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New targets for antimalarial drug discovery
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Elizabeth A Winzeler

Department of Pediatrics MC 0760, School of Medicine, University of California, La Jolla, San 
Diego, CA 92093, USA

Abstract

Phenotypic screening methods have placed numerous preclinical candidates into the antimalarial 

drug-discovery pipeline. As more chemically validated targets become available, efforts are 

shifting to target-based drug discovery. Here, we briefly review some of the most attractive targets 

that have been identified in recent years.

Introduction

Malaria remains a devastating disease, impacting 40% of the world’s population. Although 

vaccines have been licensed, which reduce the frequency and severity of malarial infections, 

their efficacy in preventing clinical disease is less than 40% in the 48+-month long-term 

period and those who develop disease still need to receive small-molecule treatment that 

remains the gold-standard approach to saving lives [1]. In addition, it is increasingly 

recognized that malaria chemoprophylaxis, alone or in combination with a malaria vaccine, 

can be effective at preventing severe malaria and decreasing the burden of the disease [2].

History of antimalarial drug discovery

In the face of emerging resistance to frontline antimalarial drugs, great progress has been 

made in filling the anti-malarial drug-discovery pipeline with new candidate molecules. 

However, at this stage, most of the later candidates have come from modifications to 

existing scaffolds or from phenotypic screening approaches. Given the expected attrition, 

it is important to keep the early discovery pipeline full. As much of the low-hanging fruit 

has been plucked from libraries that have been tested for whole-cell antimalarial activity 

and researchers are looking to take advantage of new technologies, such as cryoEM, for 

solving structures and a host chemically validated drug targets have now been discovered 

and to further explore target-enabled drug discovery. Target-based drug discovery, which 

includes structure-enabled drug discovery, is attractive because it is possible to better refine 

compounds and to increase potency and selectivity.
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The importance of chemical validation

Although the power of structure-enabled drug discovery has long been known, discovering 

high-quality targets that lead directly to new therapies is not as easy as it may seem, even for 

single-celled organisms. Once the P. falciparum genome sequence was completed in 2002 

[3], many anticipated that many new drug targets would be revealed. Importantly, effort was 

made to scan the genome for both pathways and known druggable genes such as kinases 

and to compare the collected pathways and genes to see if they were found in the human 

genome, or might be more similar to bacterial pathways or enzymes. Given that malaria 

is caused by eukaryotic pathogens that are genetically more similar to humans than are 

bacteria or viruses, it was predicted that the best drug targets would be those that were found 

only in Plasmodium species or other apicomplexan parasites because it would be easy to 

achieve selectivity — to engineer compounds that would potently kill parasites but would 

have little impact on humans because the target was missing in the human. Accordingly, 

there was much focus on the proteins that were predicted to play a role in the apicoplast, an 

apicomplexan parasite organelle that is only found the phyla Apicomplexa. It was noted, for 

example, that the parasites likely used a type-II fatty acid biosynthesis pathway and it was 

predicted that proteins in this pathways would be attractive targets [4].

However, although some drug-discovery work ensued, in the years following the release 

of the genome sequence, effort was made to determine essentiality. It soon became clear 

that many of some attractive, often bacteria-like targets, were not actually needed for cell 

viability. In fact, in a landmark paper, Yeh and coworkers showed that the parasite could 

be cured of its apicoplast organelle and not immediately die [5]. These data indicated that 

any drug that targeted the apicoplast was not likely to work quickly and might lead to less-

desirable medicines, especially when drugs are needed to provide rapid symptomatic relief 

and prevent deaths. In other cases, attractive targets were demonstrated to be only essential 

in the stages of the malaria-parasite life-cycle that were not associated with symptomatic 

disease, and thus targeting these proteins would likely not reduce symptomatic infection 

[6,7]. Target-based drug discovery on anything other than very-well-validated targets, such 

as DHFR, the target of the antifolate, pyrimethamine, largely fell out favor.

