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Multimodal analysis of RNA sequencing data
powers discovery of complex trait genetics

Daniel Munro 1,2,3, Nava Ehsan 3, Seyed Mehdi Esmaeili-Fard 2,
Alexander Gusev 4,7 , Abraham A. Palmer 1,5,7 &
Pejman Mohammadi 2,3,6,7

RNA sequencing has the potential to reveal manymodalities of transcriptional
regulation, such as various splicing phenotypes, but studies on gene regula-
tion are often limited to gene expression due to the complexity of extracting
and analyzingmultiple RNAphenotypes. Here,we present Pantry, a framework
to efficiently generate diverseRNAphenotypes fromRNA sequencing data and
perform downstream integrative analyses with genetic data. Pantry generates
phenotypes fromsixmodalities of transcriptional regulation (gene expression,
isoform ratios, splice junction usage, alternative TSS/polyA usage, and RNA
stability) and integrates them with genetic data via QTL mapping, TWAS, and
colocalization testing.We apply Pantry toGeuvadis andGTExdata,finding that
4768 of the genes with no identified eQTL in Geuvadis have QTL in at least one
other transcriptional modality, resulting in a 66% increase in genes over eQTL
mapping. We further found that the QTL exhibit modality-specific functional
properties that are further reinforced by joint analysis of different RNA mod-
alities. We also show that generalizing TWAS to multiple RNA modalities
approximately doubles the discovery of unique gene-trait associations, and
enhances identification of regulatory mechanisms underlying GWAS signal in
42% of previously associated gene-trait pairs.

RNA sequencing is used to quantify transcriptomic activity, and can be
combined with genotyping to detect heritable differences in gene
regulation. This quantification often includes only total gene expres-
sion and, less often, some formof alternative splicing phenotype, such
as intron excision rates, resulting in expression quantitative trait loci
(eQTLs) and splice QTLs (sQTLs) or predicted expression models.
Thesemolecular phenotypes can provide evidence formechanisms by
which heritable differences in gene regulation serve as the molecular
intermediates between GWAS association signals and complex traits1,2.
Other forms of transcriptomic variation, such as alternative tran-
scription start site (TSS), alternative polyadenylation (polyA), and

splice isoform ratios, have been found to explain an additional
portion3,4. Importantly, all of these phenotypes are based on RNA-seq
data but require multiple different analytic methods.

Methods and resources already exist to identify genetically driven
associations between these RNA phenotypes and complex traits5–9.
However, it is common that only gene expression is examined because
of the significant extra effort needed to obtain other RNA phenotypes.
Difficulties include data formatting issues, software dependencies,
post-processing, computational resources, lack of field expertise, and
other practical considerations. Another challenge is the statistical
complexity of interpreting these correlated RNA phenotypes and
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downstreamresults in aggregate. For example, it is not straightforward
to distinguish a case where two genetic association signals in different
RNAmodalities reveal two biological mechanisms from a case where a
single mechanism is reflected in two related RNA modalities.

We present Pantry, a framework for pan-transcriptomic pheno-
typing that streamlines the quantification of multiple RNA modalities
and their use in downstream applications, including molecular QTL
(xQTL) mapping and transcriptome-wide association studies (TWAS).
We apply all of this to 50 human tissue datasets and demonstrate that
when TWAS is generalized to include multiple RNA modalities
(xTWAS) there is a substantial increase in the number of significant
gene-trait associations, and improved specification of the most rele-
vant RNA phenotype.

Results
We developed Pantry, an end-to-end framework for multimodal ana-
lysis of RNA-seq data from populations for genomic interpretation
(Fig. 1a). Currently, Pantry encompasses six modalities of regulatory
variation. Two of these, total gene expression and RNA stability, result
in one phenotype per gene, while the other four can produce multiple
molecular phenotypes per gene, such as relative abundance of each
unique transcript isoform. We generated data on these six modalities
of transcriptome regulation for 445 lymphoblastoid cell line (LCL)

samples in Geuvadis10 and all 17,350 samples across 54 tissues in the
GTEx Project V8 release1. We limited our analysis to protein-coding
genes and lncRNAs. We generated 204,273 phenotypes per sample,
spanning 25,657 genes in Geuvadis data (Table 1, Fig. 1b, c), and similar
figures in individual GTEx tissues (Supplementary Fig. 1).

