
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Stable perfect isometries between blocks of finite groups

Permalink
https://escholarship.org/uc/item/22z026mt

Author
Karaguzel, Cisil

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/22z026mt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

STABLE PERFECT ISOMETRIES BETWEEN
BLOCKS OF FINITE GROUPS

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

by

Çisil Karagüzel

June 2022

The Dissertation of Çisil Karagüzel is
approved:

Professor Robert Boltje, Chair

Professor Junecue Suh

Professor Beren Sanders

Peter Biehl
Vice Provost and Dean of Graduate Studies



Copyright ©

Çisil Karagüzel

2022



Contents

Abstract v

Acknowledgements vi

Introduction 1

1 Preliminaries 4
1.1 p-modular systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Block theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 p-permutation modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Grothendieck groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Morita equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Stable equivalences of Morita type . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Stable equivalences of Morita type for p-groups . . . . . . . . . . . . . . . 15

2 Perfect Isometries 16
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Perfect self-isometry group of a block . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 p-permutation equivalences 23

4 Stable perfect isometries between blocks of finite groups 26
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 The group SPI(OGe) and Φ : PI(OGe)→ SPI(OGe) . . . . . . . . . . . . . . . . 30
4.3 Finiteness of the group SPI(OGe) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Stable centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Stable isometry in terms of matrices . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Stable perfect isometries of abelian p-groups 44
5.1 The key proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Surjectivity of the map Φ : PI(OP )→ SPI(OP ) . . . . . . . . . . . . . . . . . . . 53
5.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Stable perfect isometries of the blocks with cyclic defect groups 57
6.1 The case: e = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 The case: e > 1 and t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Supplementary observations . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.2 Separability and integrality condition in terms of matrices . . . . . . . . . 62

iii



6.2.3 The coefficient matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.4 Stable isometries of O(Cp o Cp−1) in terms of matrices . . . . . . . . . . 66
6.2.5 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Stable perfect isometries for blocks with Klein four defect group 71

8 Stable p-permutation equivalences 73
8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.3 Surjectivity of Ψ : T∆

◦ (OGe,OGe)→ stab◦T
∆(OGe) . . . . . . . . . . . . . . . . 76

Bibliography 79

iv



Abstract

Stable perfect isometries between blocks of finite groups

by

Çisil Karagüzel

Let (K,O, F ) be a large enough p-modular system for finite groups G and H. Let A be

a p-block of the group algebraOG andB be a p-block of the group algebraOH. Broué introduced

the definition of a perfect isometry between the p-blocks A and B which is a generalized K-valued

character leading to a special bijection between the sets of irreducible K-characters of A and B.

We introduce and investigate the notion of a stable perfect isometry, a way to consider perfect

isometries up to generalized projective characters of the corresponding p-blocks. The main

interest lies in understanding for which blocks all stable perfect self-isometries can be lifted to

perfect self-isometries. We verify this for algebras of abelian p-groups and certain cases of blocks

with cyclic defect group as well as blocks with Klein four defect group. We also introduce the

notion of a stable p-permutation equivalence. Given block A, we show that if all stable perfect

self-isometries of A lift to perfect self-isometries, then all stable p-permutation self-equivalences

of A lift to p-permutation self-equivalences.
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Introduction

Let (K,O, F ) be a large enough p-modular system for a finite group G. The group

algebra OG decomposes into a direct product of indecomposable algebras which are called block

algebras. To understand the module category of OG, it is sufficient to understand the module

categories of its block algebras.

The number of irreducible characters, irreducible Brauer characters and the module

category mod(B) are some of the characteristics of a block algebra B of a finite group G. These

are called global invariants of a block algebra B. On the other hand, a block algebra B of

a finite group G has local invariants such as defect groups and fusion systems.

In the representation theory, there are conjectures that concern the local-global features

of block algebras. Broué’s abelian defect group conjecture suggests an explanatory mechanism

for some of these conjectures.

Conjecture 1. (Broué’s abelian defect group conjecture): Let G be a finite group, b be a block

of OG, and D be a defect group of b. Moreover, let c denote the Brauer correspondent of b. If

D is abelian, then there is an equivalence between the bounded derived categories of OGb and

ONG(D)c.

There are different versions of the abelian defect group conjecture depending on the

chosen equivalence. A splendid Rickard equivalence gives the strongest version.

The abelian defect group conjecture has only been proven in certain cases such as for

blocks of symmetric groups by Chuang and Rouquier [7] and for the cyclic defect group case

over F by Rickard [20] and over O by Linckelmann [11] as well as by Rouquier [21] with a

description of a splendid Rickard complex for a block with cyclic defect group.
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Being one of the strongest block equivalences, a splendid Rickard equivalence implies

many other block equivalences. On the Grothendieck group level, a version of such a block

equivalence is a p-permutation equivalence introduced by Boltje and Xu in [2] in a restricted

case, and extended and studied in detail by Boltje and Perepelitsky in [1]. It is known that

such an equivalence preserves various local invariants of blocks such as defect groups, block

fusion systems and Külshammer-Puig classes. Moreover, every p-permutation equivalence gives

us a perfect isometry, which is a weaker form of a block equivalence. Perfect isometries were

introduced by Broué in [5].

If there is a perfect isometry between two block algebras A and B, then they have the

same number of irreducible characters and isomorphic centers as O-algebras, see [5] for further

details. The set of perfect self-isometries of a block B has a group structure that is denoted

by PI(B). Linckelmann [11] proved that given a block B of OG with a cyclic defect group D

and with the inertial quotient E, B and O(D o E) are derived equivalent. This result implies

that PI(B) ∼= PI(O(D o E)). The precise group structure of PI(O(D o E)) can be found in

Ruengrot [22] and Sambale [24].

Examples of equivalences of blocks on the categorical level are Morita equivalences,

derived equivalences and splendid Rickard equivalences. A Morita equivalence and a splendid

Rickard equivalence imply a derived equivalence which implies a perfect isometry.

The stable versions of most of these block equivalences on the categorical level have

been defined and studied. For example, stable equivalences of Morita type are defined and

studied by Broué [6]. Linckelmann [13] proves that there exists a stable equivalence of Morita

type between two algebras OP and OQ of non-trivial p-groups if and only if there is a Morita

equivalence between OP and OQ.

Although it may be a straightforward question to ask if there are stable versions of the

block equivalences on the Grothendieck group level, to the best of our knowledge, they have not

been considered before. In this thesis, we will introduce and study the notions of stable perfect

isometries as well as stable p-permutation equivalences.

Chapters 1, 2, and 3, we review basics of the block theory and representation theory,

including the definitions and properties of perfect isometries and p-permutation equivalences.

In Chapter 4, we introduce the notion of a stable perfect isometry between blocks of
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finite groups. We let SPI(A,B) denote the set of stable perfect isometries between the blocks

A and B. We introduce the set of cosets SPI(A,B) and the group structure of SPI(B). We

define the group homomorphism Φ : PI(B) → SPI(B). We discuss the finiteness of the group

SPI(B). Mimicking the result of Broué in [6] for the stable equivalences of Morita type regarding

the stable centers, we show that stable perfect isometry also induces an O-module isomorphism

between stable centers of the corresponding blocks.

In Chapter 5, we verify the surjectivity of the map Φ : PI(OP ) → SPI(OP ) for an

abelian p-group P . We prove that for two abelian p-groups P and Q, there is a perfect isometry

between OP and OQ if and only if there is a stable perfect isometry between OP and OQ.

In Chapter 6, we study the stable perfect isometries of blocks with cyclic defect groups.

We will have a partial answer to the surjectivity of the map Φ : PI(B) → SPI(B). The results

of this chapter are based on the result of Linckelmann [11] which is that there is a derived

equivalence between the block algebra B and O(D o E) where B has a cyclic defect group D

and the inertial quotient E.

In Chapter 7, we verify the surjectivity of the map Φ : PI(B) → SPI(B) for a block

algebra B with a Klein four defect group. The result of this chapter is based on the fact that

such a block algebra B is perfectly isometric to either OV4 or OA4, which follows from [12].

In Chapter 8, we introduce the notion of a stable p-permutation equivalence. We show

that a stable p-permutation equivalence induces a stable perfect isometry. We show that to verify

the surjectivity of the map Ψ : T∆
◦ (B,B)→ stab◦T

∆(B), it suffices to verify the surjectivity of

Φ : PI(B)→ SPI(B).

3



Chapter 1

Preliminaries

In this chapter, we review the background information and notation that will be used

throughout this thesis. In Section 1.1, we review the notion of p-modular systems, and in

Section 1.2 introduce definitions and notations in block theory. In Sections 1.3 and 1.4 we

review p-permutation modules and Grothendieck groups, respectively. Finally, in Sections 1.5

and 1.6 we will review some known block equivalences on the categorical level, which motivate

the main topic of this thesis.

1.1 p-modular systems

The main reference of this section is [17].

A valuation of a field K is a function ν : K× → R such that for any a, b ∈ K×,

ν(ab) = ν(a) + ν(b) and ν(a+ b) ≥ min(ν(a), ν(b)).

Such a valuation is called discrete if the image is isomorphic to Z. One can extend ν via

ν(0) =∞ and define ν : K→ R ∪ {∞}. We define the valuation ring

O := {a ∈ K | ν(a) ≥ 0}
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which is a subring of K and which has a unique maximal ideal called, the valuation ideal,

℘ := {a ∈ K | ν(a) > 0}.

Hence, one can define the field F := O/℘ called the residue field of (K, ν).

By using the notion of "equivalence" on the discrete valuations, one can assume that

ν is normalized, i.e. ν(K×) = Z. For such a normalized valuation ν, we let π ∈ K be an

element such that ν(π) = 1. In this case, one has O× = {a ∈ K | ν(a) = 0} and every element

a ∈ K× can be written as a = uπn with unique elements u ∈ O× and n ∈ Z. Furthermore, in

this case, K is the field of fractions of O and the ideals of O are as follows:

0 =
⋂
n∈N

πnO ⊆ · · · ⊆ π2O ⊆ πO ⊆ O.

Next, for a given pair (K, ν) as above, one can define a metric on K as follows: choose

γ ∈ R with 0 < γ < 1. Then, d(a, b) := γν(a−b) is a metric on K. K is a topological space with

respect to this metric. It should be noted that such a topology is independent of "equivalence

classes" of ν and γ. Now we are ready to define a p-modular system:

Definition 2. Let p be a prime. A p-modular system is a triple (K,O, F ) where K is a field

of characteristic 0 which has a valuation ν such that O is its complete discrete valuation ring,

F is its residue field and has characteristic p.

We say a p-modular system (K,O, F ) is large enough for a given finite group G if K

contains a root of unity of order exp(G). In this case, K and F are splitting fields for G and all

of its subgroups. Such a p-modular system always exists, e.g., consider (Qp(ζ),Zp[ζ],Fq) where

q is the smallest power of p such that the p′-part of exp(G) divides q− 1 and ζ is a root of unity

of order exp(G). Throughout, we will always assume that a given p-modular system is large

enough for groups that are considered.

5



1.2 Block theory

In this section, we review the basics of block theory. Further details can be found in

[15] and [17].

Let G be a finite group and let (K,O, F ) be a large enough p-modular system for G.

One can write a decomposition of 1 ∈ Z(OG) such that

1 = e1 + e2 + · · ·+ et

where e1, e2, · · · , et are primitive idempotents of Z(OG). Letting Bi := OGei, we get the

decomposition of the group algebra OG:

OG = B1 ×B2 × · · · ×Bt.

In this case, each ei is called a block idempotent of OG and each Bi is called a block algebra

of OG. The set of block idempotents of OG is denoted by Bl(OG).

We set KB := K⊗OB for a block B of OG. We let IrrK(G) denote the set of irreducible

K-characters of G and we let

IrrK(Bi) := {χ ∈ IrrK(G) : corresponding irreducible KG-module Vχ belongs to ei}.

Similarly, we let IBrF (G) denote the set of irreducible Brauer characters of G, and we let

IBrF (Bi) := {ϕ ∈ IBr(G) : corresponding simple FG-module belongs to ēi}

where ēi is the image of ei under the map − : OG� FG ∼= OG/πOG.

We have IrrK(G) =
t⊔
i=1

IrrK(Bi), and similarly IBrF (G) =
t⊔
i=1

IBrF (Bi) . Let χ be

in IrrK(G), one sets

eχ :=
χ(1)

|G|
∑
x∈G

χ(x−1)x.

The primitive idempotents of Z(KG) are {eχ | χ ∈ IrrK(G)}. For B ∈ Bl(OG), one has

eB =
∑

χ∈IrrK(B)

eχ.

6



Remark 3. ([16, Theorem 2.13]) Let h ∈ G and χi, χj be irreducible ordinary characters of G.

Then the following holds:

1

|G|
∑
g∈G

χi(gh)χj(g
−1) = δi,j

χi(h)

χi(1)
.

Definition 4. Let g be an element of a finite group G.

• g is called p-element if o(g) = pb for some b ∈ N◦.

• g is called p-regular (or p′-element) if p - o(g).

• g is called p-singular if p | o(g).

Proposition 5. Let g be an element of a finite group G. There exists a unique pair (gp, gp′) of

elements in G such that

• g = gp · gp′ .

• gp is a p-element and gp′ is a p′-element.

• gp · gp′ = gp′ · gp.

Notation 6. Let G be a finite group. We let Gp′ denote the set of p-regular elements, and let

Gp denote the set of p-singular elements.

Notation 7. Let G be a finite group, and e a block of OG and B := OGe be the corresponding

block algebra.

• k(G) := |IrrK(G)|.

• l(G) := |IBrF (G)|.

• k(B) := |IrrK(B)|.

• l(B) := |IBrF (B)|.

Remark 8. Let {χ1, χ2, · · · , χk} denote the set of irreducible K-characters of G, and {ϕ1, · · · , ϕl}

denote the set of irreducible Brauer characters of G. Let {η1, η2, · · · , ηl} denote the projective

indecomposable characters of G. Then, one has

7



• D := (di,j) ∈ Matk×l(N◦) is the decomposition matrix, where ResGGp′ (χ) =
l∑

j=1

dijϕj.

• C := (ci,j) ∈ Matl×l(N◦) is the Cartan matrix such that C = DtD.

• For each i ∈ {1, 2, · · · , l}, we have, ηi =
k∑
i=1

djiχj.

• Let e ∈ Bl(OG). If χi and ηj belong to e and ϕr does not belong to e, then dir = 0 and

cjr = 0. If we reorder χ1, · · · , χk, ϕ1, · · · , ϕl and η1, · · · , ηl according to the block algebras

B1 := OGe1, · · · , Bt := OGet that they belong, one has the following:

D =



DB1
0 · · · 0

0 DB2
· · · 0

0 0
. . . 0

0 0 0 DBt


so that Dt

Bi
DBi = CBi where DBi ∈ Matl(Bi)×k(Bi) with k(Bi) := |IrrK(Bi)| and also

l(Bi) := |IBrF (Bi)|. We will refer the matrix DBi as the decomposition matrix of the block

Bi, and CBi as the Cartan matrix of the block Bi.

We note that the following concepts and results can be found in [14] and [15].

Notation 9. Let ZIrrK(G) be the free Z-span of the irreducible K-characters of G. The elements

of ZIrrK(G) will be referred as generalized characters or virtual characters. For a block algebra

B of OG, we let ZIrrK(B) denote the free Z-span of the irreducible K-characters of the block

algebra B of G.

Notation 10. Let ZIBrF (G) be the free Z-span of the irreducible Brauer characters of G. For

a block algebra B of OG, we let ZIBrF (B) denote the free Z-span of the irreducible Brauer

characters of the block algebra B of G.

Note that since IrrK(G) =
t⊔
i=1

IrrK(Bi), one has ZIrrK(G) =
t⊕
i=1

ZIrrK(B). Furthermore,

since IBrF (G) =
t⊔
i=1

IBrF (Bi), one has ZIBrF (G) =
t⊕
i=1

ZIBrF (B). For the details, we refer the

reader to [15], Chapter 6, Theorem 6.5.3.

