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The effect of mesh type on the accuracy and computational demands of a two-dimensional Godunov-type
flood inundation model is critically examined. Cartesian grids, constrained and unconstrained triangular
grids, constrained quadrilateral grids, and mixed meshes are considered, with and without local time
stepping (LTS), to determine the approach that maximizes computational efficiency defined as accuracy
relative to computational effort. A mixed-mesh numerical scheme is introduced so all grids are processed
by the same solver. Analysis focuses on a wide range of dam-break type test cases, where Godunov-type
flood models have proven very successful. Results show that different mesh types excel under different
circumstances. Cartesian grids are 2–3 times more efficient with relatively simple terrain features such as
rectilinear channels that call for a uniform grid resolution, while unstructured grids are about twice as
efficient in complex domains with irregular terrain features that call for localized refinements. The supe-
rior efficiency of locally refined, unstructured grids in complex terrain is attributable to LTS; the locally
refined unstructured grid becomes less efficient using global time stepping. These results point to
mesh-type tradeoffs that should be considered in flood modeling applications. A mixed mesh model for-
mulation with LTS is recommended as a general purpose solver because the mesh type can be adapted to
maximize computational efficiency.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction per unit width which scales as qhV2 where q is the fluid density,
Flood inundation models predict the spatial distribution of flood
depths and velocities, or flooding intensity [27]. This defines the
severity of the hazard and associated impacts such as threats to
public safety, potential for monetary losses, disruptions to critical
lifelines (water supply, sanitary, power and transportation sys-
tems), and general disruptions of commerce [82]. Flood inundation
models can be used in a forecasting mode to support emergency
management, and in a planning mode to identify the most effective
risk reduction measures through comparative analysis of the socio-
economic and environmental consequences of each alternative
[1,27]. Monetary losses are primarily a function of flood depth
and duration [48,56,71], while structural damage is also a function
of flood velocity and the associated flood inertial momentum flux
h is the fluid depth, and V is the fluid velocity [31,43,44,56].
Depth-averaged shallow-water models offer an excellent foun-

dation for flood prediction even with simplistic turbulent closures
that lump all momentum losses into a resistance parameter [6].
Floods occurring on steep topography such as alluvial fans, with
dam-break and levee-break flooding, and with coastal flooding
from tsunami and storm surge transfer significant inertial fluxes
and transition between a supercritical (Fr > 1) and subcritical
(Fr < 1) state, where Fr ¼ V=ðghÞ1=2 represents the Froude number.
Consequently models of these flows require a full momentum bal-
ance that accounts for local acceleration, gradients in inertial fluxes
(convective acceleration), pressure gradients, gravitational effects,
and friction. On the other hand, on relatively flat topography, flood
flows are generally subcritical and the convective acceleration can
sometimes be ignored [2,6,23]. This can be exploited to yield a
model capable of relatively fast execution [22], but maintaining a
complete momentum balance yields a more versatile model appli-
cable to any possible Fr including flows with shocks [23,75].

Godunov-type models are tailored to high-inertia floods because
of approximate Riemann solvers that account for transcritical flows
with shocks [37,75], and the literature presents Godunov-type
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modeling studies of dam-break floods [9,30,53,67,77,81], coastal
floods [25,32] and urban floods [39,57,66,67,76]. The success of
Godunov-type flood models can be attributed to approximate Rie-
mann solvers [37,75] which are also embedded in discontinuous
Galerkin finite element schemes [4,26,45] and Boussinesq models
that account for non-hydrostatic flow effects [47].

Godunov-type models have generally assumed either a struc-
tured mesh of quadrilateral cells [3,13,29,35,42,86] or an unstruc-
tured mesh of triangular cells [7,15,41,70,84]. The latter mandates
greater overhead to track the neighborhood of data around each
cell, and makes it more challenging to compute gradients in the
solution because data points do not fall on a regular grid [7,41],
but the unstructured mesh is very appealing for the ease with
which meshes can be generated and tailored to the unique geom-
etry of application sites and the ability to locally refine the mesh
around areas of interest [11,21,54,57,66,67,76]. Adaptive mesh
approaches also allow for local refinements, and take this a step
further by adjusting refinements on the fly according to flow con-
ditions [46,52]. Cut-cell models represent a variant of quadrilateral
mesh models wherein any particular quadrilateral can be bisected
so as to better constrain the mesh to the site geometry [17,18]. A
few studies have also used a mixed-mesh Godunov-type shallow-
water model, i.e., a model that can utilize a mesh of either triangu-
lar cells, quadrilateral cells, or any combination of triangles and
quadrilaterals [1,19,57].

When designing a mesh, the goal is achieve the highest degree of
accuracy for a given computational cost, our alternatively, the min-
imum computational cost to achieve a specified level of accuracy.
Several factors contribute to accuracy of flood models including:
(1) structural model errors, (2) input data errors, and (3) numerical
errors. Structural model errors stem from limitations of the govern-
ing equations, in this case the depth-averaged shallow-water equa-
tions, such as the assumption that pressure is hydrostatic, the
velocity distribution is unidirectional (not stratified or skewed),
and the bed is fixed (not erodible). Structural model errors will de-
pend on whether the model solves the full shallow-water equations
or simplified forms of the 2D equations [2,22], uses a coupled 1D/2D
approach for channel flows [5,12,49,83], or introduces a sub-grid
topographic model [60] or sub-grid obstruction model [38,65].
Input data errors include errors in initial conditions, boundary con-
ditions, and parameters such as the resistance parameters and,
most importantly, elevation data. Numerical errors are linked to
the chosen numerical method and include errors in the spatial
and temporal discretization. For example, upwind schemes
promote a diffusive error that can smear out sharp fronts (e.g.,
hydraulic jumps) if an overly coarse discretization is used.

Mesh design affects both input data errors and numerical er-
rors. Topographic heights and resistance parameters are sampled
at the vertices (or cell centers) of the mesh, and thus mesh design
controls sampling. In areas of high topographic variability, a fine
mesh may be required to resolve important flow paths and thus
minimize input data errors. Similarly, a relatively fine mesh can
be used to resolve sharp flow features such as a hydraulic jump
and thus minimize numerical errors. A recent review of flood inun-
dation modeling indicates that uncertainties in topographic data
and hydrologic data remain the primary source of uncertainty in
flood predictions [6], and a St. Francis dam-break modeling study
concluded that reduction of topographic errors and numerical er-
rors were both important for model accuracy [10]. Research also
indicates that model structure can affect the sensitivity of model
predictions to topographic errors [2].

Mesh design also drives computational cost, which for an expli-
cit finite volume model scales in proportion to the number of cells
NC and the number of time steps NT as follows,

C � k1NCNT ð1Þ
where k1 is a factor that depends on the numerical scheme, i.e., the
spatial and temporal discretization and solution update procedure.
The number of time steps depends on the mesh resolution as a re-
sult of the CFL condition given by [74],

a ¼ kmaxDt
Ds

6 amax ð2Þ

where a is the Courant number, amax is the maximum Courant num-
ber for stability, Dt is the time step, Ds is the grid size, and kmax is the
maximum wave speed here given by V þ ðghÞ1=2. The stability limit
amax depends on the numerical method, and Ds is not easily defined
for unstructured grids [74]. Nevertheless, computational costs will
generally increase with mesh resolution as follows,

C � k2Ds�3 ð3Þ

because NC � Ds�2 and NT � Ds�1 based on the CFL condition (Eq.
(2)), where k2 is a factor that depends on the numerical scheme.

Clearly, computational costs and accuracy are at odds with re-
spect to mesh resolution. But what is the role of mesh type? Flood
modeling domains typically include regions where a fine resolu-
tion is required to minimize topographic errors, such as a channel
or raised embankment that constrains the spreading of flood water,
and other regions where added resolution is not necessary, such as
a floodplain. In this case, an unstructured mesh appears to be
advantageous compared to a Cartesian grid because a fine resolu-
tion can be used selectively, thus minimizing NC and reducing C.
On the other hand, when topographic heights are uniformly grid-
ded as a Digital Terrain Model (DTM), and flow modeling proceeds
at the resolution of the DTM, Cartesian grids appear to be advanta-
geous because fewer cells can be used. For example, when each cell
of a Cartesian grid is simply divided diagonally to make a triangu-
lar grid, C is magnified because both NC and NT are increased. While
the added resolution of the triangular grid may help to reduce
numerical error, there is no difference in the topographic error be-
tween the two grids so overall accuracy is unlikely to differ. To
date, the effect of mesh type on the computational effort and
accuracy of Godunov-type flood models has not been critically
examined. With increasing urbanization and climate changes that
threaten more extreme flooding, the need to model flooding in
detail is growing on several fronts (e.g., forecast systems, risk
reduction programs) and therefore a better understanding of how
to develop computationally efficient models is needed.

1.1. A study of mesh-type tradeoffs

This paper presents a study on how computational costs and
accuracy are affected by mesh type using Godunov-type flood
models. The study is focused on the central question of which
mesh type achieves the most accurate prediction (smallest errors)
for the same computational expense, i.e., the maximum computa-
tional efficiency. Alternatively, the question can be viewed as
which mesh design achieves a desired level of accuracy for the
minimum computational effort. A mixed-mesh Godunov-type
finite volume scheme is used to compare several mesh designs
including Cartesian grids, unstructured grids of triangular cells,
and mixed-meshes of triangular and quadrilateral cells. Further,
the effect of mesh design on accuracy and computational cost is
isolated by using the same computational engine in all cases. The
eliminates biases that would otherwise result from different
solvers and/or model structures.