Applying RNA phenotypes to genetic analyses
Mapping xQTLs across multiple modalities increases xGene dis-
covery. To identify genetic determinants of individual transcriptome
phenotypes generated by Pantry, we developed Pheast (PHEnotype
Application STreamlined). Pheast uses an approach previously used
for splice QTL mapping to simultaneously map cis-QTLs across all six
transcriptome modalities; we refer to this as cross-modality mapping.
Specifically, a stepwise regression procedure implemented in ten-
sorQTL that is used to identify conditionally independent cis-QTLs can
be applied to groupedphenotypes, such asmultiple splice phenotypes
per gene11,12. But phenotypes of different modalities could also be
correlated and produce redundant xQTLs, such as when alternative
splicing (measured as intron excision ratio) alters the isoform ratios or
total gene expression estimates. While some xQTL overlap between
modalities could reflect mechanistically distinct effects, it can be
useful to enumerate independent genetic signals. Pantry Pheast com-
bines the sets of phenotypes across all modalities and maps cis-QTLs
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with stepwise regression, considering all phenotypes per gene as a
single group. This is implemented using tensorQTL’s stepwise
regression, grouped phenotype, and data permutation features (Sup-
plementary Methods). All xQTL results hereafter refer to those from
this cross-modality cis-xQTLmapping strategy unless otherwisenoted.

Using the 445 Geuvadis samples, we identified 21,045 con-
ditionally independent xQTLs for 11,983 genes across the six studied
modalities. Expression QTLs were the most abundant, with eQTLs
found for 7215 genes, which was more than 3.2 times greater than
isoform ratio, which was the second-most abundant xQTL group
(Fig. 2a). However, for 4768 genes with no identified eQTL, we found
xQTLs in at least one of the other modalities. This represents a 66%
increase in the number of xQTLgenes (xGenes), highlighting the utility
of analyzingmultiplemodalities of transcriptional regulation. Multiple
conditionally independent xQTLs were found for 42.7% of xGenes
(Fig. 2b). The xQTLs for each genewere ranked inorder of detection by
stepwise regression. The proportion from eachmodality varied across
ranks such that stronger xQTLs were most likely to be for expression,
and subsequent xQTLs were more likely to be for isoform ratio or
intron excision ratio (Fig. 2c). This trend could be influenced by the
relative strengthof the true genetic signals in eachmodality, thepower
to detect the signals with eachmethod, and differences in the number
of phenotypes per gene.

We similarly mapped xQTLs for each of 49 GTEx tissues, sepa-
rately per modality (Supplementary Data 1) and with cross-modality
mapping (Supplementary Data 2). We discovered comparable num-
bers of xQTLs as for Geuvadis, which varied across tissues due to
factors such as sample size, but generally found non-expression xQTLs
in thousands of genes per tissue for which no eQTLswere found in our
data, resulting in a 71% increase of xGenes over eGenes alone on
average (Supplementary Fig. 2).

To measure concordance of xQTLs between independent data-
sets, for each modality we identified the strongest xQTL per xGene in
Geuvadis, and extracted the associations for the same variant-RNA
phenotype pairs, if tested, in GTEx EBV-transformed lymphocytes
(LCL). This resulted in 21,345, or 78%, of the Geuvadis pairs that could
be compared between the datasets. We found that the regression
slopes were consistent in both direction and magnitude between the
two datasets, with Pearson correlation coefficients ranging from 0.80
to 0.89 per modality and mean Deming regression slope of 1.005
(Supplementary Fig. 3).

Location and functional effect of xVariants reflect their associated
modality. While we used the same cis- window of ±1Mb from the
transcription start site tomap xQTLs for all sixmodalities, we found that
the location of themapped xQTLs relative to their xGene varies strongly
depending on themodality (Fig. 2d, Supplementary Fig. 4). As expected,
the distributions of expression and alternative TSS xQTLs peak around
the start site, while the distribution of alternative polyA xQTLs peak
around the end. Isoform ratio, intron excision ratio, and RNA stability
xQTLs are more uniformly distributed across the length of their genes.

