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Abstract

New Tools for Chemically Directed Proteomics

by
Austin Arlo Pitcher

Doctor of PHiLosorPHY in CHEMISTRY
UNIVERSITY of CALIFORNIA at BERKELEY

Professor Carolyn R. Bertozzi, Chair

In recent years, mass spectrometry has become a staple technique in biochem-
istry and molecular biology, with mass spectrometry based proteomics being one of
its greatest successes. The standard method for determining protein identifications
though the use of mass spectrometry involves a number of steps. First, a solution of
whole proteins is digested with a protease, typically trypsin. The resulting peptides are
then separated by liquid chromatography, and a full scan mass spectrum is obtained
for each eluting fraction. As ions themselves produce little information that can be
used to determine protein identifications, peptide ions are then selected for secondary
fragmentation and a tandem mass spectrum is obtained. From this secondary spec-
trum, peptide sequence information can be obtained after comparison to proteome
databases.

However, despite being a powerful tool for peptide identification, the traditional
shotgun proteomics approach often suffers from limited sensitivity and a lack of re-
producibility between replicate analyses. A major source of these limitations is due to
the way in which ions are chosen for fragmentation. As unmodified peptide ions are
virtually indistinguishable in a full scan mass spectrum, the vast majority of experi-
ments select ions for fragmentation based solely on the signal intensity of each ion. In
complex samples, this has the often undesired consequence of biasing the search to-
wards the most abundant, though often uninteresting peptides. Furthermore, due to
the stochastic nature of ion selection, it is often difficult to reproduce a list of protein
identifications even if the same biological sample is used for multiple experiments.
This dissertation focuses on the idea of using chemical tagging strategies to introduce
information into a complex sample that can then be used to direct MS analysis away
from the most abundant species and towards those most likely to be interesting in a
given biological context. The technology developed is then applied to the study of



protein glycosylation, a type of protein post-translational modification ubiquitous in
eukaryotic organisms.

In Chapter 1, current technologies for studying glycoproteins using mass spec-
trometry are surveyed. The emphasis in this chapter is on the use of unnatural sugar
substrates for the metabolic engineering of glycan structures, and applications of
metabolic engineering to glycoproteomics. This chapter also reviews the use of bio-
orthogonal reactions in the context of glycoproteomics. Finally, the standard work-
flow for proteomics experiments is examined and the concept of directed mass spec-
trometry is introduced. Chapter 2 proposes a method for using chemistry to add
information to a biological system which can then be used to direct the MS analysis
of biomolecules to bias analysis towards a subset of so-called “information-rich” ions.
This system uses the distinctive isotopic distribution of a chemical label to perturb
the isotopic envelope of a biomolecule in a way that is detectable in a full-scan mass
spectrum. Coupled with a computational algorithm described in Chapter 3, we term
this methodology the IsoStamp system.

The isotopic pattern searching algorithm introduced relies on the ability to accu-
rately predict the isotopic envelope of a peptide solely from the molecular weight of
the ion. Such a system is analyzed in Chapter 4, and the scope is extended to applica-
tions in glycobiology including the prediction of isotopic envelopes of biomolecules
such as mucins, where a large percentage of the molecular weight is attributed to
carbohydrate content. Potential weaknesses of current metabolic oligosaccharide en-
gineering techniques as they are employed in mass spectrometry is that they typically
require a secondary labeling step, and that unnatural sugars may not be incorporated
into glycan structures at stoichiometric levels. Chapter 5 introduces an alternative
approach whereby an isotopically labeled mixture of a natural substrate, GIcNAc, is
fed to cells and is subsequently incorporated into N-glycan structures at stoichiomet-
ric levels. N-glycosylated peptides are then targeted for MS/MS analysis based on
their isotopic distribution, and sites of modification are determined by comparison
to a proteome database. Finally, Chapter 6 examines the future of isotopic labeling
in biological mass spectrometry, suggesting a number of applications of the IsoStamp

technology.
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1.1

chapter one

The use of unnatural sugars in
glycoproteomics

Historical perspective

The field of genomics, the earliest and most well-known of the “omics” sciences, refers
to the study of the DNA sequences that make up an organism’s genome. Advances
in genomics have since laid groundwork for the other “omics” sciences, including
transcriptomics and proteomics, referring to the study of all transcribed genes and
all proteins synthesized by a cell under a specific set of biological conditions, respec-
tively'™. The experimental techniques culminating in the solution of the complete
sequence of the human genome® have ushered in the so-called “post-genomic era” in
which informatics techniques can be applied to the study of biological systems to gain
a nuanced understanding of life at both the molecular and systems levels, with one of
the ultimate goals being the discovery novel disease therapies’~'°.

The term “glycoproteome”, then, refers to the complete repertoire of glycopro-
teins produced by cells under specific conditions of time, space, and environment!!.
Glycoproteomics thus refers to studies used to profile the glycoproteome. Like nucleic
acids and proteins, glycans come in a diversity of structures that underlie a vast array
of biological functions. In order to understand these functions it is essential that we
understand these structures at a molecular level. However, in contrast the genomes,
transcriptomes, and proteomes, glycans are not primary gene products. Rather than
being synthesized based on a pre-existing template, glycans are constructed by through
the action of a large number of glycosyltransferases that build up oligosaccharide struc-
tures from a their monosaccharide building blocks, the most common of which are
shown in Figure 1-1. This complex and highly context-dependent biosynthetic ma-
chinery, combined with the diverse set of possible linkages within an individual gly-
can, leads to plethora of distinct and heterogeneous structures, with some illustrative
examples shown in Figure 1-2. Glycan synthesis is further obfuscated by the fact that
glycan composition can be highly sensitive to the metabolic state of the cell, such that
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Figure 1-1: Common monosacharides found in vertebrate glycans along with their standard graphical
representations. /N-acetylneuraminic acid is the most common form of sialic acid. Figure adapted from
Varki et al., Figure 2.4 1,

genetically identical cells may produce different glycan structures depending on subtle
differences in their local environments'?>-'4. Additional complications arise from the
fact that many of the most useful biochemical techniques—such as gene disruption
or overexpression, GFP tagging for protein visualization, and DNA microarrays—are
largely unavailable for their study. While disruption of genes responsible for glyco-
sylation can disrupt glycan structure, redundancies among glycosyltransferases and
embryonic lethality render mutant phenotypes onerous to interpret!>"7.

Despite the inherent difhiculty in studying protein glycosylation, there are entic-
ing reasons to do so. Protein glycosylation has been shown to mediate a huge number

18-20 and is essential for a number of immune functions?"22.

23-27
5

of cell-cell interactions

Glycosylation has also been shown to play integral roles in cancer and metastasis

28-30 131,32

cellular homeostasis , nutrient sensing14’33‘36, and

37,38

, protein quality contro

developmen in eukaryotic organisms. In addition to being physiologically es-

sential, protein glycosylation is also abundant: informatics studies have suggested

that as many as 50% of proteins in humans are subject to glycosylation°.
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GLYCOPROTEINS 3
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Figure 1-2: Glycans embody a highly diverse set of structures. Shown are some classes of N-linked
glycans, along with O-glycan cores and epitopes found in mucins.

Mass spectrometry is a powerful tool for analyzing
glycoproteins

Over the past decade, mass spectrometry has emerged as one of the most powerful
tools for the analysis of large biomolecules. The core of this technique is in the ion-
ization and analysis of biomolecular samples, allowing for the determination of mass-
to-charge (m/z) ratios of the molecules in the sample’. Elaborations on this core
technique include the addition of an on-line liquid chromatography (LC) system to
increase overall resolution and sensitivity*!, and the incorporation of secondary frag-
mentation units—such as collision-induced dissociation (CID)*? or electron transfer
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dissociation (ETD)%—which fragment molecules at chemically defined locations,
allowing researchers to gain structural information of biomolecules of interest. Sec-
ondary fragmentation is also known as tandem fragmentation, and experiments in-
corporating tandem fragmentation are referred to as MS/MS, or MS? experiments,
with ions in the tandem mass spectrum being referred to as daughter ions. Tandem
fragmentation can recursively performed on daughter ions, in which case the experi-
ment is referred to as an MS™ experiment.

Utilizing both LC and tandem fragmentation, the technique of bottom-up pro-
teomics has had widespread success in the analysis of proteins. In this method, a
sample of proteins is first subjected to proteolytic digestion (typically with the pro-
tease trypsin), after which the resulting peptides are analyzed by LC-MS. Ions in the
primary mass spectrum (termed the full-scan MS) are selected, typically on the basis
of intensity, for tandem fragmentation and a mass spectrum of the daughter ions is
obtained. Comparison to a proteome database is then able to assign the most likely
peptide sequence to each tandem MS, yielding peptide primary sequences and protein
identifications*¢. Bottom-up proteomics has proven to be a robust platform for the
analysis of protein samples*’#’ and, since its introduction, has been extended to allow
relative quantification of protein levels between biological samples®®>!. A generalized
proteomics workflow is given in Figure 1-3. Bottom-up proteomics methodologies
have also been extended to include the analysis of sites of protein posttranslational
modifications, including phosphorylation2-, glycosylation>¢-58

tion>?.

, and ubiquitina-

Extension of this sort of analysis to heterogeneous glycan structures has also been
attempted with some success. In this strategy, glycans are liberated from their parent
proteins using an endoglycosidase such as PNGaseF or EndoH (N-linked glycans) or
by chemical means such as base-catalyzed beta-elimination (O-linked glycans), and
the freed glycan population is subsequently analyzed by LC-MS/MS®! (also re-
viewed in North, ez 2/, 2009°? and Harvey, 2010%%). However, due in part to the
fact that glycans with different chemical linkages can produce ions of the same molec-
ular weight, generalization of this methodology has proven to be difficult. Further-
more, since glycans are typically released from their parent proteins prior to analysis,
information about the protein-glycan relationship is lost in this analysis.

Further attempts have been made to reconcile the fields of glycomics and pro-
teomics, with the aim to determine sites of modification and glycan structure concur-
rently>®. However, in this type of experiment, the problem of protein concentration
is confounded with the challenges posed glycan heterogeneity, and currently no sin-
gle, widely utilized method exists for the study of glycoproteomics. Two of the major
hurdles in the analysis of glycoproteins by mass spectrometry are glycan heterogene-
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ity and the relative abundance of proteins of interest. Part of the challenge lies in
the manner in which ions are selected for secondary fragmentation. As most biolog-
ical molecules are indistinguishable by mass spectrometry without knowledge about
their exact molecular weight, ions are typically selected for fragmentation based solely
on ion intensity*. Since protein concentrations can span as many as eight orders of
magnitud664‘66, low abundance, yet biologically interesting species—such as disease
markers or transcription factors—may not be selected for fragmentation, and thus no
information about these proteins will be recorded.

One widely used strategy for dealing with biological complexity is to enrich for bi-
ologically interesting species through the use of affinity purification techniques® 7.
Afhinity purification has proven to be a powerful technique to enrich for a given pro-
tein or subset of proteins. The primary hurdle in affinity purification is matching
the affinity technique with the biological sample in question. Single proteins may
be purified by immunoprecipitation’! or by the creation of fusion proteins where the
protein of interest is genetically modified to include an affinity tag (such as the 6xHis,
myc, or FLAG tags)’2. However, these techniques require that the identity of of the
protein be known prior to the analysis, a condition often not met in proteomics ex-
periments. Growing interest has been in developing affinity techniques that enrich
for specific classes of proteins, including chromatin immunoprecipitation (ChIP) for
the enrichment of chromatin-associated proteins’® or lectin affinity chromatography
for the enrichment of certain classes of glycoproteins”#7>. A similar approach that
has gained some traction in the proteomics community is to use antibody depletion
column chromatography in an attempt to remove the most abundant species in a
biological sample’®. Here, the goal is simply to remove very high abundance pro-
teins that are ubiquitous in biological samples, such as IgG and albumin from serum
samples.

An alternative to sample enrichment is to direct MS/MS analysis towards the most
information-rich subset of peptides, a technique termed “directed mass spectrome-
try”’’7. Here, the mass spectrometer is instructed to fragment ions that are the most
likely to be interesting to the biological system in question. In addition to improving
the biological relevance of protein identifications, directed MS also aims to improve
reproducibility of results between MS experiments. This technique has also been re-
ferred to as “hypothesis-driven proteomics”. The main challenge with this method
is in determining at the full-scan stage which ions are most likely to be information
rich.

*Often termed “data-dependent acquisition”
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Figure 1-4: Metabolic oligosaccharide engineering. (A) Unnatural sugar building blocks are taken up

by cells and enter the cell’s biosynthetic machinery, and are ultimately incorporated into the glycocon-

jugates including cell-surface glycoproteins and cytosolic glycoproteins. (B) After incorporation into

glycoconjugates of interest, the functional handle (X) can then be selectively reacted with a probe (Y)

through a bioorthogonal ligation resulting in a covalent linkage between the biomolecular species of
interest and a variety of probes. Figure adapted from Dube ez /.78

Unnatural sugars can function as chemical handles

One approach to the analysis of glycoproteins that has gained considerable interest
over the past decade is the metabolic engineering of glycoproteins through the use of
unnatural monosaccharide building blocks’®. In this strategy, cells are grown on me-
dia containing an unnatural sugar that has been functionalized with a small chemical
handle. The functionalized sugar can then enter the cell, where it is processed by the
cell’s biosynthetic machinery and is ultimately incorporated into the cell’s glycopro-
teins (Figure 1-4). Once incorporated, the non-biological chemical label can serve as
a functional handle that can be accessed through a number of bioorthogonal reactions
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as discussed in below.

In contrast to other existing techniques, metabolic engineering of glycans allows
for the targeting of specific glycan types based on their monosaccharide composi-
tion. For example, N-acetylgalactosamine (GalNAc) analogs are are incorporated into
the core positions of mucin-type O-glycans, while analogs of N-acetylmannosamine
(ManNAc) derivatives modified at the 2-position are converted by cells into sialic acid
analogs, allowing for the specific targeting of sialylated glycan structures”#. Some
commonly used unnatural sugars and their cellular targets can be found in Table 1-
1. The majority of the unnatural sugars reported in the literature are given as their
peracetylated derivatives, as they have been shown to be incorporated into glycans
with higher efficiency in cells lacking specific transporters for the monosaccharide
of interest®!. In addition to targeting specific monosaccharide units, the metabolic
incorporation of unnatural sugars also provides a measure of the dynamic state of gly-
cosylation as the chemical tags are only incorporated into newly synthesized glycan
structures.

An alternative to metabolic incorporation of unnatural sugars was proposed by
Hsieh-Wilson and coworkers whereby functionalized GalNAc derivatives are chemo-
enzymatically appended onto cytosolic O-GlcNAcylated proteins using a mutant beta-
1,4-galactosyltransferase®”. After labeling, the functional group can be detected using
a wide variety of probes as described above. This approach has helped facilitate the
analysis of the repertoire of cytosolic GlcNAcylated proteins, as was artfully demon-
strated in recent work by Hart and coworkers?’. An advantage of this strategy is that
the chemoenzymatic attachment of unnatural sugars typically gives higher incorpo-
ration efficiency than the metabolic incorporation of similar sugars. However, this
increase in efficiency comes at the cost of dynamic resolution, as all O-GlcNAcylated
proteins will be tagged by this strategy regardless of when they were synthesized.

Using metabolic incorporation of unnatural sugars for
protein cross-linking

Rather than using unnatural sugars as functional handles to facilitate the enrich-
ment of specific subsets of the glycoproteme, work by Paulson and coworkers®’, and
more recently by the Kohler lab®, has utilized unnatural sugars to identify protein
binding partners. In this strategy, cells are metabolically labeled with monosaccha-
rides functionalized with photocrosslinking groups, such as arylazide or diazarene
groups. Briefly, cells are grown in media containing the unnatural sugar containing
the crosslinking group, where the sugar enters the cell and is ultimately incorporated



1.4. USING METABOLIC INCORPORATION OF UNNATURAL SUGARS FOR

PROTEIN CROSS-LINKING

78

15834 Jo urens pagrpow A[[eonaudad e ur umoys A[uQ ,

pa1adxy
*2qo1d Teuo3oypioorq

Jo 2010y pue uoneredaid sjdures £q pajjonuod oq A[pSre] ues sueof[3 payyur-Q 2dL1-udnw pue suioid pafpqe] SYNI[D-() d1[0s014 SUTPqe]|
Jo 2o10yd 2y, * aserduwtda- SYNI[D-J () ® JO UONOE 91 Y3NOIY S[[20 UBI[BWWIEW U PILISAUODINUT 3q UED OYNPO[D-J() PU ZYNI[D-dA(N -

g (“YANUEN)

QuareZBI(] PRV JIeIS surwresouurw-(JA0UBINQOZRIP- %)-N
18 OVIONZYVY-6)

apize [A1y pIoy o1peIg Oy GNIN-OpIZE[ATR-(
:s1edng Sunjurssor)

U0y proy oIpeIg 08 (AYTUBIA]) SUIWIESOUURWAOUINAJ]-N]
Quhq [y 2500M,] ¢g2800Ny-[Auky [y
Quhy [y POV OIS o (IVNUEW) durwesouuew-(jfouffiuad-5)-N
QUAYTY 5« - (3sea4) 2100 paUI-N PYNID-O 21]050140 WPAUI-O adfa-uronpy (TVNP[D) 2urwesoon|3-([Aoufiuad-1)-N
apIzy asoonyq ¢g ONIZY9) dsodnjopize-9
Py PRV IIEIS 08 ZVNUEIN
apizy v 2gPVNP[D-Q 21050140 ¢, payur]-O 2dL1-upniy ZYN[ED
aprzy v 2gPVNP[D-Q 21050140 ¢, payur]-O 2dL3-uponjy ZY N[O
s[puey 133re], redng
[euonouny ura101dodf|n) [eanyeuu()

*s1031e1 ur2101d004[3 I puUE s1eSns pasn A[uowrwor) -1 J[qeL,



1.5

1.5. BIOORTHOGONAL LIGATIONS USED IN GLYCOPROTEOMICS 10

into a specific subset of glycans. After incorporation, cells are irradiated with UV
light, upon which the functionalized sugars are unmasked and reactive intermediates
are free to form covalent bonds with nearby biomolecules. Proteins of interest can
then be purified and their interaction partners can be identified through LC-MS/MS
analysis”!.

Bioorthogonal ligations used in glycoproteomics

Performing chemical reactions in living systems presents a unique challenge as living
systems contain a huge range of chemical functionality, and conditions in biologi-
cal systems are mild compared to those typically used in synthetic reactions. This
challenge has lead to the development of “bioorthogonal chemistry” which aims to
develop pairs of functional groups that can undergo a specific and rapid reaction to
produce a covalent bond at physiological conditions and in the presence of the large
number of potentially interfering chemical groups.”?

The classical example of the bioorthogonal reaction is the copper-catalyzed azide-
alkyne [3+2] dipolar cycloaddition (CuAAC), the so-called “copper click” reaction®.
However, the copper click reaction has several shortcomings: the reaction is rela-
tively slow, the Cu' catalyst is toxic to living systems, and the reaction shows signif-
icant background in complex biological systems. In an effort to address these issues,
there has been an explosion in interest in developing new bioorthogonal ligations
over the past decade. The product of these efforts has been a dramatic increase in
the number of bioorthogonal reactions available, many of which display improved
kinetics and utilize probes with increased solubility that are better tolerated by bio-
logical systems. One of the earliest additions to this toolkit was the reaction between
azides at triarylphosphine reagents through a modified Staudinger reaction, termed
the Staudinger Ligation®. The Staudinger Ligation proceeds at physiological condi-
tions, and is well-tolerated by live cells.

A variation on the standard click reaction is the strain-promoted [3+2] cycload-
dition of cyclooctyne probes with azides, the most well known being the difluori-

9 Variants

nated cyclooctyne (DIFO) reagents in the “copper-free click” reaction
of the strain-promoted cycloaddition include the dibenzocyclooctynes (DIBO) re-
ported by Boons and coworkers®®, the more soluble 6,7-dimethoxyazacyclooct-4-yne
(DIMAC)” and, most recently, the biarylazacyclooctynones (BARAC) by reported
Jewett et al.”® A summary of the common bioorthogonal reactions used with azides is
shown in Figure 1-5, along with structures for some recently reported azide-reactive

probes.
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Figure 1-5: Bioorthogonal reactions with azides. (A) The most frequently used bioorthogonal reactions
involving azides and (B) Structures of some recently reported cyclooctyne probes .

Aldehydes and ketones have also found utility in bioorthogonal chemistry, and a
number of unnatural sugar analogs containing these functional groups have been re-
ported. These functional groups undergo rapid reactions with hydrazides and amino-
oxy reagents, but typically require higher concentration of probes and lower pH. In
addition, their use is often complicated by the presence of numerous metabolites con-
taining aldehyde or ketone functionalities. While this is by no means a comprehensive
list of existing bioorthogonal reactions, these reactions constitute the vast majority of
those that have to date found use in glycoproteomics. For a more comprehensive re-

view of bioorthogonal reactions, the reader is directed to a recent review by Sletten ez
99
al.”’.
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Facilitation of directed mass spectrometry through
metabolic engineering

Many of the techniques discussed above have become widely used in the field of pro-
teomics. Affinity purification techniques have become particularly popular among
mass spectrometrists as they offer an efficient means of reducing sample complexity.
However, no purification method is 100% selective or efficient. As protein concentra-

64 even the

tions can span more than eight orders of magnitude in biological systems
best purification methods can be inadequate when applied to these complex systems.
Since ions are typically chosen for fragmentation based solely on signal intensity, MS
analysis of peptide samples is biased towards highly abundant species. Furthermore,
due to the stochastic nature in which ions are chosen for fragmentation, it can be
difficult to reproduce results between MS experiments, even when analyzing identi-
cal biological samples. Directed mass spectrometry aims to alleviate these issues by
focusing tandem analysis on a small subset of m/z values that have been determined
to contain the most information-rich ions””.

This thesis introduces the concept of chemically directed proteomics. This tech-
nology employs an isotopic labeling strategy, whereby the isotopic envelopes of in-
formation-rich peptides are rendered sufficiently unique such that they are computa-
tionally detectable in the full scan MS, allowing the instrument to direct the analysis
to these species. Chapter 2 introduces the concept of chemically directed proteomics
in more detail, as well as a labeling strategy coupled to a computational algorithm
that, in combination, allow for the detection of labeled species in a full scan MS. Due
to the complexity of LC-MS data obtained for biological samples, a chemical labeling
strategy in isolation is of little use as manual analysis of the data can be extremely cum-
bersome. This is addressed by the introduction of an algorithm that can automate the
detection of labeled species, introduced in Chapter 3. As the isotopic contribution
from peptides themselves is non-negligible in the searching processes, their presence
must be accounted for. Chapter 4 analyzes and expands upon an estimation system
that has been used for this purpose, and extends its application to biomolecules in
which a major fraction of their molecular weight is derived from carbohydrates.

Expanding on this isotopic labeling strategy, Chapter 5 introduces a new appli-
cation of metabolic engineering using an isotopically labeled mixture of GIcNAc to
perform chemically directed mass spectrometry on a sample of yeast N-linked gly-
coproteins. Here, UDP-GIcNAc auxotrophic yeast were grown in media containing
an isotopically labeled mixture of a natural sugar, GIcNAc. After entering the cell,
the isotopically labeled GIcNAc is converted into the UDP-sugar, and is subsequently
incorporated into the core of all N-glycoproteins. Proteins can then be purified and
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treated with Endo H, cleaving off all but the most proximal GlcNAc residue con-
taining the isotopic signature. The distinct isotopic pattern produced by the sugar
can then be recognized computationally, and the mass spectrometer can be directed
to fragment ions containing the incorporated pattern, in effect directing the analysis
away from more abundant, but undesirable peptides. Finally, Chapter 6 examines
the future of chemically directed proteomics, suggesting a number of applications of
this and related technologies.
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chapter two

Isotopic signature transfer and mass pattern
prediction (IsoStamp) as a new tool for
chemically-directed proteomics

joint work with Brian P. Smart and Krishnan K. Palaniappan

Introduction

Common goals of MS-based proteomics experiments are to identify, characterize, and
quantify proteins and their posttranslational modifications from cells or tissues'. A
popular strategy for protein identification is the bottom-up shotgun proteomics ap-
proach”. In this method, a mixture of proteins from a biological sample is subjected
to proteolytic digestion, the resulting peptides are separated by liquid chromatogra-
phy (LC), and their parent proteins are identified through the detection of peptides
by MS®?. Two approaches can be taken to convert MS data acquired from proteolytic
digests into protein identifications. The first method is based on a single-stage MS
measurement with high mass accuracy. Peptide ions are rendered sufficiently unique
such that their parent proteins can be identified by comparison to an in silico pro-

teolytic digest of the organism’s proteome!%!!

. 'The challenge in this approach lies
in identifying an adequate number of peptide ions with sufficient mass accuracy to
have confidence in a protein assignment. The second method utilizes tandem MS to
obtain sequence information for individual peptides, followed by comparison against
proteome databases!'?!3. Typically, only the most abundant peptides are selected for
fragmentation, while data for those peptides in relatively low quantities are not ob-
tained’.

Inherent to the shotgun proteomics approach is the problem of identifying pro-
teins of low abundance, such as biomarkers for disease states, against a background

of proteins whose concentrations can span up to 12 orders of magnitudel’3’14. The
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Figure 2-1: The dibromide tag improves the traditional shotgun proteomics technique by allowing

chemically interesting species to be detectable in the full scan MS. (A) A mixture of proteins in which a

small number are chemically tagged (star) is subjected to proteolytic digestion producing (B) a mixture

of peptides. (C) The peptides are then separated using liquid chromatography and (D) full scan mass

spectra are collected at regular intervals, from which tagged species identified by computational pattern
searching. The tagged species can then be selected for further analysis.

molecular complexity of cell and tissue lysates renders biologically interesting pep-
tides difficult to distinguish from a vast population of more abundant, though often
uninteresting, peptides. Directed proteomics strategies seek to address the sample
complexity problem by focusing the analysis on a specific protein subset!®. In one
approach, proteins of interest are selectively enriched prior to proteolytic digestion,
thereby forgoing the shotgun method altogether!®1°. Alternatively, there is growing
interest in the use of chemical tags that perturb the mass envelope of target pep-
tides so as to render them more detectable. The progenitors of this approach are the
isotope-coded affinity tag (ICAT) and isobaric tags for relative and absolute quanti-
tation (iTRAQ) techniques now commonly used for quantitative comparative pro-
teomics?*?3. These methods capitalize on isotopic labeling to distinguish peptides
from different samples that were combined prior to MS analysis. Chemical tags have
been elegantly employed to mark sites of protein posttranslational modifications?* in-
2627 and phosphorylation?3, as well as for labeling

, sites of cysteine oxidation®® and active sites of enzymes?!.

cluding glycosylation?, lipidation
protein N-termini?®’

The halogens bromine and chlorine can be advantageous components of chem-
ical tags by virtue of their unique isotopic distributions*>-4. Unlike the common

biological elements, which exist as one predominant isotope, bromine and chlorine
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have two significant isotopes that create unique signatures in a mass spectrum: “’Br
and ®'Br are found in a 1:1 ratio, and **Cl and 3"Cl are found in a 3:1 ratio (isotopic
ratios of other biologically relevant elements are given in Table 2-1)%. Recently,
these features have been exploited in proteomics-related applications. Aebersold and
coworkers used a dichloride tag to discriminate between peptides with and without
cysteine from digested protein samples®. Likewise, N-terminal labeling of peptides
with a monobromide tag has facilitated sequence identification by tandem MS?’. In
addition to their distinctive isotopic signatures, bromine and chlorine have a negative
mass defect that can endow a modified peptide with a unique fractional mass38-4°.
Amster and coworkers made artful use of this property to facilitate the detection and
identification of peptides from a small archaeal proteome®. Specifically, brominated
tags were employed to select cysteine-alkylated species for peptide mass fingerprinting
analysis®®3%. Despite these achievements, halogen profiling methods have not been
extended to directed proteomic analysis of samples as complex as human cell or tissue
lysates. To achieve this goal would require the ability to discriminate the tag’s sig-
nature on peptides over a wide mass range, in multiple charge states, and against a
background of > 100,000 peptides*!*?, capabilities that present methods lack.

Here we report that a dibromide tag in concert with a novel computational pattern
searching algorithm enables detection of labeled peptides from complex biological
samples with unprecedented sensitivity and fidelity. The overall approach, which we
term jsotopic signature transfer and mass pattern prediction (abbreviated IsoStamp),
was employed as illustrated in Figure 2-1. Cell lysates containing chemically-tagged
proteins were digested with trypsin and the resulting peptides were analyzed by full
scan LC-MS. Tagged peptides were detected using the pattern searching algorithm
and verified by comparison to LC-MS data of a pure sample. In model shotgun pro-
teomics experiments, we were able to discern femtomole (fmole, 107'*M) quantities
of labeled peptides from whole cell lysate digests at signal-to-noise ratios as low as
2.5:1. IsoStamp can enhance any proteomics platform that employs chemical label-
ing for targeted protein identification. By rendering labeled peptides detectable in a
full-scan mass spectrum, IsoStamp is an enabling tool for “chemically directed pro-

teomics.”
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Table 2-1: The natural abundance of stable isotopes of elements contained in the standard amino acids.
The natural isotopic distribution of bromine (and to a lesser extent, chlorine) is unique compared to
these elements as its heavy isotope is found naturally in significant quantities.

Element Isotopes® Natural Abundance
Hydrogen 'H 99.9885%
°H 0.0115%
Carbon 2C 98.93%
13C 1.07%
Nitrogen N 99.636%
15N 0.364%
Oxygen 160 99.757%
170 0.038%
180 0.205%
Phosphorus 31p >99.99%
Sulfur® 328 94.99%
348 4.25%
Chlorine 351 75.76%
37Cl 24.24%
Bromine By 50.69%
818 49.31%

2 Stable isotopes
b 338 is an insignificant contributor

Results

Bromine and chlorine atoms impart unique isotopic signatures
on labeled molecules

The natural abundances of the isotopes of bromine and chlorine, elements not com-
monly found in proteins, impart distinct isotopic signatures on small molecules (i.e.,
MW < 500). Compounds bearing a single bromine or chlorine atom appear in the
mass spectrum as two major ions, M and M + 2, with equal or skewed peak heights,
respectively. Compounds with two bromine or chlorine atoms appear as symmet-
rical or skewed triplets, respectively, with major peaks at M, M + 2 and M + 4.
These unique isotopic patterns are evident in the mass spectra (Figure 2-2B) for the
halogated tyrosine analogs 1-4 shown in Figure 2-2A, which we synthesized as iodoac-
etamide derivatives capable of alkylating cysteine residues (details of the syntheses are
provided in at the end of the chapter, Figure 2-6).

In principle, the uniqueness of the triplet patterns associated with the dibro-
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Figure 2-2: Halogenated tags impart distinct isotopic patterns on peptides. (A) Iodoacetamide-

derivatized halogen tags were synthesized from tyrosine, resulting in chemical tags (B) bearing unique

isotopic patterns. (C) In a model experiment, BSA was alkylated on cysteine residues with each tag or

iodoacetic acid and then digested with trypsin. (D) Mass spectra of the modified tryptic peptide corre-

sponding to residues 89-100. C* refers to a cysteine residue that was alkylated with each tag shown in

A. (E) The natural abundances of isotopes of common biological elements introduce a skewing effect
on the halogen signature that must be compensated for computationally.

mide and dichloride motifs could facilitate the identification of tagged peptides from
complex proteolytic digests. However, the isotopic patterns are obscured in larger
molecules (i.e., MW > 1000) wherein heavy isotopes of C (**C, 1%), H (*H, 0.02%)
and N (**N, 0.1%) skew the triplet motif. To illustrate the point, we alkylated the
surface exposed cysteine residues of bovine serum albumin (BSA) with the tags shown
in Figure 2-2A, digested the modified protein with trypsin, and analyzed the modi-
fied peptides (Figure 2-2C) by MS. Representative data corresponding to the tryptic
peptide SLHTLFGDELC*K (residues 89-100, where C* denotes a tag-conjugated
cysteine residue) are shown in Figure 2-2D. The isotope envelope of each tagged pep-
tide reflects the parent peptide’s intrinsic isotopic distribution, as reflected in the MS
of the iodoacetic acid-alkylated version (Figure 2-2E), modified by the halogen pat-
tern. We noted from these data that the dibromide tag imparted a more distinctive
signature on the peptide’s mass envelope than the other halogen tags. Computational
simulations suggested a similar advantage of the dibromide tag for peptides of molec-
ular weight up to at least 5000 Da (see Chapter 3, Figure 3-1). Still, the complexity
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of the tagged peptide’s mass spectrum suggested that dibromide-labeled species above
a certain molecular weight would not be readily discerned from complex mixtures
by manual searching. Thus, we sought to develop a computer algorithm that could
extract such patterns from complex MS data files.

