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Abstract: Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in
the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual
muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical
for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes
SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine
phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine
skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic
DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated
S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P
and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle
inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack
mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated
vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma
membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function
of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting
the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of
muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.

Keywords: Duchenne muscular dystrophy; mdx; sphingosine phosphate lyase;
sphingosine-1-phosphate; satellite cells
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1. Introduction

Duchenne muscular dystrophy (DMD) is a genetic condition that results in a severe
myopathy marked by myositis, muscle fiber degeneration, and eventual muscle replace-
ment by fibrosis and adipose tissue [1]. DMD is caused by mutations in the critical muscle
structural protein dystrophin, resulting in progressive muscle weakness and atrophy [2].
It is the most common type of muscular dystrophy, and as an X-linked inherited neu-
romuscular disorder, it typically affects males. Mutations in dystrophin destabilize the
dystrophin dystroglycan protein complex which normally serves a scaffolding function
in muscle [3]. This leads to a degeneration of skeletal and cardiac muscle and impairs the
integrity and function of satellite cells (SC) [4], the muscle stem cells critical for promoting
muscle regeneration [5]. Signs and symptoms of DMD typically present during early child-
hood and progress steadily, with most patients becoming wheelchair-bound in their teens.
Despite intense research efforts, there is still no effective cure for all boys with DMD, and
corticosteroids remain the mainstay of therapy [6]. Elucidating the complex pathways that
contribute to skeletal muscle degeneration, inflammation, and regeneration could lead to
novel potential therapeutic strategies in DMD, including alternatives to corticosteroids [7].

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that functions
in various physiological processes, primarily by activating a family of high-affinity G
protein-coupled receptors, S1P1-5 [8]. S1P signaling plays fundamental roles in lympho-
cyte trafficking, the maintenance of vascular integrity, inflammatory cascades, and the
epigenetic regulation of gene transcription. S1P is enriched in blood and lymph while
being maintained at low levels in tissues and interstitial fluids by the intracellular enzyme
sphingosine phosphate lyase (SPL) [9,10]. By acting as an S1P metabolic sink, SPL activity
generates the S1P chemotactic gradient that is essential for guiding the egress of mature T
lymphocytes from the thymus and peripheral lymphoid organs into the blood [11]. The
inhibition of SPL activity or interruption of S1P1 signaling produces a marked decrease in
circulating lymphocytes due to their retention in the lymphoid organs [12]. S1P receptor
antagonism has been successfully leveraged as a therapeutic strategy in certain autoim-
mune diseases, where it acts by preventing self-reactive lymphocytes from entering target
tissues and causing inflammation and subsequent tissue damage [13].

S1P can also act as a trophic factor for skeletal muscle [14]. S1P signaling contributes
to skeletal muscle homeostasis by exerting effects on muscle regeneration, atrophy, and SC
functions [15]. S1P was found to attenuate dystrophic muscle phenotypes and atrophy in
fruit flies and mice [16,17], whereas it rose with exercise and promoted muscle strength in
non-dystrophic muscle [18]. At the cellular and molecular level, these effects have been
attributed to S1P’s impact on epigenetic gene regulation, the expression of mitochondrial
and metabolic genes required for muscle repair, STAT3 inflammatory signaling, TGF beta
signaling, calcium mobilization, and the SC cell cycle progression, proliferation, migration
to sites of injury, and ability to fuse with injured muscle fibers [16,17,19]; however, different
S1P receptors play distinct and sometimes antagonistic roles, such that the ultimate impact
of S1P signaling on muscle homeostasis is complex [20].

Previously, we reported that sphingolipid metabolism is dynamically regulated in
response to notexin-induced muscle injury, resulting in a transient post-injury rise in
circulating S1P that promotes SC proliferation and supports muscle regeneration [21]. Mdx
mice that model DMD were S1P deficient, and pharmacological SPL inhibition raised the
S1P levels and enhanced SC activation and muscle regeneration after notexin injury in this
model. Others have also shown that a reduction in circulating S1P levels can be deleterious
in mdx mice [22]. However, SPL inhibition as a strategy to raise S1P levels may not always
be beneficial in the context of skeletal muscle. Sply mutants, which harbor a transposon
insertion in the gene encoding SPL in the fruit fly, exhibit an abnormal development of
thoracic flight muscles and are flightless [23]. In addition, when SPL is silenced in murine
myoblasts, myogenic differentiation is compromised [24]. These findings suggest the
need for more detailed studies exploring SPL targeting methods to identify the specific
administration conditions that maximize the immunosuppressive and trophic effects on
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dystrophic muscle and SC without compromising muscle development and differentiation.
In that regard, physiological models that avoid the use of toxin-mediated muscle injury
would be ideal.

In this study, we examined SPL expression in the skeletal muscles of DMD patients
and mdx mice. We found that SPL was upregulated in DMD and mdx muscles compared to
the corresponding controls, with upregulation detected in the first few weeks of life in the
mdx mice. We then investigated the impact of perinatal administration of an SPL inhibitor
on various parameters in mdx mice. Our cumulative findings show that SPL inhibition
early in life increased the endogenous SC pool and reduced the inflammatory component
of mdx myopathy, attenuating muscle damage.

2. Results
2.1. SPL Expression Is Increased in DMD Muscles Compared to Age-Matched Controls

Quantitative real time-PCR (qRT-PCR) of frozen skeletal muscle biopsies showed a
significant elevation in the expression of the SPL-encoding gene, SGPL1, in DMD compared
to control muscles (Figure 1A). The upregulation of SPL protein in dystrophic skeletal
muscle was confirmed by immunohistochemistry staining of frozen muscle tissue sections
from four individuals with DMD, wherein the SPL signal was observed in infiltrating cells
of the muscle interstitium as well as degenerating muscle fibers (Figure 1B). In comparison,
the skeletal muscle from two age-matched controls exhibited almost no SPL staining
(Figure 1B). Human DMD skeletal muscle biopsy material stained for hematoxylin and
eosin (HE) showed inflammatory cell infiltrates between muscle fibers, positive staining
for utrophin, but no expression of dystrophin or endothelial nitric oxide synthase, all of
which are typical findings in DMD (Figure S1).
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Figure 1. SGPL1/SPL is upregulated in dystrophic muscles of DMD patients. (A) qRT-PCR of SGPL1
human gene expression in DMD skeletal muscle (n = 8) compared to control muscle (n = 9). Gene
expression is normalized to GAPDH. Mean ± SD; * p < 0.05. (B) SPL protein expression as shown by
immunohistochemistry (brown signal) in two controls and four DMD patients. Controls and DMD-1,
-2 and -3 are from gastrocnemius. DMD-4 is from tibialis anterior.