We examined functional annotations for each xQTL top variant
(xVariant) to identify which annotations were most enriched in each
RNA modality. Results were largely in line with expectations. For
example, splicing annotations were most enriched in the intron exci-
sion ratio xVariants, 5′ UTR variants and promoters were most enri-
ched in alternative TSS xVariants, and 3′ UTR variants were most
enriched in alternative polyA xVariants (Fig. 2e). Expression was the
second-most enriched modality in 5′ UTR and promoter variants, and
the most enriched modality for promoter-flanking variants. These
enrichment levels were largely consistent across GTEx tissues.

Cross-modality mapping reduces redundancy of xQTLs. We ana-
lyzed the impact of Pantry’s cross-modality xQTL mapping strategy
compared to the conventional method of mapping conditionallyTa
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independent QTLs separately per modality. Cross-modality mapping
resulted in fewer total xQTLs per gene on average (1.76 in Geuvadis)
compared to 2.94 for separate-modality mapping (Fig. 3a). This gen-
eral trend is expected anddesirable because the goal of cross-modality
mapping is to eliminate correlated signals. Notably, we only observe a
slight decrease (10.4%) in the total number of xGenes in spite of the
46.4% decrease in the total number of xQTLs (Fig. 3b). Looking at
individualmodalities, however,we see adrastic drop (median39.2%) in
the number of xGenes (Fig. 3b). This pattern points to deconvolution
of confounding xQTL effects observed in multiple modalities by the
cross-modalitymapping strategy. To this end, we looked specifically at
the consistency of expression QTL effect sizes. Using data from GTEx
subcutaneous adipose tissue, we measured allelic fold change (aFC)
from gene expression data and again from allele-specific expression
(ASE) data. These two measurements of cis-regulatory effect size are
largely affected by independent sources of noise and as such allow us
to gauge the quality of mapped cis-eQTLs13. The Pearson correlation
between the two aFC measures was slightly higher for cross-modality
mapping (r = 0.721, 95% CI [0.709, 0.733]) than for p-value-matched
eQTLs from separate-modality mapping (r =0.703, 95% CI [0.690,

0.715]), suggesting a refinement of eQTL signals (Supplementary
Fig. 5). We note, however, that in cases where a variant causes
mechanistically distinct effects on multiple modalities, this cross-
modality mapping procedure may also omit the xQTLs for some of
those modalities.

Next, we looked at how cross-modality mapping affects the
overall functional characteristics of the resulting set of xVariants. For
genes with Geuvadis xQTLs from both mapping methods, we exam-
ined, for eachmodality, the subset of genes that had significant xQTLs
using separate-modality mapping but no significant xQTLs when using
cross-modality mapping (“removed”; Fig. 3b) and the subset that were
also found with cross-modality mapping (“retained”; Fig. 3b). We
hypothesize that the removed xQTLs were found in multiple mod-
alities and were better characterized with a phenotype of a different
modality. We observed sharper modality-specific distributions of
xVariant positions in the retained xQTLs (Fig. 3c). Specifically, there
were relatively fewer retained expression xVariants within the gene
body and especially near the transcription end site (TES), compared to
the peak at the TSS, and likewise fewer alternative TSS and polyA
xVariants within the gene body relative to the peak at the TSS or TES,
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respectively. These observations indicate that cross-modalitymapping
results are more biologically plausible. We also compared functional
annotation enrichment in removed and retained xQTLs and observed
similar characteristic differences (Fig. 3d). These include stronger
enrichment of promoter annotations andweaker enrichment of 3′UTR
annotations in expression QTLs; stronger enrichment of splicing
annotations in intron excision ratio QTLs; stronger enrichment of 5’
UTR and promoter annotations in alternative TSS QTLs and the
opposite in alternative polyAQTLs; and stronger enrichment of 3′UTR
annotations in alternative polyA QTLs.

xTWAS doubles the discovery of trait-associated genes. While
TWAS is most commonly applied to gene expression data, the
underlying principles and models are largely applicable to any of the
RNA phenotypes provided by Pantry. We trained TWAS models on all
RNA phenotypes (xTWAS), training one model per phenotype in the
same way as the conventional method of training one expression
model per gene. For modalities with multiple RNA phenotypes per
gene, this produced multiple models per gene. We performed xTWAS
on a published collection of harmonized data for 114 traits, including
cardiometabolic, psychiatric-neurologic, anthropometric, immune,
blood, and other trait categories14. For Geuvadis, we found
10,065 significant hits across 80 traits involving 4,304 unique RNA
phenotypes for 1934genes.Of the 4,487unique trait-genepairs among
these hits, 51.3% involved only non-expression RNA phenotypes, and
thus would not have been identified in a typical expression-only TWAS
analysis (Fig. 4a). While xTWAS produced a dramatic increase in find-
ings compared to TWAS, expression phenotypes produced the single
largest number of TWAS hits, and the most top hits per gene, of any
modality.

