inask execution timeln general, variations in task execution are
typically induced by three issuesnpredictable architectural events, resource competi-
tions andinput-dependent computation variatiomet a careful examination shows that
in the proposed hybrid scheduling scheme, these threeesofexecution uncertainty
can be maximally diminished.

e Unpredictable architectural events, sucltashe missesr branch mispredictions
only result in variations of tens of cycles. Such small vioias can be further re-
duced through architectural techniques such as data gih@igt[101] or predicated
execution [67].

e Resource competition among applications may cause a tastetution to be sus-
pended, thus inducing unpredictability in its executiongi However, as in the
proposed adaptive system, context switches are performad the tasks of an ap-
plication in a synchronized manner, this type of interfeeecan also be completely
eliminated.

e As traditional parallelization techniques typically p&oin loops into a fixed num-
ber of tasks, the number of iterations in each task may be-dependent, resulting
in sizable variations in execution latency. Yet in the pregubsystem, this source of
variation can be minimized throudixing task granularityduring loop paralleliza-
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tion. The execution time of these tasks therefore beconmgsljaidentical, while
the number of tasks is input dependent. Yet the scheduldlisighly predictable
at compile time, as such highly similar tasks can be capturegpetitive blocks in
the schedule.

Utilizing the aforementioned techniques, the variationtgsk execution time can
be strictly controlled. During static scheduling, we camré#fore assume a worst-case
execution time (WCET) [90] for each task to attain predidigh without resulting in
sizable amount of unnecessary performance degradation.

3.3 Possible Scenarios for Adapting the Computation

The aforementioned resource management scheme effgcelelers fine-grained
and predictable execution adaptivity in future multicogstems. The compiler-directed
reconfiguration process can be invoked for various purpases as fault tolerance, ther-
mal management, and workload balance purposes. To colydtkistrate the envisioned
adaptive system, we herein present a number of possiblasosmwherein the system
has neither idle nor spare cores, yet the proposed schenstiitdeliver superior perfor-
mance and predictability in the reconfiguration processpdidorm worst case analysis,
we only assume minimum reconfiguration capability of eadtedale, that is, the sched-
ule generated for each application is only capable of toleyaingle resource variation.

Tolerating single core degradation:This is the most straightforward case, as the sched-
ule of each application is capable of tolerating single c@gradation. With no need for
the OS to make any decision, only the application to whichut@vailable core belongs
needs to go through a reconfiguration process. As an exam@benparison between Fig-
ures 3.2a and 3.2b shows thatthat used to belong to Applicatioh has been isolated
with no influence on the resource footprints of Applicati@andC. Clearly, if such a
degradation is not permanent, the core can be re-utilized thre cause of unavailability
(e.g. athermal stress) is cleared.

Tolerating multiple core degradation: If each unavailable core belongs to distinct ap-
plications, it can be handled individually using the afoegitioned scheme. If, on the
other hand, more than one core of an application become iiaaleathe OS needs to ne-
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Figure 3.2 Various scenarios for utilizing adaptive execution

gotiate resources among applications that are physicdjficant. A concrete example is
shown in Figure 3.2c, whereiR, and P; that used to belong to Applicatich have been
isolated. Assuming that the pre-optimized schedule of &pgibn A can only tolerate
one core degradation, the OS needs to reallocate one ma&¢oddr Therefore, not only
A but also one of its neighbors, namely, ApplicatBnneeds to go through a reconfigu-
ration process. More generally, if each application is bépaf tolerating a reduction of
up tom cores, the toleration of a reductionmfcores require$n/m| applications to go
through a reconfiguration process.

Globally balancing workload: Once the system has encountered unpredictable resource
reductions, the application(s) with reduced resources emayup dominating the exe-
cution time of the entire system. To re-balance the worklaad OS can periodically
invoke reconfiguration processes, so that a limited numbeor@s can be shared among
multiple adjacent applications using a time-multiplexsttategy. This scenario is con-
cretely shown in Figures 3.2c, 3.2d, and 3.2e, whefgiis shared between Applications

B and C, while Fs is shared between Applicatiods andB. It needs to be noted that
unlike traditional context switches, the overhead of timsetmultiplexing is very limited,

as sharing is performed in a coarse-grained manner withahlghly limited number of
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cores involved.

Accommodating more application(s):When one more application is invoked, the num-
ber of free cores in the system may fall short. Traditionabtgce management tech-
niques would require cores to be time-multiplexed amongtipialapplications, engen-
dering in turn significant context switch overhead. In castyin the proposed adaptive
system, the OS can force each of the existing applicatiog® tihhrough a single recon-
figuration process and give up one core, until there are siriticesources for the new
application to be executed. This scenario is concretelggmed in Figure 3.2f. A com-
parison between Figures 3.2a and 3.2f shows that each dfithe éxisting applications
yields one core, thus delivering a total number of 3 coresppliationD. Clearly, this
solution delivers superior performance as compared tor#uktional time-multiplexing
solution, as the distinct applications perform reconfigjaresimultaneously

Prevent potential thermal stress:One standard approach for the OS to mitigate thermal
stress is to force the corresponding application to perfarraconfiguration process in
order to move the “hot” tasks scheduled on an over-heateel tcoother cooler cores.
However, because the heat of the hot core will be dissipatésiheighbors, in an extreme
case all the cores that are currently allocated to that Bp@gplication may also suffer
from a potentially high temperature. In this situation, B8 could benefit from the
allocation of an extra core to that application, with “hasks thus being distributed into
more cores so as to increase the average idle time of eachtlcosareducing the rate of
heat accumulation.



Chapter 4

Core-level Reconfiguration

After introducing the adaptive multicore platform and omtation framework,
we proceed to look into the various techniques needed in aptizd multicore platform.
In the face of the highly unpredictable yet frequent ocaureeof runtime resource vari-
ations, the fundamental requirement in an adaptive syssamriapidly make intelligent
execution reconfiguration decisions, with highly predi¢aimpact on each individual
application. As mentioned before, this can be attainedutifincacompiler-directed or-
derly reconfiguratiortechnique.

The main advantage of the proposed technique is its abdigpmpactly capture
in readiness a set of possible execution schedules thahmdaterse resource availability
constraints. Such schedules can be adaptively applied wpetime resource variations,
thus delivering regular and predictable reconfigurati@pomses without any reschedul-
ing decisions being made on the fly. More importantly, tégularity inherent in the
proposed reconfiguration process ensures that most of tbretask dependences can be
naturally preserved. For the remaining dependences, theitar can also preserve them
at almost no cost, through the exploitation of ftexibility in scheduling tasks on non-
critical paths. Further schedule length reduction can taered through &ore reorder-
ing technique that exploits, during the scheduling processgeitra degrees of freedom
in assigning tasks to cores. As traditional schedules arergéed with no regard to spe-
cific core positions, they offer the opportunity of manigirlg core positions during the
scheduling process, which we exploit to maximally diminisé adaptivity-induced per-
formance impact while retaining all the concomitant begsefit
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In this chapter, we first illustrate the proposed approacipéstitioning a sched-
ule into regular yet shiftablbandsto tolerate single core deallocations. Subsequently,
we present a core reordering technique for mitigating theaich of adaptivity on sched-
ule length, as well as various techniques for improving thgymance of the proposed
scheduling approach when it is applied to arbitrary tasklgsa In Section 4.4, the band
partition technique is extended and generalized to devgtaged reconfigurability for
the toleration of multiple resource variations.

4.1 Adaptive Static Schedules

The success of the proposed adaptive execution framewogesion the genera-
tion of adaptive static schedules, capable of toleratimg degradations. In this section
we illustrate the proposed scheduling ideas through theeedion of acanonical sched-
ule examplewherein a parallel loop is decomposed into multiple tasib largely iden-
tical execution time and inter-task communication lateniy simplify our analysis, we
herein focus on the toleration sfngle core deallocationsn the context of a multicore
system with homogeneous processing elements (PEs). Yeedsnto be noted that by
individually applying the technique to various classes m@fgessing units, the proposed
technique can be easily extended to heterogeneous MPSoCs.

4.1.1 Band Partitions of Execution Schedules

To incorporate dynamic reconfigurability directly into MBS schedules, we pro-
pose to statically partition a schedule into a set of regggaishiftablebands Essentially,
a schedule wit cores andn timing steps can be viewed asax m rectangle. Upon
a resource reductioschedule reconfiguratiotonsists of cutting the initial schedule into
multiple pieces, and reorganizing these pieces to forfm & 1) x (m + 1) rectangle.
The challenge is to cut the initial schedule in an intelligernner such that the shapes
of the pieces enable the development of a rapid reconfiguratiocess. This is attained
by adopting éBand & Block (BB) partition approach.

To concretely illustrate the proposed band-partition apph, a canonical sched-
ule example is presented in Figure 4.1, wherein 24 tasksenttical execution time are
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Figure 4.1 Reconfigurable static schedules: band structure

statically scheduled onto a multicore system consisting pfocessing elemen{®Es).
Figure 4.1a presents the initial scheduling results, wattheectangle labeled with a num-
ber denoting a task and each column representing one PE.aRdelével partition of the
initial schedule is presented in Figure 4.1b. As can be sbenwhole schedule isor-
izontally divided into twoBasic Reconfiguration (BR) blockswith each BR block fur-
thermore partitioned into two bandsl.aft (L) bandand aRight (R) band To form these
partitions, two distinct types of lines are conceptuallyposed on the original schedule:

Block patrtition line: the straight horizontal line between two sequential BR kdoc
Band partition line: the staircase line between the L and the R band within the &Rne
block.

The outlined shape of the L and the R band enables a highlyeneigusk reassign-
ment capability upon a dynamic resource variation. By caimgarigures 4.1b and 4.1c,
it can be clearly observed that in both {hre- and thepost¥econfiguration scheduleBR
blocks the minimal reconfiguration units, are execusedjuentially in the same order.
On the other hand, in eadBR blockthe wholeL band is shifted in a regular manner
relative to theR band, that is, one timing step down and one PE to the righthasrs
in Figure 4.2a. This allows all the tasks within ed@R blockto be completed with one
less PE, albeit with an additional timing step after recanfigjon. More crucially, this
reassignment process displays high regularity, achievabependentof the PE being
removed. In comparison to Figure 4.2a, Figures 4.2b, 4ritt4a2d respectively show the
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Figure 4.2 Regularity in task reassignment

required task shifting directions for tolerating the deadition of %3, P, andP;. It can be
seen that all the reassignment processes in Figure 4.2ghly hégular in that not only
does the entire band of tasks share an identical timingtqtismporalreassignment), but
also task transfers are only performed between adjacenfspgsalreassignment). Such
regularity thus enables a predictable reconfigurationgsedo be attained without any
rescheduling decisions being made on the fly, thus dralsticaducing reconfiguration
overhead.

Another important benefit of the proposed adaptive schedsilnat both there-
and thepostreconfiguration schedules are able to makkeutilization of the available
hardware resource. This benefit is directly derived fromsiae of each BR block. Each
BR block in Figure 4.1 containéx (4 — 1) = 12 tasks, thus enabling it to be executed
either by 4 PEs in 3 timing steps (as in Figure 4.1b), or by 3 iBEstiming steps (as
in Figure 4.1c). More generally, the attainment of full nese utilization requires the
following block size constraint to be imposed:

Block Size constraint: A full utilization of PEs in both the pre- and the post-
reconfiguration schedules requires edBR blockto containn * (n — 1) tasks in
order to tolerate a deallocation of one outofPEs.

4.1.2 Inter-task Dependence Variations

One fundamental requirement for any reconfiguration tegpiis to preserve the
partial ordering imposed by inter-task data and controedeences. A significant benefit
of the proposed orderly reconfiguration scheme is that thalaety inherent in band
partitions enables most dependences to be naturally pegseSpecifically, as a result
of the proposed block and band partitions, the dependemeesgtasks can be naturally
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Figure 4.3 Timing variations of inter-task dependences

classified into four categoriesnter-block dependences, intra-band dependences, R2L
dependenceand L2R dependencesAmong these four categories, the first three can
be naturally preserved. In this section, we will first iliae this natural preservation
property, and subsequently outline a scheduling constraint for teeguvation ol.2R
dependences

As BR blocks are executed sequentially in the same order lbeftbre and after
reconfiguration, the timing slack of amer-block dependenceill never decrease. Mean-
while, dependent tasks lying within the same band retaiin thative timing and spatial
positions during reconfiguration, implying thatra-band dependencesn also be natu-
rally preserved. This property can be observed from thengnpiositions of tasks (2, 5)
and (7, 12) in Figure 4.3b.

As the L bands are shifted downwards relative to the R bamgstiming slack
of anR2L dependencwill always increaseafter reconfiguration, while the timing slack
of an L2R dependencwill always decrease Accordingly, R2L dependencesan also
be naturally preserved, as confirmed by the timing positmigsks (2, 7) and (3, 7)
in Figure 4.3b. On the other hand, fb2R dependences violationmay occur if the
original timing slack is insufficient. As an illustrative &xple, in Figure 4.3a task 9 is
scheduled to be executed after the predecessor task 7, gjure 4.3b these two tasks
are scheduled at exactly the same timing slot, thus inapimeconfiguration-induced
semantic violation.

The analysis above clearly confirms that the regularity @ased with the recon-

To clearly illustrate the impact of reconfiguration, we degie itstiming and spatialimpacts in our
analysis. Here we analyze timingimpact, while the communication overhead is assumed to légitee.
Thespatialimpact of reconfiguration on communications will be anatyireSection 4.3.2.
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figuration process enables most inter-task dependences poeserved naturally. As a
result, during the scheduling process, the compiler ongdeeto pay attention to the
L2R dependences potential dependence violation would only take placevib depen-
dent tasks not only straddle the left to right direction dezbetween bands, but also are
scheduled with no extra timing slack in between. This easitpgnizable pattern can be
avoided by the compiler through imposing a certain amoutitahg slack between two
tasks that form ah2R dependenceuch as tasks 4 and 9 in Figure 4.3a. This property
can be formalized as the followirgpatial-temporal (S-T) constraint

S-T constraint: to preserve the correct execution order after reconfiganmtitwo
tasks with an L2R dependence need to have an interveningaiacsingle timing
step in the initial schedule.

4.2 Performance-oriented Core Reordering

As the aforementioned S-T constraint may increase the gjislisck between two
dependent tasks forming L2R dependences, it may end upasiogethe overall sched-
ule length of the entire schedule. However, such performampact can be maximally
diminished by the compiler, through the exploitation of tbkowing two types of extra
flexibility inherent in task scheduling:

e As the tasks of a given application typically display vagyamounts of criticality,
tasks on non-critical paths can be scheduled, if necessasfraddle the left-to-
right direction partition while minimizing the performamémpact on the overall
schedule length.

¢ In traditional task schedulinghe logical PE positiongan be adjusted with no
impact on the scheduling decisions. This degree of freedoquite useful to the
technique we propose, since adjustments of PE positionghdace desired band
relationships, thus varying the direction of a crititZIR dependencand hence
eliminating the potential performance impact.

The first type of flexibility, provided by the application, éasily observable and
utilizable by the compiler through the manipulation of siléng priorities. Specifically,
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Figure 4.4: Impact of PE reordering on dependence directions

the proposed framework schedules tasks one by one in atpsiariked manner, with
higher priorities assigned to the more critical tasks wizigh in turn be scheduled earlier.
In other words, the more critical tasks are automaticallgred more scheduling flexibil-
ity, thus exhibiting a larger chance to be assigned to PEsthate nd_.2R dependence

The second type of flexibility is derived from the fact thattmaditional task
scheduling, the adjustment of the logical PE positions lmgmnpact on either the ex-
ecution latency or the communication latefof a task. In other words, the logical PE
positions do not affect the scheduling decisions, and heande arbitrarily determined.
In contrast, in the proposed adaptive schedule, the logigsitions of PEs directly de-
termine the band positions, which in turn induce the po&thitning differences between
various categories of inter-task dependences. Accorgimgl logically reordering the
PEs, the compiler can effectively vary the direction of irteesk dependences. This po-
tential benefit ofogical PE reorderingcan be observed in Figure 4.4. The schedule in
Figure 4.4a is generated through switching the position8,adnd P, in Figure 4.3a. A
comparison between the two schedules indicates that dthen@E reordering process
the timing or the core assignments of each task are retaiiadti Yet in Figure 4.4a
the (4—9) and the (#9) dependences are no lond&2R dependences, and hence no
semantic violations would be incurred after reconfiguratio

To exploit the flexibility in manipulating logical PE positis, we propose herein
a PE reorderingtechnique, to be integrated into the scheduling flow. Itytighe logical
PE positions are determined arbitrarily. During schedylifi the starting time of the
task currently under scheduling is constrained by a ctitig® dependence, the compiler

2For some systems, the affinity consideration results in transunication latency being a function
of the physical PE distance. In such systems, the proposadthaaication graph representation can be
extended to incorporate affinity constraints and captuhg thie extra amount of reordering flexibility.
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Figure 4.5 PE reordering formulated as graph embedding

invokes thereordering procedurg¢o quickly check whether this L2R dependence can be
eliminated through adjusting the current logical PE posti

4.2.1 PE Reordering: Problem Formulation

The most crucial challenge in developing an effective PEdeang scheme is
to eliminate an L2R dependence while preserving the timielgaior of the remain-
ing dependences. As the reordering effeaglsbally imposed on all the inter-PE task
dependences, an inappropriate reordering may engendet.2Bwependences the
post-reordering schedule. As an example, the schedulguré-4.4 is generated through
rotating the positions aP,, P. and P, in Figure 4.3a. While the (4-6) and the (#9) de-
pendences no longer constitute L2R dependences, thB)and the (2-7) dependences
emerge as new L2R dependences as a result of the reorddent &b preclude the cre-
ation ofpostreordering L2R dependences, the reordering process shegdrformed in
aglobalmanner with all the inter-PE communications being congideEpecifically, all
the inter-PE communications that have no extra timing sldekoted asight communi-
cations should be precluded from being mapped as L2R dependences.

The aforementioned problem of mapping all tighht communication® L2R-free
communicationgsan be formulated as embedding tight communicatiomgraphG into
the L2R-free communicatiographF'. Thetight communicatiographG = (P, E,) is a
directed graph that captures ajht communication path€ach node; € P represents
a PE, while an edgép;, p;) € E. indicates the existence of at least one tight commu-
nication from nodep; to p;. As an example, the graph representation of the inter-PE
communications in Figure 4.3 is presented in Figure 4.5&.graph contains four edges,
as the (2-5), (2—7), (7—9), and (7-12) communications in Figure 4.3 exhibit no ex-
tra slack. In comparison, tHe2R-free communicatiograph /' = (O, E,) captures all
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the possibld.2R-freecommunication paths in an adaptive schedule. It can be wider
in Figure 4.3 that in ah.2R dependence, the source and the sink tasks not only straddle
a left to right divide, but furthermore are scheduled on adjacent PEs. Accordingly,
an L2R-free communicatiograph contains all the right-to-left edges, as well as al th
left-to-right edges between adjacent nodes. As an exarijere 4.5b shows all the
L2R-free communication paths in a 4-PE adaptive schedule.

Utilizing these two directed graphs, the problem of embegddhetight commu-
nicationgraphd into theL2R-free communicatiographF’ can be defined as follows:

Directed graph embeddinggiven two directed graph& = (P, E.) and F' =
(O, E,), G can be embedded intd iff a node mappindM : P — O) can be
found such that/(p;, p;) € E., (M (p;), M(p,)) € E, holds

The amount of flexibility in PE reordering is strongly detemed by the num-
ber of edges in théight communicatiorgraph(. As each edge id7 imposes an order
requirement, the more edges the graph has, the less flgxililieft for the reordering
process. To increase reordering flexibility, the grdpls considered when making the
scheduling decisions. In the proposed scheduling framewbe compiler would reas-
sign a task to a PE that can reuse an existing communicattar(yoaess its starting time
suffers a consequent delay), thus effectively reducingntheber of edges itr.

The difficulty of the outlined graph embedding problem isdetined by the char-
acteristic of the target graph. Embedding an arbitrary directed graph into a complete
directed graph is straightforward because of the latteftiscbnnectivity. On the other
hand, if £" is an arbitrary directed graph, the embedding problem isrd peoblem for
which abranch-and-boun@pproach is typically employed to search for a valid sohutio
However, regarding the proposed PE reordering issue, tgettgraphF', as shown in
Figure 4.5b, contains all the right-to-left edges as wethasleft-to-right edges between
adjacent nodes. Such regularity allows us to develop a satbkedding criteria which,
based on the connectivity characteristics of the tight camioation graphz, directly
determine whether a valid L2R-free mapping exists or nothéfollowing parts of this
section, we outline a set of mapping criteria for variousetypf graphs, includinpAGs
basic loopsnested loopandintersecting loops
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(a) DAG: all edges mapped as from right to left (c) Nested loop: crossing edges display opposing directions
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(b) Basic loop: one edge mapped as from right to left, others adjacent (d) Nested loop: crossing edges display uniform directions

Figure 4.6 L2R-free mapping of DAG, basic loop and nested loops

4.2.2 PE Reordering: L2R-free Mapping ldentification
Problem decomposition

The fundamental observation is that B2R-freemapping can always be estab-
lished for a tight communication grapt’), if GG is adirected acyclic grapiDAG). This
is because the outlindd?2R-free communicatiograph (') contains all the right-to-left
edges, and the acyclic property@fenables all its communication edges to be naturally
mapped from right to left, as shown in the schedule exam@sgmnted in Figure 4.6a.

In contrast, ifGG is a cyclic directed graph, it can always be decomposed into a
set of disjoint strongly connected componérf&CCs), with each SCC containing one or
multiple loops. Moreover, these SCCs are connected in atliadgrm, implying that the
tight communication paths corresponding to thter-SCCedges can always be mapped
from right to left. Accordingly, the following strategy cdre@ employed to decompose the
mapping problem:

Problem decomposition:An L2R-free mapping can be established for a cyclic
directed graph (7), iff for each SCC of7 anL2R-freemapping can be established.

This decomposition policy indicates that each SCQ-ofan be considereuh-
dependently Mapping criteria thus only need to be developed stongly connected
directed graphs, which can further be classified as eitlhasa loop or nested loopsor
intersecting loops

3An SCC consists of a maximal set of nodes such that for evéryopaodesp; andp;, there exists a
path @;, p;) and a pathy;, p;).
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Mapping of basic loops

A basic loopthat exhibits a single back edge and no crossing edge tutrie be
the most straightforward mapping case. An L2R-free mappamgalways be established,
by placing one edge of the loop (e.@p., p.) in Figure 4.6b) from right to left, and the
remaining edges adjacently from left to right.

Mapping of nested loops

The mapping policy obasic loopddisplays a certain degree of flexibility; given
an L2R-free mapping (e.g., the one shown in Figure 4.6b)t afssomorphic mappings
can be constructed through a clockwise rotation of all théeso This flexibility can be
utilized to construct an L2R-free mapping for nested loojik & singlecrossing edge.
The head PE of the crossing edge can be rotated to the righposgion in the PE
sequence, thus allowing the crossing edge to be mapped igbirto left.

If an SCC happens to be a nested loop with multiple crossigggdvhether an
L2R-free mapping can be established or not depends on thetidins of the crossing
edges. A nested loop isnmappablef it includes multiple crossing edges opposing
directions. As an example, in Figure 4.6c, the two crossuhges(p., p.) and (pe, py)
exhibit opposingdirections such that the shared ngdecannot be placed in between
andp,. If the first edge is mapped fromight to left, the second edge has to be mapped
from left to right and vice versa. In contrast, in Figure 4.6d, the two crossihges
(pe, pe) @nd (py, p.) can be simultaneously mapped from right to left, as theylekhi
congruentdirection such that the two head noggsandp,. can be placed to the right of
the corresponding tail PEs andp,. simultaneously.

A detailed examination indicates that the question of wiietivo crossing edges
exhibit opposing directions can be settled througtepth-first searctof the tight com-
munication grapltz. Two crossing edge®;, p;) and(p,, p,) exhibit opposing directions
if both of the following conditions hold:

e All the backward pattfsof edge(p;, p;) (i-e., the path fronp, to p;) need to go
through both nodeg, andp,.

4As the graph is an SCC, there exists at least one pathfscimp; .



(a) Two intersecting loops with common path a->c (c) Intra—subpart crossing edges (d) Inter—subpart crossing edges

(b) Only two valid PE sequences: a->c needs to be placed in the middle

Figure 4.7. Mapping constraints of intersecting loops
¢ All the backward paths of edde,, p,) need to go through; andp,.

Mapping of intersecting loops

The most complicated mapping case is the situation when &isS€mposed of
multiple intersecting loops. An illustrative example igpented in Figure 4.7a, wherein
two loops, 0., pa, Pb, Pe, Pv) N @5, Da, Db, De, Pj), Share the nodes,, p,, andp, in com-
mon.

In order for an L2R-free mapping to be possible, each loopviddally should
refrain from containing crossing edges of opposing dicewi Moreover, all the nodes
involved in a single loop need to be placed in contiguoustmrs so as to satisfy the
mapping rule of basic loops. This requirement, in conjwrctvith the intersection prop-
erty, implies that the shared nodes,(p,, andp. in Figure 4.7a) need to be placed in
contiguous positions that separate the disjoint parts @two loops. As a result, there
exist only two possible node sequences corresponding t@&aftee mapping of these
two intersecting loops, shown in Figure 4.7b.

The limited number of valid node sequences strongly coimstithe possible di-
rections of crossing edges. To illustrate these constiame decompose the graph in
Figure 4.7a into three disjoint subparts, S, (shared between the two loops), afigd
The crossing edges, as a result, can be classified as mitreesubpartor inter-subpart
edges. In order for an L2R-free mapping to be possible, alirttra-subpartcrossing
edges should display directiois reverseto the loop edges of that subpart. Since the
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loop edges are mapped as left-to-right edges between atljacdes, this requirement
ensures that these crossing edges can be mapped from rifgit, teuch as the edges
(pv, po) @and ., p,) in Figure 4.7c. As a counterexample, the edgg x%.) cannot be
mapped as a right-to-left edge, since its direction is &tast with the loop edges.

As for theinter-subpartcrossing edges, an L2R-free mapping requires them to
exhibit congruentdirections. For instance, given a crossing edge from suitsato S,
(e.g., pu, pe) in Figure 4.7d), only the first sequence shown in Figure 4s7®falid. As a
result, crossing edges with ascending indices (i.e., {0 S;, ¢ < j) can be mapped
as right-to-left edges, such as the edges{;) and (, p;) in Figure 4.7d. In contrast,
crossing edges in the other direction (i.e., fréto S;, i > j) cannot be mapped from
right to left.

In sum, arL2R-freemapping cannot be established for intersecting loops iicdiny
the aforementioned requirementsafde sharingintra-subpartandinter-subpartcross-
ing edges is violated. The reordering procedure thus chimeksompatibility between
these requirements to detect an unmappable case.

4.3 Performance Enhancement

The last two sections have discussed the proposed ordedwpfiguration sched-
ule and the corresponding PE reordering for th@onical casewherein a program is
composed of multiple tasks with largely identical execotimme and inter-task communi-
cation latency. While at first glance the canonical case @eeem to be highly idealized,
it actually turns out to be a representative model for thalpersections of data-intensive
applications. As a large fraction of these applicationssiin of regular data process-
ing loops with limited or possibly even no loop-carried degences whatsoever [70],
they can be easily parallelized into a set of tasks with hegularity, as assumed in the
canonical case.

To further enhance the applicability of the proposed BB ndéiguration scheme
to various systems with diverse application sets, in theticge we examine several issues
encountered when it is applied to arbitrary programs witleidie task execution time and
non-zero communication latency.
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Figure 4.8 An adaptive schedule for an arbitrary task graph

4.3.1 Applied to Arbitrary Task Graphs

The application of the orderly BB reconfiguration scheme rioagbitrary task
graph exposes several new characteristics that are notvelsm the canonical case,
outlined as follows:

Idle PE cycles in the initial schedule

As inter-task dependences and communication overhead triefysconstrain
the earliest starting time of a task, the initial scheduley display significant under-
utilization in certain portions. This can be observed inufg4.8, in which the P, is
left idle across the entire timing period of the fiBR block

The under-utilized portions of the initial schedule, asythave at least one idle
PE, require no reconfiguration and are directly applicabkhé case of single PE degra-
dations. The exploitation of this property allows a sizai@l@uction in the length of the
post-reconfiguration schedule. Specifically, the origBRIblockcan be extended to con-
tain aheadand/or atail region, as shown in Figure 4.9. During reconfiguration, kibéh
head and the tail regions remain intact, while only the bandse body regions need to
be shifted. The under-utilized portions of the initial sg¢bke thus can be mapped into the
heador tail regions wherein the cost of reconfiguration is absolutetg,aghile only the
fully parallel portions need to be mapped into thaly regions.
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Figure 4.9 Band structure extension: the head and tail regions

Irregularity of partition lines

As the tasks in an arbitrary task graph typically exhibitedlse execution time,
they create irregularity in partition lines. As can be oledrfrom Figure 4.8, the heights
of the steps on &dand partition lineare not necessarily identical, and the original hori-
zontalblock partition linesare not necessarily straight.