The remainder of the paper proceeds as follows: Section 2 pre-
sents the governing equations and a brief description of the
numerical method. A detailed presentation of the model is in-
cluded as an Appendix. Section 3 presents applications ranging
from channel flow problems to large scale flooding problems, and
including idealized problems with exact solutions, laboratory-scale
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test cases with comprehensive monitoring data, and field-scale test
problems with limited (but critical) observational data. Section 4
presents a discussion that brings to light mesh-type tradeoffs,
and Section 5 presents conclusions that include a quantitative
characterization of model performance relative to mesh type.
2. Governing equations and methods

2.1. Porous shallow-water equations

Porous shallow-water equations developed to systematically
account for solid flow barriers (e.g., buildings in urban areas) are
the basis of the model and provide a foundation for both rural
and urban applications [24,38,65,67,72]. The governing equations
appear as integral statements of mass and momentum conserva-
tion for an arbitrary 2D domain X with boundary C and unit out-
ward normal vector n as follows [65],
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where u = x-component of velocity, v = y-component of velocity,
g = gravitational constant, V ¼ ðu2 þ v2Þ1=2

; cf
D is a ground friction

drag coefficient, cb
D is a drag coefficient for sub-grid scale flow

obstructions, Q represents the rate of net inflow from point sources
located at (xs; ys) which could account for streamflow inputs or
losses to the storm sewer, dðÞ is the 2D Dirac delta function, and
hjgo

is the depth corresponding to a piecewise constant water sur-
face elevation go and piecewise linear ground elevation z within X
[78,79]. This term is introduced to transform the classical ground
slope source term to a boundary integral that preserves stationary
solutions [78,79]. Based on the limits of this transformation, the
momentum equations appearing in Eq. (4) are restricted to numer-
ical schemes that are first- or second order accurate in space
[65,78,79].

As indicated above, porous shallow-water equations account for
sub-grid scale solid features that block flow. The motivation is to
parameterize blockage effects systematically, based on feature
geometry, without resolving features by mesh refinement as this
would significantly degrades computational efficiency
[19,39,65,67,72]. The model presumes that blockage features have
been mapped for a study domain D 2 R2 and saved as a geospatial
data file, as is possible by processing aerial imagery or aerial lidar
data. Further filtering then proceeds to identify the sub-grid scale
subset of the blockage features, Db, which is saved as a geospatial
polygon file. The subdomain Db is taken as a mask which gives rise
to a binary density function defined as follows [65],

iðx; yÞ ¼
0 if ðx; yÞ 2 Db

1 otherwise

�
ð8Þ
which defines regions of the study domain that support flood stor-
age and conveyance as iðx; yÞ ¼ 1. Two mesh-dependent porosity
parameters follow from the density function (Eq. (8)) as follows,

/j ¼
1
Xj

Z
Xj

i dX wk ¼
1
Ck

Z
Ck

ids ð9Þ

where Xj corresponds to the two-dimensional (2D) spatial domain
of the jth computational cell and Ck corresponds to the kth compu-
tational edge of a mesh. Note that /j represents the fraction of a cell
area occupied by voids, and wk represents the fraction of a cell edge
occupied by voids. Consequently, these parameters affect the rela-
tive storage of cells and conveyance between cells, respectively.
Guinot [39] presents a related model for obstructions that also re-
sults in two porosity parameters, but the parameters are defined
differently from Sanders et al. [65]. Schubert and Sanders [67] show
that there are numerous strategies to account for solid barriers in
models of urban flooding and each one offers certain advantages
and disadvantages. With porous shallow-water equations as the
foundation of this model, any of these alternatives can be imple-
mented. Note that the governing equations (Eq. (4)) revert to the
classical shallow-water equations in the limit that iðx; yÞ ¼ 1 across
all of D.

The ground friction drag coefficient can be parameterized in
several ways including a Manning nm, Chézy C, or Darcy–Weisbach
f as follows,

cf
D ¼

gn2
m

h1=3 ¼
g

C2 ¼
f
8

ð10Þ

The building drag coefficient is computed similar to vegetative drag
laws (e.g., [61]) as follows,

cb
D ¼

1
2

co
Dah ð11Þ

where a represents frontal area. The unit of a is length�1, corre-
sponding to the frontal width of obstructions in X normalized by
X. co

D represents the dimensionless obstruction drag coefficient,
and values for 2D flows are tabulated [59]. Schubert and Sanders
[67] provides guidance on the calculation of a and selection of co

D

in practical applications.
The inflow term Q appearing in Eq. (4) accommodates an arbi-

trary set of point sources and sinks that could be associated with
tributary inflow, surcharging of storm sewers or drainage into
storm sewers. This feature has been utilized to predict urban
dam-break flooding [30,67] and coastal urban flooding [33].

2.2. Numerical methods

Eq. (4) are solved using a Godunov-based finite volume scheme
that allows for triangular, quadrilateral, or mixed meshes. The
scheme blends elements of models previously reported by the
authors including an implementation of Roe’s approximate Rie-
mann solver with a critical flow fix [13], an adaptive method of
variable reconstruction for uneven topography that minimizes
numerical dissipation [10], a local time stepping (LTS) scheme
[64], and grid based porosity parameters for hard sub-grid scale
flow barriers [65]. Additionally, the model uses a new, more effi-
cient implementation of the Volume-Free Surface-Reconstruction
(VFR) technique first developed by Begnudelli and Sanders [7,8].
A complete description of the model is presented as an appendix,
but a brief description of the update scheme is presented here with
an emphasis on LTS to faciliate interpretation of results which
follow.

The essence of the scheme is an explicit update equation for cell
j with edges k ¼ 1; Kj (Kj = 3 or 4) given by,
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Unþmj

j ¼ Un
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mjDto

Xj

X
k¼1;Kj

flux terms

0
@

1
A

þmjDto

Xj
ðsource termsÞ ð12Þ

where n indicates the base time level and mj indicates the number
of base time steps of size Dto advanced in cell j. The base time step
Dto is specified to ensure that the CFL condition (taken here as
a 6 1) is satisfied globally. This is accomplished by defining a target
Courant number, aT , and computing Dto based on Eq. (A-12) assum-
ing aj ¼ aT and mj ¼ 1. Each cell is then assigned the largest possi-
ble time step (mjDto; mj = 1, 2, 4, 8, etc.) that satisfies the CFL
condition locally, and the assignment is adjusted as flow conditions
change (see Appendix for a complete description). LTS reduces run
times most effectively on variable resolution meshes, but it may
also have an effect on uniform resolution meshes where the flow
dynamics create spatial variability in maximum wave speeds [64].
The impact of LTS on mesh type tradeoffs is explicitly examined
in this study.

Note that the CFL condition given by aj 6 1 is only an approxi-
mation, because stability limits for nonlinear problems on unstruc-
tured grids cannot be precisely stated [74]. In a wide range of test
problems beyond those considered here, stable solutions have
been obtained with a Courant number slightly larger than one,
but an unstable solution has never been encountered for aj � 1.
Hence, aj 6 1 8j is taken as a sufficient condition for stability.

2.3. Performance metrics

In the testing that follows, an L1 norm is used to quantify differ-
ences between two scalar time series, w1 and w2, of size N as
follows,

L1ðw1;w2Þ ¼
X
j¼1;N

jðw1Þj � ðw2Þjj
N

ð13Þ

Additionally, wall-clock execution times are measured to quantify
computational effort. Model runs were all completed using a
3.07 GHz Intel� CoreTM i7 CPU with 8 GB RAM. The computational
efficiency of the alternative mesh designs is revealed by plots of L1

errors versus run times.

3. Model applications and results

A series of model applications are presented in this section to
quantitatively examine computational efficiency by mesh type.
The applications begin with idealized test cases with exact solu-
tions to characterize numerical errors, and then continue with lab-
oratory and field-scale test cases to measure the combined effect of
numerical errors, input data errors, and structural model errors.
Testing emphasizes highly unsteady flows (dam-break type flows)
because Godunov-schemes have proven most popular and success-
ful in this context.

3.1. Dry-bed and wet-bed dam-break problem

These classic problems in computational hydraulics test
whether a model is capable of resolving trans-critical flows with
shocks without spurious oscillations or excessive numerical diffu-
sion. Importantly, the problems have exact solutions [75], so
numerical truncation errors can be measured with precision.

The test problem is configured as a 1 km long and one-cell wide
channel with 1 m deep water held behind a dam located at the
channel midpoint. Two variants are considered, one with a dry
downstream channel condition and a second with a wet (10 cm)
downstream channel condition. Cartesian and triangular mesh
types are used in each case. The triangular mesh shares the same
vertices as the Cartesian mesh, but uses twice the number of cells
because each square is divided into two triangles. To examine the
effect of refinement, the grid size (Dx and Dy) is halved and then
halved again leading to a coarse, medium, and fine mesh with
properties shown in Table 1. In all cases, the solution was advanced
for 70 s using a target Courant number aT ¼ 0:8. Additionally, sep-
arate runs were completed using LTS = 1 and 3.

The fine mesh predictions at t = 70 s using LTS = 1 for dry and
wet cases are shown in Fig. 1(a) and (b), respectively, showing that
both mesh types support a qualitatively correct solution. Errors
across all meshes are listed in Table 1 and plotted in Fig. 2 versus
run times to reveal the computational efficiency of the mesh de-
sign. These results indicate that:

(1) Numerical errors are a factor of 2–3 smaller in the wet-bed
case than the dry bed case, regardless of mesh type. This is
attibuted to the singularity in depth at the wet/dry interface.