Notation 11. Let Pr(OG) denote the subgroup of ZIrrK(G) which is generated by the characters

of finitely generated (left) projective OG-modules. Similarly, for a block algebra B := OGe of

8



OG, we let Pr(OGe) denote the subgroup of ZIrrK(OGe) which is generated by the characters

of finitely generated (left) projective OGe-modules. Similarly, we define Pr(FG) and Pr(FGē)

as subgroups of ZIBrF (G) and ZIBrF (OGe), respectively.

Recall that we always assume that (K,O, F ) is a p-modular system for G. In fact, the

next result is true when (K,O, F ) is large enough for a given finite group G.

Remark 12. ([14, Theorem 5.14.1]) The decomposition map

dG : ZIrrK(G)→ ZIBrF (G)

χ 7→ ResGGp′ (χ)

is a surjective group homomorphism.

Let e ∈ Bl(OG) and B = OGe be the corresponding block algebra. The decomposition

map dG in Remark 12 induces a group homomorphism dG,B : ZIrrK(B)→ ZIBrF(B).

Notation 13. ([15, Chapter 6, Section 5]) L0(B) denotes the kernel of dG,B. Hence L0(B)

consists of all generalized characters in ZIrrK(B) that vanish on all p′-elements of G.

Remark 14. ([15, Theorem 6.5.11]) Let G be a finite group and e be a block of OG and B = OGe

be the corresponding block algebra. Suppose that K is a splitting field for KGe. The following

hold:

(i) The decomposition map dG,B : ZIrrK(B) → ZIBrF (B) is surjective, and it induces an

isomorphism Pr(OGe) ∼= Pr(FGē).

(ii) The matrix CB is positive definite, and det(CB) > 0.

(iii) One has L0(OGe)⊥ = Pr(OGe); equivalently, Pr(OGe) consists of all generalized charac-

ters in ZIrrK(B) that vanish on all p-singular elements of G.

Remark 15. ([15, Chapter 6]) Note that by Remark 14, we have an isomorphism of abelian

groups

ZIrrK(OGe)/(L0(OGe)⊕ Pr(OGe)) ∼= ZIBrF (FGē)/Pr(FGē).

9



The order of this group is |det(CB)| where B = OGe, and the orders of the cyclic direct factors

of this group are the elementary divisors of CB.

Definition 16. Let G be a finite group, and H ≤ G. We consider the H-fixed points of OG

under conjugation,

(OG)H := {x ∈ OG | hx = x for all h ∈ H}. (1.1)

If K ≤ H ≤ G, one has (OG)H ⊆ (OG)K . On the other side, we have the relative trace map

TrHK : (OG)K → (OG)H , (1.2)

given by x 7→
∑

h∈[H/K]

hx. We let (OG)HK := Im(TrHK).

Definition 17. ([14, Theorem 5.4.1]) Let G be a finite group and P be a p-subgroup of G.

The canonical F -linear projection FG → FCG(P ) induces a split surjective homomorphism of

NG(P )-algebras over F ,

BrP : (FG)P → FCG(P ) (1.3)

where ker(BrP ) =
∑
Q<P

(FG)PQ. One can also precompose this morphism with (OG)P → (FG)P

and we again will denote this map with BrP : (OG)P → FCG(P ), which is an O-algebra

homomorphism which is not necessarily split any more.

Definition 18. Let e ∈ Bl(OG). A defect group of e is a subgroup P of G minimal with respect

to the property that e ∈ (OG)GP . Equivalently, it is a subgroup P of G maximal with respect to

the property that BrP (e) 6= 0.

Theorem 19. Let P be a defect group of e ∈ Bl(OG). Then, the following hold:

(i) P is a p-subgroup of G.

(ii) The defect groups of a block e form a G-conjugacy class of p-subgroups of G.

Definition 20. The defect of a block e ∈ Bl(OG) is the unique integer dp(e) := d such that the

order of defect groups of e is pd.

10



Definition 21. ([15, Definition 6.7.7]) Let b ∈ Bl(OG) and let P be a defect group of b. There

is a unique block c of ONG(P ) with P as a defect group with the property that BrP (b) = BrP (c).

The block c is called the Brauer correspondent of b. If e ∈ Bl(OCG(P )) such that ec = e, then

the group E = NG(P, e)/PCG(P ) is called the inertial quotient of b.

1.3 p-permutation modules

The further details of this section can be found in Chapter 5 of [14].

Definition 22. Let M be a finitely generated indecomposable OG-module. A subgroup Q of G

is called a vertex of M if Q is a minimal with the property that M is relatively Q-projective. If

Q is a vertex of M , an OQ-source of M is an indecomposable OQ-module V such that M is

isomorphic to a direct summand of IndGQ(V ).

Remark 23. A finitely generated indecomposable OG-module U is projective if and only if U

has the trivial group as a vertex and O as a source.

Definition 24. An indecomposable OG-module M is called a trivial source module if for some

vertex Q of M the trivial OQ-module O is a source of M .

Remark 25. An indecomposable OG-module M is a trivial source module if and only if M is

a direct summand of a permutation module.

Definition 26. An OG-module M is called a p-permutation module if for any p-subgroup P

of G, ResGP (M) is a permutation OP -module.

Remark 27. The following hold:

(i) A finitely generated OG-module M is a p-permutation module if and only if M is a direct

sum of trivial source OG-modules.

(ii) Any direct summand of a p-permutation module is again a p-permutation module.

Note that projective modules are p-permutation modules.

Notation 28. We let OGtriv denote the category of p-permutation OG-modules.
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1.4 Grothendieck groups

Given a finite-dimensional algebra A over a field k, the Grothendieck group, R(A),

with respect to short exact sequences, is the free abelian group with Z-basis given by isomorphism

classes [S] of simple (left) A-modules. We let A = KG be the group algebra over the field K.

We let R(KG) to denote the Grothendieck group of finitely generated (left)KG-modules. We can

identify R(KG) with ZIrrK(G). Similarly, one can define R(FG) and identify it with ZIBrF (G).

Let e be a block of OG and let R(KGe) denote the Grothendieck group of (left) KGe-

modules. We can identify R(KGe) with ZIrrK(OGe). We let R(FGē) denote the Grothendieck

group of FGē-modules and identify it with ZIBrF (FGē).

We consider the Z-span of the isomorphism classes of indecomposable projective (left)

OG-modules and we use the same notation Pr(OG). Similarly, we use the notations Pr(OGe),

Pr(FG) and Pr(FGē) with the obvious meanings.

We let T (OG) denote the Grothendieck group of the category OGetriv with respect

to direct sums. For a block e of OG, one can define T (OGe) and Pr(OGe). Note that clearly

Pr(OG) ⊆ T (OG) and Pr(OGe) ⊆ T (OGe). Similarly, one can define T (FG) and T (FGē). We

have Pr(FG) ⊆ T (FG) and Pr(FGē) ⊆ T (FGē).

One has

Pr(OGe) ⊆ T (OGe) κG−−→ R(KGe) (1.4)

where the map κG is induced by the scalar extension K ⊗O −. It is also important to note

since κG is injective on Pr(OGe), we also use the same notation for their characters in R(KGe).

Recall from Remark 14 that an element χ ∈ R(KGe) belongs to Pr(OGe) if and only if χ(g) = 0

for all p-singular elements g ∈ G.

1.5 Morita equivalences

Although the notion of Morita equivalence can be defined in a more general setting,

e.g., for symmetric algebras, in this thesis, we are interested in Morita equivalence for block

algebras. The further details of this section can be found in [6] and [14, Chapter 2].
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We let A and B be block algebras of OG and OH, respectively for finite groups G

and H. We let mod(A) denote the category of finitely generated (left) A-modules and similarly

mod(B) denotes the category of finitely generated (left) B-modules.

The block algebras A and B are called Morita equivalent if the categories mod(A)

and mod(B) are equivalent. Equivalently, if there exists an (A,B)-bimodule M and a (B,A)-

bimodule N satisfying the following:

(j) M ⊗B N ∼= A as an (A,A)-bimodule,

(ii) N ⊗AM ∼= B as a (B,B)-bimodule,

(iii) M and N are finitely generated projective as left and right modules.

In this case, one can define the functors

M ⊗B − : mod(B)→ mod(A)

N ⊗A − : mod(A)→ mod(B)

which sends simple modules to simple modules.

Furthermore, the following invariants coincide for the Morita equivalent block algebras

A and B:

• Z(A) ∼= Z(B).

• k(A) = k(B) and l(A) = l(B).

• DA = DB and CA = CB .

Related to our interest, one can also define a stable version of a Morita equivalence.

Later on, we will use a similar idea for perfect isometries to define stable perfect isometries and

obtain similar traits.

1.6 Stable equivalences of Morita type

Although stable equivalences of Morita type are defined in a more general setting,

namely for symmetric algebras, we again limit our attention to block algebras of finite groups.
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For further details we refer to [6].

Let A be a block algebra of OG and B be a block algebra of OH for finite groups G

and H. A and B are called stably equivalent of Morita type if there exists an (A,B)-bimodule

M and a (B,A)-bimodule N satisfying:

(j) M ⊗B N ∼= A ⊕ V as an (A,A)-bimodule, for some finitely generated projective (A,A)-

bimodule V,

(ii) N ⊗A M ∼= B ⊕W as a (B,B)-bimodule, for some finitely generated projective (B,B)-

bimodule W,

(iii) M and N are finitely generated projective as left and right modules.

In this case, the stable module categories of A and B are equivalent.

Definition 29. ([6], Section 5) Let e ∈ Bl(OG) and A = OGe. We set Zst(A) := Z(A)/Zpr(A),

called the stable center of A. Here Zpr(A) := {
∑
g∈G

ga | a ∈ A}, called the projective center of A.

Proposition 30. ([6], 5.4 Proposition) Let A and B be block algebras of OG and OH, respec-

tively. A stable equivalence of Morita type between A and B induces an O-algebra isomorphism

between Zst(A) and Zst(B).

We refer the reader to [6] for further details on stable equivalences of Morita type.

A similar statement to Proposition 30 will be observed for stable perfect isometries

later in Proposition 66. In our case, we will only have an O-module isomorphism instead of an

O-algebra isomorphism.

Further invariants of stable equivalences of Morita type are listed in [9]. More details

can also be found in [15]. We list some of them here:

In the following set up, assume A = OGe and B = OHf .

• R(KGe)/Pr(OGe) ∼= R(KHf)/Pr(OHf)

• R(FGē)/Pr(FGē) ∼= R(FHf̄)/Pr(FHf̄).

• L0(A) ∼= L0(B).

14



1.6.1 Stable equivalences of Morita type for p-groups

Let P and Q be non-trivial p-groups. Linckelmann [13, Theorem 3.1] shows that

if there is a stable equivalence of Morita type between OP and OQ, then OP and OQ are

Morita equivalent. The next theorem follows from [13, Theorem 3.1], [13, Corollary 3.2] and

[13, Corollary 3.3]:

Theorem 31. ([13, Section 3]) Let P and Q be non-trivial p-groups. Then, the following are

equivalent:

(a) OP and OQ are Morita equivalent.

(b) There is a stable equivalence of Morita type between OP and OQ.

(c) P ∼= Q.

In Chapter 5, we will try to mimic this theorem in the context of perfect isometries

and stable perfect isometries.
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Chapter 2

Perfect Isometries

Throughout this chapter, G,H and K denote finite groups. We assume that the p-

modular system (K,O, F ) is large enough forG,H andK. In this section, we recall and introduce

notations, concepts and well-known results related to perfect isometries. For more details on

perfect isometries we refer the reader to [1], [5], and [15]. For the details on the perfect isometries

of blocks with cyclic defect group, we refer to [22] and [24].

Recall that we identify R(KG) with ZIrrK(G). We set R(KG,KH) := R(KG⊗ (KH)◦)

where (KH)◦ is the opposite algebra of KH and we identify (KH)◦ with KH via the map

h◦ 7→ h−1. As a result, we identify KG⊗ (KH)◦ with K[G×H] via (g, h◦) 7→ (g, h−1).

Throughout we let e ∈ Bl(OG) and f ∈ Bl(OH), and B := OGe and A := OHf .

We set R(KGe,KHf) := R(K[G × H](e ⊗ f?)) where f∗ is defined through the convention of

opposite algebras above. Furthermore, if µ ∈ R(KGe,KHf), µ◦ denotes the K-dual of µ in

R(KHf,KGe).

Given µ ∈ R(KG,KH) and ν ∈ R(KG,KK), the character µ ·H ν ∈ R(KG,KK) is

defined as follows: for any (g, k) ∈ G×K,

(µ ·H ν)(g, k) =
1

|H|
∑
h∈H

µ(g, h)ν(h, k)
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and in this way we have the following bilinear map

R(KG,KH)×R(KH,KK)→ R(KG,KK)

sending (µ, ν) to µ·H ν. This map is induced by taking the tensor product −⊗KH− of bimodules.

As a special case, if we take K = 1, then one can see that every generalized character

µ ∈ R(KG,KH) induces a group homomorphism

Iµ : R(KH)→ R(KG) (2.1)

given by ψ 7→ µ ·H ψ.

2.1 Definition

Note that if µ ∈ R(KGe,KHf), then Iµ : R(KHf) → R(KGe) for any blocks e, f of

OG and OH, respectively. A generalized character µ ∈ R(KGe,KHf) is called an isometry

between OGe and OHf if the map Iµ : R(KHf)→ R(KGe) is bijective, and it preserves inner

products, namely

〈ψ,ψ
′
〉H = 〈Iµ(ψ), Iµ(ψ

′
)〉G (2.2)

for all ψ,ψ
′ ∈ R(KHf).

The next remark provides equivalent definitions of an isometry between two blocks

OGe and OHf .

Remark 32. (Remark 8.4(a), [1]) The following are equivalent:

(i) µ is an isometry between OGe and OHf .

(ii) µ ·H µ◦ =
∑

χ∈IrrK(OGe)
χ × χ◦ in R(KGe,KGe) and µ◦ ·G µ =

∑
ψ∈IrrK(OHf)

ψ × ψ◦ in

R(KHf,KHf).

(iii) There exists a bijection IrrK(OHf)
∼−→ IrrK(OGe), ψ 7→ χψ and some εψ = ±1 such that

one has µ =
∑

ψ∈IrrK(OHf)

εψ · χψ × ψ◦.
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Notation 33. We will use the notation [KGe] for the character
∑

χ∈IrrK(OGe)
χ × χ◦ as it is the

character of KGe as a (KG,KG)-bimodule.

A generalized character µ ∈ R(KGe,KHf) is called perfect (see [5]) if the following

two conditions are satisfied:

(i) For all (g, h) ∈ G×H, µ(g, h) is divisible by |CG(g)| and |CH(h)| in O. This condition is

called the integrality condition.

(ii) If (g, h) ∈ G × H is such that µ(g, h) 6= 0, then g is a p′-element if and only if h is a

p′-element. This condition is called the separability condition.

If only condition (ii) holds, we call µ quasi-perfect. We let QR(KGe,KHf) denote the

set of quasi-perfect generalized characters in R(KGe,KHf). If an isometry µ ∈ R(KGe,KHf)

is perfect, µ is called a perfect isometry between OGe and OHf . Perfect isometries are first

defined by Broué in [5].

The next theorem provides a refined condition to check when a quasi-perfect character

is perfect. The result is due to Kiyota [10], Kiyota’s theorem is cited and explained in [22]

and [24]. We note that the original result of Kiyota is only for an isometry; however, the theorem

is also true for quasi-perfect generalized characters. The proof for the quasi-perfect generalized

characters is almost the same as the original proof in [10].

We will also benefit from Kiyota’s theorem later in this thesis.

Theorem 34. ([10, Theorem 2.2]) Let µ ∈ R(KGe,KHf) be a generalized quasi-perfect char-

acter. Then µ is perfect if for all p-singular elements g ∈ G, and h ∈ H, µ(g, h) is divisible by

|CG(g)| and |CH(h)| in O.

Lemma 35. ([18], Lemma 2.21) Let x ∈ G and ϕ ∈ IBrF (G) where ηϕ is the corresponding

indecomposable projective character of G. Then, one has

ηϕ(x)

|CG(x)|p
∈ O. (2.3)

As an application of Theorem 34, we review the following lemma which is well-known.

We will use this lemma later in this thesis.
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Lemma 36. Let µ ∈ R(KGe,KHf) and µproj ∈ Pr(OGe,OHf). Then µ + µproj is perfect if

and only if µ is perfect.