2.2. S1P Metabolism Is Altered in Juvenile Mdx Mice

To investigate the role of SPL in muscular dystrophy further, and with special attention
to its early stages, we compared Sgpl1 gene expression by performing qRT-PCR on the
skeletal muscles (gastrocnemius) of mdx and wild type (WT) C57BL/10 mice at 4, 6, 8, and
10 weeks of age (Figure 2A), which represents the peak period of myositis in the mdx
model. Muscle SPL expression levels trended upward from 4 to 10 weeks in both the mdx
and WT pups, and this trend was more pronounced in the mdx muscle, which exhibited
higher SPL levels than their WT counterparts at all ages (Figure 2A). The changes in muscle
SGPL1 expression over time were accompanied by a steady decline in skeletal muscle
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S1P, observed in both diaphragm and tibialis anterior muscles over the six-week period in
both groups, with more pronounced effects observed in the mdx group (Figure 2B,C).
Furthermore, the plasma S1P levels were markedly reduced in the mdx mice compared to
the WT mice at four and six weeks of life (Figure 2D). By immunofluorescence microscopy,
SPL staining was prominently detected in mdx muscles (tibialis anterior) at all ages, whereas
SPL staining in the corresponding WT muscles was absent (Figure 2E). Tissue sections
co-stained with anti-CD45 to identify leukocytes revealed that most of the SPL signal in
mdx muscle was found in CD45-positive cells located within the inflammatory infiltrates
and necrotic fibers (Figure 2E and Figure S2). These findings confirm a previous report
identifying Sgpl1 as a component of an inflammatory gene signature in dystrophic mdx
muscle [25]. Additionally, our findings that both DMD and mdx skeletal muscle show
a similar upregulation of SPL gene and protein expression, confirm that the mdx mouse
model is appropriate for further investigation of the role of SPL in muscular dystrophy.

2.3. Perinatal Treatment of Mdx Mice with SPL Inhibitor Reduces Immune Cell Trafficking to
Skeletal Muscles

We hypothesized that raising the blood and tissue S1P levels by inhibiting its metabolism
at a critical period before dystrophy begins to manifest in mdx pups might attenuate
their dystrophic features. Since we observed Sgpl1 upregulation in the skeletal muscles
of mdx pups by week four of life, a perinatal delivery method was devised to deliver
the SPL inhibitor LX2931 to the mothers throughout pregnancy and nursing, followed
by the analysis of their pups. The perinatal delivery method consisted of dissolving the
SPL inhibitor in drinking water and administering it ad libitum to mdx mothers during
pregnancy and nursing, followed by analysis of their weaning pups at four weeks of age.
We confirmed the effect of SPL inhibition by detecting leukopenia and lymphopenia in
the white blood cell counts of perinatally treated mdx pups as compared to the untreated
mdx controls (Figure 3A,B). The S1P levels in diaphragm skeletal muscle were augmented
in the LX2931-treated pups as compared to the controls (Figure 3C); however, the plasma
S1P levels were not different between the control and treated pups (Figure 3D). Immune
profiling showed that CD4+ and CD8+ lymphocytes in the blood of the LX2931-treated
mdx pups were reduced compared to the untreated mdx pups (Figure 3E). In addition,
we observed a reduction in circulating neutrophils and monocytes in the pups treated
with LX2931 (Figure 3E). The immune profile of gastrocnemius muscle isolated from the
LX2931-treated mdx pups showed reduced CD4+ lymphocytes, B cells and neutrophils
compared to untreated control mdx muscle (Figure 3F); thus, SPL inhibition reduced muscle
tissue infiltration by cells of both the innate and adaptive immune systems.

Leukocytic infiltration was next compared in the tibialis anterior muscles of LX2931-
treated mdx and untreated mdx pups using immunofluorescence detection of CD45+ cells
in cryosections.

A marked reduction in inflammatory infiltrates was observed in the treatment group,
as shown in Figure 4A, with the signal quantified in Figure 4B. The predominant leukocyte
cell population present in the muscles of pups were neutrophils (Figure 3F). The identifica-
tion of neutrophils by immunofluorescence detection of the neutrophil marker, elastase,
confirmed a reduction in the neutrophil infiltrates in the muscles of the LX2931-treated
mice compared to the untreated controls, as shown in Figure 4C and signal quantified
in Figure 4D. These findings demonstrate that SPL inhibition reduces inflammation in
dystrophic muscles.

2.4. Perinatal SPL Inhibition in Mdx Mice Attenuates Muscle Damage

To assess the impact of SPL inhibition on the dystrophic muscle injury incurred by
normal muscle contraction during daily activity, we measured the number of regenerating
fibers by counting the nucleated fibers in the fixed skeletal muscle sections of LX2931-
treated and untreated mdx mice. At three weeks of age, the LX2931-treated pups exhibited
profoundly reduced muscle damage compared to the untreated mdx pups, shown by the
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lower number of regenerating myofibers with characteristic centrally located nuclei and the
lower number of inflammatory cell infiltrates in the tibialis anterior muscles (Figure 5A–C).
These findings support the notion that SPL inhibition delays the onset of muscle damage
and/or prevents the muscle damage characteristic of mdx mice at this age.

1 
 

 