(2) The Cartesian grid is only about 10–20% more efficient
(errors relative to run times) than the triangular grid in the
wet-bed problem; on the other hand, in the dry bed prob-
lem, the Cartesian grid is as much as three times more effi-
cient (factor of 3 difference in run time for same numerical
error).

(3) Use of LTS reduces run times by 20%, on average, compared
to global time stepping (LTS = 3 vs. 1). Additionally, LTS
reduces run times on both triangular and Cartesian grids.

To summarize, this 1D test problem shows that both triangular
and quadrilateral grid models converge to exact solutions with
refinement, but the quadrilateral mesh type is generally more effi-
cient, with an advantage that varies from 10–300% across the test
conditions considered here.
3.2. Uniform flow in a trapezoidal channel

This test problem illuminates a critical issue in 2D flood inunda-
tion modeling: capturing non-rectangular channel geometry with a
2D mesh. Rectangular channels are straightforward because of ver-
tical side walls, but the sloping walls of non-rectangular channels
introduce a wet/dry interface. Generally, 2D models capture topo-
graphic data at mesh vertices (or cell centers in some models), un-
less the model includes a sub-grid scale channel capability
designed to capture more detailed topographic information
[55,60,85]. In the present model, it is assumed that topography
varies linearly between vertices, so it is possible to perfectly model
a trapezoidal channel with three cells, but only if the cell vertices
are aligned with the corners of the channel. If vertices are not con-
strained by the channel geometry, and fall randomly in accordance
with an unconstrained mesh generation process, then the mesh de-
sign introduces an error in the topographic data (despite the fact
that channel geometry is known exactly). The topographic error
can be minimized through refinement, but a more elegant ap-
proach is to constrain the mesh so vertices are aligned with corners
of the channel which in turn enables use of a relatively course
mesh whose precise resolution is constrained by the tolerable level
of numerical error.

Here, a 1000 m long trapezoidal channel is considered with a
bottom width of 5 m and a side slope of 1:2. The longitudinal chan-
nel slope is 0.001, and friction is modeled with nm = 0.012 m�1/3 s.
A constant discharge, Q = 10 m3/s, is imposed at upstream bound-
ary and the uniform (or normal) depth equal to 0.8 m is imposed
at the downstream boundary. The exact solution to this problem
is simply a constant depth of 0.8 m along the length of the channel.



Table 1
Properties of meshes, run times and L1 norms for classical dam-break problem.

Grid Dx = Dy (m) # Of nodes # Of cells Case LTS = 1 LTS = 3 L1 (cm)

Time step (s) Run time (s) Time step (s) Run time (s)

Cartes. Tri. Cartes. Tri. Cartes. Tri. Cartes. Tri. Cartes. Tri. Cartes. Tri.

Coarse 1.00 2002 1000 2000 Dry 0.1498 0.0705 0.187 0.500 0.1875 0.0791 0.125 0.375 0.320 0.280
Wet 0.1865 0.0783 0.187 0.515 0.1610 0.0776 0.156 0.452 0.168 0.117

Medium 0.50 4002 2000 4000 Dry 0.0746 0.0352 0.592 1.670 0.0937 0.0395 0.421 1.264 0.262 0.237
Wet 0.0932 0.0392 0.593 1.841 0.0765 0.0386 0.562 1.591 0.095 0.067

Fine 0.25 8002 4000 8000 Dry 0.0373 0.0176 2.122 5.975 0.0468 0.0198 1.482 4.384 0.122 0.097
Wet 0.0466 0.0196 2.153 6.786 0.0400 0.0194 1.919 5.631 0.059 0.039
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Fig. 1. Comparison of water depth predictions and exact solutions for classical dam-break problem in a (a) dry bed and (b) wet bed.
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Fig. 2. Errors in classical dam-break water depth predictions versus run times in a (a) dry bed and (b) wet bed.
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Fig. 3. Five mesh types for uniform flow test case. (a) Unconstrained Cartesian grid, (b) Unconstrained Delaunay mesh, (c) Constrained Cartesian grid, (d) Constrained
Delaunay grid and (e) Constrained right-triangle grid (unit: m).
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The performance of five mesh types is examined as shown in
Fig. 3 and Table 2: (1) an unconstrained (vertices are not aligned
with the corners of the channel) Cartesian grid, (2) an uncon-
strained Delaunay grid, (3) a constrained (vertices aligned with
channel corners) Cartesian grid, (4) a constrained Delaunay grid
and (5) a constrained right-triangle grid obtained by diving each
square of the constrained Cartesian grid into two triangles. The
solution was integrated using aT ¼ 0:8 for a period of 1 h in all
cases using LTS = 1.

Fig. 4(a) shows the longitudinal profile of the water surface pre-
dicted by the model using each of the mesh types. The constrained
Cartesian grid and the constrained right triangle grid each yield the



Table 2
Properties of meshes, run times and L1 norms for uniform flow in a trapezoidal channel.

Mesh Grid Resolution (m) # Of nodes # Of cells Time step (s) Run time (s) L1 (cm)

Unconstrained Cartesian Coarse 3.33 1204 900 0.361 3.03 26.21
Medium 1.67 4207 3600 0.222 12.73 6.86
Fine 0.83 15613 14400 0.114 82.31 4.73

Unconstrained Delaunay tri. Coarse 3.32 1371 2222 0.098 19.67 54.37
Medium 1.66 4960 8882 0.044 127.02 48.33
Fine 0.83 18813 35555 0.022 995.5 37.38

Constrained Cartesian Coarse 2.5 2005 1600 0.342 4.56 4.43
Medium 1.25 7209 6400 0.175 25.12 2.12
Fine 0.625 27217 25600 0.085 205.17 1.45

Constrained Delaunay tri. Coarse 2.5 2496 3996 0.116 23.82 4.80
Medium 1.25 8864 15963 0.036 224.69 13.56
Fine 0.622 33576 63897 0.014 3102.84 7.54

Constrained right tri. Coarse 2.5 2005 3200 0.149 14.24 4.81
Medium 1.25 7209 12800 0.075 89.43 1.74
Fine 0.625 27217 51200 0.037 815.36 1.62
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Fig. 4. Uniform flow test case. (a) longitudinal profile of the predicted water surface and (b) errors versus run times.
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greatest accuracy, while the largest errors are associated with the
unconstrained Delaunay grid which is attributed to the inaccurate
and irregular topographical representation of the channel com-
pared to the other grids. The unconstrained Cartesian grid also
introduces errors in the topography, but the errors are regular
and thus do not generate the same degree of error in the free sur-
face height prediction. It is noted that the irregularities in the
water surface predictions with unconstrained grids shown in
Fig. 4(a) are small-scale transients that are attributed to partially
wetted cells which transition between fully wetted and partially
wetted states. Hence, an advantage of the constrained meshes is
that this error is minimized.

Fig. 4(b) shows the convergence properties of each of the five
mesh types considered, with errors plotted versus run times. Errors
and run times are also presented in Table 2. These results show that
the errors of the constrained Cartesian grid and the constrained
right-triangle grid are more than an order of magnitude smaller
than the unconstrained Delaunay grid, and several factors smaller
than the constrained Delaunay grid. These results also show that
the constrained Cartesian grid offers the greatest computational
efficiency of all the mesh types considered, minimally 2–3 times
better than the best results achieved with a triangular grid. Since
run time scales with the resolution of the mesh, Fig. 4(b) also shows
that errors are reduced with refinement using regular meshes but
not necessarily with Delaunay meshes. In particular, with the con-
strained Delaunay mesh, the coarsest resolution actually produced
smaller errors than medium and fine resolution meshes. This is
attributed to the irregularity of the Delaunay meshes, which (by
chance) may offer a good representation of the channel geometry
and minimal errors in the free surface height.
To summarize, this test problem shows that Cartesian meshes
are best suited to modeling flows in prismatic channels, and
unconstrained Delaunay meshes represent the least accurate alter-
native. Highly accurate predictions are possible with regular trian-
gular grids, but these are not as efficient as Cartesian grids.
Importantly, that test shows the critical importance of constraining
meshes to the channel geometry for accuracy purposes.

3.3. Dam-break flow in a rectangular channel with friction and an
uneven bottom

Now several test cases involving a comparison to physical
observations is considered. These cases introduce structural model
errors in addition to input data and numerical errors. This first test
involves a set of three experiments (Cases 1–3) involving dam-
break flow in a horizontal hydraulic flume fitted with a triangular
sill downstream of a gate (hypothetical dam), as shown in Fig. 5
[58]. Following the rapid opening of a gate that simulates a dam-
break, a shock wave propagates downstream, partially reflects off
the sill, forms of a hydraulic jump, and there is complex wave ac-
tion associated with various reflections and wave interactions. As
shown in Fig. 5, the channel is 38 m in length and the dam is lo-
cated 15.5 m from the upstream end of the channel. The triangular
sill is 0.4 m high, 6 m long, and located 13 m downstream from the
dam. Four gages shown as G4, G10, G13 and G20 in Fig. 5 measure
water levels that are taken as the reference solution. All three cases
involve an initial depth of 0.75 m upstream of the dam. Case 1 in-
volves a dry channel and a free-overfall downstream boundary
condition. Case 2 involves a dry channel immediately below the
dam, a flooded channel with a depth of 0.15 m downstream of



Fig. 5. Layout of dam-break flow with an uneven bottom.
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the sill, and a vertical wall as the downstream boundary. Case 3 is
the same as Case 2, except that a 0.15 m high weir is placed at the
downstream boundary. Resistance is modeled by a Manning nm=
0.0125 m�1/3 s [58]. Boundary conditions are enforced with the
boundary condition flux function described by Sanders [63]. The
model duration in all cases is 40 s, beginning with the removal of
the gate.