The aforementioned two types of irregularity may degradéop@ance by cre-
ating extra timing holes in the post-reconfiguration schedlA detailed examination
indicates that for eacBR block the reconfiguration penalty (in terms of schedule length
increase) is constrained by theaximum height of the steps on thband partition line
This relationship is shown in the body region of the schedulegure 4.9. Assume the
body region is originally scheduled to commence at tinegnd end at timel, and the
positions of the intermediate two steps on the band panrtitiee are at timeé and timec,
respectively. After reconfiguration, the length of the boegion increases to

max{(b—a)+ (d—a),(c—a)+ (d—1b),(d—a)+ (d—c)}
= (d—a) +max{b—a,c—b,d—c} (4.1)

Because of this relationship, in the process of generdtimgdaptive schedule, the
step height on the band partition lines should be maximallgitced. This can be attained
through an adjustment of the task starting times. Moredogrerform this optimization
without increasing the length of the initial schedule, tompiler can exploit the flexibility
inherent in an adaptive schedule, namely, the timing slatitse tasks on theon-critical
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paths. Such timing slacks can be easily calculated througldientification of the task
starting time in both thas-soon-as-possib[&SAP) and theas-late-as-possiblALAP)
schedules.

4.3.2 Overcoming Variations in Inter-core Communication

Typically, a static scheduler prefers to assign dependeskiston the same PE to
hide communication latency. Yet one crucial impact of réigumation, as a result of band
movement, is that two dependent tasks originally schedutetthe same PE may be sep-
arated onto two PEs or vice versa. These reconfiguratiomeguaivariations in inter-core
communications can be clearly observed in Figure 4.8, vihéne (3—5) and the (#9)
communications in the initial schedule disappear, and a inésv-PE communication
(6—9) is created after reconfiguration.

While the communication disappearance can be exploitecethrcing the length
of the post-reconfiguration schedule, it is conversely lyigiucial to provide mecha-
nisms for compensating for the extra communications cdeateer reconfiguration, es-
pecially when an extra communication is created betweentigialy scheduledasks.
Figure 4.10a presents 8 pairs of tightly scheduled tasksatteaseparated into distinct
bands. Depending on the positions of the source and theaskk,ta new inter-PE com-
munication may be created in ortlyo ways:

e The source task is in aR band, while the sink is in the band of the same BR
block, such as the task paif3, 7), (6, 10), (15,19) and(18, 22) in Figure 4.10.

e The source task is in dn band, while the sink is in thR band of the subsequent
BR block, such as the task paird, 14) and(11, 15) in Figure 4.10.

A comparison between Figures 4.10a and 4.10b indicateftbse two cases dis-
play diverse timing characteristics. In the former caseadditional 1-step timing slack
is implicitly inserted between the two tasks (e.g., 3 andFigure 4.10b) after reconfigu-
ration, thus automatically compensating for the latenahefcreated communication. In
contrast, in the latter case the relative timing positidrtee L band and the subsequent R
band remain intact. The created communication (e.g- 149 in Figure 4.10b) therefore
may result in insufficient time for the sink task to receiveiitput. However, as all the
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(a) Tightly scheduled (b) Reconfiguration—induced  (c) Spatial & timing impact
interband task dependences spatial & timing variations of right rotation

Figure 4.10 Impact of PE rotation on inter-PE communications

communications of this type are created by shifting the eatask right relative to the
sink task, they all display an identical offset in that thekdiasks (tasks 14 and 15 in Fig-
ure 4.10b) are located exactly one PE tolgfeof the corresponding sources (tasks 10 or
11). This observation implies that this class of commumicetcan be simply eliminated,

if the entire subsequent BR block can be dynamically rotatesl PE to the right in the
post-reconfiguration schedule, as shown in Figure 4.10c.

A comparison between Figures 4.10b and 4.10c confirms tlht teak still re-
tains its band partition, implying that the right rotatioropess does not impact the band
partition. Instead, only the logical-to-physical coredimy is varied in a highly regular
manner. As this regular transformation of the scheduleireguo global program infor-
mation, it can be performed dynamically during executiohe Ppre-generated adaptive
schedule can be loaded into the OS at the granularity of BBkbladhe schedule of the
subsequent BR block can be loaded during the execution autient BR block. In this
process, right rotation can be straightforwardly impletadrihrough globally manipulat-
ing the core binding of the subsequent BR block. In a systeth #éistributed memory
structure, the code and the data set of the tasks to be egezanebe loaded into local
memory units in parallel with the schedule of the BR block.

By rotating the entire subsequent BR block one PE to the,rigatspatial locality
of the taskg10, 14) and(11, 15) can be naturally preserved. Yet two tasks that are sched-
uled in either twoL bands or twdR bands of consecutive BR blocks (e.g., tagksl3)
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and(12,16) in Figure 4.10c) are to be separated, thus creating anoles of inter-PE
communications in the post-reconfiguration schedule. Hewes each BR block takes
one extra timing step for execution in the post-reconfigaraschedule, for this class
of communications an implicit timing slack will be autoneaily inserted between the
source and the sink tasks, thus compensating for the latgtye created communica-
tions.

4.4 Tolerating Multiple Resource Variations

By now it should be clear that by partitioning each BR blodoitwo bands, the
proposed adaptive schedule is capable of tolerating stogéedegradations. Yet given the
elevated rates of device faults, thermal stress, and res@empetitions, numerous cores
may become unexpectedly unavailable during execution. daptive multicore system
therefore needm-adaptive schedules.e., schedules that are capable of withstanding a
reduction ofm cores or making use of. extra cores.

To generate adaptive schedules capable of toleratingpteuttore variations, the
band partitioningtechnique needs to be extended so that numerous scheduolde ca
compactly engendered in readiness. More preciselypadaptive schedulaeeeds to
compactly engendern. + 1 schedules in readiness so as to deterministically respond t
the unpredictable resource variations. The partial exacwtrder imposed by inter-task
dependences needs to be preserved in all thesel schedules, which in turns imposes
stricter constraints to be fulfilled during task scheduling

4.4.1 Band Partition Extension

As each band individually offers the ability of toleratirtgetvariation of a single
core, to tolerate a variation of up toe cores, eacBasic Reconfiguratio(BR) block in an
m-adaptive schedule needs to be partitioned (nte-1) bands. A representative partition
is shown in Figure 4.11a, wherein each BR block is partitibinéo threebands to achieve
a 2-step adaptivity. As can be seen, the whole scheduilerigontallydivided intotwo
Basic Reconfiguration (BR) blocks each of which is furthermore partitioned irttoree
bandsin order to achieve an adaptivity degree of 2. While the ldvaesl highest bands
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Figure 4.11 Multi-band partitioning for increased amount of adapjivi

should still be in triangle form, each of the middle — 1) bands should contain tasks
in a diagonal row of widtH. Finally, two sequential reconfigured scheduling resuis a
respectively presented in Figures 4.11b and 4.11c.

The distinct schedules presented in Figure 4.11 clearlyircorthat by dividing
each BR block intdgm + 1) bands, a total number of distinct schedules (in addition to
the initial schedule) can be adaptively applied, thus engla toleration of up ten core
variations during execution. As can be seen in Figure 4.ihléachBR blockthe whole
leftmost bandBand 1) is shifted in a regular manner relative to the right two baridat
is, one timing step down and one PE to the right, to accompligHirst reconfiguration
step. Similarly, Figure 4.11c shows that if another Pg;,,becomes unavailable, further
reconfiguration would be accomplished through shiftingtthe left bands Bands 1&3
one timing step down relative to the rightmost band, whisasferring tasks o to
either of the adjacent PEB, or P,. This regular task reassignment capability can be
achievedndependentof the PE being removed.

The band partitioning approach introduced in Section 4diredfull resource uti-
lization in both schedules through forcing each BR blockdatainn x (n — 1) tasks
that can be executed either hyPEs in(n — 1) timing steps or byn — 1) PEs inn tim-
ing steps. Similarly, in a generalized-core adaptive schedule, each BR block needs to
containn * (n — m) tasks so as to attaimmaximunresource utilization. In this way, the
schedules witlw and (n — m) cores can attaifull resource utilization, while the other
intermediate schedules would exhibit a small number ofiVidadial PE stalls” in each
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BR block. As an example, the two BR blocks in Figures 4.11athedsecond BR block
in Figure 4.11c deliver full utilization of the available res, yet the schedule in Figure
4.11b exhibits a single stall oR; in each BR block. In sum, the generalized block size
requirement and the number of stalls in the various schedare formally specified as
follows:

e Block size:A maximum utilization of PEs in all the+1 distinct schedules requires
each BR block to contain x (n — m) tasks.

e Resource usagein the schedule wittin — k) cores(0 < k£ < m), a BR block
containingn * (n — m) tasks can display up tbx (m — k) “individual PE stalls”.

A crucial aspect of the proposed multi-step orderly recaméigon technique is
that although the technique is presented in the contextrefdegradation toleration, it is
capable of conversely incorporating the use of additioasdg allocated during execution
as well. This ‘m-core augmentable” property can be easily observed if wenasshe 3-
core schedule in Figure 4.11c to be the initial one and theddes in Figures 4.11b
and 4.11a to be the two subsequpastreconfiguration schedules. More generally, the
proposedn-adaptive schedule can be invoked as long as the MPSoC nshtaores with
(n —m < k <n). In other words, any of thén + 1) compactly captured schedules can
be considered as the initial one, while at runtime the othechedules can be selectively
applied according to the varying resource availabilityhia target platform.

4.4.2 Inter-task Dependence Constraints

The capability of tolerating a variation of cores makes the satisfaction of this
requirement increasingly challenging, as the orderingasgits need to be preserved in
all them + 1 distinct execution schedules that can be spawned. Howdneregularity
inherent in band partitions significantly simplifies thisdtrequirement.

In a manner analogous to the single-core degradable sawdné inter-task de-
pendences in am-adaptive schedule can be naturally classified into fouegmies:
inter-block dependences, intra-band dependences, tahaft (R2L) dependencesd
left-to-right (L2R) dependencesAmong these four types, the first two exhibit exactly
an identical property for both 1-core andcore adaptive schedules. Specifically, as BR
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—> Intra—band dependence
—> R2L dependence
—& L2R dependence

Figure 4.12 Inter-task dependence timing in a multi-band schedule

blocks are executed sequentially in the same order and eaxhrbtains its shape in all
them + 1 distinct schedules, bothter-block dependencesdintra-band dependences
(e.q., task pairs (5, 14) in Figure 4.12a) can be naturatgenved.

Unlike a single-core degradable schedulepaadaptive schedule exhibits lev-
els of R2L and L2R dependences, as the schedule is partitiot@(m + 1) bands. As
bands of smaller indices shift down relative to bands ofdaigdices, theR2L depen-
dences (e.g., task pairs (1, 12) and (1, 14) in Figure 4.12 pbmays be preserved in all
m + 1 distinct schedules, while drtPRdependence (e.qg., task pairs (4, 11) and (5, 11) in
Figure 4.12) may be violated if the original timing slacknsufficient. However, unlike
single-core degradable schedules, immammdaptive schedule, diverse L2R dependences
exhibit distinct levels of timing slacks, depending on tlaad positions of the source and
the sink tasks. For instance, in Figure 4.12, after the twomrguration steps, the timing
slack of dependence (5, 11) is reduced by 2, while the sladep&ndence (4, 11) is
only reduced by 1. To compensate for such a diverse slacktieduand hence preclude
potential dependence violations in all thet 1 distinct schedules, the extra slack amount
of an L2R dependence should be set according tdoémal distancdetween the source
and the sink tasks, formally specified as follows:

e Minimum L2R timing slack: An L2R dependence between bainaisd (i+%) needs
a minimum slack ok timing steps in the pre-reconfiguration schedule in order to
preserve the correct execution order in all the post-recpmfation schedules.
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4.4.3 Core Binding Permutation

The aforementioned minimum L2R timing slack drasticallgraases as the degra-
dation tolerance capability grows. The more bands a BR btockains, the larger slack
an L2R dependence may need, and the larger the amount by iwvimely end up increas-
ing the entire schedule length of aradaptive schedule. To minimize this overhead, the
critical L2R dependences, that is, the ones that delay the correspaidikigsks, should
be obviated as much as possible.

A strength of the proposed diagonal partitioning axis i$ fegmutations of bind-
ing decisions have a strong and material impact on the dreof critical inter-task de-
pendences. This property has been successfully explditedgh the PE mapping tech-
nique shown in Section 4.2 for single core deallocationsthetechnique can only make
binary decisions regarding whether or not the extra timiagksof a critical dependence
can be completely eliminated, thus falling short of addresthe needs ofn-adaptive
schedules wherein such dependences exhibit graded levatsing slacks. In compar-
ison, in this section we propose a noeelre binding permutatiotechnique to directly
exploit the graded levels of dependence slacks to maxirdattynish the schedule length
overhead.

A noteworthy aspect is that L2R dependences imaadaptive schedule exhibit
graded levels of timing slacks. This property is clearlywshan Figure 4.13. The sched-
ule in Figure 4.13a contains tw@R dependences between task pairs (4, 11) and (5, 11).
Yet Figure 4.13b shows that by shifting to the left of P, the firstL2R dependence
can be completely eliminated, and thand distancef the second.2R dependence can
be reduced. Even if thé (— 11) dependence cannot be eliminated, the required timing
slack can still be reduced as long as Bte position distancéetween the corresponding
tasks can be reduced. This can be attained through eitiféinghthe PE of the source
task (e.g.,Ps) right, or shifting the PE of the sink task (e.g?) left. Yet it needs to
be noted that the flexibility of PE shifting is constrainedthg remaining inter-PE task
dependences; an inappropriate permutation may createditivad! L2R dependence in
the post-reordering schedule. As shown in Figure 4.13g, i§ further shifted to the left
of P;, the L2R dependence between (5, 11) can be eliminated, yst & 2R dependence
between (5, 13) is created.
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Figure 4.13 PE reordering in a multi-band schedule

4.4.4 Shiftable Core ldentification

In this section, we analyze the various conditions for re@uyithe band distance
between two tasks, through shifting the PE of the sourcerigbk and shifting the PE
of the sink tasKeft. Essentially, each communication path in.aradaptive schedule
imposes an order requirement for the two PEs involved. Atiogrto the aforementioned
L2R timing constraintif two dependent tasks display an extra timing slaék between,
the PE corresponding to the source task cannot be placedth@orke + 2 PEs to thdeft
of the sink. This constraint can be used to derive the left sbnditions for the sink PE
of a critical L2R dependence, denotedfas WhetherP; can be shifted to a position to
theleft depends on two sets of communication paths, the ones emgifraim 7;, and the

ones across the target position.

Communication paths emanating from P,

Each of these paths imposes a constraint on the maximursHtteistance of
P;. If such a distance is less than the distance betw&emd the target position, shifting
P, to the target position will create an L2R dependence. As amgie, in Figure 4.14a,
there exists a communication path frabfa to P, with P just to the left of P;. This
path constrains the maximum left shift distancé®to be 2, implying that”; cannot be
shifted to the left ofP, or P, as confirmed by Figure 4.14c.

Communication paths across the target position

If any of these communication paths displays extra spatial slackpP; cannot
be shifted to the target position. In Figure 4.14a, the compoation path £, — P)
displays no spatial slack, implying th&t cannot be placed into any position betwdeén
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(a) P5 is not shiftable because of (b) Left shift of P2,
P1 —> P2 and P4 —> P2 communication paths P1 becomes shiftable afterwards
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constrained by P1 —> P2 be inserted in between P2 & P4

Figure 4.14 PE shiftability constraints and a indirectly shiftablesea

and P;. As shown in Figure 4.14d, shifting; to the left of P; forces the dependence
between Tasks 4 and 12 to become an L2R dependence with dnesotftiming slack.

Indirect Shifting Possibilities

While the two left-shift constraints may preclude a cétefrom beingdirectly
shifted to a left position, through exploiting the shiftalpossibilities of the PEs that
impose these constraint8, may becomeéndirectly shiftable.

The indirectly shiftable condition is concretely illustrated in Figurd.4b. The
analysis outlined above confirms that in Figure 4.12ais not directly shiftable due to
the aforementioned two constraints. Yet both constraiatske relaxed by shifting,
one position to the left. On one hand, &sconstrains the maximum left-shift distance of
Py, shifting it one position to the left relaxes the maximuni-&iift distance of?; by 2.

On the other hand, the left shift ¢, also engenders one extra spatial slack in the com-
municationP; — P, thus enabling”; to be inserted in between. The relaxation of these
two conditions thus makeB; shiftable, as shown in Figure 4.14b. The post-reordering
schedule, generated by shiftidg to the left of P, exhibits no L2R dependences, thus
eliminating any possible reconfiguration-induced timingations.
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Right-shift conditions of source PEP;

So far we have examined tlirect andindirect conditions for shifting the sink
PE of a critical L2R dependendeft. It turns out the conditions for shifting the source PE
of a critical L2R dependenagght are highly symmetric to the conditions for shifting the
sink PEleft. In sum, the source PE, denotediascannot be directly shifted to a position
to theright if either of the following two conditions holds:

e A communication patherminatingat P, imposes a maximum right-shift distance
less than the distance betweBnand the target position.

e There exists a communication path across the target po$itm left to right with
no extra spatial slack in between.

4.5 Algorithmic Implementation

Up until now we have presented the conceptual mechanismarpinding the
compiler-directed dynamic reconfiguration scheme. It sagedoe noted that the effec-
tiveness of these techniques does hinge on the class of tleglying static scheduling
algorithm. In this section we implement the proposed oydeztonfiguration scheme
through applying the outlined scheduling constraints a&widering conditions to one of
the representative classes of scheduling heuristics, lgaliseéscheduling

Given a parallel application represented as a weiglliescted acyclic graph
(DAG), the scheduling problem can be formalized as the @asgoc of a start time and
a core with each node of the DAG. A list scheduling algorittertyipically composed
of two phases, namely,task prioritizationphase, wherein the scheduling order of each
node is determined, and@ocessor assignmeiphase, wherein each node is assigned
to a PE that minimizes its start time. The main differencehefvarious list scheduling
heuristics (e.g., DCP [54], CPND [4], etc) is the determorabf the scheduling order.
In our implementation, the Dynamic Critical Path (DCP) altfon [54] is selected as the
baseline algorithm.
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45.1 Initial Schedule Generation

The concrete implementation of the integrated static takkduling and core re-
ordering procedure is shown in Algorithm 1. To impleméask prioritization the al-
gorithm maintains an ordered list of all the ready tasksmfwhich the task with the
highest priority, denoted &,, is selected for scheduling. The content of the ready list
and furthermore the scheduling priorities of all the reaasks are updated dynamically
upon the scheduling of the current task, shown from Line 116t Algorithm 1. Mean-
while, a communication path graph, employed to record thermim amount of timing
slack of all existing inter-PE communication paths, is updgLine 10 in Algorithm 1)
if the scheduling o¥/; either creates a new edge in the graph, or reduceseightof an
existing edge.

Algorithm 1 Task Scheduling with PE Reordering
1: Readylist= {all root task$;

2: while Readylist£ ¢ do

3: Vs = v; € Readylistwith highest priority;

Readylist= Readylist—{V;};

{Vs.PE, Vs.startTime} = ScheduleT (V;, PEOrde;

if extra timing slack has delaydd.startTime then
save = ReorderP (V,;.PE, PEOrder, CommPatiy

Vs.startTime = Vy.startTime — save;

© ©°o N 2 g R~

end if

10: UpdateComm(V;, CommPath
11:  AdjustPriority(Readylis};

12:  for v; € Child(Vs) do

13: if all parents ofy; has schedulethen
14: Readylist= Readylist+-{v; };

15: end if

16: end for

17: end while




58

Scheduling process

To schedule the selected takk the procedur&cheduleT (line 5 in Algorithm
1), corresponding to therocessor assignmephase of the baseline algorithm, iteratively
placesV, on every PE to calculate the earliest starting time. Thigdahng process of
taskV;, with the timing constraints di2R dependenceascorporated, is formally repre-
sented in the following equations:

STmin(Vs, Pr) = max{FT(Fy), RT(Vs, Py)} (4.2b)
RT(Vy, Py) = ma:ziv){FT(vj, PE(v;)) + clejs) + Ter} (4.2c)
vijepre(Vs

As shown in Equation (4.2a), the earliest start timeg,abn each PE, denoted as
STmin(Vs, Py), are compared during the scheduling6f Equation (4.2b) shows that the
start time ofl/, on PEP, is furthermore constrained by either the current availtibie of
the PE, denoted aBT'(P;), or the ready time of incoming data, denoted&5(V;, Py.).
The latter factor is constrained by the last incoming comication, calculated by adding
c(ejs), the communication latency between a predecessordaskd V;, to the finish
time of v;, as shown in Equation (4.2c). The valuec¢f;;) is set to zero ifV; andv, are
scheduled on the same PE, that is?#(v,) = P.

L2R timing constraint incorporation

The most critical modification to the baseline algorithnhis incorporation of the
timing constraint ofL2R dependences outlined in Section 4.1.2. As shown in Equation
(4.2c), this is implemented through adding an extra timilagls denoted a$.,, to the
data ready timeof V, if it is placed onP, that is at least two PEs to the right of the
predecessar;.

The value off,, is a function of thePE-distanceébetween?, and PE(v;) as well
as thecommunication latency(e;;). To concretely illustrate this relationship, Figure
4.15 shows the earliest positions of a sink task on the varRiis under three distinct
values of communication latency. As can be seen, a largae\@fic(e;;) constrains the
earliest starting time o¥; on eachP,, which may in turn preclude it from being placed
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Figure 4.15 Impact of PE-distance and communication latency on thigesastart time
of a sink task

at a band with a larger index, thus incurring less amount ditexhal slack. Specifically,
assuming a single-step timing slack@f theT,, value, as a function of the PE-distance
d = PE(v;) — P, and the communication lateney can be determined by Equation

(4.3a).

0 it d < [£]
Tew(c,d) = SmxT, if d>[£]+2m (4.3a)
| IAL ] T, otherwise.

T, = T,+T, (4.3b)

Equation (4.3a) indicates thdt, is only imposed ifd > 2, that is, the sinkP;
is at least two PEs to the right of the souteé’(v;). For a given value of(e;), the
value ofT,, is proportional to the PE distandewith the upper bound constrained by the
maximum number of reconfiguration steps

As for the value of a single-step timing slack, i€, ideally it should equal the
maximum height of the steps on thand partition line Yet at this point of the scheduling
process, the initial schedule has not been fully generatadineither have thBR blocks



60

¥ PE i v PE shifti
Schedule the task Edge classificatio HEMEI Maximally shift shifting
with highest priorit through DFS sink PE left

No

2]

Updatecomm path
A critical LtoR \_Yes
detected?
No /Core reordering Yes
helpful?

Task affects \ Yes Identify source PH
an SCC? of critical LtoR
Yes/ any L2R-free\ NO r
mapping? No / Any source PE\_Yes
to shift?

Shift the leftmost|

No

source PE right

|Insert slacl{ |Reorder corels L0 | B
Adjust task priority
(a) Integrated scheduling and PE reordering framework (b) PE remapping procedure for 2—band schedules (c) PE shifting procedure for multi-ba

Figure 4.16 Integrated task scheduling and core reordering flow

been formed. The value df, therefore needs to be estimated. We therefore make the
assumption that the task execution time formsoamal distributionwith meanZ), and
varianceT?. As shown in Equation (4.3b), we s&} to 7, + 7, to approximate the
relative delay of the L band after reconfiguration.

As Equation (4.2a) selects the minimal start timé&pamong all the PEs, in most
cases the reconfiguration-induced incredseg)(in data ready time would not delay the
start time of Task/;, but instead results i, being scheduled onto a PE that creates
no L2R dependenceHowever, if the start time ot/ is unfortunately delayed by,
the scheduler invokes the reordering procedrearderP (Line 7 in Algorithm 1) to
determine whether the current PE order can be adjustedinelie this slack.

PE reordering flexibility exploitation

The PE reordering flow, integrated into the scheduling pecis shown in Figure
4.16a. Essentially, the reordering procedure identifiesd®Edering possibilities accord-
ing to the connectivity characteristics of the tight commeation graph. Depending on
the amount of adaptivity degree, the procedure either eysploe PE remappingalgo-
rithm for 2-band schedules, or tlRE shiftingalgorithm for multi-band schedules. As
shown in Figure 4.16b, if the former is used, the reorderirgc@dure first performs a
depth-first search to classify the edges, and then itetatoleecks all the strongly con-
nected components whose connectivity is affected by thkguasbeing scheduled. If the
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checking results indicate the existence otL&iR-free mappindpr all the tight communi-
cation paths in that SCC, the current PE binding order willipdated subsequently.

Figure 4.16c shows that if theE shiftingalgorithm is used to exploit the PE
reordering possibility inn-core adaptive schedules, the procedure first checks whethe
the sink PE, i.e., the one thu} is scheduled on, can be shifted left. This is because if the
start time ofV/, is constrained by multiple critical L2R dependences, tffiesleift of the
sink PE carsimultaneouslyeduce the band distances and hence the timing slacks ef thes
dependences. Once the sink PE has been maximally shiftetifefigh the exploitation
of the direct and indirect shift conditions, a number of criticdl2R dependences may
have already been eliminated. Subsequently, the reogdprotedure tries to shift all the
source PEs (the ones onto which the predecessdrs afe scheduled) of the remaining
critical L2R dependences right. In this process, the soBE@t the leftmost position is
shifted first, as this shifting may in turn eliminate or rethe shifting constraints among
the multiple source PEs. Specifically, an L2ZR communicgpiaitn ¢ — j) between two
source PEg$ andj may precludeg from being shifted right. Therefore, by performing the
right shift of PE: earlier than the right shift of, the right-shift distance of P can be
maximized.

4.5.2 Adaptive Schedule Optimization

The outlined task scheduling and core reordering processuyates potential vio-
lations ofL2R dependenceasthe initial schedule. Yet the implementation of the pregad
orderly reconfiguration scheme still requires the follogvimnctions to be incorporated
into the static task scheduling process:

e Exploiting under-utilized portions of the initial schedul
e Balancing step heights drand partition lines

e Compensating extra inter-PE communication overhead.

To incorporate these three optimizationscaedule partitionphase is appended
to the baseline algorithm to perform the block and band fp@ning inthree steps The
fully parallel regions of the initial schedule are first idiéied. Subsequently, the band
and blockpartition linesare determined, and the step heights on dxsid partition line
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are maximally balanced. Finally, tHRE rotationapproach is used to compensate for the
extra inter-PE communication overhead, if any.

The positions of the fully parallel regions in the initialhexlule determine the
total number of BR blocks as well as the position of Huelyregion of each BR block,
thus strongly impacting the length of the post-reconfigaraschedule. For instance, if
the initial schedule has no fully parallel regions, no ctenginitial schedule is needed
in the case of a single processor deallocation.

More generally, in ann-adaptive schedule that originally utilizescores, if a
search of the initial schedule identifies at least one retjiahutilizes more than — m
cores, theéband and block partition linesf each BR block will subsequently be deter-
mined. The goal of this step is to minimize the occurrencesibigy of extra inter-PE
communications. Consequently, each pair of dependens tightly scheduled on the
same PE is placed into the same band as much as possible.

Once the band partition lines have been determined, thestegtis to balance
the step height. To retain the length of the initial schednidact, only the tasks onon-
critical pathscan be delayed. Here, the timing slack of each tas& determined through
calculating its starting time in both thes-soon-as-possibIASAP) and theas-late-as-
possiblg(ALAP) schedules, as shown in the following equation.