Figure 2. Sgpl1/SPL is upregulated in dystrophic muscles of mdx mice. (A) Expression of the murine
Sgpl1 gene in gastrocnemius muscles of mdx mice (black bars) and wild type C57BL/10 control mice (WT,
white bars), measured by qRT-PCR. Gene expression is normalized to Gapdh. Mean ± SD, n = 3/group.
S1P levels in skeletal muscles; diaphragm (B); left tibialis anterior (C) of WT and mdx mice measured by
liquid chromatography/mass spectrometry and normalized to wet weight. (D) S1P levels in plasma of
WT and mdx mice measured by liquid chromatography/mass spectrometry. Mean ± SD. n = 3/group;
* p < 0.05, ** p < 0.01. (E) Immunofluorescence detection of SPL in skeletal muscle (tibialis anterior)
cryosections from WT (upper panels) and mdx (middle and bottom panels) mice of different ages
illustrates the SPL signal in the inflammatory cell infiltrates. For all panels, green = CD45 staining of
leukocytes, red = SPL staining, blue = DAPI staining of nuclei. Magnification = 400×.
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Figure 3. LX2931 perinatal treatment raises skeletal muscle S1P levels and induces lymphopenia
in mdx mice. LX2931 (LX) treatment of female mdx mice throughout pregnancy and nursing
results in leukopenia (A) and lymphopenia (B) in their 4-week-old pups compared to controls (CTR).
(C) Diaphragm S1P levels are elevated in pups treated with perinatal LX2931. (D) Plasma S1P levels
are unchanged by perinatal LX2931 treatment. (E) Flow cytometry analysis of leukocyte subsets in
whole blood of control and LX2931-treated mdx pups. One million white cells were incubated with a
cocktail of antibodies specific for CD4+ T cells, CD8+ T cells, B cells, neutrophils (Neutr), monocytes
(Mono) and F4/80+ monocytes (Mos). One-hundred thousand events were scored. Results were
analyzed using FlowJo software. (F) Flow cytometry analysis of the same leukocyte subsets present in
the skeletal muscles (gastrocnemius) of control and LX2931-treated mdx pups. Two-hundred thousand
events were scored. Results were normalized to dissociated muscle cell number. For (A–F), results
shown are mean ± SD; * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001; n = 3–5/group.
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of CD45+ fluorescent area/low power field of images in A. (C) Neutrophil infiltration in skeletal 
muscle of LX2931-treated (LX) and control (CTR) mdx pups. Neutrophil elastase (NE) marks neu-
trophils in green. DAPI labels nuclei in blue. (D) Quantitation of neutrophil elastase of images in C. 
Magnification = 400×. 
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Figure 4. LX2931 perinatal treatment reduces skeletal muscle inflammation in mdx mice.
(A) Immunofluorescence microscopy detecting hematopoietic cell infiltrates in skeletal muscle (tib-
ialis anterior) of LX2931-treated (LX) and control (CTR) mdx pups. Anti-SPL antibody marks SPL
in red. CD45 marks hematopoietic cells in green. DAPI labels nuclei in blue. Muscles from two
LX2931-treated (LX) and two control (CTR) mice are shown for comparison. (B) Quantitation in
percentage of CD45+ fluorescent area/low power field of images in A. (C) Neutrophil infiltration in
skeletal muscle of LX2931-treated (LX) and control (CTR) mdx pups. Neutrophil elastase (NE) marks
neutrophils in green. DAPI labels nuclei in blue. (D) Quantitation of neutrophil elastase of images in
C. Magnification = 400×.
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Figure 5. Perinatal SPL inhibition reduces pathological signs of muscle injury. (A) Representative
hematoxylin and eosin stained cryosections of skeletal muscles (tibialis anterior) isolated from LX2931-
treated (LX) and control (CTR) mdx pups showing muscle damage is reduced in treated pups.
(B) Quantification of myofibers containing centralized nuclei. (C) Quantification as percentage of cell
infiltrates. Shown are mean ± SEM; * p < 0.05, **** p < 0.001; n = 8–11/group.

2.5. Perinatal SPL Inhibition Increases Endogenous Satellite Cell (SC) Numbers in Mdx Muscles

When the SC numbers in fresh gastrocnemius skeletal muscles of pups treated on the
LX2931 perinatal regimen were compared to those of the control pups at three weeks of
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age, they were found to be significantly elevated in the LX2931-treated mice, as determined
by flow cytometry (Figure 6A). Consistent with this finding, the gene expression levels of
the SC markers, Pax7 and Met, were also higher in the LX2931-treated versus the untreated
pups, as measured by qRT-PCR (Figure 6B). These cumulative findings confirm that SPL
inhibition early in life promotes endogenous SC expansion.
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Figure 6. Perinatal SPL inhibition expands the endogenous satellite cell (SC) population. (A) Flow
cytometry quantification of SCs isolated from disaggregated muscles (gastrocnemius) of control (CTR,
n = 8) and LX2931-treated (LX, n = 4) mdx pups. Cells were stained using five selected antibodies.
Results were analyzed using FlowJo software. Cells were considered to represent SCs if they were
positive for CD34 and a7 integrin and negative for CD31, CD45 and Sca-1. Mean ± SD; *** p < 0.005.
(B) Gene expression of SC markers Pax7 and Met were detected by qRT-PCR and normalized to Gapdh.
n = 4–5/group, and each sample was run in triplicate. Mean ± SD; * p < 0.05, ** p<0.01.

2.6. Perinatal SPL Inhibition Diminishes Fibrosis in Mdx Muscles

The normal progression of DMD involves the replacement of muscle fibers by fibrosis
and, eventually, by adipose tissue. In mdx mice, florid muscle fibrosis develops in the adult
phase; however, the early onset of collagen deposition can be observed [26]. Cryosections
of diaphragm skeletal muscle harvested from three-week-old LX2931-treated and untreated
control mdx pups were stained with Masson’s trichrome to detect collagen. The control
muscles exhibited more collagen deposition than muscles from the LX2931-treated pups,
as shown in Figure 7A and quantified in Figure 7B. To further evaluate the effect of the
LX2931 treatment on fibrosis, the expression of four representative fibrosis genes, Col1a1,
Col3a1, Col61, and Fn1, encoding collagens and fibronectin were compared by qRT-PCR in
the frozen diaphragm muscle tissues from both groups. The expression levels of Col-6a1
and Fn1 were significantly lower in the muscles of LX2931-treated pups compared to the
untreated mdx control group (Figure 7C). Col-1a1 expression trended lower in the treated
pups but was not significantly reduced, and the Col-3a1 levels were not different in the two
groups (data not shown). These findings suggest that perinatal SPL inhibition may reduce
the early deposition of collagen in mdx muscles.

2.7. SPL Suppression Results in Increased Muscle Strength

To determine the functional significance of the reduced inflammation, reduced injury,
and increased SC numbers in LX2931-treated mice, muscle strength was measured in six-
week-old LX2931-treated and control mice. Importantly, grip strength normalized to the
body weight was significantly improved in the LX2931-treated mice, indicating that SPL
inhibition may lead to a functional improvement in dystrophic muscles (Figure 8).