For each xTWAS hit, we sought more stringent evidence for
mediation by testing for colocalization of the RNA phenotype and trait
genetic associations using COLOC15, which is a more conservative test
than TWAS14. Approximately one-third of the xTWAS hits exhibited
strong evidence of colocalization at a shared variant (posterior prob-
ability of association >0.8), ranging from 32.1% to 36.3% per modality
(Fig. 4b). That is, no modality was especially depleted of colocaliza-
tions among its TWAS associations. We also ran xTWAS on each GTEx
tissue (Supplementary Data 3), identifying colocalizing hits for 50,442
more trait-tissue-gene triplets than would be found using expression
alone, a 2.73-fold change (Fig. 4c). This effect occurred across all tis-
sues, while the total number of colocalizing hits per tissue varied
widely due to factors such as sample size. Aside from several tissues
with very low sample size, the proportion of TWAS hits per tissue-
modality pair with strong evidenceof colocalizationwas similar to that
observed for Geuvadis (Supplementary Fig. 6).

To measure concordance of xTWAS associations between inde-
pendent datasets, we compared results from Geuvadis to those from
GTEx LCL. Therewere 2179 trait-genepairs significant inbothGeuvadis
and GTEx LCL, which is 49% of the 4487 Geuvadis (sample size = 445)
significant pairs and 63% of the 3450 GTEx LCL (sample size = 147)
significant pairs.

Since RNA phenotypes were individually tested for xTWAS asso-
ciations, we also performed association testing using FOCUS, a method
that uses a fine-mapping approach to handle the confounding effects of
linkage disequilibrium (LD) and pleiotropy16. We ran FOCUS using
FUSION’s transcriptomic models for all Pantry modalities trained on
Geuvadisdata.Weobserved similarproportionsof themodalities among
the top associations per trait-gene pair as compared to those from
FUSION, though the expression proportion was higher, at 41.6% com-
pared to 35.6% for FUSION hits (Supplementary Fig. 7).While the FOCUS
analysis required modification to accommodate Pantry’s multimodal
phenotypes (see Methods), these results suggest that the observed
contributions of each RNAmodality to TWAS discovery are not strongly
affected by confounding due to LD, co-regulation, or pleiotropy.

xTWAS enhances understanding of GWAS results. GWAS loci are
often provisionally attributed to the nearest gene, although it is gen-
erally understood that the nearest gene may or may not have a med-
iating role.We identified the twonearest genes to eachGWAS locus for
all traits andmatched those trait-gene pairs with Geuvadis colocalizing
xTWAS hits. Across the 7071 loci, 566 (8%) could be potentially
explained by an xTWAS hit matching one of the two nearest genes. Of
those loci, 333 (59%) matched only non-expression hits. We repeated
this analysiswith colocalizing xTWAShits fromall 49GTEx tissues after
applying amore stringent Bonferroni threshold for TWAS p-values that
accounts for the number of tissues in addition to the number of
modalities. We found that 1906 loci (27%) could be potentially
explained by a hit in any tissue. Of those, 651 (34%)matched only non-
expression hits. Compared to the single-tissue Geuvadis data, xTWAS
hits across 49 tissues provided more contexts in which to detect
potentialmediators.While this resulted inmore loci having at least one
matching expression hit, this multi-tissue analysis still resulted in 95%
more loci potentially explained by exclusively non-expression colo-
calizing xTWAS hits.

We also examined GTEx xTWAS hits for which the gene was ori-
ginally reported in the GWAS study as a potential mediator based on its
proximity to an association locus. For example, from the colocalizing
xTWAS hits for neuroticism in UK Biobank, we identified several genes
knownpreviously tobe relevant tobehavior:ORC4,CRHR1, andDRD2. All
three were reported in a GWAS on neuroticism in UK Biobank as being
within associated regions17. In our xTWAS, their associated modalities
includedonly isoformratio and/or intronexcision ratioacross all 13brain
tissues for ORC4 (Fig. 5); expression, isoform ratio, intron excision ratio,
alternative TSS, and/or RNA stability in four brain tissues for CRHR1; and
expression in one brain tissue, cerebellum, for DRD2.