Slack(vj) = ALAP(vj, PE(V})) — ASAP(v;, PE(V}))} (4.4)

At this point in the scheduling process, the shape of eacdd bas been deter-
mined. If, as a result of band partitioning, two dependesidaightly scheduled on the
same PE are separated into larand a subseque® band, the proposed PE rotation
technique is applied. Aight rotation hintis inserted between any such two BR blocks,
so that the entire subsequent BR block can be rotated righinatime in forming the
postreconfiguration schedule.

4.6 Experimental Results

In this section, the proposed adaptive scheduling and emelering scheme is
evaluated. The scheduling algorithm outlined in the lastige is implemented in C,
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(c) fork—join (d) FFT (e) Gaussian elimination (f) LU-decomposition (9) Laplace equation solve

Figure 4.17. The benchmark task graphs

while theDynamic Critical Path(DCP) algorithm [54] is selected as the baseline schedul-
ing policy.

The application set under test is composed of standardi@latatk graphs, in-
cludingfork-join, LU decompositiojLaplace equation solveGaussian eliminatiorand
FFT. DAG representations of these task graphs are shown iné-#ai7. Meanwhile, to
evaluate the effectiveness of the proposed technique wiied to various non-standard
parallel applications, we use TGFF [25] to further genemteumber of random task
graphs representative of a large spectrum of possiblelpbagiplications. The number
of tasks varies from 40 up to 160. Thkariation in task execution time is controlled by
setting the ratio of the upper to lower bound of task execuiime to 2. Additionally, the
frequency of inter-task dependences is controlled thraagying the value of the average
out-degredthe number of communications per task), while the commatioo overhead
is controlled through varying the averagemmunication-to-computation ratio

4.6.1 Performance of single-core adaptive schedules

As the primary goal of the proposed reconfiguration schente listain the per-
formance of the initial schedule intact, we first evaluate phe-reconfiguration schedule
lengths. To evaluate the impact of both adaptivity and ceogdering, we have exper-
imentally compared the length of three schedules, the in@s@ion-adaptive) schedule,
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Table 4.1 Pre-reconfiguration schedule length

Pre-reconfigurationschedule length overhead
standard graph | random, 1-outdegreperandom, 3-outdegree
cores || w/o— w/ reorder | w/o— w/ reorder w/o — w/ reorder
3 3.14% — 1.90% | 0.51% — 0.19% 1.12% — 0.48%

4 2.70% — 1.94% | 2.00% — 1.00% 6.01% — 1.54%

5 -0.63% — -1.81%/| 0.22% — 0.15% 2.74% — 1.93%
6

7

8

1.41% — 0.67% | 3.50% — 1.25% 5.37% — 2.28%
3.53% — 2.15% | 0.73% — 0.40% 3.76% — 2.26%
5.32% — 2.31% | 3.96% — 1.23% 4.55% — 2.51%

average| 2.58% — 1.19% | 1.82% — 0.70% 3.93% — 1.83%

the adaptive schedule without core reordering, and thetaeagchedule with core re-
ordering. Meanwhile, to evaluate the effectiveness of tlopgsed technique for various
workloads, we compare the schedule length results of stdrmdaallel applications and
the results of randomly generated task graphs with twordistialues obut-degredi.e.,
the number of out-going communications per task). The tesalpre-reconfiguration
schedule length overhead achieved with and without PE eeioigl are reported in Table
4.1, as the number of cores considered in our experimengsisdvrom 3 to 8.

The results in Table 4.1 confirm that the overhead in prengoration sched-
ule length is insignificant. More precisely, without corengering, the incorporation of
adaptivity introduces roughly a 1.8-3.9% overhead on thedule length, while the core
reordering technique can further reduce such overhead+d B%. A more detailed ex-
amination shows that as the number of PEs increases, thenambu2R dependences
increases, which in turn causes the schedule length owktbemow slightly.

A comparison between the two random workloads shows thaPtheeorder-
ing technique delivers a relatively lower reduction in sile length overhead for the
high out-degree case. This is because an application wihginter-task dependences
exhibits a large number of edges in the communication patptgrthus limiting the pos-
sible reordering choices. A comparison between the stdrafat the random workloads
shows that the two sets of results are highly similar, impuyihat the proposed adap-
tive scheduling and core reordering techniques are effetr a large spectrum of stan-
dard and non-standard parallel applications. Anothenmartily aspect is that during the
scheduling process, a task is reassigned, if its starting s not delayed thereafter, to a
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Table 4.2 Impact of adaptivity on inter-PE communications

Non-adaptive Adaptive w/o PE reorder
Cores || Total | Adjacent/R2L/L2R|| Total | Adjacent/R2L /L2R

3 56.3%| 0.503/0.237/ 0.26Q| 54.1%| 0.505/0.251/ 0.244
4 57.9%| 0.405/0.275/ 0.320Q| 57.9%| 0.413/0.300/ 0.287
5 60.1%| 0.340/0.304/ 0.356| 59.3%| 0.354/0.344/ 0.302
6
7
8

60.6%| 0.293/0.316/ 0.391)] 61.1%| 0.316/0.373/ 0.311
61.4%| 0.260/0.329/ 0.411) 62.1%| 0.290/0.401/ 0.309
61.5%| 0.235/0.336/ 0.429| 62.6%| 0.271/0.423/ 0.306

average| 59.6% | 0.339/0.361/ 0.300| 59.5%| 0.358/0.293/ 0.349

PE that can reuse an existing communication path. As a ré@sslbme cases (such as the
“5-core” case of the standard task graphs, for examplepdagtive schedules may even
display a shorter length than the non-adaptive schedule.

As the quality of an adaptive schedule is largely determimgdhe amount of
L2R communications, we additionally report the ratio obtahter-PE communications,
as well as the communication breakdown information (ilee, gercentages @fdjacent,
R2L, andL2R communications) in Tables 4.2 and 4.3. Similarly, the nundfecores
varies from 3 to 8, while for each case three schedules agtsgf) namely, th@on-
adaptive theadaptive without reorderingand theadaptive with reorderingchedules.

The results in Tables 4.2 and 4.3 confirm that as the numbdE®friRreases, both
adaptive schedules display a slightly increased amounttef-PE communications as
compared to the non-adaptive schedule. Regarding the @mbuUBR communications,
in the non-adaptive schedule, the value increases linearthe number of PEs grows.
Yet in both adaptive schedules, the amount of L2ZR commubitgis less sensitive to
the number of cores. Compared to the non-adaptive schealgnificant reduction (6-
31%) in L2R communications is attained even without coredenng. This is because
during task scheduling, as shown in Equation (4.2a), theduder selects the minimal
start time of a task/, among all the PEs, thus resultinglif being scheduled onto a PE
that creates no L2R dependence. In comparison, the PE rewdechnique reduces the
amount of L2ZR communications by an additional amount of 5-7%

At first sight the results in Tables 4.2 and 4.3 seem to inditlaat the core re-
ordering technique makes an insignificant contributioneucing the amount of L2R
communications. However, it needs to be noted that the emelering procedure is in-
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Table 4.3 Impact of PE reordering on L2R communications

Communication breakdown Critical L2R
Cores || Total | Adjacent/R2L /L2R|| w/o — w/ reorder
3 55.2%| 0.510/0.261/ 0.229| 0.87% — 0.18%
4 57.7%| 0.417/0.313/ 0.270| 1.54% — 0.41%
5 60.0%| 0.357/0.367/ 0.277| 1.96% — 0.66%
6

7

8

61.0%| 0.318/0.396/ 0.28q| 2.34% — 0.80%
62.0%| 0.288/0.426/ 0.28G| 2.59% — 0.89%
62.4%| 0.269/0.446/ 0.285| 2.71% — 0.99%

average| 59.7%| 0.360/0.272/ 0.368| 2.00% — 0.65%

voked only uporcritical L2R dependencethat delay the earliest start time of the task
under scheduling. The ratios of critical LZR communicasidto the total amount of
inter-PE communications) in both adaptive schedules grerted in Table 4.3 as well.
As can be seen, the core reordering technique delivers e968+&duction in the critical
L2R communications. Such a significant reduction in turdl¢ei@ a sizable improvement
in schedule quality, as confirmed by the results of schedigth in Table 4.1. These
results thus clearly confirm the effectiveness of the prega®re reordering technique in
mitigating L2R dependences and in minimizing scheduletlengerhead.

Subsequently, we report the post-reconfiguration schddualgths in Table 4.4.
It needs to be noted that the adaptive schedules reportdeeiff:tcore” row, as they
utilize k-1 cores after reconfiguration, are actually compared tobtseline schedule
of k-1 cores to ensure fairness in schedule quality evaluafldw. results in Figure 4.4
show that the overhead in post-reconfiguration schedubghesizably decreases as the
number of PEs increases. This is because the use of more §His i@ a larger part of
under-utilized portions in the initial schedule that needseconfiguration in the case of a
single PE deallocation. However, without PE rotation, thetgreconfiguration schedule
length overhead is still significant, ranging from 12% to 23% comparison, the PE
rotation technique, applied on the adaptive schedulesnag#d through PE remapping,
can effectively reduce such overhead to the range of 4.%-9T®ese results thus clearly
confirm the criticality and the attainable benefit of the megd PE rotation technique in
helping generate adaptive schedules.



Table 4.4 Post-reconfigurationschedule length

Post-reconfigurationschedule length overhead

cores

standard graph
w/o — w/ reorder

random, 1-outdegre

w/o — w/ reorder

erandom, 3-outdegree

w/o — w/ reorder

00O~NO Ul bW

23.2% — 11.4%
17.3% — 11.7%
8.25% — 4.22%
3.62% — 0.45%
9.19% — 6.02%
10.4% — 6.02%

37.3% — 9.80%
23.5% — 2.36%
23.1% — 7.21%
17.0% — 4.00%
15.6% — 8.49%
12.8% — 5.72%

21.0% — 10.9%
14.0% — 5.69%
13.1% — 8.85%
12.1% — 7.00%
12.4% — 8.93%
11.9% — 8.09%
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4.6.2 Performance of multi-core adaptive schedules

To evaluate the impact of increased reconfiguration stepshave experimen-
tally compared the performance of-adaptive schedules against the baseline schedule
(without adaptivity), with values ofrn ranging from 1 to 3. For each adaptivity degree,
we furthermore evaluate the impact of PE reordering. A totahber of 7 schedules is
therefore reported in Figure 4.18. The number of cores densd in these experiments is
varied from 5 to 8, while the schedule length values are nbzexhto the schedule length
of the baseline algorithm generated for 5 PEs.

The results in Figure 4.18 confirm that the toleration of muee variations de-
grades the performance of the pre-reconfiguration schedWéthout core reordering,
the overhead in schedule length increases linearly as toermtnof adaptivity degree in-
creases. Yet the core reordering technique can significaedluce the schedule length
overhead, especially in the high adaptivity-degree casareMrecisely, when the adap-
tivity degree increases from 1 to 3, the schedule lengthheaat increases from 1.7%
to 4.9%without core reordering, and from 0.8% to 1.686th core reordering. These
results clearly confirm the necessity of core reorderingyelbas the effectiveness of the
proposed reordering technique in minimizing the overhdad-adaptive schedules.

Figures 4.19 and 4.20 respectively report the ratios of L@Rmunications and
critical L2ZR communications (to the total amount of inter-PE comroations) in all the
m-adaptive schedules. It can be observed that the scheditleswarger value ofn
display less amount of L2ZR communications. Same as in therd-adaptive schedules,
a significant reduction in L2ZR communications is attaineenewithout core reordering.
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Figure 4.18 Impact of adaptivity degree and core reorderingpya-reconfiguration
schedule length
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Figure 4.19 Impact of adaptivity degree and core reordering on the athotiL2R
communications

On average, a 18% and a 22% reduction in L2ZR communicatiores fmaseline sched-
ules) is attained without and with core reordering, redpelst Yet the results regarding
the critical L2ZR communications confirm that the core reordering tealmidelivers a
61% reduction in the critical LZR communications for 1-atilapschedules, and a 55%
reduction for 3-adaptive schedules. Such a significantateaiuin turn leads to a sizable
improvement in schedule quality, as confirmed by the resufésgure 4.18.

Finally, the post-reconfiguration schedule lengths arentegd in Figure 4.21. To
ensure fairness in comparison, mnadaptive schedule of cores needs to be compared
to the baseline schedule af— m cores. Accordingly, in Figure 4.21, the results listed
in the “k-core” column with an adaptivity degree of actually uset + m cores in the
pre-reconfiguration schedule. As can be seen, the overhesthedule length increases
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Figure 4.20 Impact of adaptivity degree and core reordering on the arnoficritical
L2R communications
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Figure 4.21 Impact of adaptivity degree and core reorderingpast+econfiguration
schedule length

as the amount of adaptivity degree increases, yet at a moalessklope as compared
to pre-reconfiguration schedules. Using the core reorddanhnique, the overhead in
schedule length is reduced from 13% to 6% for 1-adaptivedidks, and from 15% to
10% for 3-adaptive schedules. These results therefordycleanfirm the criticality and
the attainable benefit of the proposed reordering techniguelping generate:-adaptive
schedules.

4.7 Conclusions

In this chapter, we have presented an effective technicateattows reconfigura-
bility to be incorporated into static schedules to withstagsource variations at runtime



70

due to unpredictable device failure, thermal stress, mesotompetitions or preemptions.
Such adaptivity, in a nutshell, is delivered by expandirg¢bnventional static schedul-
ing techniques to embed the concept of partitioned bandgvenable the compiler to
compactly engender in readiness numerous execution selsedtuch schedules can be
adaptively applied upon run-time resource variationshwib reliance on any run-time
rescheduling decision. Moreover, through novel permaitaéipproaches on the task al-
location space regarding the logical core positions, a sebre reorderingtechniques
can effectively mitigate the reconfiguration-induced perfance overhead. This advan-
tage is confirmed by the experimental results, which showahaverhead strictly less
than 2.5% is imposed on the length of the initial, pre-regamfition schedule to ac-
complish the highly regular and predictable reconfiguraoheme for the toleration of
three core degradations. The confluence of these approtieiedelivers a fixed-silicon
architecture capable of extracting intensive static aialthat complements dynamic re-
configurations in the face of arbitrarily large resourcdatasns. The emerging resource
variation-based unpredictability in future multicore &ymss is thus tamed to deliver an
orderly and deterministic adaptivity to address the funeeds of both general-purpose
and embedded system architectures alike.

The text of Chapter 4, is in part a reprint of the material apgears irC. Yang and
A. Orailoglu, “Predictable Execution Adaptivity throughmbedding Dynamic Reconfig-
urability into Static MPSoC Schedules,” International Gerence on Hardware/Software
Codesign and System Synthesis (CODES-ISSS), October2@¥ang and A. Orailoglu,
“Towards No-cost Adaptive MPSoC Static Schedules througiditation of Logical-to-
physical Core Mapping Latitude,” IEEE Design, Automatiardarest in Europe (DATE),
April 2009 and inC. Yang and A. Orailoglu, “Fully Adaptive Multicore Archiwires
through Statically-directed Dynamic Execution Reconfigions,” International Confer-
ence on VLSI and System-on-Chip (VLSI-SoC), September 2hé&@lissertation author
was the primary researcher and author of the publicatiofis [97], and [98].



Chapter 5

Adaptivity-aware System Topology

The compiler-directed reconfiguration scheme introduce€hapter 4 allows
tasks to be transferred among a set of PEs in a regular marthenevreliance on any
dynamic rescheduling decisions, thus completely elinmigathe runtime decision mak-
ing overhead. However, to minimize the overall reconfigorabverhead, such a pre-
dictable reconfiguration process still needs to be supgdnyea flexible customization of
the underlying system topology so as to effectively hideowwrhead in transferring tasks
between PEs.

One of the main benefits of the proposed compiler-directednigguration pro-
cess is that execution migration only involves a limitedafetdjacent PEs, regardless of
the PE being isolated. This property holds for both singleeand multi-core adaptive
schedules, as can be clearly observed from the reassiguinections shown in Figures
4.2 and 4.11. This high locality indicates that reconfigorainduced code/data transfer
can be eliminated even in a distributed architecture thanhissioned as the dominant
architecture for future multi-core and many-core systeB providing neighborhood-
centered, dedicated communication links, PEs that areigdilysadjacent can access and
share a single storage unit in common, thus enabling tadhes tlirectly migrated among
these PEs without any physical movement of the code/dat&seh docally shareable
storage organization in turn enables the development ajhd-Weight, neighborhood-
centered communication scheme to accelerate task exeagiwell.

In this chapter, we first analyze the reconfiguration-indusiearing requirement
on storage units. Subsequently, we present a version oidyi@hareable storage orga-
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P1L P2 P3
P1L P2 P3 P4 orp2 P3 P4

(b) 1-degree memory sharing, implemented usi
(a) Pre- and post- reconfiguration schedules direct communication interconnects

Figure 5.1 Reconfiguration-induced sharing requirements

nization model, an appealing compromise capable of respgtd the twin requirements

of scalability and shareability for future multi-core sgists. At the system level, a set
of 2-dimensional physical topologies can be developed diterse sharing degree em-
bedded that matches different levels of reconfiguration @mmunication needs. We
furthermore outline a set of topology selection criteriavadl as the associated task
placement decisions. Finally, we propose a static-engpldased distributed synchro-
nization mechanism which, through the utilization of thelidated communication links,

effectively accelerates inter-task communications.

5.1 Reconfiguration-induced Sharing Requirement

To illustrate the sharing requirement imposed by the BB mégaration, we first
consider the single-core adaptive schedule shown in Figur&, wherein 12 tasks are
partitioned into two bands. Each column of the post-recoméition schedule can be
executed either on corg or P, |, depending on the position of the deallocated PE. A
detailed comparison of the pre- and post-reconfiguratibledagles indicates that a task
initially executed on PE°, may need to be migratedght to PE P, ,, if the task is in
theL band. Similarly, if the task is in thR band, it may need to be migratéaft to PE
P,_,. As an example, iP>; fails, among the tasks that were initially scheduled onaskr
7 needs to be migrated & , while Task 11 needs to be migratedi?p

The examination above &inglecore adaptive schedules indicates that task mi-
gration is only performed betwedwo adjacent PEs, implying that the sharing of a single
storage unit between two PEs suffices for eliminating themBguration-induced task
movements. A more general examination intoridti-core adaptive schedules indicates
that the maximum task migration distance is linearly prtipoal to the amount of recon-
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figuration steps embedded within the schedule. More prgcife a schedule capable

of tolerating a variation ofn. cores, reconfiguration-induced task movement can be com-
pletely eliminated as long as a single storage unit is shagedeen everyn + 1 adjacent
PEs. This sharing requirement can be formally specifiedutiita parameter aharing
degree defined as follows:

Sharing degree: the extra number of cores with which a dgrshares a single
storage unit

Under this definition, theninimumamount of sharing degree required imacore
adaptive schedule is. In comparison, assuming that the multicore platform costa
total number ofV PEs, the traditional distributed and centralized memoggaoizations
can be viewed as two extreme cases with sharing degrees af & an 1, respectively.
Clearly, the distributed organization falls short of fdifiy the reconfiguration-induced
sharing requirements. The centralized organization, erother hand, offers overmuch
sharing capability and hence suffers from the crucial ktnitn of the lack okcalability.

It is therefore necessary to develojpeally shareablestorage organization, wherein ded-
icated communication links are provided within a neighloardhto attain the right amount
of sharing degree.

5.2 Locally Shareable Storage Organization

In the proposed locally shareable organization, storagte (BUs) are still orga-
nized in a distributed form across the entire platform, wisiharing is achieved through
enabling each PE to directly access multiple SUs. These ®hish can be either L2
caches or on-chip memory units, are connected through aeatiomalon-chip network
for the support of long-distance communications, while ies and SUs are directly
connected througpoint-to-point communication links. These communication links,
enable multiple tasks to @multaneouslynigrated between distinct PEs without induc-
ing any interferences or network congestion. As these larkshighly localized, they
impose negligible hardware cost and routing overhead.

Clearly, the number of communication links is directly detaed by the amount
of sharing degree By definition, a sharing degree efdirectly implies that each single
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(a) sharing degree = 1, merging degree =1, PE:SU=1:1 (b) sharing degree = 1, merging degree =2, PE: SU=2:1
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(c) sharing degree = 2, merging degree =1, PE: SU=1:1 (d) sharing degree = 2, merging degree =2, PE: SU=2:1
Figure 5.2 Bipartite graph representation of various topologieswdistinct values of
sharing degree and merging degree

SU is accessible te + 1 PEs. Given an MPSoC platform with a total numbeNoPEs
and NV SUs, the interconnect network thus exhibits the followihgracteristics:

Average interconnects per PE s+ 1 (5.1a)
Average interconnects per SU= s+ 1 (5.1b)
Total interconnects= (s+1)- N (5.1c)

Equations (5.1a) and (5.1b) indicate that each PE and eadr&tonnected to
multiple direct communication links. Yet this many-to-nyanterconnect network can
still be attained without increasing the number of read/vports for each PE. As a PE
does not access distinct SUs simultaneously, a singleweigelport, together with a set
of decoders and multiplexers, suffices for the accessesdrsimgle PE to multiple SUs.
This type of organization is concretely illustrated in Fig®.1b that shows 4 PEs with a
sharing degree of 1.

As each direct communication link connects a PE with an S&Jetitire intercon-
nect network can be modeled abipartite graph between two disjoint sets of nodes, the
PEs and the SUs. The bipartite graph representations of p&dforms with sharing
degree values of 1 and 2 are respectively shown in Figuresah@ 5.2c. As can be seen,
in Figure 5.2a, any two PEs with consecutive indicEsdnd P, ;) share a single SU
in common, while in Figure 5.2c, any three PEs with consegedtidices {;, P, and
P, ,) share a single SU in common. On the other hand, this incdestssring capacity of

LFor simplification purposes, the direct communicationdiik the subsequent parts of this paper are
shown in the bipartite graph format instead of the formasen¢ed in Figure 5.1b.
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the storage units is attained at a cost of increased inteexts, as Figure 5.2b displays
more communication links than 5.2a. This property is alstficmed by Equation (5.1c),
which indicates that the total number of point-to-point eoumication links in this locally
shareable organization is linearly proportional to the amof sharing degree

The larger the sharing capability is, the more the commuimicdinks needed in
the system and the higher the consequent cost would be. Tisgdeoation of scalabil-
ity requires the reduction of the total number of commundazalinks, however, without
sacrificing the sharing capacity. To attain this goal, wel@xghe flexibility of merging
a number of adjacent SUs together, which in turn enables dication of the commu-
nication links emanating from a single PE to these SUs. Heeeformally define the
parametemerging degreas follows:

Merging degree: the number of SUs that have been merged o dosingle SU,
which is equal to the ratio of the number of PEs over the cumember of SUs

Figures 5.2b and 5.2d present the bipartite graphs geddtrataugh merging ev-
ery two contiguous SUs in Figures 5.2a and 5.2c, respegtiVele comparisons between
Figures 5.2a and 5.2b, and between Figures 5.2c and 5.2dmdh#t link merging re-
duces the total number of SUs and the total number of interects, while increasing the
number of PEs that share an SU in common. More formally, bygmgt: adjacent SUs
into a single one, every set off- £ PEs shares an SU in common, while the total number
of SUs is reduced fronV to N/k. The interconnect network thus exhibits the following
properties as a result of the link merging:

Average interconnects per PE  s/k + 1 (5.2a)
Average interconnects per SU= s+ k (5.2b)
Ports per SU = & (5.2¢)

Total interconnects= (s/k+1)- N (5.2d)

A comparison between Equations (5.1c) and (5.2d) clearhficos that link
merging can effectively reduce the total number of direatgnication links byt times.
In an extreme case, if the values of stearing degre@nd themerging degreare set to
be equal £ = k), the total number of communication links will always eq@al, inde-
pendent of the andk values. As a concrete example, in Figure 5.2a the bipantiphy
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(s = k = 1) contains 12 links, while in Figure 5.2d the bipartite grgdph= £ = 2) also
contains 12 links.

The sharing of an SU among multiple PEs offers the extra hteokfdaptive
resource allocation Each PE does not necessarily to have the same amount ajestora
Instead, the allocation of storage cells to different PEs lwa determined according to
the total amount of storage required by each PE. Clearhatmaunt of flexibility in stor-
age allocation is proportional to tmeerging degreeHowever, it needs to be noted that a
merged SU needs to serve accesses from more PEs simultgnaoplying that the num-
ber of ports per SU needs to increase linearly as a functitimeaherging degree. Such an
increased complexity in turn imposes upper bounds on theevaflthemerging degree

5.3 Physical Topology and Application Mapping

After introducing the properties of the propodedally shareablestorage model,
we subsequently examine the various topology instance$utfil the locally shareable
property. As such a property is independent of a particololbgical structure, distinct
2-dimensional topologies that exhibit a varying amourdtadring degre@and themerging
degreecan be developed.

5.3.1 Topology instances and the associated properties

Figure 5.3 presents two representative 2-dimensionaliphlypologies corre-
sponding to the bipartite graph representations shownguarés 5.2a and 5.2d. PEs and
SUs are connected through the direct inteconnect linkdevellli the SUs are connected
through an underlying on-chip network for the support ofgaiistance communication
and data transfer. It can be observed that these topolotgnicess exhibit the following
properties:

¢ In atopology with a sharing degree gfeverys + 1 cores with consecutive indices
(P, P11, ..., andP;, ;) consistently hold in common an SU.

¢ In both topologies, each PE has at le@gb direct communication links, thus re-
taining its connectivity in the case of single failures ofreaunication links.
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<+— Direct interconnect link
&——> On-chip network

(a) sharing degree = 1, merging degree =1 (d) sharing degree = 2, merging degree = 2

Figure 5.3 Various 2-dimensional locally shareable MPSoC topolsgie

The first property indicates that the proposed topologiesat only able to toler-
ate core failures but furthermore able to minimize the etienueconfiguration overhead.
As every set ok + 1 adjacent cores consistently hold in common an SU, the phatfe
able to obviate any transfer of code or data set amongsanyt adjacent PEs. In other
words, for all the possible reconfiguration processes endxkdn anm-core adaptive
schedule, the platform is able to obviate any transfer okardiata set as long as < s.

If, on the other handyp > s, the platform is able to tolerate a reductionsafores with no
reliance on any data movements during task migration, vihdeoleration of the remain-
ing m — s cores requires data to be transferred through the undgrbrchip network
that connects all the SUs.

The ability of anys + 1 cores with consecutive indices to hold in common an SU
furthermore simplifies resource allocation in the propasgaptive system. By definition,
anm-core adaptive schedule can be executed,by— 1, ...,n —m cores. To execute this
pre-optimized schedule, the OS only needs to find a consecwtindow” of i idle cores
such that: — m < ¢ < n. Such flexibility in window selection furthermore preclscEny
possible fragmentation in resource allocation. Even irctiee when the total number of
consecutive idle cores is insufficient (i.e.< n — m), the OS can force the applications
that is using the adjacent cores to go through a reconfigurgtiocess and give up a
limited number of resources. This scenario of executionptda for resource allocation
has already been examined in Section 3.

The second property guarantees that the topologies shokigumes 5.3 can tol-
erate single failures of direct communication links, agyrfailures can block at most
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one of the communication paths. A detailed examinationcaueis that this fault tolerant
capability is directly determined by the sharing degreed the merging degrde More
precisely, a merging df out of s + 1 links may reduce the minimum number of intercon-
nects per PE te — k£ + 1. Accordingly, as long as — k£ > 0 each PE is guaranteed to
have at least 2 direct communication links.

Finally, in contrast to PE and communication links, SUs amgosed of multiple
storage elements of high regularity. The failure of a setarfegje cells would hardly have
any impact on the connectivity of the entire multicore matfh. Standard error detection
and correction techniques can be furthermore employeddmdault tolerance at a low
cost.

The examination above confirms that all the MPSoC topologjiesvn in Figure
5.3 deliver the capability of tolerating device failurestire PEs, the SUs, and the com-
munication links, thus enabling them to be employed by veri@pplication sets to attain
fault tolerance and adaptive execution.

5.3.2 Topology instance selection

While the topology instances presented in Figure 5.3 pmaidarying amount of
sharing capability they all exhibit a regular structure; the sharing and nmeygionditions
of each PU are identical such that every set-eft cores with consecutive indices consis-
tently hold in common a single PU. Such regularity enablesetiopological structures to
be adopted as fixed-silicon MPSoC platforms, thus provittiegoenefits of high-volume
amortization. Meanwhile, the regular topological struetualso deliver flexible redef-
initions of the platform to match parallelism charactecstand resilience needs of the
application.

