Lawrence Berkeley National Laboratory

Recent Work

Title

Submicron x-ray diffraction and its applications to material science problems

Permalink https://escholarship.org/uc/item/22w767xh

Author Patel, J.R.

ralei, J.N.

Publication Date 2001-06-16

SUBMICRON X-RAY DIFFRACTION AND ITS APPLICATIONS TO MATERIAL SCIENCE PROBLEMS

N. Tamura^a, R. Spolenak^b, B.C. Valek^c, R.S. Celestre^a, A.A. MacDowell^a, H.A. Padmore^a, & J.R. Patel^{a,d}

^aAdvanced Light Source, 1 Cyclotron Road, Berkeley CA 94720 ^bBell Laboratories, Lucent Technologies, Murray Hill NJ 07974 ^cDept. Materials Science & Engineering, Stanford University, Stanford CA 94305 ^dSynchrotron Radiation Laboratories, P.O.BOX 4349, Stanford CA 94309

The availability of high brilliance 3rd generation synchrotron sources together with progress in achromatic focusing optics allow to add submicron spatial resolution to the conventional century-old X-ray diffraction technique. The new capabilities include the possibility to map in-situ, grain orientations, crystalline phase distribution and full strain/stress tensors at very local level, by combining white and monochromatic X-ray microbeam diffractions. This is particularly relevant for nowadays industry where the understanding of material properties at microstructural level becomes increasingly important. After describing the latest advances in the submicron X-ray diffraction technique at the ALS, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects, MEMS devices and composite materials. Its use in the field of environmental science will also be discussed.

Submitting author: N. Tamura, e-mail: ntamura@lbl.gov, FAX: (510) 486-4276