We also examined biologically relevant genes that had been
reported based on colocalizing eQTLs rather than proximity alone. For
example, in the PGC schizophrenia GWAS, CYP2D6, which encodes a
pharmacologically important P450 enzyme18, was included among
blood eQTLs, but not brain eQTLs, that fell within a GWAS locus
credible set19.We found colocalizing xTWAS hits for this schizophrenia
trait for CYP2D6 in five GTEx brain tissues, liver, and seven other tis-
sues, all for isoform ratio, intron excision ratio, or RNA stability phe-
notypes, and none for expression phenotypes.

A GWAS for sleep duration in UK Biobank found PER1, a well-
characterized circadian rhythm gene, within an associated locus20. We
found colocalizing xTWAS hits for circadian rhythm for PER1 in thyr-
oid, coronary artery, and sigmoid colon, all of which were for the
alternative TSS modality. For a related trait, morning/evening person
chronotype, a GWAS in UK Biobank followed by pathway analysis
identified RELN, a gene previously linked to schizophrenia but not
circadian rhythm21. We found colocalizing xTWAS hits for RELN
exclusively in cerebellar hemisphere, cerebellum, and tibial nerve, for
morning/evening person chronotype, and for alternative polyA mod-
ality, and did not find any other hits for other tissues, traits, or
modalities.

RNA modalities harbor largely consistent proportions of genetic
regulation across tissues. We examined the proportion of xQTLs and
xTWAS hits coming from each RNAmodality for each tissue to identify
trends or outliers that could have biological significance. The pro-
portions were fairly consistent across GTEx tissues, with no strong
relationship to sample size (Supplementary Fig. 8). A notable deviation
was in Testis, which had the highest proportion of intron excision ratio
phenotypes in both xQTLs (28.3%) and xTWAS hits (29.1%) of any tis-
sue. This observation is consistent with existing knowledge that
alternative splicing is especially prevalent in the testis22. Another
strong deviation was cultured fibroblasts having a relatively high
fraction of xQTL hits for RNA stability (13.4%, compared to mean 8.7%
across tissues).
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Discussion
We have introduced Pantry, a framework for multimodal analysis of
RNA-seq data and its application to xQTL discovery and GWAS inter-
pretation. Pantry dramatically increases the number of genomic dis-
coveries when used to reanalyze previously generated datasets.
Notably, for more than two-fifths of the gene-trait pairs with previous
TWAS hits from gene expression analysis, we identified at least one
additional regulation modality. While these genes are not completely
new discoveries, the association with the new modality may facilitate
the identification of the biological mechanism driving the association.
Wehave shown that the systematic analysis ofmultiple RNAmodalities

reveals complementary biological information and genetic signals,
improving the number and the specificity of genetic discoveries as
compared to the conventional gene expression-based analysis using
the same data. Finally, we share all the tools, methods and generated
data with the community, including the RNA phenotypes, xQTLs,
xTWAS weights, and xTWAS associations generated from the GTEx
project and Geuvadis data.

The Pantry framework ismodular and amenable to the addition of
other transcriptomic modalities not considered here to facilitate fur-
ther expansion and adaptation by the genomics community. These
could include types of RNAs lacking polyA tails, which may only be
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phenotypes, or both. Only the top 20 traits in terms of gene count are shown44–46.
xTWAS hits are associations with TWAS p-values reported by FUSION below a
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modalities, of 8.33 × 10−9. To the right, the same traits and genes are colored by the
modality of each gene’s hit with the lowest xTWASp-value. In both plots, each gene
is represented at most once per trait, and genes in the “Expression only” category
on the left overlap with, but are not the same set as, genes in the “Expression” top

hit category on the right. UKBB, UK Biobank; GIANT, Genetic Investigation of
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sufficiently quantified in non-polyA-selected RNA-seq libraries. Alter-
native forms of existingmodalities, such as different ways to represent
isoform abundance or more abstract features that represent expres-
sion variation, could be explored using this framework.