Development of a pattern searching algorithm
Overview

We developed an algorithm that analyzes peaks from the full scan mass spectrum and
matches the real data with simulated data generated by convoluting each predicted
peptide’s isotopic envelope with the pattern produced by a given tag. The algorithm
receives four inputs from the user: (1) the raw mzXML data file, (2) the elemental
composition of the tag, (3) a weighting factor used to tune the selectivity of the algo-
rithm, and (4) the charge states to be considered in the search. The output comprises
the mass and charge states of tagged species as well as elution times of those peptides.
This information can be assembled to form an inclusion list for further tandem MS
sequencing.

The algorithm comprises two major steps. First, the full scan data are analyzed to
identify putative isotopic signature matches to a given elemental composition. Key
to this step is a data-dependent approximation of the contributions of non-halogens
to the observed isotopic envelope. As well, the algorithm allows for the inevitable
imperfections in MS data derived from complex protein samples. Second, the putative
matches identified in the first step are analyzed using a graph theoretic construct to
reduce false positives. In this step, peaks contributing to a putative pattern match are
tracked as a function of LC elution time or with respect to multiple charge states to
add confidence that they derive from a single species. Central features of the algorithm
are described below. Full details can be found in Chapter 2, and the source code is
available in Appendix B.

Identifying putative pattern matches

The algorithm takes a list of peaks from the full scan mass spectrum and first divides
them into sets that are possibly isotopically related, i.e., the peaks are separated by 1/¢
m/z units where ¢ is the peptide’s charge state. After this initial simplification, each
of these sets is searched for the presence of a desired isotopic pattern as follows. First,
each peak in the chosen data set is presumed to represent a peptide. Knowing the
charge state and m/z for that hypothetical peptide, the program predicts its actual
mass and estimates its elemental composition using the averagine system (Chapter
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4)%3. We confirmed the accuracy of the averagine method by comparing the predicted
elemental compositions of 20,000 tryptic peptides from the human proteome with
their actual elemental compositions, which revealed a mean deviation of less than 4%.

From the estimated elemental composition, an isotopic pattern of the unlabeled
hypothetical peptide is predicted. Then the isotopic pattern of the chemical tag (i.e.,
dichloride tag 3 or dibromide tag 4) is convoluted with the predicted peptide isotopic
envelope, generating a reference pattern that is compared with the actual data set to
determine a fitness score. The program also samples reference patterns that model
untagged peptides, doubly tagged peptides, and instrument noise. Additional refer-
ence patterns can be incorporated to account for common sources of false positives
in a sample-dependent manner.

Each reference pattern (@ ) is scaled in the intensity dimension to produce an
optimal alignment with the data (d). This is accomplished by determining the scaling
factor z by a binary search such that the sum of the squared difference (SSD) between
each peak in the reference pattern (a; € @) and the its counterpart in the actual data
set (d; € d) is minimized:

SSD = (d; — za;)? 2.1)

i

After intensity alignment, the score for the entire pattern is then calculated as

Score =[] f (WU_—\/Z;’) (2.2)

)

where o is a measure of peak intensity variance and f is a scoring function for each
peak that produces a value in the range [107¢, 1] given by

f(z) = (1—10"erfc(z) + 10~ (2.3)

in which erfc(x) is the complement of the Gaussian error function and the parameter
¢ is a measure of the “tightness” of the peak matching in the intensity dimension.
The lower bound of ¢ is imposed on the function to reduce round-off errors in float-
ing point arithmetic and to allow for robustness against contaminating peaks when
used in a Bayesian system. In short, this system allows the identification of isotopic
envelopes in actual MS data that do not perfectly match idealized mass pattern signa-
tures by virtue of overlapping peaks from other molecular species.

Finally, after scores of all patterns of interest have been determined, the best match
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can be found using a Bayesian approach:
P(d | @)P(d; )
> P(d] di ) P(d)
k
_ Score(a;, d)P(a;)
Z Score(dy,, d)P(d,)
k

(2.4)

P(@@|d)=

(2.5)

where the P(pattern;) terms are user-defined weighting factors that describe the prob-
ability that any peak in the dataset is caused by a molecular species with the isotopic
distribution described by patterni, and are determined experimentally. These weight-
ing factors allow one to increase the specificity of the program for a selected pattern,
thereby eliminating common false positives, or conversely, to increase the number of
hits, though potentially at the cost of more false positives. It is important to note that
while the value P(a |d') will always be within the range [0, 1], it is not strictly a prob-
ability as we have not rigorously defined the value for o nor are we able to account
for every possible source of the data. Fortunately, this is not a prerequisite for pattern
matching and this algorithm is able discriminate strongly between different isotopic
patterns while still allowing for imperfect data, including data with obscured peaks.

Reducing false positives with a graph theoretic approach

Naive pattern matching, as described above, may produce significant numbers of false
positive matches depending on the complexity of the data. To reduce the false posi-
tive rates, our algorithm exploits two features of LC-MS data: 1) peptides are often
detected in multiple charge states, and 2) the same peptide is likely to be detected
in several adjacent scans due to the nature of LC elution profiles. To take advantage
of these features, a graph theoretic approach employed used wherein each potential
match is treated as a node in a graph. Edges are then drawn between two nodes if
1) the nodes could have come from the same molecular species, and 2) the nodes
have sufficiently similar LC elution times. After edges are built, the graph can be de-
composed into disjoint subsets, in which all nodes in a given subset could have been
produced by the same molecular species and each node eluted close in time to an-
other node in that subset. Each of these subsets is then scored on a number of factors,
including the number of nodes in the set and the number of unique charge states
detected. Because matches that were made by chance are unlikely to score highly on
these criteria, this process acts as an efficient filter to remove false positive matches.
A detailed description of the searching algorithm along with an analysis of its perfor-
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mance is given in Chapter 3 and computer source code can be found in Appendix

B.

Application of IsoStamp in a model shotgun proteomics experiment

As mentioned previously, the extreme complexity of unfractionated cell or tissue
lysates renders the identification of low abundance proteins by shotgun proteomics a
challenging endeavor. We therefore sought to test the sensitivity of IsoStamp in iden-
tifying labeled proteins from whole cell lysates. BSA was chosen as a model protein
for labeling because it contains 35 cysteine residues that are spread throughout the
entire protein, and produces 80 tryptic peptides of which 25 possess cysteine residues
including 16 with a single cysteine residue (no missed cleavages).

We generated detergent lysates of Jurkat cells, a human T-lymphoma cell line,
and added known amounts of BSA that had been alkylated on its cysteine residues
with dibromide tag 4. After digestion with trypsin, the sample was separated by in-
line reversed-phase LC and analyzed on an Orbitrap mass spectrometer. Figure 2-3
shows the base peak chromatogram (Figure 2-3A) and a representative full scan mass
spectrum (Figure 2-3B) of the sample derived from whole cell lysate (10 pg of total
protein) to which 150 femtomoles of 4-labeled BSA had been added. The peptide
identified, LKPDPNTLC*DEFK (corresponding to residues 139-151), showed the
correct isotopic envelope for a dibromide-labeled species at that mass (Figure 2-3C).
Other labeled BSA-derived peptides were also identified in the full scan MS, collec-
tively reflecting 30% coverage of cysteine-containing peptides. Notably, the pattern
in Figure 2-3C (black) was found computationally at a signal-to-noise ratio (S/N) of
2.5:1 despite the presence of intervening peaks (/ight gray) within the envelope (Fig-
ure 2-3C). Using conventional shotgun proteomics methodologies, peaks at this low
level of intensity would likely be excluded from tandem MS analysis. Without some
sort of enrichment, a protein at this low level of abundance in such a complex sample
would go undetected.

The dibromide tag is superior to the other halogen tags with respect
to false positive rates and sensitivity

Using BSA as a substrate, we compared the performance of the dibromide tag with
those of other halogen tags, first focusing on sensitivity. A central feature of the
IsoStamp algorithm is that the user can tune its parameters to balance detection sen-
sitivity against false positive rate. To determine the relative sensitivities of the tags, we
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Figure 2-3: The dibromide motif can be recognized at extremely low signal to noise ratios. (A) The
base peak chromatogram and (B) a representative spectrum of a proteolytic digest of Jurkat cell lysate
(10 mg total protein) with 150 fmole of dibromide-labeled BSA added prior to trypsinization. (C)
The expanded region shows the dibromide-labeled peptide LKPDPNTLC*DEFK at a S/N of 2.5:1.

therefore fixed the maximum allowed number of false positive identifications found
by searching full-scan MS data derived from Jurkat cell lysates with no added BSA
(and thus no real positives). We then performed a titration experiment where known
quantities of labeled BSA were added to a fixed amount of Jurkat cell lysate. Each
mixture was then proteolytically digested, subjected to LC-MS analysis, and the re-
sulting data were searched for the tag’s isotopic pattern. The number of true positive
identifications as a function of protein concentration are shown in Figure 2-4A.

At all protein concentrations, the dibromide-labeled peptide were detected with
a higher frequency than peptides labeled with any other tag. 'The data appear to
converge at lower protein concentrations, but this may reflect the detection limits
of the instrument rather than capabilities of the isotopic pattern searching algorithm
(as mentioned above, the pattern is detectable at a S/N ratio as low as 2.5:1, Figure
2-3C). Overall, the dibromide isotopic signature was detected approximately twice
as often as the dichloride and three times as often as the monobromide signatures
(Figure 2-4A).

To analyze the relative false positive rates of the halogenated tags, the true positive
detection rate was fixed in a sample containing 450 fmoles of labeled BSA in 10ug
of Jurkat cell lysate. The false positive rate at these settings was then determined
by searching the no-BSA data described above. In this setting, true positives were
determined by a laborious manual analysis of the MS data with comparison to a list
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Figure 2-4: The dibromide motif is superior to other halogen tags with respect false positive rate and
sensitivity. (A) Tryptic digest of Jurkat cell lysates were analyzed by LC-MS and the data were searched
for signature motifs of the dibromide, dichloride and monobromide tags under searching conditions
that found 50% of true positives when tagged BSA (150 fmoles) was initially added to the lysate.
(B) Sensitivity was determined by titrating various amounts of halogen-tagged BSA into 10 ug of
Jurkat cell lysate (based on total protein) and analyzing the digest by LC-MS. The number of peptides
corresponding to tagged BSA was determined as a proportion of the maximum detectable by manual
searching of the full scan MS data.

of predicted masses for tagged BSA species. True positives were compared to data
derived from MS analysis of a tryptic digest of pure tagged BSA, which provided a
measure of elution time and ionization efficiency for each authentic peptide.

The numbers of false positive identifications made using the dibromide, dichlo-
ride, and monobromide tags are shown in Figure 2-4B. Compared to the dibromide
tag, the dichloride tag produced greater than 30-fold more false hits while the mono-
bromide tag produced > 120-fold more false hits. Overall, the dibromide tag out-
performs the dichloride and monobromide tags by a substantial margin. We were
unable to determine the sensitivity and false positive rate for the monochloride tag;
reasonable searching parameters to detect 50% of the true positives in the pure BSA
sample could not be found due to the minimal influence of this tag on the natural
isotopic pattern of peptides.

The dibromide tag can be detected on small proteins

The impressive performance of the dibromide tag as a means to distinguish labeled
from unlabeled tryptic peptides motivated us to explore its potential use in the iden-
tification of larger peptides or small proteins, a central challenge in the emerging area

of middle down proteomics*4.

In addition to improving coverage and confidence
in protein identifications, the analysis of larger protein fragments enables studies of
multiple posttranslational modifications that might occur combinatorially on a sin-
gle protein molecule?®. Studies of this latter type could benefit tremendously from

chemical tagging methods.



2.3

2.3.1

2.3 DISCUSSION 31

with dibromide B with dibromide

without
dibromide

without
dibromide

Barstar-unlabeled Barstar-labeled

Figure 2-5: The dibromide motif is distinguishable on small proteins. The predicted isotopic envelope
with (red) and without (b/ue) the dibromide tag fit to mass spectra of (A) barstar and (B) dibromide-
labeled barstar. Barstar’s predicted MW = 11.7 kDa. Spectra shown are from the +9 charge state.

To determine whether the dibromide tag’s isotopic signature can be detected on
larger peptides, we labeled the small protein Barstar from B. cenocepacia (11,659.8
Da, including a C-terminal 6xHis tag) with dibromide tag 4 on a single cysteine
residue introduced by site-directed mutagenesis (126C). The labeled intact protein
was analyzed by LC-MS on an LTQ-Orbitrap XL mass spectrometer. Shown in Fig-
ure 2-5 are the mass spectra of unlabeled (A) and labeled (B) Barstar (black) in the
+9 charge state. Using the averagine system, we predicted the mass envelope of the
protein with and without the dibromide tag and depicted the peak intensities in the
form of red and blue curves, respectively. An overlay of the two curves suggested
that addition of the dibromide tag should cause a detectable widening of the mass
envelope. We calculated the rms difference between the peak intensities from the
actual MS data and each of the predicted mass envelopes. The experimental data
for the dibromide tagged protein showed a considerably lower rms deviation from its
averagine-predicted mass spectrum than from the predicted spectrum of the untagged
protein (and vice versa). The fact that labeled and unlabeled species with masses ap-
proaching 12 kDa are computationally distinguishable suggests applications of the
dibromide tag in middle down proteomics analyses.

Discussion

The uniqueness of the dibromide tag

The dibromide tag imparts a distinct isotopic signature on peptides by elevating the
intensity of the M +2 peak with respect to the two leading peaks (Figure 2-2). By con-
trast, untagged peptides up to ~3000 Da typically display mass envelopes in which
the leading peak is highest in intensity. The dichloride tag falls short because its iso-
topic signature enhances the intensity of M rather than M + 2, reinforcing the mass
pattern of the underlying peptide. The monobromide signature also enhances the in-
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tensity of the tagged peptide’s M + 2 peak relative to M, but not as dramatically as the
dibromide pattern. Interestingly, the dichloride pattern has a similar impact on the
relative intensity of M + 2 compared to the monobromide motif, but is overall more
detectable due to a broadening of the isotopic envelope. One might consider build-
ing additional halogens or other heavy elements into a tag to create a more distinct
mass pattern, but there are diminishing returns. As the same total signal intensity
is split among more peaks, sensitivity for their detection will be compromised. The
dibromide signature strikes a balance by enabling high-fidelity pattern matching with
good sensitivity.

The IsoStamp method can be employed in any chemically directed proteomics
experiment in which a tag is covalently bound to target proteins; one need simply
endow the tagging reagent with the dibromide signature. Such experiments include
ICAT and iTRAQ), as well as emerging bioorthogonal ligation strategies that install
uniquely reactive functionalities at sites of posttranslational modifications?4. Affinity-
based proteomics experiments in which tags are covalently bound to enzyme active
site residues®!' and protein chemical crosslinking studies*® can also benefit from inte-
gration of the IsoStamp method. In all cases, including a dibromide signature in the
covalently bound tag will improve detection and identification of labeled peptides. Fi-
nally, the detectable mass pattern employed in the IsoStamp method can be generated
in ways other than covalent chemical labeling strategies and using isotopic mixtures
other than the naturally occurring dibromide isotopomers. For example, metabolic
labeling with isotopomeric substrate mixtures can, in principle, endow biomolecules
with unique mass patterns that are detectable without need for chemical labeling.
Consequently, we envision numerous future application of IsoStamp in glycomics
and metabolomics in addition to proteomics.

Materials and Methods

Synthesis

General. All chemical reagents were of analytical grade, obtained from commercial
suppliers, and used without further purification unless otherwise noted. All reaction
flasks were oven dried prior to use. Reactions were performed in an Ny atmosphere
and liquid reagents were added with a syringe unless otherwise noted. Reactions were
analyzed with Analtech 250-mm silica gel G plates and visualized by staining with
ceric ammonium molybdate, ninhydrin, or by absorbance of UV light at 254 nm.
Organic extracts were dried over MgSOy, and solvents were removed with a rotary
evaporator at reduced pressure (20 torr), unless otherwise noted. Proton NMR spectra
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were obtained with a 400 MHz Bruker spectrometer. Chemical shifts are reported in
ppm referenced to the solvent peak for 'H NMR. Coupling constants (/) are reported
in Hz. Reversed-phase HPLC was performed by using a Rainin Dynamax SD-200
HPLC system with 210-nm and 254-nm detection on a Microsorb C18 analytical or
preparative column.

Halogenated tyrosine salts. The halogenated tyrosine salts 5, 7, 9, and 11 were
prepared according to literature procedures .

General procedure for preparation of alkylating agents. To the halogenated tyrosine
salt (100 mg) in anhydrous DMF (0.25 mL) was added anhydrous sodium carbonate
(2 equiv.) and the mixture left to stir for 0.5 hr at room temperature under a nitrogen
atmosphere. Chloroacetyl chloride (1 equiv.) was added dropwise over 5 minutes and
the reaction was stirred at room temperature under a nitrogen atmosphere for 1 hr
before the reaction was transferred to a separatory funnel with EtOAc (15 mL). The
organic layer was washed with 1 M HCI (5 mL) and the layers separated. The aqueous
layer was extracted twice with EtOAc (5 mL) and the combined organic extracts were
dried over MgSQOy, prior to removal of solvent by rotary evaporation. The crude ma-
terial was then dissolved in anhydrous DMF (0.5 mL) and sodium iodide was added
(6 equiv.). The mixture was stirred at room temperature in the dark under a nitrogen
atmosphere for 24 hours before the mixture was transferred to a separatory funnel
with EtOAc (15 mL). The organic layer was washed with water (5 mL) and the layers
were separated. The aqueous layer was extracted twice with EtOAc (5 mL) and the
combined organic extracts were dried over MgSO,. 'The crude product was purified
using reverse-phase HPLC with a gradient of 15%-60% acetonitrile containing 0.1%
TFA over 40 minutes. All fractions were kept in foil until the solvent was removed by
rotary evaporation to yield white solid. The synthetic scheme can be seen in Figure
2-6. Compound 1. 'H NMR (400 MHz, CD30D) d 7.36 (s, 2H), 4.59-4.55 (m,
1H),3.73 (d, 1H, ] = 9.6 Hz), 3.64 (d, 1H, ] = 9.6 Hz), 3.11 (dd, 1H, ] = 4.8 Hz, 14
Hz), 2.89-2.83 (m, 1H). Compound 2. '"H NMR (400 MHz, CD30D) d 7.33 (d,
1H, J = 2 Hz), 7.03 (dd, 1H, ] = 2 Hz, 8.4 Hz), 6.80 (d, 1H, ] = 8.4 Hz), 4.57-4.54
(m, 1H), 3.72 (d, 1H, ] = 10 Hz), 3.65 (d, 1H, J = 10 Hz), 3.09 (dd, 1H, J = 4.8
Hz, 14 Hz), 2.88-2.83 (m, 1H). Compound 3. 'H NMR (400 MHz, CD30D) d
7.17 (d, 1H, ] = 2 Hz), 6.99 (dd, 1H, J = 2 Hz, 8.4 Hz), 6.81 (d, 1H, ] = 8.4 Hz),
4.58-4.54 (m, 1H), 3.72 (d, 1H, ] = 10 Hz), 3.65 (d, 1H, ] = 10 Hz), 3.09 (dd,
1H, J = 4.8 Hz, 14 Hz), 2.89-2.83 (m, 1H). Compound 4. 'H NMR (400 MHz,
CD30D) d 7.16 (s, 2H), 4.56-4.53 (m, 1H), 3.73 (d, 1H, J = 9.6 Hz), 3.64 (d, 1H,
J=9.6 Hz), 3.11 (dd, 1H, ] = 4.8 Hz, 14 Hz), 2.89-2.83 (m, 1H).
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Figure 2-6: The synthesis of alkylating halide tags. See text for details.

Protein Labeling

A 2 mg/mL solution of BSA (100 ug) in 250 mM ammonium bicarbonate was re-
duced by adding DTT to a concentration of 2.5 mM and placed at 56°C for 30 min.
After cooling to room temperature, the halogenated tag was added to a concentration
of 10 mM from a 500 mM solution in DME The reaction was allowed to proceed
at room temperature in the dark for 1 h. before quenching excess tag with 5 L of a
1 M dithiothreitol solution for 30 min. The sample was subjected to size exclusion
chromatography using a Bio-Rad Micro Bio-Spin 6 column to removed excess tag.

Lysate Preparation

Whole-cell Jurkat lysate was prepared from cultures that were lysed in a buffer con-
taining 1% Triton-X100, 20 mM Tris pH 7.4, 150 mM NaCl and protease inhibitors
(inhibitor cocktail IIT from Calbiochem). Following lysis, the sample was precipitated
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using 9 volumes of acetone and placed at -20°C for two hours followed by centrifu-
gation at 13,000 rpms for 20 minutes at 4°C . The supernatant was removed and the
pellet was resolubilized in 8 M urea buffered to pH 8.0. A BCA assay was performed
to determine protein concentration followed by dilution to 1 mg/mL.

Serial Dilutions and Protein Digestion

Labeled BSA samples were serially diluted into 10mL of 1mg/mL whole-cell Jurkat
lysate at concentrations 0of 0.03, 0.08, 0.15, 0.30, 0.80, 1.50, 3.0, and 30.0 picomoles.
The samples were then subjected to trypsin digestion (50:1 protein/enzyme) at 37°C
for 16 h. Prior to MS analysis, the peptides were desalted using Millipore C18 zip
tips according to the manufacturer’s instructions.

LC-MS Analysis

All samples were subjected to reversed-phase capillary chromatography with an Ag-
ilent 1200 LC system using a 100-um X 1-cm (5-pm, 200 Magic C18AQ resin;
Michrom Bioresources, Auburn, CA) fritted capillary pre-column and a 100-um X
10-cm self-packed C18 column (5-um, 100 Magic C18AQ resin; Michrom Biore-
sources, Auburn, CA). A binary solvent system consisting of buffer A (0.1% formic
acid) and buffer B (0.1% formic acid in acetonitrile) was employed. After a 10 min.
loading step in 2% buffer B, a gradient was employed from 10% to 40% buffer B for
62 min., followed by a washing step in 99% buffer B for 10 min. A solvent split was
used to maintain a flow rate of 400 nL/min at the column tip. Data were collected on
a Thermo-Finnigan Orbitrap mass spectrometer set to 60,000 resolution in full scan
mode with an m/z scan range of 400-2000.

Data Processing

All data was collected in profile mode. Noise reduction and peak detection was per-
formed using software developed in house based on the method described by Du e¢
al. which makes use of a continuous wavelet transform>. The resulting centroided
mzXML files were then searched for the presence of a desired isotopic pattern using
software developed in house following the algorithm described above.

True Positive Determination

In order to analyze the performance of the searching algorithm, it was necessary to
analyze the data independently to determine the presence of labeled BSA peptides.
This was done by performing an in silico digestion of BSA with up to two missed
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tryptic cleavage sites, and predicting the mass of tagged cysteinyl peptides. From
this list of putative masses, the raw data was then analyzed manually by obtaining an
extracted ion chromatogram (EIC) for each predicted mass and allowing for up to five
charges. Each EIC was then used to determine the visual presence of the dibromide
pattern. Peptides were considered to be ‘found’ if at least one charge state of the
predicted mass value with an appropriate isotopic signature was detected. It should
be noted that this method is extremely time consuming and only possible if the masses
of the peptides are known in advance.

Barstar Mutagenesis and protein purification

A plasmid containing the Bacillus amyloliquefaciens protein Barstar as a 6xHis fusion
in a pQE30 expression vector was obtained from D. Tirrell (California Insititue of
Technology). A construct encoding the single point mutant I26C was prepared using
the Quickchange protocol (Stratagene) using the primers:

Forward: 5—GGG GAA CAA ATC AGA AGT TGC AGC GAC CTC CAC CAG AC—3'
Reverse: 5'—GTC TGG TGG AGG TCG CTG CAA CTT CTG ATT TGT TCC cC—3'

The mutant was expressed in M15-MA[pREP4] cells obtained from D. Tirrell (Cal-
ifornia Instititue of Technology). Individual transformants were used to inoculate
5SmL LB starter cultures supplemented with 200 pug/mL Amp and 35 ug/mL Kan.
After an overnight incubation at 37°C  with shaking, 1 mL was transferred to 50
mL of the same media. Protein expression was induced with IPTG when the ODyq
reached 0.7. Cultures were clarified by centrifugation 4 h post induction and Barstar
was purified under denaturing conditions using Ni-NTA spin columns according to

manufacturer’s specifications (Qiagen). Mass was verified by high-resolution mass
spectrometry, expected 11667.13 Da found 11667.2 Da.

Barstar Labeling

20 pg of 126C Barstar in 50 pL of 250 mM ammonium bicarbonate was reduced
by adding DTT to a concentration of 2.5 mM and placed at 56 °C for 30 min.
After cooling to room temperature, the dibromo tag was added to a concentration
of 10 mM from a 500 mM solution in DME The reaction was allowed to proceed
at room temperature in the dark for 1 h. before quenching excess tag with 10 uL of
a 1 M DTT solution at r.t. for 30 min. The sample was subjected to size exclusion
chromatography using a Bio-Rad Micro Bio-Spin 6 column to removed excess tag.
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LC-MS analysis of intact proteins

Intact protein samples were analyzed using an Agilent 1200 series liquid chromato-
graph (LC; Santa Clara, CA) that was connected in-line with an LTQ Orbitrap XL
hybrid mass spectrometer equipped with an Ion Max electrospray ionization source
(ESL Thermo Fisher Scientific, Waltham, MA). The LC was equipped with C8 guard
(Poroshell 300SB-CS8, 5 yum, 12.5 x 2.1 mm, Agilent) and analytical (75 x 0.5 mm)
columns and a 100 pL sample loop.

Solvent A was 0.1% formic acid/99.9% water and solvent B was 0.1% formic
acid/99.9% acetonitrile (v/v). Sample solutions contained in 0.3 mL polypropylene
snap-top vials sealed with rubber septa caps (Wheaton Science, Millville, NJ) were
loaded into the Agilent 1200 autosampler compartment prior to analysis. For each
sample, approximately 100 to 200 picomoles of protein analyte was injected onto
the column. Following sample injection, analyte trapping was performed for 5 min
with 99.5% A at a flow rate of 90 L/min. The elution program consisted of a linear
gradient from 30% to 95% B over 19.5 min, isocratic conditions at 95% B for 5 min,
a linear gradient to 0.5% B over 0.5 min, and then isocratic conditions at 0.5% B for
9.5 min, at a flow rate of 90 pL/min.

The column and sample compartments were maintained at 35°C and 10°C, re-
spectively. Solvent (Milli-Q water) blanks were run between samples, and the au-
tosampler injection needle was rinsed with Milli-Q water after each sample injection,
to avoid cross-contamination between samples. The connections between the LC
column exit and the mass spectrometer ion source were made using PEEK tubing
(0.005” i.d. x 1/16” o.d., Western Analytical, Lake Elsinore, CA). External mass
calibration was performed prior to analysis using the standard LTQ calibration mix-
ture containing caffeine, the peptide MRFA, and Ultramark 1621 dissolved in 51%
acetonitrile/25% methanol/23% water/1% acetic acid solution (v/v).

The ESI source parameters were as follows: ion transfer capillary temperature
275°C, normalized sheath gas (nitrogen) flow rate 25%, ESI voltage 2.5 kV, ion
transfer capillary voltage 33 V, and tube lens voltage 125 V. Mass spectra were recorded
in the positive ion mode over the range m/z = 500 to 2000 using the Orbitrap mass
analyzer, in profile format, with a full MS automatic gain control target setting of 5
x 105 charges and a resolution setting of 6 x 104 (at m/z = 400, FWHM). Raw mass
spectra were processed using Xcalibur software (version 4.1, Thermo) and measured
charge state distributions were deconvoluted using ProMass software (version 2.5 SR-
1, Novatia, Monmouth Junction, NJ), using default “small protein” parameters.
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Analysis of Barstar data

Barstar data was analyzed for goodness of fit against an averagine model with and
without a dibromide tag (Figure 2-5). Averagine isotopic envelopes were predicted
based on the molecular weight of barstar. Models were fit against the centroided data
by doing a binary search on the parameter z to minimize the sum-of-squares difference
between the data and the model (Equation 2.1). After alignment, the fit was scored
according to Equation 2.2 with € = 107°, o = 25% RMS intensity, and N = 16. As
scores produced in this manner are typically very small, the log values of the scores
were compared:

model wunlabeled barstar labeled barstar

averagine -17.2 -35.5
averagine + Bry -21.7 -20.5

indicating that the tagged model fits the tagged data most strongly than the untagged
model, and vice versa.
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chapter three

Automated isotopic pattern searching in
complex mass spectral data

Introduction

The isotopic pattern imparted by the dibromide tag and similar isotopic fingerprint
labeling strategies allows tagged molecules to be detected among a sea of untagged
species. However, as a typical proteomics experiment can produce upwards of 1 GB of
raw data*, such a tagging strategy is of limited utility if the patterns must be matched
by hand. Thus, it is extremely advantageous, if not absolutely necessary, to automate
this process. In the absence such an automated processes, the human input required
to locate tagged species is considerable. Furthermore, in the absence of automation,
the requirement for performing two LC-MS experiments on every sample is abso-
lute—a first experiment must be done to identify patterns of interest, and a second
experiment must be done to perform MS? experiments on detected species. With a
reasonably fast automated searching algorithm, it is theoretically possible to perform
both experiments concurrently, though this will likely require collaboration with in-
strument manufacturers to embed the searching code into the machine’s operational
software. To achieve these aims, a software package was developed to facilitate the
rapid and tunable analysis of large LC-MS data sets.

Design of an automated pattern matching algorithm

Overview

There are a number of properties desirable in an isotopic pattern-searching algorithm.
Ideally, any automated system for pattern searching should have number of properties,
as outlined in Table 3-1.

*mzXML files generated from Orbitrap RAW files are typically in the 1-3 GB range, while those
from time-of-flight instruments can be even larger
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Table 3-1: Desired properties of a pattern searching system

1. Able to detect the desired pattern over a large range of signal
intensities

2. Able to match imperfect spectra

3. Produces a reasonably low number of false-positive IDs

4. Able to search a large dataset in a short period of time

5. Capable of detecting patterns in the presence of contaminating
isotopic peaks (e.g., **C, N, etc)

6. Readily adaptable to searching for other isotopic patterns,

and the tolerances should be readily tunable

The first three requirements are essential to due to the nature of LC-MS data:
searching must be possible over the entire dynamic range of the instrument, often
spanning over five orders of magnitude in signal intensity. The algorithm must also
be able to account for noise endemic in complex peptide LC-MS data, including
such issues as different ions with overlapping spectra and imperfect reproduction of
an ion’s true isotopic envelope, particularly at low signal intensities'. Because we wish
to use this algorithm to perform directed proteomics, the searching must produce a
low number of false positive matches. The number of false-positive identifications
that is reasonable depends on a number of factors, but it is usually desirable that
this number be significantly less than 1,000 so that the instrument does not spend
an unreasonable amount of time performing secondary fragmentation on untagged
molecules. In the case of doing secondary fragmentation with ETD (currently the
slowest method, requiring 200 ms for each fragmentation event), 1,000 secondary
fragmentation events would take 200 seconds, or 5% of the total time allotted to
perform secondary fragmentation in a 90 minute LC-MS experiment.

The requirement for the algorithm run-time is desirable so that this methodology
can eventually be performed in a single experiment, .e., so that the instrument can de-
tect an isotopic pattern and immediately perform tandem fragmentation on an ion at
runtime. Requirements five is due to the chemical nature of large biomolecules such
as peptides. As the molecular weight increases, the effects of naturally occurring heavy
isotopes of common elements can skew a given isotopic pattern, as is demonstrated
in Figure 3-1. It is essential that the algorithm accounts for the isotopic contributions
from the peptides themselves, as this contribution is non-negligible (see Table 2-1).
In particular, *C, *N, O, and **S make significant contributions to the isotopic
pattern of peptides. This effect becomes more pronouced as the molecular weight of
peptides becomes larger, as can be seen in Figure 3-1. A method for rapidly determin-
ing the contribution of such ‘contaminating’ isotopes to the overall isotopic envelope
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is described in Chapter 4.

Finally, to add flexibility, requirement six was added to facilitate adaptation of
the algorithm to new experimental conditions, including the possible use of other
isotopic fingerprinting tags. These requirements impose a number of restrictions on
the algorithms we can use. The first restriction prevents us from using any scoring
system that depends absolutely on intensities, while the second requirement demands
pattern matching to be approximate—due to signal variability, it is quite likely that
isotopic envelopes of real labeled ions may not be faithfully reproduced in real-world
data.

Of those requirements listed in Table 3-1, the third is by far the most difficult.
We require an algorithm that can find (ideally) all real labeled species while minimiz-
ing the number of false positives. Furthermore, we want this requirement to hold
in extremely complex samples to the extent that we can find low-abundance labeled
species against a background of unlabeled peptides (e.g., from total cell lysate). This
requirement conflicts with the tolerance requirement, as it is difficult to have a toler-
ant pattern matching system that also does not produce false positives. Indeed, the
stronger you make the tolerance requirements, the harder this requirement becomes
to realize. To overcome this problem, certain properties of LC-MS data and mass
spectrometry in general can be taken into account. Firstly, since chromatography
is involved, one can look for the same molecular species eluting over a number of
spectral scans close in time. Secondly, since it is common for peptides to appear in
numerous charge states, we can look for several ions of the same molecular species.
While none of these properties in guaranteed, by scoring matches based on pattern
quality, temporal correlation, and the existence of multiple charge states we can elim-
inate a large number of false positives that would be identified by naive algorithm.
A graph-theoretic construct which takes these factors into account to reduce false
positive rates is introduced in Section 3.8.