2.8. SPL Inhibition Promotes SC Expansion in Immunodeficient Mdx Mice

Inhibition of SPL and S1P1 antagonism both block T lymphocyte egress, causing
the depletion of circulating T cells; however, unlike the S1P1 antagonists, SPL inhibition
also reduces infiltrating neutrophils and monocytes. To delineate the contribution of the
lymphocyte-specific effects of SPL inhibition on SC expansion in mdx mice, LX2931 was
administered using the perinatal delivery method to mdx mice and to SCID/mdx mice,
which lack T and B cells. The SC abundance was then compared by flow cytometry of
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the gastrocnemius muscle tissues of LX2931-treated and control mice of both groups. As
shown in Figure 9, SPL inhibition significantly increased the SC numbers in the mdx mice
of both genetic backgrounds, although SC expansion in response to LX2931 was less robust
in the SCID/mdx group compared to the mdx group. These findings suggest that both
lymphocyte-specific and lymphocyte-independent effects may contribute to SC expansion
in response to SPL inhibition.
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Figure 7. Perinatal SPL inhibition reduces collagen deposition in skeletal muscles of mdx mice.
(A) Representative light microscopic images of collagen deposition as shown by Masson’s trichrome
staining in diaphragms of control and LX2931-treated pups (LX). n = 4–5/group. (B) Quantitation
in percentage of trichrome-stained areas shown in (A). Mean ± SD; *** p < 0.005. (C) Expression of
collagen-related genes by qRT-PCR and normalized to Gapdh. n = 4–5/group, and each sample was
run in triplicate. Mean ± SD; **** p < 0.001.
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Figure 8. SPL Inhibition improves skeletal muscle function. Grip strength of vehicle-treated (control,
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n = 8–10/group.
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Figure 9. Perinatal LX2931 treatment results in satellite cell expansion in SCID/mdx mice. Female
SCID/mdx and mdx mice were treated with LX2931 using the perinatal treatment scheme. Pups
were euthanized at three weeks of age, and SCs were quantified in gastrocnemius skeletal muscle by
flow cytometry as in Figure 6A. Although the absolute number of SCs was significantly lower in
LX2931-treated SCID/mdx compared to LX2931-treated mdx mice, the fold elevation was similar in
both strains (2.5-fold in mdx and 2.2-fold in SCID/mdx). * p < 0.05, **** p < 0.001, n = 4–5/group.

2.9. Transcriptional Profiling in LX2931-Treated and Untreated Mdx Muscle

A comparative global gene expression analysis was performed on the skeletal muscles
(tibialis anterior) of the LX2931-treated and untreated mdx mice (n = 3/group, each sample
performed in duplicate) harvested at four weeks of life. A principal component analysis
(PCA) was performed to evaluate any differences among the biological replicates and
their treatment conditions. The variable of the first three principal components (PC1, PC2
and PC3) were 83.4, 12.10 and 2.20%, respectively. The PCA revealed a homogeneous
expression pattern for the LX2931-treated group, and a less cohesive distribution for the
untreated group, but a clear separation between the treated and untreated tibialis anterior
muscle gene expression patterns (Figure 10A). A clustering analysis was performed to
visualize the correlations among the replicates and the varying sample conditions. This
revealed 285 genes differentially up- and down-regulated in the two groups (Figure 10B).
The most enriched pathways of the differentially expressed genes were the leukocyte trans-
endothelial migration, ECM-receptor interactions, and chemokine signaling (Table 1). The
most enriched molecular functions of the differentially expressed genes included calcium,
carbohydrate, polysaccharide, protein, protein complex, and pattern binding, as shown
in Table 2. In Table 3, the biological processes most affected by perinatal SPL inhibition
include the functions related to immunity, leukocyte biology, cell adhesion, and activation,
wound healing, and vascular development. Taken as a whole, these findings are consistent
with the observed reduction in infiltrating leukocytes in the LX2931-treated mdx muscle
as well as the known roles of S1P in lymphocyte trafficking, angiogenesis, and calcium
homeostasis. Table 4 shows that SPL inhibition overwhelmingly affected the cell surface and
plasma membrane-related proteins, ECM, and collagen, likely reflecting the impact on the
sarcolemma and its interactions with the ECM. A pathway analysis showed a differential
impact on the key pathways of immune function and cell signaling including leukocyte
trans-endothelial migration, ECM-receptor interactions, chemokine signaling, Fc gamma
receptor-mediated phagocytosis, hematopoietic cell lineage, cell adhesion molecules, B
cell receptor signaling, natural killer cell mediated cytotoxicity, focal adhesion, and axon
guidance (Figures S3–S12). Most of these pathways were globally downregulated in the
LX2931-treated muscle, reflecting the profound impact of SPL inhibition on circulating and
tissue infiltrating immune cells.
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Figure 10. Dystrophic skeletal muscle gene expression profile is significantly altered by LX2931
treatment. (A) Principal component analysis of microarray comparison of gene expression in tibialis
anterior muscles of three control and three LX2931-treated mdx mice run in duplicates. The variable of
the first three principal components (PC1, PC2 and PC3) were 83.4, 12.1 and 2.2%, respectively. Note
the uniformity of the LX2931-treated expression pattern. (B) Heat map of microarray results from
285 genes identified as differentially expressed between control and LX2931-treated (LX) mdx mice,
with high expression shown in red and low expression shown in green. The majority of differentially
expressed genes in the treatment group were downregulated compared to the control group.
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Table 1. Top 10 Enriched pathways.

Gene Set Name # Genes in Overlap (k) p Value

Leukocyte trans-endothelial migration 25 5.1040 × 10−7

ECM-receptor interaction 19 4.7618 × 10−6

Chemokine signaling pathway 29 1.6142 × 10−5

Fc gamma R-mediated phagocytosis 19 5.2623 × 10−5

Hematopoietic cell lineage 17 8.7064 × 10−5

Cell adhesion molecules (CAMs) 23 0.0004

B cell receptor signaling pathway 15 0.0006

Natural killer cell mediated cytotoxicity 19 0.0009

Focal adhesion 26 0.0011

Axon guidance 19 0.0021

Table 2. Top ten molecular functions from Gene Ontology (GO) analysis.

Gene Set Name # Genes in Overlap (k) p Value

Calcium ion binding 83 7.1745 × 10−7

Carbohydrate binding 40 3.9976 × 10−6

GTPase regulator activity 41 3.6579 × 10−5

Nucleoside-triphosphatase regulator activity 41 5.3041 × 10−5

Enzyme activator activity 31 7.4973 × 10−5

Guanyl-nucleotide exchange factor activity 22 8.1547 × 10−5

Polysaccharide binding 20 0.0001

Pattern binding 20 0.0001

Identical protein binding 33 0.0002

Protein complex binding 14 0.0004

Table 3. Top ten biological processes from Gene Ontology (GO) analysis.