Proof. Note that if at least one of g or h is p-singular, then µ(g, h) + µproj(g, h) = µ(g, h), by

the definition of a projective character. This implies that µ satisfies the separation axiom if and

only if µ + µproj satisfies the separation axiom. Additionally, the integrality condition follows

from Theorem 34.

The next result will be referred to later. The ideas in the proof can be found in

Sambale [24] in the context of perfect isometries. We prove the result for the convenience of the

reader.

Lemma 37. ([24]) Let e ∈ Bl(OG), f ∈ Bl(OH) and eK ∈ Bl(OK). Let µ ∈ R(KGe,KHf)

and τ ∈ R(KHf,KKeK). Suppose that µ and τ satisfies the integrality condition. Then, µ ·H τ

also satisfies the integrality condition.

Proof. Let (g, k) ∈ G ×K. Letting R denote a set of representatives of the conjugacy classes

of H, we obtain that

(µ ·H τ)(g, k)

|CG(g)|
=

1

|H||CG(g)|
∑
h∈H

µ(g, h)τ(h, k)

=
1

|H||CG(g)|
∑
h∈R

|H : CH(h)|µ(g, h)τ(h, k)

=
∑
h∈R

µ(g, h)

|CG(g)|
τ(h, k)

|CH(h)|
∈ O

because both µ and τ satisfies the integrality condition. Similarly, one can show |CK(k)| divides

(µ ·H τ)(g, k) in O.

The next argument can also be found in [24]. We state and prove it in our context.

Lemma 38. ([24]) Let e ∈ Bl(OG), f ∈ Bl(OH) and eK ∈ Bl(OK). Suppose that µ is an

element of QR(KGe,KHf) and ψ is an element of QR(KHf,KKeK). Then, µ ·H ψ is in

QR(KGe,KKeK).
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Proof. Let (g, k) ∈ G×K such that (µ ·H ψ)(g, k) 6= 0. That is we have

0 6= (µ ·H ψ)(g, k) (2.4)

=
1

|H|
∑
h∈H

µ(g, h)ψ(h, k). (2.5)

Thus there is at least one element h ∈ H such that µ(g, h)ψ(h, k) 6= 0. In particular, µ(g, h) 6= 0

and ψ(h, k) 6= 0. Since µ is quasi-perfect, g is a p′-element if and only if h is a p′-element.

Furthermore, since ψ is quasi-perfect, h is a p′-element if and only if k is a p′-element. Hence

the proof follows.

Suppose that there is a perfect isometry µ ∈ R(KGe,KHf) between the blocks OGe

and OHf with defect groups P,Q, respectively. Broué in [5] and [6] showed that the following

properties hold:

(i) One has |P | = |Q|.

(ii) The group isomorphism Iµ : R(KHf)→ R(KGe) maps Pr(OHf) to Pr(OGe).

(iii) The Cartan matrices of e and f have the same determinant and elementary divisors with

the same multiplicities.

(iv) Z(OGe) ∼= Z(OHf) as O-algebras and this isomorphism restricts to projective centers,

Zpr(OGe) ∼= Zpr(OHf).

The next result relates stable equivalence of Morita type and perfect isometries.

Proposition 39. ([9, Proposition 3.3]) Given finite groups G, H, e ∈ Bl(OG) and f ∈ Bl(OH),

let A = OGe and B = OHf . Suppose that (K,O, F ) is large enough and suppose that there

is a stable equivalence of Morita type between A and B achieved by a (B,A)-bimodule M

which is finitely generated projective as a left and right module. Furthermore, assume that

the isometry L0(A) ∼= L0(B) induced by ΦM extends to an isometry Φ : R(KA) ∼= R(KB).

Then, χΦ − χM ∈ Pr(A,B). In particular, Φ is a perfect isometry.
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2.2 Perfect self-isometry group of a block

Let e ∈ Bl(OG). We use the notation of Ruengrot in [22], namely PI(OGe) for the

group of perfect self-isometries of the block OGe. The group operation of PI(OGe) is −·G− and

its identity is [KGe] =
∑

χ∈IrrK(OGe)
χ × χ◦ in R(KGe,KGe), and given µ ∈ PI(OGe), its inverse

is µ◦ ∈ PI(OGe).

The next theorem describes the group structure of perfect self-isometries of the algebra

OP for an abelian p-group P . A special case of the following theorem, when P = Cp, can also

be found in [23].

Theorem 40. ([22, Theorem 5.1.1]) Let P be an abelian p-group. Then every perfect isometry

has a homogeneous sign and PI(OP ) ∼= (P o Aut(P ))× 〈−id〉.

The next result is regarding the group structure of perfect self-isometries of blocks

with cyclic defect group. The theorem uses Linckelmann’s result in [11] which says that the

derived category of a block with cyclic defect group is equivalent to the derived category of the

semidirect product of its defect group and its inertial quotient. Since the derived equivalence

implies perfect isometry, to understand the perfect self-isometries of a block with cyclic defect

group, it is sufficient to understand PI(O(D o E)) where D is a defect group of the block

and E is the inertial quotient. Ruengrot provides a detailed study of the group D o E in

[22, Chapter 6]. To summarize, E acts Frobeniusly on D, so it also acts on the irreducible

K-characters of D. The size of the orbit of any non-trivial K-character of D is |E| = e, hence

|D| − 1 many non-trivial characters of D break up into orbits of equal size |E| = e. We let

t = (|D| − 1)/e, and each of these orbits induce an irreducible character of D o E, which

are denoted by Φ1,Φ2, · · · ,Φt. These characters are referred as the exceptional characters of

D o E. Additionally, D o E also has irreducible K-characters inflated from E, denoted by

{χ1, χ2, · · · , χe}, and these are called the non-exceptional characters of DoE. In fact, one has

IrrK(D o E) = {χ1, · · · , χe} t {Φ1, · · · ,Φt}. The group of perfect self-isometries of a block B

with a cyclic defect group is computed by Ruengrot [22] and Sambale [24].

Theorem 41. ([22] Theorem 6.0.5, [24], Theorem 3.5) Let G be a finite group and B ∈ Bl(OG)

with a cyclic defect group D of order pn and inertial quotient E with e := |E|. Let t = (pn−1)/e.

Then, Irr(B) = {χ1, · · · , χe} t {Φ1, · · · ,Φt}.
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(i) If e = 1, then PI(B) ∼= PI(OD) ∼= (D o Aut(D))× 〈−id〉.

(ii) If e ≥ 1 and t = 1 then |Irr(B)| = p. Every permutation on Irr(B) gives a perfect isometry

(with a choice of sign), and PI(B) ∼= Sp × 〈−id〉.

(iii) If 1 < e < |D| − 1 and t > 1, then PI(B) ∼= 〈−id〉 × Se × Cϕ(|D|)/e where Se permutes the

non-exceptional characters, namely {χ1, · · · , χe}, and CΦ(|D|)/e permutes the exceptional

characters of B, namely {Φ1, · · · ,Φt}.

Note that D o E = Cp o Cp−1 in the case (ii). It is important to note that the

results of Ruengrot and Sambale indicate that perfect isometries behave mindfully with respect

to non-exceptional and exceptional characters with the exception of case (ii) above.
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Chapter 3

p-permutation equivalences

In this section, we will review the definition and some properties of p-permutation

equivalences. The further details of this section can be found in [1] and [19]. The p-permutation

equivalences were first defined by Boltje–Xu in [2] in certain restricted situations, and then

extended to a greater generality and studied in detail by Boltje–Perepeletsky in [1].

Throughout this section, we again let (K,O, F ) be large enough for finite groups G

and H. For this thesis, we also always assume that e ∈ Bl(OG) and f ∈ Bl(OH). Recall

that T (OGe) denotes the Grothendieck group of the category OGetriv with respect to direct

sums. Similarly as before, we let T (OGe,OHf) := T (O[G ×H](e ⊗ f∗)). The tensor product

of bimodules induces maps on the Grothendieck group level and we use the same notation ·H .

We will begin by reviewing some basic notions which can be found in [3].

Definition 42. Let G and H be finite groups and X ≤ G × H. Let p1 : G × H → G and

p2 : G×H → H be the canonical projections. Let

k1(X) := {g ∈ G | (g, 1) ∈ X} and k2(X) := {h ∈ H | (1, h) ∈ X}.

Note that k1(X) � p1(X) and k2(X) � p2(X).

Definition 43. Given P ≤ G, Q ≤ H and a group isomorphism φ : Q → P , one defines
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a twisted diagonal subgroup of G×H as follows:

∆(P, φ,Q) := {(φ(y), y) | y ∈ Q} ≤ G×H. (3.1)

Remark 44. Broué in [5] showed that given any e ∈ Bl(OG) and f ∈ Bl(OH), the character

of an indecomposable module M ∈ OGetrivOHf with twisted diagonal vertex is perfect.

Definition 45. Let X ≤ G×H and Y ≤ H ×K. Then,

X ? Y := {(g, k) ∈ G×K | ∃h ∈ H : (g, h) ∈ X, (h, k) ∈ Y }. (3.2)

Note that X ? Y ≤ G×K.

Next, we will review the extended tensor product. This construction was first described

by Bouc in [4]. For further details on extended tensor products, see [1, Chapter 6].

Definition 46. Let X ≤ G×H and Y ≤ H×K. Let M ∈ OXmod and N ∈ OY mod. Consider

the (O[k1(X)],O[k2(Y )])-bimodule, M⊗[Ok2(X)∩k1(Y )]N . Note that k1(X)×k2(Y ) ≤ X?Y . One

can extend this module structure to an O[X?Y ]-module structure such that given (g, k) ∈ X?Y ,

and m ∈ M , n ∈ N , (g, k) · (m ⊗ n) = (g, h)m ⊗ (h, k)n where h ∈ H is chosen such that

(g, h) ∈ X and (h, k) ∈ Y . We will denote this extended tensor product by M
X,Y⊗
OH

N and obtain

the functor:

−
X,Y⊗
OH
− : OXmod× OY mod→ O[X?Y ]mod.

Theorem 47. ([4, Corollary 3.4]) Let X ≤ G×H, Y ≤ H×K, M ∈ OXmod and N ∈ OYmod.

Then, there is an isomorphism

IndG×HX (M)⊗OH IndH×KY (N) ∼=
⊕

t∈[p2(X)\H/p1(Y )]

IndG×K
X?(t,1)Y

(M

X,(t,1)Y⊗
OH

(t,1)N) (3.3)

of (OG,OH)-bimodules.

Lemma 48. ([1, Lemma 7.2]) Let X ≤ G×H, Y ≤ H ×K.
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(a) If M ∈ OX triv and N ∈ OY triv, then M
X,Y⊗
OH

N ∈ O(X?Y )triv.

(b) If M ∈ OXmod and N ∈ OYmod are indecomposable with twisted diagonal vertices then

every indecomposable direct summand of the O[X?Y ]-moduleM
X,Y⊗
OH

N has twisted diagonal

vertices.

Given a subgroup X ≤ G × H, and d ∈ Z(O[G × H]), one denotes by T∆(OXd)

the subgroup of T (OXd) which is spanned by the isomorphism classes of indecomposable p-

permutation OXd-module with twisted diagonal vertices. Given blocks e, f of OG and OH,

respectively, one sets T∆(OGe,OHf) := T∆(O[G×H](e⊗ f∗)).

Definition 49. Let e ∈ Bl(OG) and f ∈ Bl(OH). A p-permutation equivalence between OGe

and OHf is an element γ ∈ T∆(OGe,OHf) satisfying

γ ·H γ◦ = [OGe] ∈ T∆(OGe,OGe) and γ◦ ·G γ = [OHf ] ∈ T∆(OHf,OHf) (3.4)

Notation 50. The set of p-permutation equivalences between OGe and OHf will be denoted by

T∆
◦ (OGe,OHf).

The next proposition uses Remark 44 which says that a p-permutation equivalence

induces a perfect isometry between two blocks. We will mimic this result in the stable set up.

Proposition 51. ([1, Proposition 9.9]) Let e ∈ Bl(OG) and f ∈ Bl(OH). Let γ ∈ T∆
◦ (OGe,OHf).

Then, µ := κG×H(γ) ∈ R(KGe,KHf) is a perfect isometry between blocks OGe and OHf .
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Chapter 4

Stable perfect isometries between

blocks of finite groups

In this section, we introduce and investigate the notion of a stable perfect isometry,

a way to consider a perfect isometry up to projective modules. We will prove some properties

regarding the group of the set of cosets of stable perfect isometries.

Throughout this chapter, we always assume that e, f are blocks of OG,OH, respec-

tively. Recall that as before, we identify the element
∑

χ∈IrrK(OGe)
χ × χ◦ in R(KGe,KGe) with

[KGe].

4.1 Definition

Definition 52. A stable isometry between the algebras OGe and OHf is a generalized character

µ in R(KGe,KHf) satisfying the following two conditions:

(l) µ ·H µ◦ = [KGe] + πG in R(KGe,KGe) for some πG ∈ Pr(OGe,OGe).

(r) µ◦ ·G µ = [KHf ] + πH in R(KHf,KHf) for some πH ∈ Pr(OHf,OHf).

Definition 53. Let e ∈ Bl(OG) and f ∈ Bl(OH). A stable perfect isometry between the block

algebras OGe and OHf (respectively stable quasi-perfect isometry) is a stable isometry µ in

R(KGe,KHf) which is also perfect (respectively quasi-perfect).
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Notation 54. Let SPI(OGe,OHf) denote the set of stable perfect isometries from OHf to

OGe. For convenience, we let SPI(OGe) := SPI(OGe,OGe).

Next, we make the following observation which is well-known to the experts.

Lemma 55. Let e, f, eK and fL be in of Bl(OG),Bl(OH),Bl(OK) and Bl(OL), respectively.

Let µ and η be quasi-perfect generalized characters in R(KGe,KHf) and R(KKeK ,KLfL) and

let π ∈ Pr(OHf,OKeK). Then, µ ·H π ·K η is in Pr(OGe,OLfL).

Proof. Let (g, l) ∈ G × L be a p-singular element. Without loss of generality, we can assume

that l is p-singular, then

(µ ·H π ·K η)(g, l) =
1

|K|
∑
x∈K

(µ ·H π)(g, x)η(x, l)

=
1

|K|
∑
x∈Kp

(µ ·H π)(g, x)η(x, l)

=
1

|H||K|
∑
x∈Kp

∑
y∈H

µ(g, y)π(y, x)η(x, l)

= 0

by using the quasi-perfectness of η and the last equality holds since π is in Pr(OHf,OKeK)

so it vanishes on the p-singular elements (y, x) by Remark 14. Now by the characterization of

elements in Pr(OGe,OLfL), we see that µ ·H π ·K η is in Pr(OGe,OLfL).

Lemma 56. Let e ∈ Bl(OG), f ∈ Bl(OH). Let µ ∈ SPI(OGe,OHf) and π ∈ Pr(OGe,OHf).

Then, µ + π is also in SPI(OGe,OHf). Therefore, for any µ ∈ SPI(OGe,OHf) the set

µ+ Pr(OGe,OHf) := {µ+ π | π ∈ Pr(OGe,OHf)} is a subset of SPI(OGe,OHf).

Proof. Firstly, by Lemma 36 if µ is a perfect generalized character, then so is µ+π where π is a

generalized projective character. This means that we only need to check the conditions (i)-(ii)

in the Definition 52 for the generalized character µ+ π.
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Note that

(µ+ π) ·H (µ+ π)◦ = (µ+ π) ·H (µ◦ + π◦)

= µ ·H (µ◦ + π◦) + π ·H (µ◦ + π◦)

= µ ·H µ◦ + µ ·H π◦ + π ·H µ◦ + π ·H π◦

= [KGe] + π
′
+ µ ·H π◦ + π ·H µ◦ + π ·H π◦

where µ ·H µ◦ = [KGe] + π
′
for some π

′ ∈ Pr(OGe,OGe). Note that by Lemma 55 µ ·H π◦ and

π ·H µ◦ are in Pr(OGe,OGe), and therefore π
′
+µ ·H π◦+π ·H µ◦+π ·H π◦ is in Pr(OGe,OGe).

This shows that µ+ π satisfies the condition (i) in Definition 52. A similar proof will follow to

show condition (ii) where we use µ◦ · µ = [KHf ] + π
′′
for some π

′′ ∈ Pr(OHf,OHf).