Isotopic correction in pattern searching

There are primarily two approaches to dealing with this isotopic contamination. The
first method is to “de-isotope” mass spectral data before analysis*?. While there are
some algorithms available for this method, most are not sufficiently robust for the
purpose of pattern matching in real time. This approach is made more complicated
by the fact that we don’t want to remove a// isotopic peaks, but rather only those that
do not come from the tag we are interested in. This is a significant hurdle for any de-
isotoping strategy. The second approach works in reverse—rather than try to remove
isotopic contamination, an attempt can be made to predict it. Predicting the isotopic
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Figure 3-1: The natural abundance of biological elements produce a significant skewing effect that can

be seen in the models here. (A) The change in isotopic distribution in an average peptide ranging in

weight from 500 Da to 5 kDa . The isotopic distribution of the same peptides can be seen with the
addition of a (B) monochloride, (C) dichloride, (D) monobromide, or (E) a dibromide label.
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distribution of a molecule is a known problem, and requires only that we know the
number and natural abundances of all elements in a molecule of question.

Since the natural abundances of the elements typically found in peptides are known,
the problem reduces to determining the number of atoms of each element. This prob-
lem is also solvable when proteins are examined on the atomic level. Where the amino
acid composition varies greatly between peptides, the elemental composition remain
constant. Such a system has been described by Senko, e 4/, and is termed the ‘aver-
agine’ system*. This system as applied to pattern matching is analyzed in Section 4.2
and extended so as to be applicable to a wider range of biomolecules in Section 4.3.
With knowledge about the natural abundance of the relevant elements, and can esti-
mate the number of each one of these in a peptide if we know the molecular weight.
Rather than attempting to de-isotope data prior to pattern searching, we can instead
leave the data in its original format and search for an adaptable “smart” pattern—one
that is updated to reflect what the pattern would look like when attached to a peptide
of the appropriate molecular weight. This system also helps facilitate the final goal
of facile adaptation of the algorithm to search for other (non-dibromide) patterns:
rather than change the de-isotoping algorithm to permit other isotopes to exist (a
rather complex problem), one can simply start with a different pattern and adapt it
to the data as it is searched.

3.3 'The structure of peptide LC-MS data

Before continuing to the description of the searching algorithm employed here, it is
necessary to briefly describe the structure of peptide LC-MS data. To a first, data
collected from an LC-MS experiment is simply a two-dimensional set of intensities,
with each intensity being a function of elution time, ¢, and of the mass-to-charge
ratio, m/z:

I(t,m/z)

However, due to the nature in which the data are collected, the time domain consists
of a discrete set of slices through the m/z domain termed scans. Depending on the
exact instrument used, scans may or may not be separated by a constant time.

A complication in processing LC-MS data is that, at present, there is no standard
binary representation of the data in use, and each manufacturer uses a different format
for storing the data. This has lead to the adoption of the open formats mzXML>®
and, more recently, mzML’. At the time of this writing, mzML has yet to gain wide
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support. As such, mzXML was chosen as the primary means of storing and accessing
data, and a C++ library to read and write this data format can be found in Appendix
B.2. For LC-MS data, an mzXML file consists header data along with a set of scan
blocks, each of which contains a set of peaks. Each set of peaks is a list of floating point
values representing m/z—intensity pairs. The entire mzXML schema can be found in
Pedrioli ez al., 2004°. Due to the structure of the files, it is possible to randomly
access the entire set of peaks for an individual scan, but accessing the intensity of an
individual m/z value across multiple scans is computationally intensive as it requires
reading and decoding the entire set of peaks for each scan of interest. Thus, it is
typically advantageous to processes each scan in its entirety before moving to the next
scan to prevent re-reading the same data. It should also be noted that, presently, it
is not reasonable to load the entire set of peaks into memory at once, as an entire
mzXML file can be several gigabytes in size.

A multi-step pattern searching process

The entire pattern searching process can be broken down into a number of steps as
outlined in Figure 3-2. The first step, peak detection is a well documented process®!!
(reviewed by Zhang ez al.'?). For our purposes, a continuous wavelet transform was
chosen for this process as it produces accurate intensities and m/z values while provid-
ing strong noise filtration®. Details of the algorithm along with computer source code
can be found in Appendix C. After peak detection, each full scan from an LC-MS
experiment is analyzed independently. Each scan is first separated into sets of peaks
that could potentially be isotopically related (see Section 3.5). This is done to simplify
the computational complexity of pattern searching on large data sets by significantly
reducing the search space. Once these peak sets are obtained, each is searched for the
presence of the isotopic pattern of interest, with the pattern modified to account for
contaminating isotopes (Section 3.7). If a match is made that is sufficiently good,
information on that match (m/z ratio, signal intensity, charge state, retention time,
etc...) is saved for further analyses. The above processes is repeated for each scan in
the LC-MS file.

Once a list of putative matches has been obtained, they are further analyzed for
the presence of multiple charge states due to the same molecular species and temporal
elution profile (Section 3.8). Potential matches are then scored on a variety of criteria,
and features that meet a minimum cutoff are then exported for further analysis or use
in future experiments (Section 3.9).

TFeatures can be output as a list of likely peptide molecular weights (with associated charge states
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1. Perform peak detection to obtain a ‘centroided’ set of peaks for each scan.
2. Identify putative matches in a full scan mass spectrum

(a) Divide each full scan into sets of peaks that could be isotopically
related
(b) Identify potential patterns in each of these sets

(c) Save sufficiently good matches for further analysis
3. Analyze putative matches using a graph theoretic construct

(a) Treat each putative match as a node in a graph

(b) If two nodes have similar R values and could have been produced
by the same molecular species, create an edge between those nodes.

(c) Decompose the graph into disjoint sets based on the edges created

4. Score analyzed matches

Figure 3-2: An overview of the pattern searching process.

Simplifying full scan mass spectral data

The first step in the searching process is to divide each full scan into sets of peaks that
are potentially isotopically related. This is done to reduce the searching space for the
pattern matching step. To achieve this goal, a graph construct has been employed.
In this construct, each peak is treated as a node on a graph, and edges are drawn
between two nodes if the corresponding peaks could be isotopically related. Peaks
are considered to be potentially related if their m/z values differ by —- Z

charge or charge
units (with some tolerance), where charge is an integer in a predetermined range

representing the possible charge state of the ion (see Algorithm 3-1). Separations of

2
charge

isotopic envelope.
Once a graph has been constructed for the scan and edges have been created where

are allowed to account for the possibility that peaks may be absent from the

appropriate, the graph is decomposed into disjoint sets*. Subsets produced in this
way are typically much smaller that the total set of peaks for the scan, so this is an
efficient method of reducing the complexity of the data without losing meaningful

observed) or alist of ions for an inclusion list. If the searching code can be embedded in the instrument
control software, it would be trivial to output commands to perform MS?to the mass spectrometer.
tSets such that if two nodes # € X and y € Y shared an edge, then X =Y.
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difference = |mz; — mzy|
related = false
for charge = charge_min to charge_max do
if |difference — 1.0/charge| < dm
related = true
fi
if |difference — 2.0/charge | < dm
related = true
fi
od
return related

Algorithm 3-1: Determining if two peaks could be isotopically related. mz; and mz, are the m/z

values of two peaks of interest, charge_min and charge_maz are the minimum and maximum charge

states to be considered, and dm is the m/z tolerance defined for the algorithm (dependent on the
instrument). The second conditional is added to make the algorithm robust against missing peaks.

information, as no isotopic patterns can be lost using this method unless they are
missing two or more of the isotopic peaks. It is important to note that at this point,
peaks in a given subset are not necessarily charge-state consistent. That is, in a given
subset, there could be peaks separated by 1.0 £dm mass units as well as peaks separated
by 0.33 +dm mass units (representing the charge states +1 and +3 respectively), and
so forth. These possible inconsistencies are handled at a later stage of the searching
process.
Pattern intensity matching is subsequently performed on sets of peaks that are
charge-state consistent (i.e., evenly spaced, with spacing of 1.0, 0.5, 0.33, 0.25, 0.2,
- m/z units). These are easily obtained from the peak sets obtained in the previous
section, and each set of charge-state consistent peaks is a subset of the isotopically
related subsets generated in the previous step. From the peak sets previously obtained,
each charge state is searched for subsets of peaks that line up with the correct spacing,
allowing for missed peaks in the set. Missing peaks are added as peaks with the correct
m/z value but having zero intensity.

Pattern scoring

Essential to the pattern matching step used in this algorithm is a method to score
individual patterns. Here are discussed various schemes for scoring an isotopic pat-
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tern. For purposes here, a “pattern” is considered to be a set of intensities assumed
to be separated by appropriate (and known) m/z distances, and can be represented
mathematically by a vector d.

Comparing multiple patterns

The purpose of pattern scoring is to differentiate between the isotopic pattern pro-
duced by a real labeled peptide and various other patterns—real unlabeled peptides,
low intensity noise, and other contaminates that may be in the sample (polymers,
etc). Because we want the scoring to be extendable so that if a new contaminate arises
we can account for it, a Bayesian type scoring system makes sense. Bayes theorem,
originally stated >4 as

P(data|z)P(z)

1
> " P(data|a;)P(x;) G-1

P(z|data) =

where the term P(z) is the probability that a given event x occurs at all (termed the
prior probability), the term P(data|z) is the probability that, given event © occured,
the data would be observed, and the term P(z|data) is the probability that the event
x occurred given the data that was observed (termed the posterior probability). The
denominator is a normalizing factor so that P(data|z) € [0,1]Vz, which takes into
account information known about possible alternative hypotheses.

This system can be adapted to pattern scoring purposes by defining each event z as
the existence of a certain isotopic pattern or tag, represented by the intensity vector @
and defining the data is the observed intensity vector, d. Equation 3.1 then becomes:

P@|d) =

|

Prior probabilities for each tag can then be defined as the probability that any given
peak set in our sample is due to the presence of an ion labeled with that tag with the
isotopic envelope .

Generally speaking, it is dificult to define a probability function for the values
P(d|@). In addition, it is not possible to account for every possible source of a given
signal. As such, it is somewhat misleading to term the value P(d@|d) as being a prob-
ability. Instead, we treat this value as a score that is roughly proportional to this

probability. We do so at the loss of some mathematical rigor but no loss of generality
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with regards to pattern scoring. The more closely the pattern scoring method is as-
sociated with this probability, the more accurate our results using this method. This
last point will influence our choice of pattern scoring functions.

Such a system is desirable as it makes it trivial to add another possible contam-
inating pattern—one simply has to create a new “tag” d; and define an associated
prior probability P(a;). This system also lends itself easily to adjustment, as prior
probabilities can be determined empirically and are trivial to adjust.

Scoring individual patterns

From the properties we want the overall algorithm to have, we require certain charac-
teristics of our pattern scoring system. We want the scoring algorithm to be indepen-
dent of the absolute intensity of the data, we want it to be able to match imperfect
data whenever possible, and we want it to be fast. Additionally, in order to use this
score with the Bayesian approach defined in Equation 3.2, we want the score to be
linearly proportional to the probability of that pattern (the value P(@ | d)), or as close
as possible to it. Some likely candidates for this function are outlined in Table 3-2,
along with pros and cons of using each function.

The cosine cross-correlation function is often a first choice when testing for the
overlap of two datasets, as defined by

Z akdk

Cross Correlation = K 7 (3.3)
Z az Z di
k k

again where a; € @ are the intensities of the peaks in the ideal (model) spectrum and

d; € d are the corresponding peak intensities observed in the actual data. This func-
tion as some nice properties: it is easy to calculate and does not require that patterns
be aligned in the intensity dimension before scoring can take place. Unfortunately,
this ease comes at a cost, and it does not strongly discriminate between different pat-
terns, and the value produced is certainly not proportional to the probability that we
would like.

A second function that discriminates more strongly between patterns is the sum
of squared difference between and the data and an ideal pattern that is aligned so that
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the intensities are as close as possible. In this function, the score is calculated as

SSD = "(di — zay)’ (3.4)

k

where z is a constant scaling factor used to align the pattern with the data. Using this
system, a lower score suggests a higher quality match. While this scheme is able to
discriminate between two patterns more readily than than the cosine cross correlation
coefficient can, it is plagued by other difficulties. First, the pattern must be aligned to
the data (e.g., the optimal value of z must be determined) before scoring. More im-
portantly, however, is that it is not generally proportional (or inversely proportional,
for that matter) to the probability of the pattern being real, which would bring into
question the use of Bayes’ theorem.

If we assume that peak intensities are normally distributed around the true inten-
sity with standard deviation o, we can determine the probability for each peak inde-
pendently. Using this method, we can determine the probability that a peak would be

‘off’ by a given amount using the complement of the Gaussian error function, defined
by: 15

erfc(x \/_ / (3.5)

i — o]
U\/§
i was produced by a Gaussian distributed function centered at i with standard de-
viation 0. As expected, this function has the appropriate bounds, erfc(0) = 1 and

lim erfc(z) = 0. If the true value and the standard deviation of the distribution are

T—00
known, then this function produces a real probability for each peak. From this, we

can determine the total probability for a set of peaks by:

P(d|a) Herfc (|dk \/iak|) € [0,1] (3.6)

This function has many of the properties we desire: it represents a real probability
with the appropriate bounds and can efficiently discriminate between different pat-
terns. However, it fails the test of being able to match imperfect patterns, and also has
the disadvantage that the extremely small values produced by erfc() at large intensity

which has the property that the value erfc ( ) is the probability that a value
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Figure 3-3: The behavior of a modified erfc function. (A) The natural logarithm of the error function

compliment and (B) a modified version with an implemented minimum value 10~¢. Due to precision

limitations in floating point arithmetic, the standard er fc¢ function produces zero values (rather than

infinitesimally small values) at large distances . The modified function eliminates this problem and
introduces a tolerance for contaminating or obscured peaks.

differences leads to roundoft errors, in the extreme producing:

Herfc (|dk \/Z_ak|) =0 (3.7)

if the value |dy, — zag| is too large. The use of this function in its current form makes
the matching algorithm fragile if there are significant errors in the data. However, this
can be overcome by a simple modification to this function:

f(x) = (1 —10"erfc(z) + 10™° (3.8)

where € is some constant. In non-mathematical terms, the value 107¢ represents some
nonzero probability that a single peak is missing or contaminated in some way (e.g.,
the peak from another ion happened to fall at the same m/z value, making the sig-
nal unexpectedly high). The behavior of this modification compared to that of the
original function can be seen in Figure 3-3. Now, the product is:

P(d]|@) Hf('dk z“’“')e[mNﬁ,u (3.9)

with the nonzero lower bound 10~¥¢. By adding a nonzero lower bound to the func-
tion, roundoff errors are reduced to non-catastrophic levels. The minimum value
requirement also makes the algorithm robust to missing peaks in the data—since
missing peaks will produce a constant multiple in the pattern probability function,
the score for every pattern will be affected in the same way, and the constant factor
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will be divided out when Bayes’ theorem is applied. Consider a set of possible isotopic
patterns, a;, € A where the last peak of the data is missing:

= _ ! dk — ZxQgk
Plano- [T <—)
. IH V2
Plag [ d) = -

T — da (3.10)
Enaw T (5552)

i=1 k=1

(3.11)

= h= (3.12)

where the constant term 107¢ cancels out. Here, T is the number of tags being
searched again, dj, is the data at index k, a, j, is the intensity of the k" peak of pattern
x, and z, is a scaling constant for pattern x. 'This cancellation adds robustness against
missing or contaminated peaks.

At this point, there are still two problems with this function. Before a pattern
can be scored, the optimal value of the scaling factor z must be determined for each
pattern as will be discussed in Subsection 3.6.3. The other issue is that in its current
form, this function is very much dependent on the absolute intensity of the data
being observed due to the constant value of 0. However, this can be easily overcome
by allowing o itself to be a variable that is dependent on the intensity of the data

o = m(J?)? (3.13)

§The same analysis can be done for any given missing or contaminating peak, so long as the peak

I1-1,
is far enough away from the expected intensities of each pattern that the relation f < 7 ) =10"°¢

holds. In general, this will be true for any significant interference in the data, depending on the value
of o chosen for the analysis.
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where m is now a constant parameter. Setting o proportional to the RMS signal
intensity removes the absolute intensity bias from the function and eliminates the
need to determine the value of o independently for each dataset. Appropriate values
of m can be determined empically with little difficulty, with a value of ¢ = 0.08
producing good results for data obtained on a Thermo-Finnigan LTQ Orbitrap XL.

Aligning pattern intensities

Before the scoring function described above can be used, we must determine the op-
timal value for the scaling parameter z. The first step in achieving this is defining a
best-fit function. One of the most straightforward methods is to minimize the sum of
squared difference between the reference pattern @ and the data, d, given by Equation
3.4.Y The sum of squared difference is sensitive to small differences between the two
patterns and is simple to calculate. A binary search on the parameter z can then be
used to find the optimal value to within a predefined tolerance ¢ (Algorithm 3-2).

To make this even slightly more robust, we can ignore points in the data with
zero intensity (i.e., missing peaks) when computing the sum of squared difference
between the two patterns. A similar (though more elaborate) strategy could be devised
for ignoring unusually intense people during the alignment, but in practice more
elaborate approaches have proven to be unnecessary.

Adjusting patterns to account for peptide isotopic envelopes

The isotopic contributions from peptides themselves cannot be ignored in pattern
matching. Thus, we to be able to update the patterns we are matching to based on
the data we are interested in. If we can estimate the molecular weight of the peptide
in question, we can predict how the pattern of the tag will change.

From the m/z separation the charge state can be determined. Working backwards,
if we assume that the pattern we are examining was created by a peptide, we then
know what the m/z value and charge state are. From this, if we make the additional
assumption that all charges on the peptide are due to the gain of an H ion, then the

TWe could also have tried to use the erfc() or (the modified version) we introduced in the previous
section. Unfortunately, the same problems encountered above remain a problem for the erfc() function
here. The non-zero lower bound that we introduced to make the modified version makes this not
suitable as a ‘goodness of fit’ function, as two different values of |z| can produce the same score.
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ssD(J,1,2) = D (di — zay,)?

k
T2\1/2
s
(@2)1/2
step = 2/2

direction = 0
score = SSD(d, @, z)
while step > € do
score_up = SSD(CZ a, z + step)
score_down = SSD(dﬁ7 a, z — step)
if score_down < score
z =12z — step
score = score_down
if direction > 0
step = step/2

fi

direction = —1
else

z =1z step

score = score_up

if direction < 0
step = step/2

fi

direction =1

od

Algorithm 3-2: An algorithm to minimize the sum of squared difference (SSD) between the pattern
and the data to obtain the optimal value for the scaling factor z. The value of z is initialized to the
ratio of the rms intensity of the data to the rms intensity of the pattern. A step factor of z/2 is then
chosen as a starting point, and a binary search is performed on the value of z, halting when the step
size is < e. This algorithm will produce the ideal value for z + ¢, where € is a constant tolerance.

m/z value for the peptide with n excess protons (charge = n) is given by

m/z=—— (3.14)
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rearranging,

MW = (% - 1> * charge (3.15)
From knowing the m/z value and the charge state, we therefore know the molecular
weight of the peptide. Using this information, we can correct the isotopic distribution
of any patterns of interest by assuming they are attached to a peptide of the determined
molecular weight, allowing the algorithm to account for the natural abundance of
biological elements as described in Chapter 4.

The identification of putative matches

From this point, isotopic pattern matching is a relatively simple endeavor. Starting
with the point where related peak subsets have been obtained, all possible charge-
state consistent peak subsets can be scored against a data-dependent pattern using the
known charge state, m/z value, and the averagine model. For each relevant charge
state, each reference pattern qy, is updated with the isotopic information predicted for
the peptide itself. Then, each of these updated reference patterns, a!, is scored against
the set of peaks from the data, d using Equation 3.9 to obtain a list of scores, s.
Finally, the scores are combined using the previously discussed Bayesian approach,
leading to

- s P(ay)
Play|d) = —————
@1 =

to obtain a final score for the putative match. Peak subsets that have a score exceeding
a pre-determined threshold are then saved, along with pertinent data such as charge
state and predicted parent ion molecular weight. The search then continues to the
next scan of the LC-MS data file, until each scan has been analyzed. Putative matches

(3.16)

are then subjected to further analysis to reduce the net false positive identification rate
of the algorithm.
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A graph theoretic framework can reduce false positive
matches

Putative matches as nodes in a graph

Because we want to be able to match patterns in non-ideal data, searching for the
pattern alone with no secondary validation or filtering can produce significant false
positives due to low-intensity noise or a number of other factors. In an effort to reduce
these numbers, we can use two features of LC-MS data to help refine our results. The
reasoning is as follows: if a given match is really from a peptide, then it is likely that
more of the same ions will be found in neighboring scans. In addition, real peptides
are often detected in more than one charge state.

Both of these factors can be taken into account using a graph theoretic approach.
Generically, a graph in this context is a structure comprised of nodes and edges, where
edges are used to describe relationships between nodes, with various operations de-
fined on the resulting structure '8, Though there are a number of different types of
graphs, differing in how edges can be defined, here we restrict ourselves to undirected
graphs. Undirected graphs consist of nodes and a corresponding set of unweighted,
undirected edges between those nodes. In the usage here, each putative match found
by pattern searching alone can be treated as a node, and edges can then be drawn
between two nodes if the patterns could have been produced by the same molecular
species (see Algorithm 3-3).

As before, once the graph and edges have been constructed, the graph can then be
deconstructed into disjoint sets of matches based on the edges defined. Each one of
these sets has the property that all matches came from a molecular species of similar
mass, and that each element in a set eluted close in time to at least one other element
in the set. These disjoint sets can be treated as a single molecular species, and further
filtering can be performed. The simplest filter that can be applied is simply to discard
any nodes that have no neighbors, while more elaborate systems score sets based on the
number of elements in the set, the number of unique charge states observed, and the
quality of the individual patterns involved. A visual representation of this technique
can be seen in Figure 3-4.

Implications on false positive rate

To analyze the ability of a graph construct to improve discrimination between true
and false positive hits, a Monte Carlo simulation was performed. The same graph
geometry used in the true searching was used, and is depicted in Figure 3-5. Nodes



3.8 A GRAPH THEORETIC FRAMEWORK CAN REDUCE FALSE POSITIVE
MATCHES 60

2000

1500

m/z

1000
|
"

-
-

500

2000
|
vy)

1500

m/z

1000
1
wf

500

2000

MW=1873.52

1500
1

MW=1992.64

m/z

1000

500
|

T T T 1
200 205 210 215 220 225

scan number

Figure 3-4: Data from the elution profile and additional charge states can be used to filter out false

positives. (A) A profile of putative matches found based on pattern alone illustrates the case where a

naive filtering method produces a significant number of false positives . (B) If all putative matches are

treated as nodes in a graph, edges can be drawn between nodes that (a) eluted close in time and (b)

could have been produced by the same molecular species . (C) Finally, the graph can be decomposed
into disjoint sets which can then be scored and subjected to further analysis .

were considered to be neighbors if they were separated by at most one scan number,
e.g., nodes in scan 0 and scan 2 are neighbors, but nodes in scan 0 and in scan 3 are
not. Here, the charge state of each node can be ignored in determining if two nodes
are neighbors as this information is encapsulated by the geometry of the graph.
Using the assumption that each node has an indepdent probability of being as-
signed a positive value, The Monte Carlo simulation was performed by assigning
nodes a binary value of true or false (‘matched” or ‘not-matched’, respectively) based
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if [matchl.scan — match2.scan| > scan_tolerance
return false

fi

if [match1.MW — match2.MW| > dm
return false

fi

return true

Algorithm 3-3: An algorithm for determining whether or not two putative matches could have been

produced by the same molecular species. Here, matchl and match2 are two putative matches, each

with the attributes scan (the scan number in which they were found) and MW (the weight of the

molecular species that could have produced this pattern). Additionally, there are two parameters,

scan_tolerance and dm. The former is the maximum number of scans two matches can be apart and

still be considered related, while the second is the m/z tolerance of the searching. This function returns
false if it is unlikely that the supplied nodes are related, true otherwise.
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Figure 3-5: A schematic of the graph layout used to analyze the effect of the graph theoretic approach

on detection rate. As in real data, nodes are arranged in a grid, where there are C nodes in the charge-

state dimension, and a large number of scans are included in the temporal dimension. Using a Monte

Carlo simulation, each node is randomly assigned as a positive or negative hit based on the probability

p for neighboring nodes, or assigned as a positive hit with probability 1.0 for the reference node shown
in blue.

on an assigned probability p, except for a reference node at scan 0, charge state +1
which was defined as true. Edges were then drawn between all neighboring nodes
assigned a positive truth value, and the final graph was decomposed into disjoint sets.
The set containing the reference node was then analyzed to determine the size of the
set.

The simulation described was performed for values of p in the range [0,1], at
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Figure 3-6: An analysis of the graph construct used in the pattern matching algorithm shows that this
structure is able to amplify differences between the false positive and true positive rates in the naive
algorithm. The graph was analyzed by correlating peaks within two scans of a matched peak with (A)
3, (B)4, and (C) 5 charge states with the indicated number of neighbors required in the graph before
a match is considered valid. (D) A plot showing a comparison of graph performance with different
numbers of charge states when 15+ nodes are required for a match to be validated .

intervals separated by 0.001 units, with 500,000 replicates at each value of p. The
simulation was also performed over various values of C', the number of charge states
included in the analysis. The results of this simulation are given in Figure 3-6.

These results shows that the graph construct employed here is able to strongly
amplify differences in positive determination rate, leading to a higher confidence in
true positives (the right-most portion of each plot shown in Figure 3-6) and a lower
incidence in false positive rate (the left-most region of each plot in Figure 3-6).

From peaks to hits: the overall searching process

To detect isotopic patterns in a large LC-MS file, each individual scan is processed
separately, where each scan is first broken down into subsets of potentially related iso-
topic peaks. These subsets are then further processed by analyzing all possible charge-
state-consistent subsets and performing a data-dependent pattern search on each of
the subsets. In this step, each subset that scores above a predetermined threshold is
saved as a putative match, and is further analyzed after the enter LC-MS dataset has
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been searched. By searching the entire LC-MS dataset in such a manner, a list of
all putative matches along with relevant information about their temporal and m/z
coordinates is created.

After processing all scans, potential matches are filtered using the graph-theoretic
construct described above. The resulting graph is then decomposed into disjoint sets,
each of which is scored according to the number of nodes in the graph, the intensity
of the data in each node, the number of charge states detected, and the quality of
the patterns involved. Sets that score above a second pre-determined threshold can
then be saved, and summary statistics (charge states found, time of elution, parent
ion molecular weight, etc) can be output. This final filter acts as a strong filter for
false positive identifications, and greatly improves the fidelity of the overall searching
algorithm.

Algorithm performance

An important aspect of pattern searching in the context of the dibromide tag is ab-
solute searching time. Using a modern desktop computer (3.66 GHz, 4 GB ram),
an average LC-MS data file can be searched in less than two minutes using standard
settings. This processing time suggests that it would be possible to perform the same
isotopic searching on data in real time, where the same amount of data is collected
over a 60-90 minute period.

The analysis of data generated by labeling BSA with a cysteine-alkylating dibro-
mide tag (see Chatper 2) shows that this algorithm is able to detect a sufficiently
unique pattern at low signal to noise ratios in extremely complex biological sam-
ples, while producing surprisingly few false positives. Furthermore, this algorithm
has proven to be adaptable to the detection of other isotopic signatures, including the
dichloro-, monobromo-, and tetrabromo- (doubly dibromide-tagged) motifs, and it
is expected that searching for other isotopic patterns would be similarly facile.
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chapter four

Estimation of the elemental composition
and isotopic distribution of peptides and
glycopeptides

Overview

Central to the work presented in Chapters 2 and 3 is the idea that it is possible to
predict the skewing effect imparted on a given isotopic distribution by the contribu-
tion of elements in the biological molecules, namely those shown in Table 2-1. While
the contribution of these elements is negligible in small molecules, the effect becomes
dramatic in large biomolecules such as peptides, as can be seen in Figure 3-1, and
their effect on the isotopic distribution of a molecule of interest must be accounted
for. In order to do so, a method of predicting the isotopic distribution of the con-
taminates alone with some degree of confidence is needed. Such a method, termed
the “averagine” system, was proposed by Senko et al.!, and was further elaborated
by Valkenborg ef a/.% In this system, the average molecular formula per unit mass of
peptide is used to predict the average molecular formula for a peptide of arbitrary
mass. In this chapter, the averagine system is analyzed with regard to its ability to ac-
curately predict the isotopic envelope of a large number of peptides, and is extended
to applications in predicting molecular formulae for putative glycoproteins through
the development of a “glycoaveragine” system.

With an estimate of the molecular formula for a peptide in hand, it is then possible
the predict the isotopic distribution expected for that formula computationally. For
the purpose of rapid pattern searching in real time, it is desirable for such a prediction
algorithm to be extremely rapid, even at the cost of some accuracy. Such an algo-
rithm is discussed in Section 4.4. Taken together, the ability to estimate an accurate
molecular formula and rapidly convert that formula into an isotopic distribution will
determine the limitations of the isotopic labeling and pattern searching technology.
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Figure 4-1: The distribution of molecular weights from a random sample of human tryptic peptides

Analysis of the averagine system

Construction of an averagine model

To get the best results for our specific application, an averagine model was constructed
using a human proteome database downloaded from the ExPASy proteomics server?,
which was subsequently digested i silico to generate a list of tyrptic peptides®. From
this list of all putative tryptic peptides in the human proteome, 20,000 unique pep-
tides were randomly sampled, and their molecular weights and formulae were calcu-
lated (the molecular weight distribution of the sampled peptides can be seen in Figure
4-1. 'The only criteria for inclusion was that the peptides must contain at least six
amino acid residues. No attempt was made to normalize the distribution of molecu-
lar weights was made as this distribution reflects the natural distribution of molecular
weights of human tryptic peptides, and thus reflects the distribution expected in a nat-
ural sample. Based on these data, the average molecular formula per unit mass was
calculated, and the results along with standard deviations of the estimates are given
in Table 4-1. The convention of reporting the averagine system as element counts
per unit mass was chosen as it facilitates rapid interpolation from molecular weight to
a predicted molecular formula simply by multiplying the averagine constants by the
molecular weight.

An interesting feature of the averagine system is that it is able to predict the number
of hydrogen, carbon, nitrogen and oxygen atoms in a peptide to a high degree of
accuracy (s.d. < 15%), but is unable to reliably predict the number of sulfur atoms
in peptides (s.d. > 100%). This is due to the fact that sulfur is rare in peptides when
compared to hydrogen, carbon, nitrogen, and oxygen. A weighted percent deviation
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Table 4-1: The ‘averagine’ peptide. Numbers shown are the number of atoms of each element type
per Da of peptide.! These numbers allow the elemental composition of a peptide to be easily predicted
based solely on its molecular weight.

Element Number per Da. Peptide* (= std. dev.)

Hydrogen 0.0710 + 0.0047
Carbon 0.0435 £ 0.0052

Nitrogen 0.0126 £ 0.0018
Oxygen 0.0138 + 0.0017
Sulfur® 0.00037 £ 0.00052

 Calculated on a random selection of 20000 human tryptic peptides
with a sequence length of > 6 amino acids

b Because of its relative rarity in peptides, there is a high error associ-
ated with predicting the number of sulfur atoms in relatively small

peptides

calculated as
Z/M (0i/ i) ZCE
d =1 <01
Z i Z i

Where o; is the standard deviation for the averagine estimate of element 4, and y; is
the averaging estimate for element i. The total deviation calculated in this manner is

(4.1)

< 10%, which is astonishingly accurate given the huge diversity of peptides found an
organism’s proteome.