An era of phenotypic screening

It was soon discovered that vast collections of chemical compounds could be readily tested 

for antimalarial activity and that new scaffolds and chemical matter could be discovered 

that both potently killed malaria parasites [8,9]. Drug discovery has been largely focused on 

the compounds from these screens over the next decade. Numerous attractive starting points 

were discovered, resulting in multiple new clinical candidates, some of which are likely 

to be eventually licensed. Although in most cases some understanding of their mechanism 

of action has been discovered, most of these candidates were optimized using a ‘black 

box’ approach that focused on making a large number of compounds looking for ones 

that gave an increase in activity against blood-stage parasites while minimizing the toxicity 

and improving pharmacokinetic properties (Figure 1). This laborious approach nevertheless 

has yielded multiple new candidates such as KAE609, KAF156, and SJ733, which 

are summarized on the Medicines for Malaria Venture website (https://www.mmv.org/). 
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Although some are likely to be licensed, questions about their mechanism of action remain 

(Figure 2).

A return to target-based drug discovery

Target-based drug discovery began to look more attractive once methods were developed 

for finding the targets of phenotypic screening hits. The most fruitful method for doing this 

was using in vitro evolution and whole-genome sequencing (reviewed in [10]). Compounds 

that rapidly killed malaria parasites, but which were relatively nontoxic, including the 

clinical candidates described above, were first chosen. Then parasites were slowly exposed 

to increasing concentrations of the compound, until resistance emerged. Then, the mutations 

that caused resistance were pinpointed by comparing the drug-resistant genome to the 

original genome, initially using scanning microarray methods but later, by whole-genome 

sequencing. A plethora of chemically validated targets were discovered using this method 

(Table 1) and assays and protein structures are available for many. These targets were 

considered more attractive because it was known that their inhibition would result in parasite 

killing, that they were by default, druggable, and were predicted to harbor pockets that 

would accommodate a small-molecule tool compound. Now, many of these targets are 

progressing into structure-guided drug-discovery activities. A list of some of the most 

intriguing targets are given in Table 1 and some are described below. Interestingly, and 

perhaps not unexpectedly, most targets that have been discovered with reverse chemical 

genetics have been shown to be attractive targets in other species.

The proteasome

The proteasome is a very-well-validated target in many species [11,12]. The P. falciparum 
proteasome has defined a very low risk of resistance with vinyl sulfone peptide inhibitors 

that bind the β2 or β5 subunits [13,14] and the natural product, carmaphycin [15]. One 

uniquely attractive feature is that these inhibitors synergize with artemisinin derivatives, 

in both sensitive and artemisinin-resistant parasites, including against artemisinin-resistant 

parasites [16]. Selectivity and antiplasmodial potency have also been excellent. Another 

attractive feature is the availability of cryoEM structures. Challenges associated with 

tackling the proteosome will be determining whether inexpensive selective molecules that 

are orally bioavailable and have a good half-life can be created. The proteosome is also 

essential in parasite liver stages, suggesting that proteosome-targeting medicines might be 

useful for malaria chemoprophylaxis.

P. falciparum acetyl-CoA synthetase

Two new classes of inhibitor that target acetyl-CoA synthetase (AcAS) have been 

discovered, validating this enzyme as another attractive antimalarial target. Depletion 

of acetyl-coA gives a variety of metabolic effects and also appears to impact histone 

acetylation. MMV019721 and MMV084978 were found to target P. falciparum AcAS 

[••17].
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Proteases

Proteases have long been pursued as attractive drug targets. Proteases that were initially 

identified using functional genomic approaches have largely not yielded molecules that have 

potent on-target cellular activity. For example, efforts to drug the malaria falcipains were 

largely unsuccessful [18,19], despite excitement about this class early on. More recently, 

proteases that were discovered as targets from potent phenotypic hits have shown better 

druggability. There has been extensive interest in the plasmepsin family of Plasmodium 

aspartic proteases. WM382 is a dual inhibitor of plasmepsin IX and X that are essential 

aspartic proteases required for parasite invasion and release [20,••21].

Kinases

Kinases are one of the most well-known target classes in oncology. Protein kinase G 

(PKG) remains an attractive target for antimalarial drug discovery and while it was 

initially identified and explored using functional genomic approaches, recent work has 

identified potent tool compounds such as inhibitor MMV003084. This work shows that 

PKG had a minimal resistance liability and potent prophylactic, anti-asexual blood-stage 

and transmission-blocking activity [22]. PKG is a key mediator of parasite invasion of and 

egress from host cells [23,24]. A concern with kinases is that the noted low-resistance 

potential is because compounds bind in the catalytic site. PfCLK3, a kinase that participates 

in pre-mRNA splicing, was identified by a functional genomic method and target-based 

screen of the Tres Cantos Anti-Malarial Set [9,25]. On-target activity was confirmed with 

subsequent in vitro evolution studies [26].