The established technique of using stepwise regression to find
conditionally independent xQTLs naturally lends itself to multi-modal
RNA phenotype data. Not only can it avoid redundant xQTLs in the
presence of multiple phenotypes of the same modality, such as those
representing alternative splice junctions, but it also avoids redundant
xQTLs across modalities. However, when two phenotypes of different
modalities share an xQTL signal, one modality might reflect the
underlying causal mechanism better than the other, and that pheno-
type may not always have the stronger association. Thus, while the
multi-modal conditionally independent xQTL mapping does sharpen

the modality-specific functional characteristics of the xQTLs overall
when compared to separate-modality mapping, it may also remove
some of the true associations to a lower powered transcriptional
modality (e.g., RNA stability) in favor of a better powered one (e.g.,
gene expression). Furthermore, a regulatory variant could lead to two
distinct effects on different modalities, for example by altering splice
junction usage, which increases the rate of nonsense-mediated decay
(NMD), which changes total expression level23. We therefore also
provide results from each modality individually analyzed for applica-
tions that benefit frommore comprehensive sets of modalities and to
resolve causal chains of distinct molecular effects, as well as applica-
tions focused on a single modality of gene regulation.

The abundance of all six modalities among the cross-modality
mapped xQTLs highlights the benefit of quantifying many modalities,
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even those that overlap in the transcriptomic variation they represent.
For example, isoform ratios and intron excision ratios capture alter-
native splicing variation in different forms, and they are roughly
equally represented among the xQTLs selected to represent con-
ditionally independent genetic signals. This is consistent with the
observation of Garrido-Martín et al.4 that the two approaches are
complementary, one having higher power to detect sQTLs than the
other in specific cases, depending on properties of the gene. They also
note that isoform ratios can represent additional types of variation,
suchas alternativeTSS andpolyA sites, not capturedby intron excision
ratios.

There are existing methods such as isoTWAS24 and OPERA5 that
incorporatemolecular information beyond total gene expression into
genetic analysis25. Such methods have demonstrated that many more
gene-trait associations can be discovered compared to using gene
expression alone. Other studies have shown that cis-regulatory var-
iants can be mapped for various transcriptional modalities beyond
gene expression1,3,7,9,26,27. Pantry’s strength is in providing a framework
that begins with the raw RNA-seq data, produces comprehensive
transcriptional phenotypes, and applies them seamlessly to multi-
modal genetic analyses. While Pantry currently tests RNA phenotypes
individually for TWAS associations, a method that jointly models
multiple phenotypes has the potential for more powerful association
testing. However, such a method would need to handle the com-
plexity of multimodal RNA phenotypes, either by working with
potential differences in measurement error across the modalities, or
by testing each modality separately such that the results can be
interpreted in a comparable way across modalities. Further research
is needed to develop joint multimodal xTWAS methods for integra-
tion into Pantry.

This study has several important limitations. Pantry would
require modification to handle single cell RNA-seq data. The power
afforded by the GTEx tissue sample sizes leave some observable
genetic associations undetected, particularly for the brain tissues
where GTEx sample sizes are smaller. RNA-seq datasets such as those
analyzed heremay not cover the developmental stage, environmental
exposures, or ancestry groups in which a transcriptomic mediator
would be active and detectable. Still othermolecular mediation could
be only detectable in other types of omics data, such as DNA
methylation or proteins. For species with sparser reference tran-
scriptome data, Pantry would produce fewer RNA phenotypes, lead-
ing to fewer discovered genetic associations. Finally, xQTL mapping
and xTWAS primarily detect associations for common variants; other
techniques would need to be employed todetect regulatory effects of
rare or de novo variants28.

We have reported both broad characteristics of the xQTL and
xTWAS results and specific observations that demonstrate Pantry’s
utility. However, given the high dimensionality of these analyses (tis-
sues, genes, modalities, and often multiple phenotypes per modality
for xQTLs, and the additional dimension of traits for xTWAS), we
expect many more interesting biological insights to be found in the
data repository published alongside this study. Furthermore, the
inclusion of intermediate data such as the RNA phenotype quantifi-
cations and TWAS models for all GTEx tissues can enhance future
methods development and GWAS. Use of the Pantry code on addi-
tional transcriptomic datasets, including thosewith large cohorts such
as ROSMAP29 and PsychENCODE30, will provide deep and compre-
hensive genetic analyses of the transcriptome.