The averagine model is a strong predictor of isotopic envelopes

The essential property of the averagine system for use in isotopic pattern matching is
not in its ability to accurately predict molecular formulae, but in its ability to accu-
rately predict the isotopic envelopes of peptides. Though these two abilities are no
doubt related, there is reason to expect that they not be directly proportional*. To
investigate the ability of the averaging model to predict peptide isotopic envelopes,
the weighted root-mean-square deviation (RMSD) between the isotopic distribution

*For an extreme example, no peptide could exist such that its molecular formula was one standard
deviation below the averagine prediction for all elements, as that peptide would not be of sufficient
molecular weight. Peptides deficient in one element must have an overabundance of another to com-
pensate for the lost molecular weight, and this overabundance would be expected to compensate the
isotopic envelope.
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Figure 4-2: The averagine estimate accurately predicts peptide isotopic envelopes. A boxplot of the

rms intensity differences between mass spectra predicted for 20,000 random human peptides based on

actual elemental composition or based on the averagine estimate (leftmost), with an error of £10%
mass, or with the addition of the indicated tag.

predicted by the true molecular formula and the averagine peptide of the same molec-
ular weight was computed. The root-mean-square deviation is a strong measure of of
‘tightness of fit’, where a value of 0 means a perfect fit and larger values mean a poor fit.
This measure is commonly used in statistics’, and has been used to e.g. analyze protein
structure models®’, molecular dynamics®, and molecular interfaces’. For each peak
in the averagine-predicted isotopic envelope (a; € @) and the envelope predicted from
the actual molecular formula (r; € 7), the weighted RMSD is calculated as:

(4.2)

To analyze the overall performance of the averagine system, a new sample of
20,000 tryptic peptides from an iz silico digest of the human proteome was obtained
(with MW distribution similar to that tabulated in Figure 4-1), and the RMSD as
define above was calculated for each peptide. In addition, to analyze the error in-
troduced by the averagine estimate as compared to the perturbation introduced by
adding various halogenated tags, the isotopic envelopes for the true molecular formu-
lae were compared to the averagine estimate at £10% molecular weight, or with the
addition of one- or two- chlorine or bromine atoms. The distribution of RMSD val-
ues obtained in this way is shown in Figure 4-2. From this, it is clear that the averagine
estimate is a strong predictor of peptide isotopic envelopes, predicting distributions
with a mean RMS Error of < 4%. Furthermore, the averagine model shows a very
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gradual change is isotopic distributions with respect to peptide molecular weight, in-
dicating that the system is tolerant to moderate errors in estimating peptide mass. In
stark contrast, the addition of halogenated tags, in particular two bromine atoms, in-
troduces a significant perturbation in the isotopic envelope. The analysis here agrees
with experimental results in Chapter 2 in that the monochloride motif is not a sufh-
cient perturbation to the peptide pattern as to be detectable, whereas the dichloride
and monobromide are somewhat more distinct, and the dibromide is the largest per-
turbation. The superior performance of the monobromide compared to the dichloride
tag here can be explained at least in part by the size of the pattern that can be used for
pattern searching (4-5 peaks for the monobromide vs. 6-7 peaks for the dichloride),
as more matchable peaks lead to more sensitivity in matching and a correspondingly
lower false positive rate. A histogram of RMSD values for the averagine system with
and without two bromine atoms can be seen in Figure 4-3, clearly showing the per-
turbing effect of two bromines on the average peptide isotopic envelope.

The averaging estimate holds accurate for peptides of moderate
molecular weight

To analyze the performance of the averagine-based estimation of isotopic envelopes as
a function of peptide molecular weight, a scatter plot of the 20,000 sampled peptides
was created. For this analysis, the sampled peptides were partitioned into those with-
and without sulfur-containing residues, as sulfur is likely to be the major source of
error in isotopic distribution due to its relative scarcity and the relatively high ( 4%)
abundance of its heavy isotopes. As can be seen in Figure 4-4, the averagine estimate
for non-sulfur-containing peptides (black) is extremely accurate, and the distribution
of RMSD values is tight even at molecular weights as high as 5,000 Da. In contrast,
the sulfur-containing peptides (re4) produce a broader range of RMSD values. The
discontinuity in the plot apparent at MW = 2.2 kDa is due to the discrete nature of
the averagine system, and corresponds to the molecular weight at which the model
shifts from predicting zero to predicting one sulfur atom.

This analysis suggests that the averagine system will provide a reliable prediction
for the vast majority of peptides at moderate molecular weights, but that deviations in
the sulfur content of peptides at higher molecular weights will be a significant source
of error. In the case that this is limiting, it should be possible to correct for this effect
by growing cells on media depleted of 3S.
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Figure 4-3: A histogram of rms intensity difference between mass spectra predicted for 20,000 random
human peptides based on actual element composition or based on the averagine estimate (left) or the
averagine estiate plus two bromine atoms (right).

Extension of the averagine system to glycoproteins

An important application of chemically directed proteomics is in the analysis of gly-
coproteins, including those where a large part of the mass is comes from glycosyla-
tion. In order to facilitate the extension of the isotopic labeling strategy to this set
of biologically interesting proteins, it is necessary to analyze the performance of the
averagine model in the prediction of isotopic envelopes for this heterogeneous collec-
tion of biomolecules. However, as glycosylation is heterogeneous, and in the case of
mucin-type O-linked glycans, the modification’s presence is difficult to predict from
protein primary sequence alone, it is difficult to sample real glycopeptide molecu-
lar formulae in a reasonable, consistent, and biologically relevant manner. To skirt
this difficulty, the present analysis focuses on determining the deviation between the
standard averagine model and collection of modified averagine models consisting of
predefined proportions of averagine peptide, hexose (Hex), and N-acetylhexosamines
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Figure 4-4: The score distribution of peptides by molecular weight. The distribution shows that sulfur
is the primary source of error in the score. The sharp transition at molecular weight 2.6 kDa is due the

averagine system predicting the presence of a single sulfur in the peptide. Below this molecular weight,
no sulfur is predicted.

A OH OH OH
0 o) o} J"J"
H o) o o o
H H H
OH OH OH
N NH
%
B OH OH OH
0 0 o} -f"d
H o) o} o o
H H H
NAc NAc NAc
N NH

),

Figure 4-5: The structures of (A) Ser-O-polyhexose and (B) Ser-O-poly-N-acetylhexosamine used in
the calculation of AveraHex and AveraHexNAc

(HexNAc). Due to the nature of glycosylation, it is possible to ignore the exact nature
of glycan branching as the change in molecular weight in independent of the branch
point or linkage. The first step in this direction is to determine the atom counts per
unit molecular weight for large poly-hexoses and poly-/V-acetylhexosamines, as shown
in Figure 4-5. These counts will be called AveraHex and AveraHexNAc, respectively.

In determining the compositions of AveraHex and AveraHexNAc, the limit of an
infinitely large glycan was considered to simplify the analysis. The net effect of this
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Table 4-2: The composition of AveraHex

Element Number per Da. Glycopeptide

Hydrogen 0.06171
Carbon 0.03702
Oxygen 0.03085

Table 4-3: The composition of AveraHexNAc

Element Number per Da. Glycopeptide

Hydrogen 0.06401
Carbon 0.03939
Nitrogen 0.00492
Oxygen 0.02462

consideration is to ignore a single molecule of water for each site of glycosylation on
the protein. The calculation of AveraHex was performed using limits of the form:

. # of carbons in Hexy
AveraHex = lim
Noo mass of Hexy

which leads to an average molecular formula of a singly-dehydrated hexose monomer,
and the per unit mass composition shown in Table 4-2. Analogously, the composition
of a large poly-HexNAc molecule is calculated using limits of the form:

. # of carbons in HexNAcy
AveraHexNAce = ]\;l—rgo mass of HexNAcy

which similarly leads to an average molecular formula of a singly-dehydrated HexNAc
monomer (the per unit mass composition shown in Table 4-3). Due to the manner
in which AveraHex and AverHexNAc are calculated, there are no standard deviations
associated with these estimates.

Using the compositions of averagine, AveraHex, and AveraHexNAc, it is then
possible to analyze sets of mucin-like glycoproteins via linear combinations of these
systems of the form:

AveraMucin,, , = p(AveraHex) + ¢(AveraHexNAc)

+ (1 — p — q)averagine, {
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Figure 4-6: The performance of averagine in estimating isotopic envelopes of glycoproteins. The RMS

difference between averagine and a modified averagine with the given glycan contribution on a 1000

Da (top left), 2000 Da (top right), and 4000 Da (bottom left) peptide. A cross-section of the plot at
4000 Da taken along the planes z = 0 (Hexose) and y = 0 (HexNAc).

The various linear combinations can then be analyzed by calculating the RMS Differ-
ence between the predicted averagine isotopic envelope and the AveraMucin predicted
isotopic envelopes. The results of such an analysis are shown as a contour plot in Fig-
ure 4-6, analyzed at three molecular weights. This analysis shows that while there is
a difference in prediction between the averagine estimate the AveraMucin estimates,
these errors are still modest (maximum RMSD < 0.20) relative to the perturbation
caused by the addition of two bromine atoms (mean RMSD > 0.80).

We are in no way required to disregard to possibility of carbohydrate contribution
to the isotopic envelope. Depending on the sample, a hybrid approach may be ap-
propriate where an AveraMucin intermediate between the most extreme experimental
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Figure 4-7: AveraMucin can be used to approximate isotopic envelopes of a wide range of glycopep-
tides. The same analysis as shown in Figure 4-6, using a modified ‘averaglycogene’ as a reference where
20% of the molecular weight is derived from hexose, 20% from HexNAc, and 60% from an averagine
peptide. The analysis was performed at a number of molecular weights: 1000 Da (top left), 2000 Da
(top right), and 4000 Da (bottom left). A cross-section of the plot at 4000 Da taken along the planes
xz = 0 (Hexose) and y = 0 (HexNAc). The use of a modified ‘averagine’ model reduces error at the
extremes of the glycan content, and would be suitable for use in analyzing samples of unknown glycan
content.

scenarios is chosen as a reference for all samples. For example, rather than using aver-
agine, one could use AveraMucing 2 as a reference, thus reducing isotopic estima-
tion errors at the extreme cases. An analysis of the performance of AveraMucing .2
is shown in Figure 4-7. From this, it can be seen that the maximum RMS Errors
are greatly reduced using this model, with maximum RMSD values of approximately
10% in the mass ranges tested.

The analysis here suggests that chemically directed proteomics should be read-
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ily applicable to proteins containing a variety of post-translational modifications, in-
cluding those where the PTM makes up a considerable percentage of the molecule’s
molecular weight. In many cases, the averagine estimate in isolation will be adequately
robust to handle the presence of modifications, but in more complex scenarios it may
be necessary to develop hybrid systems based on prior knowledge of the composition
of the modification of interest.

A method for the rapid prediction of peptide isotopic
distributions from molecular formulae

Essential to the use of the averagine system, and to isotopic pattern recognition as
a whole, is the ability to rapidly calculate isotopic envelopes from a molecular for-
mula. There are a number of methods by which to do this, for example, by utilizing
Fourier transforms to compute high resolution envelopes for molecules that account
for very slight mass differences between isotopes of a given element!®!!. While these
differences can be extremely important for some applicants, high-throughput peptide
mass spectra are not typically of sufficient resolution to take advantage of the added
detail of these computational techniques. For the purposes of analyzing peptide mass
spectra, a reasonable approximation is that all isotopic peaks differ by exactly 1.0 mass
units. This simplifies the calculation of isotopic envelopes immensely, allowing for
greater speed while retaining a high degree of accuracy in the intensity dimension.

After assuming all isotopic peaks to be equally spaced, isotopic envelopes can be
treated as vectors. Then, an operation o can be defined that computes the isotopic
envelope of a molecule given the isotopic envelopes of two simpler molecules. For ex-
ample, the isotopic envelope of molecular bromine can be calculated from the natural
abundance of ™Br and 3! Br as:

[E(Bry) = IE(Br) o IE(Br) (4.3)

where IE(X) denotes the set of intensities representing the isotopic envelope of a
molecule X, normalized such that the summation of all peaks a € IE(X) satisfy the
condition

Za’f =1 (4.4)

k=0

and where each a;, € IE(X) is the natural abundance of the molecule with a nominal
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a=0V¢ € C, |C|=][Al+][B] -1
for i € [0, ||Al|] do
for j € [0, || B]|] do
Ciyj = Cirj + aib;
od
od
return C'

Algorithm 4-1: An algorithmic approach to calculating the convolution of two sets of isotopic inten-
sities, C' = Ao B.

mass of k amu. As an example,

IE(C) = {0,0,0,0,0,0,0,0,0,0,0,0,0.9893,0.0107,0, - - - }
IE(Br) = {0,0,- - ,0,0.5069,0,0.4931,0, - - - } (4.5)
79
IE(Br,) = {0,0,--- ,0,0.2569,0,0.4999, 0,0.2431, - - - }
158

represent the isotopic envelopes of carbon, atomic bromine, and molecular bromine,
respectively. Using this notation, the convolution operator between two isotopic dis-
tributions can be defined by:

C=A0oB (4.6)
k @j<0,bj<co = 0;
o= aibei, ke0JAI+IBI =1, < aja = 0; (4.7)
=0
bj>|iB| = 0;

a coputational implementation of which is given in Algorithm 4-1. This makes it
possible to calculate the isotopic distribution for any molecule directly from the nat-
ural abundance of the isotopes of each element present in that molecule. However,
for large biomolecules such as peptides, this would lead to the requirement of several
thousand convolution operations required to predict the isotopic envelope of each
molecule. To resolve this difficulty, it is important to note that due to the nature of
the relevant chemistry, this operator is both commutative and associative:

IE(C'H,Cly) = IE(CH) o IE(HCly) = IE(Cly) o IE(C)) o IE(Hs) (4.8)
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and so forth. For a more extreme (hypothetical) example,

[E(Chigs) = IE(C) o IE(C) 0 - -- o IE(C) (4.9)
1108‘t,imes
== IE(01024) O IE(C@4) O IE(Cl6) (¢] IE(C4> (410)

which suggests the possibility of pre-calculating the isotopic distributions of large
numbers of a given element. Using powers of two as such a basis set, we can define a
recursive relationship that allows their rapid calculation:

basis_set(Br, i) = [E(Bry:)
= IE(BT2F1) o IE(BT’2¢71) (41 1)
= basis_set(Br,i — 1) o basis_set(Br,i — 1)

where basis_set(X, 0) is defined to be the natural abundance of the isotopes of element
X known from experimental or literature data. Then, the isotopic envelope of any
molecule can be constructed from these basis sets, for example:

[E(C1108) = basis_set(C, 10) o basis_set(C, 6) o (4.12)
basis_set(C, 4) o basis_set(C, 2)

or for CsHg:

[E(CsHg) = basis_set(C, 2) o basis_set(C, 1) o (4.13)
basis_set(H, 2) o basis_set(H, 1)

which allows a base set of isotopic distributions to be calculated once at a program’s
start, after which the isotopic envelopes of any molecule containing N atoms of a given
element can be calculated through a at most [log,(N) + 1| convolution operations.
The system as proposed still has two has two significant drawbacks: the basis sets grow
in size exponentially, and Algorithm 4-1 is O(n?) in the size of the isotopic envelopes
used; the former leads to challenges in storing the necessary basis sets in memory,
while the latter suggests that this algorithm is intractable for large molecules. Both
problems can be solved by an adjustment in the definition of the isotopic envelopes.
Since the isotopic envelopes as defined in Equation 4.5 are sparse', the vast majority
of the operations in calculating the convolution will contain a multiplication by zero.
Redefining the reference frame so that the 0" entry refers to the monoisotopic peak,

fie., the majority of entries are zero values
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the data in Equation 4.5 becomes:

IE(C) = {0.9893,0.0107}
IE(Br) = {0.5069,0,0.4931} (4.14)
IE(Bry) = {0.2569,0,0.4999, 0, 0.2431}

solves both problems, with the only added requirement being that the monoisotopic
mass of the molecule must be calculated independently from the exact monoisotopic
masses of the contributing elements. An additional optimization includes trimming
high molecular weight isotopic envelopes to remove very low intensity trailing values,
e.%,, those contributing < 0.01% to the total distribution. In this case, most biological
elements produce convoluted envelopes of roughly constant size, reducing the com-
plexity of Algorithm 4-1 to O(1), and drastically reducing the memory consumption
of the basis sets.

Finally, the upper bound on number of convolutions required to calculate isotopic
envelope of a molecule of the form eDell) .. e where n; is the number of atoms
of element e® in the molecule, is given by

Z [log, (1)) + 1] (4.15)

k

each of which can be computed in linear time. The lower bound of the computational
complexity is met when the numbers of each element, ny, are powers of two. Then,
the convolution requires one operation for each element considered, and the lower
bound is given by

Z 1 (4.16)
k

and the average case is given by

3 KlogQZ(”’“)> + 11 (4.17)

k

For example, applying these bounds to the analysis of the isotopic envelope of the BSA
peptide MKWVTFISLLLLESSAYSRGVFRRDTHK (C'157 H244N42O35S1, MW=3.3 kDa), the
estimated upper bound is 33 convolution operations, the lower bound is 5 convolutions,
and the average complexity is 19 convolutions. In this particular case, the isotopic
envelope can be calculated in 17 convolutions, slightly less than the expected average
case.
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Conclusions

The averagine system coupled with a system to rapidly calculate isotopic envelops
of large molecules allows for the calculation of large numbers of these distributions
in a very short period of time. Coupled with the searching algorithm described in
Chapter 3, this allows for real-time searching of an isotopic pattern of interest while
correcting for the isotopic contributions of other elements present. Furthermore, the
fidelity of the averagine system shows that this approximation should be valid within
searching tolerances for tryptic peptides of moderately large molecular weight, for
example, up to 5000 Da. The extension of the traditional averagine system to account
for the possible presence of large carbohydrate structures in Section 4.3 demonstrates
that this approximation will also hold for such structures, and that a large range of
protein co- and post-translational modifications can be handled using the averagine
system with minimal modifications.

The primary limitation envisioned for the averagine system is in the analysis of
proteins or modifications containing a large number of sulfur atoms. This is due to
the large error in the estimation of sulfur by averagine coupled with the relatively high
abundance of #'S. The unpredictability of sulfur content is likely to be the primary
limitation when using the averagine system to predict isotopic envelopes for large pep-
tides and small proteins. Likewise, protein modifications containing large numbers of
sulfur atoms, such as protein sulfation and the presence of sulfated glycans, will likely
prove difficult to analyze. A possible solution to this difficulty would be to grow cells
on media depleted of **S, in which case the error associated with sulfur prediction is
inconsequential as it would no longer perturb the molecule’s isotopic envelope.

C++ code for the isotopic envelope prediction algorithm presented in this chapter

can be found in Appendix B.5.
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chapter five

Targeting N-glycoproteins for chemically
directed proteomics using a isotopic mixture
(IsoMix) of a natural sugar

joint work with Mark A. Breidenbach and
Krishnan K. Palaniappan

Introduction

Protein N-linked glycosylation, a post-translational modification in which a glycan
structure is linked to protein asparagine residues through a $-glycosylamide linkage,
is an essential component of eukaryotic cell membranes!=. N-glycosylation has been
shown to be essential to a number of cellular functions, including cell surface orga-
nization?, receptor recognition and function®~’, cancer progression8’9, and protein
quality control in the endoplasmic reticulum %12, Like O-linked glycans, the study
of N-linked glycosylation is complicated by the size and heterogeneity of the carbohy-
drate structures. There are, however, important differences between N- and O-linked
glycosylation. In contast to O-linked glycosylation in which no well-defined consen-
sus sequence exists, N-linked glycosylation occurs primarily at sites with the primary
sequence NXS/T, where X is any amino acid other than proline. While this greatly
simplifies the prediction of N-glycosylation sites, protein secondary structure has been
shown to play an important role in determining whether a given site is occupied >4,
and there is recent evidence to suggest that N-linked glycosylation need not strictly
follow this consensus sequence °.

Rather than being completely heterogeneous, all N-glycans share a conserved core
Man;GIcNAc, pentasaccharide core!. The homogeneity of the N-linked core is com-
plemented by the existence of endoglycosidases such as Peptide: N-Glycosidase F

(PNGase F; removes the entire glycan) and endoglycosidase H (Endo H; cleaves af-
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ter the the most proximal GIcNAc) which can be utilized to create a homogeneous
population of glycan structures'®!7. In particular, the use of EndoH can be used to
create a glycoprotein consisting solely of an N-linked GlcNAc moiety, making the
sole GlcNAc donor, UDP-GIcNAg, an attractive target for metabolic engineering.

Even with the availability of improve analytical techniques, the study of N-glycans
has proven to be fraught with challenges. This is due primarily to the huge range
in protein concentration and sub-stoichiometric occupancy of N-glycan sites, both
of which the IsoStamp technology presented in Chapter 2 can be used to address.
One strategy for incorporating and isotopic tag into sites of protein N-glycosylation
would be through the metabolic incorporation of unnatural sugars functionalized
with chemical handles and the use of a secondary reactive tag.

Recently, Breidenbach ez 2/, demonstrated that it was indeed possible to incor-
porate the unnatural sugar GIcNAz into yeast N-glycans using a UDP-GIcNAc aux-
otrophic model'®. Labeled glycans could then be captured with an azide-reactive
dibromide tag in a method analogous to that of Hart and coworkers'. However,
this methodology still requires the use of a secondary chemical labeling step, increas-
ing the amount of sample handling and potentially decreasing the overall efliciency
of sample labeling and increases the chances of sample contamination. Furthermore,
UDP-GIcNAc auxotrophic yeast display a minor growth phenotype when grown with
GIcNAz as the only GlcNAc source, suggesting that any N-glycosylation observed
may not be physiological under these conditions.

An alternative strategy would be to use metabolic engineering to directly incorpo-
rate a dibromide-like isotopic pattern directly into a biomolecule of interest, forgoing
the use of a secondary labeling step altogether. A simplistic methodology would be to
incorporate an unnatural sugar containing two bromines directly into the cell, thus
eliminating the necessity of a secondary labeling step. Such a method would still
have the pitfall of using an unnatural substrate for the biosynthetic machinery, which
may lead to lowered sensitivity sensitivity and may result in off-target hits. To elim-
inate these problems, a further simplification can be made: rather than include two
bromines, the same isotopic pattern can be incorporated directly into the sugar moi-
ety itself. To accomplish this, a mixture of isotopes of GIcNAc with the right molar
ratios can be fed to cells, imparting a unique isotopic distribution to all proteins con-
taining an O-GlcNAc modification. The position of the isotopic labels was chosen for
convenience, as 1-'*C,"?N-glucosamine is commercially available, as is **Cy-acetate,
allowing the facile synthesis of both isotopically labeled GIcNAc molecules (see Sec-
tion 5.4).

For the purposes of this chapter, the 1 : 2 : 1 molar mixture of the isotopes of Gle-
NAc will be referred to as IsoMix GlcNAc. By growing cells in media where IsoMix
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Figure 5-1: The biosynthetic pathways leading to UDP-GlcNAc in mammalian cells. The hexosamine

bisynthetic pathway (green) converts cellular glucose to GleNAc-6-phosphate, while the GIcNAc sal-

vage pathway (orange) converts extracellular GIceNAc directly to GIcNAc-6-phosphate. Alternatively,

the GalNAc salvage pathway (b/ue) converts extracellular GalNAc to UDP-GalNAc, which can then
be epimerized at the 4 position by UDP-GalNAc/GlcNAc-4-epimerase to form UDP-GIcNAc.

GlcNAc is the only source of GlcNAc, all proteins containing this modification will
incorporate the same isotopic pattern. Proteins can then be analyzed by LC-MS, and
isotopically labeled species can then be determined using the algorithm described in
Chapter 3.

A major hurdle in the described methodology is the presence of multiple meta-
bolic pathways that feed into the UDP-GIcNAc pool (Figure 5-1). In particular, the
majority of the UDP-GIcNAc pool in mammalian cells does not come from the Gle-
NACc salvage pathway exploited by most metabolic engineering techniques, but rather
through the glucosamine/ GFAT pathway?°. This leads to two problems. First, that
the desired isotopic pattern would need to be fed through more than one pathway
or else risk dilution by competing pathways. Equally disastrous is that due to the
reversibility of many of the steps, the incorporated isotopic pattern may end up in
a multitude of other, non-GlcNAc containing biomolecules, rendering the labeling
impossible to assign.

One solution to these problems is to use cell lines that lack the competing path-
ways. 'The BY4743-Agnal yeast line is one such system. In this yeast strain, the
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Figure 5-2: Agnal yeast rely entirely on extracellular GlcNAc. This strategy for bypassing de novo

UDP-GIcNAc biosynthesis (black arrows) is shown. An exogenous salvage pathway (b/ue arrows) allows

extracellular GlcNAc or analogs to be internalized by the transporter Ngtl from C. albicans. The

intracellular GIcNAc (or analog) is phosphorylated the at the 6 position via the activity of human

GlcNAc kinase, NAGK?2!. The 6-phosphorylated product is subsequently converted into an activated

nucleotide-sugar via the mutase and pyrophosphorylase activities of Pcm1 and Qril respectively. Figure
adapted from Breidenbach ez a/. 3.

natural UDP-GIcNAc biosynthetic pathway has been knocked out by deletion of the
transaminase Gnal, and a salvage pathway has been engineered in through the intro-
duction of the transporter Ngtl (C. albicans) and the human GlcNAc kinase NAGK
(Figure 5-2). In the presence of isotopically labeled sugars, Agnal yeast show 100%
incorporation of the labeled sugar (Figure 5-3)'®. Employing this strain of yeast,
cells can be grown in media containing the IsoMix, which will then be taken up by
the GlcNAc transporter and will then enter the GIcNAc salvage pathway, where it is
ultimately converted to the OGT substrate UDP-GlcNAc.
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Figure 5-3: Agnal yeast show 100% incorporation of isotopically labeled GIcNAc. The protein Ygp1

was expressed in culture medium supplemented with either GIcNAc (grey) or 13Cs-GlcNAc. Ygpl was

treated with EndoH, trypsinized, and subjected to ESI-FTICR MS analysis. Masses for a represen-

tative glycopeptide, spanning Leu98—Arg115 and glycosylated at only one of the two potentital sites

(indicated in zeal) are shown. Relative intensities of the GIcNAc- and !3Cg-GlcNAc-modified peptides
have been normalized to each other. Figure adapted from Breidenbach ez a/. 18

In this chapter we present the use of the Agnal UDP-GIcNAc auxotrophic yeast
in combination with a mixture isotopically labeled GIcNAc molecules to facilitate the
chemically directed proteomic analysis of N-glycoproteins in Saccharomyces cerevisiae.
To accomplish this, yeast are grown on media where the only source of GIcNAc is the
isotopically labeled mixture, and their secreted or membrane proteins are isolated.
We show that upon treatment with EndoH and analysis by LC-MS, glycopeptides
display the characteristic 1 : 2 : 1 isotopic pattern, which can be used to generated
an inclusion list of labeled species. Upon detection of labeled species, peptides are
subjected to analysis by LC-MS/MS using an inclusion list, and resulting tandem
spectra are compared against a yeast protein database using the SEQUEST algorithm
to identify peptides along with sites of N-glycosylation.

Results

Isotopes of GIcNAc can be combined to recreate the dibromide motif

To recreate the isotopic pattern produced by a dibromide tag, three isotopically la-
beled GIcNAc derivatives separated by two mass unites each were required. Unla-
beled GIcNAc, 1°,2-3C,-GlcNAc, and 1,1°,2’-C3,"> N-GIcNAc were chosen for

these derivatives due to commercial availability and cost of reagents, where the sec-
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Figure 5-4: The mass spectrum of IsoMix GIcNAc shows a faithful reproduction of the 1: 2: 1 di-
bromide pattern. A blow up of the spectrum (insert) shows that the IsoMix pattern re-creates the
dibromide pattern to within 1% accuracy. Data were obtained on a ThermoFisher LTQ in zoom scan
mode, with 20 scans averaged to produce the final result. In these spectra, GIcNAc is ionized as the
sodium salt, leading to the 23 amu mass increase. * indicates the presence of either '3C or '°N.

ond two derivatives were synthesized from glucosamine hydrochloride or 1-"*C,"*N-
glucosamine hydrochloride and *C, acetate, respectively. Stock solutions of each
isotope were made, and combined ina 1 : 2 : 1 molar ratio to recreate the dibromide

pattern (Figure 5-4).

The isotopic signature of IsoMix GlcNAc is retained in glycopeptides

The essential part of the isotopic labeling strategy is that the isotopic signature be rec-
ognizable on the target biomolecule, in this case on N-linked glycoproteins. To test
this, Agnal yeast were grown in media containing 50 mm isomix GlcNAc, and the
His-tagged protein YGP1 was purified from the media. The purified protein was then
subjected to digestion with EndoH to remove all but the core GIcNAc moiety, fol-
lowed by proteolytic digestion with trypsin followed by LC-MS analysis. The resulting
data were then searched for peptides containing known sites of N-glycosylation to de-
termine if the isotopic signature is retained in the glycoprotein. A representative MS
spectrum shown in Figure 5-5 clearly shows a change in isotopic distribution upon
glycosylation. Furthermore, the isotopic pattern searching software was able to rec-
ognize the resultant pattern, confirming that the pattern was adequately reproduced.
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Figure 5-5: The isotopic signature of the IsoMix GlcNAc is retained in glycosylated peptides. The MS

of the YGP1 peptide ATPVANNKNATKRGVLSVTSDKYLV (A) without and (B) with a GlcNAc residue at

the indicated position (@ = N-GlcNAc). The modified peptide was confirmed by MS? (CID, xcorr =
1.68, Acn = 0.36, 15 of 34 fragment ions assigned)

Chemically directed MS of glycoproteins facilitates the
identification of sites of N-glycosylation

After confirming that the isotopic pattern was retained in the final glycan structure,
we applied this labeling strategy to identify sites of N-glycosylation on secreted yeast
proteins. To do this, media was filtered to remove cellular debris prior to concen-
tration using tangential flow filtration. The concentrated protein fraction was then
treated with EndoH to remove the bulk of the glycan structure prior to tryptic diges-
tion. Peptides were then analyzed by LC-MS, and data was searched for the presence
of the 1: 2: 1 isotopic pattern to generate an inclusion list of ions likely to be gly-
cosylated, and additional MS experiments were performed using the inclusion list to
direct MS/MS analysis of ions. MS/MS data was then searched against a yeast ORF
database from the Saccharomyces genome database* to obtain peptide sequences and
protein identifications. Data from multiple MS/MS experiments were then pooled
and filtered for significance, and N-linked glycopeptides were extracted, producing
34 sites of N-glycosylation with high confidence in 15 proteins (Table 5-1).

This analysis also revealed a number of glycosylation sites with variable occupancy,
such as the YGP1 peptide LEN@SSSALN@ITELYNVAR, where the doubly mod-
ified peptide, both singly modified peptides, and the unmodified peptide were all
detected with high confidence.

*http://yeastgenome.org
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Table 5-1: Identified peptides corresponding to N-linked glycoproteins in the secretome indicate mul-
tiple glycosylation sites of variable occupancy. Peptides were filtered for p < 0.001 and XCorr > 1.5.

M# = OxoMet; C* = alkylated cysteine; N@ = N-GIcNAc.