Aminoacyl tRNA synthetases

Aminoacyl tRNA synthetases (aaRSs) have long been known to be an attractive class of 

target for other infectious diseases. By 2022, inhibitors have been discovered or developed 

against all aaRS targets. In other species, there are generally 4 categories of aaRS inhibitors: 

1) catalytic-site inhibitors, 2) editing-site inhibitors, 3) allosteric-site inhibitors, and 4) 

protein–protein-interaction inhibitors (Figure 1) [27,••28]. Various starting points have been 

pursued, such as mimicking one of the aaRS substrates (ATP, amino acid, and tRNA 

3’-tail), creating an intermediate analog, adding a reactive species (e.g. boron in AN2690) 

to a small molecule, such that covalent bonds can be formed with protein or substrate 

nucleophiles (e.g. hydroxyl group on 3’-tRNA), and creating analogs of natural product 

inhibitors (e.g. pseudomonic acid and mupirocin). Intermediate-based inhibitors (IBIs) have 

been some of the most potent inhibitors developed with binding affinities in the picomolar-

to- nanomolar range [29]. These IBIs, mostly in the form of aminoacyl sulfamates and 

aminoalkyl adenylates, have poor uptake by cells or are easily hydrolyzed and therefore have 

not been further developed [29]. An allosteric steric-inhibitor series MSR02 based on ATP 

analogs was discovered through X-ray crystallography and supported through biochemical 

analysis.

aaRSs can generally be categorized as either class-I (Rossman fold) or class-II (seven 

stranded β-sheet) enzymes based on the structures of their active sites [27,30,31]. Within 

Guerra and Winzeler Page 4

Curr Opin Microbiol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Plasmodium spp., there are a total of 37 aaRSs distributed between the cytoplasm, 

apicoplast, mitochondria, and nucleus [31,32]. In comparison, there are 38 aaRSs total 

within humans [32]. Four plasmodial aaRSs (ARS, GRS, TRS, and CRS) are dually 

localized to both the apicoplast and cytosol [31,33]. There are three different PRS enzymes 

separately localized to the mitochondria, apicoplast, and cytoplasm [31]. QRS is only 

found in the cytoplasm [31]. All the remaining other aaRSs have different enzymes in 

the apicoplast and cytoplasm [31]. Despite the similarities between Homo sapiens and 

Plasmodium spp. aaRSs, several compounds have been found to be specific for the parasite 

form, which opens the possibility for developing other selective inhibitors [27,34,35].

aaRSs have proven to be an abundant class of targets for malaria. The importance of aaRSs 

as antimalarial drug targets began to emerge when it was discovered that cladosporin, a 

compound with antimalarial activity, acted via inhibition of lysyl tRNA synthetase [35]. 

Since then, a host of other highly validated aaRSs have been discovered as the targets of 

phenotypic screening hits’ in vitro evolution. The most well-validated set includes FRS, 

PRS, YRS, and cytoplasmic IRS. Structures are available for Plasmodium FRS, LRS, KRS, 

RRS, PRS, YRS, and WRS. Most, if not all aaRSs that have been matched to a chemical 

probe appear to be essential for liver-stage activity. A potential weakness is the perceived 

speed of action. A recent exciting development is the demonstration that YRS is the target of 

ML901, a compound with potent blood- and liver-stage activity. Structural studies show that 

ML901, a adenylate analog, acts via a reaction-hijacking method [••36]. More work will be 

needed to determine if any can be progressed into drug candidates.

Diversity of binding sites

Good targets can have multiple different compound-binding sites and each binding site may 

have different resistance liabilities. Within the aaRS family of inhibitor-target interactions, 

different compounds have been shown to bind to one (tavaborole), two (halofunginone), 

or three sites (borrelidin) on their target aaRS [37]. If lessons may be learned from the 

development of antibiotics, simultaneously inhibiting two or more aaRSs may decrease the 

resistance liability [38].