The final part µ+ Pr(OGe,OHf) ⊆ SPI(OGe,OHf) is now straightforward.

Notation 57. Given e ∈ Bl(OG) and f ∈ Bl(OH), and µ ∈ SPI(OGe,OHf), we denote the

set of the cosets µ+ Pr(OGe,OHf) by SPI(OGe,OHf). We also have the following map

ΦG,H : SPI(OGe,OHf)→ SPI(OGe,OHf)

given by µ 7→ µ+ Pr(OGe,OHf). We set SPI(OGe) := SPI(OGe,OGe).

Lemma 58. Let e, f, eK be in of Bl(OG),Bl(OH),Bl(OK), respectively. Then, − ·H − induces

the following bilinear maps

SPI(OGe,OHf)× SPI(OHf,OKeK)→ SPI(OGe,OKeK) (4.1)

by (µ, ν) 7→ µ ·H ν, and

SPI(OGe,OHf)× SPI(OHf,OKeK)→ SPI(OGe,OKeK) (4.2)

by (µ+ Pr(OGe,OHf), ν + Pr(OHf,OKeK)) 7→ (µ ·H ν) + Pr(OGe,OKeK).
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In particular, one has the following commutative diagram

SPI(OGe,OHf)× SPI(OHf,OKeK) SPI(OGe,OKeK)

SPI(OGe,OHf)× SPI(OHf,OKeK) SPI(OGe,OKeK).

Proof. Firstly, we show that given µ ∈ SPI(OGe,OHf) and ν ∈ SPI(OHf,OKeK), one has

µ ·H ν ∈ SPI(OGe,OKeK). For this, note that

(µ ·H ν) ·K (µ ·H ν)◦ = µ ·H ν ·K ν◦ ·H µ◦

= µ ·H ([KHf ] + π) ·H µ◦

= µ ·H [KHf ] ·H µ◦ + µ ·H π ·H µ◦

= µ ·H µ◦ + µ ·H π ·H µ◦

= [KGe] + π
′
+ µ ·H π ·H µ◦

where ν ·K ν◦ = [KHf ] + π and µ ·H µ◦ = [KHf ] + π
′
for some π, π

′ ∈ Pr(OGe,OGe). By

Lemma 55 we know that π
′

+ µ ·H π ·H µ◦ is in Pr(OGe,OGe). Similar argument follows for

(µ ·H ν)◦ ·G (µ ·H ν) = [KKeK ] + π
′′
for some π

′′ ∈ Pr(OKeK ,OKeK). Furthermore, as both µ

and ν are perfect, so is µ ·H ν by Lemma 37 and Lemma 38. Hence we showed that µ ·H ν is in

SPI(OGe,OKeK).

Note that the second map is also well-defined as for any π ∈ Pr(OGe,OHf) and

π
′ ∈ Pr(OHf,OKeK), one has

[(µ+ π) ·H (ν + π
′
)] = µ ·H ν + π ·H ν + µ ·H π

′
+ π ·H π

′

and by Lemma 55 π ·H ν + µ ·H π
′
+ π ·H π

′
is in Pr(OGe,OKeK) which implies that

(µ ·H ν) + Pr(OGe,OKeK) = [(µ+ π) ·H (ν + π
′
)] + Pr(OGe,OKeK).
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4.2 The group SPI(OGe) and Φ : PI(OGe)→ SPI(OGe)

We note that the set of stable perfect isometries SPI(OGe) is in general not a group.

Theorem 59. The set SPI(OGe) has a monoid structure with respect to ·G and with the identity

element [KGe]. For any µ ∈ SPI(OGe), the coset µ + Pr(OGe,OGe) is also in SPI(OGe) and

we denote the set of all such cosets by SPI(OGe). Then, SPI(OGe) has a group structure

induced by ·G. Furthermore, there is a group homomorphism Φ : PI(OGe) → SPI(OGe) given

by µ 7→ µ+ Pr(OGe,OGe).

Proof. By Lemma 58, we see that SPI(OGe) has a monoid structure. As before, we consider

the binary operation ? : SPI(OGe)× SPI(OGe)→ SPI(OGe) defined by

(µ+ Pr(OGe,OGe), η + Pr(OGe,OGe)) 7→ (µ ·G η) + Pr(OGe,OGe).

Since [KGe], the character of the block itself, is a perfect isometry, in particular, a stable perfect

isometry, the element [KGe]+Pr(OGe,OGe) in SPI(OGe) is the identity with respect to ?. For

any element µ + Pr(OGe,OGe) in SPI(OGe), we have that µ◦ + Pr(OGe,OGe) is the inverse

in SPI(OGe) as µ◦ is also a stable perfect isometry. Finally, associativity of ? follows from that

of ·G. Now, we conclude that SPI(OGe) has a group structure with respect to the operation ?

which is induced by ·G.

Finally, we have for any µ, η ∈ PI(OGe) ⊆ SPI(OGe), one has the following:

Φ(µ ·G η) = µ ·G η + Pr(OGe,OGe)

= (µ+ Pr(OGe,OGe)) ? (η + Pr(OGe,OGe))

= Φ(µ) ? Φ(η).

Now, we denote the subgroup of the quasi-perfect generalized characters in R(KGe,KHf)

by QR(KGe,KHf). Since every projective character is perfect, Pr(OGe,OHf) ⊆ QR(KGe,KHf).

We would like to prove that the group SPI(OGe) is finite. More generally, we will show that

there are only finite many cosets in SPI(OGe,OHf).
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4.3 Finiteness of the group SPI(OGe)

Remark 60. Let e ∈ Bl(OG) and f ∈ Bl(OH). Assume that ψ is in L0(KGe,KHf) and π is

in Pr(OGe,OHf). Then, 〈ψ, π〉G×H = 0.

Proof. The proof follows from Remark 14.

Theorem 61. There are only finitely many distinct cosets of stable quasi-perfect isometries

between two blocks OGe and OHf with respect to Pr(OGe,OHf) in QR(KGe,KHf). In par-

ticular, SPI(OGe,OHf) is a finite set, and SPI(OGe) is a finite group.

Proof. For a given stable quasi-perfect isometry µ in QR(KGe,KHf), we define the following

map

Ĩµ : QR(KHf,KHf)/Pr(OHf,OHf)→ QR(KGe,KHf)/Pr(OGe,OHf)

by ψ + Pr(OHf,OHf) 7→ µ ·H ψ + Pr(OGe,OHf) for any ψ ∈ QR(KHf,KHf). Note that

this map is well-defined by Lemma 38, and since if ψ ∈ Pr(OHf,OHf), then µ ·H ψ is in

Pr(OGe,OHf) by Lemma 55. Moreover, we observe that for any π ∈ Pr(OGe,OHf), one has

Ĩµ = Ĩµ+π, which once again follows from the fact that π ·H ψ is in Pr(OGe,OHf) for any

ψ ∈ QR(KHf,KHf). Now, we consider the subgroup

S(KGe,KHf) := QR(KGe,KHf) ∩ [L0(KGe,KHf)⊕ Pr(OGe,OHf)]

= [QR(KGe,KHf) ∩ L0(KGe,KHf)]⊕ Pr(OGe,OHf)

ofR(KGe,KHf). Next, we will show that the restriction of Ĩµ to S(KHf,KHf)/Pr(OHf,OHf)

is a map into S(KGe,KHf)/Pr(OGe,OHf). It suffices to show that given an element ψ in

QR(KHf,KHf) ∩ L0(KHf,KHf), one has µ ·H ψ ∈ QR(KGe,KHf) ∩ L0(KGe,KHf). Let

(x, y) be a p′-element in G×H, then

(µ ·H ψ)(x, y) =
1

|H|
∑
h∈H

µ(x, h)ψ(h, y)

=
1

|H|
∑
h∈Hp′

µ(x, h)ψ(h, y)

= 0
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in which the second equality follows from the fact that if h is not in Hp′ , then we have µ(x, h) = 0

since x is a p′-element and µ is quasi-perfect. The final equality follows from the fact that

ψ ∈ L0(KHf,KGe) so ψ(h, y) = 0. This shows that µ ·H ψ is in L0(KGe,KHf) and it is also

in QR(KGe,KHf) by Lemma 38. Hence µ ·H ψ is in QR(KGe,KHf) ∩ L0(KGe,KHf).

Now, we let ψ,ψ
′ ∈ QR(KHf,KHf) ∩ L0(KHf,KHf). One has

〈Iµ(ψ), Iµ(ψ
′
)〉G×H = 〈ψ, µ◦ ·G µ ·H ψ

′
〉H×H

= 〈ψ, [KHf ] ·H ψ
′
〉H×H + 〈ψ, πH ·H ψ

′
〉H×H

= 〈ψ,ψ
′
〉H×H

where µ◦ ·G µ = [KHf ] +πH for some πH ∈ Pr(OHf,OHf). Note 〈ψ, πH ·H ψ
′〉H×H = 0 in the

equation above, since πH ·H ψ
′ ∈ Pr(OHf,OHf) and ψ ∈ L0(KHf,KHf).

Now, let ψ1, . . . , ψn be a Z-basis for QR(KHf,KHf)∩L0(KHf,KHf). Suppose that

〈ψi, ψi〉H×H = ni. Then, by the above observation, we know that 〈Iµ(ψi), Iµ(ψi)〉G×H = ni.

For any group, and natural number ni, there are only finitely many generalized characters with

norm ni. Therefore, there are only finitely many possibilities for Ĩµ |S(KHf,KHf)/Pr(OHf,OHf),

the restriction of Ĩµ to S(KHf,KHf)/Pr(OHf,OHf).

Next, we consider the restriction map:

Hom(QR(KHf,KHf)/Pr(OHf,OHf),QR(KGe,KHf)/Pr(OGe,OHf))

Hom(S(KHf,KHf)/Pr(OHf,OHf),QR(KGe,KHf)/Pr(OGe,OHf)),

res

sending φ to φ |S(KHf,KHf)/Pr(OHf,OHf). We claim that this map is injective. Let φ be an

element in Hom(QR(KHf,KHf)/Pr(OHf,OHf),QR(KGe,KHf)/Pr(OGe,OHf)) such that

its restriction, φ |S(KHf,KHf)/Pr(OHf,OHf), is the zero map.

Since R(KHf,KHf) is Z-free, we have QR(KHf,KHf) is Z-free. Next, we show that

QR(KHf,KHf)/Pr(OHf,OHf) is torsion-free. Let 0 6= n ∈ Z and ψ ∈ QR(KHf,KHf) be

such that n · ψ ∈ Pr(OHf,OHf). By the characterization of elements of Pr(OHf,OHf) in

Remark 14, n · ψ vanishes on p-singular elements of H × H. This implies that ψ vanishes on

p-singular elements of H ×H and hence again by Remark 14, we have ψ ∈ Pr(OHf,OHf).
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Furthermore, recall that by Remark 15, L0(KHf,KHf)⊕Pr(OHf,OHf) has a finite

index in R(KHf,KHf) and we have

QR(KHf,KHf)/S(KHf,KHf) =

QR(KHf,KHf)/(QR(KHf,KHf) ∩ (L0(KHf,KHf)⊕ Pr(OHf,OHf))) ∼=

QR(KHf,KHf) + (L0(KHf,KHf)⊕ Pr(OHf,OHf))/(L0(KHf,KHf)⊕ Pr(OHf,OHf)),

which is in R(KHf,KHf)/(L0(KHf,KHf)⊕ Pr(OHf,OHf)). Therefore, S(KHf,KHf) has

a finite index in QR(KHf,KHf).

Next, since QR(KHf,KHf)/Pr(OHf,OHf) is a finitely generated torsion-free module

over a PID, QR(KHf,KHf)/Pr(OHf,OHf) is free. Since S(KHf,KHf)/Pr(OHf,OHf) is a

submodule of QR(KHf,KHf)/Pr(OHf,OHf), QR(KHf,KHf)/Pr(OHf,OHf) has a basis,

e1, . . . , en and there exists (all non-zero) invariant factors d1 | d2 | · · · | dn in Z such that

d1e1, . . . , dnen is a basis of the submodule S(KHf,KHf)/Pr(OHf,OHf).

By our assumption, we must have φ(diei) = 0 for each i ∈ {1, 2, . . . , n}. Then, we have

diφ(ei) = 0 for all i ∈ {1, 2, . . . , n}. Since QR(KHf,KHf)/Pr(OHf,OHf) is torsion-free and

also di 6= 0, we have φ(ei) = 0 for each i ∈ {1, 2, . . . , n}. Hence φ is the zero map to start with.

Now, combining injectivity of the restriction map and the fact that there are only

finitely many possibilities for Ĩµ |S(KHf,KHf)/Pr(OHf,OHf), we conclude that there are only

finitely many possibilities for Ĩµ.

For the final part, note that if σ, σ
′ ∈ QR(KGe,KHf) such that Ĩσ = Ĩσ′ , one has

(σ − σ′) ·H ψ ∈ Pr(OGe,OHf) for all ψ ∈ QR(KHf,KHf). Taking ψ = [KHf ], we conclude

that σ − σ′ ∈ Pr(OGe,OHf). Therefore, the map

QR(KGe,KHf)/Pr(OGe,OHf)

Hom(QR(KHf,KHf)/Pr(OHf,OHf),QR(KGe,KHf)/Pr(OGe,OHf))

Λ

given by σ + Pr(OGe,OHf) 7→ Ĩσ, is injective.

Now combining all of our results with the injective map Λ, we conclude that there are

only finitely many cosets µ+ Pr(OGe,OHf) where µ ∈ SPI(OGe,OHf).
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4.4 Stable centers

Throughout we let e ∈ Bl(OG) and f ∈ Bl(OH). We aim to show that a stable perfect

isometry between OGe and OHf gives an O-module isomorphism between the stable centers

Zst(OGe) and Zst(OHf). For this section, we start with reviewing some results that are already

known and used in different contexts.

Broué in [5] proved that a perfect isometry induces an algebra isomorphism between

the centers of corresponding block algebras. In the next results, we adapt Broué’s proofs to our

situation where we have a stable perfect isometry. Therefore, we state the following results in

our context and prove it for the convenience to the reader.

Lemma 62. ([5]) Let µ ∈ R(KGe,KHf) be a generalized character such that it satisfies the

integrality condition. Then, the K-linear map,

ρµ : KH → KG

given by h 7→
∑
g∈G

1
|H|µ(g−1, h−1)g maps into Z(KGe). Moreover, it also restricts an O-linear

map OH → Z(OGe).

Proof. For any h ∈ H,

ρµ(h) =
∑
g∈G

1

|H|
µ(g−1, h−1)g

=
∑
x∈R

∑
t∈G/CG(x)

1

|H|
µ(tx−1t−1, h−1)txt−1

=
∑
x∈R

µ(x−1, h−1)

|H|
(

∑
t∈G/CG(x)

txt−1) ∈ Z(KG),

where R denotes a set of representatives of conjugacy classes of G.

Now suppose that χ 6∈ IrrK(OGe). Then, next we will show that ρµ(h)eχ = 0. Let

µ =
∑

ψ∈IrrK(OGe)

∑
λ∈IrrK(OHf)

aλ,ψ · λ× ψ◦, then

34



ρµ(h)eχ =
∑
g∈G

1

|H|
∑
x∈G

µ(g−1, h−1)
χ(1)

|G|
χ(x−1)gx (letting y = gx)

=
∑
y∈G

1

|H|
∑
g∈G

µ(g−1, h−1)
χ(1)

|G|
χ(y−1g)y

=
∑
y∈G

χ(1)

|H||G|
∑
g∈G

∑
ψ∈IrrK(OGe)

∑
λ∈IrrK(OHf)

aλ,ψλ(h)[
∑
g∈G

ψ(g−1)χ(y−1g)]y

= 0

by Remark 3 and the fact that ψ ∈ IrrK(OGe) and χ 6∈ IrrK(OGe). This implies that ρµ maps

into Z(KGe).

Finally, suppose that
∑
h∈H

αhh ∈ OH, then we have

ρµ(
∑
h∈H

αhh) =
∑
g∈G

(
1

|H|
∑
h∈H

µ(g−1, h−1)αh)g

=
∑
g∈G

(
∑
h∈R

µ(g−1, h−1)

|CH(h)|
αh)g ∈ Z(OG)

since µ(g−1,h−1)
|CH(h)| ∈ O by the integrality condition. In particular ρµ maps into Z(OGe).