Protein  Sequence P-value XCorr Acn
APE3 LAN@YSTPDYGHPTR 1.3e-20 2.21 0.49

APE3 SKEGLHGTLGEPTK 2e-04 2.21 0.353
CDC20 GNAAISGN@RSVLSIASPTK 5.4e-07 2.06  0.207
CDC20 HIHFWNSITGAR 1.1e-46 2.6 0.236
CDC20 CTGRSREDGLMDGM#LGLIGK 0.00062 1.65  0.238
CDC20 EDGLM#DGM#LGLIGK 2e-07 1.59  0.179
ECM33 AAFSN@LTTVGGGFIIAN@NTQLK <le-50 485  0.406
ECM33  VQTVGGAIEVTGN@FSTLDLSSLK <le-50 328  0.422
ECM33 DVNSISFGSLQTVN@ASLGFIN@NTLPSLN@LTQLSK <le-50 5.66 0.12

ECM33 VQTVGGAIEVIGN@FSTLDLSSLK <le-50 328  0.422
ECM33  VGQSLSIVSNDELSK 1.4e-22 354  0.631
GAS1 VYAIN@TTLDHSEC*MK <le-50 3.02  0.387
GAS1 TVVDTFAN@YTNVLGFFAGNEVINN@YTNTDASAFVK <le-50 5.87  0.111
GAS1 FFYSNN@GSQFYIR <le-50 2.86  0.289
GAS1 ALNDADIYVIADLAAPATSINR <le-50 455  0.603
GAS1 ADFYGINMYEWC*GK 8.9¢-10 3.08 0.47

HSP60  EDTVILN@GSGPKEAIQER 2.9e-20 1.86  0.166
HSP60  QIIENAGEEGSVIIGK <le-50 435  0.586
HSP60  TNEAAGDGTTSATVLGR 2.2e-35 3.11 0.548
HSP60  DRYDDALNATRAAVEEGILPGGGTALVK Se-11 1.7 0.174
PDCl1 MSAN@ISETTAM#ITDIATAPAEIDR 1.4e-28 1.58  0.503
PDCI1 KLIDLTQFPAFVTPMGK <le-50 354  0.479
PDC1 KLIDLTQFPAFVTPM#GK 3.1e-15 3.08 0.49

PDCl1 MIEIM#LPVFDAPQNLVEQAK <le-50 4.16 0.53

PDC1 M#IEIMLPVFDAPQNLVEQAK <le-50 438  0.513
PDCl1 MIEIMLPVFDAPQNLVEQAK <le-50 5.4 0.582
PDCI1 LIDLTQFPAFVTPMGK <le-50 4.46  0.634
PDCl1 LKQVNVNTVFGLPGDFENLSLLDK <le-50 5.01 0.647
PDCl1 QVNVNTVFGLPGDFNLSLLDK <le-50 4.57 0.64

PDC1 LLTTIADAAK 3.1e-15 2.21 0.315
PDC1 LLQTPIDMSLKPNDAESEKEVIDTILALVK <le-50 556  0.615
PDCI1 TPANAAVPASTPLK 1.4e-28 3.28  0.589
PDC1 EVIDTILALVK 1.4e-28 2.91 0.406
PDCl1 AQYNEIQGWDHLSLLPTFGAK 3.2e-10 3.04  0.317
PDI1 QSQPAVAVVADLPAYLAN@ETFVTPVIVQSGK <le-50 454  0.602
PDI1 LAPTYQELADTYAN@ATSDVLIAK 3e-42 3.41 0.43

PDI1 NSDVN@NSIDYEGPR 1.5¢-46 2.74  0.133
PDI1 IDADFN@ATFYSMANK 3.6e-13 1.76  0.025
PDI1 ALYEEAQEK 5.5e-33 152 0.149
PDI1 SQEIFENQDSSVEQLVGK 2.4e-12 4.31 0.555
PDI1 GVVIEGYPTIVLYPGGK <le-50 437  0.644
PDI1 YGLPQLSEEAFDELSDK <le-50 413  0.522
PDI1 GLM#NFVSIDARK <le-50 1.75  0.506
PDI1 GVVIEGYPTIVLYPGGKK 1.1e-12 1.93  0.143
PDI1 TAEAIVQEMIK 8.8e-36 3.05 0.378
PHO3 SVGANLEN@ATLK <le-50 1.55  0.321
PHO3 GYSDVC*DIFTEDELVR <le-50 384  0.536
PHO3 IGTQEDIFPFLGGAGPYFSFPGDYGISR 1.5e-27 4.82 0.62

PRC1 VRN@WTASITDEVAGEVK <le-50 3.59  0.433
PRC1 N@WTASITDEVAGEVK 5.2e-32 2.51 0.49

PRC1 KDWDFVVKNDAIENYQLR 4.2e-07 1.53  0.024
PRC1 M#KAFTSLLC*GLGLSTTLAK 3.2e-10 1.5 0.237
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Protein  Sequence P-value XCorr  Acn
PRC1 NFLFAGDWM#K 7.5e-08 1.5 0.167
PST1 C*DTLVGN@LTIGGGLK <le-50 3.5 0.544
PST1 C*DTLVGNLTIGGGLK 3.7e-50 3.48  0.392
PST1 IGGLDN@LTTIGGTLEVVGN@FTSLNLDSLK <le-50 4.65  0.525
PST1 NLSESN@LSTIGGALVVAN@NTGLQK 4.9e-23 1.77  0.268
PST1 SANNIYISDTSLQSVDGFSALKK 5.6e-16 1.91 0.298
PST1 LNTIGQTFSIVSNDYLK 4.9e-23 4 0.565
PST1 ITFDDLVWANNISLTDVHSVSFANLQK 7.3e-09 324  0.432
TALI ASGTVVVADTGDFGSIAKFQPQDSTTN@PSLILAAAK le-20 1.52  0.233
TALI1 ASGTVVVADTGDFGSIAK <le-50 492 0.556
TALI NLAGVDYLTISPALLDK <le-50 437 0571
TALI VANNSLEQLK 1.4e-09 2.35  0.383
TALI1 LSFDTQATIEK 3.7e-25 276 0.521
TALI FDLNEDAMATEK 1.4¢-09 2.66  0.262
TDH2  LKGVLGYTEDAVVSSDFLGDSN@SSIFDAAAGIQLSPKFVK 2e-10 2.19  0.103
TDH2  NVEVVALNDPFISNDYSAYMFK 8.5e-09 336 0.443
TDH2  LKGVLGYTEDAVVSSDFLGDSNSSIFDAAAGIQLSPK 8.5e-09 1.63  0.083
TDH2  YAGEVSHDDKHIIVDGHK 1.6e-07 2.18  0.508
TFP1 AVANGAN@WSKLADSTGDVK 7.8e-06 1.58  0.255
TFP1 NNLNTENPLWDAIVGLGFLK <le-50 3.83  0.607
TFP1 LNLCAEYKDR 4.3e-42 1.61 0.624
TFP1 GRETM#YSVVQKSQHR 5.5e-06 1.99  0.446
VMA4 DLVSGGVVVSNASDKIEIN@NTLEER 1.8e-06 1.99  0.026
VMA4 DLVSGGVVVSNASDK 1.8¢-06 3.43  0.462
YGP1 LEN@SSSALN@ITELYNVAR <le-50 4.31 0.554
YGP1 LFENSSSALN@ITELYNVAR <le-50 438  0.584
YGP1 LFN@SSSALNITELYNVAR <le-50 3.71 0.62
YGP1 LENSSSALNITELYNVAR <le-50 472 0.519
YGP1 VVN@ETIQDK <le-50 1.78 0317
YGP1 RGVLSVTSDK <le-50 246 0.537
YGP1 PTLISSDSIIR <le-50 2.88  0.548
YGP1 LVYSGVFTPPTAC*SYGAGLPVAIVDDQDEVK <le-50 546  0.555
YGP1 GVLSVTSDKLVYSGVFTPPTAC*SYGAGLPVAIVDDQDEVK  <le-50 5.63  0.693
YGP1 NAVGAGYLSPIKAQILLSIAAVNGVTSK <le-50 3.07  0.442
YGP1 SSAGAVVVANAK <le-50 3.53  0.552
YGP1 AQILLSIAAVNGVTSK <le-50 5.18  0.696
Discussion

This work demonstrates a new metabolic labeling approach where an isotopically la-
beled natural substrate is used to impart a detectable isotopic pattern on on a subset
of ions based on their biological properties. They key advantages of this approach
over traditional metabolic labeling strategies are efficiency and a lack of perturbation
to the biological system. Since a natural substrate is utilized without the need for a
secondary labeling step, labeling of glycan structures approaches 100% efficiency. In
addition, since the modified substrate does not contain any altered functionality, its
flux through biochemical pathways is assured to be reflective of the natural state of
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the system.

Initially there was some concern about incorporating an isotopic label at the ano-
meric position as the C-O bond at that position is broken multiple times during the
biosynthesis of the N-glycan structure, and may introduce a skewing effect due to
kinetic isotope effects. Our results indicate that this is not a major concern in this
particular pathway. However, if this does prove to be problematic in other systems,
the site of labeling can be moved to a less precocious location.

The IsoMix methodology is by no means limited to the study of N-glycosylation.
We anticipate that this strategy is generally applicable to any systems where the meta-
bolic precursor is synthetically tractable, and the biochemical pathways involved are
relatively linear, such that a single precursor can be used to label the majority (e.g.
>90%) of the cytosolic pool. In cases where the latter condition is not met, it may
be possible to incorporate an labeling strategy with all masses being offset from the
monoisotopic mass. For example, instead of incorporating a substrate with peaks at
+0, +2, and +4 amu of the monoisotopic mass, a substrate with peaks at +4, +6, and
+8 could be utilized.

The IsoMix system also introduces the possibility of using isotopic patterns other
than the dibromide motif. One possible use of such designer patterns might be in
the use of orthogonal isotopic tags, such that the presence of two different tags could
be determined independently based solely on the isotopic distribution of the resul-
tant ion. This may have applications in areas such as glycan sequencing or in the
simultaneous analysis of multiple types of post-translational modifications.

Materials and methods

Synthesis of isotopically labeled N-acetylglucosamine

The synthesis of NV-acetyl-p-glucosamine from p-glucosamine hydrochloride was per-
formed in a single synthetic step according to the procedure described by Zhu ez a/.?*
Glucosamine hydrochloride (150 mg, 0.6 mmol) was dissolved in a minimal volume
of H,O, with the pH then adjusted to 7.5 by the addition of Dowex 200-400 mesh
(OH-) anion-exchange resin. The resin was then washed 3x with H,O, and the frac-
tions were combined ( 6mL total). 1.1 eq **Cy-sodium acetate (Cambridge Isotope
Laboratories, Andover, MA; dissolved in minimal H;O) was then added to the re-
action, followed by 1.1 eq EEDQ (dissolved in 10 mL EtOH). The total reaction
volume was then brough to 40 mL by addition of EtOH. The reaction was covered
in foil and let to stir for 36h at room temperature. The reaction was repeated using

1-3C,’"N-p-glucosamine hydrochloride (ISOTEC, Miamisburg, OH) as a starting
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Figure 5-6: The synthesis of N-acetyl glucosamine. i) pH GIcNH;3Cl to 7.5 using dowex 200-400
mesh ~OH-exchange resin, then 1.1eq NaOAc, 1.1eq EEDQ in H,O/EtOH, r.t. 36hrs.

material.

The crude products were then purified by flash column chromatography (solvent:
EtOAc : pyridine : H,O, 10 : 4 : 3), dried, filtered, and lyophilized.

Combination and analysis of isotopes

Stock solutions of each sugar were made of approximately equal concentrations of
10 mM in H,O, prior to making a solution containing all three isotopeata1:2: 1
molar ratio. This sample was then analyzed by direct infusion on an Thermo-Finnigan
LTQ-XL mass spectrometer set to zoom scan, with the signal averaged over 20 scans.
The isotopic ratios were then adjusted by the iterative addition of the desired isotopes,
resulting in the isotopic signature shown in Figure 5-4. The IsoMix sample was then
lyophylized and stored at -20°C where it is stable indefinitely.

Yeast growth and protein fractionation

A culture of Agnal S. cerevisiae'® was grown in CSM (complete supplement medium,
MP Biomedicals) with 2% dextrose and a 100uM ‘IsoMix’ GIcNAc (or regular Gle-
NAc) supplement at 30°C unitil reaching saturation.

Cells were pelleted by centrifugation and flash-frozen in LN2 and stored at -8°C.
Fully-secreted proteins in the supernatant were 0.2 micron-filtered to remove debris
and concentrated via tangential flow filtration with a 10 KDa NMWCO filter (Pall)
and buffer-exchanged into PBS, flash-frozen in LN2, and stored at -80°C.

Total protein concentrations of secretome samples were measured colorometrically
with the Biorad Dc assay.
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Protein purification and preparation

Milligram-scale protein samples were prepared for MS analysis by denaturation, disul-
fide reduction/alkylation, EndoH deglycosylation, and digestion with trypsin. Deter-
gent (Rapigest, 0.1% w/v) and 2.5mM DTT were added to secretome samples before
heat denaturation by boiling 3 minutes followed by incubation at 56°C for 30 mins.
Rapigest-solublized membrane samples were diluted to 0.2% (w/v) detergent and sup-
plemented with 2.5 mM DT'T prior to heat-denatuation and alkylation. Reduced cys
residues were alkylated by adding 25 mM iodoacetamide followed by 1 hr incubation
at RT in the dark before quenching by addition of 12mM DTT. N-glycans were re-
moved by lowering pH to ~5.5 with 50mM sodium citrate buffer and adding EndoH
or EndoHf (NEB) and incubating 3-4 hrs at 37°C . Following deglycosylation, sam-
ple pH was adjusted to ~7.5 with NaOH before adding proteomics-grade trypsin
(Promega) at a ratio of 1:100 and O/N incubation at 37°C in siliconized eppendorf
tubes.

Following tryptic digestion, samples were acidified with TFA to a final pH of ~2
and incubated at 37°C 30 min to hydrolyze the detergent. Insoluble debris was re-
moved, and the samples were desalted with Sep-Pak C18 cartridges (Waters). Peptides
were eluted in 80% MeCN w/ 0.1% Formic acid; solvent was removed until near-
dryness and samples were stored at -20°C until use. Peptides were resuspended in
water immediately prior to MS analysis.

After fractionation, protein samples were reduced by adding 2.5 mM DTT and
incubated at 56 °C for 30 min, and cysteine residues alkylated with 10 mM iodoac-
etamide in the dark at room temperature for 1 h.

LC-MS analysis

All samples were subjected to reversed-phase capillary chromatography with an Ag-
ilent 1200 LC system using 100-um x 1-cm (5-pm, 200 Magic C18AQ resin; Mi-
cthom Bioresources, Auburn, CA) fritted capillary pre-column and a 100-um x 10-
cm self-packed C18 column (5-pm, 100 Magic C18AQ resin; Michrom Bioresources,
Auburn, CA). A binary solvent system consisting of buffer A (0.1% formic acid) and
buffer B (0.1% formic acid in acetonitrile) was employed. After a 10 min loading
step in 2% buffer B, a gradient was employed from 10% to 40% buffer B for 62 min,
followed by a washing step in 99% buffer B for 10 min. A solvent split was used
to maintain a flow rate of 400 nL/min at the column tip. Data were collected on a
Thermo-Finnigan LTQ Orbitrap XL mass spectrometer set at 60,000 resolution in
full scan mode with an m/z scan range of 400-2000.
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Data analysis

Raw data for full-scan LC-MS experiments were converted to the mzXML format
through the use of the program ReAdW. Peak detection was then performed using
a continuous wavelet transform (Appendix C), and searched for singly- and doubly-
labeled peptides (corresponding to dibromide-like and tetrabromide-like patterns, re-
spectively) using the IsoStamp algorithm, and results were output as an inclusion list
of m/z values.

Biological samples were then analyzed by LC-MS/MS using the generated inclu-
sion lists as described above. MS/MS data was searched against an annotated yeast
OFR database using SEQUEST (Bioworks, Thermo-Finnigan) to determine peptide
identifications. Allowed modifications included cysteine alkylation, methionine oxi-
dation, and N-linked GlcNAc. Data from multiple samples were combined based on
peptide sequence, and combined significance levels were calculated using Stouffer’s
Z-score method®.

Peptides were then filtered for to include only identified species with P-Values
< 107% and XCorr scores > 1.5. Peptides with assigned non-canonical sites were
removed if moving the glycosylation site by a single residue produced a canonical site
(e.g. NN@SG — N@NSG) as this type of misassignment can be a common artifact
of the SEQUEST algorithm.
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chapter six

The future of isotopic labeling in mass
spectrometry

The previous chapters have outlined a strategy by which isotopic fingerprinting labels
can be used to demarcate a subset of ions from a biological sample as being inform-
ation rich. The key to this strategy is that the isotopic tag can be incorporated into
peptides or other biomolecules which are most likely to provide information that is
interesting in the context of a biological question. One method of accomplishing this
task is through the use of binary tagging strategies, such as the cysteine-alkylation
strategy used in Chapters 2. This technique is essentially limited by the efliciency and
selectivity of the chemistry involved in the labeling step.

An alternative strategy is to incorporate the isotopic tag directly into the bio-
molecule of interest, as exemplified in the previous chapter. This strategy has the
advantage that there is no loss of efficiency due to a chemical labeling step. How-
ever, for this strategy to be tractable, the isotopic signature must reach its biological
target essentially unchanged. This means that there must be limited competition for
the isotopically tagged species among a variety of biological pathways, and that there
must be limited de novo biosynthesis of the tagged molecule to prevent dilution of
the signal. In the previous chapter, this was ensured through the use of a yeast strain
lacking many of the competing pathways, such that the isotopic tag was incorporated
unobscured and at 100% efficiency.

A logical extension of the IsoStamp method is to expand the scope of the tagging
strategy to include a number of the common bioorthogonal reactions outlined in
Chapter 1. Section 6.1 discusses some initial work in this direction, along with appli-
cation in glycoproteomics through the metabolic incorporation of unnatural sugars.
Extending applications even further, section 6.2 suggests a number of biological sys-
tems of the IsoStamp technique, and Section 6.3 explores the idea of multifunctional
tags incorporating isotopic fingerprinting labeling with other extant tagging strategy
currently used in MS. Section 6.4 examines what the future of chemically directed
proteomics may look like.

A relatively recent arrival on the mass spectral scene is the idea of using mass spec-
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Figure 6-1: The dibromide motif can be incorporated through bioorthogonal chemistry. An azide-
reactive alkynyl dibromide tag can be reacted with glycoproteins bearing unnatural sugars with azide

functionality. The protein mixture can then be purified using biotin-avadin affinity chromatography,
and glycoproteins can be eluted upon treatment with sodium bisulfite and analyzed by directed MS.

trometry to generate images of biological samples, a technique termed “mass spec-
trometry imaging” (MS imaging for short)!. In this technique, a biological sam-
ple is fixed to a solid support, and mass spectra are obtained at predetermined zy-
corrdinates, generating a multidimensional image of the sample. Section 6.5 intro-
duces the idea of isotopic tagging in the context of MS imaging, and proposes a
method in which the graph theoretic approach introduced in Chapter 3 might be
applied to the analysis of MS imaging data.

Finally, Section 6.6 highlights the possibility of using multiple isotopic tagging
strategies in combination to help elucidate glycan composition. Such a system would
be useful to discriminate between monosaccharides of identical molecular weight
when analyzing large glycans of unknown composition by mass spectrometry.

Using metabolic engineering to enable chemically
directed proteomics

As discussed in Chapter 1, unnatural sugars can be incorporated into glycoproteins
through the hijacking of cells’ biosynthetic machinery, allowing the introduction
of bioorthogonal chemical groups into these biomolecules. Some unnatural sugars
and their biological targets are given in Table 1-1. Initial work towards applying the
IsoStamp technology to metabolically engineered glycoproteins has been carried out
by Brian Smart and Krishnan Palaniappan, which has resulted in the synthesis of a
multi-functional azide reactive dibromide tag, as can be seen in Figure 6-1.

An attractive first target for combining metabolic engineering with the IsoStamp
technology is in the analysis of cytosolic O-GlcNAcylation. Cytosolic O-GlcNAc-
ylation is a dynamic form of glycosylation, in which a single GIcNAc moiety is ap-
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Figure 6-2: The metabolic incorporation of GIcNAz into O-GlcNAcylated proteins. Peracetalated V-

acetylgalactosamine (GalNAz) can be added to culture media where it is then taken up by cells through

the GalNAc salvage pathway, where it is ultimately converted to UDP-GalNAz and epimerized at the

4 position to produce UDP-GIcNAz (see Figure 5-1 for details). UDP-GIcNAz is then a substrate for

O-linked N-acetylglucosamine transferase (OGT), the sole enzyme responsible for cytosolic GIcNA-
cylation.

pended to protein Ser/Thr residues by the enzyme O-GlcNAc Transferase (OGT) or
removed by the enzyme O-GlcNAcase®?. Compared to cell surface glycosylation, the
study of cytosolic O-GlcNAcylation is simplified by the fact that only a single sugar
is attached to proteins, removing the difficulties of dealing with glycan heterogeneity.
Furthermore, O-GlcNAc is interesting from a biological point of view: it has been
implicated as been an essential component of a number of disease states including
diabetes*” and a number of signal transduction pathways®?, and has been proposed
to be complementary to the action of myriad kinases within mammalian cells'°.

The O-GlcNAc modification can be targeted through metabolically labeling cells
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with peracetylated GalNAz, as shown in Figure 6-2. Briefly, after entering the cell,
the sugar is deacetylated and ultimately converted to the donor sugar UDP-GalNAz,
which is then epimerized at the 4 position to produce the OGT substrate UDP-
GlcNAz. The reason that GalNAz is used rather than GIcNAz is due to recent work
showing an increase in labeling efficiency and specificity with the use of GalNAz (work
by Dr. Mike Boyce, manuscript in preparation). After labeling, proteins from the cy-
tosolic fraction would be purified prior to labeling with an azide-reactive dibromide
tag. Tag-labeled proteins could then be purified by affinity chromatography and an-
alyzed by directed LC-MS/MS. This technique would give a platform by which one
could analyze dynamic changes in cytosolic O-GlcNAcylation of low-abundance pro-
teins. Furthermore, under ideal conditions, the dibromide label would be detectable
in individual peptides’ tandem MS, which could be used to improve confidence in
database searching and assignment of modification sites.

Beyond glycosylation

Though glycosylation is an attractive application for directed proteomics, the IsoStamp
technology is only limited by the ability to incorporate the isotopic signature into the
desired biomolecule. Thus, this approach could be used to study a number of other
=13 and phosphoryla-

, as well as for the analysis of cysteine oxidation!® and active sites of enzymes!°.

types of posttranslational modifications, including lipidation
tion !4
Other biochemical tagging strategies, such as the labeling of protein N-termini, are
also amenable to this technique!”'8.

Furthermore, the IsoMix approach used in the previous chapter could be applied
to a number of biochemical targets. One enticing possibility would be the isotopic
tagging of GPI anchors, in particular because GPI anchor attachment does not follow
a clear consensus sequence, and the anchor itself would be accessible through a scheme
very similar to that used to label yeast N-glycans. Though GPI anchor structure can
vary between organisms, there is a conserved glucosamine core that is derived from
the UDP-GIcNAc pool®=2!. The relevant steps of GPI anchor biosynthesis are shown
in Figure 6-322. The major change from the labeling protocol previously used would
be the location of the heavy isotopes within the GlcNAc: since the acetate is removed
during the construction of the GPI anchor, only isotopes within the glucosamine
core would be retained. However, this would be easily achieved with commercially
available isotopes of GlcNAc.

Using the same UPD-GIcNAc auxotrophic yeast described earlier, competition

for the UDP-GIcNAc pool from non-labeled sugars would be removed, permitting
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Figure 6-3: The biosynthesis of GPI anchors in mammalian cells permits incorporation of IsoMix

GlcNAc through the metabolic targeting of UDP-GlcNAc.

efficient incorporation of the isotopic label into the GPI anchored pool of proteins.
Proteins could then be isolated using standard protocols, and directed MS could be
used to analyze modified proteins, including the determination of sites of modifica-
tion.

Another potential target for the IsoMix strategy is the labeling of fucosylated pro-
teins. Fucosylation of O- and N-linked glycans has been shown to have a number of
essential biological functions®’, and has been shown to be an important biomarker
for a number of disease states including liver disease and cancer?*?°. Furthermore,
O-fucose—the addition of a single fucose moiety to protein Ser/Thr residues—has
been shown to be essential to development as in the case of Notch fucosylation?.
However, attempts to target fucose through metabolic engineering have proven to be
challenging, in part due toxicity cause by unnatural fucose analogs?’

Fucose is also an attractive target because the fucose salvage pathway has been
shown to be highly efficient compared to other salvage pathways, suggesting that it
may be possible to target the metabolic precursor, GDP-fucose, simply by growing
cells in media containing IsoMix fucose. Alternatively, should the salvage pathway
prove to be inadequate, produce of a GDP-fucose auxotrophic cell line would only
require the knockout of one of two genes in the de novo fucose biosynthetic path-
way, as both GDP-mannose 6-dehydrogenase (GDH) and a dual-function epimerase-
reductase, termed the FX Protein, are required for the production of GDP-fucose
from non-fucose pools?®
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Multifunctional tagging strategies

One of the attractions of the IsoStamp system is that it need not be used in isolation.
The extremely complex nature of biological samples as they relate to mass spectrom-
etry poses a problem that will likely not be solved by a single strategy, but will likely
necessitate the combination of a number of functionalities. Fortunately, many tech-
nologies can be combined in a single small molecule tag, such as that proposed by
Hart and coworkers, combining a reactive group, an affinity label, a cleavable linker,
and an ionizable group to improve MS signal?®. Other tagging strategies used in mass
spectrometry include isotope labels for relative quantitation between samples, such as
ICAT?® and iTRAQ?!. Each of these tagging strategies could be modified to include
an isotopic fingerprinting label such as the dibromide tag. Such a combination of
functionalities in a single tag would allow for multiple methods of enrichment (e.g.,
affinity purification along with ionization enrichment), quantification, and directed
MS to be achieved using a single tagging step, with no loss of efficiency of any of the
component technologies.

Initial work on integrating the IsoStamp methodology with isotopic quantitation
techniques is underway. A library functions to facilitate peak and ion integration that
can be interfaced with the pattern searching software can be found in Appendix B.6.

The future of chemically directed proteomics

At present, the largest limitation to the IsoStamp technology is the requirement of two
separate LC-MS experiments: the first to determine the location of labeled species,
and the second to obtain fragmentation data on the same sample. Ideally, the tech-
nology could be used without the necessitating two separate experiments, saving both
time and samples. In order to achieve this, the pattern searching software would need
to be integrated with the MS instrument’s operational software such that full scan
data is searched in real time, and matched patterns are fragmented as soon as they are
detected.

In addition to streamlining the process, such an on-line analysis strategy would
offer an additional benefit: since the instrument would fragment ions as soon as they
were detected, it increases the likelihood that the ion came from a tagged species and
rather than an ion that had the same m/z value as a previously detected species. This
would serve to increase the efficiency of fragmenting labeled species. As the current
searching software can processes an entire LC-MS dataset in under five minutes, the
technical difficulties to achieve such an integrated system should be within reason.



6.5

6.5 APPLICATIONS OF ISOTOPIC LABELING TO MS IMAGING 103

Applications of isotopic labeling to MS imaging

MS Imaging is a relatively young technology in which a fixed two-dimensional struc-
ture, typically a tissue sample, is moved in both dimensions and a mass spectrum is
obtained at fixed zy-coordinates. At present, there are primarily two methods for per-
forming MS imaging: MALDI imaging and SIMS imaging, which differ primarily in
the mechanism of ionization!. In MALDI imaging, a sample is fixed to a solid sup-
port prior to the application of a MALDI matrix (e.g., a-cyano-4-hydroxycinnamic
acid). A laser is then rasterized across the surface, volatilizing the sample at discrete x,y
coordinates, after which a mass spectrum is obtained . At present, the spatial resolu-
tion of MALDI imaging is limited by the size of crystals in the matrix, though there
have been recent reports of spatial resolution as high as 15 ym on peptide samples?.

In contrast, SIMS (secondary ion mass spectrometry) imaging uses a focused ion
beam, such as that of Cg fullerene, to ionize a solid sample at discrete coordinates,
again obtaining a mass spectrum at each point®. Since SIMS does not require a crys-
tal matrix for ionization, the spatial resolution is not limited by crystal size but rather
on the ability to focus an ion beam, with current technology providing resolution as
high as 3 pm?®. While these resolutions are large relative to the size of subcellular
structures, resolution for MS imaging techniques are expected to improve drastically
with the technological advances in ionization techniques, making MS imaging of cel-
lular structures a tractable task.

Already, MS imaging has been used to analyze a diverse set of biological problems,

from analyzing tissue structure and organization3336-37

, as well as for analyzing the
location of action of natural products®® and for drug discovery®. In general, the
current use of MS imaging is to produce an image based on the signal intensity at one
m/z value, and thus the technique is limited to cases in which there is prior knowledge
about the molecular species present at a given m/z value. The IsoStamp technology
lends itself perfectly to this situation.

The IsoStamp technique could be incorporated into MS imaging through two
straightforward steps. First, the isotopic label would have to be incorporated into
the biological structure of interest. This could be done through a secondary label-
ing strategy as in Chapter 2, through direct incorporation of the isotopic label as in
Chapter 5, or through any number of hybrid methods as discussed above. Secondly,
the MS data would have to be searched for the dibromide pattern prior to creation
of two-dimensional images. This could be accomplished using the same general al-
gorithm put forth in Chapter 3, requiring only modification of the structure of the
graph used for false positive reduction. Rather than treating two nodes as potential
neighbors if they elute from the LC column at similar times, nodes would be treated
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as potential neighbors if they were located in adjacent pixels in the two dimensional
grid. This would allow the generation of images based specifically on the signal gener-
ated by a specific set of biomolecules based on their chemical or biological properties,
rather than based on a single biomolecule. Furthermore, the use of a graph construct
here easily lends itself to further image analysis such as segmentation and edge detec-
tion4-44_ This suggests that structures within cells or tissues could be identified based
solely on the signal of a specified set of biomolecules. Such a system has the potential
to be a powerful tool for analyzing physiological structures at the molecular level.

Orthogonal isotopic labels

The IsoMix system described in the previous chapter introduces the possibility of
“designer” isotopic signature tags representing a broad range of tunable isotopic sig-
natures, limited only by the availability or synthetic tractability of isotopically labeled
building blocks. For, example, applications in glycobiology, a large number of *C
and "N sugars are commercially available making it possible to create mixtures of
isotopes covering a broad range of patterns. In theory, two isotopic tags could be de-
veloped such that the number of each tag on a molecule could be determined from the
full-scan mass spectrum alone. If these orthogonal isotopic tags were then attached
to two different chemical functionalities (e.g., azide- and carbonyl-reactive tags) or
to two different biological subunits (e.g., GIcNAc and GalNAc), the composition of
the biomolecule with respect to those two functionalities or subunits could be deter-
mined from the full-scan mass spectrum alone. Furthermore, in the case of glycomics,
such a system could improve the elucidation of glycan structures and may be able to
add suflicient information to improve existing software for glycan analysis such as
Cartoonist Two ¥,

While in theory such a technique could be used to determine the composition
of large polymeric structures, in practice such an approach will likely be limited by
isotopic dilution effects, as the signal for the entire ion is divided amongst a large
number of peaks. Increased instrumental resolution and sensitivity combined with
improved methods of sample preparation will increase the scope of such an applica-
tion, but with current technology it is estimated that such a labeling strategy would
work well for molecules with up to four isotopic labels, after which isotopic dilution
and decreased fidelity in recreating the isotopic pattern will be limiting,.
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appendix a

Halogen tag sensitivity

This appendix contains the analysis of the raw MS data files used to to generate Figure
2-4A, examining the relative sensitivity of each of the halogenated tags. In each MS
file, data were searched for the presence of ions at the appropriate m/ = value for charge
states ranging from +1 to +5. lons found were then compared against a reference
dataset (“Ideal” in each table) that contained no added lysate as a control for retention
time and ionizability.

Numbers in each column indicate the number of ions found for each peptide
listed, while values of “—” indicate that no ions corresponding to that peptide were
found in any of the samples analyzed, including the sample of pure BSA. Data was
obtained on an LTQ Orbitrap XL (resolution=60,000) for the dibromide (Table A-1),
dichloride (Table A-2), and monobromide (Table A-3) tags, while data obtained on a
Waters Q-ToF Premier (resolution=10,000) was only obtained for dibromide-tagged
BSA (Table A-4). Original file names for each sample are provided in the table notes.
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appendix b

Computer source code

Overview and conventions

One of the primary frustrations in starting this project was the lack of cross-platform
compatibility of existing code, making it difficult or impossible to reuse much of the
code existing in the literature. As such, one of the primary considerations for software
development was cross-comaptibility and code reusability. Given the computation
complexity of some of the problems undertaken, execution speed was also a great
concern. Finally, as many of the problems encountered require sophisticated data
structures for optimal analysis, a language with robust constructs was required.

With the speed and features requirements in mind, I chose to write the majority
of the software in C++ as it remains one of the fastest languages to do. The libraries
included here make extensive use of the C++ STL, and a number of the classes them-
selves are derivatives of these libraries. Care was also taken to avoid platform-specific
implementations, so third party libraries were avoided whenever possible. The sin-
gle exception to this rule is the use of the Boost regular expression library used in
the mzXML I/O library (subsection B.2) and in the handling of some user input.
For libraries including the boost regular expression libraries, code must be compiled
with the flag -lboost_regex. All code included here has been compiled under Linux
(Ubuntu 8-10) on a number of hardware platforms and under OS 10.4 and 10.5. To
date, only portions of the code have been compiled under Windows, though there
should be minimal challenges if such a task were to be undertaken.

mzXML reading and writing

Description

A major hurdle in working with mass spectral data is storing the information in a
way that can be easily shared and accessed. As the majority of instrument manufac-
turers do not release the specification of their proprietary file types, the community
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has adopted the mzXML filetype as a standard. In brief, the mzXML file type stores
header information about the type of experiment (instrument used, ionization poten-
tials, etc). Each scan is then stored as a separate XML block that includes information
such as retention time, base peak m/z and intensity, MS level, and the raw data. The
raw data is stored as a base64 encoded text block, with the precision specified in the
scan header.

Finally, the file is closed with an index containing scan numbers and their respec-
tive offsets within the file. After this has been written, an indexOffset tag is written
specifying the file offset of the beginning of the index tag. Together these two tags
allow the file to be treated as a random access file—by reading the index first, scans
can be read without having to read any other data within the file. This is essential as
these files can be quite massive*.

Finally, the file is closed with a tag including a sha-1 hash of the entire file (up
to the end of the opening (shal) tag). This is to ensure that the data has not been
tampered with.

The C++ classes below provide a rapid and simple interface to working with the
mzXML filetype. The main classes necessary or mzxml_reader.h with reading data,
and mzxml_writer.h when writing data. The other classes are support classes that
are invoked when necessary. These classes make use of the Boost regular expression
(regex) library', which must be linked to the project at compile time, typically via the
flag “-Iboost_regex’.