Methods
Geuvadis dataset
We downloaded the quality control-filtered Geuvadis RNA-seq dataset
(n = 445 lymphoblastoid cell line samples) and corresponding geno-
types for 13.4 million variants. These were filtered to autosomal bial-
lelic variants with minor allele frequency (MAF) >= 0.01, resulting in

12.9 million variants. We ran the data through the default Pantry phe-
notyping and Pheast pipelines.

GTEx datasets
We downloaded the RNA-seq reads for all 54 GTEx v8 tissues. We
obtained corresponding genotypes for 10.7 million variants and fil-
tered to autosomalbiallelic variantswithMAF > =0.01, resulting in 10.4
million variants. We ran the data through the default Pantry and
pipeline, and ran QTL and TWAS analyses on the 49 tissues originally
selected for eQTL mapping in GTEx v8.

RNA phenotyping
RNAphenotypes were generated using default Pantry parameters.We
used human genome reference version GRCh38 and version 106
Ensembl gene annotations. Geneswere not filtered by their annotated
biotype, but final processing of results included filtering to protein-
coding and lncRNA genes for statistics and visualizations. For RNA
stability phenotypes, we filtered annotations to those with the
Ensembl pipeline as an annotation source to limit rare or speculative
isoforms that would prevent any constitutive exons from being
counted for many genes. Pantry uses a two-stage quantile normal-
ization procedure for RNA phenotype tables as implemented in
pyQTL [https://github.com/broadinstitute/pyqtl/blob/master/qtl/
norm.py]. First, samples are quantile normalized such that all sam-
ples have the average empirical distribution, to control for
transcriptome-wide distribution effects, e.g., those caused by varia-
tion in highly expressed genes. Then, each phenotype is inverse-
normal transformed (preserving ties) to prevent issues with linear
regression caused by unusual distributions.

Covariates
We used code included in the Pantry Pheast module to compute
covariates. For each modality in each dataset (tissue), we ran principal
component analysis (PCA) on the RNA phenotype table and used the
first 20 principal components (PCs) as covariates. We also ran PCA on
each LD-pruned genotype alternative allele count matrix and included
the first 5 PCs as covariates.We tested the impact of also including sex
or age from the metadata as covariates, but found little impact on
xQTL results (Supplementary Fig. 9). Since a covariate strategy that
only uses data-derived PCs reduces the complexity of preparing new
datasets for Pantry, wemade it the default for Pantry andused it for the
analyses in this study.

xQTL mapping
We mapped conditionally-independent cis-QTLs for each modality in
each dataset (tissue) using tensorQTL12, running the default com-
mands included in Pantry Pheast. Modalities withmultiple phenotypes
per gene were mapped as per-gene groups so that cis-QTLs were
conditionally independent across phenotypes within each gene.

For cross-modality mapping, the RNA phenotype tables per
dataset (tissue) were concatenated, and 25 total covariates were
computed in the same way as for individual modalities using the
combined phenotype table and the genotypes. We then mapped cis-
QTLs for this combined dataset, grouping all phenotypes per gene so
that cis-QTLs were conditionally independent across all phenotypes of
all modalities within each gene.

Allelic fold change validation using allele-specific expression
To compare the robustness of cis-eQTLs from different mapping
strategies, we measured the effect size of cis-eQTLs in GTEx sub-
cutaneous adipose tissue (ADPSBQ), both for eQTLs found when
mapping modalities separately (SMM-eQTLs) and those found from
cross-modality mapping (CMM-eQTLs). We estimated aFC using the
aFC-n model31 with phased genotypes. We also calculated aFC from
allele-specific expression in heterozygous individuals using phASER32.
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To avoid potential confounding effects of different stringencies of
eQTLs, we matched p-value distributions between the eQTL sets.
Specifically, we removed CMM-eQTLs with p-values higher than the
maximumSMM-eQTL p-value, and then found the SMM-eQTLwith the
closest log(p-value) to that of each CMM-eQTL. This resampling of
SMM-eQTLs resulted in the two sets of eQTLs having the same size and
nearly the samep-valuedistribution, andweplotted andmeasured aFC
agreement in these two sets.

xTWAS
We downloaded summary statistics from a collection of 114 GWAS
traits14 from Zenodo record 3629742 [https://doi.org/10.5281/zenodo.
3629742]33. We ran TWAS analysis using FUSION34 with default para-
meters. First, we fit predictive models for each Geuvadis RNA pheno-
type using TSS ± 500 kb cis-windowgenotypes, alongwith the same 25
covariates used for cis-QTL mapping, and ran FUSION’s built-in com-
parison of blup, lasso, top1, and enet models for each phenotype. We
then used thesemodels and the recommended LD reference data from
1000 Genomes to test TWAS associations for each RNA phenotype
against each GWAS trait. We used a genome-wide p-value threshold,
Bonferroni adjusted for the number of RNA modalities, of 8.33 × 10−9

(5 × 10−8 divided by 6) to determine significant TWAShits.We alsoused
FUSION’s built-in option to report COLOC posterior probabilities for
each hit.