Lemma 63. Let µ ∈ R(KG,KH) and λ ∈ R(KH,KI). Then, ρµ ◦ ρλ = ρµ·Hλ .

Proof. For t ∈ I, we have

ρµ ◦ ρλ(t) =
1

|I|
∑
h∈H

λ(h−1, t−1)ρµ(h)

=
1

|I|
∑
g∈G

(
1

|H|
∑
h∈H

µ(g−1, h−1)λ(h−1, t−1))g

=
1

|I|
∑
g∈G

(µ ·H λ)(g−1, t−1)g

= ρµ·Hλ(t).

Remark 64. Let µ1, µ2 ∈ R(KG,KH). Then, ρµ1+µ2 = ρµ1 + ρµ2 .
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Proof. The proof is straightforward.

Lemma 65. ρ[KH](a) = a for all a ∈ Z(KH).

Proof. It is sufficient to show that ρ[KH](
∑

h∈H/CH(y)

hyh−1) =
∑

h∈H/CH(y)

hyh−1 for all y ∈ H.

ρ[KH](
∑

h∈H/CH(y)

hyh−1) =
∑

h∈H/CH(y)

ρ[KH](hyh
−1)

=
∑

h∈H/CH(y)

∑
x∈H

1

|H|
[KH](x−1, hy−1h−1)x

=
∑

h∈H/CH(y)

1

|H|
∑
x∈H

(
∑

χ∈IrrK(OHf)

χ(x−1)χ(y))x

=
∑

h∈H/CH(y)

1

|H|
∑
x=Hy

|CH(y)|x

=
∑
x=Hy

x

=
∑

h∈H/CH(y)

hyh−1.

Now, we are ready to study stable centers under a stable perfect isometry. We will

observe that as in the case of a stable equivalence of Morita type, Section 1.6, we have an

isomorphism between stable centers. However, in our case, we only could prove the isomorphism

as O-modules, not necessarily as algebras.

Proposition 66. Let µ ∈ R(KGe,KHf) be a stable perfect isometry. Then, ρµ induces an

O-module isomorphism between Zst(OGe) and Zst(OHf).

Proof. Firstly, we show ρµ(TrH1 (y)) ⊆ TrG1 (OG) for all y ∈ H. Let R denote a set of represen-

tatives of conjugacy classes of G. We consider

ρµ(
∑
h∈H

hyh−1) =
∑
h∈H

ρµ(hyh−1)

=
∑
h∈H

1

|H|
∑
g∈G

µ(g−1, y−1)g
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=
∑
g∈G

µ(g−1, y−1)g

=
∑
g∈R

∑
x∈G/CG(g)

µ(xg−1x−1, y−1)xgx−1

=
∑
g∈R

∑
x∈G

µ(g−1, y−1)

|CG(g)|
xgx−1

= TrG1 (
∑
g∈R

λg) ∈ TrG1 (OG)

where λ = µ(g−1,y−1)
|CG(g)| ∈ O by the integrality condition. Hence

ρµ(TrH1 (OH)) ⊆ TrG1 (OG) ∩KGe = TrG1 (OG)e = TrG1 (OGe).

Thus, ρµ induces an O-module homomorphism ρ̄µ : Zst(OHf)→ Zst(OGe).

Let a ∈ Z(KH). Note that by Remark 64, one has

ρ[KH](a) = ρ[KHf ](a) + ρ[KH(1−f)](a)

and since ρ[KHf ](a) ∈ Z(KHf), we have ρ[KHf ](a)f = ρ[KHf ](a). Therefore

ρ[KH](a) = ρ[KHf ](a)f + ρ[KH(1−f)](a)(1− f).

and by Lemma 65, one has

af = ρ[KH](a)f = ρ[KHf ](a)f = ρ[KHf ](a).

Now since µ is a stable perfect isometry we have µo·Gµ = [KHf ]+γ where γ is in Pr(OHf,OHf).

Next, note that given a =
∑

h∈H/CH(y)

hyh−1 for y ∈ H, we have

(ρµo ◦ ρµ)(a) = ρ(µ0·Gµ)(a)

= ρ[KHf ](a) + ργ(a)

= af + ργ(a).
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Note that

ργ(a) = ργ(
∑

h∈H/CH(y)

hyh−1)

=
∑

h∈H/CH(y)

ργ(hyh−1)

=
∑

h∈H/CH(y)

ργ(y)

=
|H|
|CH(y)|

ργ(y)

=
1

|CH(y)|
∑
h∈H

γ(h−1, y−1)h

=
1

|CH(y)|
∑
h∈R

∑
x∈H/CH(h)

γ(xh−1x−1, y−1)xhx−1

=
1

|CH(y)|
∑
h∈R

∑
x∈H/CH(h)

γ(h−1, y−1)xhx−1

=
∑
h∈R

∑
x∈H

γ(h−1, y−1)

|CH(h)||CH(y)|
xhx−1

= TrH1 (
∑
h∈R

γ(h−1, y−1)

|CH×H(h, y)|
h)

= TrH1 (u)

with u =
∑
h∈R

γ(h−1,y−1)
|CH×H(h,y)|h in OH since γ(h−1,y−1)

|CH×H(h,y)| is in O by Remark 35. Hence

(ρµo ◦ ρµ)(a) = af + TrH1 (u)

which implies

(ρµo ◦ ρµ)(a)f = af + TrH1 (u)f

(ρµo ◦ ρµ)(a)f = af + TrH1 (uf)

where uf ∈ OHf . Now, note that there is a well-defined O-module homomorphism

ρ̄µ : Zst(OHf)→ Zst(OGe)

38



induced by ρµ and similarly ρ̄µo : Zst(OGe)→ Zst(OHf).

By above observation, ρ̄µo ◦ ρ̄µ = IdZst(OHf) and similarly, ρ̄µ ◦ ρ̄µo = IdZst(OGe)

proving the proposition.

4.5 Further notes

Throughout we assume that e ∈ Bl(OG) and f ∈ Bl(OH). In this section, we will

observe that whenever two blocks OGe, OHf have a perfect isometry between them, if the

map ΦG : PI(OGe) → SPI(OGe) is surjective then ΦH : PI(OHf) → SPI(OHf) is surjective.

Similarly, if the map ΦG : PI(OGe)→ SPI(OGe) is surjective then so is the map

ΦG,H : PI(OGe,OHf)→ SPI(OGe,OHf).

We start with the following result which can be found in [22].

Remark 67. ([22, Proposition 4.0.7]) Let µ ∈ R(KGe,KHf) be a perfect isometry between

OGe and OHf . Then, there is an isomorphism

θ : PI(OHf)→ PI(OGe)

defined by α 7→ µ ·H α ·H µ◦ with the inverse

θ−1 : PI(OGe)→ PI(OHf)

is given by β 7→ µ◦ ·G β ·G µ.

Now, we are ready to introduce the main result of this section which motivates us to

work with stable perfect self-isometries and the surjectivity question in that case.

Lemma 68. Let e ∈ Bl(OG) and f ∈ Bl(OH). Let PI(OGe,OHf) denote the set of perfect

isometries between OGe and OHf . Assume that PI(OGe,OHf) 6= ∅. If the map

ΦG : PI(OGe)→ SPI(OGe)
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is surjective, then

(i) ΦH : PI(OHf)→ SPI(OHf) is surjective.

(ii) ΦG,H : PI(OGe,OHf)→ SPI(OGe,OHf) is surjective.

Proof. By our assumption, PI(OGe,OHf) 6= ∅. Thus, let µ ∈ PI(OGe,OHf).

(i) Let τ + Pr(OHf,OHf) ∈ SPI(OHf). By the definition of SPI(OHf), τ is in SPI(OHf).

Define θ̃ : SPI(OHf)→ SPI(OGe) by τ+Pr(OHf,OHf) 7→ µ ·H τ ·H µ◦+Pr(OGe,OGe).

It is clear from Lemma 58 that θ̃ is a well-defined group homomorphism.

By our assumption, ΦG : PI(OGe)→ SPI(OGe) is surjective. So there exists α ∈ PI(OGe)

such that α + Pr(OGe,OGe) = µ ·H τ ·H µ◦ + Pr(OGe,OGe), i.e., α − µ ·H τ ·H µ◦ is in

Pr(OGe,OGe). By Lemma 55, µ◦ ·G (α − µ ·H τ ·H µ◦) ·G µ is in Pr(OHf,OHf). Since

µ ∈ PI(OGe,OHf), we have

µ◦ ·G (α− µ ·H τ ·H µ◦) ·G µ = (µ◦ ·G α ·G µ)− τ.

Therefore, we have (µ◦ ·G α ·G µ)− τ is in Pr(OHf,OHf), i.e.

τ + Pr(OHf,OHf) = (µ◦ ·G α ·G µ) + Pr(OHf,OHf).

Note that µ◦ ·G α ·G µ is in PI(OHf) by Remark 67. Thus, the map

ΦH : PI(OHf)→ SPI(OHf)

is surjective.

(ii) Let σ + SPI(OGe,OHf) so σ ∈ SPI(OGe,OHf). Note that σ ·H µ◦ + Pr(OGe,OGe)

is in SPI(OGe) by using Lemma 58. Now using the surjectivity of ΦG, there exists τ in

PI(OGe) such that ΦG(τ) = σ ·Hµ◦+Pr(OGe,OGe), i.e., τ−(σ ·Hµ◦) is in Pr(OGe,OGe).

40



Then, clearly, τ ·G µ is again perfect, and furthermore,

(τ ·G µ) ·H (τ ·G µ)◦ = τ ·G µ ·H µ◦ ·H τ◦

= τ ·G [KGe] ·G τ◦

= τ ·G τ◦

= [KGe].

Similarly, one has (τ ·G µ)◦ · (τ ·G µ) = [KHf ]. By using Remark 32, τ ·G µ is an isometry.

Now, combining the last two results, τ ·Gµ is in PI(OGe,OHf). For the final part, note that

since τ−(σ ·H µ◦) is in Pr(OGe,OGe), by using Lemma 55, we have (τ ·Gµ)−(σ ·H µ◦ ·Gµ)

is in Pr(OGe,OHf). Note that

(τ ·G µ)− (σ ·H µ◦ ·G µ) = τ ·G µ− σ

is in Pr(OGe,OHf) since µ◦ ·G µ = [KHf ]. Hence, we have

τ ·G µ+ Pr(OGe,OHf) = σ + Pr(OGe,OHf)

with τ ·G µ ∈ PI(OGe,OHf) and so ΦG,H is surjective.

4.6 Stable isometry in terms of matrices

Remark 69. Let π be an element in Pr(OGe,OGe). Then, π =
k∑
i=1

k∑
j=1

vi,j · κ(Pi ⊗O P ∗j )

for some integers vi,j where Pi, Pj runs through the indecomposable projective OGe-modules.

Let V = (vi,j) and note that κ(Pi) =
k∑

m=1
dmiχm and κ(P ∗j ) =

k∑
n=1

dnjχ
◦
n where DB = (dij).
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Therefore, we have

π =

k∑
i=1

k∑
j=1

vi,j · κ(Pi ⊗O P ∗j )

=

k∑
i=1

k∑
j=1

k∑
m=1

k∑
n=1

vi,jdmidnj · (χm × χ◦n)

=

k∑
m=1

k∑
n=1

k∑
i=1

dmi

k∑
j=1

vijdnj(χm × χ◦n)

=

k∑
m=1

k∑
n=1

k∑
i=1

dmi

k∑
j=1

VijD
T
jn(χm × χ◦n)

=

k∑
m=1

k∑
n=1

k∑
i=1

Dmi(V D
T )in(χm × χ◦n)

=

k∑
m=1

k∑
n=1

(DVDT )mn(χm × χ◦n).

Remark 70. Let µ =
k∑

i,j=1

aij · χi × χ◦j an element in R(KGe,KGe) and let A = (aij) be the

corresponding integral matrix. Note that µ◦ =
k∑

i′,j′=1

ai′j′ · χj′ × χ◦i′ . Recall that one has

(χi × χ◦j ) ·G (χj′ × χ◦i′) =


χi × χ◦i′ if j = j′,

0 otherwise

and this implies that

µ ·G µ◦ = (

k∑
i,j=1

aij · χi × χ◦j ) ·G (

k∑
i′,j′=1

ai′j′ · χj′ × χ◦i′)

=

k∑
i,i′=1

(

k∑
j=1

aijai′j) · χi × χ◦i′

=

k∑
i,i′=1

(

k∑
j=1

Ai,jA
t
j,i′) · χi × χ◦i′

=

k∑
i,i′=1

(AAt)i,i′ · χi × χ◦i′ .
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Remark 71. Let µ =
k∑

i,j=1

aij · χi × χ◦j be an element in SPI(OGe). Let A = (aij). Then,

(i) AAt = I +DVDt for some V ∈ Matk×k(Z),

(ii) AtA = I +DTDt for some T ∈ Matk×k(Z),

(iii) µ is perfect.
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Chapter 5

Stable perfect isometries of abelian

p-groups

In this section, we would like to provide a full description of SPI(OP ) and prove the

surjectivity of the map Φ : PI(OP ) → SPI(OP ) where P is an abelian p-group. Throughout

this section E is the k × k-matrix whose entries are all 1 and k = |P |.

The only indecomposable projective (OP,OP )-bimodule isO(P×P ), hence Pr(OP,OP )

is generated by the character κ(O(P ×P )) =
k∑

i,j=1

(ψi×ψ◦j ) where IrrK(G) = {ψ1, · · · , ψk}. Now

let µ =
∑k
i,j=1 ai,j(ψi × ψ◦j ) be a stable self-isometry of OP so we have

µ ·P µ◦ =

k∑
i=1

ψi × ψ◦i + r

k∑
i,j=1

(ψi × ψ◦j )

and

µ◦ ·P µ =

k∑
i=1

ψi × ψ◦i + s

k∑
i,j=1

(ψi × ψ◦j )

for some integers r and s. Now this implies that letting A = (ai,j), we have

AAT = Ik×k + rE and ATA = Ik×k + sE for integers r and s as given above. (5.1)

Therefore, to understand the stable self-isometries of OP , one has to understand k× k-matrices
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with integer entries that satisfy the equation (5.1). The next proposition is crucial for the results

in this chapter.

5.1 The key proposition

Notation 72. Let E denote the k × k-matrix whose entries are all 1.

The following remark will help us to prove our main proposition below by providing a

decent reduction to cases to be examined.

Remark 73. Let k ≥ 2, and A ∈ Matk×k(Z) such that ATA = I + rE = ATA for some r ∈ Z.

For any σ, β ∈ Sym(k), we let Pσ and Pβ denote the corresponding permutation matrices Pσ

and Pβ. Then, one has (PσAPβ)T (PσAPβ) = I + rE.

Proof. It is a straightforward proof once we note that E commutes with permutation matrices

and permutation matrices are orthogonal.

Proposition 74. Let k ≥ 2, and A ∈ Matk×k(Z). If AAt = I+rE and AtA = I+sE for some

r, s ∈ Z then r = s ≥ 0 and precisely one of the following occurs:

(i) r = 0 and A is a signed permutation matrix.

(ii) r 6= 0 and A = εP + aE for some ε ∈ {−1, 1}, and some permutation matrix P , and some

a 6= 0 in Z.

Proof. Note that (AAt)i,i =
∑k
l=1 ai,l

2 = 1 + r ≥ 0. If r = −1, then A is the zero matrix, and

it does not satisfy AAt = I + rE, so we must have r ≥ 0. Similarly, (AtA)i,i =
∑k
l=1 al,i

2 =

1 + s ≥ 0. Similarly, if s = −1, then A is the zero matrix. Hence, s ≥ 0.

Next, note that

k∑
i=1

Aithrow ·Aithrow =

k∑
i=1

k∑
j=1

a2
ij = k(1 + r),

and similarly,
k∑
i=1

Ai
thcol. ·Ai

thcol. =

k∑
j=1

k∑
i=1

a2
ij = k(1 + s).
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These two sums are the same so r = s.