C++ code

mzxml_lib.h

#ifndef MZXML_LIB_H INCLUDED
#define MZXML_LIB_H INCLUDED

#include <fstream >
#include <string >

#include <sstream >
#include <boost/regex.hpp>

#include “mzxml_types.h”

Il for debugging:

#include <iostream >

*A typical mzXML file in profile mode from an Orbitrap is 1-3 GB

fDocumentation and downloads can be found at www.boost.org
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#ifndef __uint64
#ifdef __int64

#define __uint64 unsigned __int64
#else

#define __uint64 unsigned long long int
#endif

#endif

namespace mzxml

{

» »

static const std::string base64_chars =

base64 _chars += ABCDEFGHUKLMNOPQRSTUV\WXYZ

base64 _chars += abcdefgh1JklmnopqrstuvwxyzO123456789+/”;
static const int nullptr = 0;

IEE

x @brief Converts any type to its string representation
*

% @param __X The value

* @return A string representation of the supplied value
* /
template <typename _Tp>
std ::string stringify ((Tp &-_x) {
std :: ostringstream __o;
.0 << __X;
return __o.str ();

}

[ % %

* @brief Converts a string to a number

*

* @param __s The string representation of the number
* @return The value encoded in the supplied string

*/

template <typename _Tp>

Tp val_from_string (const std::string __s) {
std ::istringstream __i(_-_s);
Tp _-_r;
_io>> __r;
return __r;

}

[ % %

* @brief Obtains an offset from a string value
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programs use improper data types (I’m looking at you,

values to be written due to integer overflows. This
function works backwards and converts negative values
back into the correct offset.

*OOX X X X X X X X

@param s A string representation of the offset
@return A size_t value of the corrected offset

*

x/

template <int i>
size_t offset_from_string(std::string s) {

}

long long int __o;
_.o = val_from_string <long long int>(s);
if(__o >= 0 )

return (size_t)__o;

/1 we’ll assume they used long datatypes.

/1 if they used normal integers, they’re ”challenged.”
/] max(long): 2147483647, min(long): —2147483647

return 2147483647 + (__o + 2147483649) — 20;

[ % %

x @brief Converts a number into its hexadecimal
representation

*

* @param __x The value to be converted

* @return A string of the hexadecimal representation of

*/

template <typename _Tp>
std ::string to_hex (_Tp &__x) {

}

std :: ostringstream __o;
__0o << std::hex << __x;
return __o.str ();

This function is necessary since some mzxml conversion

ReAdW) , and thus large files may cause negative offset

std ::string pad_left(const std::string __s, size_t length,

char __p = ".7);

std :: string pad_left(std::string &__s, size_t length, char

p o= o)

bool isBigEndian () ;
bool isLittleEndian () ;



B.2 MZXML READING AND WRITING 123

bool is_base64 (unsigned char c);
bool is_base64 (char &c);

std :: string pack(float xpData, size_t size);
106 std::string pack(float xpData);
float % unpack(std::string input);
float * unpack(std::string input, size_t &length);

std :: string base64_encode (unsigned char const*x , unsigned int
len);
111 std ::string base64_decode(std::string &s);

}
#endif /1 MZXML_LIB_H_INCLUDED

mzxml_lib.cpp
1 #include "mzxml_lib.h”
using namespace mzxml;

#define swapBytes(x) x = ((x & 0x000000ff) << 24) | ((x &
0x0000ff00) << 8) | ((x & 0x00ff0000) >> 8) | ((x &
0xff000000) >> 24);

7 /+* you must redefine __MS_BIG.ENDIAN if you do not
* have a big endian machine.. you can use the
* test function given below, isBigEndian (), to
* find out what you’re running.

12
#define __MS_BIG_ENDIAN false

EE
x @brief Pads the supplied string the a given

17 = character until it is the desired length.
*
% @param __s The string that is being padded
* @param length The desired string length
% @param __p The character the string is

22 x padded with, defaults to spaces.
* @return A padded string
*/
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std ::string mzxml:: pad_left(const std::string __s, size_t
length , char __p)
{
27 std :: string pad = 77
while(__s.length () + pad.length() < length) {
pad. push_back(__p);

}

32 return pad + __s;

37
/% x
* @brief Pads the supplied string the a given character until
* it is the desired length.
*
42 % @param __s The string that is being padded
* @param length The desired string length
* @param __p The character the string is padded
* with , defaults to spaces.
* @return A padded string
47 «/
std ::string mzxml:: pad_left(std::string & _s, size_t length,

char __p)

{
std :: string pad = 77
while(__s.length () + pad.length() < length) {

52 pad. push_back(__p);
¥
return pad + __s;
}
57
[
62 * @brief Returns true if the current machine uses big
* endian byte ordering
* /

bool mzxml:: isBigEndian ()

{
67 short int word = 0x0001;

char xbyte = (char x) &word;
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return (byte[0] ? false : true);
}
72
[ % %
x @brief Returns true if the current machine
77 uses little endian byte ordering
*/
bool mzxml::isLittleEndian ()
{
short int word = 0x0001;
82 char xbyte = (char x ) &word;
return (byte[0] ? true : false);
}
87
[ % %
* @brief Returns true if the supplied character is a
* valid base64 character, false otherwise.
92 x/
bool mzxml::is_base64 (unsigned char ¢)
{
return (isalnum(c) || (c == "+7) || (c == "/7));
}
97
[ % %
102 % @brief Returns true if the supplied character
* is a valid base64 character, false otherwise.
*/
bool mzxml::is_base64 (char &c)
{
107 return (isalnum(c) || (c == "+7) || (c == "/7));
}
112
[ % %
* @brief Returns a base64 encoded string of the supplied data
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std :: string mzxml:: base64_encode (unsigned char constx

{

*
*
*
*

*

The raw data

encode

@param bytes_to_encode

@param in_len

[

bytes_to_encode , unsigned int in_len)

std ::string ret;

int i = 0;

int j = 0;

unsigned char char_array_3[3];
unsigned char char_array_4 [4];

while (in_len ——) {
char_array_3[i++] = x(bytes_to_encod
if (i == 3) {
char_array_4[0] = (char_array_3|
char_array_4[1] ((char_array_3

+

char_array_4[2] ((char_array_3
((char_array_3

char_array_3[2]

n +

char_array_4[3]

for(i = 0; (i <4) ; i++)
ret += base64_chars[char_array_4

i = 0;
}
}
if (i) {
for(j = i; j < 35 j++)
char_array_3[j] = "\0°

char_array_4[0]
char_array_4[1]

(char_array_3[0]
((char_array_3 [0
((char_array_3[1
[1
[2

+

char_array_4[2] ((char_array_3
((char_array_3

char_array_3[2]

+

]
]
]
] &
char_array_4 [3] & 0

for (j = 05 (j < i + 1)5 j++)
ret += base64_chars[char_array_4][

while ((i++ < 3))

0]
[0
((char_array_3[1
[1
[2

that we would like

e++);

The length of the block of data
@return A base —64 encoded string of the data

& O0xfc) >> 2;
& 0x03)
& 0xf0)
& 0x0Ff)

0x3f;

[ills

& 0x03)

& 0xf0)

& 0x0f)
0xc0)
0x3f;

i1l

]
]
]
] & 0xc0)
&

& 0xfc) >> 2;

4)

4)

4);

2)

6);

4);

2)

6);

to
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S

{

return ret;

x/

td :: string mzxml:: base64_decode(std :: string &encoded_string)

int in_len = encoded_string.size ();
int i = 0;

int j = 0;

int in_. = 0;

*
* @brief Returns a string of characters from a base—64
* encoded string

*

* @param encoded_string The base —64 encoded data

x @return A string of decoded characters

unsigned char char_array_4[4], char_array_3[3];

std ::string ret;

while (in_len— && ( encoded_string[in_] !=
&& is_base64 (encoded_string[in_])

{

)
)

char_array_4[i++] = encoded_string[in_]; in_++;

if (i ==4) {
for (i = 0; i <4; i++)

char_array_4[i] = base64_chars.find (char_array_4[i]);

char_array_3[0] (char_array_4 [
((char_array_4

0
[
((char_array_4 [
[
[
]

+

char_array_3[1]

+

((char_array_4
((char_array_4
+ char_array_4[3];

char_array_3[2]

for (i = 0; (i < 3); i++)
ret += char_array_3[i];
i = 0;

<< 2)

& 0x30) >> 4);
& 0xf) << 4)
& 0x3c) >> 2);
& 0x3) << 6)
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if (i) {

207

212

217

}
222

for (j = 15 j <4
char_array_41[j]

for (j = 0; j <4
char_array_41[j]

char_array_3[0]

4
char_array_3[1] =
+
char_array_3[2] =
+

for (j = 0; (j <

return ret;

227

/

*

232

I SR R R

237 x/

std ::

{

std :: string ret =

@brief

j++)
- 0;

j++)
= base64 _chars

(char_array_4[
((char_array_4
((char_array_4
((char_array_4
((char_array_4

char_array_4[3

i — 1); j++) ret += char_array_31[j];

base64 encoded string

242 unsigned int tmp =
short block_size =
unsigned char block([sizeof (xpData) ];

Il

load a string wi

247 for(size_t i = 0; i

swapBytes (tmp) ;

memcpy(&block , &tmp,

» »

bl

0;
sizeof (xpData);

th bytes...s
< size; i++) {

if (! _MS_BIG_ENDIAN) {
memcpy(&tmp, &pDatal[i],

.find (char_array_4[j]);

string mzxml:: pack(float xpData,

<< 2)

& 0x30) >> 4);
& 0xf) << 4)
& 0x3c) >> 2);
& 0x3) << 6)

Packs an array of floating point values into

@param pData  An array of floating point values
@param size The number of elements in pData

@return A base64 encoded string of the packed data

size_t size)

block_size);

sizeof (xpData));
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252 }
else {
memcpy(&block , &pData[i], block_size);
}
ret.append ((const charx)block, 4);
257 }

return base64_encode ((const unsigned charx)ret.c_str (),
ret.size ());

262

/% x

* @brief Transforms an array of floating point values
267 * into a base64 encoded string

*

* @param pData An array of floating point values

* that is terminated by a —1 value

* @return A base64 encoded string of the packed data
272 x/

std :: string mzxml:: pack(float spData)

{

» »

std ::string ret = ;

277 unsigned int tmp = 0;
short block_size = sizeof (xpData);
unsigned char block[sizeof (xpData) ];

I/ load a string with bytes ...
282 int index = O0;
while (pData[index] > —1) {
if (! __MS_BIG_ENDIAN) {
memcpy(&tmp, &pDatalindex++], sizeof (xpData));
swapBytes (tmp) ;
287 memcpy(&block , &tmp, block_size);
}
else {
memcpy(&block , &pData[index++], block_size);
}
292 ret.append ((const charx)block, 4);

}

return base64_encode ((unsigned const charx)ret.c_str (),
ret.size ());
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}
297
[ % %
302 % @brief Unpacks a base64 encoded string into an
* array of floating point values
*
* @param input A base —64 encoded string
* @return An array of floating point values terminated
307 by two sequential —1 values
* /

float * mzxml::unpack(std::string input)
{
float sxpData = NULL;
312  input = base64_decode(input);
char BILANK = (char)0;

/] pad the input so we get enough characters ...
while (input.length () % 4 != 0) {

317 input.append (BLANK, 1);
}

int index = 0;
int size = input.length ();
322 pData = (float x)realloc(pData, size + 8 );
unsigned char block[sizeof (xpData) J;
float fTmp = 0.0;

for(size_t 1 = 0; i < input.length(); ) {
327 /1 grab each character...
if (! __MS_BIG_ENDIAN) {
/!l swap the bytes as we pull them out.

block [3] = (unsigned char)input.at(i++);
block [2] = (unsigned char)input.at(i++);
332 block [1] = (unsigned char)input.at(i++);
block [0] = (unsigned char)input.at(i++);
}
else {
block = (unsigned char)input.at(i++);

(0]

337 block [1] = (unsigned char)input.at(i++);

block [2] = (unsigned char)input.at(i++);
(3]

= (unsigned char)input.at(i++);

memcpy(&fTmp, &block, 4);
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pData[index++] = fTmp;
}
pDatalindex++] = —1.0;
pData[index] = —1.0;

/1 we add two “kill’ values because

// these data are typically read in pairs, and bad

// data can result in segfaults if not carefully

Il controlled for in other algorithms. This way,

/] we waste an extra 4 bytes but prevent this problem.
return pData;

[ % %
* @brief Unpacks a base64 encoded string into an array
* of floating point values
*
* @param input A base—-64 encoded string
* @param length A size type reference that will store
* the length of the array
* @return An array of floating point values
* /
float % mzxml::unpack(std::string input, size_t &length)
{

float xpData = NULL;
input = base64_decode (input);
char BLANK = (char)0;

// pad the input so we get enough characters ...
while (input.length () % 4 != 0) {

input.append (BLANK, 1);
}

int index = 0;

int size = input.length ();

pData = (float x)realloc(pData, size + 8 );
unsigned char block([sizeof (xpData) ];

float fTmp = 0.0;

for(size_t i = 0; i < input.length(); ) {
Il grab each character ...
if (! __MS_BIG_ENDIAN) {
/] swap the bytes as we pull them out.
block [3] = (unsigned char)input.at(i++);
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block [2] = (unsigned char)input.at(i++);
block [1] = (unsigned char)input.at(i++);
block [0] = (unsigned char)input.at(i++);
}
else {
block [0] = (unsigned char)input.at(i++);
block [1] = (unsigned char)input.at(i++);
block [2] = (unsigned char)input.at(i++);
block [3] = (unsigned char)input.at(i++);
}
memcpy(&fTmp, &block, 4);
pData[index++] = fT'mp;
}
length = index;
return pData;
}
mzxml_reader.h
#ifndef MZXML_READER H_INCLUDED
#define MZXML_READER H_INCLUDED
#include <boost/regex.hpp>
#include <fstream >
#include <string >
#include <map>
#include “mzxml_types.h”
#include "mzxml_lib.h”
namespace mzxml
{
using namespace std;
/++ @brief A basic mzXML reader
*
x At this point, this class assumes that
x all data is stored as 32—bit precision (float) in
* base64 data. Header information contains LCSM settings ,
x Rf times, etc, but does not yet include MALDI spot
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x* coordinates , etc.
x/

class Reader

{

31

36

41

46

51

56

61

66

public:
Reader () ;
Reader (char constx __file);
Reader(std :: string &__file);
“Reader () ;

/« File opening and closing x/
bool open(std::string &f_name);
bool open(const char *__file);
void close () ;

/[« File reading operations x/

bool read_index_offset ();

bool read_index () ;

bool read_instrument_header () ;

bool read_run_header ();

bool read_scan_header (unsigned int scanNum) ;
bool scan_exists (unsigned int scanNum) ;

bool read_parent_file_header ();

float * read_scan (unsigned int scan_num);
float * read_scan (unsigned int scan_.num, size_t &count)

/+ Access to header information =/

//'< Returns the curent instrument header
inline InstrumentStruct get_instrument_header () {
return __instrument;

}

//'< Returns the current run header
inline RunHeaderStruct get_run_header () {
return __run_header;

}

//'< Returns the current scan header
inline ScanHeaderStruct get_scan_header () {
return __scan_header;

}

//'< Returns the index offset of the current file.
inline size_t get_index_offset () {

>
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return __index_offset;

}

//'< Returns the parent file
read

information

that

inline vector<ParentFileStruct> get_parent_file_header () {

return __parent_files;

}

//'< Returns the number of scan offsets

read
inline int get_scan_count () {
return __index.size ();

}

//'< Returns the saved checksum of the file

inline string get_.SHAL () {

return checksum;

}

inline size_t file_size ();

/1'< Returns the open status file
inline bool is_open () {

return __in.is_open ();
}
bool validate () ;

private:

ifstream __in;
size_t __index_offset;
size_t __scan_count;
std :: map<unsigned int,size_t> __index;
InstrumentStruct __instrument;
RunHeaderStruct __run_header;
ScanHeaderStruct __scan_header;
ParentFileStruct __parent_file;
vector <ParentFileStruct > __parent_files;
string __f name;
string __checksum;

void stringSplit(string s, vector<string> delims,

vector<string > &ret);

void stringSplit(string s, string delim,

&ret);

void stripWhitespace (string &s);

that have been

vector <string >



111

116

121

14

19

24

B.2 MZXML READING AND WRITING 135

void stripChars(string &s, char % tokens, int tokSize);
void stripChars(string &s, char token);

void resetParams () ;

string checksum;

inline float time_modifier(std::string __s);
s
}
#endif [ MZXML_READER H_INCLUDED
mzxml_reader.cpp

#include "mzxml_reader.h”

using namespace mzxml;
using namespace boost;
using namespace std;

#define LINE_SIZE 512 //'< The maximum size of a line read
#define BLOCK.SIZE 1024 //!< The size of character blocks we

read
mzxml :: Reader :: Reader () : __index_offset(0), __scan_count(0) {}
mzxml :: Reader :: Reader(string &__file) : __index_offset(0),

__scan_count (0)

{

std :: cout << "Initiating._reader.” << std ::endl;
open(__file);
}

mzxml :: Reader :: Reader (char constx __file) : __index_offset (0),
__scan_count (0)

{
}

open(__file);
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mzxml :: Reader::” Reader ()

{

29 }

__in.close ();

void mzxml:: Reader:: close ()

{
34 __in.close ();

}

[ % %
39 % @brief Returns true if we have an index offset
* recorded for the supplied index
x/
bool mzxml:: Reader:: scan_exists (unsigned int ind)

{
44 return (__index[ind]);

}

49
[ %%
* @brief returns the size of the current file in bytes
* /
inline size_t Reader:: file_size ()
54 {

if (__in.is_open()) {
__in.seekg (0, ios::end);
return __in. tellg ();

}

59 else {

return 0;

}

}

64

[ %

x @brief Open an mzxml file. No checking is done to
69 validate the format at this point

*

* @param __file The name of the mzXML file to be opened
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* @return True if the file was able to be opened
*/
74 bool mzxml:: Reader::open(string &__file)

{

__f name = __file;
__in.open(__file.c_str (), ios::in);

79 /!l do some basic file checking

return __in.is_open ();

84
[
* @brief Open an mzxml file. No checking is done to
* validate the format at this point
89 =
x @param __file The name of the mzXML file to be opened
* @return True if the file was able to be opened
*/
bool mzxml:: Reader:: open(const char x__file)
94 {
__f name = __file;
__in.open(__file , ios::in);
return __in.is_open ();
99 }
104/

x* @brief Determine the index offset from the end of the file
*
¥ @return True if the index offset was able to be determined
*/
109 bool mzxml:: Reader:: read_index_offset ()
{
regex re(”<\\s?indexOffset\\s?>(—2[0-9]+)</indexOffset”);
cmatch what;
char memblock [BLOCKSSIZE]; // just long enough for one line.
114 —_in.seekg(~BLOCK.SIZE, ios::end);

while (__in. getline (memblock, BLOCKSIZE-1)) {

if (regex_search (memblock, what, re)) {
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/!l we’ve found our match...
__index_offset =
offset_from_string <0>(string (what[1]. firsc ,
what [1].second));
return true;
}
}
/!l we weren’t able to find it...
if (__in. fail ()) {
__in.clear () ;
}
return false;
}
[ % %
x @brief Reads the index table from the end of the mzXML file
*
¥ read_index () finds the index located at the
% position indicated by the index offsert, then
* proceeds to read the index into the __index map,
* storing each offset indexed by the scan number
*
* @return True if the index was able to be read in completion,
* false otherwise
*/

bool mzxml:: Reader:: read_index ()

{

/* the index looks like:

<index >
<offset id="#####" >####### </ offset >
<offset id="#####" >######### </ offset >

</index >

*/

if (! __index_offset)

read_index_offset () ;

__in.seekg(__index_offset , ios::beg);
char memblock [ LINE_SIZE ];

/! read until we find the line <index>
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regex _re_ind_start(’<index”);
regex _re_ind_end (7 </index>");
164 regex _re_offset("<offset\\s+id=\"(=2[0-9]+)\"\
\\s*>([0-9]+)\"?</offset”);

cmatch what;

while (__in. getline (memblock, LINE_SIZE)) {
169 if (regex_search (memblock, what, _re_ind_start))
break;

}

if (__in.eof()) return false;

174 unsigned int __s_no;
size_t __offset;
do {
if (regex_search (memblock, what, _re_offset)) {
179 /! we have an offset ...
__s_.no = val_from_string <unsigned
int >(string (what[1]. first , what[1].second));
__offset = offset_from_string <O>(string (what[2]. first ,
what [2].second));
__index[__s_no] = __offset;
184 }

if (regex_search (memblock, what, _re_ind_end))

break;
189 } while (__in.getline (memblock, LINE_SIZE));

// in the case of small files , the block size can be too big

/!l and we can cause the file to fail even if we read the data

/] successfully. Reset the flags in this case so that we don’t
194 // have any problems later.

if(__in. fail()) __in.clear();

/1 if the </index> tag wasn’t the last thing we read,
something isn’t right
if (regex_search (memblock, what, _re_ind_end)) return true;
199

return false;

204
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[ % %
¥ @brief Reads the run header information from
* the current file. Reads in the scan count and

209 the starting and ending times (in seconds)
*

x @return True if the header was read successfully ,

s false otherwise.

*/

214 bool mzxml:: Reader:: read_run_header ()
{

I/ we need to get scanCount, startTime, and endTime

if (! __in.is_open()) return false;
219 regex __msr_start ( <msRun\\s+");
regex __msr_end ("<mslnstrument”);

cmatch what;
__in.seekg (0, ios::beg);
224 char memblock [ LINE_SIZE ];

size_t count = 0;
while (__in. getline (memblock, LINE_SIZE)) {
if (regex_search (memblock, what, __msr_start))
break;
229 I/l a little bit smoother of a failure. We won’t brick the

// computer trying to read several gigs.
if (++count > 10000) return false;

}

234 if(__in.eof ()) return false;

do {
if (regex_search (memblock, what,
regex ("scanCount=\"(\\d+)\"7))) {
!/l we have the scan count...
239 __run_header.scan_count = val_from_string <unsigned
int >(string (what[1]. first , what[1].second));

}

if (regex_search (memblock, what,
regex ("startTime=\"[a—zA-Z]«([0 =9\ \.]+) ([s$ShHmM])\””))) {
/! we have the start time...
244 __run_header.start_time =
val_from_string <double >(string (what[1]. first ,
what [1].second));
__run_header.start_time x=
time_modifier (string (what[2]. first , what[2].second));
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}

if (regex_search (memblock, what,
regex ("endTime=\"[a—zA-Z]* ([0 =9\ \.]+) ([sShHmM])\””7))) {
249 !/l we have the start time...
__run_header.end_time =
val_from_string <double >(string (what[1]. first ,
what[1].second)) ;
__run_header.end_time x=
time_modifier (string (what[2]. first , what[2].second));

}

254 if (regex_search (memblock, what, __msr_end))
break;

} while(__in. getline (memblock, LINE_SIZE)) ;

259 if (regex_search (memblock, what, __msr_end)) return true;
return false;

264
[ % *
¥ @brief Reads the instrument header information
* contained in the current file
269
¥ @return True if the header was able to be read,
* false otherwise
x/
bool mzxml:: Reader:: read_instrument_header ()
274 {
if (! __in.is_open()) return false;
regex __ih_start("<mslnstrument”);
regex __ih_end (”</mslnstrument”);

279 regex __ih ("<ms\\S*\\s+category =\"(.%) \"\\s+\
value =\7(.x) \"\\'s*/>");

cmatch what;

__in.seekg (0, ios::beg);
284 char memblock [LINE_SIZE ];
while(__in. getline (memblock, LINE_SIZE)) {
if (regex_search (memblock, what, __ih_start))

break;
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289

294

299

304

309

/

314

}

if(__in.eof())

return false;

do {
if (regex_search (memblock, what, __ih)) {
__instrument.data[string (what[1]. first, what[1].second)]
= string (what[2]. first , what[2].second);

}

if (regex_search (memblock, what, __ih_end))
break;
} while (__in.getline (memblock, LINE_SIZE));

if (regex_search (memblock, what, __ih_end)) return true;

return false;

ok
* @brief Reads the scan header for the opened file

*

% @param scan_num The number of the scan header to be read
x @return true if the header is read successfully , false if

* the header was not read or if the scan does not exist
*/

bool mzxml:: Reader:: read_scan_header (unsigned int scan_num)

{
319

324

329

if (! __in.is_open()) return false;
if (! scan_exists(scan_num)) return false;

regex __scan_start(“<scan\\s+");

Il stop at the beginning of the ’peaks’ list.
regex __scan_end ("<peaks\\s+7);
cmatch what;

__in.seekg(_-_index[scan_.num], ios::beg);
char memblock [LINE_SIZE ];
while(__in. getline (memblock, LINE_SIZE)) {

if (regex_search (memblock, what, __scan_start))

break;
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}

if(__in.eof()) return false;
map<string , regex> __keys;

do {
Il test key value pairs...
if (regex_search (memblock, what, regex ("num=\"([0-9]+)\"7")))
__scan_header.num = val_from_string <unsigned
int >(string (what[1]. first , what[1].second));

if (regex_search (memblock, what,
regex ("msLevel =\"([0-9])\"7)))
__scan_header.ms_level = val_from_string <unsigned
int >(string (what[1]. first , what[1].second));

if (regex_search (memblock, what, regex (" polarity=\"(.%)\"")))
__scan_header. polarity = string (what[1]. first,
what[1].second) ;

if (regex_search (memblock, what,
regex ("scanType=\"(\\S+)\"7)))
__scan_header.scan_type = string (what[1]. first,
what[1].second) ;

if (regex_search (memblock, what,
regex ("retentionTime =\"[a—zA-Z]\
#([0 =9\\.]+) ([sShHmM]) 2\ 7))) {

__scan_header.retention_time =
val_from_string <double >(string (what[1]. first ,
what [1].second) ) ;

__scan_header.retention_time x=
time_modifier (string (what[2]. first , what[2].second));

}

if (regex_search (memblock, what,
regex ("lowMz=\"([0—-9\\.]+)\"7")))
__scan_header.low_mz =
val_from_string <double >(string (what[1]. first ,
what[1].second));

if (regex_search (memblock, what,
regex ("highMz=\" ([0 —9\\.]+)\"")))
__scan_header.high_ mz =
val_from_string <double >(string (what[1]. first ,
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what[1].second));

364
if (regex_search (memblock, what, regex (" basePeakMz=\\
Y0 -9\ 1)\ 7)))
__scan_header.base_peak_mz =
val _from_string <double >(string (what[1]. first ,
what [1].second));
369 if (regex_search (memblock, what,

regex ("basePeaklIntensity =\"([0 —9\\.]\
+([eET[+\\ =1\\d+))\"7")))
__scan_header.base_peak_intensity =
val_from_string <double >(string (what[1]. first ,
what [1].second));

if (regex_search (memblock, what,
regex ("totlonCurrent=\"([0-9\\.]+)\"”)))
374 __scan_header.total_ion_current =
val_from_string <double >(string (what[1]. first ,
what[1].second));

if (regex_search (memblock, what,
regex (" peaksCount=\"(\\d+)\"7)))
__scan_header.peaks_count = val_from_string <unsigned
int >(string (what[1]. first , what[1].second));

379 if (regex_search ( memblock, what,
regex ("ionisationEnergy=\"(\\d+)\”7)))
__scan_header.ionization_energy =
val_from_string <double >(string (what[1]. first ,
what[1].second));

if (regex_search (memblock, what, __scan_end))
break;
384
} while(__in. getline (memblock, LINE_SIZE)) ;

do {
if (regex_search (memblock, what,
regex ("<precursorMz.x > ([0 —9\\.]+) </precursor”)))
389 __scan_header.precursor_mz =
val_from_string <double >(string (what[1]. first ,

what [1].second));

if (regex_search (memblock, what, regex("<peaks”)))
break;
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} while(__in. getline (memblock, LINE_SIZE)) ;

Il we can look for the optional precursor m/z
I/ tag here, formatted as:
Il <precursorMz precursorlntensity ="##">##.##</precursorMz>

if (regex_search (memblock, what, regex("<peaks”))) return true;

return false;

[

* @brief Returns a floating point modifier to convert
* minutes and hours to seconds

*

* @param __s A string match for the units portion of
* a number. Only the first character is read.
* @return A floating point value to convert minutes

* or hours to seconds

* /

inline float mzxml:: Reader:: time_modifier(string __s)

{
if(__s.length() < 1) return 1.0;

float __r = 1.0;
switch (__s[0])

case 'h’: __r = 3600.0;
case H’: __r = 3600.0;
case m’': __r = 60.0;
case M’ : __r = 60.0;
default: __r = 1.0;

}

return __r1;

*
@brief Reads the peak list from the current
file at the given scan number

@param scan_num The desired scan number
to fetch peaks from

L G R U
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439 « @return An array of floating point values in
* mz/intensity pairs terminated by —1.0 values

®/

float % mzxml:: Reader:: read_scan (unsigned int scan_num)

{

444 if( (! __in.is_open()) || (!scan_exists(scan_num)) ) {
float * __r = new float[2];
__r[0] = —1.0;
__r[1] = —=1.0;
return __r;
449 }

/1 sometimes the file can fail when reading the index
!/l or index offset in the case of small files.
if( __in.fail () ) __in.clear();
454
__in.seekg(_-_index[scan_num], ios::beg);
char memblock [BLOCK_SIZE];
cmatch what;

459  string __data = 77;
while ( __in . read (memblock, BLOCK.SIZE-1)) {
__data.append (memblock, BLOCK.SIZE-1);
if (regex_search(__data.c_str (), what, regex(”</peaks”)))
break;
464 1

if (regex_search(__data.c_str (), what,
regex ("<peaks.x >([a—2zA-Z0-9+=\\/]*) </peaks”))) {

__data = string (what[1]. first , what[1l].second);
return unpack(__data);
469 }
else {
/!l no data??
float * __r = new float [2];
__r[0] = —1.0;
474 __r[1] = —1.0;
return __r;

479

[ % %

* @brief Reads the peak list from the current
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* file at the given scan number

*

* @param scan_num The desired scan number from

* which to retrieve the data

* @param peaks_count A reference to a size type

* that will give number of values returned.
* @return An array of floating point values in

* mz/ intensity pairs

* /

float % mzxml:: Reader:: read_scan (unsigned int scan_num, size_t

{

&peaks_count)

if( (!'_Zin.is_open()) || (!scan_exists(scan_num)) ) {
peaks_count = 0;
return (float x)nullptr;

}

/1 sometimes the file can fail when reading the index
/! or index offset in the case of small files.

if(__in.fail () ) __in.clear();
__in.seekg(__index[scan_.num], ios::beg);

char memblock [BLOCK_SIZE ];
cmatch what;

» »

string __data = ;

» »

string msg = ;

while ( __in.read (memblock, BLOCK.SIZE-1)) {
__data.append (memblock, BLOCK.SIZE-1);

>

//std :: cout << memblock << ”\n\n7;

Il in case we’ve read only until after </
if (regex_search (memblock, what, regex("</”))) {

msg = stopped_after_</7;
break;
} /1 if we stopped just before /peaks
else if(regex_search (memblock, what, regex(”/peaks>"))) {
msg = “stopped_after_/peaks>";
break;

}
}

if (msg.length () < 1) {
__data.append (memblock, -_in.gcount());
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529  }

if (regex_search(__data.c_str (), whart,
regex (7 >([a—zA-Z0—-9+=\\/]*) <\\s*\\/7))) {
__-data = string (what[1]. first , what[1].second);
return unpack(__data, peaks_count);

534 1
else {
peaks_count = 0;
return (floatx)nullptr;
}
539 }

544 bool mzxml:: Reader:: read_parent_file_header ()

{
/!l This function was never needed, but code
/'l was kept to meet the standard.
return false;
549 }

mzxml writer.h

1 #ifndef MZXML_WRITER HINCLUDED
#define MZXML_WRITER H INCLUDED

#include <boost/regex.hpp>
#include <fstream >
6 #include <string>
#include <map>
#include <vector>

#include “mzxml_types.h”
11 #include “mzxml_lib.h”
#include "mzxml_shal.h”

namespace mzxml

{

16 using namespace std;
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class Writer

{
public:

Writer (){ }

Writer (const char * f_name);

Writer (string f_name);
“Writer () ;

I/ file opening and closing
bool open(const char % f_name);

bool open(string f_ name);

bool close () ;

bool is_open() { //!< Returns

return __o.is_open ();

}

bool write_header (RunHeaderStruct &runHeader
InstrumentStruct &instrument ,
vector<ParentFileStruct> &parentFiles);

bool write_scan (ScanHeaderStruct &scanheader

xpData) ;

bool write_scan(ScanHeaderStruct &scanheader
xpData, size_t &data_size);
bool write_scan (ScanHeaderStruct &scanHeader

vector <float> vData);

private:
ofstream __o;
vector<size_t > __index;
string __f_name;
bool __index_written ;
size_t __index_offset;
unsigned short __current_scan;

void init ();
bool write_index ()
bool write_checksum () ;

}s

} // end namespace

>

>

>

>

file is open

float

float

#endif /1 MZXML_WRITER H_INCLUDED
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mzxml_writer.cpp
#include "mzxml_writer.h”

using namespace mzxml;
using namespace std;