Gene Set Name # Genes in Overlap (k) p Value

Immune response 76 3.0191 × 10−16

Cell activation 50 8.3240 × 10−15

Cell adhesion 78 3.7950 × 10−13

Biological adhesion 78 4.1752 × 10−13

Immune effector process 32 2.4120 × 10−12

Leukocyte activation 43 2.6950 × 10−12

Leucocyte mediated immunity 25 9.2975 × 10−11

Inflammatory response 41 1.0399 × 10−10

Response to wounding 53 1.2520 × 10−10

Vasculature development 43 2.2401 × 10−10
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Table 4. Top ten cellular components from Gene Ontology (GO) analysis.

Gene Set Name # Genes in Overlap (k) p Value

Cell surface 52 3.2687 × 10−11

Proteinaceous extracellular matrix 50 1.3109 × 10−10

Extracellular region 165 1.5664 × 10−10

Extracellular matrix 51 1.7262 × 10−10

External side of plasma membrane 37 8.2316 × 10−9

Extracellular region part 85 1.1612 × 10−7

Extracellular matrix part 19 9.0239 × 10−6

Plasma membrane 228 9.9907 × 10−6

Membrane raft 15 0.0006

Collagen 7 0.0007

3. Discussion

Although DMD is a monogenic disease, the underlying defect in dystrophin destabi-
lizes muscle-ECM interactions, stimulating a complex array of intracellular and extracellular
consequences. These events cause muscle breakdown, myositis, and compromised stem
cell functions, setting off an ineffective chronic wound healing response that ultimately
leads to the replacement of muscle by adipose and scar tissue. An improved understanding
of the cascade of the molecular events involved in DMD may reveal novel therapeutic
strategies. In this study, we found that SPL, a key enzyme of sphingolipid metabolism,
is upregulated in the muscles of DMD patients and mdx mice. The gradual increase in
muscle SPL expression in juvenile mice appears to be a physiologic event, as it is observed
even in WT mice; however, the trend is exaggerated in the dystrophic muscles of mdx
mice, where SPL was found primarily in the inflammatory cells and necrotic muscle fibers,
accompanied by the dysregulation of S1P metabolism. These findings are consistent with
our previous results showing that muscle injury provokes dynamic changes in muscle
S1P metabolism [21]. Based on this observation, we reasoned that boosting S1P through
SPL inhibition early in life might promote positive effects on skeletal muscle through the
various actions of S1P signaling, thereby attenuating dystrophic changes.

To test this hypothesis, we developed a noninvasive method of inhibiting SPL early in
life by the oral ad libitum administration of LX2931 to pregnant and nursing mdx mothers.
The treatment was well tolerated by the mothers, who maintained healthy body condition
scores throughout pregnancy and nursing, yielded the expected litter size, nursed effec-
tively, and were able to have subsequent pregnancies (data not shown). The pups also
tolerated the treatment well, as shown by the lack of significant differences in weight gain
from the untreated mdx controls, and no indication of infection or any other signs of poor
health (data not shown). As expected, pups of the mothers treated with LX2931 exhibited
the hallmarks of SPL inhibition, namely, tissue S1P elevation and T cell lymphopenia re-
sulting from blocked lymphocyte egress. In addition, flow cytometry revealed a reduction
in the circulating B cells, neutrophils, and monocytes as well as a reduced infiltration
of mdx muscle with CD4+ T cells, B cells, and neutrophils. These findings were further
confirmed by immunofluorescence microscopy. The reduced emigration of neutrophils into
the tissues was consistent with a previous report showing that SPL disruption interferes
with neutrophil entry into tissues via an S1P4-dependent process [27].

Perinatal SPL inhibition attenuated the dystrophic muscle changes as evidenced by fewer
regenerating muscle fibers, reduced inflammation, and improved grip strength. While we also
found a modest impact of SPL inhibition on the levels of fibrosis in the diaphragms of treated
compared to untreated mdx mice, these results should be interpreted with some degree of
caution. Our finding of 7% fibrosis in untreated mdx diaphragm muscle was considerably
lower than the 11% reported by Gutpell et al. [28], and the reduction to 2% fibrosis in our



Int. J. Mol. Sci. 2022, 23, 7579 14 of 21

treatment group was lower than the 7% fibrosis in the WT diaphragm reported in the same
study. The discordance of fibrosis measurements between our study and the Gutpell report
could be due to differences in our staining technique, or epigenetic changes or environmental
conditions in our mdx colony and/or animal facility, respectively.

A limitation of our study is that we utilized three different muscle groups throughout
our study, including the tibialis anterior, gastrocnemius and diaphragm. This decision was
made so as to obtain as much information as possible from the small amount of muscle
tissue available from juvenile mice. In all experiments, we compared endpoints in the same
muscle type in both the treatment and control subjects; however, these muscle groups are
different in many respects, and it would be ideal in future studies to compare all relevant
endpoints in all three muscle groups to look for differences that may exist. Our initial
comparison of mdx and WT control mice revealed alterations in sphingolipid metabolism
including the upregulation of Sgp1l and reduction in its substrate in mdx mice. We did not
include a WT cohort in subsequent experiments, as our focus was to interrogate the impact
of SPL inhibition on the features of mdx mice; however, future studies may benefit from the
inclusion of a control cohort for comparison. One additional limitation of our study is that
we did not follow the long-term outcome of the treated mice, which were instead sacrificed
before reaching maturity for histological and molecular analysis. In the future, studies
conducted over longer time periods will be required to establish the true potential of SPL
inhibition as a strategy to mitigate muscular dystrophy. This is particularly important in
consideration of the upregulated inflammatory cytokines observed in global Sgpl1 knockout
mice [27,29]. Encouragingly, our transcriptional profiling showed a suppression of STAT
activation and chemokine signaling and no obvious upregulation of cytokines in LX2931-
treated subjects. Further, LX2931 affords a partial rather than complete inhibition of SPL
and may not produce the same effects as complete SPL inhibition. Future studies should
nonetheless pay close attention to the possible unwanted effects of SPL inhibition.

Importantly, SPL inhibition also led to the expansion of the SC population, as shown by
the direct measurement by flow cytometry, complemented by a quantification of the muscle
expression of the SC markers, Pax7 and Met. Expansion of the SC pool was also observed
(albeit to a lesser degree) in the SCID/mdx mice. This suggests that perinatal SPL inhibition
promotes SC expansion independently of its impact on lymphocyte trafficking. The effect
on SCs may be attributed to a direct trophic effect of S1P signaling on the SC population.
Notably, S1P receptor antagonists inhibit lymphocyte trafficking by downregulating S1P
receptors; however, they do not appreciably alter S1P levels. In contrast, SPL inhibition blocks
lymphocyte trafficking by inducing S1P accumulation in the tissues, thereby disrupting the
S1P chemotactic gradient. Thus, additional trophic effects of S1P and the effects on the innate
immune system mediated by SPL inhibition may be leveraged to prevent inflammation and
mitigate dystrophy in a way that S1P receptor antagonists do not.