Each test case is modeled at three levels of refinement (Dx = 0.5,
0.25 and 0.125 m) and with Cartesian and triangular grid types, as
shown in Table 3 and Fig. 6. Each test case is also modeled with an
ulta-fine resolution Cartesian grid (Dx = 0.01 m) to enable measure-
ment of the numerical errors in addition to total errors enabled by
the laboratory measurements. The solution is advanced in all cases
using a target Courant number, aT ¼ 0:8, and global time stepping
(LTS = 1). The Cartesian and triangular meshes share the same verti-
ces at the same resolution, so the triangular meshes contain twice as
many cells and require a smaller time step (roughly half the size of
the rectangular mesh) to achieve the same target Courant number.

Results are qualitatively good in all cases, as indicated by Case 3
results shown in Fig. 7. The major wave forms are resolved with
good agreement in both amplitude and phase, although the wave
amplitude is over-predicted by about 10% near sharp fronts in
several instances. Also, small oscillations are predicted by the fine,
Table 3
Properties of meshes, run times and L1 norms for dam-break flow with an uneven bottom

Grid # Of nodes # Of cells Case Time step (s)

Rect. Tri. Rect. Tri

Coarse 154 76 152 Case 1 0.074 0.0
Case 2
Case 3

Medium 306 152 304 Case 1 0.049 0.0
Case 2
Case 3

Fine 610 304 608 Case 1 0.024 0.0
Case 2
Case 3

0 1 2 3 40
0.25 0

0
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0.25

(a)
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(e)

Fig. 6. Cartesian and triangle grid with (a) and (b) x = 0.50 m
triangular mesh at Gage 10. Graphically, the results are similar
across Cases 1–3, so only Case 3 results are shown in Fig. 7. Total
errors (measured against measurements) and numerical errors
(measured against ultra-fine grid prediction) are plotted versus
run times for each mesh type in Fig. 8(a)–(c) for Cases 1–3, respec-
tively. Errors are also presented in Table 3. The numerical error
show that both mesh types converge with refinement, and that
the Cartesian mesh type achieves a numerical error that is 2–3
times smaller than the triangular grid for the same computational
effort. Hence, the Cartesian mesh type is 2–3 times more computa-
tionally efficient, as defined here.

Plots of total errors shown in Fig. 8 point to a structural model
error or input data error, because models predictions do not con-
verge to precisely to measurements. This is important to consider
in applications, because the added work to minimize numerical er-
rors may not be justified based on the total error.

To summarize, this test case shows that the Cartesian and trian-
gular grids achieve similar accuracies when measured by total er-
rors, but that the Cartesian grid minimizes numerical errors using
less computational effort than the triangular grid. Importantly, this
test shows that overall accuracy does not continuously improve
with refinement, and computational effort, due to structural model
errors.
.

Run time (s) L1 (cm)

Total error Numerical error

. Rect. Tri. Rect. Tri. Rect. Tri.

31 0.125 0.349 3.828 3.479 1.038 1.206
0.131 0.359 4.446 4.656 2.169 2.108
0.124 0.349 3.440 3.823 1.447 1.345

22 0.249 0.661 3.415 3.609 0.713 0.733
0.259 0.677 3.378 4.035 1.188 1.353
0.259 0.681 3.226 3.556 0.765 0.807

12 0.483 1.372 3.324 3.257 0.409 0.342
0.483 1.404 3.346 3.710 0.717 0.606
0.484 1.404 3.274 3.561 0.449 0.381

0 1 2 3 40
.25

0 1 2 3 40
.25

(b)

(d)

0 1 2 3 40
.25

(f)

, (c) and (d) 0.25 m, and (e) and (f) 0.125 m (unit: m).
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Fig. 7. Comparison of water depth predictions and measurements (Case 3) in the dam-break flow with an uneven bottom.
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3.4. Flash flooding of a mountainous valley

Test cases thus far have utilized engineered channel geometries,
while floods of practical interest involve natural terrain and inter-
actions with built structures. Thus, a scaled physical model study
of a hypothetical, catastrophic flood in the Toce River valley in Italy
is considered next [73]. The physical model captures the main
topographic features of the valley, and a cluster of blocks affixed
to the channel bottom simulate the blockage effects of an urban
district. Discharge is controlled at the upstream boundary of the
valley to simulate a flash flood, and water drains freely at the
downstream boundary. An array of gages placed in the physical
model measure water depth time series as shown in Fig. 9(a) and
(b). As shown in Table 4, two cases termed ‘‘low flow’’ by Testa
et al. [73] are examined here: Case 1 corresponds to aligned blocks
and Case 2 corresponds to staggered blocks.

Classical shallow-water models have been applied to this test
case and have achieved good overall accuracy, but a structural
model error has been identified by errors as large as 50% that did
not decrease with mesh refinement [38,72,65]. Thus, numerical
error is trumped by structural model error in this test case. Never-
theless, a remaining goal is to realize the respectable accuracy po-
tential of shallow-water models with the least computational
effort. Use of porosity parameters has proven extraordinarily
successful, yielding models that execute order of magnitude faster
than classical shallow-water models without loss of accuracy
[38,65,72]. The mesh design question pursued here is whether tri-
angular grid or quadrilateral grid models support a higher level of
computational efficiency.

Four meshes are created for this test case as shown in Fig. 9(c)–
(f). This includes two meshes for each test case: (1) a triangular
mesh constrained by the channel banks and block centroids, and
(2) a mixed mesh of quadrilaterals in the center of the channel,
constrained by block centroids, with triangles lining the banks to
conform to the irregular bank geometry. Mesh vertices are con-
strained by block centroids to ensure that mesh edges span gaps
between buildings and properly convey fluxes, as shown in
Fig. 9. In this case, there is no need for refinement since porosity
models are designed to run at a coarse resolution that matches
the size of gaps between buildings [65].

Topographic heights were estimated at mesh vertices by in-
verse-distance weighted (IDW) interpolation from point elevation
data provided by Testa et al. [73], a uniform Manning nm =
0.0162 m�1/3 s was assigned to each cell, and porosity values /j

and wk were computed for each cell and edge, respectively, in
accordance with the fraction of the area and edge, respectively,
that is not covered by an obstruction [65]. To parameterize build-
ing drag using Eq. (11), a uniform drag coefficient was used co

D ¼ 1



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

3
3.

5
4

4.
5

5
5.

5
6

6.
5

7
7.

5
8

8.
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

3
3.

5
4

4.
5

5
5.

5
6

6.
5

7
7.

5
8

8.
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

3
3.

5
4

4.
5

5
5.

5
6

6.
5

7
7.

5
8

8.
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

3
3.

5
4

4.
5

5
5.

5
6

6.
5

7
7.

5
8

8.
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

3
3.

5
4

4.
5

5
5.

5
6

6.
5

7
7.

5
8

8.
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

3
3.

5
4

4.
5

5
5.

5
6

6.
5

7
7.

5
8

8.
5

meters
7.45 - 7.50

7.50 - 7.55

7.55 - 7.60

7.60 - 7.65

7.65 - 7.70

7.70 - 7.75

7.75 - 8.10

y 
(m

)
y 

(m
)

y 
(m

)

x (m) x (m)

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Toce valley test case configuration. (a) and (b) show building configurations for the aligned and staggered scenarios respectively, as well as bed elevations and
monitoring station locations. (c) and (d) show triangular and (e) and (f) show mixed gap-conforming meshes to solve the porous shallow water equations.

Table 4
Properties of meshes, run times for Toce valley test case.

Case Configuration Boundary condition Mesh # Of nodes # Of cells Time step (s) Run time (s)

Upstream Downstream Total Tri. Quad

Case 1 Aligned Low flowa Open Tri. 243 412 412 0 0.010 1.11
Mixed 303 346 164 182 0.026 0.34

Case 2 Staggered Low flowa Open Tri. 247 420 420 0 0.010 1.10
Mixed 285 322 170 152 0.021 0.29

a Testa et al. [73].
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and a distributed frontal area parameter aj was computed based on
block width within each cell [65]. Flow is supercritical as it enters
the upstream boundary, so the discharge is specified in accordance
with a ‘‘low flow’’ time series of discharge, and the depth is speci-
fied based on measurements at Gage 2 located at the upstream
boundary (Fig. 9) [73]. At the downstream boundary condition, a
‘‘soft’’ boundary condition is used so the flow exits freely [63].
Table 4 summarizes mesh properties including the time step used
for each.

Figs. 10 and 11 present model predictions and laboratory
measurements for aligned and staggered test cases, respectively.
Qualitatively, model predictions and measurements compare
favorably with errors less than about 50% (e.g., Gage 5 in the
aligned case), similar to previous models based on the classical
shallow-water equations [38,65,72]. L1 norms are presented in Ta-
ble 5 for the aligned and staggered cases. The mixed mesh predic-
tions generally compare better with gage data than triangular
mesh predictions in the aligned case, while the mixed mesh and
triangular mesh predictions are of a similar accuracy in the stag-
gered case. However, predictions are also sensitive to the building
drag parameter co

D [65]. Taking into consideration that this could
range from nearly zero to about 2 (it is effectively a calibration
parameter), then neither of the mesh designs stand out as being
more accurate. Focusing now on computational efficiency, Table 4
indicates that the mixed mesh predictions execute about three to
four times faster than the triangular mesh predictions. This is
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Fig. 10. Comparison of water depth predictions and measurements for aligned blocks in Toce valley test case.
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attributed mainly to a differences in the time step and number of
cells. For the same value of aT ¼ 0:8, the mixed-mesh model uses
a time step Dto that is at least twice as large. Additionally, the
channel is discretized with about 20% fewer quadrilaterals than
triangles.