Firstly, assume that r = 0. Then, A is an orthogonal matrix. Hence, for all i ∈

{1, · · · , k} we have Aithrow ·Aithrow = 1, that is, a2
i1 + ...+ a2

ik = 1. Since A has integer entries,

there is only one j such that ai,j ∈ {−1, 1} and the rest is 0. Now we consider Aj
thcol ·Ajthcol = 1,

that is, a2
1j + ...+ a2

kj = 1. We know that ai,j 6= 0 so axj = 0 for all x ∈ {1, ..., k} − {i}. Hence

there is only one non-zero entry ai,j ∈ {−1, 1} in the i-th row and j-th column, which is true

for every i and j. Thus A must be a signed permutation matrix.

From now on assume r 6= 0. It suffices to show the statement in (ii). Recall that

(AAt)i,j = Aithrow · Ajthrow = δi,j + r and (AtA)i,j = Ai
thcol · Ajthcol = δi,j + r. If i 6= j, then

(Aithrow − Ajthrow) · (Aithrow − Ajthrow) = 2 which implies
∑k
l=1(ail − ajl)2 = 2 and we will

call this the row condition. Similarly (Ai
thcol−Ajthcol) · (Aithcol−Ajthcol) = 2 which implies∑k

l=1(ali − alj)2 = 2 and we will call this the column condition. By using the fact that A is

a matrix with integer entries, the row (respectively column) condition implies that comparing

entries of the i-th row (respectively column) and the j-th row (column), they differ at precisely

two positions and there they differ by ±1. We will refer these properties as the results of row

and column properties. By Remark 73 we can assume that these differences occur in the first

and second entries of the first two rows and we can assume a11−a21 = 1 and a12−a22 ∈ {−1, 1},

therefore we have a1i = a2i for all i ∈ {3, 4, ..., k}. Hence we have two cases:

Case I: Assume that a12 − a22 = 1.

In this case, we have

A =


a11 a12 a13 ... a1k

a11 − 1 a12 − 1 a13 ... a1k

.... .... .... ... ....


Next we compare the first and second row to obtain a relation between a11 and a12. We

have A1strow ·A1strow = 1+r = A2ndrow ·A2ndrow which implies a2
11 +a2

12 = (a11−1)2 +(a12−1)2
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an so a12 = 1− a11. Hence the picture is:

A =


a11 1− a11 a13 ... a1k

a11 − 1 −a11 a13 ... a1k

.... .... .... ... ....


Since a11 ∈ Z, one has a11 6= 1− a11. Then using the column condition we have

(a11 − (1− a11))2 = 1,

i.e., (2a11− 1)2 = 1, so either 2a11− 1 = 1 implying a11 = 1 or 2a11− 1 = −1 implying a11 = 0.

SUBCASES:

(a) Assume a11 = 1. By using the column condition we obtain that al1 = al2 for all

l ∈ {3, 4, ..., k} so we have

A =



1 0 a13 ... a1k

0 −1 a13 ... a1k

a31 a31 ... ... ...

a41 a41 ... ... ...

... ... ... ... ...

ak1 ak1 ... ... ...


By the row condition one can see that al1 = 0 for all l ∈ {3, 4, ..., k}. However, this would

imply that the norm of the first column is 1, which implies that r = 0, a contradiction.
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(b) Assume a11 = 0. Then a12 = 1, and hence

A =



0 1 a13 ... a1k

−1 0 a13 ... a1k

a31 a31 ... ... ...

a41 a41 ... ... ...

... ... ... ... ...

ak1 ak1 ... ... ...


By Remark 73, multiplying with a permutation matrix that changes first and second

column, we are back to case (a) and we already know that there is no solution for our case.

This finishes the proof of Case I.

Case II: Assume that a12 − a22 = −1. In this case we have

A =


a11 a12 a13 ... a1k

a11 − 1 a12 + 1 a13 ... a1k

.... .... .... ... ....


Since the norms of first and second rows are equal, we have

a2
11 + a2

12 = (a11 − 1)2 + (a12 + 1)2

implying a12 = a11 − 1. If k = 2, then

A =

 a11 a11 − 1

a11 − 1 a11

 = −P(12) + a11E
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and we are done. Thus we assume k ≥ 3. Since a12 = a11 − 1, we have

A =



a11 a11 − 1 a13 ... a1k

a11 − 1 a11 a13 ... a1k

a31 a31 ... ... ...

a41 a41 ... ... ...

...
... ... ... ...

ak1 ak1 ... ... ...


By the result of column condition we have a1l ∈ {a11 − 1, a11} for all l ∈ {3, 4, ..., k}.

Similarly by the result of row condition we have al1 ∈ {a11 − 1, a11} for all l ∈ {3, 4, ..., k}.

Now, we examine possibilities for a13 and a31. In total, we got 4 subcases:

SUBCASES:

Subcase 1: a13 = a11 − 1 and a31 = a11 − 1

In this case we have

A =



a11 a11 − 1 a11 − 1 a14 · · · a1k

a11 − 1 a11 a11 − 1 a14 · · · a1k

a11 − 1 a11 − 1 a33 a34 · · · a3k

a41 a41 a43 a44 · · · a4k

...
...

... ... ...

ak1 ak1 ak3 ... ...


By the result of column or row condition one has a33 ∈ {a11 − 2, a11 − 1, a11}. We will

separately study each of these cases.
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Subsubcase (a): Firstly, suppose a33 = a11. Hence

A =



a11 a11 − 1 a11 − 1 a14 · · · a1k

a11 − 1 a11 a11 − 1 a14 · · · a1k

a11 − 1 a11 − 1 a11 a14 · · · a1k

a41 a41 a41 a44 · · · a4k

...
...

... ... ...

ak1 ak1 ak1 ... ...


.

Note that if k = 3, it follows that A = I + (a11− 1)E. Hence we can assume k ≥ 4. In this case

we note that al1 = a1l = a11− 1 for all l ∈ {4, ..., k}. (Explanation: we have a41 ∈ {a11, a11− 1}

and if a41 = a11 then use row condition and compare the norm of first and fourth row and see

(a11−1)2 = a2
11 so no integer solutions. Similar argument follows for al1 and a1l). Hence we get

A =



a11 a11 − 1 a11 − 1 a11 − 1 · · · a11 − 1

a11 − 1 a11 a11 − 1 a11 − 1 · · · a11 − 1

a11 − 1 a11 − 1 a11 a11 − 1 · · · a11 − 1

a11 − 1 a11 − 1 a11 − 1 a44 · · · a4k

...
...

... ... ...

a11 − 1 a11 − 1 a11 − 1 ... ...


By Remark 73 we can assume a44 6= a11 − 1 implying by either the result of row or

column condition a44 ∈ {a11 − 2, a11}. Next we compare A3rdcol · A3rdcol = A4thcol · A4thcol

implying a2
11 + (a11 − 2)2 = (a11 − 1)2 + a2

44, that is a2
44 = a2

11. Hence either a44 = a11 or

a44 = −a11.

If a44 = −a11, then since a44 ∈ {a11 − 2, a11}, we have either −a11 = a11 − 2 implying

a11 = 1 or −a11 = a11 implying a11 = 0. If a11 = 1 then the norm of the first row is equal to 1

which implies r = 0, a contradiction. Hence a11 = 0 so a44 = 0. By Remark 73 we can take

a55 6= −1. Hence a55 ∈ {−2, 0}. But comparing the norm of 4-th and 5-th columns, we find

that a55 = 0. Continuing this way, we find A = I + (−1)E is a solution.
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Next we assume a44 = a11. Hence

A =



a11 a11 − 1 a11 − 1 a11 − 1 · · · a11 − 1

a11 − 1 a11 a11 − 1 a11 − 1 · · · a11 − 1

a11 − 1 a11 − 1 a11 a11 − 1 · · · a11 − 1

a11 − 1 a11 − 1 a11 − 1 a11 · · · a4k

a11 − 1 a11 − 1 a11 − 1 a11 − 1 · · · a4k

...
...

...
... ...

a11 − 1 a11 − 1 a11 − 1 a11 − 1 ...


Next, by Remark 73, can assume a55 6= a11−1, implying a55 ∈ {a11−2, a11}. Comparing norms

of third and fifth columns, we get a2
11 = a2

55 so either a55 = a11 or a55 = −a11. Similarly as

before, if a55 = −a11 then either −a11 = a11 − 2 implying a11 = 1 or −a11 = a11 implying

a11 = 0. In the case a11 = 1, it is easy to see that A would be an orthogonal matrix so r = 0

so not a solution. If a11 = 0, then A = I + (−1)E is a solution with k ≥ 3 for our case. Now,

assume a55 = a11. Note with the same logic, we can take a66 = ... = akk = a11 (otherwise

repeat the same argument as above). Hence, in this case A = I + (a11 − 1)E is a solution for

a11 6= 1. This finishes the first subsubcase in which we assumed a33 = a11.

Subsubcase (b): We assume a33 = a11 − 2. Hence we have

A =



a11 a11 − 1 a11 − 1 a14 · · · a1k

a11 − 1 a11 a11 − 1 a14 · · · a1k

a11 − 1 a11 − 1 a11 − 2 a34 · · · a3k

a41 a41 a43 a44 · · · a4k

...
...

... ... ...

ak1 ak1 ak3 ... ...


Note by the result of column condition, al1 = al3 for all l ∈ {4, 5, ..., k}. Also note

by the result of row condition a3l = a1l for all l ∈ {4, 5, ..., k}. Now the norm of the second

column and third column is the same which implies a11 = 1. These three observations imply

that a1l = al1 = 0 for all l ∈ {4, 5, ..., k}. But then by taking the norm of the first row, it implies
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r = 0, a contradiction.

Subsubcase (c): We assume a33 = a11 − 1. Then we have

A =



a11 a11 − 1 a11 − 1 a14 · · · a1k

a11 − 1 a11 a11 − 1 a14 · · · a1k

a11 − 1 a11 − 1 a11 − 1 a34 · · · a3k

a41 a41 a43 a44 · · · a4k

...
...

... ... ...

ak1 ak1 ak3 ... ...


which implies k ≥ 4. In this case by the result of row and column conditions we note

al1, a1l ∈ {a11 − 1, a11}. By Remark 73 one can take a34 6= a11 − 1 so a34 ∈ {a11 − 2, a11}. If

a34 = a11 − 2, then by exchanging the third and fourth columns to obtain the contradiction in

the Subsubcase (b). If a34 = a11, then a14 = a11 − 1, then by using a permutation, note that

we go back to the Subsubcase (a) where a33 = a11.

Subcase 2: a13 = a11 − 1 and a31 = a11 We have

A =



a11 a11 − 1 a11 − 1 a14 · · · a1k

a11 − 1 a11 a11 − 1 a14 · · · a1k

a11 a11 a33 a34 · · · a3k

a41 a41 a43 a44 · · · a4k

...
...

... ... ...

ak1 ak1 ak3 ... ...


Note that a33 ∈ {a11−1, a11}. If a33 = a11, then note a1l = a3l for all l ∈ {4, 5, ..., k}. comparing

norm of second and third row, we get a contradiction so no solution. If a33 = a11 − 1, then

comparing norm of second and third column, we again get a contradiction so no solution.

Subcase 3: a13 = a11 and a31 = a11 − 1. Note that this is the transpose of A in

Subcase 2, so no solution.
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Subcase 4: a13 = a11 and a31 = a11 Hence we have

A =



a11 a11 − 1 a11 a14 · · · a1k

a11 − 1 a11 a11 a14 · · · a1k

a11 a11 a33 a34 · · · a3k

a41 a41 a43 a44 · · · a4k

...
...

... ... ...

ak1 ak1 ak3 ... ...


.

Note that if A has the property of AAt = I + rE = AtA, then so does −A. Note that

changing the first and second rows of −A and we are again in Subcase 1 with −a11 + 1 playing

the role of a11.

5.2 Surjectivity of the map Φ : PI(OP )→ SPI(OP )

Proposition 74 provides us with an understanding of integral k × k-matrices A with

the property that AAT = I + rE and ATA = I + sE, for integers r, s. We are now ready to

describe the stable perfect self-isometries of the p-block OP for an abelian p-group P and prove

the surjectivity of the map Φ : PI(OP )→ SPI(OP ).

Corollary 75. Suppose that P is an abelian p-group. Then, the map Φ : PI(OP ) � SPI(OP )

is surjective.

Proof. Let µ ∈ SPI(OP ) and A = (ai,j) be the integral k×k-matrix where µ =
k∑

i,j=1

ai,j(ψi×ψ◦j ).

Since µ is a stable isometry, we know that A satisfies the Equation 5.1, i.e., AAT = Ik×k + rE

and AAT = Ik×k + sE for some integers r and s. Now, we can apply Proposition 74 for A.

Then, one of the following occurs:

If r = 0 and A is a signed permutation matrix, then by Remark 32, µ is an isometry.

Note that µ is perfect as it is assumed to be a stable perfect isometry to begin with. Hence, µ

is in PI(OP ).

If r 6= 0 and A = εP + aE for ε = ±1, and some permutation matrix P and some
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non-zero integer a. We can interpret this result as follows:

µ = ε · µP + a · κ[O(P × P )] (5.2)

where µP is the generalized character associated with the permutation matrix P . Next, recall

that µ is perfect, and a · κ[O(P × P )] is a generalized projective character, in particular also

perfect. It follows from the Equation 5.2 that ε·µP must also be perfect. On the other hand, note

that (εP ) · (εPT ) = Ik×k implies that (εµP ) ·P (εµP )◦ = [KP ] and similarly (εPT ) · (εP ) = Ik×k

implies that (εµP )◦ ·P (εµP ) = [KP ] . By Remark 32, this means that εµP is also an isometry, so

εµP is in PI(OP ). Hence, µ can be lifted to the perfect isometry εµP , proving the surjectivity

of the map Φ.

5.3 Main result

Now, we will generalize this result and show that any stable perfect isometry between

p-blocks OP and OQ can be lifted to a perfect isometry for abelian p-groups P and Q. We will

need the following theorem for our main result.

Theorem 76 ([8]). Let G and H be finite p-groups and F be a field of characteristic p. Suppose

that G is abelian. If FG ∼= FH then G ∼= H.

Recall that Linckelmann in [11] proved Theorem 31 in the context of stable Morita

equivalences. Our next theorem will mimic that in the stable perfect isometry case.

Theorem 77. Assume that P and Q are abelian p-groups. The following are equivalent:

(a) P ∼= Q.

(b) There exists a perfect isometry between OP and OQ.

(c) There exists a stable perfect isometry between OP and OQ.

Proof. The statements (a) implies (b) and (b) implies (c) are trivial.

Suppose that (b) holds, i.e., there exists a perfect isometry between the blocks OP

and OQ. Since every perfect isometry induces an algebra isomorphism between the centers
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of the corresponding algebras, and since Z(OP ) = OP and Z(OQ) = OQ for abelian groups

P and Q, we have OP ∼= OQ as O-algebras. This implies that FP ∼= FQ as F -algebras. By

using Theorem 76 we conclude that P ∼= Q, so (a) holds.

Next, suppose that (c) holds, i.e. there exists a stable perfect isometry µ from OP to

OQ. We have Zst(OP ) ∼= (O/|P |O)P and Zst(OQ) ∼= (O/|Q|O)Q. We proved in Proposition 66,

a stable perfect isometry induces an O-module isomorphism between the corresponding stable

centers. Therefore we have (O/|P |O)P ∼= (O/|Q|O)Q as O-modules which implies |P | = |Q|.

Therefore we have |Irr(KP )| = |Irr(KQ)| = |P | = |Q| = k. Recall that O(P ×P ) is the only pro-

jective indecomposable (OP,OP )-bimodule and O(Q×Q) is the only projective indecomposable

(OQ,OQ)-bimodule. Since µ is a stable perfect isometry, for some r, z ∈ Z, it satisfies:

µ ·Q µ◦ = [KP ] + r · κ(O(P × P )) and µ◦ ·P µ = [KQ] + s · κ(O(Q×Q)).

We have κ(O(P × P )) =
k∑

m=1

k∑
n=1

ψm × ψ◦n where ψm, ψn runs through the irreducible

K-characters of P . Similarly, we have κ(O(Q × Q)) =
k∑

m=1

k∑
n=1

χm × χ◦n where χm, χn runs

through the irreducible K-characters of Q. Therefore if we let A = (ai,j) be the k × k-matrix

associated with µ, we have

AAT = Ik×k + rE and ATA = Ik×k + sE.