We undertook transcriptional profiling in the tibialis anterior muscles of LX2931-treated
vs. control mdx mice to further delineate the impact of SPL inhibition on mdx muscle.
Transcriptional changes in the muscles of young mdx mice compared to controls have
been well-documented, with many studies revealing a consistent pattern of hundreds of
differentially expressed genes in mdx muscle, the overwhelming majority of these being
upregulated transcripts involved in the immune response, phagocytosis, ECM, and wound
healing/regeneration processes [30–34]; thus, even though the mutation of a single gene
(dystrophin) initiates the DMD myopathy, a complex immunological process ensues that
contributes to the disease progression. We found that SPL inhibition reversed this process
at least in part, with the majority of differentially expressed transcripts in the LX2931-
treated group being downregulated genes with immune-related functions. Specifically, we
observed global changes in innate and adaptive immunity, plasma membrane interactions
with the ECM, and axon guidance. SPL inhibition reduced the expression of genes associ-
ated with leukocyte invasion, phagocytosis, and B and NK cell activation. Reduced levels
of circulating T, B, and NK cells, and monocytes have been well documented in children
with SPL insufficiency syndrome, an inborn error of metabolism caused by mutations
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in the human SPL gene, SGPL1 [5]. In the case of DMD, inhibiting phagocyte activation
and migration into tissues could be particularly beneficial in avoiding further damage to
muscles induced by inflammation. The finding of a major influence on ECM-receptor inter-
actions may be indicative of the stabilizing function of the dystroglycan-associated protein
complex located in the sarcolemma, which is anchored to the cytoskeleton intracellularly
and the ECM extracellularly. The absence of full-length dystrophin in mdx muscle partially
compromises this interaction, which may be protected by SPL inhibition. The effects of SPL
inhibition on genes associated with axon guidance could potentially be related to changes
in the SC population, as SCs are known to produce and export axon guidance molecules
in response to muscle injury [35–38]. This finding seems to be unique to our study and
is particularly interesting in consideration of the peripheral neuropathy and axonopathy
associated with SGPL1 mutations and SPL insufficiency syndrome [39]. Further elucidation
of the role of SPL in axonal regeneration and axon guidance cues may be important future
areas of study.

In the last few years, substantial progress has been made leveraging gene therapy, gene
editing, and exon skipping to address the root cause of DMD. There is much hope that with
continued technological advances these approaches will eventually improve the clinical
outcomes for the majority of DMD patients; however, only a limited number of patients
have benefitted to this day. In the near term, a meaningful and attainable goal would be the
identification of alternatives to steroids, the current mainstays of DMD treatment, which
suppress inflammation but are not curative and have profound unwanted side effects [40].

Our cumulative findings suggest that SPL inhibition should be further explored as a
potential treatment of DMD. This strategy provides a potentially safer and more tolerable
alternative to steroids as a method of immune suppression to prevent myositis. At the same
time, SPL inhibition augments tissue levels of the trophic muscle factor S1P, leading to an
expansion of the SC population, thereby potentially improving the regenerative capacity of
dystrophic muscle. Multiple SPL inhibitors have been generated to date [41,42]. LX2931
has the advantage of having been tested in human clinical trials [43]. Our novel method
of delivering LX2931 perinatally was well tolerated by both mdx pups and their mothers.
Our findings suggest that when the diagnosis of DMD is known early in life or potentially
even prenatally, prompt intervention might avert the inflammatory component of the
disease, delaying progression until more definitive therapy such as gene therapy/editing or
antisense oligonucleotides can be administered. Future studies will be required to confirm
the utility of this strategy.

4. Materials and Methods
4.1. Human Tissues

Skeletal muscle biopsies from DMD patients and controls used in the qRT-PCR experi-
ments were obtained with informed consent at the National Children’s Medical Center by
EPH. Deidentified skeletal muscle biopsies (gastrocnemius or tibialis anterior) of the DMD
patients and controls used for the immunohistochemistry study were stained and imaged
by the Wellstone Muscular Dystrophy Research Center at the University of Iowa. The
polyclonal goat antibody against SPL was from R&D Systems.

4.2. Mice

WT (C57BL/10ScSnJ) mice were obtained from the Jackson Laboratory (Bar Harbor,
Maine). Mdx breeders (C57BL/10ScSn-Dmdmdx/J) and SCID/mdx (B10ScSn.Cg-Prkdcscid

Dmdmdx/J) mice were purchased from the Jackson Laboratory. The mice were housed in a
temperature- and humidity-controlled room and maintained on a light–dark cycle with
food and water ad libitum. The mice were acclimated to the animal facility for a minimum
of two weeks prior to enrollment in the study.
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4.3. LX2931 Administration

The oral administration of 500 mg/L of LX2931 (provided by Lexicon Pharmaceuticals,
The Woodlands, TX, USA) was given to the mice ad libitum in the drinking water and was
refreshed every 2–3 days [44]. The control mice received normal drinking water. For the
immunodeficient mice, water was autoclaved and prepared in sterile conditions.

4.4. Tissue Harvesting

Unless otherwise stated, the pups of mothers treated with LX2931, and the controls
were euthanized at 21 days and their tissues collected. Blood was collected by cardiac punc-
ture and processed for flow cytometry or lipid analysis. The skeletal muscles (gastrocnemius,
tibialis anterior and diaphragm) were excised and either processed for flow cytometry or
snap-frozen in liquid nitrogen for RNA extraction and the measurement of S1P levels. The
muscle groups used for each experimental endpoint are indicated throughout the text.
Some of the collected muscles were cryopreserved after mounting the tissue on a base
of cork with tragacanth (Sigma-Aldrich, St. Louis, MO, USA), by submersion in liquid
nitrogen-cooled 2-methylbutane (Fisher Scientific, Hampton, NH, USA) for 1 min and then
stored at −80 ◦C for immunohistochemistry.