The selection of the most suitable topologies for divergaieation sets can be
based on two considerations. On one hand, the valugisasfng degreend themerging
degreeshould be determined according to the required reconfigurateds as well as the
inter-PE communication patterns. On the other hand, ceraiihn of design complexity
constrains the maximum number of interconnects as welleasatimber of interconnects
per SU, which in turn imposes upper bounds on the values afltheng degreand the
merging degree
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Figure 5.4 Finer-grained cluster partitions and communication liikzation

Parallelism consideration

While the number of PEs in each of the four topologies in Fegbi3 is fixed
to 16, this parameter can be easily customized to other yakiout impacting the
structures of the bipartite graphs. Topologies with a largenber of PEs can be used
to hold applications with large amount of thread-level Hatiam. On the other hand,
if the application cannot be parallelized into dozens okjmehdent threads, the PEs can
be partitioned into a number @iher-grainedclusters so as to concurrently hold several
applications.

Upon the scheduling of an application, the correspondingimmam resource uti-
lization can be straightforwardly obtained. In the caserofiaderutilization of the re-
sources, the target MPSoC can be partitioned firter-grainedclusters. Figure 5.4
presents four distinct ways for partitioning the 16 PEs iBta! and 5 clusters. More
formally, the 16 PEs in the proposed topology instances @apdrtitioned into 2 to 8
disjoint clusters, with each cluster containing no lessitBacores so as to attain fault
tolerance. During execution, communications are onlygreréd within each cluster,
implying that only the direct communication links within duster need to be activated
(the bold lines in Figures 5.4) and the inter-cluster comication links can be deacti-
vated (the dashed lines in Figures 5.4). Yet upon the fadfilecommunication link, the
platform can beepartitionedso as to utilize a different set of communication links. This
property can be observed through a comparison betweendsi§ub and 5.4c. While in
both figures the PEs are partitioned into 4 clusters, theodeistive communication links
(highlighted in bold) used in these two partitions are digjo
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Reconfiguration and communication consideration

To select an appropriate topology instance for an apptinatoth the reconfigu-
ration needs and the communication frequency of each aigicshould be considered.
First of all, to completely eliminate the reconfiguratiorduced data transfer among SUs
in anm-core adaptive schedule, the number of PEs that can diractlgss a single SU,
i.e., the value ofs + £, should be no less than the adaptivity degnee Clearly, this
topology selection criterion can be directly determinedgenthe adaptivity degree has
been determined according to the occurrence frequencyrefurtavailability within the
system.

In comparison, the second topology selection criterioh ¢bacerns the commu-
nication characteristics is application-specific. Moreqisely, to completely hide com-
munication overhead, the numberdifect neighborof a PE should be no less than the
maximum number of tasks involved in a single communicatibat is, theout-degreeof
the corresponding task graph. Here, direct neighborof a PEP, are defined as the PEs
that share an SU witl®,.

Obviously, the value of thdirect neighborf a PE is determined by theharing
degreeand themerging degreeBy definition, a sharing degree sfdirectly implies that
everys + 1 cores with consecutive indices consistently share a si@glen common.
Accordingly, coreP; always has at leasts direct neighbors with contiguous indices,
ranging fromP,_, to P,.,. This property can be observed in the topologies shown in
Figure 5.3, wherein the direct neighbors of Pk are shown in pink. In Figure 5.3a
P; has P, and P, as its direct neighbors as the corresponding sharing degree In
comparison, in Figures 5.3B; has P, P,, P4, and P5 as its direct neighbors as the
corresponding sharing degree is 2. Meanwhile, as the linigimg process increases the
number of PEs that share a single SU, in Figure F23bdditionally hasF; as its direct
neighbors. In sum, a detailed examination indicates thatatlerage number of direct
neighborsofa PE i8s + k£ — 1.

Design complexity consideration

Although the consideration of reconfiguration and commaitién needs argues
for a topology with larger values sharing degreendmerging degregthe consideration
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of design complexity, on the other hand, constrains the mari number of interconnects
as well as the number of interconnects per SU. As mentiontatdyea larger value of
the sharing degreencreases the total number of interconnects, while a largkre of
the merging degreaequires both the size and the number of ports of the SU te scal
proportionally. These considerations therefore impogeupounds on the values of the
sharing degreend themerging degree

5.3.3 Task Placement Requirements

Upon the selection of the most suitable topology for an &agilon, the associated
task placement decisions can be made. As each PE can acdégsen@s in the pro-
posed system organization, there exist multiple choicepléxing the code and data set
of each task. Given the pre-generated adaptive schedsleplacement decisions need
to be made in such a way that the potential reconfiguratidogad data movement can
be completely eliminated.

As we examined before, in a single-core adaptive schedtiéskanitially sched-
uled onF; may either need to be migratedht to PEP;,, ifitis in the L band, or need to
be migratedeftto PEP,_; ifitis in the R band. Task placement decisions can therefore
be made accordingly. In brief, tasks in the L band should beqa in the SU shared be-
tweenP; and P, 1, while tasks in the R band should be placed in the SU sharedeket
P, and P,_;. These placement decisions can be observed in Figure 5bh whows
the overall data placement of the schedule presented ind-lj6a. Taking PE>, as an
example, among the three tasks originally scheduled oa#fs 2, as it lies in the R band,
is placed in the SU shared betweBnand P,. Tasks 6 and 10, as they lie in the L band,
are placed in the SU shared betwderand P;. Yet in both cases, task migration is only
performed betweetwo adjacent PEs, implying that the sharing of a single storanjie u
between two PEs suffices for hiding the reconfiguration ateompletely.

If there exist multiple valid selections for the placemehtadask, the decisions
are made so as to balance the amount of storage. This cass ddbe sharing degree
of the selected MPSoC topology exceeds the maximum recaafign step needed by
the application. For instance, the bipartite graph showrigire 5.5¢ exhibits a sharing
degree of 2. The tasks in Figure 5.5a that will never be exechy P, or P,, namely,
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(a) Pre- and post- reconfiguration schedules (b) 1-degree memory sharing and data placement (c) 2-degree memory sharing and data place

Figure 5.5 Reconfiguration-induced memory sharing and data placemen

Tasks 3, 6, 7, and 10, can be placed in either SU. These tasieddahe can be evenly split
into the two SUs in various ways, with one possible solutiooven in Figure 5.5¢. The
only constraint here is to separate Tasks 6 and 7. This isilsedhe placement of Tasks
6 and 7 in the same SU would require an increase in the numlaecess port, as the two
tasks are executed at the same timing step in the pre-reaaatiign schedule.

The aforementioned data placement decisions are made thvedgssumption that
the selected MPSoC topology exhibits a merging degree ofléarly, these decisions
display the finest granularity, thus resulting in their agggbility to an MPSoC of merging
degree: > 1, as the data placement can also be merged along with the B&is elxtreme
case, the PEs that can be utilized by an application sharéJan &ommon (due to the
lack of parallelism), implying that no data placement diecis need to be made.

5.4 Communication Overhead Minimization

Once the topology of the target MPSoC platform is determitiegl static sched-
uler can utilize the direct communication links offered hg selected topology instance
to minimize communication overhead.

Essentially, communications in the target MPSoC platfoamn be performed in
two ways. Two PEs that share no SU in common need to commenticedugh a con-
ventional on-chip network [10] that connects all the SUsisTipe of communication,
denoted asemotecommunication, requires data to be transferred betweentl80sgh
the underlying network. On the other hand, two PEs with aesh&U can directly com-
municate through one PE directly reading the data writtethbyother. This type of com-
munication is denoted dscal communication. Compared witkmotecommunications,
the overhead oliocal communications can be effectively hidden, if a cheap yetiefii
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synchronization scheme is provided. Unfortunately, tradal synchronization mecha-
nisms, such aspin locksand barriers, falls short of fulfilling this requirement. They

ensure mutual exclusion through continuous polling of aedhaariable, thus not only

imposing large contention on the on-chip network, but a¢ésmiring memory accesses to
be serialized.

To overcome this limitation, we additionally propose a tig¥eight distributed
synchronization mechanidsior the proposed locally shareable storage model. Rather th
explicitly inserting synchronization variables to sedalthe transmission of data through
a shared memory location, we propose a mechanism to encpeeadknce information
within each memory access, thus enabling synchronizatitwe tombined together with
data communication. Furthermore, by utilizing staticaktracted application informa-
tion, a sharp reduction in the number of code bits neededamat] through the proposed
reference coloring algorithm, thus enabling an implemtgartavithin negligible hardware
overhead.

5.4.1 Encoding-based Synchronization

As each communication is composed of a write operationviatbby a read op-
eration to the same memory location, the dependence infarmiaetween these memory
accesses can be statically extracted and explicitly ercodéese code words can be
written/read together with the data in transfer. Duringoexisn, a dynamic checking of
the encoded dependence information enables the identficat the status of the data
in communication, based on which the read operation can $gesdled to achieve se-
mantically correct communication, thus completely eliating the accesses to explicit
synchronization variables.

While statically encoding data dependences of each conuatioin to reduce syn-
chronization overhead is desirable, an effective encodiaghanism is still necessitated
in order to capture the dependences within a highly comstcahumber of code bits, as
otherwise the overhead of writing/reading the code wordalevbe comparable to the
overhead of writing/reading an explicit synchronizatiarigble. Previous studies [85]
have shown that most applications display highly similad atatic communication pat-
terns in that each thread regularly communicates with alsaanédlfixed subset of the rest
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of the threads. More crucially, a large portion of the comioation is performed via
point-to-point communication, that is, consistent comioation between two proces-
sors. This property of restrictive communication patteznables the design of a highly
effective encoding mechanism. In light of this observatime propose a novekfer-
ence coloring algorithm which can encode global dependence information in arlitra
access contexts within onlyzabit overhead for each memory access in a point-to-point
communication.

When two PEs access the same location in the shared SU, dugpitedictable
run-time events, such as cache misses in the data subsystielonaanch execution in the
control subsystem, they may access the shared data out&t dd@mantically correct
communication necessitates obviously in-order execuf@il theseglobally dependent
instructions. In general, a pair of globally dependent mgmaccess instructions consists
of either a store and a lod®AW dependence)r a load and a stof@VAR dependence)
or a store and a sto®VAW dependencelConsidered from the aspect of inter-PE com-
munications, &RAW dependencansures that the read operation in each communication
obtains the correct data, whileVdAR dependencmsures that the data of an incomplete
communication will not be overwritten by a write operationa subsequent communi-
cation. AWAW dependendeetween consecutive memory accesses, on the other hand,
implies a redundant usage of the shared memory locatioheagatue stored by the first
write operation is not consumed by any read operation.

Redundant accesses to the same location in a shared SU ns&ytheaads to un-
necessarily wait on each other, thus necessitating theiireltion to avoid performance
degradation. The absence of redundant usage of globalledmemory locations is
presumed in the proposed synchronization framework, agasky achieved by standard
compiler technigues. In sum, two types of access pattemgealassified as redundant
usage of a global shared memory location:

e Two consecutivestoreinstructions. As the value stored by the firstoreis not
consumed by anipad instruction, the firsstoreis redundant.

e Multiple loadinstructions from the same PE that depend on the samstore As
the firstload instruction will load the data in communication into a looagjister of
that PE, subsequelttad instructions emanating from the same PE are redundant.
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Figure 5.6. Encoding of point-to-point inter-PE communications

Static encoding of global access dependence

Once the two redundant cases have been eliminated, depeadks executed
on different PEs will communicate by using the store/loadrinctions in aralternating
order to access a shared storage location. This property can kevasclearly in Figure
5.6a, which presents an instruction sequence executed ®R IPRndP Il to access the
memory locationV/ E M [r10]. More crucially, this highly regular access pattern engable
a highly efficient encoding technique to preserve the dap@dgence information.

Figure 5.6b presents the incorporation of the proposett ®atoding technique
into standard data transfer instructionés can be seen, our static encoding technique
uses one bit to distinguish global load/store instructitogether with two additional bits
to encode globaRAWandWARdependences.

To preserve semantic correctness dRAW dependenca read operation (e.g.
Inst 4 in Figure 5.6a) should be blocked if it attempts to accessdtitea earlier than
the corresponding producer (e.tnst 3in Figure 5.6a). This can be achieved through
forcing each producer to write a distinct “signature” tdggtwith the data in communi-
cation, and forcing each read to verify the proper signatefere it obtains the data. One
straightforward solution would consist of the explicit sfiieation of the address of the
corresponding producer in each read. However, the encadieidnead of this solution is

2The format of the data transfer instructions shown in theréigsi used by a wide range of embedded
architectures [38], such #&RM, Hitachi SuperH andMitsubishi M32R
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nontrivial, as the instruction address typically incurseaist a 32-bit overhead. Further-
more, writing/reading a 32-bit signature at run-time mapase an overhead comparable
to the write/read of an explicit synchronization variable.

We propose instead a more efficient encoding solution byoémd the regular-
ity of access patterns for the shared data. More specifidadigause only two PEs are
involved in each point-to-point communication, as longvas adjacent write operations
can be differentiated, RAW violations can be precluded. okdingly, we propose a ref-
erence coloring algorithm which alternatingly uses tR@W I-colorsduring the static
compilation process to make sure adjacent write operatiame distincRAW I-colors
This property can be observed by examining the behavidngifl, Inst 3andInst 5in
Figure 5.6b. During execution, each write operation willtevits RAW I-colortogether
with the data in communication, enabling each read operaticheck the RAW color to
ensure the completion of the execution of its producer. Adicgly, each read operation
is assigned the sanfi®AW I-coloras its producer, as can be observed flost 2andInst
4in Figure 5.6b.

The preservation VAR dependencessures that the data of an incomplete com-
munication will not be overwritten by a write operation inbsequent communication.
As traditionally each producer may have more than one coagumgeneral the preser-
vation of WAR dependencemncounters additional challenges in that a write operation
cannot be performed until all the previous read operatitns, is, the consumers of a
previous producer, have been executed. However, for poiptint communication each
producer has a single corresponding consumer only, thusdiegaa further reduction in
the number of code bits needed. More specifically, WAR viotet can be prevented in
the same way as RAW violations, through the usage of\#dRI-colors. The encoding
results can be observed in Figure 5.6b, whetast 2 andInst 3 share the sam&/AR
I-color, which differs from theVARI-color shared bynst 4andinst 5.

A pseudocode for a slight extension to the compiler in ordeintorporate the
necessary updates for generating the suggested I-coloiseaandertaken as described in
Algorithm 2. It can be easily seen that no more than two RAWtaaWAR I-colors are
needed, implying that a total &ivo bits, one RAW and one WAR I-color bit, suffice to
encode all the dependences. These two bits, together vetbitithat is used to indicate
whether a memory access is involved in inter-processor aamation, constitute the
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only static encoding overhead of the proposed synchraarzatechanism.

Dynamic checking and access blocking

The aforementioned reference coloring scheme expliaittpdes the dependence
information between memory accesses involved in inter-®&naunications at compile
time. At runtime when a memory access instruction is exekufehe static encoded
“inter-PE comm” bit is on, the PE will check the status of treadin communication
using either theRAW I-coloror the WAR I-colotr based on which the execution flow is
blocked if necessary to preclude a potential semantic twla

Algorithm 2 Reference Coloring
1: for each memory location/ € point-to-point communicatiodo

2. order all the inter-PE communication accesses/to

3: fori=1ton —1[n = total inter-PE communication accessesfp do

4: if two consecutive accesseand: + 1 are reads, writes, or a write followed by
a read emanating from the same fREn

5: prune them
6: end if
7. end for
8. for all the remaining write accessesié do
9: assign ondRAW I-color and onéVNAR I-color to each write, with the property
that two adjacent writes have distinct RAW and WAR I-colors;
10:  end for

11:  for all the remaining read accesses\fodo

12: color each read using the salRAW I-color as the write immediatelgreceding
it, and the sam&VAR I-color as the write justollowingit.

13:  end for

14: end for

The hardware implementation of the dynamic checking mashais presented
in Figure 5.7, with Figure 5.7a presenting the extra hardveaitded to record the status
of the data in communication, and Figure 5.7b presentingtineesponding control state
diagram. As can be seen, two extra bits, denoted aRA&WR-color and theWARR-
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Figure 5.7. Implementation of the encoding-based synchronizatitese

color bits, are added to record the status of the data in commiuwricathis can be clearly
seen in Figure 5.7. Moreover, in order to eliminate a comtirsupolling of theR-color

bits, aPEID field is also added to record whether a PE is waiting to acdessldta in
communication, thus enabling a light-weight mechanismataiba blocking PE. As only

two PEs are involved in each point-to-point communicatatnmost one PE needs to be

blocked, implying that on®EID field suffices.
In the process of executing a global load/store instructismo synchronization
functions need to be performed in order to record the stdtiealata in communication:

the checking and thesetting of the R-colors Furthermore, if an instruction attempts

to access the data in a semantically incorrect order, twa eyinchronization functions
need to be performed: thdocking and theunblocking of the specific instruction. The

following two cases delineate the detailed functions pentx when executing load and

store instructions, respectively.

e Load instruction: Before reading the data, the PE checks if R®WR-color bit

has the same color as tRAWI-color statically encoded in the load instruction. If

so, the instruction can proceed to execution. Otherwiséngteuction needs to be
stalled, and the PE’s ID will be recorded in tR&ID field. The blocking of the
load continues until a subsequent store instruction haateddheRAWR-color.
Once the execution of the load instruction has been conthlehe PE sets the
WARR-color bit of the memory location to th&/ARI-color encoded in the load
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instruction. Furthermore, if theEID field shows that a store instruction emanating
from the alternative PE is waiting to update the data, theestall be unblocked.

e Store instruction: Before reading the data, the PE checks if tl&RR-color bit
has the same color as tNéARI-color statically encoded in the store instruction.
If so, the instruction can proceed to execution. Othervhgeistruction needs to
be stalled, and the PE’s ID will be recorded in #EID field. The blocking of the
store continues until a subsequent load instruction haateddhé VARR-color.

Once the execution of the store instruction has been coatphl¢he PE sets the
RAWR-color bit of the memory location to thRAWI-color encoded in the store
instruction. Furthermore, if thREID field shows that a load instruction emanating
from the alternative PE is waiting to obtain the data, thel i@l be unblocked.

The above analysis clearly indicates that the executionad bnd store instruc-
tions is symmetric. This property can also be clearly obs@éimn Figure 5.7b, which
presents the control state diagram in implementing the mymehecking mechanism. As
can be seen, the control of synchronization is composedmpbirs of symmetric states:
the Occupy and theFree stages, as well as tiieblock and theW block stages.

TheOccupystage indicates that the shared memory location has justipetated
by a write operation, implying that the access expectedisextead. If the expected read
(identified through comparing the encoded RAWOlor with the RAW R-color stored
with the data) arrives next, the control state will advarmctheFree state, implying that
the current communication has terminated and the operatipacted next is the write
operation of a subsequent communication. On the other hiatieb current state is the
Occupy while the next access is not the expected read operatiorgothieol state will
advance to th& block state, and the blocked PE will be recorded in BID field.
The PE is unblocked only when the expected read arrivesltirggin the control state
advancing from th® block to theFree state.

The analysis presented above examines three transitiessred in Figure 5.7b:
transitions from th®ccupyto theFree, from theOccupyto theR block, and from theR
block to theFree. The remaining three transitions are performed in an aai®ganner
because of the symmetric property.

To illustrate the dynamic execution of these four functiomsre concretely, let
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Table 5.1 The dynamic check/set of the-colorsfor communication synchronization

. . R-color
Step| Instrction | Operation Control state RAW | WAR
1 | Inst1(W) | CheckWAR R-color= blue? Free Purple | Blue
2 |Instl SetRAW R-color= red Occupy Red Blue
3 |Inst2(R) | CheckRAW R-color=red? Occupy Red Blue
4 |Inst2 SetWAR R-colox= green Free Red | Green
5 |Inst4(R) | CheckRAW R-color= purple? Free Red | Green
6 |Inst4 Block, record PEID<= P I W block Red | Green
7 | Inst 3(W) | CheckWAR R-color=green?| W block Red | Green
8 |[Inst3 Read PEID, unblocP Il W block Red | Green
9 |[Inst3 SetRAW R-color= purple Occupy | Purple | Green
10 | Inst4(R) | CheckRAW R-color= purple?|  Occupy Purple | Green
11 | Inst4 SetWAR R-colox= blue Occupy Purple | Blue

us consider the example presented in Figure 5.6a once masanfe that the twAW
I-colors used by the reference coloring algorithm eed andpurple, while the twoWAR
I-colors are green and blue. Accordingly, the reference coloring algorithm executed
during the compilation process will encode tRAW and WARI-colors of the first four
instructions as presented in Table 5.1. An illustrativeeczen be examined if we assume
that an unpredictable cache missRnl occurred afteinst 1 has caused the first four
instructions to have a dynamic access order of (1, 2, 4, 3)eddcationM EM (r10).
The operation performed and the status of#&VandWARR-color bits are presentéd
in Table 5.1. As can be seen, although instructions try t@sst/ £V (r10) in the
semantically incorrect order of (1, 2, 4, 3), they are in ality forced to be executed in
the semantically correct order of (1, 2, 3, 4) with the helphaf statically encodeBAW
andWAR I-colors

5.5 Experimental Evaluation

5.5.1 Impact of Topology on Task Scheduling

To evaluate the efficacy of the proposed locally shareablietthe various topol-
ogy instances presented in Figure 5.3 are modeled. Thethlgooutlined in Section 4.5

3Please note that Step 10 is a replay of step 5 since the btpckimdition has been cleared through the
execution of step 8.
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Table 5.2 Impact of MPSoC topology on schedule length

Schedule length

Benchmark| Task #| Baseline| TP1-1 TP1-2 TP2-1 TP2-2
In-tree 63 11 0.73 064 0.64 0.64
Out-tree 63 11 0.73 064 0.64 0.64
Gaussian | 100 37 0.51 0.51 0.51 0.51
FFT 95 17 0.82 0.71 065 0.59
Fork-join 45 17 1.00 1.00 0.88 0.88
LU 77 27 0.89 081 0.81 0.81
Laplace 75 25 0.88 0.80 0.80 0.80

has been employed for generating adaptive static schediiesapplication set under test

is composed of typically parallel algorithms, such.ikdecompositioyLaplace equation
solver, andGaussian eliminationDAG representations of these task graphs are shown in
Figure 4.17.

To illustrate the impact of MPSoC topology on task schedylithe selected
benchmarks are scheduled onto each of the 4 topologies. A®okaRvith a traditional
distributed memory model is considered as lfaseline The obtained results are pre-
sented in Table 5.2, wherein we report the number of tasksaah @pplication, the
length of the baseline schedule, as well as the length ofdaptave schedule (normal-
ized to the schedule length of the baseline MPSoC). Her&in s*k” denotes a topology
with sharing degree and merging degrek. For all the four topologies, the amount of
reconfiguration-induced data movement is consistently O.

The experimental results show that the top 4 benchmarkseaffdxctively accel-
erated by the proposed locally shareable memory model. dridaimental reason for this
significant improvement is that all the four applicationspday a large amount of paral-
lelism and a limited number of out-going communicationstpsk, implying that most of
the inter-task communications can be performed througlitleet communication links.
To illustrate this property, we additionally report, in Tals.3, the total number afctive
linksin the topology that each benchmark can utilize. The reshitsv that the first four
benchmarks can utilize more than 60% of the direct commtibitdinks, and hence the
schedule lengths have been reduced by 37% on averagen-tiee and theout-treeex-
hibit identical results due to the high similarity in thearsk graphs. In comparison, in
the bottom 3 benchmarks, a task may fork a large number ofndigpé tasks that can-
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Table 5.3 Impact of MPSoC topology on task mapping

Active links SU over-utilization
Benchmarkl TP1-1 TP1-2 TP2-1 TP2-2TP1-1 TP1-2 TP2-1 TP2-

NI

In-tree 14 23 23 23 5 3 0 0
Out-tree 14 23 23 23 5 3 0 0
Gaussian 18 14 14 13 9 9 0 0

FFT 16 23 23 23 11 5 0 0
Fork-join 0 0 0 0 1 1 0 0
LU 4 6 6 6 3 3 0 0
Laplace 4 6 6 6 2 2 0 0

not simultaneously be placed on direct neighbors of theespownding PE. The schedule
length is thus constrained by the longest remote commuaitat he results show these
benchmarks can only utilize less than 10% of direct commatian links, and the average
reduction of schedule length is around 14%.

The values reported in Table 5.2 confirm that the proposedlioshareable topolo-
gies offer multiple design points for the designer to trafidetween the schedule length
and the number of direct communication links, as a reductighe former can generally
be attained through increasing the value of the latter. @mother hand, it is not cost-
effective if a negligible reduction in the scheduling lemgequires a significant number of
communication links. According to this criterion, TP 2-2hdae considered as the most
appropriate topology fofFFT andFork-join, while TP 1-2 the most appropriate topology
for the remaining 5 applications.

By default the number of ports per SU equals the merging @sgfrethe topology,
as shown in Equation (5.2c¢). However, the data placemeigidas, made for eliminating
reconfiguration-induced data movement, may result in otWérzation of the memory
throughput. Several tasks that are executed at the samagtstep may end up being
placed into a single SU. This conflicting usage of the memandwidth can be observed
in Figure 5.5a, wherein Tasks 1 and 2 are both placed in the S&Jrand executed at the
same timing step in Figure 5.1a.

The total occurrences of SU over-utilizations for each bemark have been re-
ported in Table 5.3 in the last group of columns. A relativielsgger amount of over-
utilization can be observed in the top 4 benchmarks, as siobiedules are more dense
due to the relatively higher amount of parallelism. More artpntly, the results show
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that SU over-utilization can be completely eliminated bgreasing the sharing degree,
that is, inserting more communication links into the togyloThis is because the addi-
tional communication links create flexibility in making dgtlacement decisions, which
in turn enables two concurrent tasks to be separated inioctiSUs.

5.5.2 Efficiency of Encoding-based Synchronization

We evaluate the proposed light-weight synchronizationtraeism by theoreti-
cally comparing the number of memory accesses necessitatbd proposed synchro-
nization to the number of memory accesses necessitatechireiconal spin-lock and
barrier synchronization schemes.

Theoretical comparison

For each of the three synchronization schemes two casesamdred: the case
wherein the producer thread updates the data earlier teaoaisumer thread, and the
case wherein the consumer thread needs to wait for the peotluead.

1. Spin-lock based point-to-point communication In a point-to-point commu-
nication, one pair of memory accesses are performed torofhiaidata in communication,
while another pair of memory accesses are performed to sateadlflag if the commu-
nication has been statically scheduled appropriately abttte read operation does not
need to wait for the write of data. If the producer and the comer threads compete to
accessdlag, however, the analysis in [38] shows that a tota2o# 1 bus transactions are
needed for theth thread to set and read tfiag. In this case, the total number of memory
accessesl(,;) needed to perform a spin-lock based communication amahgeads is:

T =2+ (2i+1)=2+n*+2n (5.3)

=1
This equation clearly shows that for a spin-lock based piifioint communica-
tion between two PEs, the total number of memory accesseledes 8.

2. Barrier based point-to-point communication A typical implementation of a
barrier can be done with two spin locks: one to protect a aanthat tallies the processes
arriving at the barrier and one to hold the processes urdildlt process arrives at the
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barrier. According to the analysis in [38], thth thread needs to perforBt + 4 bus
transactions, while the last process to reach the barrggrines one less. Thus, for a
communication involving: threads, the total number of memory acces$gg)(s:

3n?+ 11n

T =2+ Bi+4)—-1=1+ 5

=1
This equation clearly shows that for a barrier based pafgetint communication

(5.4)

between two PEs, the total number of memory accesses need8&d As can be seen,
since the barrier synchronization scheme is developeddbiatly synchronizing multiple
threads at a time, it is not efficient for a point-to-point slgronization.

3. Proposed light-weight synchronization The discussion presented in the last
section clearly shows that the memory accesses for synicatan are combined to-
gether with the memory accesses for data transmission. rdicggy, if the communi-
cation has been statically scheduled appropriately sothigatonsumer thread does not
need to wait for the producer thread, only a total of 2 memaneases need to be per-
formed. If an unpredictable run-time event causes the madihread to be delayed, the
consumer will be blocked once and unblocked later, with nedn® spin on a shared
variable. Consequently, the total number of memory aceq$%g) needed to perform an
encoding-based point-to-point communication is:

2 if producer arrives earlier than consumer,
Tar = (5.5)

3 otherwise.