Now, by Proposition 74, either r = s = 0 and A is a signed permutation matrix, or r = s 6= 0

and A = εP ′ + aE for some ε = ±1 and some permutation matrix P ′ and a ∈ Z.

If r = s = 0 and A is a signed permutation matrix, Remark 32 implies µ is isometry,

and µ is also perfect by assumption.

If r = s 6= 0 and A = εP ′ + aE for some ε = ±1 and some permutation matrix P ′

and a ∈ Z, let µP ′ be the generalized character in R(KP,KQ) associated with the k× k-matrix

permutation matrix P ′. Then, we have

µA = ε · µP ′ + a · κ(O(P ×Q)) = µP ′ + a

k∑
m=1

k∑
n=1

(ψm × χ◦n).
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Since µA and κ(O(P × Q)) are both perfect, we have ε · µP ′ is also perfect. Since P
′
is a

permutation matrix, it is clear that ε · µP ′ is isometry. Combining these, we have proved that

ε · µP ′ is a perfect isometry, hence (b) holds.
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Chapter 6

Stable perfect isometries of the

blocks with cyclic defect groups

Let B be a block algebra of OG with a cyclic defect group D and inertial quotient E.

Then, by Linckelmann [11], O(D o E) and B are derived equivalent, in particular, perfectly

isometric. Then, by Lemma 68 to verify the surjectivity of the map Φ : PI(B) → SPI(B), it is

sufficient to understand the surjectivity of the map Φ : PI(O(D o E))→ SPI(O(D o E)).

Following the notation of Ruengrot in [22], we let e := |E| and t = |D|−1
e . Then, there

are three possible cases:

(i) The case e = 1, i.e., O(D o E) = OD.

(ii) The case e > 1 and t = 1 which is the case O(D o E) = O(Cp o Cp−1) as shown in [22].

(iii) The case e > 1 and t > 1.

In this chapter, the question on the surjectivity of the map Φ : PI(B)→ SPI(B) will be

answered in the case (i) and (ii) above; however, we do not have an answer for the surjectivity

of the case (iii).

We prove the following results:

Theorem 78. Let B be a block algebra of a finite group G with a cyclic defect group D. Assume
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that the inertial quotient E is trivial, i.e., e = 1. Then, the map

Φ : PI(OD)→ SPI(OD)

is surjective.

Theorem 79. If µ ∈ SPI(O(Cp o Cp−1)) with the coefficient matrix A then A = εI + DWDt

for ε = ±1 and some W ∈ Matl×l(Z). In particular, the map

Φ : PI(O(Cp o Cp−1))→ SPI(O(Cp o Cp−1))

is surjective.

6.1 The case: e = 1

Theorem 80. Let B be a block algebra of a finite group G with a cyclic defect group D. Assume

that the inertial quotient E is trivial, i.e., e = 1. Then, the map

Φ : PI(OD)→ SPI(OD)

is surjective.

Proof. This is the case where E = 1 and D = Cpn . In particular, D is an abelian p-group and

by Corollary 75, we know that Φ : PI(OD)→ SPI(OD) is surjective.

Recall that by Linckelmann [11], O(D o E) and B are derived equivalent for blocks

with cyclic defect group D, in particular, perfectly isometric. Then, Lemma 68 and Theorem 80

imply that Φ : PI(B)→ SPI(B) is surjective in the case e = 1.

Recall that we also know PI(B) ∼= (D o Aut(D))× 〈−id〉 proven by Ruengrot in [22].

6.2 The case: e > 1 and t = 1

Let B be a block algebra of OG with a cyclic defect group D and the inertial quotient

E where e > 1 and t = 1. The following is shown by Ruengrot in [22]: if e > 1 and t = 1, then
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we have D = Cp and E = Cp−1. Hence O(D o E) = O(Cp o Cp−1).

We let D = 〈a〉 and E = 〈b〉. Using Ruengrot’s notation in [22], the conjugacy classes

of G = (Cp o Cp−1) are {1} , {bi}G for each i ∈ {1, · · · , p − 2} and {a}G. Note that the only

p-singular conjugacy class is {a}G. Moreover, the non-exceptional characters are {χ1, · · · , χe},

and there is only one exceptional character which is {χp = Φp}.

The character table of Cp o Cp−1 is as follows:

Cp o Cp−1 1 b · · · bi · · · bp−2 a

χ1 1 1 · · · 1 · · · 1 1

χ2 1 ξ · · · ξi · · · ξp−2 1
... 1

... · · ·
...

... 1

χj+1 1 ξj · · · ξji · · · ξ(p−2)j 1
... 1

...
...

... 1

χp−1 1 ξe−1 · · · · · · · · · ξ 1

χp = Φp p− 1 0 · · · 0 · · · 0 -1

where ξ denotes a primitive (p− 1)st root of unity.

We denote the p× p-matrix coming from the character table of Cp o Cp−1 by X with

respect to the conjugacy class arrangement as above. We let Y denote the (p−1)×(p−1)-matrix

formed from X by removing the pth column and pth row. Note that Y is the character table of

Cp−1 as the non-exceptional characters of Cp o Cp−1 are the ones inflated from the irreducible

characters of Cp−1.

6.2.1 Supplementary observations

Our aim is to understand separability and integrality conditions of a given stable perfect

isometry µ by using its coefficient matrix A and the character table of X = CpoCp−1. For this

we will need the following observations:

Lemma 81. Let X be the matrix of the character table of Cp o Cp−1 and Y = (yi,j) be the

matrix of the character table of Cp−1 as above. Then,

(i) Y −1 = 1
p−1Y where Y = (ȳi,j).
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(ii) Furthermore, one has

X−1 =



1
pY
−1
1strow

1
p

Y −1
2ndrow

0

...
...

Y −1
ethrow

0

1
p · · · 1

p
−1
p


.

Proof. (i) Note that

1

p− 1
(Y Y )m,n =

1

p− 1

p−1∑
i=1

Ym,iY i,n

=
1

p− 1

e−1∑
i=0

χm(bi)χi(b
n)

=
1

p− 1

e−1∑
i=0

χm(bi)χi(b
−n)

=
1

p− 1

e−1∑
i=0

ξmiξ̄in

=
1

p− 1

e−1∑
i=0

χm(bi)χn(bi)

= δm,n (6.1)

where 6.1 follows from the first orthogonality relation.

(ii) By direct calculation, we have

(XX−1)1,1 =
1

p(p− 1)
+
p− 2

p− 1
+

1

p
= 1 (6.2)

(XX−1)p,p =
p− 1

p
+

1

p
= 1. (6.3)
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Furthermore, for 1 < i, j ≤ p− 1, we have

(XX−1)i,j =

p∑
k=1

χi,kχ
−1
k,j (6.4)

=

p−1∑
k=1

Xi,kX
−1
k,j +Xi,pX

−1
p,i (6.5)

=

p−1∑
k=2

Xi,kX
−1
k,j +Xi,1X

−1
1,j +Xi,pX

−1
p,i (6.6)

=

p−1∑
k=2

Yi,kY
−1
k,j +Xi,1X

−1
1,j +Xi,pX

−1
p,i (6.7)

= δi,j − Yi,1Y −1
1,j +

1

p(p− 1)
+

1

p
(6.8)

= δi,j −
1

p− 1
+

1

p(p− 1)
+

1

p
(6.9)

= δi,j (6.10)

Also,

(XX−1)1,p =
1

p
+
−1

p
= 0. (6.11)

If i = 1 and 1 < j ≤ p− 1, then

(XX−1)1,j =

p∑
k=1

X1,kX
−1
k,j (6.12)

=

p∑
k=1

X−1
k,j (6.13)

=
1

p(p− 1)
+

1

p− 1
(ξj + ξ2j + · · ·+ ξ(e−1)j) +

1

p
(6.14)

=
1

p(p− 1)
− 1

p− 1
+

1

p
= 0. (6.15)
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If 1 < i < p− 1 and j = 1, then

(XX−1)i,1 =

p∑
k=1

Xi,kX
−1
k,1 (6.16)

=

p−1∑
k=2

Xi,kX
−1
k,1 +Xi,1X

−1
1,1 +Xi,pX

−1
p,1 (6.17)

=

p−1∑
k=2

Yi,k
1

p− 1
+

1

p(p− 1)
+

1

p
(6.18)

=
−1

p− 1
+

1

p(p− 1)
+

1

p
= 0. (6.19)

Also,

(XX−1)p,1 =
p− 1

p(p− 1)
+ (−1)

1

p
= 0. (6.20)

Hence, we completed the proof of (ii).

6.2.2 Separability and integrality condition in terms of matrices

For the rest of this chapter, we fix the following notation for the conjugacy class

representatives of G = Cp o Cp−1: x1 := 1, x2 := b, · · · , xi+1 := bi, · · · , xp−1 = bp−2, xp := a.

We let σ ∈ Sp such that σ(1) = 1, σ(p) = p and σ(i+1) = p− i for i ∈ {1, 2, · · · , p−1}.

Note that in this way σ sends the index of xi+1 = bi to xp−i = bp−1−i = b−i. We let Pσ denote

the associated permutation matrix for σ.

Notation 82. Let µ ∈ R(KG,KG) be such that µ =
∑

χi,χj∈IrrK(G)

ai,j · (χi×χ◦j ). Throughout we

let A = (ai,j) denote the coefficient matrix of µ.

Note that for m,n ∈ {1, · · · , p}, one has

µ(xm, xn) =

p∑
i=1

p∑
j=1

ai,jχi(xm)χj(x
−1
n )

=

p∑
i=1

χi(xm)

p∑
j=1

ai,jχj(x
−1
n )
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=

p∑
i=1

χi(xm)

p∑
j=1

ai,j(XPσ)j,n

=

p∑
i=1

χi(xm)(AXPσ)i,n

=

p∑
i=1

Xi,m(AXPσ)i,n

=

p∑
i=1

Xt
m,i(AXPσ)i,n

= (XtAXPσ)m,n.

By Theorem 34 of Kiyota that we only need to assure that µ satisfies the separability condition

for all elements in G × G and the integrality condition for only p-singular elements of G × G

where G = Cp o Cp−1 to ensure that µ is perfect. Therefore µ being perfect implies that the

matrix (XtAXPσ) has the following shape with respect to the fixed conjugacy classes as above:

XtAXPσ =



α · · · ? · · · 0

κ1 · · · ? · · · 0

...
... 0

κe−1 · · · ? · · · 0

0 · · · 0 · · · γ


=: S′

where γ ∈ pO since CG(a) = Cp. Thus XtAX = S′Pσ−1 and note that by the way it is defined,

σ fixes 1 and p and so multiplying S′ with Pσ−1 from the right fixes the 1st and pth-columns

of S′ and permutes the other columns among themselves. We let S denote the matrix S′Pσ−1

That is to say, we have

XtAX =



α β1 · · · βe−1 0

κ1 0

... M 0

κe−1 0

0 · · · 0 · · · γ


=: S.
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Therefore, we can say that A = (Xt)−1SX−1 = (X−1)tSX−1. Let us first describe the matrix

SX−1 and its properties then describe the matrix A which we will use later.

SX−1 =



α
p(p−1) + 1

p−1

e−1∑
j=1

βj · · · α
p(p−1) + 1

p−1

e−1∑
j=1

βj ξ̄
(e−1)j α

p

κ1

p(p−1) + 1
p−1

e−1∑
j=1

m1j · · · κ1

p(p−1) + 1
p−1

e−1∑
j=1

m1j ξ̄
(e−1)j κ1

p

...
...

...
...

κi
p(p−1) + 1

p−1

e−1∑
j=1

mij · · · κi
p(p−1) + 1

p−1

e−1∑
j=1

mij ξ̄
(e−1)j κi

p

... · · ·
...

...

κe−1

p(p−1) + 1
p−1

e−1∑
j=1

m(e−1)j · · · κe−1

p(p−1) + 1
p−1

e−1∑
j=1

m(e−1)j ξ̄
(e−1)j κe−1

p

γ
p · · · γ

p −γp



.

For convenience, we will use the following notation for this matrix:

SX−1 =



s11 s12 · · · s1e
α
p

s21 s22 · · · s2e
κ1

p

...
... · · ·

...
...

si1 si2 · · · sie
κi
p

...
... · · ·

...
...

se1 se2 · · · see
κ(e−1)

p

γ
p

γ
p · · · γ

p −γp


Next, we observe the following relations:

e∑
i=1

s1i = (p− 1)
α

p(p− 1)
=
α

p
(6.21)

e∑
i=1

s2i = (p− 1)
κ1

p(p− 1)
=
κ1

p
(6.22)

... (6.23)
e∑
i=1

sei = (p− 1)
κe−1

p(p− 1)
=
κe−1

p
(6.24)
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6.2.3 The coefficient matrix A

Now we are ready to describe the matrix A:



e∑
j=1

1

pδj,1 (p−1)
sj1 + γ

p2 · · ·
e∑
j=1

1

pδj,1 (p−1)
sje + γ

p2 a1,p

e∑
j=1

1

pδj,1 (p−1)
sj1ξ̄

(j−1) + γ
p2 · · ·

e∑
j=1

1

pδj,1 (p−1)
sjeξ̄

(j−1) + γ
p2 a2,p

...
...

...
...

e∑
j=1

1

pδj,1 (p−1)
sj1ξ̄

(e−1)(j−1) + γ
p2 · · ·

e∑
j=1

1

pδj,1 (p−1)
sjeξ̄

(e−1)(j−1) + γ
p2 ap−1,p

s11
p + −γ

p2 · · · s1e
p + −γ

p2 ap,p


(6.25)

where

a1,p =

(
α

p2(p− 1)
+

e−1∑
i=1

κi
p(p− 1)

+
−γ
p2

)
(6.26)

a2,p =

(
α

p2(p− 1)
+

e−1∑
i=1

κiξ
i

p(p− 1)
+
−γ
p2

)
(6.27)

...

ap−1,p =

(
α

p2(p− 1)
+

e−1∑
i=1

κiξ
(p−2)i

p(p− 1)
+
−γ
p2

)
(6.28)

ap,p =
α+ γ

p2
. (6.29)

Note that by the relations (6.26), · · · , (6.29) we have

a1,p + · · ·+ ap−1,p =
α

p2
+ (p− 1)

−γ
p2

= ap,p −
γ

p
. (6.30)
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We also note the following relations which follow from the relations (6.21) and (6.24) which will

be referred to later:

e∑
i=1

a1i = a1p +
γ

p
(6.31)

... (6.32)
e∑
i=1

aei = aep +
γ

p
(6.33)

e∑
i=1

api =
α

p2
+ (p− 1)

−γ
p2

= app −
γ

p
. (6.34)

6.2.4 Stable isometries of O(Cp o Cp−1) in terms of matrices

Assumption: In addition to µ being perfect as above, now we let µ be also a stable

isometry. Let G = Cp o Cp−1 as above. Thus, we have

(i) µ ·G µ◦ = [KG] + π for some π ∈ Pr(OG,OG),

(ii) µ◦ ·G µ = [KG] + π
′
for some π

′ ∈ Pr(OG,OG).

By 4.6, AAt = I+DVDt and AtA = I+DTDt for some V, T ∈ Mate×e(Z) where l := e = p−1

and D is the decomposition matrix of O(Cp o Cp−1), i.e.,

D =

 Ie×e

1 · · · 1

 .
Note that

AtA = I +DTDt =



∑
t1,i

T + Ie×e
...∑
te,i∑

ti,1 · · ·
∑
ti,e

e∑
i,j=1

ti,j + 1


where T = (ti,j) ∈ Mate×e(Z).
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Note that this implies

(AtA)p,p =

e∑
i=1

(AtA)i,p + 1. (6.35)

On the other hand, we have

(AtA)p,p = Apth-col. ·Apth-col. =

p∑
i=1

a2
i,p. (6.36)

The idea is to compare (6.35) and (6.36) and seek a result for γ. Firstly we will calculate

(AtA)p,p by using the equation (6.35) where we will use our observation regarding the shape of

matrix A, (6.25).