4.5. Flow Cytometry

For analysis via flow cytometry, the gastrocnemius muscles were excised, minced, and
digested in Dulbecco’s modified Eagle’s medium (DMEM, Grand Island, NY, USA; In-
vitrogen, Waltham, MA, USA) containing 0.1% of collagenase type 2 (315 U/mg, CLS2,
Worthington, Lakewood, NJ, USA) and 100 U/mL penicillin G, and 100 µg/mL strepto-
mycin (P/S; University of California San Francisco, UCSF, CA, USA) for 30 min at 37 ◦C
while shaking. To stop the enzymatic digestion, an equal volume of DMEM containing
P/S and 10% fetal bovine serum (Sigma-Aldrich) was added for 30 min at 37 ◦C while
shaking. The digested product was filtered through a 70 µm cell strainer and washed with
phosphate-buffered saline (PBS). The filtrated suspension was centrifuged at 1200 RPM
for 8 min. After removing the supernatant, the cell pellet was resuspended in 5 mL PBS
containing 0.1% bovine serum albumin (BSA) to count the cells (4–12 µm size) and for anti-
body labeling. Two million cells of each sample were stained with the following conjugated
anti-mouse antibodies for leukocytes: CD4-eFLuor 450 (clone RM 4-5), CD8a-FITC (clone
53–3.7), CD11b-PE (clone M1/70), F4/80-PE Cy7 (clone BM8), Ly-6G (Gr1)-PerCP Cy5.5
(clone RB6–8C5) and CD45R (B220)-APC (clone RA3–6B2), all from eBioscience, Inc. (San
Diego, CA, USA). One million cells were stained for myogenic cells (SC) using a cocktail
containing the following conjugated anti-mouse antibodies: Integrin α7-APC (rat IgG2b;
R&D, Minneapolis, MN, USA), CD34-eFluor 450 (clone RAM34), Ly-6A/E (Sca1)-PerCP
Cy5.5 (clone D7), CD31-PE Cy7 (clone 390), all from eBioscience, San Diego, CA, USA and
CD45-FITC (Bio-Rad, Hercules, CA, USA). The blood was collected in EDTA collecting
tubes. To remove the red blood cells, the blood was processed in three cycles of incubation
for 5 min at RT with an AKC lysing buffer (1.5 ammonium chloride, 100 mM potassium
bicarbonate and 100mM EDTA). Cold PBS was added to deactivate the AKC buffer, and
the sample was centrifuged for 5 min at 1200 RPM at RT. In the last cycle, the cell pellet
was resuspended in 5 mL PBS containing 0.2% BSA and filtered using 40 µm cell strainers.
A cell count was performed, and two million cells were incubated with the six antibodies
used for leukocyte detection described above. The signals were acquired with a FACS
Fortessa (BD Bioscience, San Jose, CA, USA), and the data were analyzed with FlowJo,
Ashland, OH, USA (Tree star).

4.6. S1P Quantification

The tissues were homogenized in 0.25 mL methanol (HPLC grade, Fisher Scientific)
using a tip sonicator (60 Sonic Dismembrator, Fisher Scientific, Pittsburgh, PA, USA). A
homogenate was combined with C17-S1P (Avanti Polar Lipids, Alabaster, AL, USA) internal
standard and 0.5 mL of chloroform (HPLC grade, Fisher Scientific):methanol (1:1), and the
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sample was incubated overnight at 48 ◦C. The samples were dried down with nitrogen gas
and resuspended in 0.5 mL of chloroform:methanol (2:1). From this suspension, 50 µL were
removed and dried down with nitrogen. The extract was made basic by adding 50 µL of
1M KOH in methanol. To accomplish the two-phase separation, 100 µL of water was added.
The aqueous phase was transferred to a new tube and made acidic by adding 35 µL of
acetic acid. A second aqueous phase was created by adding 0.2 mL of chloroform:methanol
(2:1) and 50 µL of water. The organic phase was recovered, dried down with nitrogen,
resuspended in 50 µL of methanol containing 5 mM of ammonium acetate, mixed by
vortexing, and placed in a water bath sonication device for 5 min before a S1P measurement
by mass spectrometry. 17C-S1P (Avanti Polar Lipids, Alabaster, AL, USA) was used as
an internal standard. The lipids were separated on a C18 column (2.1 × 50 mm; Kinetex,
Phenomenex, Torrance, CA, USA) at a flow rate of 0.3 mL/min. The data were acquired
on a Micromass Quattro LCZ (Waters Corp., Milford, MA, USA) mass spectrometer and
processed by MassLynx v3.3. The lipids were identified based on their specific precursor
and product ion pair and quantitated using multiple reactions monitoring as described [45].
The lipid normalization was accomplished by a phospholipid determination (Phospholipids
C, Wako Diagnostics, Richmond, VI, USA).

4.7. qRT-PCR

The RNA from skeletal muscle was extracted using an RNeasy mini kit (Qiagen)
following the manufacturer’s protocol. The RNA was eluted in a 30 µL elution buffer,
and the concentration was determined with a NanoDrop ND 1000 spectrophotometer.
The cDNA was generated from 1 µg of RNA using the First-Strand cDNA Synthesis
kit (Invitrogen-Life Technologies, Carlsbad, CA, USA) run on a PTC-240 Tetrad 2 DNA
machine (Bio-Rad, Hercules, CA, USA) using the cycling conditions recommended by the
manufacturer. The qPCR was performed using a Power Sybr green PCR master mix (AB
Life Technologies). The cycling parameters used for all primers were as follows: 95 ◦C
for 10 min; PCR 40 cycles of: 30 s. 95 ◦C denaturation, 1 min. 55–60 ◦C annealing, 30 sec.
72 ◦C extension, and were repeated. A DNA dissociation curve was performed for each
sample, to ensure the purity of the amplification products. The amplification of GAPDH
was utilized as the internal control to normalize the data. The primers used in this study
(Table 5) were obtained from Integrated DNA Technologies (IDT, Coralville, IA, USA). Each
sample was run in triplicate, and the average of the three was used for further calculations.

Table 5. Primer sequences used for qRT-PCR.

Gene Forward Primer (5′ to 3′) Reverse Primer (5′ to 3′) bp

hSGPL1 CGTGGTCAAGTTGGAGGTCT ATATAAGAGGGTACTGCCAGCG 128
mSgpl1 GGGAAAGTGTGAGATAGCAAG CTGAGGGAACACGGTACATAAC 94

Met GGCCCAGCTGTTTCAGTGA CAGCATCGCTCAAATTCAGAGA 61
Pax7 CCGAGTGCTCAGAATCAA ATGCTGTGTTTGGCTTTC 93
Myf5 CCAGCCCCACCTCCAACT CTTTTATCTGCAGCACATGCATTT 127
MyoD AAATCGCATTGGGGTTTGAG GAGCGCATCTCCACAGACAG 178

Col-1a1 TCCGGCTCCTGCTCCTCTTA GTATGCAGCTGACTTCAGGGATGT 78
Col-3a1 GCCCACAGCCTTCTACAC CCAGGGTCACCATTTCTC 109
Col-6a1 GATGAGGGTGAAGTGGGAG CACTCACAGCAGGAGCACAT 185

Fn1 TGCCTCGGGAATGGAAAG ATGGTAGGTCTTCCCATCGTCATA 78
hGAPDH AATCCCATCACCATCTTCCAG AAATGAGCCCCAGCCTTC 122
mGapdh ACCTGCCAAGTATGATGA GGAGTTGCTGTTGAAGTC 118

bp, base pairs; hSGPL1, human SGPL1; mSgpl1, mouse Sgpl1; hGAPDH, human GAPDH; mGapdh, mouse Gapdh.