[ % %
x @brief A basic constructor that opens the file for output
*
* @param f_name The path to the file to be opened
* /

Writer :: Writer (const char % f_name)

{
}

open(f_name) ;

EE

x @brief A basic constructor that opens the file for output
*

* @param f_name The path to the file to be opened

x|

Writer :: Writer (string f_name)

{
¥

open(f_name.c_str () );

[ %%

x* @brief A basic destructor that closes the file
* and ensures that the index is written
*/

Writer ::~ Writer ()

{
close () ;
}
[ s x
x @brief Opens a file for output
*
x @param f_name The path to the file to be opened.
x @return true if a new file was opened, false if
* there were problems
x/
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bool Writer::open(const char * f_name)

{
if(__o.is_open())
48 close () ;

__o.open(f_name, ios::out);

__f_name = f_name;
init ()
53 return __o.is_open ();

IEE
58 * @brief Opens a file for output
*
* @param f_name The path to the file to be opened.
* @return true if a new file was opened,
* false if there were problems
63 =/

bool Writer::open(string f_name)

{

}
68

return open(f_name.c_str());

[ % %
x @brief Closes the file (if open) and ensures
* that the index has been written.
73 x/
bool Writer :: close ()

{

/! we need to ensure that the index has been written ,

write_index () ;
78 __o.close();
return true;

83 /[xx

* @brief Initializes some state flags for the writing object

x/
void Writer:: init ()
88 __index_offset 0;
__current_scan = 0;
__index_written = false;

etc.
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93

[ %%

x* @brief Writes the main scan header information

*

* @return Returns true if the writing occurred successfully,
98 =« false if the writer is in a fail state

®/
bool Writer:: write_header (RunHeaderStruct &run_header,
InstrumentStruct &instrument_header ,
vector<ParentFileStruct > &parenc_files)

103 {
string s;
/*x the standard mzXML header. *=x/
s = "<?xml_version=\"1.0\"_encoding=\"ISO—-8859—-1\"?>";
s += “\n<mzXML”;
108 s += “\n_.xmlns=\"http://sashimi.sourceforge.net/”;
s += “schema_revision/mzXML.2.0\”";
s += “\n.xmlns: xsi=\"http://www.w3.0rg/2001”;
s += “/XMLSchema—instance\””;
s += “\n.

xsi:schemalLocation=\"http://sashimi.sourceforge.net/”;
113 s += “schema_revision/mzXML.2.0.";
s += “http://sashimi.sourceforge.net/schema_revision/
cosot=2"mzXML 2.0/ mzXML_idx_2.0.xsd\">";
__o.write(s.c_str (), s.length());

118 s = "\n.<msRun_scanCount=\"";
s += stringify (run_header.scan_count);
s += \77;
s += “\n\tstartTime=\"PT7;
s += stringify (run_header.start_time);
123 s += "S\77;

_—_o.write(s.c_str (), s.length());

s = “\n\tendTime=\"PT";

s += stringify (run_header.end_time);
128 s += "S\">7;

__o.write(s.c_str (), s.length());

/1 parent file information should go here..
for(size_t i = 0; i < parent_files.size (); ++i) {
133 s = "\n..<parentFile_fileName=\"";
s += parent_files[i]. file_name;
PN\ neooofileType=\"";

s +
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+= parent_files[i]. file_type;
+= “\"\no___fileShal=\"";

+= parent_files[i]. file_.SHAT1;
+= T\ >7;

__o.write(s.c_str (), s.length());

}

138

“ »v »u ow

143 Il write the instrument specifications
/1 This is a set of key value pairs stored in a map,
Il so each tag should be <key category="key” value="value”/>
map<string ,string >::iterator _start, _end =
instrument_header.data.end () ;
s = “\n_..<mslnstrument>";
148 __o.write(s.c_str (), s.length());
for(_start = instrument_header.data.begin(); _start != _end;
++_start) {
s = “\noo..<7;
s += _start—>first;
s += “_category=\"";
153 s += _start—>first;
s += " \7ovalue=\"";
s += _start —>second;
s += \7/>7;
__o.write(s.c_str (), s.length());
158}

for(size_t i = 0; i < instrument_header.software.size (); ++i)
{
= "\n....<software_type=\"";
+= instrument_header.software[i]. type;
+= "\”\n_.__name=\"";
instrument_header.software[i].name;
+= “\”\no_.__version=\"";
+= instrument_header.software[i]. version;
+= \7/>"7;
168 __o.write(s.c_str (), s.length());

}

163

®»w v v v v »u v
+
Il

I/ aquisition software stuff should go here.

s = "\n..</mslnstrument>";
173 —_o.write(s.c_str (), s.length());
return ! __o. fail ();

178
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[ %

x @brief Writes a new scan to the open file

*

* @param scan_header A scan header structure

* with information on the current scan

* @param pData An array of floating point

* values terminated by a —1 value

x @return true if the data was written successfully ,
* false if there was a problem

*/

bool Writer:: write_scan (ScanHeaderStruct &scan_header ,
xpData)

/1 the file isn’t open yert.
if (! __o.is_open()) return false;

/1l we don’t want to write any more scans
/! after the index has been written
if(__index_written) return false;

__o.seekp (0, ios::end);
size_t __c_offset = __o.tellp ();
__index.push_back(__c_offset);

Il write the scan properties...
float _bp_intensity = —1.0;
float _bp-mz = 0.0;

Il locate the base peak:
size_t index = 0;
while (pData[index] > —1.0) {
if (pData[index + 1] > _bp_intensity) {
_bp_intensity = pDatal[index + 1];
_bp-mz = pData[index];
}
index += 2;

}

// index now stores the number of mz/intensity pairs
index /= 2;

string s;

» »

s = “\n..<scan.num=\""j;

float
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s += stringify (++__current_scan);
s += “\"\n_._msLevel=\"";
s += stringify (scan_header. ms_level);
s += “\"\n__peaksCount=\"";
228 s += stringify (index);
s += “\’\n..polarity=\"";
s += scan_header.polarity;
s += “\"\n__scanType=\"";
s += scan_header.scan_type;
233 s += “\’\n__retentionTime=\"PT”;
s += stringify (scan_header.retention_time);
s += “\"\n._lowMz=\"";
s += stringify (scan_header.low_mz);
s += “\"\n._highMz=\"";
238 s += stringify (scan_header.high_mz);
s += “\”\n._basePeakMz=\"";
s += stringify (_bp_-mz);
s += "\"\n__basePeaklntensity=\"";
s += stringify (_bp_intensity);
243 s += "\"\n._totlonCurrent=\"";
s += stringify (scan_header.total_ion_current);
s += \7">7;
__o.write(s.c_str (), s.length());
248

int precision = 8 x sizeof (pData[0]);

Il start of <peaks tag

s = "\n..<peaks_precision=\"";
253 s += stringify (precision);
s += “\’\n.._.byteOrder=\"network\””;
s += Nn._pairOrder=\"m/z—inct\”">";
__o.write(s.c_str (), s.length());

258 /] get a base—64 encoded version of the data..
s = pack(pData);
__o.write(s.c_str (), s.length());

s = "</peaks>\n__</scan>";
263 __o.write(s.c_str (), s.length());
return ! __o. fail ();

268
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[ % x
x @brief Writes a new scan to the open file
273 *
* @param scan_header A scan header structure with
* information on the current scan
* @param pData An array of floating point values
x @param size The number of elements in
278 pData to be written
x @return true if the data was written successfully ,
* false if there was a problem
*/
bool Writer:: write_scan (ScanHeaderStruct &scan_header, float
xpData, size_t &size)
283 {
if (! __o.is_open()) return false; // the file isn’t open yert.
/! we don’t want to write any more scans after
/! the index has been written
288 if(__index_written) return false;
__o.seekp (0, ios::end);
size_t __c_offset = __o.tellp ();
__index.push_back(__c_offset);
293

/] write the scan properties ...
float _bp_intensity = —1.0;
float _bp-mz = 0.0;

298 // locate the base peak:
size_t index = 0;
for (index = 0; index < size; index += 2) {
if (pData[index + 1] > _bp_intensity) {
_bp_intensity = pDatalindex + 1];
303 _bp-mz = pData[index];
}
}

/1 index now stores the number of mz/intensity pairs
308 index /= 2;

string s;
s = “\n..<scan.num=\"";

313 s += stringify (++__current_scan);
s += “\"\n_._msLevel=\"";
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s += stringify (scan_header. ms_level);
s += “\"\n__peaksCount=\"";
s += stringify (index);
318 s += “\"\n__polarity=\"";
s += scan_header.polarity;
s += “\"\n..scanType=\"";
s += scan_header.scan_type;
s += “\’\n._._.retentionTime=\"PT”;
323 s += stringify (scan_header.retention_time);
s += “\"\n._.lowMz=\"";
s += stringify (scan_header.low_mz);
s += “\"\n__highMz=\"";
s += stringify (scan_header.high_mz);
328 s += “\’\n.__basePeakMz=\"";
s += stringify (_bp_mz);
s += “\’\n_._.basePeaklntensity=\"";
s += stringify (_bp_intensity);
s += “\"\n__totlonCurrent=\"";
333 s += stringify (scan_header.total_ion_current);
s += \7">7;

__o.write(s.c_str (), s.length());
338 int precision = 8 * sizeof(pData[0]);

/] start of <peaks tag
s = "\n_._.<peaks_precision=\"";
s += stringify (precision);
343 s += "\"\n.._.byteOrder=\"network\””;
s += \no.pairOrder=\"m/z—int\”>";

__o.write(s.c_str (), s.length());

/] get a base—64 encoded version of the data..
348 s = pack(pData, size);
_—_o.write(s.c_str (), s.length());

s = "</peaks>\n__</scan>";
__o.write(s.c_str (), s.length());
353
return ! __o. fail ();
}
358

[ % %
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* @brief Writes the peak index to the end of the file
*

x @return true if the index was written successfully ,
* false if there was no index to write or if
* there was an error

*/

bool Writer:: write_index ()

{

/! make sure that there is an index to write
if(__index.size () < 1) return false;
// and that we haven’t already written the index.
if (__index_written) return false;
__o.seekp (0, ios::end);
string s = "\n</msRun>";
__o.write(s.c_str (), s.length());
__index_offset = __o.tellp ();
s = “\n<index_name=\"scan\">";
__o.write(s.c_str (), s.length());
for(size_t i = 1; i <= __index.size(); ++i) {
s = “\no.<offset.id=\"";
s += stringify (i);
S += ’,\))>7’;
/1 the indexing starts at zero, but scan numbers start 1.

s += stringify (__index[i—1]);
s += ' </offset>";
__o.write(s.c_str (), s.length());

s = "\n</index>";
__o.write(s.c_str (), s.length());

/1 write the index offset:
if(__index_offset < 0) {

s = “\n<indexOffsetoxsi:nil=\"1\"/>"7;
}
else {

s = "\n<indexOffset>";

s += stringify (__index_offset);
s += "</indexOffset>";
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s += \n</mzXML>";
__o.write(s.c_str (), s.length());
__index_written = true;
return write_checksum () ;
}
[ % %
x @brief Computes the SHAl checksum for the
* file and writes the closing tag.
*
¥ @return true if the checksum was written without
* error , false if the index has been previously
* written or if there was an error writing to the file.
*/

bool Writer :: write_checksum ()

{

/! we don’t want to write the checksum before the index
if (! __index_written) return false;

/1 the file isn’t open.
if (! __o.is_open()) return false;

/] the hash is computed from the first
/1 character until the end of the <shal>
Il tag, so we must first right that tag.
__o.seekp (0, ios::end);

__o.write ("\n<shal>", 7);

__o.close();

Il re—open the file to read the data..
ifstream __in;
__in.open(-_f_name.c_str (), ios::in);
if (! __in.is_open()) {

__in.close () ;

return false;

}

__in.seekg (0, ios::end);
size_t eof = __in.tellg ();
size_t block_size = 64;
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453 SHA1 sha;

sha.init_state () ;

char memblock[ block_size ];
__in.seekg (0, ios::beg);

458 /1 this is a strange hack so that we can compare
/[l a streampos type (the result of tellg()) to the
Il eof.

while ((size_t) __in.tellg () < eof — block_size) {

__in.read (memblock, block_size);

463 sha.add_block (memblock, block_size);
}
/! add the last of the data..
block_size = eof — __in.tellg ();

468 __in.read (memblock, block_size);

sha.add_block (memblock, block_size);

__in.close ();

string hash = sha.get_hash ();

473

Il reopen the output and write this data..
__o.open(__f_name.c_str (), ios::app);
__o.seekp (0, ios::end);
hash += 7</shal>";

478 —_o.write (hash.c_str (), hash.length());

return ! __o. fail ();

mzxml_types.h

1 #ifndef MZXML_TYPES_H_INCLUDED
#define MZXML_TYPES_H INCLUDED

4 #include <map>
#include <vector >

namespace mzxml

{
9

struct ScanHeaderStruct
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}s

/! number in sequence observed file (1—Dbased)
int seqNum;

// scan number as declared in File (may be gaps)
int num;

int ms_level;

unsigned int peaks_count;

double total_ion_current;

double retention_time; /%« in seconds %/
double base_peak_mz;

double base_peak_intensity;

double collision_energy ;

double ionization_energy;

double low_mz;

double high_mz;

unsigned int precursor_scan_num;

double precursor_mz;

unsigned int precursor_charge;

double precursor_intensity;

std :: string scan_type;

I« currently unused, but technically part of the
int mergedScan;

int mergedResultScanNum;

int mergedResultStartScanNum;

int mergedResultEndScanNum ;

x/

std :: string polarity;

size_t file_position;

schema .

ScanHeaderStruct () : seqNum(0), num(0), ms_level (0),

peaks_count(0), total_ion_current (0.0) ,
retention_time (0.0) , base_peak_mz (0.0),

base_peak_intensity (0.0), collision_energy (0.0),
ionization_energy (0.0), low.mz(0.0), high.mz(0.0),

precursor_scan_num (0) , precursor_mz (0.0),
precursor_charge (0), precursor_intensity (0.0),
file_position (0) { }

struct RunHeaderStruct

{

unsigned int scan_count;
double lowMZ;

double highMZ;

double startMZ;

double endMZ;
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double start_time; //'< Start time in seconds
double end_time; //'< End time in seconds

59 }s

typedef struct
std :: string type;
64 std :: string name;
std :: string version;
} SoftwareStruct;

typedef struct
69 {
std :: string file_name;
std ::string file_type;
std ::string file_SHAT;
} ParentFileStruce;

74
typedef struct
std ::map<std ::string , std::string> data;
Il contains information about previous processing..
79 std :: vector<SoftwareStruct> software;

} InstrumentStruce;
typedef unsigned int word32;

}
84 #endif /1 MZXML_TYPES_H_INCLUDED

mzxml shal.h

1 #ifndef MZXML_SHAI_H INCLUDED
#define MZXML_SHA1 _H INCLUDED

#include <string >

6 #include "mzxml_types.h”
#include "mzxml_lib.h”

namespace mzxml

{
11
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[ % %
* @brief SHAl is a pared—down implementation of the SHAI
* hash adapted from the cryptopp library
*/
16 class SHAI1
{
public:
SHAI () ;
21 “SHA1 () ;
void init_state () ;
void transform (const word32 * data);
void add_block (char % cDat, int cLen);
26 /1 returns a hex string of the hash.
std ::string get_hash ();
private:
word32 state [5];
31 word32 rotlFixed (word32 x, int y);
word32 charsToW32 (char * data,int start, int stop);
long long int bitLen ;
s
36 }
#endif /1 MZXML_SHA1_H_INCLUDED

mzxml_shal.cpp
1 #include “mzxml_shal .h”

3 using namespace mzxml ;

#define blkO(i) (W[i] = data[i])
#define blk1(i) (W[i&15] =
rotlFixed (W[(i+13)&15]"W[(i+8)&15]"W[(i+2)&15]"W[i&15],1))

#define fl(x,y,z) (z (x&(y"z)))
#define f2(x,y,z) (x"y"z)
#define f3(x,y,z) ((x&y)|(z&(x]y)))
#define f4(x,y,z) (x"y"z)

13
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/+ (RO+R1), R2, R3, R4 are the

* different operations used in SHAI x/

#define RO(v,w,x,y,z,i) z+=fl(w,x,y)+blk0 (i) \
+0x5A827999+rotlFixed (v,5) ;w=rotlFixed (w,30) ;

#define Rl(v,w,x,y,z,1) z+=fl(w,x,y)+blkl (i) \
+0x5A827999+rotlFixed (v,5) ;w=rotlFixed (w,30) ;

#define R2(v,w,x,y,z,1) z+=f2(w,x,y)+blkl (i) \
+0x6ED9EBAl+rotlFixed (v,5) ;w=rotlFixed (w,30) ;

#define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blkl (i) \
+0x8F1BBCDC+rotlFixed (v,5) ;w=rotlFixed (w,30) ;

#define R4(v,w,x,y,z,1) z+=f4(w,x,y)+blkl (i) \
+0xCA62C1D6+rotlFixed (v,5) ;w=rotlFixed (w,30) ;

SHAL :: SHAI ()

{
init_state () ;
}
SHAT:: " SHA1() {}
word32 SHAIL:: rotlFixed (word32 x, int y)
{
return (x << y) | (x >> (32 — y));
}
[ % *
x @brief Transform a block of characters into a 32—bit word
*
* @param data A character array
x @param start The index of the first character we care about
* @param stop The index of the last character we care about,
* up to start + 4

* @return A 32—bit integer representation of the data
®/
word32 SHAIL:: charsToW32 (char x data,int start, int stop)

{

word32 ret = 0x00000000L;
stop = (stop > (start + 4)) ? (start + 4) : stop;
stop = (stop < start) ? start : Stop;

int ind = 0;
for(int i = start;

i < stop; i++) {
ret |= ((int)datal[i]

& O0xFF) << (8 x (B3—ind++));
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}

return ret;

63
68 /%

x* @brief Adds a block of characters to the hash

*

* This method makes the assumption that if the length

x of the supplied data block is less than 64 characrers,
73 « then this must be the end of the hash. While in

x general this is a bad assumption, since this hash

* is only used to validate entire files that can be

* read in blocks, we should be ok.
*/
78 void SHAl:: add_block (char x cDat, int cLen)

{
/!l cut the data into 32bit blocks (4 chars);
cLen = (cLen < 0) ? 0 : clLen;
word32 bDat[16];
83 if (cLen >= 64) {
for(int i = 0; i < 165 i++) {
bDat[i] = charsToW32(cDat, (i * 4), clen);
}
bitLen += 512;
88 transform (bDat) ;
}
else {
/1 we need to pad, ectc.
bitLen += (8 x cLen);
93 char * finalDat = NULL;
if (cLen > 55) {
finalDat = (char %) realloc(finalDat, 128);
}
else {
98 finalDat = (char %) realloc(finalDat, 64);
}
memcpy (finalDat, cDat, clen);
finalDat[cLen++] = (char)0x80;
while ((cLen % 64) !'= 56) {
103 finalDat[cLen++] = (char) 0;
}
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/] add the bit length of the stream, in big—endian order:
short sTest 0x0001 ;
108 char % byte = (char x) &sTest;
if (byte[0]) {
[

for (int i 0; i < 8; i++) {
finalDat[cLen++] = (char) ((bitLen >> (8 * (7—1))) &
0xff);
}
113 }
else {

for(int i = 7; i >= 0; i—) {
finalDat[cLen++] = (char) ((bitLen >> (8 * (7—-i))) &
0xff);
}
118 }
for(int i = 0; i < 16; i++) {
bDat[i] charsToW32 (finalDat, (i * 4), clen);
}
transform (bDat) ;
123 if (cLen > 64) {
for(int i = 0; i < 16; i++) {
bDat[i] = charsToW32(finalDat, (i + 16) x 4, cLen);

}
transform (bDat) ;
128 }
}
}
133
[ %%
x @brief Updates the current hash state with a chunk of data
*/
138 void SHAIl:: transform (const word32 x data)
{

word32 W[16];

/* Copy context—>state [] to working vars x/

word32 a = state [0];
143 word32 b = state [1];

word32 ¢ = state [2];

word32 d = state [3];

word32 e = state [4];

/* 4 rounds of 20 operations each. Loop unrolled. x/
148 RO(a,b,c,d,e, 0); RO(e,a,b,c,d, 1); RO(d,e,a,b,c, 2);

RO(c,d,e,a,b, 3); RO(b,c,d,e,a, 4); RO(a,b,c,d,e, 5);
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RO(e,a,b,c,d, 6);
RO(b,c,d,e,a, 9);
RO(d,e,a,b,c,12);

RO(d,e,a,b,c, 7);
RO(a,b,c,d,e,10);
RO(c,d,e,a,b,13);

153 RO(a,b,c,d,e,15); Rl(e,a,b,c,d,16);
Rl1(c,d,e,a,b,18); Rl(b,c,d,e,a,19);
R2(e,a,b,c,d,21); R2(d,e,a,b,c,22);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25);
R2(d,e,a,b,c,27); R2(c,d,e,a,b,28);

158 R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(c,d,e,a,b,33); R2(b,c,d,e,a,34);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37);
R2(b,c,d,e,a,39); R3(a,b,c,d,e,40);
R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);

163 R3(a,b,c,d,e,45); R3(e,a,b,c,d,46);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49);
R3(e,a,b,c,d,51); R3(d,e,a,b,c,52);
R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(d,e,a,b,c,57); R3(c,d,e,a,b,58);

168 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61);
R4(c,d,e,a,b,63); R4(b,c,d,e,a,64);
R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(b,c,d,e,a,69); R4(a,b,c,d,e,70);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73);

173 R4(a,b,c,d,e,75); R4(e,a,b,c,d,76);
R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/[« Add the working vars back into
state [0] += a;
state [1] += b;

178 state [2] += c;
state [3] += d;
state [4] += e;

}
183
[ %%
@brief Initializes the state of the
188  x/
void SHAl:: init_state ()
{
bitLen = 0;
state [0] = 0x67452301L;

193 state [1] = O0xEFCDABS89L;
state [2] = 0x98BADCEFEL;
state [3] = 0x10325476L;

RO(c,d,e,a,b, 8);
RO(e,a,b,c,d,11);
RO(b,c,d,e,a,14);
Ri(d,e,a,b,c,17);
R2(a,b,c,d,e,20);
R2(c,d,e,a,b,23);
R2(e,a,b,c,d,26);
R2(b,c,d,e,a,29);
R2(d,e,a,b,c,32);
R2(a,b,c,d,e,35);
R2(c,d,e,a,b,38);
R3(e,a,b,c,d,41);
R3(b,c,d,e,a,44);
R3(d,e,a,b,c,47);
R3(a,b,c,d,e,50);
R3(c,d,e,a,b,53);
R3(e,a,b,c,d,56);
R3(b,c,d,e,a,59);
R4(d,e,a,b,c,62);
R4(a,b,c,d,e,65);
R4(c,d,e,a,b,68);
R4(e,a,b,c,d,71);
R4(b,c,d,e,a,74);
R4(d,e,a,b,c,77);

context.state [] =/

hash
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state [4] = 0xC3D2E1FOL;
}

[ % %
* @brief Returns a hex string of the current hash state
*/

std ::string SHAl:: get_hash ()

{

std :: string ret = 77;

ret.append(pad_left(to_hex(state [0]) ,8
ret.append (pad_left(to_hex(state[1]) ,8,
ret.append (pad_left(to_hex(state[2]) ,8,
( [31) .8
( (4]) .8

ret.append (pad_left (to_hex(state
ret.append(pad_left(to_hex(state

return ret;

O O O O O
~— — — — —

Graph theoretic utilities

Description

Graph theory is a useful construct both for simplifying complex datasets and deter-
mining subsets of data where certain relationships hold. In essence, a graph is a set
of nodes, where edges can exist between any two nodes. While there are many differ-
ent types of graphs, here we consider only undirected, unweighted graphs. For our
purposes, we define three basic operations on graphs, shown in Table B-1. Of these,
the key operation as it applies to the analysis of MS data is the ability to decompose
the graph into disjoint subsets, where each elements in each subset are linked to every
other element in the subset by some traversal through defined edges.

The MsGraph class is a template class that can be used to build a graph out of
any data type, and supports all of the operations listed in Table B-1. This class has
been implemented as a list, where each node points to a piece of data as well as an
adjacency list. As most graphs used in this this project are sparse, this is significantly

*A given node only has edges with a small fraction of the other nodes.
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Table B-1: Operations on a graph required for MS analysis

—

Add a new node to the graph

Create an edge between two nodes

3. Decompose the graph into disjoint subsets as defined by the
edges in the graph

N

more efficient than an adjacency matrix. This class also defines an iterator over the
main graph list to facility access to the individual nodes, and the build_edge function
takes two of these iterators as arguments (and builds an edge between the two refer-
enced nodes). Finally, the get_disjoint_subsets() function returns a list of lists of the
original data type, where elements in each sublist were related in the final graph®.

The MsGraph class also supports many of the standard features of the std :
list data type, include begin(), end(), clear(), rbegin(), rend(), empty(), size(),
mazx_size(), and push_back().

C++ code

ms_graph.h

#ifndef MS_GRAPH H_INCLUDED
#define MS_GRAPH_H_INCLUDED

#include <list >

/1 debugging:

#include <iostream >

IEE

* @brief A generic node type for a graph that contains
* data (_Tp) and an adjacency list

* /

template <typename _Tp>
struct _MS_graph_node

{
typedef std::list <_MS_graph_node<_Tp>«> _Node_list_type;

/"< A list of adjacent nodes
_Node_list_type _M_adjacent;

$Note: this function clears the original graph. This implementation was chosen as often times the
graphs utilized are extremely large, and such an implementation allows the graph to be decomposed
without copying data.
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//'< The actual data stored at this node
Tp _-M_data;

//1'< A flag indicated whether or not this

/1 node has been visited in a traversal
bool _M_visited;

-MS_graph_node(.Tp _-_x) : _M_data(_-_-x), _M_visited (false){ }

b
IEE

x @brief A generic graph type that supports

* decomposition into disjoint sub—graphs.

*

* This is an implementation of a graph structure that uses an
* adjacency list for storing edge information. At this point,
* the edges are unlabeled only only contain pointers to the

* nodes that are adjacent to a given node. The main data in the
« graph is stored as a standard std::list, and access to this
* list is provided through iterators , with most of the standard
x list features supported.

* /

template <typename _Tp>

cl
{

ass MsGraph

private:
typedef _MS_graph_node<_Tp> _Node_type;
typedef _Tp _Data_type;

typedef std::list <_Node_type> _List_type;
typedef typename _MS_graph_node<.Tp>::_Node_list_type
_Node_list_type;

//'< The main list that contains the data
_List_type _M_list;

void get_sublist (_Node_type =*n, std::list < Tp> &_r);

void reset_labels ();
public:

//'< An iterator type for the main list
typedef struct _List_type::iterator iterator;

//'< A reverse iterator type for the main list
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typedef struct _List_type::

reverse_iterator;

reverse_iterator

/1 MsGraph inherits a large majority of its

/! methods from it’s base

list. We want the

/" main list itself to behave exactly as list

//'< Returns an iterator to the beginning of the graph data

iterator begin() {

return _M_list.begin () ;

}

//'< Returns an iterator to the end of the graph data

iterator end () {
return _M_list.end () ;

}

//'< Returns a reverse iterator to the beginning

// of the graph data
iterator rbegin () {

return _M_list.rbegin ();

}

//'< Returns a reverse iterator

iterator rend () {
return _M_list.rend ();

}

//'< Returns true of the
bool empty () {

return _M_list.empty () ;

}

//'< Returns a size_type
/1 nodes in the graph
size_t size () {

return _M _list.size ();

}

/1< Returns a size_type
/1 number of nodes the
size_t max_size () const

{

graph is currently empty

with the number of

indicating the maximum

graph can hold

return _M_list. max_size ();

}

to the end of the graph data
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110
// Add a few more of the content handling functions
// that are basic to lists.

//'< Creates a new data node at the end of the graph
115 void push_back (.Tp __x)
{ -M_list.push_back (-MS_graph_node<Tp>(-_x)); }

//'< Creates a new data node at the beginning of the graph
void push_front(.Tp __x)
120 { -M_list.push_front(_MS_graph_node<.Tp>(_-_x)); }

/1'< Removes the first node from the graph
void pop_front ()
{ -M_list.pop_front(); }

125
//'< Removes the last node in the graph
void pop_back ()
{ -M_list.pop_-back(); }
130 /1'< Adds a new node at the position indicated by position
iterator inserct(iterator position, const _Tp& __x)
{return _M_list.insert(position, _-_x); }
//'< Removes the node at the supplied iterator position
135 /1 and returns an iterator to the proceeding node
iterator erase(iterator position)
{ return _M_list.erase(position); }
//'< Removes the nodes between start and end (including
140 /1 start but not end) and returns an iterator to end

iterator erase(iterator start, iterator end)
{ return _M_list.erase(start, end); }

//'< Deletes all data in the graph
145 void clear ()
{ _M_list.clear (); }

//'< Reverses the order of elements in the graph
void reverse ()
150 { _M_list.reverse(); }

void add_edge(iterator nodel, iterator node2);

void print();
155
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std :: list < std :: list < Tp> >
get_disjoint_lists ()

b
160
[ % %
* @brief Creates an edge between the two supplied nodes
*
* @param nodel The first node
165 % @param node2 The second node
*/
template <typename _Tp>
void MsGraph<_Tp >::add_edge (iterator nodel, iterator node2)
{
170 nodel—>_M _adjacent. push_back (&(xnode2));
node2—>_M _adjacent. push_back (&(xnodel));

}

175

/] for testing and debugging purposes.
template <typename _Tp>
void MsGraph<_Tp>::print ()

180 {
iterator __iter = begin();
iterator __end = end();
std :: cout << "======graph:: print()=========\n";
185 for (; __iter != __end; ++__iter) {
std :: cout << 7 (7 << (__iter =—>_M _visited ? 7true” : " false”)
<< 7).l << __iter —>_M_data;
typename std :: list <_MS_graph_node<_Tp>x >::iterator
_sublist_begin = (__iter)—>_M_adjacent.begin ();
190 typename std :: list <_MS_graph_node<.Tp>% >::iterator
_sublist_end = (-_iter)—>_M_adjacent.end () ;
for( ; _sublist_begin != _sublist_end; ++_sublist_begin) {
std :: cout << "—7 << (x _sublist_begin)—>_M_data << 7_(”
<< ((% _sublist_begin)—>_M_visited ? 7true”
“false”)
195 << 7)) 7

}

std :: cout << "\n”;

}
200  std ::cout << "======END=graph:: print () ====\n";
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205
[ % %
* @brief A public method that returns a list of
* disjoint lists based on the graph This
210 = function calls get_sublist for each node
* in the list, which then traverses the graph
% to obtain a disjoint sublist, marking all
% visited nodes as ‘visited .
*
215 % @return A sorted list of disjoint sublists from the graph.
*/

template <typename _Tp>
std :: list <std :: list <_Tp> > MsGraph<_Tp>:: get_disjoint_lists ()

{

220 std :: list <std :: list < Tp> > __r;

iterator __iter = begin();

iterator __end = end();

for (; __iter != __end; ++__iter) {
225 if (__iter —>_M_visited) continue;

std :: list <_Tp> tmp;
get_sublist (&(x __iter), tmp);
tmp.sort () ;
__r.push_back (tmp);

230}

return __r;

235
EE
* @brief A private method that traverses the graph
240 starting at the supplied node get_sublist recursively
* builds up the disjoint sub—graph containing the
* supplied node, adding each element to the provided
* list reference _r. Each visited node is then marked
* as visited so that each supplied subgraph is unique.
245  x
% @param n The starting node
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* @param _r The return sub—graph containing the node n

* /

template <typename _Tp>

250 void MsGraph<_Tp>::get_sublist (_Node_type *n, std:: list <Tp>

&_r)

{
Il check to see if this has been visited
if (n—>_M_visited) return;

255 /!l if not, now it has.
n—>_M _visited = true;
_r.push_back(n—>_M_data);
typename _MS_graph_node<.Tp>:: _Node_list_type::iterator

__iter , __end;
__end = n—>_M_adjacent.end();
260 /[« this is a bit ugly. __iter is a pointer to the

x* data stored in the node, which is in turn a

* pointer to a node. To access the node, we need

x %% __iter , and we then need to pass this as

* a pointer, so the overall expression is &(x*x__iter).