Drug resistance and structure-guided drug discovery

A criticism of structure-guided drug discovery is that there may be a higher tendency to 

develop resistance. Indeed, dihydroorotate reductase is often cited as a key example of the 

power of structure-guided drug discovery, but resistance to DHODH has been known to 

emerge rapidly and key alleles known to cause resistance in the laboratory were found in 

patients treated with DSM265 in Phase-II clinical trials [39]. More work will be needed 

to determine if this is a feature of DHODH or if the selectivity that can be achieved in 

target-based drug design comes at the expense of resistance. This concern however may be 

unfair, especially when a structure and genomes of resistant phenotypes are available. The 

crystal structure of DHFR was used to guide the development of the P218 inhibitor and to 

mitigate the DHFR-resistance issues [40,41]. Therefore, it is likely that newer-generation 

DHODH inhibitors can be designed that will not have the same resistance liabilities as 

DSM265.

Guerra and Winzeler Page 5

Curr Opin Microbiol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

Although work continues on essential targets that are druggable, but which are not 

associated with a mid-to-low nanomolar-tool compound, there is a danger that limits to 

potency may be met if the target is not as critically essential. Highly potent compounds are 

likely needed to achieve physiologically relevant exposure levels in humans. Ideally, orally 

bioavailable compounds with long half-lives are of interest, but with the advancement of 

newer drug-delivery vehicles, for example, amphiphilic nanodroplet injections, physiological 

levels can be more readily achieved over longer periods of time that delays first-pass 

metabolism in the liver and rapid clearance by glomerular filtration in the kidneys. 

Regardless of the methods employed to discover and develop a drug, the complexity of 

efficacy and toxicity may not be elucidated, until the drug reaches human clinical trials. 

Relatively few drugs that have come from target-enabled drug discovery have progressed 

into human trials and licensing. In addition, it is possible that the increased selectivity 

that can be engineered with structure-enabled drug discovery may come with increased 

resistance risk and that the dirty compounds that interact with multiple targets have the 

lowest risk. As a corollary, dirty compounds have also long been thought of as the driver 

for unforeseen off-target toxicity effects. However, perhaps, this will change with the recent 

progress in structural biology combined with genomic information from resistant-mutant 

phenotypes. Drawing lessons from HIV antiretroviral treatment, prolonged exposure to a 

single drug from a multidrug multitarget regimen can lead to resistance. The combination 

of drugs, particularly those that are composed with newer-generation integrase-strand 

inhibitors (INSTIs), has a much higher barrier to resistance. Stronger target interactions 

with newer-generation INSTIs demonstrate limited cross-resistance and select for alternative 

mutational phenotypes with only minimally to moderately reduced susceptibility [42–44]. 

Thus, combining resistant-mutant genomic and phenotypic results with essentiality and 

structure-based drug design may allow for the tailoring of next-generation antimalarial 

compounds that account for in vivo selective pressures of resistance.
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Figure 1. 
Phenotypic and Target-based approaches to antimalarial drug discovery with advantages and 

disadvantages of different methods. Both phenotypic and target-based methods are able to 

screen large compound libraries rapidly. Potent inhibitory compounds identified through 

phenotypic-based screens can be used to identify targets through in vitro evolution with 

subsequent whole-genome sequencing analysis for mutants or through various proteomic 

methods, such as label-based or pull-down assays. Hits can be passed through both 

phenotypic and target-based methods for optimization.
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Figure 2. 
X-ray crystallographic models of aaRSs complexed with inhibitors* that have biochemically 

validated each protein target through in vitro evolution. P. falciparum cFRS, cKRS, cYRS, 

cPRS are complexed with BRD1389, cladosporin, ML901, and halofunginone, respectively. 

Most x-ray structures solved without tRNA which may play a critical role. *PfYRS 

structure with ML901 to be released soon and 3VGJ shown in its place. Pf (P. falciparum), 

Hs (Homo sapiens), Pb (Plasmodium berghei), cFRS (cytoplasmic phenylalanine tRNA 

synthetase), cKRS1 (cytoplasmic lysine tRNA synthetase 1), cYRS (cytoplasmic tyrosine 

tRNA synthetase), cPRS (cytoplasmic proline tRNA synthetase) [••36, ••45–49].
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Table 1

Select high-value, chemically validated targets for malaria. Listed tool compounds were used to establish on-

target activity using reverse chemical genetics, usually using in vitro evolution and whole-genome sequencing.