These results show that a comparable level of accuracy is
achieved by both mesh designs, but the mixed mesh consisting
mainly of quadrilateral cells is far more computationally efficient
because it executes three to four times faster. Also, it is noted that
a purely quadrilateral mesh would be more difficult to set up for
this test case than a mixed mesh because of the natural topography
and block constraints (a Cartesian mesh would be impossible),
highlighting a practical advantage of the mixed-mesh model
formulation.

3.5. Malpasset dam-break flood, France

Field-scale performance is the ultimate goal of flood inundation
models, and here attention turns to the Malpasset dam-break flood
which is one of the most-studied historical events from a 2D mod-
eling perspective [16,34,40,46,50,51,69,77,84]. The Malpasset dam
was a concrete arch structure located near Fréjus, France and when
it failed completely and catastrophically in 1959, a massive flood
rushed down the Reyran valley and into Mediterranean Sea. Field
validation data includes seventeen high water marks surveyed by
police and the shutdown time of three electric transformers [36].
A 1:400 scale physical model study of the flood was also completed
by EDF-LNH in France in 1964 and nine gages placed in the model
recorded the maximum water levels and the flood arrival time
[36]. Fig. 12(a) shows site topography and field and laboratory
measurements locations.

Topography data used in previous modeling studies is also used
here, and consists of a digitized set of 13,541 points taken from a his-
torical 1:20,000 scale topographic map and spaced from 6 to 450 m
apart [36]. A 5 m resolution raster DTM was created from these
points using the terrain-to-raster tool in ArcGIS (ESRI, Redlands,
CA, USA), which was found to be preferable to a TIN structure for rep-
resenting the channel thalweg. The reservoir height at the time of
failure was 100 m, and time measurements are relative to moment
of failure so t ¼ 0 corresponds to the initiation of fluid motion
[36]. Friction is parameterized with a constant Manning nm =
0.033 m�1/3 s following previous studies [16,34,46,51,69,77,84].

Three mesh types are examined including a Cartesian grid, a
constrained Delaunay mesh (triangular grid), and a mixed mesh
of triangular and quadrilateral cells. Additionally, each mesh type
was applied at three resolutions to measure how accuracy varies
with run times and determine the approach that offers the highest
computational efficiency. Total errors are measured with a com-
parison to field and laboratory measurements of high water marks
and flood arrival times, and a ‘‘numerical’’ error is measured by
comparison to an ultra-fine resolution (5 m) Cartesian grid predic-
tion. Note that the ‘‘numerical’’ error actually reflects both numer-
ical truncation errors and input data errors, since the sampling of
topography increases with refinement. Hydrograph predictions at
cross-sections shown in Fig. 12(b) are also compared to illuminate
differences in flooding dynamics captured by the models.

Fig. 12(b) shows the model domain divided into five refinement
zones, which are used to guide unstructured mesh generation
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Fig. 11. Comparison of water depth predictions and measurements for staggered blocks in Toce valley test case.

Table 5
L1 norms for Toce valley test case.

Reference L1 (cm): aligned Reference L1 (cm): staggered

Measured Tri. Mixed Measured Tri. Mixed

Mea. 0 0.970 0.616 Mea. 0 0.746 0.724
Tri. x 0 0.631 Tri. x 0 0.506
Mixed x x 0 Mixed x x 0
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using Triangle [68] for triangular meshes and SMS (Aquaveo, Provo,
Utah, USA) for mixed meshes. A uniform resolution is used within
each zone. This allows a finer resolution to be used along the
narrow Reyran valley, and a coarse resolution on the wide flood-
plain near the Mediterranean Sea, leading to the mesh properties
shown in Table 6. Following mesh generation, topographic heights
are assigned to vertices of the computational mesh from the 5 m
DTM by IDW interpolation. Fig. 13 shows the coarse mesh versions
of the three mesh types, and Table 6 summarizes key mesh and
model properties. Models are all executed using a target Courant
number, aT ¼ 0:8. Runs are completed using LTS = 1 and LTS = 3,
allowing explicit consideration of LTS with respect to the most effi-
cient computational method. The flood was modeled for a duration
of 1 h.

Fig. 14 shows model predictions of high water marks of all mesh
type using LTS = 1, alongside field and scaled laboratory data. Qual-
itatively, model predictions are similar to results of previous mod-
eling studies, e.g., [16,40,77], wherein flood height is generally
over-predicted at P1 and P13 and under-predicted at P4, P5, P7
and P8 compared to field observations. When compared to scaled
laboratory measurements, models have generally over-predicted
flood height at S7 and S9 and under-predicted flood height at
S11 and S12.

Fig. 15 shows L1 errors of water height predictions versus run
times for all cases, including LTS = 1 and 3. Fig. 15(a) (and Table 7)
shows total errors based on a comparison to field and gage mea-
surements, and Fig. 15(b) shows the numerical error based on a
comparison to the ultra-fine Cartesian grid prediction. Focusing
first on Fig. 15(a), results show that coarse resolution triangular
and mixed meshes support ca. 25% smaller errors than a coarse
Cartesian grid, and that there is little benefit to unstructured mesh
refinement because total errors are not further reduced even
though computational times increase. On the other hand, the
Cartesian grid prediction benefits slightly from refinement from
40 to 20 m, bringing errors in line with those achieved by the
unstructured meshes. Fig. 15(a) also shows that local time stepping
(LTS = 3) significantly reduces unstructured grid run times com-
pared with global time stepping (LTS = 1), with a neglible impact
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Fig. 12. Malpasset dam-break flood. (a) Topography and field and laboratory measurements locations and (b) model domain divided into five refinement zones and cross-
sections for discharge predictions.

Table 6
Properties of meshes, run times for Malpasset dam-break flood.

Mesh Grid Zone resolution (m) # Of nodes # Of cells LTS = 1 LTS = 3

A B C D E Time step (s) Run time (s) Time step (s) Run time (s)

Cartesian Ultra-fine 5 5 5 5 5 2079137 2069924 – – – –

Tri. Coarse 60 28 40 80 120 17570 33983 0.218 72.34 0.215 27.54
Medium 30 14 20 40 60 69066 135824 0.101 651.97 0.101 224.17
Fine 15 7 10 20 30 273825 543024 0.047 5729.72 0.047 1877.97

Mixed Coarse 60 28 40 80 120 17570 23803 0.232 47.35 0.230 19.98
Medium 30 14 20 40 60 69066 93001 0.107 493.98 0.107 169.75
Fine 15 7 10 20 30 273825 370939 0.049 4262.21 0.042 1583.98

Cartesian Cartesian 40 40 40 40 40 32435 31354 0.900 15.61 0.250 20.59
Medium 20 20 20 20 40 129909 127650 0.443 154.63 0.123 170.68
Fine 10 10 10 10 10 519747 515170 0.211 1342.80 0.058 1472.98
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on accuracy. The impact of LTS on runtimes is greater for the
unstructured meshes (factor of 2–3 change) than the Cartesian grid
(less than 30% change).
Focusing now on numerical errors, Fig. 15(b) (and Table 7)
shows that models converge towards the fine grid prediction irre-
spective of mesh type or LTS level. Overall, the triangular mesh
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Fig. 13. Coarse mesh versions in zone C and D of Fig. 12(b). (a) Triangular mesh, (b) Mixed mesh and (c) Cartesian grid.
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Fig. 14. Comparison of maximum water height predictions and measurements at (a) field surveyed points and (b) physical model gages.
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Fig. 15. (a) Total errors and (b) numerical errors of water height predictions versus run times.

Table 7
L1 norms of maximum water height, arrival time and discharge for Malpasset dam-break flood.

Mesh Grid L1 (m): maximum water height L1 (s): arrival time L1: (103 m3/s):
discharge

Field Physical model Electric transformer Physical model Numerical error

Total
error

Numerical
error

Total
error

Numerical
error

Total
error

Numerical
error

Total
error

Numerical
error

a–a0 b–b0 c–c0

Cartesian Ultra-fine 2.77 – 2.79 – 66.33 – 49.09 – – – –

Tri. Coarse 2.00 1.73 2.54 1.85 34.33 76.67 121.09 73.33 2.54 2.53 2.20
Medium 2.27 1.14 2.52 0.38 96.33 30.00 52.87 11.56 1.02 0.81 0.75
Fine 2.65 0.72 2.79 0.36 87.00 20.67 45.20 6.11 0.25 0.41 0.42

Mixed Coarse 2.06 1.89 2.47 1.98 49.67 107.33 136.87 89.11 3.01 3.05 2.70
Medium 2.09 1.24 2.65 1.01 60.00 29.67 63.53 17.33 1.40 0.83 0.78
Fine 2.49 0.81 2.78 0.30 104.33 28.00 39.98 9.11 0.76 0.78 0.71

Cartesian Coarse 2.88 2.60 2.69 2.89 173.00 222.67 223.76 176.00 3.55 5.14 4.21
Medium 2.13 1.79 2.71 1.49 18.00 61.67 97.42 49.67 1.48 1.81 1.48
Fine 2.32 0.72 2.76 0.53 64.67 15.67 55.76 7.33 0.99 0.51 0.39
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Fig. 16. Comparison of flood arrival time predictions based on (a) shutdown time of electric transformers, (b) gage measurements at physical model.
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Fig. 17. (a) Total errors and (b) numerical errors of flood arrival time predictions versus run times.
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Fig. 18. Flood hydrographs at cross-section (a) a–a0 , (b) b–b0 , and (c) c–c0 in Fig. 12(b). (d) numerical errors of discharge predictions.
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yields the smallest numerical errors for a comparable level of com-
putational effort using LTS = 3. It offers a minimal advantage com-
pared to the mixed mesh, with errors less than 10% smaller, but a
notable advantage compared to the Cartesian grid with errors 50%
smaller for a similar level of computational effort. On the other
hand, using LTS = 1, the advantage of unstructured grids is margin-
alized. Unstructured grids are only slightly more efficient at coarse
resolutions, while Cartesian grids are slightly more efficient at finer
resolutions.