Simulation results

To illustrate the performance improvement provided by theppsed synchro-
nization method more clearly, we randomly generate a sexguehl1000 point-to-point
communications, of which the average communication late&computed for each syn-
chronization scheme.

In general, the communication latency is a function of theroey access latency,
the total number of memory accesses involved in commuwicasis well as the number
of extra cycles spent in waiting for the consumer thread.unexperimental framework,
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Figure 5.8 Total communication latency, assuming the average numibextra cycles
spent in waiting for the consumer thread of 50

the memory access latency is varied from 5 to 30 cycles, Wiaverage number of ex-
tra cycles spent in waiting for the consumer thread is vdriaah O to 50. The results are
plotted in Figures 5.8 and 5.9. As can be seen, the proposethiynization scheme out-
performs both the spin-lock and the barrier synchroniredichemes in reducing commu-
nication overhead. This is because the proposed encodisgdisynchronization scheme
significantly reduces the number of memory accesses neadmulnt-to-point commu-
nications. As all the memory accesses involved in synchadidn and communication
need to be serialized through sequential bus transactibichwequire tens of cycles, the
significant reduction in the number of memory accessesttiireaplies a significant per-
formance improvement enabled by the proposed encodinedisgsmchronization scheme.

5.6 Conclusions

As computational resources may increasingly become uladl@iat runtime, a
fast and predictablexecution reconfiguratiostep is necessitated upon a resource vari-
ation, which in turn requires the development of advance®&MP topologies that can
effectively hide task migration overhead. To attain thiglgave have proposed a locally
shareable storage organization for adaptive multicordgslas. Through making each
storage unit directly accessible to a set of adjacent PBks tean be directly migrated
among these PEs without data movement. As such a local ghanoperty is indepen-
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Figure 5.9 Total communication latency, assuming an average menurgsa latency
of 10 cycles

dent of a particular topological structure, a set of faulkétant MPSoC topologies have
furthermore been proposed. Such topological structunedeaadopted as fixed-silicon
but dynamically reprogrammable MPSoC platforms, whereicisions regarding topol-
ogy selection and task placement can be made accordingatigtiam characteristics of
the application and reconfiguration requirements of théesysThe experimental results
confirm that the proposed MPSoC topologies can even halvexéheution time of paral-
lel applications, while the reconfiguration-induced datavements between adjacent PEs
can be completely eliminated.

The proposed MPSoC organization in turn enables the dewadnpof a light-
weight distributed synchronization scheme to acceleratencunications between adja-
cent PEs. Rather than employing a generic solution thatvallany producer to send
data to any consumer, we have developed a cost-efficientiaolthat differentiates
neighborhood-centered communications from long-diggaimnmunications and accel-
erates the former. The synergistic collaboration betwéencompiler, responsible for
statically identifying and encoding global data dependsnzetween memory accesses
involved in inter-PE communications, and the hardwareresiten of the conventional
storage organization provide a novel synchronization &éaork. This light-weight syn-
chronization mechanism allows dependent threads to fretyjuexchange data during
execution, in turn enabling the exploration of fine-grainpedallelism for applications
with strong dependences.
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The text of Chapter 5, is in part a reprint of the material apfiears irC. Yang and
A. Orailoglu, “Light-weight Synchronization for Inter-pcessor Communication Accel-
eration on Embedded MPSoCs,’ International Conference omgilers, Architecture,
and Synthesis for Embedded Systems (CASES), October Z@@7dissertation author
was the primary researcher and author of the publicatioh [93



Chapter 6

Architectural-level Fault Resilience

In the face of the projected high elevation of fault rafesit resilienceneeds to
be considered as a primary design constraint, especially&iems dedicated to mission
critical applications, such as server, defense, or medjgalications. The adaptive static
schedules discussed in Chapter 4 contribute to multicdiagbrkty by delivering pre-
dictable execution reconfigurability upon core failuregt % attain full fault resilience,
such schedules still need to be supported by an efficierttdatection mechanism.

As mentioned in Section 1.2, the development of an efficeunt tietection scheme
for future multicore systems imposes thi@d®llenges namely, attaining full detection
capability within a minimum level of result comparison aratdware duplication, maxi-
mally relaxing checking-induced synchronization corgisi with no reliance on any cen-
tralized hardware buffer, and minimizing checkpointingihead through strictly pro-
tecting memory against execution faults. Yet the reviewhefdtate-of-art in Section 2.2
indicates software-based techniques [76], although thayegtract program information
such as execution invariants and the range of executiotisésyuickly identify a certain
set of faults, are insufficient for providing full fault cawege. On the other hand, tradi-
tional duplication-based fault detection and recoveryraaphes, although they provide
high fault coverage, impose significant overhead eithehéckpointing execution results,
or in constantly synchronizing two threads for value chegkiTo make these approaches
suitable for future multicore systems, further overheatliction is still necessitated.

In this chapter, we first examine the fundamental causesedirtiitations of tra-
ditional duplication-based solutions, and then preseethrtique that exploits the idea of
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comparing and checkpointing at tkache-memorynterface to attain light-weight fault
detection and checkpointing. Subsequently, a set of pedoce optimizations, as well
as the technical support for incorporating the proposedtt tltection into a multicore
platform are discussed in Sections 6.3, and 6.4, respéctive

6.1 Full Resilience within Low Overhead

Given the projected high fault rate, the fundamental chgkein developing a
cost-effective fault tolerant multicore system is to miidethe overhead of fault detec-
tion and recovery simultaneously, as optimizing only ok sif the problem may result
in the complexity being shifted to the other. More cruciadlye to the diverse behavior of
fault manifestation, full fault coverage is still neceas#d. Accordingly, overhead reduc-
tion should not be attained through partial redundancyrtiegtes [32, 71, 88] that reduce
duplication overhead at the cost of significantly increasees of undetectable faults.

To attain full fault resilience, traditional approachepitally employ aduplicate-
comparestrategy to detect faults, as well asteeckpoint-rollbaclstrategy to restore the
computation to a previously saved cleameckpoint(composed of the processor state
and the corresponding memory footprint). Yet one fundaaiestistacle to the adoption
of such techniques has been the associated high compatisckpointing cost. More
specifically, traditional duplication-based fault toleca techniques perform the compatr-
ison and checkpointing process either at tingk-levelor at theinstruction-level In the
former case, a task needs to be duplicated on distinct caneseach duplicated copy
needs distinct memory regions. The operating system isajlgiinvolved in comparing
and checkpointing all the modified memory pages, thus inmgosignificant overhead. In
contrast, in the latter case, memory is prevented from beatigted by execution faults,
yet instruction results cannot be committed until theireomess has been verified, as
shown in Figure 6.1a. As discussed in Section 2.2, this fiighihchronized execution
model significantly increases the latency of a single irtsion, thus delaying the release
of hardware resources. The synchronization requiremamibe relaxed, however, at the
cost of duplicating each load/store value of the leadingatnin extra centralized buffers
[62, 72] for the trailing thread to access, as shown in Figui®.
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Figure 6.1 Differences between lockstep CMP, redundant multi-ttiiregy and the pro-
posed cache-based detection/checkpointing scheme

The examination presented above indicates that a costtigéefault tolerance
scheme needs to attain full detection capability loa@sely-synchronizeshanner wherein
two redundant threads can be executed independently, leovweith no reliance on siz-
able hardware buffers. An architectural examination iatiis thataches which serve
as temporary storage for the main memory, can possibly beadtito temporarily hold
unconfirmed execution results for fault detection purpoBgssharing a single data cache
between two redundant threads, one thread can directik¢he@xecution results of the
other, thus completely eliminating the necessity of dedddardware queues to capture
load and store values. In this way, one thread can end uprgratiead of the other in
execution, in turn effectively relaxing the execution dyramization requirements.

In an execution environment displaying elevated faultsatdeckpoints need to
be established more frequently so as to reduce the amouingbutation to be rolled
back upon a fault. Yet to prevent an application from spemdiost of its time and energy
taking checkpoints, checkpointing overhead should betbtrtontrolled. As discussed
before, significant complexity and overhead will be incdrirethe checkpointing process,
if unconfirmed data are allowed to be written into the main mmgm Accordingly, a
light-weight checkpointing scheme should strictly proteemory from being polluted
by execution faults, thus motivating the proposal of cheakiing at thecache-memory
interface. As shown in Figure 6.1c, while the cache hold®ofiomed results of the two
threads, these results are written to the lower level seomraghe memory hierarchy only
when the two threads agree. In this way, a checkpoint onlgsieebe established when
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a dirty cache line needs to be replaced, and onlypiteeessor statei.e., the program
counter and the register valuesgeds to be checkpointed.

6.2 Cache-based Fault Tolerance

In the face of diverse behavior of fault manifestation, theppsed fault detec-
tion scheme duplicates a task into two thread copies thatiamgltaneously executed on
different cores to detect not only transient, but also intermittert permanent faults.
Meanwhile, storage structures such as caches, register diel the main memory are
protected using ECC, while buses are presumed to be prdtasteg parity. This safe
storage is therefore utilized to store the checkpointshabéxecution can be recovered
to a clean state upon the detection of any computation fault.

In the remaining parts of this section, we discuss variopgets of the proposed
cache-based fault detection and recovery framework, dnetuthread execution, fault
detection, checkpointing, as well as execution recovery.

6.2.1 Run-ahead Property for Workload Balance

As two threads generate identical memory access patteths fiault free case, a
single data cache can be shared between them to achieve fi@eneresource utiliza-
tion. This organization furthermore enables the attairtroéa more balanced workload,
through ensuring that thieeadingthread never falls behind thErailing thread. The L
thread brings data into cache upon misses and initiatesckpbmting request upon the
replacement of a dirty cache line, while the T thread mandae$ detection through
reading and comparing the values written by the L thready @ L thread encounters
misses in the shared cache, while only the T thread needsipare store values, thus
effectively balancing the workload.

A noteworthy aspect of the outlined run-ahead requiremetiat it is not im-
posed on a cycle-by-cycle basis, but only for memory aceestralictions. In other words,
the two threads can execute non-memory access instrugtidapendentlyyet before
executing a load/store, the T thread needs to ensure thatdtnection has already been

'Some branch handling and exception taking techniques magssitate a few special purpose registers
to be additionally saved.
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executed by the L thread. This requirement can be fulfilleduph the use of aaccess
counterto globally track the difference in the memory access cquhéscounter value is
incremented whenever the L thread executes a load/stateleammemented whenever the
T thread executes a load/store. The execution of the T theestdlled if the value of the
counter is 0, thus fulfilling the run-ahead requirement.

6.2.2 Fault Detection

The proposed fault detection scheme consists of two pstase verification and
registerverification. The sharing of a single cache enables the Tathte directly check
the store values produced by the L thread with no need of atigaled hardware queues.
During execution, the L thread directly writes its resuli$oi cache, while each write
initiated by the T thread is changed intaead of the corresponding cache block and
a comparisonof the two values. Meanwhile, the two threads also recori tlegister
valuesindividually at each checkpoint, thus enabling a comparison of the twoegsor
states to detect execution faults. The combination o$tbeeverification and theegister
verification therefore ensures that any execution fault, hlas not been masked during
computation, will be detected eventually.

Traditionally a valid cache block can either bee€ari or *dirty’, depending on
whether its value has been updated or not. To support fatdtten, an extraverified
state is maintained so as to differentiate whether or nodiéhe in cache has been verified
by the T thread. A store initiated by the L thread would therefmake a cache block
dirty, while the same store later initiated by the T thread wouldenthe cache block
verified if the two store values match.

With this extra state, any mismatch in a pair of store valwes lwe directly de-
tected through the aforementioned cache access strateggnwihile, execution faults
that propagate through dependence chains to stibteessesan also be indirectly de-
tected. If an execution fault causes a store address to etfeog C,, to C,,, both cache
blocks (. and C,) would exhibit a mismatch in the number of store instructioas
shown in Figure 6.2. This mismatch typically would causéezitcache block to enter
a state contradicting with the run-ahead property, whighlwa monitored by the cache
controller. In sum, a “fault-detected” signal will be geatsd for any of the following
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Figure 6.2 Inconsistent access pattern caused by faults in storessiels

three types of fault observations:

¢ Disagreeing register valuesWhen the T thread reaches the checkpoint, its register
values do not match the register values recorded by the bhdhre

e Disagreeing store valuesWhen the T thread is about to writedaty cache block,
the value to be written does not match the value in the blockiyred by the L
thread.

e Inconsistent store sequencesAs the L thread always runs ahead of the T thread,
two cases will indicate the existence of a mismatch in steqeiences: 1) when the
T thread is about to execute a store, it misses in the cachibearorresponding
cache block is not in thedirty’ state, indicating that the L thread has not written
to that block yet (Figure 6.2a). 2) When the T thread readhesheckpoint, there
exists a dirty’ block in the cache, indicating that the T thread has notfiegtithe
data written by the L thread (Figure 6.2Db).

These three cases clearly confirm that the proposed techmign detect un-
masked execution faults that propagate through a depeaddai to either store values,
or store addresses, or register values at a checkpoint. dddaklts, on the other hand,
would not affect the correctness of the computation. Sudhllaétection capability in
turn enables the design of a light-weight checkpointing ratiback scheme.

6.2.3 Execution Checkpointing

Upon the detection of a fault, the computation needs to lienexbto a previously
saved clean state. éheckpointwhich records complete information about the computa-
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tion state, typically consists of processor state and theesponding memory footprint.
To reduce checkpointing overhead, however, the proposettéderance scheme main-
tains no extra copies for values written into memory. Indt@aly the processor state is
checkpointed whenever data needs to be written into mertiarg,ensuring the consis-
tency of the processor and the memory states.

In write-through caches, each store value needs to be wiitte memory, thus
requiring the processor state to be recorded on every stsireiction. This checkpointing
frequency can become intolerably high. In contrast, th@gsed fault tolerance scheme
employs a write-back cache, implying that a checkpoint oréeds to be established
upon a write-back, that isyhenever a dirty cache line is to be replacedearly, under
this policy the checkpoint frequency is determined by théelack frequency, which
is in turn determined by the cacls&ze associativity as well aghe replacement policy
Yet given the low checkpointing overhead of the proposeceisieh the checkpointing
frequency in high fault-rate systems can be adaptivelyescap so that upon a fault,
less amount of computation needs to be rolled back. Forriostaa checkpoint can be
established upon the executiongfinstructions, with the value ok’ determined by the
projected fault rate.

Checkpointing request initiation

As the L thread always runs ahead of the T thread and as a chdkendll not be
replaced if it exhibits a pending access of the T thread, tmyL thread will encounter
cache misses. Checkpointing requests therefore will avibayinitiated by the L thread
upon the replacement of a modified cache line. The processiar t® be checkpointed
is the current processor state of the L thread, that is, the computationt i which
the checkpointing request is initiated. To establish a isteist checkpoint, not only the
dirty cache line selected for replacement, but all the aodivty cache lines that have been
updated since the last checkpoint need to be written intoongm

The aforementioned checkpointing initiation strategyloaiilustrated more clearly
by considering the loop example presented in Figure 6.Jigdop, each array element
Ali] is first read at th¢; — 1)!" iteration, and then written at th& and(i + 1) iterations.
To simplify the analysis, we assume that the cache is a dineetpped cache with 8 lines,
with each line holding a single array element. As all the eaolocks are invalid at the
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for (i=1; i<MAX; i++) {
Ali] = Ali+1] + i;
Ali-1] = 2*i;

}

Figure 6.3 Loop with cache block dependences

beginning of loop execution, the execution of the first sexations { = 1 to 6) causes
the 8 cache lines to be filled witH[0], ..., A[7], respectively. At thg' iteration, A[S]
needs to be brought into the cache and to repl§iog Since the value ofi[0] has been
modified, this block needs to be written back into memoryeenigring in turn a check-
pointing request. The processor state to be checkpointid isomputation point when
the L thread is about to replac0] (at the7' iteration). Accordingly, not onlyi[0], but
also the other dirty cache block4[1], ..., A[6], should be written into the memory.

Checkpoint establishment

When the L thread reaches a checkpoint, the T thread is rstilie process of
verifying store values. To monitor whether the T thread hsg seached that checkpoint,
the proposed scheme tracks both the PC value and the diffeteetween the number
of memory accesses of the two threads. Specifically, if butbaids have performed the
same amount of memory accesses (i.e., the value ajlti®l access countas 0), the
PC of the T thread is compared against the PC of the checkpnoitite fault-free case, a
match of the two PC values, indicating the arrival of the Te#tr at that checkpoint, can
always be obtained. In contrast, if no match has been rapbgfore the T thread issues
a subsequent load/store, an execution fault will be redorte

Once the T thread also arrives at the checkpoint with noveteng error detec-
tion, a new checkpoint is established by saving the procedate into reliable storage
(either a dedicated hardware buffer or a fixed location innnmaémory) and copying all
verifiedcache lines into memory. However, this copying would geteeasburst of mem-
ory requests that may appreciably degrade system perfaendio overcome this issue,
we employ the idea of making these lin@schangeableoriginally proposed in [42] for
single processors. Specifically, an extretired’ state is maintained for each cache line,
and all the Verified cache lines are marked asetired’ once the T thread reaches the
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checkpoint. The use of this extra state enables a distoibbati the write back ofetired
blocks: during subsequent executiometired block is written back into memory upon a
replacement of that block, or upon the first subsequeité-hit on that block.

6.2.4 Execution Recovery

As the memory is strictly protected against execution faulte recovery process
is highly efficient, attained through recovering only thegessor state and invalidating
only the cache lines that have been modified since the laskpbet, namely, thelirty
andverified blocks. In contrast, no invalidation is needed if a cachelbis either in
thecleanstate, indicating no update whatsoever, or inrdtged state, indicating that the
block was updated before the last checkpoint. Once thisidatéon process is completed,
the register values as well as the PC value saved at the kditpbint can be reloaded so
as to resume the execution of both threads.

The aforementioned strategy effectively rolls the exeruback to a previously
saved clean computation state, thus completely recovariransient or intermittent fault
if its fault duration has elapsed. On the other hand, if duthre re-execution same fault
occurs for a second time, an execution migration step issséeged in the recovery pro-
cess. The band-level reconfiguration approach outlinedhiapfr 4, can be utilized to
isolate both suspect cores. In this case, the proposedteehalso effectively reduces the
cost of task migration, which can be accomplished througiraing the processor state
and committingetired cache blocks into the main memory. During subsequent exsgut
the two cores can be separately paired with healthy coreghievee a complete fault iden-
tification. Upon a complete differentiation of the faultycetine fault-free core, the latter
can be pulled back into execution through another band-tegenfiguration process.

6.2.5 Cache State Extension

The complete cache state diagram supporting fault deteatieeckpointing and
recovery is shown in Figure 6.4. Each cache block can be iro&fiye possible states:
the three traditional states ofvalid, cleananddirty, as well as the two extra states of
verifiedandretired. The transitions among these five states accomfiishfundamental
functions of the proposed fault tolerance scheme:
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Figure 6.4 Cache states extended for fault detection and checkpginti

Fault detection: A store performed by the L thread will make the correspondiache
block dirty, while the same store performed by the T thread will make #uhe block
verifiedif the two store values match. A fault will be reported if thveot store values
differ.

Checkpoint initiation: Theinvalid, the clean and theretired states are marked as-
placeable indicating a checkpoint-free replacement for any of tHaeeks. In contrast,

if a dirty or averifiedblock is selected for replacement upon a cache miss, a nesk-che
pointing request will be initiated by the L thread.

Checkpoint establishment: Once the T thread reaches a checkpoint and no fault has
been reported, all theerifiedcache blocks will be marked a®tired’. During subsequent
execution, a replacement or the first subsequent writefhitetired cache block requires
the data to be written into memory, which in turn makes thatktlean

Execution rollback: Upon the detection of any fault, alirty andverifiedcache blocks
will be marked asnvalid.

6.2.6 Requirements on Memory Access Order

Clearly, the aforementioned fault detection and checkpainsemantics can be
naturally preserved if each core performs the memory aesess-speculativelyand
in-order. Yet it turns out that these semantics can also be preservad iexecution
environment with out-of-order memory accesses. In fad,féult detection semantics
only necessitate the stores to a single cache block to berpeetl in order. Clearly,
this requirement is already obeyed by every processor, i@nout-of-order execution
mechanism is employed. In comparison, as read operationmtpollute the cache
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content, the proposed scheme forgoes the monitoring obtiek Values, and hence each
core can perform loadgut-of-order Yet it is more desirable for each core to perform
loadsnon-speculativelgo that between two consecutive write operations to a soaglee
block, the total number of loads to the block remains idexhtic

6.3 Execution Asynchronicity Enhancement

While the proposedual-core-shared-cachault tolerance scheme effectively re-
laxes thread synchronization, the maximum run-aheadtaffsthe L thread and hence
the attainable performance benefit is constrained by thehsgnization requirement at
each checkpoint as well as the cache-line dependencesdretivetwo threads. To relax
these constraints, we outline in this section two perforreaenhancement techniques,
namely, arelaxed thread synchronization modak well as a cache blodelective split
capability.

6.3.1 Relaxed Thread Synchronization at Checkpoints

Because of the run-ahead execution strategy, once the adliméiates a check-
pointing request, it typically needs to await the T threadgtablish the checkpoint. In a
straightforward case, a new checkpoint can be establisjnechronouslyy forcing the
L thread to await the completion of the fault detection pescand the isochronism of the
two threads. Both threads will simultaneously be alloweprticeed upon the completion
of the checkpointing process.

The strictly-synchronizeadtheckpointing strategy offers a benefit in that at any
time only a single checkpoint needs to be maintained, howata cost of unnecessarily
forcing the L thread to await the T thread to fully catch upctémtrast, if the T thread has
verified the correctness of the data to be replaced and nomeadeaccesses are pending,
the L thread can proceed to replace the block. The data topbecesl, however, should
be stored in a dedicated buffer rather than being writtelk b#o memory immediately.
Meanwhile, the old checkpoint cannot be overwritten, sitigenew checkpoint has not
been established yet.
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Figure 6.5 Strictly vs. loosely- synchronized checkpointing

The differences between the two synchronization schemebeabserved more
clearly in Figure 6.5, wherein both strategies are applethé loop example shown in
Figure 6.3. A checkpointing request is initiated when théntedd encounters the read
miss onA[8] at the7"" iteration. In the strictly-synchronized checkpointingneme, the
L thread waits until the T thread also reaches this comparigtoint, and then writes
A[0] into memory and bringsl[8] into the cache. In contrast, in the loosely-synchronized
checkpointing scheme, the L thread only needs to await theekad’s verification of the
correctness ofA[0], that is, the completion of the store instruction at tleiteration.
Then, the value ofA[0] and the processor state of the L thread will be stored in safe
storage, and the L thread will proceed to bridg] into the cache.

In sum, the loosely-synchronized scheme reduces the waitire of the L thread
by allowing it to proceed beyond a pending checkpoint, yeessitates extra storage to
record the data to be replaced and the processor state ofttiredd. More importantly,
if the checkpoint is still pending to be established, the le#td should not be allowed to
write to the cache, as doing so would either overwritgiry cache block or change a
clean/verifiedblock todirty, both of which would cause a fault to be reported by the T
thread. These two potential semantic violations constraarl thread to proceed only in
a restricted manner without performing any cache write ajpenm, if the new checkpoint
is still pending to be established.

6.3.2 Selective Split Capability of Cache Blocks

While sharing a single data cache between two duplicatezhtisr delivers cost-
effective fault detection and checkpointing, this shardtogs create a critical issue of
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pseudo cache block dependenogkich may force the L thread to constantly await the
T thread. Taking the loop presented in Figure 6.3 for exagddahe L thread may run
one iteration ahead of the T thread, two types of pseudo digpees may be created.
The L thread writes4[i| before the T thread reads the old value AR dependenge
thus causing the T thread to obtain an incorrect value, ommites A[: — 1] before the T
thread checks the old value (AW dependengghus causing the T thread to incorrectly
report the detection of an error.

Although both types ogbseudo cache block dependencas be preserved by forc-
ing the L thread to await the T thread, this extra synchrdmraequirement may reduce
the performance benefit that could be obtained byrtileaheadexecution model. An-
other possible yet exceedingly inefficient solution (eryplbby redundant multithreading
processors [72]) is to buffer each load/store value for thileréad to access. In contrast,
our work aims at attaining execution asynchronicity witmimimal hardware duplication.
Instead of buffering all the load and store values, we pregosiuplicate a cache block
only upon the detection of a pseudo dependence, throughpioading aselective split
capabilityinto the cache design; whenever a block dependence is défebe L thread
is allowed to update the regular cache block, while the oldevés placed in a victim
cache for the T thread to read or to verify. The cache accegsatier is thus extended to
incorporatethree functions:detectingooth types of cache block dependencgiitting a
block into two versions, anthergingthe two versions if later the T thread catches up to
the L thread in the execution progress.

Split Condition Detection

The fundamental issue encountered in implementingéhective split capability
is the detection of a pending read or write of the T thread. [@tter case can be easily
detected through monitoring the block statedigty state indicates the existence of a
pending write of the T thread. The detection of a pending tzadbe attained through a
pure dynamic technique, through maintaininggad counterfor each cache block. The
counter value, initialized taero upon a store by the L thread, is incremented upon a
load by the L thread and decremented upon a load by the T thiidealL thread is only
allowed to overwrite a cache block if the corresponding iadhter is zero. If the counter
is non-zero, however, a pending read of the T thread is de=tect
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Figure 6.6. Adding asplit state to cache state diagram

Cache Block Split and Accesses

Upon the detection of a pending read/write by the T threael cdthe block can
be split into two if there exists a free entry in the victim bacthe old value will be saved
in the victim cache for the T thread to access, while the Latirean proceed to overwrite
the block in the regular cache. To differentiate such blpaksextrasplit state is added to
the cache state diagram, as shown in Figure 6.6. A writeateti by the L thread would
cause a block to enter thsplit state if the current state dirty, or if the current state is
cleanor verifiedyet the read count is nonzero. This state diagram exhibitsamsition
from theretired state to thesplit state, since a write-hit to i@tired cache block requires
the data to be first written into memory, thus making the bidelan

Once a cache block has been split into two, thread execuéicorbesndependent
in that each thread has its own place to write, and each thweattl read the data written
by itself. This independence furthermore implies that thiénlead can issueultiple
write operations ahead of the T thread to a single cache plduke only two versions of
data need to be buffered. More precisely, if the number aftantling write operations
is k, the proposed technique only needs to buffer(fievalue for the T thread and the
k' value for the L thread. The intermedidte- 1 values, as they have been overwritten,
are never written back into memory and hence need no conoparfer fault detection.
Even if a fault in thesé — 1 values propagates through load instructions to subsequent
computation, the fault will also propagate to subsequemtesinstructions if it is not
masked during execution, and will eventually be detecteckahose store values are
compared.
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Merge Condition Detection

While the selective split capability can effectively egiarthe run-ahead offset of
the L thread, it also increases the latency of the T threadse/laccesses to a split block
need to be redirected to the victim cache. To reduce suclheadrand hence reduce the
required size of the victim cache, a victim cache block stidoé deallocated, if the T
thread catches up to the L thread in execution.

Accomplishment of the merging capability requires theritbheead execution off-
set to be monitored so as to determine whether two split dgiees are produced by the
same store of the two threads.v&rsion counters therefore added to each block in the
victim cache The counter value, initialized tbupon the split of a cache block, is incre-
mented upon a store by the L thread and decremented uporezbsttine T thread. If a
store by the T thread changes the version counter valdghe T thread will additionally
trigger a comparison of the two split data copies. If the tatues match, the entry in the
victim cache will be deallocated, while the correspondieguiar cache block will be set
to the ‘verified state, as shown in Figure 6.6. It needs to be noted that$rstiiution, two
split blocks are only checked for merging possibility upost@reby the T thread, since
read accesses would not alter the value of the version cooidevictim cache block.

Once two split blocks are merged together, the read couataevn the regular
cache should be set to the difference between the read colitite two threads. As
merging is checked upon the completion of a store of the Tathrthe read count of the
corresponding victim cache block is always 0, implying thatead countemeeds to be
maintained for a victim cache block. Accordingly, fosplit cache block, only the read
count of the L thread needs to be maintained, and the readerotatue remains constant
during the merge process.