For the GWAS loci-based analysis, we determined loci for each
of the 114 traits by extracting all genome-wide significant
(P < 5 × 10−8) variants and grouping them such that any two sig-
nificant variants <500 Kb apart were in the same locus.We found the
two nearest genes to each locus based on the distance between the
variant in the locus with the lowest p-value and the nearest point in
the gene’s interval. For each locus, xTWAS hits matching the trait
and either of the two nearest genes were assigned to the locus. For
this analysis, we used only colocalizing xTWAS hits (those with
COLOCposterior probability of association >0.8), and for GTEx hits,
used a more stringent TWAS p-value threshold that was Bonferroni
adjusted for the number of tissues in addition to the number of RNA
modalities, i.e., 1.70 × 10−10.

FOCUS for validation of xTWAS
We prepared a transcriptomic weights database for FOCUS by
including the Geuvadis FUSION models for all six Pantry modalities.
Since FOCUS is not designed to handle multiple transcriptomic phe-
notypes per gene per tissue, using actual gene IDs resulted in combi-
natorial explosion and insurmountable out-of-memory errors. Instead,
we treated each RNA phenotype as its own gene. For each of the 114
GWAS traits, we ran “focus finemap” on this database, GWAS summary
stats, the same LD reference as used for FUSION, and “--locations
38:EUR”. We recovered the actual gene IDs for each result and used
posterior inclusion probability >0.8 to quantify RNA phenotype-trait
associations.

Variant effect enrichment
We downloaded variant annotations from the GTEx Portal [https://
storage.googleapis.com/adult-gtex/references/v8/reference-
tables/WGS_Feature_overlap_collapsed_VEP_short_4torus.MAF01.
txt.gz]. To reduce low-frequency annotation categories, we merged
Splice acceptor, Splice donor, and Splice region categories into one
Splicing category, and merged Frameshift and Stop gained into one
Truncating category. For the conditionally independent cis-QTLs
for each RNA modality for each GTEx tissue, enrichment of each
annotation in the xVariants was computed as the log2-ratio of the
proportion among the xVariants to the proportion in all variants
within all the cis-windows tested for that RNA modality. To control
the variance of enrichment values from infrequent annotations that
result in low annotated xVariant counts, we added a pseudocount of

0.5 to each annotated xVariant count, and added an amount to the
total xVariant counts such that the added xVariants had background
annotation frequency. We also omitted tissue-modality-annotation
combinations with fewer than 2 annotated xVariants from enrich-
ment analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data processed with Pantry for Geuvadis and all GTEx tissues are
available at https://pantry.pejlab.org and in apublicZenodo repository
[https://doi.org/10.5281/zenodo.13922139]35. These include, for all six
modalities in each tissue, RNA phenotypematrices, covariates, xQTLs,
xTWAS transcriptomicmodel weights, and xTWAS associations for 114
GWAS traits. This repository is about 42 GB when compressed. Raw
Geuvadis data were downloaded from ArrayExpress, accession E-
GEUV-1. RawprotectedGTExdatawere downloaded from thedatabase
of Genotypes and Phenotypes (dbGaP), accession no. phs000424.v8
[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs000424.v8.p2]. GWAS summary statistics used for xTWAS are
available at Zenodo record 3629742 [https://doi.org/10.5281/zenodo.
3629742]33. Source data are provided with this paper.

Code availability
The Pantry code is maintained at https://github.com/PejLab/Pantry
with version 1.0.0 used for this study36. It is structured as a two-stage
pipeline using the Snakemake workflow management system37. The
pipeline consists of existingprograms, e.g., STAR38 and samtools39, and
additional scripts to process their input and output data. The pipeline
was designed for computational and storage efficiency by reducing
redundant computation and large files, and is compatible with high
performance computing environments. See Supplementary Methods
for details.
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