Fig. 16 compares flood arrival time predictions against field and
laboratory measurement locations. Note, first of all, that the ultra-
fine grid mesh predicts a slow-moving flood compared to the field
measurements, but a relatively fast moving flood compared to the
laboratory measurements. This shows not that laboratory
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measurements are not consistent with the field measurements, so
measurements of total errors in flood arrival times will offer little
insight into the preferred mesh design. Hence, the ultra-fine
resolution reference solution is particularly helpful.

Fig. 17 shows total errors and numerical errors in flood arrival
time predictions, versus run times. Additionally, all results are
summarized in Table 7. These results show that the coarse
Cartesian grid (40 m) gives total errors in arrival times that are
twice as big as the coarse unstructured grids. Additionally, the
numerical error of the 40 m Cartesian grid is about twice that of
the coarse unstructured grids showing that Cartesian grid numer-
ical error is significant at this resolution. As the mesh is refined to
20 m, the total errors in Cartesian and unstructured grids are about
the same, but the numerical errors of the unstructured grids re-
main about half the size of the Cartesian grid. At 10 m resolution,
the trend does not continue and this may be because the reference
solution is only a factor of two finer.

Further insight into the best mesh design is obtained by exam-
ining predictions of discharge through the cross-sections marked
a–a0, b–b0 and c–c0 in Fig. 12(b). Fig. 18(a)–(c) shows that flood
hydrographs are artificially attenuated by the numerical model
when an overly coarse mesh is used. The worse example of numer-
ical attenuation is the 40 m resolution (coarse) Cartesian grid,
which yields a 50% error in the peak discharge at sections b–b0

and c–c0. Numerical errors shown in Fig. 18(d), plotted versus
run times, indicate that the unstructured grids (triangles and
mixed meshes) offer the greatest computational efficiency (with
LTS = 3) since errors are approximately 50% smaller, compared to
Cartesian grids, for the same computational expense.

To summarize, the Malpasset results show that all mesh designs
are capable of achieving equally accurate predictions, but that
unstructured meshes offer greater computational efficiency than
Cartesian grids. This is attributed to the ability of unstructured
meshes to locally focus computational resources (local refine-
ment), and the sensitivity of unstructured mesh models to LTS. In
fact, using global time stepping (LTS = 1), the efficiency advantage
of unstructured grids is lost.
4. Discussion

The preceding results show that highly transient flooding
dynamics can be accurately modeled with Godunov-type shal-
low-water models irrespective of the mesh type, but that mesh de-
sign is an important consideration when striving to achieve the
smallest numerical errors for the same computational effort. In
rectangular channel geometries, quadrilateral mesh types such as
Cartesian grids minimize numerical errors more efficiently than
triangular grids because these elements are simply a better fit to
the geometry, enabling the domain to be discretized with fewer
cells and the solution to advanced with a larger time step. Also,
in rectangular channel geometries, a uniform resolution mesh
works well so unstructured meshing capabilities (localized refine-
ment) are not advantageous. However, in applications involving
natural topography and irregular domain boundaries, there is a
benefit to localized refinement in terms of reducing both input
data errors (better sampling of topography) and reducing numeri-
cal errors, and in this context the unstructured mesh designs prove
advantageous.

Two other important considerations in flood modeling include
model selection, which bears on structural model errors, and the
demands of model set up and parameterization. The former in-
cludes choices between model types such as 1D, 2D, and 3D ap-
proaches in addition to hybrid schemes such as coupled 1D/2D
models [5,12,20,28,49,83]. The latter reflects differences in the
complexity and time required to set up the model. For example,
Cartesian grids are the easiest and unstructured grids are more
complicated and can require hours to days for an experienced engi-
neer to prepare with specialized meshing software. These factors
are outside the scope of this study, but warrant careful consider-
ation when approaching applications in the field.
5. Conclusions

There is no optimal mesh type for flood modeling with Godu-
nov-type shallow-water models, because each element type (e.g.,
triangle and quadrilateral) is advantageous under different circum-
stances. Defining computatioal efficiency as accuracy per computa-
tional effort, Cartesian grids are 2–3 times more efficient than
triangular grids in rectangular channels test cases, while unstruc-
tured grids (triangular grids or mixed meshes of triangular and
quadrilateral elements) are about twice as efficient as Cartesian
grids in the Malpasset test case where localized refinements prove
important for reducing topographic and numerical errors. Addi-
tionally, unstructured meshes are required to implement the
porosity sub-grid scheme used in this study, and a mixed-mesh
model with quadrilateral elements proved 3–4 times more effi-
cient than a triangular grid model. The fact that different mesh
types are advantageous under different circumstances points to
the utility of a mixed-mesh Godunov-type flood model. Conse-
quently, a mixed-mesh capability is recommended for maximum
versatility in practical applications.

LTS is critical for efficient flood modeling with localized refine-
ments, irrespective of mesh type (triangular or mixed meshes). The
efficiency advantage cited above is lost using global time stepping
(LTS = 1). Additionally, LTS offers only a minor reduction in run
times when using Cartesian grids, based on the test cases consid-
ered here.

Previous studies suggest topographic and hydrologic errors are
generally greater than numerical errors in flood prediction models
[6], and results here also indicate that numerical errors may be
negligible, compared to structural model errors and input data
errors, for the purpose of predicting maximum flood heights. How-
ever, the Malpasset dam-break test case showed that hydrograph
predictions downstream of the dam are more grid sensitive than
maximum flood height predictions. That is, numerical errors can
be significant. Additionally, for a given level of accuracy, hydro-
graphs can be computed with 50% less computational effort using
an locally refined unstructured grid and LTS.
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Appendix A. Numerical scheme

A.1. Topographic and water storage model

Eq. (4) are discretized on an unstructured mesh of Nv vertices,
Nc triangular and/or quadrilateral cells, and Ne edges. Elevation
data are assigned to mesh vertices zi; i ¼ 1; . . . ;Nv . Elevation varies
linearly along each edge of the mesh so topography within each tri-
angular cell is modeled by a plane. For quadrilateral cells, topogra-
phy is modeled by two planes with the cell bisected along a
diagonal [8]. The mesh is formally a second-order accurate model
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of topography which is appealing for flood modeling because topo-
graphic errors tend to dominate over truncation errors associated
with the discrete solution of the shallow-water equations [6,10].
However, compared with commonly used raster grid flood models
which assume piecewise constant topography, the treatment of
wetting and drying is more complicated because a cell can be par-
tially flooded. That is, the volume of water in a cell might be suffi-
cient to flood the lowest vertex but not the highest vertex.
Begnudelli and Sanders [7] introduced the Volume Free-surface
Relationship (VFR) method to address this problem in the context
of triangular grid models and later extended the approach to quad-
rilateral grid models [8]. In essence, the VFR is an algebraic equa-
tion linking the free surface elevation gj to the volume of water
in cell Xj expressed as hj ¼ ðVolÞj=ðXj/jÞ. Hence, hj is reserved as
a strict indicator of volume and not necessarily cell depth because
this is poorly defined when the cell is partially flooded.

The mixed-mesh model presented here merges and simplifies
VFRs devised for triangular cells [7] and quadrilateral cells [8].
The key difference is an assumption that hj varies piecewise line-
arly with gj. Begnudelli and Sanders [7,8] show that hj can vary
either as a linear, quadratic, or cubic function of gj, and higher or-
der polynomials (especially cubic equations) pose a drawback: an
expensive, iterative, numerical method may be required to com-
pute gj given hj and this step must be completed in every cell every
time step. Hence, the appeal of the proposed model stems from the
opportunity to use a relatively simple and efficient linear interpo-
lation scheme instead. Assuming a quadrilateral cell with vertex
elevations z1; . . . ; z4 ordered lowest to highest, the piecewise linear
VFR is expressed as follows,

hðgÞ ¼

g�z1
z2�z1

ĥ2 if z1 6 g < z2

ĥ2 þ g�z2
z3�z2
ðĥ3 � ĥ2Þ if z2 6 g < z3

ĥ3 þ g�z3
z4�z3
ðĥ4 � ĥ3Þ if z3 6 g < z4

8>>><
>>>:

ðA-1Þ

where ĥ2; ĥ3, and ĥ4 represent water storage parameters corre-
sponding to water filled to the height of z2; z3, and z4, respectively.
The VFR for a triangular cell is just a simplified version of Eq. (A-1)
with only three vertex elevations and two water storage parame-
ters, ĥ2 and ĥ3. Begnudelli and Sanders [7] show that storage in a tri-
angular cell can be computed as a function hT of vertex elevations
z ¼ ðz1 z2 z3Þ (ranked lowest to highest) and g as follows,

hTðg; zÞ ¼

0 if g 6 z1

ðg�z1Þ3
3ðz2�z1Þðz3�z1Þ

if z1 < g 6 z2

g2þgz3�3gz1�z3z2þz1z2þz2
1

3ðz3�z1Þ
if z2 < g 6 z3

g� z1þz2þz3
3 if z3 < g

8>>>>><
>>>>>:

ðA-2Þ

For triangular cells, calculation of the water storage parameters is
straightforward as follows,

ĥi ¼ hTðzi; zÞ i ¼ 2;3 ðA-3Þ

while for quadrilateral cells, the procedure is slightly more compli-
cated and involves division of the cell into two triangles (a and b),
with two sets of vertex elevations za and zb, and the application
of Eq. (A-2) to each triangle to compute the total storage. Begnudelli
and Sanders [8] show there are three ways to divide a quadrilateral
cell leading to the following expressions for za and zb,

(1) Lowest (z1) and highest (z4) vertices of quadrilateral are
diagonally opposite.
za ¼ ðz1 z2 z4Þ zb ¼ ðz1 z3 z4Þ ðA-4Þ
(2) Lowest (z1) and highest (z4) vertices of quadrilateral located
on one side, and z1 and z2 are on another side.
za ¼ ðz1 z2 z4Þ zb ¼ ðz2 z3 z4Þ ðA-5Þ
(3) Lowest (z1) and highest (z4) vertices of quadrilateral located
on one side, and z1 and z3 are on another side. In this case,
the two highest vertices are diagonally opposite, and the
two lowest vertices are diagonally opposite.
za ¼ ðz1 z3 z4Þ zb ¼ ðz2 z3 z4Þ ðA-6Þ
After dividing the quadrilateral into one of these three cases, water
storage parameters are computed as an area-weighted average of
the two triangles as follows,
ĥi ¼
XahTðzi; zaÞ þXbhTðzi; zbÞ

Xa þXb
i ¼ 2; . . . ;4 ðA-7Þ

where Xa and Xb represent the planform area of triangle a and b,
respectively. Areal weighting is required to conserve volume, as
depth per se is not a conserved property.

Water storage parameters are computed in a pre-processing
step of the model, so the work of this method during time-integra-
tion is limited to linear interpolation. Importantly, VFRs can be ap-
plied in the forward direction (computing h from g) or the reverse
direction (computing g from h) by linear interpolation because g;h
and z monotonically increase from the lowest to highest vertex.

A.2. Solution update scheme

The solution state is resolved for each cell in the mesh,
Uj; j ¼ 1; . . . ;Nc , and updated with a first-order accurate finite vol-
ume scheme that is optimized for flooding applications. The opti-
mizations include use of a second-order topographic model, as
described previously, which enables the model to achieve close
to second-order convergence rates in practical applications where
topographic errors tend to be larger than truncation errors in the
discretized flow equations [10]. A second optimization is a method
of variable reconstruction (computing variables at cell edges from
cell-centered data) that adapts according to the local Froude num-
ber for improved modeling of trans-critical flows [10]. A third opti-
mization is a local time stepping scheme whereby cells are
updated with a time step of Dt = Dto; 2Dto; 4Dto or 8Dto depending
on which one achieves a Courant number close to one, but not
greater than one [64]. Hence, the local time step is given by
mjDto where mj ¼ 2lj�1 and lj 2 1; . . . ; L depending on the maximum
number of time stepping levels, L. The time step is selected sepa-
rately for each cell in the mesh, and the net effect is that some cells
are updated every time step, some cells are updated every other
time step, and some cells are updated every fourth or eighth time
step. Mass and momentum conservation is maintained by a careful
sequencing of flux calculations and solution updates, and the
scheme is no less accurate than a global time stepping scheme
[64]. A fourth optimization is the semi-implicit discretization of
friction terms, a widely used approach that prevents the time step
from ever being constrained to a value smaller than that dictated
by the CFL condition [7,10,19,64,65,84].

The solution is updated in time with a fractional step method
that accounts first for fluxes E and H (step n to n�) and secondly
for source terms S and Q (step n� to nþ 1). The first step appears
as follows,

Un�

j ¼ Un
j �

mjDto

Xj

X
k¼1;Kj

wj;kpj;kðE?Þ
n
k �

X
k¼1;Kj

wj;kpj;kðH?Þ
n
j;k

0
@

1
A ðA-8Þ

where Kj is the number of edges (and vertices) around cell j (either 3
or 4), k is an edge index, wj;k ¼ Dskwk=/j; E? ¼ E � n; H? ¼
H � n;n ¼ ðnx; nyÞ represents the unit normal vector of the edge, and
pj;k equals either 1 or�1 depending on whether n is directed outward
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or inward from the cell center, respectively. Note that the continuity
equation is updated in all cells, but the momentum equations are
only updated in completed flooded cells defined by a local depth
d > dw at all vertices, where dw is a small number typically set to
10�6 m. The solution update is completed by accounting for friction
and point-source terms in a semi-implicit manner as follows
[7,10,19,64,65,84],

h
nþmj

j ¼ hn�

j þ
mjDto

/jXj
Q̂ n

j ðA-9Þ

ðuhÞnþmj

j ¼
ðuhÞn

�

j

1þmjDto ðcDÞnj Vn
j =hn

j � 1
2 Q̂ n

j � jQ̂ n
j j

� �.
hn

j Xj

� �h i
ðA-10Þ

ðvhÞnþmj

j ¼
ðvhÞn

�

j

1þmjDto ðcDÞnj Vn
j =hn

j � 1
2 Q̂n

j � jQ̂ n
j j

� �.
ðhn

j XjÞ
h i ðA-11Þ

where Q̂n
j represents the sum of all point sources in cell j (positive

for inflow, negative for outflow) at time level n.
The stability of the update scheme is constrained by the Cou-

rant, Friedrichs, Lewy (CFL) condition in the first step (Eq. (A-8)),
the friction step is unconditionally stable, and the point source/
sink step is unconditionally stable for positive net inflow, Q n�

j ,
and conditionally stable for negative net inflow. In the case of neg-
ative net inflow, the update is stable if the volume removed during
the time step is less than the volume stored in the cell. The CFL
condition is given for cell j by,

aj ¼max wj;kkk
� �

k¼1;Kj

mjDto

Xj
6 1 8j ðA-12Þ

where aj is the Courant number and k ¼ junx þ vnyj þ ðghÞ1=2 repre-
sents the maximum wave speed at each edge of the mesh.

A.3. Variable reconstruction and approximate riemann solver

The flux term E? is computed at each edge of the mesh with an
approximate Riemann solver after reconstructing the solution on
both sides. The reconstruction process considers the cell-centered
solution in the two neighboring cells and topographic heights at
vertices of the mesh edge. Letting z1 and z2 represent the edge ver-
tex heights, with z1 6 z2, and g represent the water height in an
adjacent cell, a preliminary edge depth d�e on the same side as g
is reconstructed as follows [8],

d�e ¼
0 if g 6 z1

ðg�z1Þ2
2ðz2�z1Þ

if z1 < g 6 z2

g� z1þz2
2 if z2 < g

8>><
>>:

ðA-13Þ

which ensures that fluxes are computed when the edge is either fully
or partially flooded. A preliminary edge-based velocity estimate u�e is
computed from the velocity u ¼ ðu; vÞ and discharge per unit width
uh ¼ ðuh; vhÞ in the neighboring cell center as follows,

u�e ¼
uh=d�e if Dz < d�e
u if dw < d�e 6 Dz

0 if d�e 6 dw

8><
>: ðA-14Þ

where d�e is computed by Eq. (A-13) and Dz represents the difference
in height between the highest and lowest vertex of the cell. Hence,
the reconstruction depends on whether the cell is fully flooded
(Case 1), partially flooded (Case 2), or dry (Case 3). Next, an edge-
based Froude number Fr2

e ¼ jju�jj
2
=ðgd�eÞ is computed to check for

supercritical flow and the reconstructed depth and velocity are
finalized as follows,
de ¼ d�e & ue ¼ u�e if Fr2
e < 1

de ¼ h & ue ¼ u if Fr2
e P 1

ðA-15Þ

Bradford and Sanders [14] showed that when dealing with irregular
topographic data typical of flood prediction applications, a smooth
reconstruction of the depth and velocity at cell edges minimizes
numerical errors that cause unwanted energy dissipation. In es-
sence, the above reconstruction assumes that uh and g are piece-
wise constant under subcritical flow conditions, and that u and d
are piecewise constant under supercritical flow. This minimizes dif-
ferences in reconstructed variables across edges [10].