Block Split upon a Clean Replacement

So far, we have discussed the approach to split a cache bjmokthe detection
of a WARor WAW cache block dependend&nother situation that also necessitates the
split of a cache block is when the L thread intends to repladeanor retired block, yet
the old value is still pending to be read by the T thread. Reptpacleanor retired block
does not create a checkpoint request. However, if the L dhieallowed to replace the
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data, a pending read by the T thread would encounter a cadsewhich is considered as
an “inconsistent store sequence” case by the fault detestibeme discussed in Section
6.2.2.

To preclude this potential semantic violation, whenever tththread selects a
cleanor retired cache block for replacement, the old value needs to be writti® the
victim cache if the read counter of that block is nonzero. ¢teesponding read count
also needs to be written into tiversion countefield of the victim cache so that the T
thread can decrement the read count upon subsequent remsescand the block can be
freed once the counter becomes 0.

6.3.3 Synchronization Condition Analysis

The two execution asynchronicity enhancement techniquaisle the two threads
to be executed independently most of the time. In this pmydbe T thread is forced to
await the L thread if and only if the value of tlaecess countes 0. The L thread, on the
other hand, is forced to await the T thread in the following fhases:

1. The L thread tries to execute a load/store, whileaiteess countaeaches its upper
bound.

2. The L thread tries to read a cache block, while the cormdipg read counter
reaches its upper bound.

3. The L thread tries to write a cache block, while a checkip@mpending to be
established.

4. The L thread tries to split a cache block, while the victewlze is full.

5. The L thread tries to updatesplit cache block, while the correspondimgrsion
counterreaches its upper bound.

These five cases constrain the maximum run-ahead offseg bfttiread. Nonethe-
less, except for the third one, the occurrence frequendyeofémaining cases can be re-
duced by increasing the sizes of the counter and/or thewidiche. Yet thisincrease does
not necessarily lead to an improvement in the average exadirne of the two threads.
While the conditions for blocking the L thread are relaxethrger counter and/or victim
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cache also results in more cache blocks being split, thusimguhe T thread to spend
more cycles accessing the victim cache.

The five conditions for blocking the L thread contradict thedition for blocking
the T thread, implying thabho deadlock would occur in the fault-free case. However,
in a faulty case a deadlock condition may occur due to a migmiat memory access
patterns. For instance, execution faults may cause thedadhto perform a number of
extra read accesses and hence block the L thread upmadacountereaching its upper
bound. This blocking condition cannot be cleared by the &dtr as it would not perform
these read accesses. Meanwhile, the T thread would alsoteblonce the value of the
globalaccess countereaches 0, thus creating a cyclic waiting condition. Thisdition,
however, would never occur in the fault-free case, sinceTlthieread is always able to
unblock the L thread if the latter is blocked on any read ceunin sum, the proposed
cache controller will report an error whenever it detectg@ic waiting condition, in turn
causing the execution to be rolled back to the most recerkgloant.

6.4 Fault Tolerant MPSoC Organization

When applying the proposed cache-based fault toleranaarseho a multicore
platform with multiple applications executed concurrgntioth the achievable perfor-
mance and design complexity are highly influenced bynttudti-core, multi-threadex-
ecution environment. In this section we specifically exanthree issues, namely, the
impact of memory hierarchy on the checkpointing stratdgy,mpact of inter-thread de-
pendences on fault detection semantics, as well as the tropawulti-threading on the
overall execution throughput.

6.4.1 Checkpointing Tradeoffs in Multi-level Cache Design

An important design decision for systems with a multi-lesethe hierarchy is to
determine the interface at which checkpoints should beébksted. If an MPSoC con-
tains two levels of caches and both the L1 and the L2 cachelsecahared between a pair
of cores (such as in the Intel Hyperthreading architectatedckpoints can be established
at either the L1/L2 interface or the L2/memory interfacetha former case, only the L1



115

e

Verified
L2 cache | gata only

7777777 I7 ____ Checkpoint

L1 extended for comparison & split,
Data verified before written to L2
Checkpoint at L2/Mem interface

Figure 6.7: Hybrid detection and checkpointing policy in multi-lexeches

cache design needs to be extended to include the extra Biafesit detection, check-
pointing, and block split. In contrast, if checkpointinggerformed at the L2/memory
interface, both the L1 and the L2 caches may contain dirtgkdavhen a checkpointing
request is initiated. To verify all these blocks, result gamson and checkpointing need
to be performed in both caches, which in turn requires amesxte of both cache designs
to include the extra states for fault detection, checkpogniand block split.

While checkpointing at the L2/memory interface signifitaméduces the check-
pointing frequency and consequently the overall checkpwroverhead, it also increases
the complexity of the L2 cache design. To reduce this oveth&a propose hybridfault
detection and checkpointing solution, shown in Figure &lére, onlyverified data are
allowed to be written into the L2 cache, while a checkpoigtiaquest is initiated when
an L2 cache line is written to the memory. In this way, only tlecache needs to be
extended to implement fault detection and block split. TReache, which needs neither
a victim cache nor any value comparison, only contains [datkhefour possible states,
namely, thanvalid, clean, verifiedandretired states. This hybrid checkpointing strategy
therefore can significantly reduce checkpointing freqyesmithin a minimum hardware
extension of the L2 cache design.

6.4.2 Checkpoint Coordination for Inter-thread Communications

When a set of dependent tasks are concurrently executed udtizone platform,
communication data need to be protected from being pollbteéxecution faults. If



116

Core | Core Il Core Il Core IV

‘" ll l H

l Core | Core Il
b. 3. M b —
1.7 | |
Cach Cac Cac e Ca he I !
Core IV Core lll

(a) Pairwise: 2 cores execute (b) Ring—sharing: 4 cores execute (c) Layout of a 4-core MPSoC
4 threads concurrently 8 threads concurrently with locally shared caches
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inter-core communications are performed through an op-asbiwork, the checkpointing
scheme outlined in Section 6.2.3 can be extended so thatchmbiating request will be
initiated upon the communication of any modified data. s thiay, the dependent tasks
can be checkpointed and recoveredependently No domino effectvould be induced
in the recovery process, since execution faults producedétask cannot propagate to
dependent tasks through a communication chain.

In shared memory architectures, the protection of comnatioic data against
execution faults therefore requires the cooperation optbposed fault tolerance scheme
with cache coherency protocols. To preclude faulty datenfbeeing propagated among
various cores, the ownership information maintained byteeoency protocol is updated
only when the T thread verifies the correctness of a valué jshahen a write of thad
thread causes a transition from ety or thesplit state to theverifiedstate in Figure 6.6.
Meanwhile, a third core that tries to modify a cache blocktigh the cache coherency
protocol should be prevented from polluting the cache sta&pecifically, a third core
should not be allowed to modify a cache block, if the blockasging to be verified by
the T thread, or if the block is pending to be read by the T tthresccordingly, in the
proposed fault tolerance scheme, a write initiated by tkbe&@oherency protocol is only
performed if the corresponding cache block is at neithedttg nor thesplit stage, and
the block exhibits a balanced number of read accesses fetwththreads, i.e., the read
counter is 0. If any of these conditions fails to hold, the tetd is forced to await the T
thread until all these conditions are fulfilled, and thenwige operation is triggered.
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6.4.3 Throughput Enhancement through Multi-threading

The analysis in Section 6.3.3 indicates that the two perdmce enhancement
strategies reduce the frequency of execution synchroaizdtut cannot fully eliminate
it. Obviously, the time that the two threads spend on waitiag be utilized to execute
another independent process/thread. In other words, gsa®the corresponding cores
offer a multithreading capability and a light-weigtantext switctbetween independent
threads can be attained, ttieoughputof the target multicore system can be improved.

An important benefit of thelual-core-shared-cachiault tolerance scheme is its
potential in minimizing the context switch overhead betwg@eocesses/threads. Each
core in a dual-core system can be employed to simultane@xglgute two processes,
specifically, the L thread of one and the T thread of the otlfi¢ghe L thread needs to be
blocked, the core can switch to execute the T thread of ther gitocess, and vice versa.
More importantly, the contexts of these threads can be oeghtseparately in different
caches, thus enabling context switches to be performedneitonsequent interferences
in the cache. Thidual-core-dual-cacherganization is concretely shown in Figure 6.8a.

The aforementioned 2-core-4-thread organization can teettli employed in a
multi-core platform for throughput enhancement, througttiponing the cores into a set
of disjoint clusters, with each cluster containitwgp cores. Meanwhile, this organization
can also be extended intaiag-sharingmanner such that the L and the T threads of the
i" process are executed on the and the(i + 1) cores, respectively. In this way, an
n-core MPSoC can be used to concurrently exe@uteedundant threads, as shown in
Figure 6.8b. The cache that holds the context ofith@rocess is shared between tHe
and the(i + 1) cores. As this sharing is only required between adjacemisgtine extra
interconnects required on the chip can still be organized iocalized manner. As an
illustrative example, a 4-core MPSoC withiag-sharingcache organization is presented
in Figure 6.8c.

Another noteworthy aspect of the aforementioned ringislgasrganization is its
potential fault identification capability. Typically, up@ result mismatch, the exact faulty
version of computation cannot be directly identified. Hoarwn the ring-sharing orga-
nization, thei’* core is employed to execute two different processes, wremdts are
respectively compared against the- 1)* and the(i + 1) cores. If a result mismatch
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Figure 6.9 Hardware extension to traditional cache

has been detected for each process;theore can be directly identified as faulty under
a single fault assumption. This extra information inheiiarfault detection can thus be
exploited to differentiate transient and permanent faantsto further develop an adaptive
fault recovery scheme accordingly.

6.5 Cache Access Control Implementation

6.5.1 Cache Access Control

To implement the proposed fault detection and checkpajrdéocheme, the tradi-
tional cache design is extended, as shown in Figure 6.9. Al fuflg associative victim
cache is employed to implement the split capability. A snoallinter is added to each
regular cache block to record the read count, and to eadimvietche block to record the
version count. Meanwhile, thealid and thedirty bits used in a traditional cache are re-
placed by &Dirty-Shared-Verified (DSV)vector that records block states. The encoding
presented in Figure 6.9 is assigned in such a way thabtbé is on if and only if the
block is at thedirty or thesplit state. As a result, when the T thread reaches a checkpoint,
the cache controller can globally check whether any bloak thedirty or thesplit state
for fault detection purposes. This encoding scheme fumtbee enables the use of the
following logic expressions to check whether a block hasspdit and whether a block
is replaceable
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Algorithm 3 L thread: write hit

1: if a CKPT is pendinghen
2:  Stall the thread

3: else
4 Write current value into memory iBL K},;; state =retired
5 if BLKj},;, state =split then
6: version countek= version counter 1
7:  else ifread counters O then
8 Write current value into victim cache
9 version counter= 1
10: BLK;,; state< split
11: else{BLK}; state# split and read counter= 0}
12: BLK;,;; state< dirty
13: endif

14.  Perform regular cache write
15: read counter=0
16: end if

Split = D-V (6.1a)
Replaceable= D + SV (6.1b)

In the proposed framework, the L thread is allowed to perfarraad/write if the
globalaccess countenas not reached its upper bound, while the T thread is alldaed
perform a read/write if the counter value is nonzero. Basedhe values of the DSV
vector and the counter, all the unblocked read/write aesesseach cache block can be
controlled as follows:

e Miss by the L thread: If an non-replaceablédlock is selected for replacement, a
checkpointing request is initiated; otherwise, a reguithe replacement is per-
formed, while the old value needs to be first written into tleéimn cache if the read
counter of that block is nonzero.

e Read hit by the L thread: A regular cache read is performed. The block state
remains constant, while the read counter is incremented by 1
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e Write hit by the L thread: The control logic, shown in Algorithm 3, is ex-
tended to implemenhree functions, namely, the loosely-synchronized checkpoint-
ing scheme (lines 1-2), the additional writeback of retinéatks (line 4), the se-
lective split capability (lines 5-10), as well as the blogidate for fault detection
purposes (line 12).

e Miss by the T thread: A faultis reported upon a write miss, and upon a read miss if
the corresponding data is not in the victim cache. It the hetsdn the victim cache,
the version countefused to record the read count in this case) is decremented by
1, and the victim cache entry is released if the counter vethaages to O.

e Read hit by the T thread: If the block has been split, the read operation is redi-
rected to the victim cache; otherwise, a regular cache eaeriformed, and the
read counter of that block is decremented by 1.

Algorithm 4 T thread: write hit

1

2:

10:
11:
12:

13

14:
15:
16:
17:
18:
19:

20

© o N o g k~w

. iIf BLKjy; state =splitthen
Write to victim cache
version countek= version counter-1
if version counter 0then
Perform a regular cache read
if T value= L valuethen
Report a fault
else
Release victim cache entry
BLKj},;, state< verified
end if
end if
. else{ BLKy},;; state# split}
Perform a regular cache read
if BLK},; state£ dirty or L value+# T valuethen
Report a fault
else
BLK,,; state«< verified
end if

:end if
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e Write hit by the T thread: The control logic, shown in Algorithm 4, is extended
to implement fault detection and the selective split caligbiA write operation
is changed to a read and a comparison, and a fault is repathtent epon a value
mismatch or upon an access sequence mismatch (lines 5-I6)14Accesses to
a split cache block are redirected to the victim cache (lines 1-B)lewthe block
merge condition is checked once the version counter equéies 4-12).

6.5.2 Implementation Efficiency

The aforementioned access strategy can be implementedresdiastate machine.
While a fair amount of complexity is added to the logic for trolling misses and write
hits, these accesses are not on the critical path. In contragxtra condition is intro-
duced for the performance-critical read hits of the L thremutl the read hits of the T
thread can be directly controlled based on the DSV vectargussie condition shown in
Equation (6.1a). The performance overhead introduced igystate machine is practi-
cally nonexistent since the decoding of the DSV vector capdyormed in parallel with
the comparison of tag values for hit/miss checking. In faaly the accesses tosplit
block performed by the T thread will be delayed by one clockleysince these reads
need to be redirected to the victim cache.

The organization presented in Figure 6.9 indicates thgptbposed cache design
can be implemented within a limited amount of extra hardwaFgpically the victim
cache only needs to contain 16 blocks. A 2-bit counter woulffice to record either the
read count or the version number, if the corresponding catdek is not continuously
read/written within a short period. The 3-bit DSV vectorleses thevalid and thedirty
bits in the traditional cache. As a result, for @R byte L1 data cache withK blocks,
the extra storage required by the proposed fault toleragatenique equal§3 — 2 + 2) x
2K + 32 % 16 = 6.5K bits. Redundant multi-threading processors [31], in camspa,
need to not only enlarge the reorder buffer, but also empimget centralized queues (so
as to record load values, store values, and branch outcomithsy total size of( 128 +
20 4+ 96) * 32 = 7.6 K bits according to the queue sizes reported in [31].

The proposed fault tolerance technique is also more powedrhaat-friendly than
redundant multi-threading processors. The centralizedigs! [31] therein are constantly



Table 6.1 Impact of cache configuration on miss rate

Miss rate %

16K-dm| 16K-2w (L/C) | 32K-2w (L/C) | 32K-4w (L/C)

adpcm| 0.203 | 0.203/0.203| 0.198/0.198| 0.198/0.198
epic 5.340 | 4.104/4.421| 3.898/4.049| 3.793/3.899
gsm 0.023 | 0.006/0.006| 0.003/0.003| 0.003/0.003
mpeg2| 4.753 | 0.621/3.644| 0.264/1.482| 0.253/0.606
art 43.00 | 42.76/42.81| 42.76/42.77| 42.76/42.77
eon 2.962 | 1.004/1.129| 0.334/0.405| 0.113/0.162
facerec| 13.61 | 8.051/8.119| 7.586/7.651| 7.235/7.278
gzip 4,782 | 4.437/4.459| 3.930/3.938| 3.936/3.897
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accessed by both threads, thus not only consuming a largardarmb energy, but also
ending up becoming thermal hotspots which may degrade tlabitidy of the entire
chip. In contrast, the proposed fault tolerance techniguyg@mploys a single centralized
structure, i.e., the victim cache, which is accessed salblgn the corresponding cache
block has been split. The remaining extra storage, i.e Gohaters and the DSV vectors,
is distributed into every cache block. Each cache accegsnadds to read several extra
bits, thus refraining from imposing significant power or heaerhead on the overall
system.

6.6 Simulation Results

To evaluate the proposed fault detection and checkpoistthgme, we have per-
formed a set of experimental studies on tediabench56] benchmarks, as well as
a number of graphics and compression programs selectedtire®PEC 200Gset, as
for such application domains, reliability has been idestifas a critical concern. The
entire SPEC2000 programs are executed umelginputs so as to collect checkpoint-
ing information under different execution phases whilesggimulation time. As these
benchmarks display diverse cache access behaviors withratess ranging from 0.01%
to 43%, they constitute a representative workload set faluating the proposed cache-
based fault tolerance scheme.

The proposed fault tolerance scheme is evaluated in a duelexecution envi-
ronment. In this way, we can significantly reduce simulatomplexity while thoroughly



Table 6.2 Impact of cache configuration on checkpointing frequency

Checkpointing frequency(insts/ckpt)
16K-dm| 16K-2w (L/C) | 32K-2w (L/C) | 32K-4w (L/C)
adpcm| 3346 3346/ 3346 -/ - -/ -
epic 1.755 | 24.05/62.75| 65.31/137.4| 89.59/186.5
gsm 121.6 | 1229/1326 | 117327/117327 234653/234653
mpeg2| 1.769 | 22.48/149.1| 99.67/506.1 | 418.5/2140
art 1.905 | 3.184/3.938| 6.238/7.992 | 6.810/8.769
eon 0.903 | 5.393/74.51| 6.773/136.7 | 246.7/1693
facerec| 0.963 | 10.62/16.52| 22.21/37.50| 31.40/81.46
gzip 1.839 | 9.791/13.10| 17.49/23.72| 40.62/72.98
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evaluating the checkpointing frequency, the writebacklogad, and thread performance,
with the only exception being the performance overheadttzgtbe induced by the cache
snooping protocol. The SimpleScalar toolset [6] has be¢enebed to model two con-
currently executed threads, with dedicated issue loggister file, and functional units
provided to each thread. Each core is a single-issue, iergnebcessor, while a 4K-entry
BTB and a 4Kgsharebranch predictor are shared by the two cores. An &oibal ac-
cess counters used to keep track of the execution offset between the tweats so as
to ensure that the L thread always runs ahead of the T threadnobel the proposed
cache controller, the cache design is extended to incapdine extra states shown in
Figure 6.6, the checkpointing capability and the blocktsmpability. In line with the
fault tolerance literature [62, 31], we focus our experitaéefforts on measuring the
performance impact on the system.

6.6.1 Checkpointing and Writeback Frequencies

The checkpointing frequency of the proposed fault toleeasaheme is determined
by the frequency at which a dirty cache line is replaced, wisdn turn determined by
the cachamiss rateand thereplacement policy To evaluate such an impact, we retain
the remaining architectural parameters, while simuladimiistinct configurations for the
L1 data cache: 16K directly mapped and 2-way associative,2Z®&ay and 4-way asso-
ciative. For each set-associative cache, we furthermoralate two distinct replacement
algorithms: the standaildRU, and aClean-firstpolicy that selects clean cache lines over



Table 6.3 Overall writeback rate
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Writeback rate % (W B, + W B,,i)/ RE Fyo141)

16K-dm| 16K-2w (L/C) | 32K-2w (L/C) | 32K-4w (L/C)

adpcm| 0.023 | 0.024/0.024 -/ - -l -
epic 2.149 | 1.773/1.728| 1.695/1.681| 1.679/1.664
gsm 0.280 | 0.081/0.078| 0.000/0.000| 0.000/0.000
mpeg2| 0.579 | 0.295/0.160| 0.174/0.137| 0.030/0.125
art 15.37 | 15.34/15.33| 15.33/15.33| 15.33/15.33
eon 8.309 | 4.857/0.553| 4.351/0.386| 0.288/0.175
facerec| 9.315 | 6.447/6.171| 4.834/4.767| 4.317/4.115
gzip 4.048 | 2.996/2.872| 2.746/2.631| 2.432/2.235

dirty lines. The results on miss rate and checkpointingueggy are respectively listed
in Tables 6.1 and 6.2, with a pair of values listed for eackassbciative cache so as to
clearly show the impact of replacement policies.

It can be easily seen from Table 6.2 that for most cases, tpoped scheme only
imposes a checkpoint frequency of less than 1 per 10,00ugisins. Mediabencthpro-
grams usually exhibit a smaller checkpointing frequenoy édpcmno checkpoints are
ever taken for the latter two cache configurations) tBREC 200®enchmarks, since the
L1 cache is able to absorb most of the load/store requesitsgdexxecution. The check-
pointing frequency of directly-mapped caches is usualghhdue to the large amount
of conflict misses. Increasing the associativity from di@@pped to 2-way, even if it
cannot appreciably reduce the miss rate for some applica{such asdpcm epicand
gzip), can still sizably reduce the number of checkpoints by exiprately an order of
magnitude. Moreover, for set-associative cachesCllean-firstreplacement algorithm
can significantly reduce the checkpointing frequency byXxtimes, yet at the cost of an
increased miss rate, especially for 2-way associativeasachhis is because the selection
of a clean line over a dirty line for replacement may ovemitite clean data that has just
been brought into the cache. However, exceptnipeg? the miss rate increase of the
remaining benchmarks is negligible.

Compared to a traditional write-back cache, the proposeldecaeeds to write a
modified block back into memory not only uponeplacement but additionally upon a
subsequenirite-hit if the block is at theetired state. To show this impact, Tables 6.3
and 6.4 respectively report the overall writeback rate dkagehe ratio of the extra write-



Table 6.4 Checkpointing-induced writeback increase

Writeback increasé{ B.,./W B,,)

16K-dm| 16K-2w (L/C) | 32K-2w (L/C) | 32K-4w (L/C)

adpcm| 0.017 | 0.016/0.016 -/ - -l -
epic 0.043 | 0.062/0.042| 0.075/0.071| 0.064/0.060
gsm 26.17 | 30.62/30.40| 0.514/0.514| 0.630/0.630
mpeg2| 0.678 | 1.053/0.233| 0.401/0.132| 0.858/0.047
art 0.002 | 0.001/0.001| 0.000/0.000| 0.000/0.000
eon 7.400 | 16.53/2.080| 38.47/7.063| 3.944/2.144
facerec| 0.322 | 0.508/0.448| 0.196/0.181| 0.127/0.075
gzip 0.837 | 0.477/0.420| 0.464/0.406| 0.309/0.212
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back requests. As can be seen, the overall writeback rateatss as the cache size or as-

sociativity increases. In most cases the extra writebaglasts caused by checkpointing

only creates a small increas€ 60%) in the overall writeback rate. Significant increases

(>5 times) are only reported fgsmandeonin the case of direct-mapped caches, and 2-

way associative caches with an LRU policy. Even for theseldermchmarks, the amount

of extra writebacks can be sizably reduced if @lean-firstreplacement algorithm is em-

ployed. This algorithm, which heavily reduces the checkpog frequency, can in turn

reduce the average writeback rate of set-associative saclaound 1%.

6.6.2 Thread performance

The proposed fault tolerance scheme affects the overdthppeaince of the mul-

ticore system in that the L thread needs to be blocked un@ecdhditions outlined in

Section 6.3.3, while the T thread needs to spend extra timmedassing the victim cache

and checkpointing the regular cache. Accordingly, the aV@erformance overhead is

strongly affected by thaitial execution offsebetween the two threads. Too small of an

offset would result in the T thread quickly catching up to ththread, thus causing the

T thread to also wait for the missing data. In contrast, togdaf an offset would result

in the L thread splitting a large number of cache blocks, ttaussing the T thread to con-

stantly access the victim cache. Taking both effects intskeration, during simulation

we initiate the execution of the T thread upon any of the feitg conditions: 1) The L

thread splits a cache block; 2) The read count of a block isfligl 3) The global access

counter is half full; 4) The L thread generates a checkp@qtiest.
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Table 6.5 Impact of thread synchronization and block split on CPréase (%): 16K-
2way

16K-2way-LRU 16K-2way-Clean first
None | Async| Split | Both | None | Async| Split | Both
adpcm | 0.074| 0.074| 0.008| 0.008| 0.074| 0.074| 0.008| 0.008
epic | 3.100| 2.882| 0.898| 1.075| 3.316| 3.249| 1.088| 1.022
gsm | 19.04| 19.04| 2.920| 2.919| 19.04| 19.04| 2.929| 2.918
mpeg2 | 9.282| 5.091| 5.054| 0.158| 1.378| 12.98| 12.97| 9.285
art 0.397| 0.363| 0.245| 0.160| 0.325| 0.296| 0.173]| 0.132
eon | 9.094|8.852| 6.679| 6.427| 4.022| 4.011| 1.362| 1.347
facerec| 3.250| 3.091| 2.259| 2.086| 3.106| 2.990| 2.107| 1.985
gzip | 8.353| 8.323| 5.449| 5.460| 8.188| 8.161| 5.154| 5.008

average| 2.615| 2.534| 0.913| 0.891| 2.590| 2.539| 0.937| 0.887

To evaluate the two optimization techniques outlined inti®ec6.3, i.e., the
loosely-synchronized checkpointing moaletl theselective split capabilitythe proposed
fault tolerance technique is simulatedfour different ways, with either of these opti-
mizations, with both or with neither. Here, according to tésults of checkpointing and
writeback frequency, we select two representative cachégiorations, 16K-2way and a
32K-4way, for performance simulation. The checkpointiatghcy is set to 80 and 120
cycles for the 16K and 32K caches, respectively, while tlibeaniss penalty is set to 30
cycles in both configurations. The baseline MPSoC emplay&RU replacement policy,
while the fault tolerant MPSoC employs both the LRU and @ean-firstpolicies so as
to clearly show the impact of the latter.

The obtained results of CPI increase are listed in Tablesa6db6.6, with the
minimum performance overhead for each cache configuratigimighted in bold. As
can be seen, except fepicand mpeg2 the minimum performance overhead of all the
other benchmarks is attained in tHgdth’ column, implying that both of the performance
optimizations are quite effective. The average values fuged as geometric means)
presented at the last row indicate that sieéective split capabilitys more effective than
the loosely-synchronized checkpointing modile former can reduce the performance
overhead by 64-75% while the latter only offers a reductib@-€8%. Moreover, the
performance benefit offered by the proposetkectively splitechnique is achieved at a
minimum amount of duplication cost. To illustrate this pedyy, we additionally report
in Table 6.7 the ratio of store instructions that inducetggluests, and the number of
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Table 6.6 Impact of thread synchronization and block split on CPréase (%): 32K-
4way

32K-4way-LRU 32K-4way-Clean first
None | Async| Split | Both | None | Async| Split | Both
adpcm | 0.073| 0.073| 0.007| 0.007| 0.073| 0.073| 0.007| 0.007
epic | 2.984| 2.910| 0.727| 0.653| 3.066| 3.044| 0.774| 0.751
gsm | 19.01| 19.01| 2.884| 2.884| 19.01| 19.01| 2.884| 2.884
mpeg2| 4.962| 4.960| 0.878| 0.875| 5.864| 5.863| 1.792| 1.792

art 0.309| 0.285| 0.155| 0.113| 0.209| 0.185| 0.056| 0.022
eon | 3.766| 3.764| 1.130| 1.127| 3.799| 3.798| 1.157| 1.156
facerec| 2.041| 1.968| 0.943| 0.868| 1.743| 1.707| 0.646| 0.608
gzip | 7.958| 7.951| 4.873| 4.839| 7.742| 7.737| 4.870| 4.498

average 2.107| 2.070| 0.561| 0.525| 2.012| 1.973| 0.520| 0.452

Table 6.7 Cache Block Split Efficiency

Split Store (%)|| Store/split block
16K | 32K 16K 32K

adpcm|| 0.415| 0.418 | 1.929| 1.920
epic || 11.94| 15.96 || 1.003| 1.229
gsm | 18.33| 18.32 || 2.243| 2.244
mpeg2| 5.830| 11.82 || 2.158| 2.123
art | 0.449| 0.446 || 1.001| 1.001
eon | 5.331| 6.398 || 1.284| 1.436
facerec| 3.937| 4.017 | 1.132| 1.130
gzip | 18.60| 19.95 || 2.710| 2.610

average| 4.177| 4.902 | 1.570| 1.621

write operations mapped to each split block. As can be seampst benchmarks, only
a small ratio of store instructions<(5%) induce split requests for the corresponding
cache block. Sizable amounts of split requests are onlyrteghdor gsmand gzip that
display intensive loop-carried dependences in frequestfcuted loops. Yet for these
benchmarks, on average each split block in the victim caglablie to capture more than
2 store instructions. These results therefore confirm thatproposedelectively split
technique imposes far less duplication cost than redundalttithreading processors [62]
that typically duplicate each store value in hardware lraffe

When theselective split capabilitis incorporated into the cache design, the over-
all performance of the fault-tolerant MPSoC is also affddig the victim cache size and
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Table 6.8 Impact of counter and victim cache sizes on CPI increase (%)

16K-2way 32K-4way
2C-16V| 3C-16V| 3C-32V | 2C-16V| 3C-16V| 3C-32V
adpcm| 0.008 | 0.005 | 0.005 | 0.007 | 0.004 | 0.004
epic | 0.898 | 0.746 | 0.679 | 0.653 | 0.515 | 0.430
gsm | 2918 | 2435 | 2.135 || 2.884 | 2.400 | 2.095
mpeg2| 1.158 | 1.118 | 1.119 | 0.875 | 0.933 | 0.956
art 0.132 | 0.132 | 0.132 | 0.022 | 0.081 | 0.021
eon 1.347 | 1.175 | 1.175 || 1.127 | 0.810 | 0.997
facerec| 1.985 | 1.962 | 1.962 | 0.608 | 0.629 | 0.571
gzip 5.008 | 4.956 | 4.955 | 4.498 | 4.640 | 4.537

average 0.673 | 0.592 | 0.576 | 0.405 | 0.411 | 0.339

the counter size. To evaluate such an impact, we additipsmiulatethree distinct con-
figurations, a 16-entry victim cache with 2-bit or 3-bit ceers, and a 32-entry victim
cache with 3-bit counters. The obtained performance oweetinesults (in terms of CPI
increase) are presented in Table 6.8, generated underitiaum performance overhead
configuration highlighted in Table 6.5. In general, as iatkd by the average values
shown in the last row, an increase in the counter size anbdéowictim cache size can
relax the conditions for blocking the L thread and hence cedhe performance over-
head. Yet this property does not hold for each benchmarkettain cases (e.gnpeg2,
gzip), a larger counter and victim cache would slightly degraddgrmance, as it ends
up creating more split cache blocks. The T thread needs twlspere cycles accessing
the victim cache, while the L thread needs to await the T thfeamore cycles at each
checkpoint.