(AtA)p,p =

e∑
i=1

(AtA)i,p + 1 (6.37)

=

e∑
i=1

Aith col. ·Apth col. + 1 (6.38)

=

e∑
i=1

p∑
t=1

at,iat,p + 1 (6.39)

=

p∑
t=1

[

e∑
i=1

at,i]at,p + 1 (6.40)

= a2
1,p + · · ·+ a2

e,p + (
γ

p
+ app)(

α

p2
+ (p− 1)

−γ
p2

) + 1 (6.41)

where the last equality follows from the relations (6.31)– (6.33).

On the other hand, by (6.36), we have

(AtA)p,p = a2
1,p + · · ·+ a2

e,p + a2
p,p. (6.42)

Now comparing (6.41) and (6.42), we obtain

(
γ

p
+ app)(

α

p2
+ (p− 1)

−γ
p2

) + 1 = a2
pp (6.43)
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which implies together with (6.34) that

γ = εp for ε = ±1. (6.44)

Remark 83. Note that we also showed that for a given stable isometry µ, the separability

condition implies that µ satisfies the integrality condition for p-singular elements which then

implies the perfectness by Kiyota’s Theorem 34.

6.2.5 Main theorem

Now, we are ready to prove the following theorem:

Theorem 84. If µ ∈ SPI(O(Cp o Cp−1)) with the coefficient matrix A then A = εI + DWDt

for some W ∈ Matl×l(Z) and ε = ±1. In particular, the map

Φ : PI(O(Cp o Cp−1))→ SPI(O(Cp o Cp−1))

is surjective.

Proof. By (6.44), we know that γ = εp for ε = ±1. Let Ã denote the e × e-matrix formed by

removing the pth-column and the pth-row of the matrix A. Let W = Ã− εIe×e.

Consider

εIp×p +DWDt = εIp×p +D(Ã− εIe×e)Dt (6.45)

=



e∑
i=1

a1i − ε

Ã
...

e∑
i=1

aei − ε

e∑
i=1

ai1 − ε · · ·
e∑
i=1

aie − ε
e∑

i,j=1

ai,j − ε(p− 1)


. (6.46)
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On the other hand, we have

A =



a1p

Ã
...

aep

ap1 · · · ape app


.

We already showed from (6.31)–(6.33) that

a1p =

e∑
i=1

a1i − ε (6.47)

... (6.48)

aep =

e∑
i=1

aei − ε. (6.49)

By considering the matrix A, we can conclude

e∑
i=1

ai1 = (p− 1)
s1,1

p(p− 1)
+ (p− 1)

γ

p2
(6.50)

=
s1,1

p
+
−γ
p2

+ ε (6.51)

= ap1 + ε. (6.52)

Hence, ap1 =
∑e
i=1 ai1 − ε. In a similar way we can show that

ap2 =

e∑
i=1

ai2 − ε (6.53)

... (6.54)

ape =

e∑
i=1

aie − ε. (6.55)
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Finally, it remains to show that app =
e∑

i,j=1

aij − (e− 1)ε. Note that

e∑
i,j=1

aij − (e− 1)ε =

e∑
j=1

a1,j + · · ·+
e∑
j=1

ae,j − (e− 1)ε (6.56)

= (a1,p + ε) + · · ·+ (ae,p + ε)− (e− 1)ε (6.57)

= a1,p + · · ·+ ae,p + eε− (e− 1)ε (6.58)

= a1,p + · · ·+ ae,p + ε (6.59)

= ap,p − ε+ ε (6.60)

= ap,p (6.61)

where (6.57) follows from the relations in (6.31)–(6.33) and (6.60) follows from

a1p + · · ·+ aep = app −
γ

p
= app − ε

by (6.30). This completes the proof.
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Chapter 7

Stable perfect isometries for blocks

with Klein four defect group

In this chapter, we will prove the surjectivity of the map Φ : PI(B) → SPI(B) where

B is a block algebra of OG with a Klein four defect group. Detailed information regarding the

blocks with Klein four defect groups can be found in [15]. Throughout we assume that (K,O, F )

is large enough p-modular system where p = 2.

Remark 85. ([12, Corollary 1.4]) Let G be a finite group and B be a block algebra of OG having

a Klein four defect group P . Then, B is Morita equivalent to either OP or OA4 or OA5b0, the

principal block algebra of OA5.

Remark 86. [12, Corollary 1.5] Let G be a finite group and B be a block algebra of OG having

a Klein four defect group P . Then, B is derived equivalent to either OP or OA4.

Note that Remark 86 implies that the block algebra B with a Klein four defect group P

is perfectly isometric to either OP or OA4.

By Lemma 68 , to verify the surjectivity of

ΦB : PI(B)→ SPI(B),

it suffices to consider the cases where B = OV4 and B = OA4.
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Theorem 87. The map ΦV4 : PI(OV4)→ SPI(OV4) is surjective.

Proof. This follows from Corollary 75.

Theorem 88. The map ΦA4 : PI(OA4)→ SPI(OA4) is surjective.

Proof. Recall that the character table of A4
∼= V4 o C3 is as follows:

V4 o C3 1 (123) (132) (12)(34)

χ1 1 1 1 1

χ2 1 ξ ξ2 1

χ3 1 ξ2 ξ 1

χ4 = Φ4 3 0 0 -1

Let X =



1 1 1 1

1 ξ ξ2 1

1 ξ2 ξ 1

3 0 0 −1


and Y =


1 1 1

1 ξ ξ2

1 ξ2 ξ

 . Note that Lemma 81 applies in

which we replace p with |V4| = 4. We note that the rest of the proof for this case follows exactly

the same as the proof in Case 2 of Chapter 6 with the alteration of p with |V4| = 4. Using the

notation from Section 6.2, if µ is in SPI(OA4) and A is the coefficient matrix of µ, we have

(i) γ = ε · 4 where ε = ±1.

(ii) A = εI +DWDt for some W ∈ Mat3×3(Z).

(iii) In particular, ΦA4
: PI(OA4)→ SPI(OA4) is surjective.
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Chapter 8

Stable p-permutation equivalences

8.1 Definition

Throughout we let e and f be blocks of OG and OH, respectively. In this chapter,

Pr(OGe,OHf) refers to the Grothendieck group of projective (OGe,OHf)-bimodules.

Definition 89. A stable p-permutation equivalence between OGe and OHf is an element γ in

T∆(OGe,OHf) satisfying the following conditions:

(i) γ ·H γ◦ = [OGe] + πG in T∆(OGe,OGe) for some πG ∈ Pr(OGe,OGe),

(ii) γ◦ ·G γ = [OHf ] + πH in T∆(OHf,OHf) for some πH ∈ Pr(OHf,OHf).

We start with some observations which are known to the experts. We will then use these

observations to discuss a monoid structure on the set of stable p-permutation self-equivalences

of a block.

Lemma 90. Let M ∈ T∆(OG,OH), W ∈ Pr(OH,OK) and N ∈ T∆(OK,OL). Then, we

have M ⊗OH W ⊗OK N ∈ Pr(OG,OL).

Proof. It is sufficient to obtain this result for indecomposable modules. Let M be an inde-

composable trivial source O(G × H)-module with vertex ∆(P, φ,Q) for some P ≤ G,Q ≤ H

and a group isomorphism φ : Q → P , i.e., we have M | IndG×H∆(P,φ,Q)(O), and let W be an
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indecomposable projective O(H ×K)-module. By Theorem 47, we have

IndG×H∆(P,φ,Q)(O)⊗OH IndH×K1 (O) ∼=
⊕

t∈[Q\H/1]

IndG×K∆(P,φ,Q)?1 (8.1)

∼=
⊕

t∈[Q\H/1]

IndG×K1 (O) (8.2)

which follows from the fact that ∆(P, φ,Q) ? 1 = 1. Therefore, any indecomposable summand

of M ⊗OH W has a trivial source and trivial vertex, implying that M ⊗OH W ∈ Pr(OG,OK).

By using the same idea, one can show that W ′ ⊗OK N ∈ Pr(OH,OL) for W ′ ∈ Pr(OG,OK)

and indecomposable N ∈ T∆(OK,OL). Then it is enough to see that M ⊗OH W ⊗OK N is in

Pr(OG,OL).

Lemma 91. Let e, f, eK and eL be in Bl(OG),Bl(OH),Bl(OK),Bl(OL), respectively. Let

M ∈ T∆(OGe,OHf) and N ∈ T∆(OKeK ,OLeL) and let P ∈ Pr(OHf,OKeK). Then,

M ⊗H P ⊗K N ∈ Pr(OGe,OLeL).

Proof. It follows from Lemma 90.

Proposition 92. Let γ ∈ T∆(OGe,OHf) be a stable p-permutation equivalence. Then,

µ = κ(γ) ∈ R(KGe,KHf)

is a stable perfect isometry between OGe and OHf .

Proof. The proof is very similar to that of Proposition 51 which is stated in [1]. We note that

the generalized character κ(γ) is perfect by Remark 44 as γ ∈ T∆(OGe,OHf).

Next, since γ is a stable p-permutation equivalence, so (i)-(ii) holds in Definition 89,

and by applying κ we obtain

µ ·H µ◦ = κG×G(γ ·H γ◦) = [KGe] + κG×G(πG) (8.3)

µ◦ ·G µ = κH×H(γ◦ ·G γ) = [KHf ] + κH×H(πH) (8.4)

74



where κG×G(πG) and κH×H(πH) are both generalized projective characters. This completes the

proof.

Notation 93. We let stab◦T
∆(OGe,OHf) denote the set of stable p-permutation equivalences

between OGe and OHf .

Definition 94. Given γ ∈ stab◦T
∆(OGe,OHf), we consider the set γ + Pr(OGe,OHf). By

using Lemma 91, one can show that γ+Pr(OGe,OHf) ⊆ stab◦T
∆(OGe,OHf) for all such γ in

stab◦T
∆(OGe,OHf).The set of such cosets γ+Pr(OGe,OHf) is denoted by stab◦T∆(OGe,OHf).

We let stab◦T
∆(OGe) := stab◦T

∆(OGe,OGe) and stab◦T
∆(OGe) := stab◦T

∆(OGe,OGe).

We consider the map ΨG,H : T∆
◦ (OGe,OHf) → stab◦T

∆(OGe,OHf) which is defined by

γ 7→ γ + Pr(OGe,OHf).

8.2 Properties

Lemma 95. Let e, f, eK be in Bl(OG),Bl(OH),Bl(OK), respectively. Then, − ·H − induces

the following bilinear maps

stab◦T
∆(OGe,OHf)× stab◦T

∆(OHf,OKeK)→ stab◦T
∆(OGe,OKeK) (8.5)

by (γ, γ
′
) 7→ γ ·H γ

′
, and

stab◦T
∆(OGe,OHf)× stab◦T

∆(OHf,OKeK)→ stab◦T
∆(OGe,OKeK) (8.6)

by (γ + Pr(OGe,OHf), γ
′
+ Pr(OHf,OKeK)) 7→ (γ ·H γ

′
) + Pr(OGe,OKeK).

In particular, one has the following commutative diagram

stab◦T
∆(OGe,OHf)× stab◦T

∆(OHf,OKeK) stab◦T
∆(OGe,OKeK)

stab◦T
∆(OGe,OHf)× stab◦T

∆(OHf,OKeK) stab◦T
∆(OGe,OKeK).

Proof. Firstly, given γ ∈ T∆(OGe,OHf) and γ
′ ∈ T∆(OHf,OKeK), then it follows that

γ ·H γ
′ ∈ T∆(OGe,OKeK) by using the Lemma 48 applied to a special case for X = G × H
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and for Y = H ×K. Next, we let γ ∈ stab◦T
∆(OGe,OHf) and γ

′ ∈ stab◦T
∆(OHf,OKeK).

Since we know that γ ·H γ
′ ∈ T∆(OGe,OHf), it only remains to show (i)-(ii) in Definition 89

for γ ·H γ
′
.

(γ ·H γ
′
) ·K (γ ·H γ

′
)◦ = γ ·H γ

′
·K (γ

′
)◦ ·H γ◦ (8.7)

= γ ·H ([OHf ] + π
′
) ·H γ◦ (8.8)

= γ ·H γ◦ + γ ·H π
′
·H γ◦ (8.9)

= [OGe] + π + γ ·H π
′
·H γ◦ (8.10)

and we have π+γ ·H π
′ ·H γ◦ ∈ Pr(OGe,OKeK) by using Lemma 91. This shows (i) of Definition

89 for γ ·H γ
′
, and (ii) follows very similarly.

For the second part, it suffices to show that

(γ + π) ·H (γ
′
+ π

′
) + Pr(OGe,OKeK) = (γ ·H γ

′
) + Pr(OGe,OKeK). (8.11)

Consider

(γ + π) ·H (γ
′
+ π

′
) = γ ·H γ

′
+ γ ·H π

′
+ π ·H γ

′
+ π ·H π

′

and by Lemma 91 we have γ ·H π
′
+π ·H γ

′
+π ·H π

′
is in Pr(OGe,OKeK) proving the claim.

Lemma 96. stab◦T∆(OGe) has a group structure induced by − ·G −. Then we have the group

homomorphism ΨG : T∆
◦ (OGe,OGe)→ stab◦T

∆(OGe) defined by γ 7→ γ + Pr(OGe,OGe).

Proof. The first part follows from Lemma 95. Second part is straightforward.

8.3 Surjectivity of Ψ : T∆
◦ (OGe,OGe)→ stab◦T

∆(OGe)

Just like for the map Φ : PI(OGe) → SPI(OGe), we are interested in the question of

surjectivity of the map Ψ : T∆
◦ (OGe,OGe) → stab◦T

∆(OGe). The next result shows that in

this case the surjectivity of Φ implies the surjectivity of Ψ.
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Proposition 97. Let e ∈ Bl(OG). Then, the following commutative diagram commutes:

T∆
◦ (OGe,OGe) stab◦T

∆(OGe)

PI(OGe) SPI(OGe).

Ψ

κ κ

Φ

Moreover, if Φ is surjective, then so is Ψ.

Proof. The commutativity of the diagram is straightforward. For the final part, assume that Φ

is surjective. Let γ ∈ stab◦T
∆(OGe) and let κ(γ) = µ. Then, we have

γ ·G γ◦ = [OGe] + πG ∈ T∆(OGe,OGe) (8.12)

γ◦ ·G γ = [OGe] + π
′

G ∈ T∆(OGe,OGe) (8.13)

for some πG and π
′

G in Pr(OGe,OGe).

By surjectivity of Φ, there exists π
′′ ∈ Pr(OGe,OGe) such that µ+κ(π

′′
) ∈ PI(OGe).

Therefore one has

[KGe] = (µ+ κ(π
′′
)) ·G (µ+ κ(π

′′
))◦

= µ ·G µ◦ + κ(π
′′
) ·G µ◦ + κ(π

′′
) ·G κ(π

′′
)◦ + µ ·G κ(π

′′
)◦

= [KGe] + κ(πG) + κG(π
′′
) ·G µ◦ + κ(π

′′
) ·G κ(π

′′
)◦ + µ ·G κ(π

′′
)◦

= [KGe] + κ(πG + π
′′
·G γ◦ + π

′′
·G (π

′′
)◦ + γ ·G (π

′′
)◦).

This implies that

κ(πG + π
′′
·G γ◦ + π

′′
·G (π

′′
)◦ + γ ·G (π

′′
)◦) = 0. (8.14)

Note that κ(πG+π
′′ ·Gγ◦+π

′′ ·G (π
′′
)◦+γ ·G (π

′′
)◦) is a generalized projective character by using

a special case of Lemma 55 and the fact that πG and π
′′
is a generalized projective character.

Since κ is injective on Pr(OGe,OGe), this implies that

πG + π
′′
·G γ◦ + π

′′
·G (π

′′
)◦ + γ ·G (π

′′
)◦ = 0. (8.15)
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Next, we show that γ + π
′′
is actually in T∆

◦ (OGe,OGe). Note that

(γ + π
′′
) ·G (γ + π

′′
)◦ = γ ·G γ◦ + γ ·G (π

′′
)◦ + π

′′
·G γ◦ + π

′′
·G (π

′′
)◦ (8.16)

= [OGe] + πG + γ ·G (π
′′
)◦ + π

′′
·G γ◦ + π

′′
·G (π

′′
)◦ (8.17)

= [OGe] (8.18)

where the equality (8.18) follows from the equality (8.15). Note that Ψ(γ + π
′′
) = γ, showing

the surjectivity of Ψ whenever the surjectivity of Φ is assumed.
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