Note that Eqs. (A-13)–(A-15) are applied twice to reconstruct
the velocity and depth on both sides of each edge, and thus define
a Riemann problem that is solved to evaluate fluxes. If de 6 dw on
both sides of the edge then E? ¼ 0. Otherwise, a variant of Roe’s
Approximate Riemann solver [62] is applied which gives the flux
as follows,

E? ¼
1
2

EL
? þ ER

? � R̂jK̂jDV̂
� �

ðA-16Þ

where EL
? and ER

? denote the fluxes defined by the reconstructed
data (d; u and v) on the left (superscript L) and right (superscript
R) side of each face, K and R denote the matrix of eigenvalues and
right eigenvectors, respectively, of the Jacobian matrix defined by
dF=dU, and DV ¼ R�1DU represents wave strengths (differences in
the solution) across the edge. The hat notation in Eq. (A-16) indi-
cates that these matrices should be evaluated with so-called Roe-
average variable values computed as follows [75],

d̂ ¼
ffiffiffiffiffiffiffiffiffiffi
dL dR

p
; ĉ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

gðdL þ dRÞ
r

ðA-17Þ

û ¼
ffiffiffiffiffi
dL

p
uL þ

ffiffiffiffiffi
dR

p
uRffiffiffiffiffi

dL

p
þ

ffiffiffiffiffi
dR

p ; v̂ ¼
ffiffiffiffiffi
dL

p
vL þ

ffiffiffiffiffi
dR

p
vRffiffiffiffiffi

dL

p
þ

ffiffiffiffiffi
dR

p ðA-18Þ

where c ¼ ðgdÞ1=2 represents the speed of a simple gravity wave.
Written in terms of Roe-averages, jK̂j; R̂ and DV̂ are expressed as
follows,

jK̂j ¼
jû? � ĉj� 0 0

0 jû?j 0
0 0 jû? þ ĉj�

0
B@

1
CA ðA-19Þ

R̂ ¼
1 0 1

û� ĉnx �ny ûþ ĉnx

v̂ � ĉny nx v̂ þ ĉny

0
B@

1
CA ðA-20Þ

DV̂ ¼

1
2 Dd� ĥDu?

ĉ

� �

ĥDujj
1
2 Ddþ ĥDu?

ĉ

� �

0
BBB@

1
CCCA ðA-21Þ

where u? ¼ unx þ vny; uk ¼ �uny þ vnx is the velocity parallel to
the cell edge, and D denotes the finite difference normal to the edge,
for example Dd ¼ dR � dL.

Roe’s method will incorrectly predict a hydraulic jump at the
critical flow point within a rarefaction wave, so a so-called entropy
fix is required [75]. A fix proposed by Van Leer et al. [80] and later
adopted by Bradford and Sanders [13] is used here. This fix is re-
flected by the asterisks in the matrix of eigenvalues (Eq. (A-19)),
which indicate that the value of the eigenvalues may be adjusted.
First consider the possibility of a left-moving rarefaction whereby
u? ¼ c. To implement the fix, a wave speed tolerance is computed
as follows,

Dk1 ¼ 2 max ðk1ÞR � ðk1ÞL;0
	 


ðA-22Þ
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where k1 ¼ u? � c and the adjusted eigenvalue is given by,

jk̂1j� ¼
1
2 k̂2

1=Dk1 þ Dk1

� �
if jk̂1j < Dk1

jk̂1j if jk̂1jP Dk1

8<
: ðA-23Þ

The case of a right-moving rarefaction corresponds to �u? ¼ c and
in this case the wave speed tolerance is computed as,

Dk3 ¼ 2 max ðk3ÞR � ðk3ÞL; 0
	 


ðA-24Þ

where k3 ¼ u? þ c. The adjusted eigenvalue jk̂3j� is computed using
Eq. (A-23) with k3 in place of k1.

A.4. Ground slope flux terms

The flux term H? accounts for ground slope effects and is dis-
continuous across the mesh edge, in contrast with E? which is con-
tinuous across the edge. The flux is evaluated by first
reconstructing the edge-based depth de at each of the Kj edges of
cell Xj using Eq. (A-13) and the cell water height gj. The source
term flux of edge k ¼ 1; . . . ;Kj of cell Xj follows as,

ðH?Þk ¼
0

1
2 gðdeÞ2nx

1
2 gðdeÞ2ny

0
B@

1
CA

k

ðA-25Þ

and for consistency with the evalation of E?; H? ¼ 0 if de 6 dw.

A.5. Solution update procedure and data management

Preparation of a computational mesh is the first major task to
model flooding at a site. This can be supported by meshing tools
such as Triangle [68], the Surface Water Modeling System (SMS)
(Aquaveo, Provo, Utah), or one of many other options. The meshing
tool will generate a distribution of vertex locations ðxm; ymÞ, the
connectivity of triangles and/or quadrilateral cells, and possibly ar-
rays of the neighborhood of cells surrounding each cell. Mesh prep-
aration continues with the assignment of topographic heights to
each vertex zm (from topographic data), a resistance parameter to
each cell (e.g., Manning nm) in accordance with the land cover,
appropriate flags to account for boundary conditions and point
sources, and if porosity parameters are to be used, /j to each cell
and wk to each edge in accordance with the shape and location of
sub-grid obstructions.

At run-time, the mesh files and other relevant input are loaded
into the model and a number pre-processing steps are completed
such as the creation of pointers to manage the unstructured data
format [7]; calculation of cell areas Xj, edge lengths Dsk, and edge
angles nk; calculation of VFR parameters; and the specification of
an initial condition including the following cell-based data:
hj; gj; uhj; vhj; uj and v j which are saved in cell-based arrays of
dimension Nc � 1. Once these steps are completed, time integra-
tion proceeds with the following steps,

(1) Fluxes are computed with a global sweep over all edges,
ðE?Þk; k ¼ 1; . . . ;Nv , including boundary edges where
boundary conditions are enforced. Data are saved in an
edge-based array of dimension Nv � 3.

(2) Ground slope fluxes are computed with a global sweep over
all cells, and a nested sweep over the Kj local edges to com-
pute the sum of the fluxes as follows,
Rj ¼
X

k¼1;Kj

wj;kpj;kðH?Þk ðA-26Þ
The sum for each cell (Rj) is saved in a cell-based array of dimension
Nc � 2.
(3) Values of hj; uhj and vhj are advanced to the next time level
by applying Eq. (A-8) (fluxes) and Eqs. (A-9)–(A-11) (friction
and source terms) with a sweep over all cells.

(4) The model checks for the possibility of a negative hj (over-
draft) with a sweep over all cells. In such cases, water is
redistributed among cells sharing an edge with Xj to ensure
positivity [7,8].

(5) The model updates gj according to the VFR (Eq. (A-1)) and uj

and v j are computed in fully flooded cells. Otherwise, the
velocity is set to zero (uj ¼ v j ¼ 0).

As mentioned previously, a local time stepping (LTS) scheme is
used which effectively advances a cell mj ¼ 2lj�1 base time steps
with each update, where lj is an integer in the range 1 6 lj 6 L.
The LTS scheme executes a coordinated cycle of flux, source term,
and solution update sweeps that repeats every M ¼ 2L�1 time steps
to advance the solution. Some cells are updated every time step
(level 1), some cells are updated every other time step (level 2),
and so on. These sweeps are controlled by the level lj so a set of
integer arrays are introduced to designate the LTS level of each cell
and edge of the 2D mesh. Additionally, logical checks are added to
every routine in the simulation algorithm to control operations
according to the LTS level.

The assignment of LTS levels to cells and edges occurs every M
time steps and follows a three-step process described below. The
process is controlled by a target Courant number, aT , which is
slightly less than unity (typically 0.8) to satisfy the CFL condition:

(1) The cell Courant number corresponding to the base time
step Dto is computed as follows,
ao
j ¼max wj;kkk

� �
k¼1;Kj

Dto

Xj
ðA-27Þ
and a preliminary cell-based LTS level ðlcÞj is given by the l

from the range 1; . . . ; L which satisfies the following
inequality,

aT

2l
6 ao

j <
aT

2l�1 ðA-28Þ
with the exception of level 1 which is controlled by ao
j P ao=2
and level L which is controlled by ao
j < aT=2L�1. To clarify,

consider two examples based on aT ¼ 0:8. If ao
j ¼ 0:25, then

lj ¼ 2 and Dtj ¼ 22�1Dto ¼ 2Dto. If ao
j ¼ 0:08, then lj ¼ 4 and

Dtj ¼ 24�1Dto ¼ 8Dto.

(2) The edge-based LTS level, ðleÞk, is assigned as the minimum

of the two neighboring cell-based LTS levels.
(3) The cell-based LTS level ðlcÞj is finalized as the minimum of

the Kj neighboring face-based LTS levels. This ensures that
neighboring cells differ by at most one LTS level.

The cycle of M time steps proceeds with sweeps over cells and
edges as described above (Steps 1–5 of solution update procedure).
During each sweep, data are only operated on when the LTS level is
less than or equal to a variable threshold lo that repeats a particular
sequence every M time steps. The sequence of lo for L ¼ 3 is given
by 1, 2, 1 and 3. This corresponds to the following cycle of updates:

(1) Compute fluxes and source terms for all edges and cells,
respectively.

(2) Advance level 1 cells from t to t þ Dto.
(3) Update fluxes and source terms in level 1 edges/cells.
(4) Advance level 1 cells from t þ Dto to t þ 2Dto and advance

level 2 cells from t to t þ 2Dto.
(5) Update fluxes and source terms in level 1 and level 2 edges/

cells.
(6) Advance level 1 cells from t þ 2Dto to t þ 3Dto.



60 B. Kim et al. / Advances in Water Resources 68 (2014) 42–61
(7) Update fluxes and source terms in level 1 edges/cells.
(8) Advance level 1 cells from t þ 3Dto to t þ 4Dto, advance level

2 cells from t þ 2Dto to t þ 4Dto, and advance level 3 cells
from t to t þ 4Dto

The sequence for L ¼ 4 is lo ¼ 1, 2, 1, 3, 1, 2, 1, 4; and for L ¼ 5 the
sequence is lo ¼ 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5. Note that the
threshold for fluxes/source terms lags the threshold for solution
updates. In addition, note that it is convenient to calculate the
Courant number with (Eq. (A-27)) immediately following the first
step of this process. Previous work has indicated that L ¼ 3 or 4
is optimal for applications with wetting and drying [64].
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