4.8. Microarray Analysis

The total RNA was isolated from the tibialis anterior muscles of perinatally LX2931-
treated mice (n = 3) and control mice (n = 3) at 4 weeks of age using a Qiagen RNeasy mini
kit according to the manufacturer’s protocol. The RNA samples were treated with DNA
digestion to remove genomic DNA contamination. The total RNA concentration and purity
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were assessed by measuring the optical density (230, 260, and 280 nm) with the Nanodrop
1000 Spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA). The RNA samples
were sent to Phalanx Biotech (San Diego, CA, USA). The Fluorescent aRNA targets were
prepared from 1 µg of the total RNA samples using a OneArray® Amino Allyl aRNA
Amplification Kit (Phalanx Biotech Group, Hsinchu, Taiwan) and Cy5 dye (GE Healthcare,
Chicago, IL, USA). Fluorescent targets were hybridized to the Mouse Whole Genome
OneArray® with a Phalanx hybridization buffer using the Phalanx Hybridization System.
After 16 hr hybridization, non-specific binding targets were washed away. The slides were
scanned using a DNA Microarray Scanner (Model G2505C, Agilent Technologies, Santa
Clara, CA, USA). The Cy5 fluorescent intensities of each spot were analyzed using the
GenePix 4.1 software (Molecular Devices). Each single sample was performed in duplicate,
and replicates provided reproducibility ≥0.975. The signal intensity was loaded into the
Rosetta Resolver System® (Rosetta Biosoftware, Seattle, WA, USA) for data preprocessing.

4.9. Histology

Cryopreserved muscle tissue sections (6 µm) were prepared on SuperFrost Plus glass
slides (Fisher) and stored at −80 ◦C. Centralized nucleated myofibers were quantified after
hematoxylin, eosin (Sigma-Aldrich) and saffron (HES) staining. The collagen deposits
were evaluated by Masson’s trichrome staining using a kit (American MasterTech, Lodi,
CA, USA) according to the manufacturer’s protocol. Six representative sections imaged
at 200×magnification were analyzed from each muscle. The images were acquired by
Camera QImaging (Retiga EX, Canada) mounted in a Nikon Eclipse E600 microscope
(Tokyo, Japan) with iVision software (version v 4.0.11, Biovision Tech, Exton, PA, USA). The
quantitation of the results was performed using Image J software (version 1.46r; National
Institutes of Health, Bethesda, MD, USA).

4.10. Immunofluorescence

The frozen tissue sections were thawed and fixed with cold acetone for 15 min, fol-
lowed by two PBS rinses of 5 min each. To block the endogenous Fc receptor binding sites,
the sections were incubated for 1 hr with 10% normal goat serum (Vector Laboratories,
Burlingame, CA, USA). The sections were then labeled with a blocking buffer containing
primary antibodies or appropriate isotype controls overnight at 4 ◦C. Successive washes
in PBS were followed by another 60 min incubation with the appropriate secondary anti-
bodies at room temperature. The sections were then washed with PBS and nuclei labeled
with 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) in PBS. The primary antibod-
ies included rabbit anti-SPL (Genemed Synthesys, San Antonio, TX, USA), rat anti-CD45
(clone I3/2.3; Santa Cruz Biotechnology, Dallas, TX, USA) for the murine tissues, mouse
anti-CD45 (clone 2D-1; Santa Cruz Biotechnology) for the human tissues, developmental
myosin heavy chain (MHC; Vector Laboratories), and rat anti-F4/80 (BioRad), applied at
1:100. The secondary antibodies were AlexaFluor 488 or 546 specific to various species
(Invitrogen, 1:400). For the mouse anti-Pax7 (Development Studies Hybridoma Bank, Iowa
City, Iowa) and rabbit anti-laminin (Sigma-Aldrich), the tissue sections were immersed
twice in a 10 mM citric acid solution (pH 6.0) for 5 min at 90 ◦C. Following the cooling
and washing steps, the sections were blocked for 2 to 3 h with 4% IgG- and protease-free
bovine serum albumin (Jackson ImmunoReseach, West Grove, PA, USA) in PBS. Next, the
sections were sequentially incubated with goat anti-mouse IgG (H + L) AffiniPure Fab
fragment (MouseFab, Jackson ImmunoResearch; dilution 0.05 mg/mL) for 30 min, with
the anti-Pax7 antibody overnight, biotin-SP-conjugated AffiniPure goat anti-mouse IgG
(H+L) (Jackson ImmunoResearch; dilution 1:20) for 45 min, and Cy3-conjuated streptavidin
(Jackson ImmunoResearch; dilution 1:1250) for 30 min. Each incubation was followed by
three rinses with PBS. Next, the sections were stained for 10 min at room temperature with
DAPI in PBS, washed thrice with PBS to remove the excess dye, and mounted in Vectashield
mounting medium (Vector Laboratories). The microscopic analysis was performed with a
LSM T-PMT, Zeiss microscope. The images were captured with an Axiocam MRc5 camera
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and archived using Zen microscope software. Photoshop CS4 (Adobe, San Jose, CA, USA)
was used to globally process all images for contrast, size, and brightness. Images were
analyzed using ImageJ software to detect each stain. Results are given in pixel area and
then converted to percentage & averaged, with 100% representing the total 324 x 324 pixel
area of the image.

4.11. Functional Test

Grip force on the forelimbs was measured by a grip strength meter (Columbus In-
struments, Columbus, OH, USA) and normalized to body weight for the assessment of
functional performance in mdx mice, as described previously [46].

4.12. Statistics

Values are expressed as means± standard deviation (SD) or standard error of the mean
(SEM). A Student’s unpaired t-test was used to compare two data sets. A Tukey’s multiple
comparison test was applied when comparing more than two data sets. A statistical
significance was considered p ≤ 0.05. All experiments were conducted at least three
separate times, and the results shown are representative results.
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