Gene Product Description Tool Compound Structure Ref

AcAS (PF3D7_0627800) Acetyl-CoA synthetase MMV019721
MMV693183

[50–52]

ACS11 (PF3D7_1238800) Acyl-CoA synthetase MMV019719 [53]

ATP4 (PF3D7_1211900) Non-SERCA-type Ca2+ -transporting P-
ATPase

KAE609, SJ733 [10]

cIRS (PF3D7_1332900) Isoleucine tRNA synthetase MMV1081413, thiaisoleucine [10,54]

CLK3 (PF3D7_1114700) Cyclin-like kinase 3 TCMDC135051 [26]

CPSF3 (PF3D7_1438500) Cleavage and polyadenylation specificity factor 
subunit 3, putative

AN13762 [••55]

CYTB (mal_mito_3) Cytochrome bc1 complex Atovaquone, DDD01061024, 
MMV008149, MMV1427995, 
MMV1432711

4PD4 [10,54]

DHFR-TS (PF3D7_0417200) Bifunctional dihydrofolate reductase-
thymidylate synthase

MMV027634(TS), 
pyrimethamine (DHFR), P218

3QGT [56]

DHODH (PF3D7_0603300) Dihydroorotate dehydrogenase DSM265, BRD7539, 
BRD9185, DSM1

4CQ8 [10,57,58]

DPCK (PF3D7_1443700) Dephospho-CoA kinase, putative Amb3377585, STK740987 [59–61]

eEF2 (PF3D7_1451100) Elongation factor 2 M5717 (DDD498) [10]

Ftbeta (PF3D7_1147500) Protein farnesyltransferase subunit beta MMV019066, BMS-388891 [10]

GCN5 (PF3D7_0823300) Histone acetyltransferase GCN5 SGC-CBP30 PQNS [62]

GGPPS (PF3D7_1128400) Geranylgeranyl pyrophosphate synthase, 
putative

GDI11–078A, MMV019313 3CC9 [63]

HT1 (PF3D7_0204700) Hexose transporter C3361 6M2L [64,65]

KRS1 (PF3D7_1350100) Lysine tRNA synthetase Cladosporin 6KAB
4H02

[35,66]

NCR1 (PF3D7_0107500) Lipid/sterol:H+ symporter MMV009108, MMV019662, 
MMV028038

[67]

NMT (PF3D7_1412800) Glycylpeptide N-tetradecanoyltransferase 
(NMT)

IMP-1002 6MB1 [68]

PFK9 (PF3D7_0915400) 6-phosphofructokinase PS-3 [69]

PheRS (PF3D7_0109800) Phenylalanine--tRNA synthetase (α subunit) BRD1095, BRD3444 7BY6
7DPI

[70]

PI4K (PF3D7_0509800) Phosphatidylinositol 4-kinase BRD9685, MMV390048, 
KAI407

[71,72]

PKG (PF3D7_1436600) cGMP-dependent protein kinase ML10 5DYK [24]

PMX (PF3D7_0808200) Plasmepsin X WM382 7RY7 [21]

PNP (PF3D7_0513300) Purine nucleoside phosphorylase DADMe-ImmG [73]

PPPK-DHPS 
(PF3D7_0810800)

6-hydroxymethyl-7,8-dihydropterin 
pyrophosphokinase (HPPK)–dihydropteroate 
synthase (DHPS)

Pterin/pHBA, Sulfadoxine- 
dihydropteroate

6KCM
6JWX

[74]

Proteasome (PF3D7_1011400) Proteasome subunit beta type-5 Bortezomib 7LXT [34]

Proteasome (PF3D7_1328100) Proteasome subunit beta type-7, putative WLW 5FMG [75]

Proteosome (PF3D7_0518300) Proteasome subunit beta type-1, putative WLL 5FMG [75]

PRS (PF3D7_1213800) Proline--tRNA synthetase Compound 1S, Halofuginone 4TWA
4WI1

[10,76]
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Gene Product Description Tool Compound Structure Ref

TyrRS (PF3D7_0807900) Tyrosine--tRNA synthetase ML901 7ROR
3VGJ

[••36]
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