In terms of the replacement policy, Table 6.2 shows that @egptoLRU, the
Clean-firstpolicy sizably reduces the checkpointing frequency, yighdly increases the
miss rate. Accordingly, this policy induces a diverse intacthe overall thread perfor-
mance, confirmed by the values reported in Table 6.5. Spakyficompared td_-RU,
the Clean-firstpolicy imposes a negligible impact @apcmandgsm reduces the perfor-
mance overhead of all the SPEC2000 benchmarks excepbfan the 32K-4way case,
yet degrades the overall performanceepfcand especiallynpeg2of whose miss rate is
increased significantly.
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Table 6.9 Impact of fault rate on CPI increase (%)

16K-2way-LRU 32K-4way-LRU
1E-5| 3E-5| 1E-4 | 1E-5| 3E-5| 1E-4
adpcm| 0.008| 0.008| 43.96| 0.007| 0.007| 33.68
epic | 1.298| 1.744| 1.892| 0.899| 1.349| 1.717
gsm | 4.231| 9.792| 33.24|| 332.0| 566.8| 2205
mpeg2| 2.129| 4.042| 9.888| 12.35| 28.28| 82.84

art | 0.348| 1.467| 3.696| 0.425| 0.778| 3.405
eon | 6.447|6.509| 6.723| 2.604| 5.532| 14.21
facerec| 2.220| 2.830| 3.594| 1.464| 2.537| 5.906
gzip | 5.556| 5.924| 6.912| 5.206| 5.861| 8.583

In sum, with the two performance optimizations applied, pneposed scheme
causes an average increase of 0.45% to 0.9% to the nonidéerént single thread per-
formance. This technique outperforms the lock-step CMP tijyacally exhibits a per-
formance overhead of 15% to 19% according to the data repant§31], and incurs
additional hardware costs, to boot.

6.6.3 Impact of Fault Rate on Thread Performance

The performance overhead of a checkpointing-based reg®atreme is deter-
mined not only by the checkpointing latency and frequenayaadditionally by the fault
rate in the system. To evaluate this impact, we simulate tbpgsed checkpointing
scheme under distinct fault rates, ranging frodn® to 10~. We randomly insert faults
in store instructions under the rate assumptions of 5% rastaifion of device failures
in the pipeline and 20% propagation of incorrect resultsugh the dependence chain
to store instructions. The results, obtained for two regméstive cache configurations,
are presented in Table 6.9. As can be seen, the performaedeeawd linearly increases
as the fault rate grows. For most benchmarks the CPI inclieaasignificant £10%),
as the corresponding checkpoint frequency is 10 times hitftes the fault rate. Yet
significant overhead can be observed ddpcm gsm andmpeg2when the fault rate is
high, especially in 32K caches. This is because for suctsgcaseshown in Table 6.2, the
checkpointing frequency is comparable to the fault rates tiesulting in a large amount
of computation being rolled back upon failures.
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Table 6.10 Memory hierarchy induced checkpointing tradeoffs

M insts/ckpt | CPIincrease (%)
L1 Hybrid | L1 Hybrid
adpcm || 3.3455 - 0.008| 0.007
epic || 0.0241| 6.5963| 1.075| 0.533
gsm || 1.2285 - 2.919| 2.917
mpeg2| 0.0225| 24.658| 1.378| 1.144
art 0.0032| 0.0840| 0.160| 0.028
eon | 0.0054| 450.75| 6.427| 5.609
facerec| 0.0106| 0.0788|| 2.086| 2.003
gzip | 0.0098| 5.7294| 5.460| 2.575

6.6.4 Checkpointing Tradeoffs for Memory Hierarchy

As outlined in Section 6.4.1, checkpointing at the L2/meyniaterface instead
of the L1/L2 interface can significantly reduce the chechkpog frequency. To evaluate
this impact, we additionally simulate the hybrid checkpioig strategy outlined in Sec-
tion 6.4.1. The L1 cache is 16KB 2-way associative, whileltheache is 512KB 4-way
associative, and both caches employ an LRU replacemertitalgo The obtained results
in term ofcheckpointing frequenandCPI increase (Y%pre listed in Table 6.10. As can
be seen, the hybrid checkpointing scheme significantly geslihe checkpointing fre-
guencies for most programs, with a minimum reduction of if@$ reported fofacerec
In terms of performance overhead, the hybrid method offeigable reduction (of more
than 50%) forepic art, andgzipthat display relatively high checkpointing frequency in
the L1 cache. In comparison, a negligible performance imigambserved irmdpcmand
gsmthat already display a highly limited number of checkpointthe L1 cache.

6.7 Conclusions

In this chapter, we have presented an integrated fault tieteand checkpoint-
ing framework that simultaneously delivers full fault lesmice and relaxed execution
synchronization. Through sharing a single cache betweenrégundant threads, one
thread can directly verify the execution results of the pttieus delivering light-weight
fault detection while at the same time strictly protectihg themory against execution
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faults. Meanwhile, detection-induced synchronizatioguieements are drastically re-
laxed through allowing unconfirmed results to be writteroitite cache, as well as se-
lectively splitting a constantly updated cache block anggkg the comparison of the
intermediate values. Further performance improvementsautticore systems can be
attained through the utilization of multi-level caches itm@taneously minimize check-
pointing and synchronization requirements, as well as titieation of multithreading to
increase overall computation throughput. The simulateEsults show that the average
checkpointing frequency is as low as 1 per 30,000 instrastiwith only a slight increase
in the write-back rate and a less than 10% degradation in G&n< 10~ fault rates.
The diminution of checkpointing frequency, in conjunctiweith the negligible overhead
in detection and checkpointing, introduces the possybdiftefficient fault resilience in-
sertion in various architectures.

The text of Chapter 6, is in part a reprint of the material apgears irC. Yang and
A. Orailoglu, “A Light-weight Cache-based Fault Detectiand Checkpointing Scheme
for MPSoCs Enabling Relaxed Execution Synchronizationérnational Conference on
Compilers, Architecture, and Synthesis for Embedded Bgs(EASES), October 2008
The dissertation author was the primary researcher andotithe publication [95].



Chapter 7
Compiler-Directed Heat Reduction

As the system fault rates exponentially increase as peagdasture rises, miti-
gation of thermal stress can in turn reduces resource Uahitdy induced by both heat
buildup and execution faults. Typically the chip-wide teargture exhibits a quite unbal-
anced distribution. Peak temperature of the entire chigetbee can be reduced through
shifting computation from a hot component to a relativelplamomponent. Previous re-
search has shown that at the core level, temperature caridativafly balanced by the
compiler, through the generation of thermal-aware exeawdgchedules [23]. Without im-
posing any runtime overhead, the compiler can generatauBgacschedules in such a
way that the “hot” tasks are distributed across variousxatalifferent time.

A more interesting observation is that the temperatureiwghach individual core
also exhibits a unbalanced distribution. In particulae tluits high utilization (accessed
2-3 times per instruction) and relatively small area,rdggster filehas been established
as one of the hardware units most likely to overheat in ctirpeocessors [81]. This
localized “hotspot” can reach critical temperature levelgardless of average or peak
external package temperature, thus ending up constraihengverall performance and
reliability of the whole chip. More crucially, due to the tabat 90% of the execution time
is spent on loops where only a small subset of registers etitejely accessed, register
file accesses also exhibit high asymmetry during progranowgia. This asymmetric
register utilization furthermore leads to considerabtegerature differentials, since most
of the heat generated within a microarchitectural blockssigated vertically to the heat
sink rather than laterally to adjacent blocks [81].

132
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The aforementioned register file access characteristitisate that the peak tem-
perature within a register file, the hottest spot of a modeocgssor, can be effectively
controlled through distributing the accesses uniformiptighout the register file. To
achieve this goal, the register names obtained at the destage cannot be directly used
to access the register file. Instead, a register shufflingnigoe that physically remaps
heavily accessed logical registers prior to local heatdoglis necessitated. To attain
this goal, in this chapter we introduceampiler-directed deterministic register shuffling
technique. A post-compilation adjustment of the registanas allowsegularity to be
embedded within register accesses, so that accesses toegister can be evenly bal-
anced across loop iterations with no need of any hardwargemgpable to keep track
of register usage or register mapping information. Thisesxely low hardware over-
head therefore enables an easy incorporation of the prdgeshanique into low-power
embedded processors to attain temperature control.

7.1 Challenges in Register Access Balance

The design of a dynamic register shuffling process to redueedgister file peak
temperature and, hence, to improve chip reliability, isivated by the observation that
the code generated by the compiler exhibits highly asynioegister access activity. A
traditional register allocation scheme in a temperaturaaare compiler initially assumes
an infinite set oWirtual registersfor representation, and subsequently maps these virtual
registers into a fixed number afrchitectural registers The decision regarding which
physical registers in particular are to be allocated, h@nedoes not take into consider-
ation the access distribution, thus leading to a highly amginic register access activity.
Figure 7.1, which presents the cumulative register accasssrof a set oSPEC2000
(shown in the first 4 bars of Figure 7.1) amtediabenclprograms (the second 4 bars),
provides experimental confirmation. As can be seen, bothaddienchmarks exhibit an
appreciable amount of imbalance in that 48% to 71% of the tetaster accesses are to
4 registersMediabenclprograms display a higher amount of imbalance as compared to
SPEC200Mmenchmarks. On the average, a set of 12 out of a total of 3&tezgiis able
to capture more than 90% of the total register accesses.

The asymmetric register utilization shown in Figure 7.1fooms that by evenly
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art bzip2  eon mcf adpcm  epic gsm mpeg2 Average

Figure 7.1 Cumulative register access ratio

distributing the accesses to each individual registeriwittequently executed loops, the
peak power density and hence the peak temperature can beveffiereduced. However,
such a balancing cannot be directly attained through ammassnt of register names
during code generation, as the access asymmetry direatlyeddrom the asymmetric
variable utilization of the program. This limitation can tm®re concretely illustrated by

a representative code fragment presented in Figure 7.2anmatled loop composed of
13 instructions that accounts for more than 25% of the totatetion time otbzip2 The
corresponding register live range and access patterngpectvely presented in Figures
7.2b and 7.2c. As can be seen, this loop exhibits a quite anbadl register utilization
as it only accesses G4, ts—t11, ra) out of 32 general purpose registers. Among these 6
registersas, tg, andt,o are accessed most frequently. While the compiler may be able
to use more registers by separating multiple definitionssihgle registerds; andty) or
further unrolling the loop, individual register accesseasuld still remain skewed due to
the existence of singly assigned yet frequently referrgisters, such as.

Since the static register allocation process cannot cdeiplealance the accesses
to each individual register, a dynamic mapping needs to tabkshed between the en-
coded register names, denoted asltugcal registers and the register instances in the
register file, denoted as tipdysical registersto physically remap heavily accessed log-
ical registers prior to local heat buildup. At first sightsgems that this task could be
achieved through using a hardwamapping tablesuch as the one used in conventional
superscalar processors. Unfortunately, such a mappiig itaposes a notable amount
of hardware complexity, energy consumption and perforraaverhead. More crucially,
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1.loop: mov t9, a5 ¢\1,— 1.1 9 t12Tt11>t10
2. Idbu a5, 1(t10) 9 (W, 1w, 1) 2., a5 t9 t12) t11
3 addits, OxL, 18 N 3. 8 a5 19 12
4, Ida 110, 2(t10) t8: (r, w) B1 4.1110, t8 | a5 t9
5 stb 19, -1(t10) tlQigr, rw, N |
6 xor 19, ra, a5 T ra: (r) 6.0 19 t12! t11) t10
YO beq t9, next _ — 7.0
8 mov 19, a5 9 (w, 1) 8.1 19 t12i t11: t10
9. Idbu a5, 0(t10) - as: (w,r,r) 9.1 a5, t9 | t12; t11
10.  addlit8, Oxl, 18 4 . ‘r")’) B2 10.. 18 a5l 19| t12
11. stb t9, 0(t10) t11: (w, 1) 11,4 1 1 1
12. xor tl1,ra, a5 T ra: (r) 12, t1*t10> t8— > a5
13. bne t11, loop [ 13.] } } }
14.next: stb a5, 8(sp) t9a5t8t10t11ra il iter:; i1, i2, i3, i4
(a) Code fragment (b) Register live range  (c) Reg access pattern  (d) Shift of destination re¢

Figure 7.2 A loop example obtained frofnzip2

as the table needs to be accessed using logical registersratnaefrequency no lower
than that of register file accesses, this small hardwareitseif would hence become a
temperature “hotspot” with skewed access distributionis Bignificant energy and heat
overhead confirms that a temperature-aware register filelghme able to evenly dis-
tribute accesses to each register witlhreliance on a hardware mapping table. Moreover,
as no hardware mapping table is used to keep track of runrgister usage or register
mapping informationregularity needs to be embedded within register accesses so that the
mapping between logical and physical register names caoriieotied in adeterministic
manner. Specifically, the following two tasks need to be agashed through an easily
computable dynamic mapping that deterministically cdsttioe renaming process:

e Select a free physical register for each write ace@#is no dynamic register usage
information

e Redirect each read access to the corresponding physicsiargith no dynamic
mapping information

7.2 Deterministic Register Shuffling

The fundamental goal of the proposed register shufflingrtieghe is to evenly
balance register accesses across loop iterations withliaoge on a hardware mapping
table. Accordingly, not only @ynamiclogical-to-physical register mapping needs to be
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established, but furthermoreterminisrmeeds to be embedded within such a dynamic
mapping.

To attain a deterministic register remapping, the propdselnique exploits the
fact that no fixed, preordained correspondence exists leetwegram variables and reg-
ister names. The compiler can therefore establish a ceataperty between consecutive
accesses to each register, thus enabling the hardwaretecteggister accesses with no
reliance on a mapping table.

7.2.1 An illustrative example

To deterministically select a free physical register fothemrite access register,
the proposed technique exploits the fact that during logeetion, the physical register
used at th@receding iteratiorbecomes free whenever a new physical register is allocated
as the destination of an instruction. Taking the code fragmeesented in Figure 7.2a
as an example, upon a new iteration, if a free registerfor example) is used as the
destination of instruction 1, the old destinatiog),becomes free thereafter. As a restilt,
can be used as the new destination of instruction 2, whictarmftees up:s, allowing it
to be used for instruction 3, and so on and so forth. This shitgister assignments can
be clearly seen in thi2 column of Figure 7.2d. Finally, at the end of this iteration,has
been freed, thus allowing it to be used as the new destinafiorstruction 1 at the next
loop iteration. The remapping of the destination registiensng the first 4 consecutive
iterations is summarized in Figure 7.2d.

It can be seen from the register names presented in Figuréhalthe proposed
register remapping process exhibits the following two prtips:

e Across loop iterations, a logical register is sequentiaippped to all the physical
registers before it shuffles back to the initial mapping.

e Within a single iteration, all the assignments of a singgdal register are mapped
to the same physical register, thus establishing a onexarapping between log-
ical and physical register names.

The first property indicates that the proposed techniqueetfactively balance
accesses to individual registers across loop iteratiofhoAgh this technique does not



137

reduce the energy consumed in each register access, éffgdtively prevents local heat
buildup since heavily accessed logical registers, sudibas, andty, in the example,
are mapped to distinct physical registers across looptiber® As temperature takes at
least 0.1 million cycles to rise by 0.17°[81], this balanced access activity, achieved at
the granularity of loop iterations, enables an effectivdugion of the register file peak
temperature.

The second property enables the proposed remapping scheatiaih access de-
terminism. Specifically, by ensuring that a one-to-one nraps established between
logical and physical register names within a single iteratthe physical register names
can completely determined according to the static namelanlbop iteration count, thus
eliminating the necessity of a hardware table to record ayoaegister mapping.

7.2.2 Destination register name adjustment

At each iteration, the proposed scheme deterministicaltyaps the:*" logical
destination register to the physical register used asgithe 1) destination in the last it-
eration. This recursive relationship can be formalizedb#lewis, with D N(R:) denoting
the dynamic name of thie” destination register at iteratian

DN(R},) = DN(R;"}) = DN(R; %) =...= DN(R)_,) (7.1)

Equation (7.1) illustrates a crucial property of the praggbeegister shuffling tech-
nique: during loop execution all the logical destinatiogisters are iteratively mapped
to the same set of physical registers in the sahitting order The shifting order of the
bzip2example, represented by the arrows in Figure 7.2d,iSt {2, t11, t10, ts, a5, tg).
Moreover, this shifting order happens to be teeerseof the order in which each logical
register appears as a destination within the loop body.

The reverse-ordermproperty indicates that if a fixed offset has been imposed be-
tween any twoconsecutive yet distinct destination register nanaes/ twoconsecutive
mappings of a logical registerould also exhibit a fixed offset. More formally, by impos-
ing a fixed offset oD’ between the static names of thé and the(k — 1) destination
registers, the dynamic name of regiskgrat iterationi, denoted a® N (R: ), can be gen-
erated through shufflin@ N (R. ') by a fixed offset ofD. UsingV5 to denote the shuffle
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of a valueV” by an offsetO for « times, this fixed-offset relationship can be formalized
into the following equations, witlh andO’ being complements in thav5)s, = V for
any positive integer¥” anda.

DN(R,) = DN(RC“)3 = SN(R), (7.22)
SN(Ry) =SN(Ri—a)® = SN(Ro)o (7.2b)

According to Equation (7.2), at iterationthe dynamic name of regist&y, can be
generated through shuffling the corresponding static texgigameS N (Ry,) by an offset
of O for i times, whileSN ( Ry) should be generated through shuffling the static name of
the0' destination registe$ N (R,) by an offset ofD’ for k times. These equations clearly
confirm that at each iteration, the dynamic register nameseacompletely determined
by the compiler.

To effectively balance register accesses while minimitirgghardware complex-
ity, a light-weight shuffling function is furthermore neséated. Given ahuffle window
composed of a set of contiguous physical regisigrg+1, ..., B+1'—1, an effective shuf-
fling function needs to ensure that each logical destina&gisterR;, will be sequentially
mapped to each physical register within the window befoshitffles back to the initial
mapping. In other words, the shuffling function needs toldsta a one-to-one mapping
from V3, V2, ..., VZ, theT consecutive dynamic names of registay, to theT distinct
valuesB, B+1, ..., B+T—1, within the shuffle window. According to this requirement,
two shuffle functions, namely, a modulo addition an@alois fieldmultiplication, can
be employed to attain a deterministic register shiftingsasmarized in the following
equation.

B® 2T—(I<:>|<O)%T7 T = 9" _ 1;
SN(Ry) = BE, = (7.3)
(B—kxO)%T, GCDO,T)=1.

In modulo7" addition, the static register name®f is generated a@B —k*O) %1 .
The values of the offseD and the window sizd” should be relativelyrime so as to
ensure the assignment of distinct physical names to difféogic registers within a single
iteration. In hardware, this addition function can be inmpéated using g@-bit modulo
T adder for each register access port, assuming a tot2d odgisters provided in the



139

Table 7.1 The use of the two shuffle functions to shift register nameiebzip2example

Modulo Addition GF(2%) Multiplication
10 7,1 ’LQ ’L3 7:4 7,5 ’i6 ’LO ’Ll 7,2 7,3 ’L4 ’L5 7’6
ty—B 1 23 456 712 43 6 7 5
as—Bb |7 1 2 3 45 651 2 4 3 6 7
ts—B3 |6 7 1 2 3 4 57 5 12 4 36
tov—B |5 6 7 1 2 3 46 7 5 1 2 4 3
thw—B,) |4 5 6 71 2 336 75124
DN(R}) | = (SN(Ry) +0)%7 | = SN(B)®2'
SN(Ry) | = (SN(Ry) — k)%7 | = SN(Ry)® 27"

architecture. On the other hand, if the value of the windaze §i equals2™ — 1, a
more efficient shuffle function can be implemented so gt B @ 2701 with
® denoting the multiplication operators defined in the extan&alois fieldof GF(2").
The hardware implementation of this multiplication functis comparatively cheaper as
no modulo adders but only a limited numbemxofr gates are required.

The differences between these two functions are concrébedtrated in Table
7.1, which shows the mapping of the five destination reggstérthebzip2 example in
7 consecutive iterations, witB, O andT respectively set to 1, 1, and 7, and the field
generating polynomial off F/(23) set tox® + = + 1.

7.2.3 Loop-carried dependence preservation

As the new name of each logical destination register can bermdeed using
Equation (7.3), the names of source registers can be detednaiccordingly. Since the
mapping of a logical register varies across iterations) weesses before and after the
first assignment within the loop body should be directed winiit physical registers.
Specifically, all the read accesses following the first woperation, as it remaps the log-
ical register, should be directed to the new allocated @iaysegister. In contrast, all the
read accesses preceding the first write operation shoudnotie value produced at the
prior iteration, thus requiring the compiler to additidgahuffle the register name lay'.

The aforementioned name adjustment of source registersecdlustrated more
clearly by considering the logical registerin thebzip2loop presented in Figure 7.2a. As
shown in the first column of Table 7.1, the name:pfs adjusted ta3}, by the compiler.
Sinceas is remapped by instruction 2, all the subsequent read azségs; within the
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Initialize live-in
variables ov R6, a
mov R5) t8
ov R4,\tl

1. loop: mov 19, a5 loop: mov_RTI, R6
2 Idbu a5, 1¢10 ) ldbu R7, 1(R4)
3. addl t8, 0x1,t8 addl R6\\ 0x1,R5
4. lda 110, 2¢10 ) lda R5)R2(R4) iterl
5 stb 19, —l(th) If taken, shuffle stb R1, 1(R5)
6 xor 9, ra, a5 register names R1,\ra, R7
7 bne t9, loop '\éﬁém, loop
8 stb a5, 8(sp) loop: MoV R2, R7
ldbu R1, 1(R5)
Static name adjustment addl R7, 0x1,R6
lda R6, 2(R5) iter2
;95: E% stb R2, -1(R6)
8 —» R6 xor R2, ra, R1
t10—» R5 bne.sR2, loop
stb  R1, 8(sp)

Figure 7.3 Register name adjustment in two consecutive iterations

loop body should be directed #8},. On the other hand, instruction 1, which reags
before it is remapped, should obtain the value producedegptilor iteration wherein the
name ofas is not B}, but B2,. Accordingly, the compiler should adjust the name:of
appearing in instruction 1 by an additional amoun®6so as to preserve this loop-carried
dependence.

An additional shuffle ofD’ to the names of théve-in variables allows register
values to be effectively passed across loop boundarieaglexecution. Therefore, se-
mantic correctness can be naturally guaranteed as loliggais variables, such as;, ts
andty, in thebzip2loop, are correctly initialized prior to entering the lodhis task can
be attained simply through the insertion of extraveinstructions to transfer register val-
ues prior to entering the loop. These few regist@veinstructions, as they are executed
quite rarely outside the loop body, introduce no overhegatactice, neither in terms of
performance nor in terms of energy.

To concretely illustrate the aforementioned name adjustrpelicy for destina-
tion and source registers, it has been applied to a nondadreérsion of thézip2loop
presented in Figure 7.3. Using theodulo additionn Table 7.1 as the shuffle function,
Figure 7.3 presents the register names in the first two itersdf the transformed code.
As can be seen, the compiler has globally adjusted regiateers according to the order
in which they appear as destinations. The names of adjaetmigtinct register desti-
nations differ by an offset of’=—1, while an extra offset o)’ is added to each live-in
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B1 B1 regd R1 B1 read R[L B1 read R1
write R1
— — — —
B2 write R1 B2 write R1| B2 write R1 B2 write R[L
read R1
[ [ [ [
! i ! !
B3 B3 B3 | Write R1 B3
| | | |
(a) Shiftable (b) Shiftable (c) Shiftable (d) Not shiftable

Figure 7.4 Shiftability analysis of registeR1

read reference shown in instructions 1, 2, 3, and 4. Meamewhilhint is inserted into
instruction 7, the loop branch, so that once the branch exta&ach register name, except
for the read-only registan, will be shifted by an additional offset @¥=1. Finally, three
registermovinstructions have been inserted prior to entering the lappssto initialize
the live-in registerss, tg, andt,q, respectively.

7.2.4 Shiftable logical register identification

The proposed register shuffling scheme requires a detaddiaation of register
access patterns so as to determine whether a logical neggstessed within the loop body
is shiftableor not. In general, the characteristics of the proposedtegshuffling scheme
preclude its application towo types of logical registers. Firstly, as a logical register i
remapped upon the first assignmeagd-onlyregisters, such as in thebzip2example,
become unshiftable. A more complex case is that of registdriting conditional def-
initions within the loop body; as the compiler needs to idgrfor each read access the
exact iteration at which the value is produced, a logicaisteg cannot be shuffled if its
value is not certifiably updated at each loop iteration, thaf it exhibitswrite accesses
only in conditionally executed basic blockatread accesses outside those blocks.
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Conditionally defined registers create an issuaaideterministic loop-carried
dependences, which can be illustrated more clearly threxgmining the four cases pre-
sented in Figure 7.4. These four cases share the same ciimirglet exhibit a variety
of access patterns to registet within the loop body. In Figure 7.4a, the write access in
basic blockB2 constitutes a conditional definition. Howeve is still shiftablesince it
is read within the same basic block following such a writeegsg thus allowing identical
register names to be assigned to both accesses. In FigldRA.® also shiftable as the
write access irB1 constitutes an unconditional definition, thus indicatihgttthe read
access irB1 should always obtain the value defined in the precedingtitearaSimilarly,
in Figure 7.4c, while neither of the write accesse8thandB3 is guaranteed to be exe-
cuted, the two accesses in conjunction constitute an urtoomal definition, thus making
R1shiftable. In comparison, in Figure 7.4l is only written on the fall-through path
of the branch, resulting in the read acces®ihobtaining a value defined in either the
preceding iteration or an even earlier iteration, depamdim the branch outcome. As a
result, for such a read accessBa, the compiler cannot statically determine the exact
iteration at which the value is produced, resultindRibbeingunshiftable

An unshiftabldogical register does not need to be remapped, if it is notssxd
frequently within the loop body. However, in the extremeecaban unshiftable register
being frequently accessetlyo approaches can be adopted to prevent local heat buildup.
In a hardware-oriented approach, the value of such a regiatebe duplicated into a
dedicated buffer for access, instead of the power-hungyister file. In a software-
oriented approach, an extraoveinstruction can be inserted within the loop body to
make itshiftable If this register happens to be a conditionally defined tegi§or ex-
ample,R1in Figure 7.4d), such aoveinstruction can be inserted into the basic block
executed on the other path of the branB (n Figure 7.4d). If, on the other hand, the
frequently accessed yet unshiftable register happens #orbad-only register, the extra
moveinstruction needs to be inserted into an unconditionalgcexed basic block.

7.2.5 Physical register reallocability analysis

The example presented in Section 7.2.1 indicates that thoped deterministic
shuffling approach requires the existence of at leastfree extra register, such &g in



143

Table 7.2 Access pattern-based register classification

. Unconditionallywritten
Shiftable Conditionallywritten andread on the same path
. Readonly
Unshiftable Conditionallywritten yet unconditionallyead
Free Not-accesseceitherdeador live

Figure 7.2c, for the shuffle of the first destination withie tbop body. As most execution
hotspots are composed of nested loops consisting of ormyitell number of instructions,
the requirement of one free register can be naturally sadisince typically only a subset
of registers is accessed during loop execution. Bbhip2example presented in Figure
7.2a clearly confirms this property in that only 6 out of thiat@2 registers are accessed
within the loop body.

While theoretically the shuffle window only needs to include extra free regis-
ter in addition to the shiftable destination registers gbarch for an increasingly balanced
register access distribution motivates the maximizatibthe number of free registers
within the shuffle window. A detailed examination indicatieat according to the access
pattern, all the logical registers and hence, the corredipgrphysical registers, can be
classified into three categorieshiftable unshiftable and not-accessed For the third
type, a physical register not accessed within the loop badybe directly remapped, if it
is not used to hold a live variable with infinite lifetime assathe execution of the whole
loop. As an example, in thezip2loop all thenot-accessetkgisters except f@apare free
for remapping. Registesp, on the other hand, holds its lifetime across the whole l®p a
it is directly read after exiting the loop. However, eversttyipe ofnot-accessegetlive
registers can be freed up through employing extra store @em ihstructions to check-
point and restore the original value at loop entries andsesaispectively. The introduced
performance overhead is practically nonexistent sincedheckpointing and restoration
process is performed outside the loop execution.

By checkpointing and restorinigve yet not-accessedegister values, all the reg-
isters that are not accessed within the loop body becoméabiaifor remapping. Ac-
cordingly, among the three classes of registers listed IoheTd.2, both theshiftableand
the freeregisters are included in the shuffle window, while only timshiftableregisters
need to be placed outside the shuffle window. The size of th#lslwindow therefore
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Figure 7.5: Building a shuffle window through swapping register valat®op entry and
exit

can be maximized, thus enabling the achievement of a moambadl access distribution
and, hence, a further reduction in peak temperature.

The identified shiftable and free registers nsagtteracross the entire register file.
As the shuffle window should be composed of a set@ftiguousregisters, at the entry
and the exit of each frequently executed loop, some regiataes need to be swapped so
that the identifieghiftableandfreeregisters can be placed at contiguous positions. This
process is concretely presented in Figure 7.5. At the lotgy éime live-in register values
need to be preserved, implying thatshiftableregisters within the shuffle window need
to be swapped out, whilshiftableyet live-in registers outside the window need to be
swapped in. On the other hand, at the loop exit, a registewagping process needs to
be performed to preserve thee-outregister values, both within and outside the shuffle
window. Both the register swapping and reswapping proseaeaccomplished by the
compiler through the insertion of extraoveinstructions which, as they are executed
outside the loop body, introduce no overhead in practice.

7.2.6 Functional Evaluation

We have discussed the proposed deterministic registeflisgufechnique from
three vantage points, namely, the dynamic shuffling funstiaghe adjustment of logic
register names, as well as the identification of the shiftaold free registers. Since the
proposed technique only remaps register names acrosstérapans, it can be indepen-
dently applied on each execution hotspot, i.e., a frequextcuted loop. Due to the iter-
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ative nature and the relatively short static code size of éaap, the proposed technique
delivers maximum benefit at minimal cost, as only 10% of theeecoeeds to be analyzed
while balanced register accesses for 90% of execution tande accomplished.

Compared to the thermal-aware register reassignment agpes [24, 100], the
proposed deterministic register shuffling technique negumo revisitation of the NP-hard
register allocation problem to perform live range reassignt. Therefore, the adjustment
of logic register names can be implemented as a procedueegerfiormed subsequent to
the conventional register allocation phase, thus retginihthe concomitant benefits of
the latter. Moreover, a detailed examination indicates rie&ther of the two techniques
can fully balance the accesses to each individual registeach loop iteration. Instead,
both techniques attain a relativetparse-grainedaccess balance, yet one exploits the
spatial domain while the other exploits the temporal dom@he thermal-aware register
reassignment approaches attagpatialbalance at the granularity of register sub-banks,
thus restricting their applicability solely to multi-banggister files. In contrast, the pro-
posed technique aims to attaiteanporalbalance for each individual register at the gran-
ularity of loop iterations. As temperature takes at leaktallion cycles to rise by 0.1
[81], this iteratively balanced access activity thus eaalan effective reduction of peak
temperature even for single-bank register files.

As the proposed technique deterministically shuffles tegimapping across iter-
ations, the attainable benefits in terms of reliability erdeanent are maximized when it
is applied to single processor architectures with no ekpgister renaming support. For
architectures with pure dynamic register renaming, sucoagentional superscalar pro-
cessors, a large hardware mapping table needs to be mauh&soras to eliminate pseudo
register name dependences. As this mapping table needsaockssed using logical
register names at a frequency no lower than that of regiséeadicesses, it becomes a
temperature “hotspot” with skewed access distributionthia case, the proposed tech-
nique can be employed to evenly distribute the accessedfevedhit entries within the
mapping table.

Additionally, future computer systems are expected tonsiteely use multicore
architectures, for which thermal induced reliability asigénave already been identified as
a grand challenge. As such systems typically scale upwattie inumber of cores but not
necessarily in the complexity of each core, the proposduhiqoe despite the possible
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absence of the renaming logic, can be employed to effegtreeluce the register file peak
temperature for each core and hence, to improve the retiabilthe entire system.

7.3 Implementation

The implementation of the proposed deterministic registerffling technique
consists of two collaborative parts, a compilation procedhat embeds regularity into
static register names, as well as a hardware implementatiarshuffling function that
dynamically determines the name of a register at eachiberat

7.3.1 Static register name adjustment

Algorithm 5 Register Name Adjustment
1: for each procedurdo

2:  for each frequently executed lodi

3: Differentiateshiftableandunshiftableregisters;
4: CalculateAveAccessCnt;
5: if AccessCntR;) > AveAccessCnt for aunshiftableR; then
6: Insert an extranovto makeR?; shiftable;
7 end if
8: Insert extrastoreandload to free upnot-accesseget live registers;
9: T = Niotal — Nunshiftable: @nd selec3 andO thereafter;
10: Order the shiftable destination registers;
11: Globally adjust register names such that the static nameedf't registerSN (Ry) =
BE,;
12: Shuffle the name of eadive-in variable by an extra offs&d’;
13: Insert a hint in the loop branch;
14: Insert extranovto initialize live-in variables at loop entry and restdige-out variables
at loop exit;
15:  end for

16: Globally perform register coalescing outside the renaregd to eliminate redundantov
instructions;
17: end for
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The pseudo-code for adjusting logic register names isradlin Algorithm 5.
This procedure only relies on the profiling information nefjag theexecution counts
of each basic block, based on which a set of functions have Beeeloped to accom-
plish static register name adjustment. Specifically, essdpufently executed loop is trans-
formed in the following 5 steps:

e Partition shiftable and unshiftable registers (lines 3-7)

Free upnot-accessed yet liviegisters (line 8);

Determine shuffle functions (line 9);

Sequentially adjust names of destination and source ezgiftnes 10-13);

Initialize live-in variables and restolese-outvariables at loop entry and loop exit,
respectively (line 14);

As the goal of the register shuffling technique is to precllodal heat buildup
through iterative mapping of a hot logical register to distiphysical registers, the algo-
rithm inserts extranoveinstructions to shuffle a frequently accessed registee @in if it
is detected to be unshiftable (line 5). The@seveinstructions, together with thetoreand
load instructions inserted for freeing upot-accessed yet liveegisters (line 8) and the
moveinstructions inserted fdive-in or live-out variables (line 14), constitute the over-
head of the proposed technique. As most of these extra atising are executed outside
the loop body, the overhead in execution time is negligiBlech overhead can be further
reduced through performing an extra step of register coag$30] on the transformed
code (line 16) so as to eliminate redundant move instrustion

7.3.2 Dynamic register name shuffling

Using the code transformation support outlined in Algarith, a deterministic
register shuffling process can be accomplished during éxecas long as the hardware
is informed by the compiler about trshuffle vectar<B, O, T>, prior to entering a
frequently executed loop.

Using theG F'(2%) multiplicationin Table 7.1 as the shuffle function, the circuit
presented in Figure 7.6 can be employed to convert logicaster names to physical
register indices for thbzip2example. As can be seen, during loop execution each logical



148

To RF

Another,
iteration? ~|LFSR

’ S
o g | TR

Another iteration? a2b2

Figure 7.6 Gate-level logic for translating register names

register name is multiplied by the value of the offset registhe offset value is multiplied
by 2 whenever aloop branch is encountered, implementeddhrshifting the 3-bit LFSR
one bit to the right. Meanwhile, as in this example the shuffledow is composed of
registers from R1 to R7, the most significant bits of the staticoded register name are
used to differentiate whether the register falls within #heffle window. If it is, the
register is shiftable, resulting in the use of the multipdiéesult as the physical register
index. Otherwise, the logical name of the unshiftable ttegis directly used to access
the register file.

It needs to be noted that the implementation shown in Figleedrresponds to
the example shown in Figure 7.3. The implementation pararaetre for illustrative pur-
poses only, and can be customized according to the regisiieation characteristic of
the application. More concretely, it can be clearly seemfFogure 7.6 that the proposed
register shuffling technique requires no hardware mapjaibig tout only a:-bit GF mul-
tiplier and an-bit 2-to-1 multiplexer for each register access port, tbgewith a single
n-bit LFSR to record the shuffling offset. Moreover, with theextion of an appropriate
field generating polynomial, GF multipliers can be efficigminplemented using a small
set of AND and XOR gates. For 3 to 7 bits parallel field mulgpd, the cost-effective
polynomial as well as the total gate count and longest patheotorresponding imple-
mentation have been listed in Table 7.3.

The GF multipliersshown in Table 7.3 require a size &f — 1 registers for the
shuffle window. In contrast, theodulo additiorcan be employed more generally as the
shuffling function for shuffle windows of other sizes. In thisse, the proposed register
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Table 7.3 The design complexity of GF multipliers

Window size | Field polynomial | Gates| Longest path
7 regs o+l 15 | 1AND + 2 XOR
15 regs i+ +1 25 | 1AND +2 XOR
31 regs 2+ +1 37 | 1AND + 2 XOR
63 regs 2 +ar+1 54 | 1 AND + 3 XOR
127 regs 4 +1 72 | 1 AND + 3 XOR

shuffling technique requiresrabit modulo adder, a-bit comparator, and a-bit 2-to-1
multiplexer for each register access port, together witingls n-bit adder and a-bit
register to calculate and record the shuffling offset. Alitjio this additional necessitated
hardware is more complex than tker gate based implementation of t&& multipliers,

it is still negligibly small compared to the mapping tablesd in conventional register
renaming techniques.

As both the logic and the physical register names preselteedairue data depen-
dences within the loop body, the behavior of the rest of tpelme, such as the forward-
ing logic, would not be affected by the register shufflingqess. Moreover, since register
write accesses are typically performed at a later pipeliages the translation of register
names can be performed in parallel with the calculation efitistruction result. Even
for register read accesses, the access latency of the saralation logic can also be
effectively hidden, since in the typical case cache accassestitute the longest pipeline
stage.

7.4 Simulation Results

In this section we experimentally evaluate the efficacy ef pnoposed register
rotation technique in balancing register accesses, redube chip-wide peak tempera-
ture, and improving processor reliability. To evaluatepghgposed technique for different
types of applications, a set of experimental studies haga performed on both the Me-
diabench [56] and the SPECint 2000 benchmarks.
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7.4.1 Register Access Results

The discussions presented in Sections 7.2.4 and 7.2.9yctenw that the parti-
tion of shiftable/unshiftable registers and, hence, tfecéfeness of the proposed register
shuffling technique are strongly related to register acchasacteristics. As a result, the
first step in our experimental evaluation is the examinafioneach loop, of the numbers
of read-onlyregisters,conditionally definedset unconditionally referredregisters, and
registersnot accesseth the loop. This is achieved through using ATOM [83] to imstr
ment the assembly code to identify execution hotspots (requently executed loops)
and to generate register usage profiles. The control flow egidter usage information
of each loop are analyzed thereafter.

The collected profiling results are presented in Table 7y @e profiling results
for the selected SPEC 2000 benchmarks are presented, sasztienchmarks exhibit a
more balanced register utilization than the Mediabench pségrams due to their rela-
tively larger working sets. For each benchmark, we repatrthmber of hot loops that
have been identified, their occupancy in the total execuiioe, as well as six sets of
register usage data. Table 7.4 lists the maximal, the agemagyd the minimal number
of not-accessedegisters andive not-accessetegisters, as well as the maximal and the
average number eéad-only hot read-onlycond-definedandhot cond-definedegisters.
The minimal values are not listed for the last four sets sthese values are always O.

The results regarding the minimal numbemait-accessedegisters indicate that
all the hot loops identified by ATOM have at least 1 free regigtars clearly confirm-
ing the wide applicability of the proposed register shuffltechnique. Due to the small
code size, the average number of registers accessed wltop &ody is less than 9. This
highly skewed register utilization clearly confirms the @ity for register shuffling tech-
niques, such as the one we herein propose, so as to delivaresbaanced access distri-
bution. Meanwhile, Table 7.4 also shows that on averagemdoatains only 2ead-only
registers, and only 1 of them needs to be rotated to preveal keat buildup. The num-
ber ofconditionally definegetunconditionally referredegisters is even less, as most hot
loops are composed of a limited number of basic blocks. Thases clearly confirm that
a highly limited number of extrenovinstructions (less than two on average) would suffice
to make this small set dfot read-onlyandhot conditionally definedegisters shiftable.
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Table 7.4 The number of hot loops, their occupancy in execution tiamel register usage
information

Benchmark art bzip2 | mcf | twolf
Hot loop # 32 60 29 61
Execution time 79.8%| 78.3%| 64.8% | 71.9%
max| 28 29 29 29
Not-accessed | aver| 25.34| 22.33| 23.66| 22.56
min | 14 13 13 1
max | 20 13 13 19
Live not-accessed | aver| 10.47| 5 3.76 5.98
min 0 0 1 0
max| 6 6 7 7
Read-only# | ier| 1.01 | 233 | 224 | 2.02
max| 4 4 3 3
Hotread-only# | o er| 1 173 | 1.14 | 1.08
. max| 1 3 3 3
Cond-defined | o1l 0.06 | 0.17 | 028 | 0.21
) max| 1 1 1 3
Hot cond-defined | o1 006 | 003 | 003 | 0.11

According to the register usage profiles generated by ATOM,rtew register
names are statically determined, based on which the Sirogl@Soolset [6] is modified
to implement the proposed register shuffling technique profaan in-order 2-way pro-
cessor. We furthermore compare the proposed techniquehvatthermal-aware register
reassignment technique [100]. Assuming that the regis¢asfcomposed of 8 sub-banks,
two sets of data are reported, namely, the access distributieadhindividual register
and the access distribution to eatib-bank The cumulative ratios of the most frequently
accessed registers and sub-banks are shown in Figure 7.7.

As can be seen, for the four SPEC2000 benchmarks, the prbpadeique can
achieve a more balanced access distribution to each indivieggister as compared to
the thermal-aware register reassignment technique [M0te concretely, initially 81%
to 94% of all the register accesses are mapped to 12 regigtech, in a completely
balanced case, should only capti®y32 = 37.5% of total accesses. Using static reg-
ister reassignment (the top-left quadrant in Figure 7.4%060 80% of total accesses
are mapped to 12 registers, while using the proposed regiktéfling technique (the
top-right quadrant), only 50% to 60% of total accesses angp@cto 12 registers.
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Figure 7.7: Reduction in peak temperature of the entire chip

If the access distribution is evaluated at the granulafitggister sub-banks, both
techniques can achieve a quite balanced access distnbaotibat only 38% to 40% of
all the register accesses are mapped to 12 registers. Cednaethe reassignment [100]
technique, the proposed shuffling technique resultsifoirandtwolf, in a slightly ele-
vated amount of accesses (less than 2%) hitting the firsteslkb @ his is because register
RO, which cannot be rotated since its value corresponddlgtto O, happens to be a fre-
guently accessed register within several loop bodies.dmg¢hssignment [100] technique,
RO can be placed into a subbank with a set of “cold” register@ssto balance the access
counts to that subbank. However, in the proposed technifjase “cold” registers are it-
eratively mapped to “hot” logical registers. The increaaetunt of accesses thus results
in the corresponding subbank being accessed slightly megeéntly than the remaining
subbanks.

7.4.2 Temperature Results

Our next step of evaluation focuses on the generation of éeatpre profiles.
WATTCH [16] is modified to generate energy profiles of eachdiare resource, espe-
cially each register within the register file. The power aansd by the small 5-bit adder
and multiplexer is also included in each register file acc&bg aggressive clock gating
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Figure 7.8 The processor floorplan used in simulation

provided by WATTCH is used to avoid unnecessary power copsiom Using these
energy profiles, Hotspot [81] is employed to sample the teartsemperature of each
hardware resource. This sampling interval is set to 20,A80uctions, which is substan-
tially less than the thermal time constant of any hardwaseuece. An Itanium-like [74]
processor shown in Figure 7.8 is used as the floorplan ingdibtepot. The die size is set
to 8mm x 8mm, and the initial temperature is set to 60°

The obtained reduction in chip-wide peak temperature isgried in Figure 7.9.
As can be seen, the proposed register file access balancimgdee can achieve a re-
duction of 3.1 to 7.4¢ in chip-wide peak temperature. The highest reduction issaed
in art, while the lowest reduction occursimcf These temperature results are consistent
with the register access results, since a more balancedsadesribution is achieved in
art, as compared tonct

The simulation results confirm that by targeting the regike, one of the most
overheated hardware units in a processor, the proposedidgeehcan effectively reduce
the chip-wide peak temperature during program executioniléthe amount of temper-
ature reduction seems to be insignificant at first sight, titalty can effectively reduce
the fault rate of the entire chip, since the fault rate dosilite every 10€' increase in
temperature [55]. Meanwhile, previous studies have shdwaha large number of delay
violations would occur if the peak temperature exceed$'8(34, 81]. It can be seen
from the results that for most benchmarks, the proposeditigocan effectively reduce
the peak temperature to below 84° On average, the proposed technique achieves a
reduction from 88.8% to 83.5T.
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Figure 7.9 Reduction in peak temperature of the entire chip

7.5 Conclusions

In this chapter, we have presented a technique for impraviageliability of an
entire chip, through reductions in the peak temperatureefégister file, one of the most
overheated modules in a core. Peak temperature can beffecontrolled through a
register shuffling process that physically remaps the heagcessed logical registers be-
fore heat gets locally accumulated. Furthermore, throbghekploitation of application-
specific access profiles, the compiler can determinisyicahtrol the register shuffling
process, thus maximizing peak power reduction within atkchihardware budget and
negligible performance degradation. This highly reducardivare complexity enables
the proposed technique to be easily incorporated into nmobedded processors so as to
effectively reduce peak temperature of the entire chip.uftion results of SPEC2000
and mediabench programs furthermore confirm that the peapegyister shuffling tech-
nique can achieve a 1.5 to 3 times more balanced accessudiitn and a reduction of 3.1
to 7.4 in chip-wide peak temperature. Such a temperature reduictiturn effectively
reduces the amount of run-time faults, thus improving thialgity of the entire chip.

The text of Chapter 7, is in part a reprint of the material apgears irC. Yang and
A. Orailoglu, “Processor Reliability Enhancement throu@lompiler-Directed Register
File Peak Temperature Reduction,” International Confareon Dependable Systems and
Networks (DSN), June 2009The dissertation author was the primary researcher and
author of the publication [96].



Chapter 8

Conclusions

As devices scale beyond deep sub-micron while the numbeoresmn a sin-
gle chip doubles every two generations, the capability lefreding execution uncertainty
induced by execution faults, thermal stress, and resowngpetitions is becoming a
severe requirement for future multi-core and many-cor¢esys. These sources of un-
certainty demand flexible ways to reorganize the computatidich is addressed in this
thesis through the introduction of a computational framdgwaith fine-grained and pre-
dictableexecution adaptivitgupport. In this framework, computational resources can be
frequentlyrenegotiatedupon a dynamic, unpredictable event, with predictable etiec
migration attained through statically capturing a set adgdole schedules in a compact
form. Sources of execution uncertainty that display a ceranount of predictability,
such as thermal stress, are maximatifigated Sources of execution uncertainty that
are completely unpredictable, such as device failurespeagfficientlydetectedegard-
less of their diversity in manifestation. These technigaresfurthermore integrated into
a scalable, fixed-silicon, yet dynamically reprogrammabRSoC platform, thus provid-
ing the benefit of high-volume amortization while at the samee delivering flexible
redefinitions of the platform.

To attain execution adaptivity in conjunction with the gotidat designers already
face, the various techniques presented in this thesis dteefmore developed with the
considerations of minimizing power and performance impatsuring high predictability
of worst-case performance, and localizing communicatia@hraigration for the satisfac-
tion of interconnect constraints. The employment of the gitento compactly engender
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in readiness numerous execution schedules enables tHepi@ent of a fast, predictable,
and highly regular reconfiguration process, without anytinn@ decision making over-
head. The regularity inherent in the reconfiguration pregasconjunction with a flexible
customization of the underlying system topology, furtherenenables multiple tasks to be
simultaneously migrated between distinct PEs without aily any interference or net-
work congestion. Meanwhile, through the use of a sharedt-fakerant cache, full fault
detection capability is attained within a minimum level @irtiware duplication, with no
reliance on threads to constantly synchronize for valieekimg. Additionally, the chip-
wide peak temperature can be effectively reduced throughiexministic shuffling of the
accesses to the most overheated module in each core, thaitegister file. The em-
ployment of the compiler to embed regularity into registemes enables the hardware to
redirect register accesses with no reliance on a mappimg tab

The fundamental intellectual merit of this thesis is a n@amroach for coupling
intensive static information extraction to dynamic systmntrol and organization. The
various techniques underpinning the proposed adaptinesinark relies on the develop-
ment of a collaborative optimization between the comptleg, OS, and the architecture.
The compiler is responsible for embedding regularity iritdgis register names, generat-
ing adaptive execution schedules with the consideratid@nperature and workload bal-
ance, and extracting the characteristics of the recontideischedule to guide dynamic
workload balance. The OS is responsible for monitoringuss®availability, dispatching
pre-optimized application schedules to cores, and glplaaljusting application resource
footprints to prevent potential thermal stress and resouamnpetitions. Finally, archi-
tectural support is needed for extending the cache desigerform light-weight fault
detection and checkpointing, extending the register filgieto perform deterministic
register shuffling, and reorganizing the system topologiotally share storage units
among cores, so as to mitigate task migration overhead arelesate neighborhood-
centered communications.

The thesis delivers not only theoretical breakthroughsalsd practical solutions
to current and future multicore systems. For instance, tmepiler-directed execution
reconfiguration framework is particularly suitable for aton by the IBM CELL [48]
architecture. This architecture contains a power procesisment (PPE) that can be
used to control the execution of a set of specialized cogsmrs called synergistic pro-
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cessor elements (SPEs). At runtime, the PPE can be emplsyadardware resource
manager, to ascertain the operational health of each SREsignal a reconfiguration
process to deactivate or reactivate an SPE during execulioese functions can be ac-
complished in a highly regular and extremely efficient mantreough the development
of post-compilation scheduling tools for the CELL compiieigenerate execution sched-
ules for the SPEs, with various degrees of reconfiguratiepssembedded. In addition,
the outlined register shuffling technique is also partidulauitable for the SPEs. In the
CELL architecture, each SPE contains a large register fidewhe data-intensive nature
of the workload induces highly asymmetric register utiiaga. Compiler optimizations
can therefore be developed for the CELL architecture to eindgularity into the register
names. As the execution in various SPEs is synchronizediimglesinstruction-multiple-
data manner, all the SPEs can benefit from a single shufflinigeofegister names, thus
delivering maximum heat reduction benefits.

In sum, the successful completion of the fine-grained andigtable adaptive
multicore platform that | have proposed herein, | believd,emgenderadaptive, scalable
architectures that can seamlessly reshape execution Eaitischedules in an amortiz-
able, high-volume, fixed-silicon fabrithus providing avenues for effectively addressing
thermal buildups, possible fault occurrences and everuresa@ompetition among mul-
tiple applications executing simultaneously.

8.1 Future Work Directions

As process technologies continue to evolve, the issue afutiom uncertainty
is exacerbated as we negotiate the end of the CMOS era and antwe¢he world of
nanoelectronics. The thesis work opens up multiple divestifor future explorations
on the design of many-core systems with aggressive yetqieddié execution adaptivity
support.

The exploitation otompileroptimizations anan-line testingechniques enables
further reductions in run-time decision-making overhdadparticular, the various types
of device unreliability impose a crucial obstacle in mutie systems, namely, ambiguity
in fault manifestation rates and in fault types. While thegmsed fault detection tech-
nique can uniformly detect these various types of faulegise identification of the faulty
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component and the fault type still requires the use of oaedesting and diagnosis tech-
niques. Additionally, application information regardiegecution invariants can be used
for property checking which may provide precise identifmatfor system integrity in a
cost-effective manner.

Interactions with VLSI design and OSs can be exploited tth&mrimprove the
determinism of the overall system. VLSI design techniguassignificantly impact var-
ious aspects of the proposed adaptive multicore platfoneiuding cost-effective heat
removal, design testability and reliability enhancemant the achievement of execution
predictability in the face of device variability. Real-#En©Ss determine the efficiency of
design and maintenance of real-time systems for which hétém and responsiveness
are important product requirements. Based on staticathpeted information regarding
variations in resource requirements, real-time OSs camattsource reallocation within
a small and predictable timing overhead. Additionally,dveare components that would
facilitate the OS to efficiently dispatch the statically geated schedule blocks to a cluster
of cores will be a valuable direction for future research.

Finally, as CMOS scaling is approaching its physical limitanotechnology has
been widely acknowledged as the foundation for the nextg¢ioa of computer sys-
tems. Yet the level of execution uncertainty in nanoeletgtrgystems is ever higher,
since the fabrication process in nano environments is promkefects due to the small
scale of devices and the bottom-up self-assembly procebe. iSBues of fault detec-
tion, execution reconfiguration and communication costicédn should be addressed,
however, with consideration of the particular charactessof such systems. One char-
acteristic to consider is the expected high variance in dlét fate, which in turn leads
to significant differences in performance, robustness, @lsag noise immunity among
the devices. This clustering behavior should be considerdide development of fault
tolerance approaches, together with other effects suctaasiént/permanent character-
istics, temperature-induced fault rate increases, atish¢emduced device damage. An-
other characteristic to consider is the strict interconnenstraint, which forces localized
communication to become a critical criterion. Efficientdtgmy and structure for such
nanoelectronic systems, together with power-aware anabtelways to communicate
data across the chip, constitute significant obstaclesyded to be overcome.
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In sum, the design of an adaptive computational fabric dapatresponding to
the uncertainty challenges expected in the late CMOS, empelectronic era creates
a highly exciting research dimension. A complete realoranf such a fully adaptive
system requires the exploration of interactions betweehit@ctures and various other
disciplines of computer science, computer engineerind,ed@ctrical engineering. | am
eager to carry out my future research work in pushing theldpugent of this new area,
with extensive communication and collaboration with theeaach experts across multiple
disciplines and universities.
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