265 */

for(_-_iter = n—>_M_adjacent.begin(); __iter != __end;
++ __iter)
get_sublist (& (xx __iter), _r);

270

[ *

* @brief Resets the visited flag on each node in the graph
275  «/

template <typename _Tp>

void MsGraph<_Tp>::reset_labels ()

{
typename _MS_graph_node<_.Tp>:: _Node_list_type::iterator

__iter , __end;
280 __end = end();
for(__iter = begin(); __iter != __end; ++__iter)
(¥ __iter)._M_visited = false;

}
#endif /1 MS_GRAPH_H.INCLUDED
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ms_scan_graph.h

#ifndef SCAN_GRAPH H_INCLUDED
#define SCAN_GRAPH_H_INCLUDED

#include “ms_graph.h”
#include "ms_feature.h”

#ifndef ABS
#define ABS(x) ((x) < 0 ? —(x) : (x))

#endif

IET

x @class ScanGraph This is a simple graph datatype that allows
x the user to add a scan in the form of mz/intensity pairs and
* subsequently define linkages between peaks. Finally , the

x graph can be decomposed into disjoint subgraphs. As it

« stands this class defines linkages between nodes based solely
* on m/z values, and thus decomposed a set of peaks into

x subsets that are possibly isotopically related. However,

x redefinition of the function need_edge (...) allows for a much
* broader range of applications for this class, for instance in

*

de novo sequencing applications.
* /
template <typename _Tp>
class ScanGraph
{
public:
ScanGraph (unsigned short c_start, unsigned short c_end,
float delta_m)
_c_start(c_start), _c_end(c_end), _delta_m(delta_m) { }

/1'< Clear the graph

void clear ()

{ _M_graph.clear (); }

void add_scan (_Tp xdata, size_t data_size);

void build_edges ();

std :: list <MsDetectedFeature<_Tp> >
get_convoluted_features () ;

private:
//'< An iterator to the graph

typedef typename MsGraph<pair< Tp, Tp> >::iterator iterator;

MsGraph<pair<Tp, _Tp> > _M_graph; /1'< The graph
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//'< The lowest charge state to be considered
unsigned short _c_starc;
/1'< The highest charge state to be considered
46 unsigned short _c_end;
/1'< The m/z tolerance when building the graph
float _delta_m;

bool need_edge(iterator &_1, iterator &_r);
51 inline bool mz_values_align (. Tp _-_.d);
MsDetectedFeature <_Tp>
list_to_feature (std:: list <std :: pair<Tp, _Tp> > &_list);

s

56 /%
* @brief Adds the points in a current scan to the graph
*

* @param data A list of points in mz / intensity pairs
* @param data_size The number of points in data
61  x/

template <typename _Tp>
void ScanGraph<_Tp>::add_scan (_Tp x«data, size_t data_size)

{
for(size_t i = 0; i < data_size; i += 2) {
66 _M_graph. push_back (pair<.Tp, Tp>(data[i],data[i+1]));
}
}

71
[ %%
x @brief Builds edges in the current graph based on whether or
not
* two peaks could be isotopically related
76 x/

template <typename _Tp>
void ScanGraph<_Tp>::build_edges ()

{

iterator __start, __tmp, __end = _M_graph.end();
81 for(__start = _M_graph.begin(); __start != __end; ++__start) {
__tmp = __start;
++__tmp;
for (; __tmp != __end; ++__tmp) {

if (need_edge(__start, __tmp)) {
86 M _graph.add_edge(__start, __tmp);
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}

// make this function “O(n);
if ( __tmp—>_M_data. first > __start —>_M_data. first + 2.0 +

_delta_m

) break;

true if we need an edge between two nodes,

false otherwise

iterator to one graph node

iterator to a second graph node

@return true if an edge is required,

* ok
x @brief Returns
*
*
* @param _1 An
* @param _r An
*
x/

template <typename _Tp>
bool ScanGraph<_Tp >::need_edge(iterator &_1, iterator

{

false otherwise

return mz_values_align (ABS(_1—>_M_data. first —

_r—>_M _data.

first));

&_r)

116
[ % %
* @brief Returns true if two peaks could be isotopically
* related , false otherwise
*
121 % @param _d The m/z difference (absolute value) between two
* peaks
* @return true if the distance could be between two isotopic
* peaks, false otherwise
*/
126 template <typename _Tp>
inline bool ScanGraph<_ Tp>::mz_values_align (. Tp __d)
{
for (unsigned short ¢ = _c_start; ¢ <= _c_end; ++c) {

if ( abs(_.d —

(1.0 / ¢)) < _delta_m)

return true;
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131 I/ one missed peak.
if( abs(_..d — (2.0 / ¢)) < _delta_m) return true;

}

return false;

136 }

141 /xx
* @brief Decompose the graph that we’ve build into disjoint
* features
*

x @return A list of detected features of disjoint sets in
146 =« the graph
* /
template <typename _Tp>
std :: list <MsDetectedFeature<_Tp> >
ScanGraph< Tp >::get_convoluted_features ()
{
151 std :: list < std:: list < std:: pair<Tp, Tp> > > features =
_M_graph. get_disjoint_lists ();
_M_graph.clear () ;

std :: list <MsDetectedFeature<_Tp> > __r;
156 /! we want to convert each one of these

/1 disjoint lists into a detected feature
typename std :: list < std::list < std:: pair<Tp, Tp> >

>::iterator __start, __end = features.end();
for(__start = features.begin(); __start != __end; ++__start) {
__r.push_back(list_to_feature (x __start) );
161 }
return __r;

166

/

*
@brief Converts a list of m/z , intensity pairs into an

171 MsDetectedFeature

L S

@param _list A list of m/z, intensity pairs
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* @return An MsDetectedFeature containing all of the supplied
* points
*/
template <typename _Tp>
MsDetectedFeature <_Tp>
ScanGraph< Tp>::list_to_feature (std:: list <std :: pair<_Tp, _Tp>
> & _list)

{
MsDetectedFeature<-Tp> __r;
typename std :: list <std :: pair<_.Tp,_Tp> >::iterator __start,
__end = _list.end();
for(__start = _list.begin(); __start != __end; ++__start) {
__r.push_back (MsPeak<_Tp>(__start —>first , __start—>second)
) s
}
return __r;
}
#endif /1 SCAN_GRAPH_H_INCLUDED

ms_feature_graph.h

#ifndef FEATURE_GRAPH_H_INCLUDED
#define FEATURE_GRAPH _H_INCLUDED

#include <list >
#include <assert.h>

#include “ms_graph.h”
#include “matched_pattern.h”

#ifndef ABS

#define ABS(x) ((x) < 0 ? —(x) : (x))

#endif

EE

x This class is a wrapper for a generic graph class which

* builds up a list of matched patterns. Edges can then be built
* based on a variety of criteria, and finally the decomposition
* of the graph can be obtained
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*/
20 template <typename _Tp>
class FeatureGraph

{

public:
typedef typename MsGraph<MatchedPattern< Tp> >::iterator
iterator ;
25
iterator begin () {
return _M_graph.begin ();
}
30 iterator end () {

return _M_graph.end () ;
}

void push_back(MatchedPattern<_-Tp> _feat) {
35 _M_graph. push_back (_feat);

}

size_t size () {
return _M_graph.size ();
40 }

void build_edges(unsigned int max_scan_gap, float delta_m);
std :: list <FinalFeature <. Tp,10> > decompose () ;

45 private:
MsGraph<MatchedPattern <. Tp> > _M_graph;
bool need_edge(iterator &_l, iterator &.r, unsigned int

gap, float delta_m);

50
[ % %
* @brief Build edges between the nodes based on whether or not
* two nodes are temporally close and could be from the
* same molecular species
55
* @param max_scan_gap The maximum number of scans between
* two nodes before they are not considered related
* @param delta_m The m/z tolerance for matching two peaks
* — note, this should probably be larger than /
60 = required for pattern matching as m/z values are scaled
* by charge before comparison
*/
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template <typename _Tp>
void FeatureGraph<_Tp>::build_edges (unsigned int max_scan_gap,
float delta_m)

65 {
/1 build up edges here.... we make the assumption that
Il features have been added in order by scan numbers
iterator __iter, __tmp, -_end = _M_graph.end();
70  for(__iter = _M_graph.begin(); __iter != __end; ++__iter) {
__tmp = __iter;
++__tmp;
while (__tmp != __end) {
if (__tmp—>_M_data.scan_num > __iter —>_M_data.scan_num +
max_scan_gap )
75 break;
/] see if we need an edge..
if (need_edge(__iter , __tmp, max_scan_gap, delta_m)) {
_M_graph.add_edge(__iter , __tmp);
80 }
++__tmp;

85 }
90 /%
* @brief Decide if we need an edge between two nodes
*
* @param _l An iterator pointing to the first node
* @param _r An iterator pointing to the second node
95 % @param gap The maximum gap (in scan numbers) between
* two nodes
* @param delta_m The m/z tolerance for considering two
* peaks to be the same or of the same molecular
* species
100 % @return true if we should put an edge between these
* nodes, false otherwise
*/

template <typename _Tp>
bool FeatureGraph<_Tp>::need_edge(iterator &_l, iterator &._r,
unsigned int gap, float delta_m)
105 {
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assert (_r—>_M_data.scan_.num <= _l—>_M_data.scan_num + gap);
if ( ABS(_.1—>_M_data. parent_mass — _r—>_M_data. parent_mass) <
delta_m) return true;

return false;
110 }

115 template <typename _Tp>
std :: list <FinalFeature <_Tp,10> > FeatureGraph<_Tp >::decompose ()

{

std :: list <FinalFeature<.Tp,10> > __r;

120 std :: list <std :: list < MatchedPattern<_Tp> > > matched =
_M_graph. get_disjoint_lists ()
typename std :: list <std :: list <MatchedPattern<_-Tp> >

>::iterator __iter , __end = matched.end();
for(__iter = matched.begin(); __iter != __end; ++__iter) {
/! make a feature out of this...
125 __r.push_back(FinalFeature<.Tp,10>(* __iter));
}
return __r;

}
130 #endif /1 FEATURE_GRAPH_H_INCLUDED

B.4 Pattern searching

B.4.1 Description

As described in Chapter 2, the main pattern searching algorithm works in two steps.
First, each full scan from an LC-MS file is searched for the desired isotopic pattern.
This is done through the use of a graph theoretic utility, scan_graph, which separates
each full scan into sets of related peaks. These sets are then analyzed by the class
pattern_lib_mod, which searches for the desired pattern and compares scores to other
potential patterns. Putative matches are then stored as nodes in a graph through the
class feature_graph, and the next scan in the file is processed. After all scans have been



B.4.2 C++ code
ms_pattern_search.cpp
1 #include <iostream >
#include <fstream >
#include <string >
#include <boost/regex.hpp>
5
#include "mzxml_lib/ mzxml_reader.h”
#include ”params_helper.h”
#include “pattern_lib_mod.h”
10 #include "ms_tag.h”
#include “matched_pattern.h”
#include “scan_graph.h”
#include “feature_graph.h”
15
using namespace std;
using namespace mzxml;
20 /%
« This is the main program for pattern searching. It takes as
« input an mzXML data file , a parameters file , and the
* destination of an output file. The program then searches for
x the pattern defined in the parameters file , accounting for
25 % possible alternative patterns, and generates a list of
* putative matches. After generation of this list, a graph
* theoretic approach is used to reduce the number of false
* positive matches based on assumptions about LC-MS data: that
x real peptide ions will likely be detected in more than one
30 % charge state, and that the same ions will likely be
* detectable in several adjacent scans.
* /
int main(int argc, charxx argv)
{
35 string infile = 77, outfile = 77, pfile = 77

B.4 PATTERN SEARCHING

analyzed, edges are created on the feature_graph based on previously described criteria.
Once all edges have been drawn, the graph is decomposed into disjoint sets which are
stored in matched_pattern types. Information about these sets is then stored—for

example, as a detailed summary and an m/z inclusion list.

184
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boost :: cmatch what;
Isotope <float> is;

for(int i = 0; i < argc; ++1i) {
if (boost::regex_search (argv[i],what,boost::regex (" —i7)))
infile = argv[i+1];
if (boost:: regex_search (argv[i],what,boost::regex(”" —07)))
outfile = argv[i+1];

if (boost::regex_search (argv[i], what, boost::regex (" —p”)))
pfile = argv[i+1];
}

if ( (infile.length() < 1) || (outfile.length() < 1) ||
pfile.length () < 1) {
cout << "Invadlid_arguments._Please_enter_files_in_the._
format_\"—i_<infile >_.—o_<outfile >_.—p_<params._file >\"” <<
endl;
return 0;
}
gsh ::search_params params =
gsh::read_parameters(pfile.c_str());
cout << “parameters_read!” << endl;

Reader r;
r.open(infile);
ofstream LOGFILE;
LOGFILE. open (params. log_file.c_str (), ios::out);
LOGFILE << "Processing._the_file \”” << infile << 7\77 << endl;
LOGFILE << 7Storing_results_in_\""7 << outfile << 7\”77 << endl;
LOGFILE << "The_searching._will _be_logged_in_\"" <<
params. log_file << 7\7” << endl;
LOGFILE << (r.read_index_offset () ? "index_offset._.read”
“failed _reading_index_offset”) << endl;

LOGFILE << 7"\ tlndexOffset.=." << r.get_index_offset () << endl;

LOGFILE << (r.read_index () ? 7index_read” : 7"failed _reading.
index”) << endl;

LOGFILE << "\ tlndexSize___=_." << r.get_scan_count () << endl;

LOGFILE << (r.read_run_header() ? “run_header_read.”
“failed _reading_run_header”) << endl;

LOGFILE << (r.read_instrument_header () ? “instrument_header._
read.” : 7failed._reading._instrument_header”) << endl;
LOGFILE << (r.read_parent_file_header () ? "parent_file_info.

read” : 7failed _reading._parent_file_info”) << endl;
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LOGFILE << 7there_are.” << r.get_scan_count () << "_scans._in.
this_file.” << endl;

/] create some generic objects that we’re going to need.
ScanGraph<float> scan_graph (params.charge_min,
params.charge_max , params.mz_tolerance_-2);
PatternLibMod <float , double> pl(params.sigma,
params. per_sigma) ;
FeatureGraph<float> feature_graph;
list <MatchedPattern<float> > matched;

I/ set up patterns that we’re going to match against:
vector<float> c_pattern;

vector <MsTag<float> > patterns;

typedef PatternLib <float ,double >::pattern_type _T_pattern;

/1 Add the search pattern first, then all of the alternate
I/ patterns afterwards.
patterns.push_back (params.search_pattern);

list <_T_pattern >::iterator __pattiter , __pattend =
params.alt_patterns.end();
for(__pattiter = params.alt_patterns.begin(); __pattiter !=

__pattend; ++__pattiter)
patterns.push_back (x __pattiter);

/! Process each scan in the file.

int index = 1;

while (r.scan_exists (index)) {
cout << “reading._index.” << index << endl;
size_t data_size;
float * data = r.read_scan(index, data_size);

scan_graph.add_scan(data, data_size);

scan_graph.build_edges () ;

list <MsDetectedFeature <float> > found =
scan_graph.get_convoluted_features () ;

list <MsDetectedFeature<float> >::iterator __start, __end =
found.end () ;
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for(__start = found.begin(); __start != __end; ++__start) {
list <MatchedPattern<float> > matched =
pl.score_convoluted_feature (x __start , patterns , 1, 5,
index) ;
115 list <MatchedPattern<float> >::iterator _miter, _mend =
matched .end () ;
for (_miter = matched.begin(); _miter != _mend; ++_miter) {
[ x

* Score filtering IS performed within the function
* score_convoluted_feature , so long as the

120 x PatternLibMod class is used as opposed to the
x PatternLib class.
* /

feature_graph .push_back (x _miter);
}

125
}
[ *
* The scan_graph contains information about peaks in the
130 x current scan. To process the next scan in the file , we
x need to clear it, otherwise future data will be added
* to the same graph.
x/
scan_graph.clear () ;
135
++index;
}
cout << "Graph_size:_.” << feature_graph.size () << ”_matched_
patterns .’ << endl;
140  cout << " Building._edges_in_feature_graph...” << endl;
// the build edges function is where we define how far apart
/1 scans can be temporally before we will no longer consider
/!l them to be linked.
145 feature_graph .build_edges (params.scan_tolerance ,
params. mz_tolerance) ;
cout << 7 ..._edges_built.” << endl;
[ *
x This is again somewhat confusing, but the net scoring of
150 ¥ the final features is done in the constructor of the final

x* feature class. Unfortuantely , this does not make things
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* X %

*

particularly transparent, and requires modification of

the
the

class itself to change how features are scored. At
moment, this code can be found in the FinalFeature

class , in the file "matched_pattern.h”

x/
list <FinalFeature <float,10> > found =

cout <<

feat

ure_graph .decompose () ;
”..._graph_decomposed.

»

<< endl;

ofstream OUT;
OUT.open(outfile.c_str (), ios::out);

int max_size = 0;

list <FinalFeature <float ,10> >::iterator __iter , __end =
found .end () ;

int printed_count = 0;

list <float> ions_list;
list <float> parent_ions;

»

cout << ..analyzing _matches ....”;

Il Loop through all of the found matches, outputting

/] as necessary .

for(__iter = found.begin(); __iter != __end; ++__iter) {

if (__iter —>score >= params.min_score) {

ost

ringstream ions;

OuUT << 7~ \nFeature:” << endl;

OUT << "\ tParent MW: .7 << __iter —>parent_mass <<

»

<< __iter —>stddev << endl;

OUT << "\ tEluting _from_scan_.” << __iter —>scan_start <<

»

to.” << __iter —>scan_end << endl;

OUT << 7\ tCharge_states:.";

/1
/1
__i
for

i

}

update the parent mass so that it points to
the desired peak of the pattern.
ter —>parent-mass += params.include_mass_mod;

(int i = params.charge_min; i <= params.charge_max;
++1i) {

f(__iter —>charge_states[i]) {

OUT << 7+7 << 1 << 7075

3]

ifons << "\t7 << ((-_iter —>parent_-mass + i) / i) <<
(+7 << i << 7)7 << endl;
ions_list.push_back ((__iter —>parent_mass + 1) / i);

Y —

»

»

»
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}

parent_ions.push_back(__iter —>parent_mass) ;
OUT << "over.” << __iter —>count << “_features.’” << endl;

195 OUT << "Tons_found:\n” << ions.str () << endl;
OUT << 7\ tMinimum _RMS_error:.” << __iter —>min_rms_error
<< endl;

OUT << "\tMaximum._Probability:.” <<
__iter —>max_probability << endl;

OUT << "total._score:.” << __iter —>score << endl;
OUT << endl;
200 ++printed_count;

if (__iter —>count > max_size)
max_size = __iter —>count;
205 }
cout << 7 ...done.” << endl;
ions_list.sort ();
parent_ions.sort ();
210  int duplicates = 0;

» »

cout << 7 ...de—duplicating_inclusion_list...”;

215 /1l deduplicate the ions list here...
list <float >::iterator ions_iter , ions_-tmp, ions_end =
ions_list.end () ;

for(ions_iter = ions_list.begin(); ions_iter != ions_end;
++ions_iter) {
ions_tmp = ions_iter;
++ions_tmp ;
220 if (ions_tmp == ions_end) break;

if ( (xions_tmp) < (xions_iter) + 0.01 ) {
/! the same m/z within tolerance
++duplicates;
ions_list.erase (ions_tmp);

225 }

OUT. close () ;
230 cout << “done.” << endl;

»

cout << 7 ...._analyzing_parent_ions....”;
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/! Remove m/z values that are within a certain

235 /! tolerance of other ions, so that the
/'l inclusion list generated isn’t unnecessarily large.
ions_end = parent_ions.end();
for(ions_iter = parent_ions.begin(); ions_iter != ions_end;
++ions_iter) {
ions_tmp = ions_iter;
240 ++ions_tmp;
if (ions_tmp == ions_end) break;

if ( (xions_tmp) < (xions_iter) + 0.01) {
parent_ions.erase (ions_tmp);

}
245}

cout << “done.” << endl;

250 ofstream fIL;

outfile += 7.include”;

fIL .open(outfile.c_str (), ios::out);

ions_end = ions_list.end();

cout << 7 ...sending_ions_list_to_output_in.” << outfile <<
255 cout << “ions_list.size ():.” << ions_list.size () << 7

/1 print all ions to the inclusion list.

for(ions_iter = ions_list.begin(); ions_iter != ions_end;

++ions_iter) f{
fIL << (+ions_iter) << endl;
260 }
fIL . close () ;

cout << “done.” << endl;
265 return 1;

}

// end pattern_search.cpp

params_helper.h

1 #ifndef PARAMS_HELPER H_INCLUDED
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#define PARAMS_HELPER H_INCLUDED

#include
#include

#include
#include
#include
#include

#include

<boost/regex.hpp>
<boost/algorithm/string .hpp>

<string >
<list >
<fstream >
<ostream >

”pattern_lib_mod .h”

namespace gsh

{

[ x

* @brief Convert a string to a numeric value

*

* @param s A string representation of the numeric value
x @return The numeric value of s in the given type.

x /

template <typename _Tp>

Tp val_from_string (std::string s) {

std :: istringstream i(s);

Tp -_r;

i >> __r;

return __r;
}
[ %

* @brief A structure that stores all of the searching
* parameters.

*

x This structure is a container that contains all the
« graph searching parameters for the main program to use.
*/

typedef struct search_params

{

int charge_min;
int charge_max;

float
float
float
float

mz_tolerance;
mz_tolerance_2;
sigma;
per_sigma;
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float include_mass_mod;
int scan_tolerance;
size_t pattern_size;
int min_score;
52 std ::string log_file;
PatternLib <float ,double >:: pattern_type search_pattern;
std :: list <PatternLib <float ,double >:: pattern_type >
alt_patterns;

/1 file outputs:

57 bool full_outpurt;
bool inclusion_list;
bool mz_charge;
bool mz_charge_scan;

62 Il construct everything to zero.
search_params () : charge_min(0), charge_max(0),

mz_tolerance (0.0),

mz_tolerance_2(0.0), sigma(0.0), per_sigma(0.0),
include_mass_mod (0.0) ,

scan_tolerance (0), pattern_size (0), min_score(0),
full_outpuc(false),

inclusion_list (false), mz_charge(false),
mz_charge_scan (false) {}

67
} search_params;
72
[ % %
x @brief Normalizes the points in a pattern so that they
* sum to unity.
*
77 * @param p A pattern to be normalized.
*/
void normalize_pattern (PatternLib <float ,double >:: pattern_type
&p) {
double sum = 0.0;
for(size_t i = 0; i < p.pattern.size (); ++1)
82 sum += p.pattern[i];

if (sum <= 0.0) {
std :: cout << "WARNING: _null_pattern_encountered.” <<
std :: endl;

return ;
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i < p.pattern.size(); ++1)

for(size_t i = 0;
/= sum;

p.pattern [i]

IEE

x @brief Returns a vector of points from a comma—separated

x list of values in a string.

*

* @param s A string of comma—separated floating point values.
* @return A vector<float> of the values in the string

* /

std :: vector<float> parse_points(std::string s) {

std :: vector<float> __r;

std :: vector<std :: string > strs;

boost:: split(strs, s, boost::is_any_of(”,7));

for(size_t 1 = 0; i < strs.size(); ++i) {
__r.push_back(val_from_string <float >(strs[i]));

}

return __r;
}
IEE
* @brief Parses out the isotopic pattern, prior probability,
* and molecular weight of a search pattern based on
* a string
*
x NOTE: function done.
*
* @param s A string containing the data to be parsed.
* @return A pattern_type containing the information for a
* particular pattern.
* /

PatternLib <float , double >::pattern_type

parse_search_pattern(std::string s) {
double mw = 0.0;
double prior = 0.0;

std :: vector<float> points;

PatternLib <float , double >::pattern_type __r;
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boost ::

cmatch what;

std :: string re =

» A

\\s*(search_pattern|alt_pattern)\\s*:(.x)$";
if (regex_search(s.c_str (), what, boost::regex(re.

))) A

std ::string data(what[2]. first , what[2].second);
std :: vector<std :: string > strs;

boost:: split(strs, data, boost::is_any_of (7;7));

// we now have a list of individual data poitns...
for(size_t i = 0; i < strs.size(); ++i) {

re = “pattern\\s*=([0—-9,\\.\\s]x*)";

if (

regex_search (strs[i].c_str (), what,
boost::regex(re.c_str () ))) {

points = parse_points(std::string (what[1]. first ,

}

what[1].second));

c_str ()

re = “mw\\sx=\\s*x([0—=9\\.]%)";
if(regex_search(strs[i].c_str (), what,
boost:: regex(re.c_str() )))
mw =
val_from_string <double >(std :: string (what[1]. first ,
what [1].second));
re = “prior\\sx=\\sx([0—-9\\.]x)";
if (regex_search (strs[i].c_str (), what,
boost::regex(re.c_str () )))
prior =
val _from_string <double >(std :: string (what[1]. first ,
what[1].second));
std :: cout << strs[i] << std::endl;
}
}
else {
return __r;

}

__-Ir =

PatternLib <float , double >::pattern_type (points,

prior , mw);
normalize_pattern(__r);

return

__r;
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167
[ % x
¥ @brief Takes a file name and returns a list
x of parameters after parsing the file.
*
172 * @param fname The name of the parameters file
* @return The parameters that were able to be parsed

x from the file.

*/

search_params read_parameters(char constx fname) {
177 search_params __r;

Il set up some reading stuff ..
size_t blocksize = 1028;
char memblock|[ blocksize ];

182 std :: ifstream __in;
__in.open(fname, std::ios::in);
boost :: cmatch what;

std :: cout << "Parsing._the_file.” << fname << std :: endl;

187
Il read the entire file line by line.
while (__in. getline (memblock, blocksize)) {
Il parse out all comments:
std ::string data = std::string (memblock);
192 if (regex_search (memblock, what, boost::regex (™ ([ "#]*)7)))
data = std::string (what[1]. first , what[1].second);

// we can now check all the specifics.
if (regex_search (data.c_str (), what,
boost::regex (" charge min:\\s*([0-9]+)")))
197 __r.charge_min =
val_from_string <int >(std :: string (what[1]. first ,
what[1].second));
if (regex_search (data.c_str (), what,
boost::regex (" charge max:\\s«([0-9]+)7)))
__r.charge_max =
val_from_string <int >(std :: string (what[1]. first ,
what [1].second));
if (regex_search (data.c_str (), what,
boost::regex (" mz_tolerance:\\s*([0—=9\\.]+)7)))
__r.mz_tolerance =
val_from_string <float >(std :: string (what[1]. first ,
what [1].second));
202 if (regex_search (data.c_str (), what,
boost::regex (" scan_tolerance:\\s*([0-9]+)")))
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__r.scan_tolerance =
val_from_string <int >(std :: string (what[1]. first ,
what [1].second));
if (regex_search (data.c_str (), what,
boost:: regex (" pattern_size:\\s*([0-9]+)")))
__r.pattern_size =
val _from_string <size_t >(std :: string (what[1]. first ,
what [1].second) ) ;
if (regex_search (data.c_str (), what,
boost:: regex ("min_score:\\s*([0-9]+)7)))
__r.min_score =
val _from_string <int >(std :: string (what[1]. first ,
what [1].second) ) ;
if(regex_search (data.c_str (), what,
boost::regex ("log_file:\\s*x(\\S+)7)))
_.r.log_file = std::string(what[1]. first ,
what[1].second) ;
if(regex_search (data.c_str (), what,
boost::regex (" (search_pattern:.x)7)))
__r.search_pattern = parse_search_pattern (data);
if (regex_search (data.c_str (), what,
boost::regex (" alt_pattern:7)))
__r.alt_patterns.push_back(parse_search_pattern(data))
if (regex_search (data.c_str (), what,
boost:: regex ("mz_tolerance_?22:\\s«([0—=9\\.]+)7)))
__r.mz_tolerance_2 =
val _from_string <float >(std :: string (what[1]. first ,
what [1].second) ) ;
if (regex_search (data.c_str (), what,
boost:: regex ("sigma:\\s*([0—=9\\.]+)7)))
__r.sigma =
val _from_string <float >(std :: string (what[1]. first ,
what [1].second));
if (regex_search (data.c_str (), what,
boost::regex (" per_sigma:\\s*([0—-9\\.]+)7)))
__r.per_sigma =
val_from_string <float >(std :: string (what[1]. first ,
what [1].second));
if (regex_search (data.c_str (), what,
boost::regex ("include_mass_mod:\\s«([0—-9\\.]+)7)))
__r.include_mass_mod =
val_from_string <float >(std :: string (what[1]. first ,
what [1].second));

Il what types of output are we interested in?

>
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if (regex_search (data.c_str (), what,
boost::regex (" full output:\\s*xtrue”)))
__r.full_output = true;

if (regex_search (data.c_str (), what,
boost::regex ("inclusion_list:\\sxtrue”)))

227 __r.inclusion_list = true;

if(regex_search (data.c_str (), what,
boost::regex ("mz_charge:\\s*xtrue”)))
__r.mz_charge = true;

if (regex_search (data.c_str (), what,
boost::regex (" mz_charge_scan:\\s*xtrue”)))

-_r.mz_charge_scan = true;
232
}
__in.close () ;
237 /! we need to resize the patterns to pattern_size;
__r.search_pattern.pattern.resize(__r.pattern_size , 0.0);
std :: list <PatternLib <float ,double >:: pattern_type >::iterator
__iter , __end = __r.alt_patterns.end();

for(__iter = __r.alt_patterns.begin(); __iter != __end;
++ __iter)
__iter —>pattern.resize (__r.pattern_size , 0.0);

242
I/ we need to log the result somewhere
if(__r.log_file.length () < 2)

__r.log_file = "graph_search.log”;

247 return __r;

}; // end namespace gsh
#endif // PARAMS_HELPER_H_INCLUDED

pattern_lib_mod.h

1 #ifndef PATTERN_LIBLMOD_H_INCLUDED
#define PATTERN_LIB.MOD_H_INCLUDED

4 #include <list >
#include "ms_pattern_lib.h”
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#include “matched_pattern.h”

¥ OOK K X X ¥ X X X

*

*

This is a specialization of the PatternLibrary template that
can be used to match multiple patterns within a supplied
feature. The main difference between this function and its
parent is that this function returns a list of the first
points in sufficiently ‘good’ patterns (according to the
first supplied MsTag reference) rather than just the score
of that pattern. This is useful for building lists (or other
containers) of sufficiently good patterns found within

the data.

*/
template <typename _Tpl, typename _Tp2>

cl
{

ass PatternLibMod : public PatternLib<_Tpl, _Tp2>

public:
typedef typename PatternLib<_Tpl,_Tp2>::pattern_list_type
pattern_list_type;

PatternLibMod () : PatternLib<_Tpl, _Tp2>() {
//'< Default constructor.
is = new Isotope<.Tpl>();

[ % %
* @brief A constructor that sets that parameters for sigma
% and percentage_sigma , giving the tolerance of
* pattern searching.
*
* @param sigma The absolute standard deviation of a
* pattern’s intensity used for pattern matching.
* @param per_sigma The percentage variance of a pattern’s
* intensity used for pattern matching.
*/

PatternLibMod (_Tpl sigma, _Tp2 per_sigma)
PatternLib <_Tpl, _Tp2>(sigma, per_sigma) { is = new
Isotope < Tpl>();}

std :: list <MatchedPattern<_Tpl> > score_convoluted_feature (
MsDetectedFeature<_Tpl> &_feat ,
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pattern_list_type &_refs ,
unsigned short c_starc,
unsigned short c_end,
unsigned short scan_num);

private:
Isotope < Tpl> xis;

[

* @brief Given a feature and reference patterns, this function
* returns a list of matches that are sufficiently good.
*

x @param _feat The feature to be scored — this does not need
* to be charge—state consistent.

* @param _refs The reference patterns to be scored against.
* The first pattern is the pattern that we are

% interested in, while the others serve as control

* patterns for scoring purposes.

* @param c_start The lowest charge state that we are

* interested in.

* @param c_end The highest charge state that we are

* interested in

* @param scan_num The current scan number

* /

template <typename _Tpl, typename _Tp2>
std :: list <MatchedPattern<_Tpl> >
PatternLibMod <_Tpl,_Tp2 >::score_convoluted_feature (
MsDetectedFeature<_Tpl> &_feat ,
pattern_list_type &_refs ,
unsigned short c_start,
unsigned short c_end,
unsigned short scan_num)

{

if (costart > c_end) swap(c_start, c_end);

Il we can’t handle zero charge here..
assert (c_start > 0);

std :: vector<_Tp2> __tmp_probs;
std :: list <MatchedPattern<_Tpl> > __r;
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std :: vector<pair<.Tp2, _Tp2> > __probs;

94  std::vector<_Tp2> __Ims_error;
__probs.resize (-refs.size ());
__rms_error.resize (_refs.size ());

Il -_r.resize(_refs.size (), match_type());

99 /] make sure that our pattern isn’t too small...
if (_feat.size() < 3) {
return __r;

}

104 size_t max_pattern_size = 0;

I/ copy the prior probabilities
for(size_t i = 0; i < _refs.size(); ++i) {
if (_refs[i].pattern.size () > max_pattern_size)

109 max_pattern_size = _refs[i].pattern.size();
__probs[i]. first = 0.0;
__probs[i].second = _refs[i].prior_probability;

}

114 vector<vector <_Tpl> > c_pattern;
c_pattern.resize (_refs.size ());

I/ Loop through all of the charge states that we
Il possibly want to consider.
119 for (unsigned int charge = c_start; charge <= c_end; ++charge)
{
Il get the feature at this charge..
std :: list <MsDetectedFeature<_Tpl> > tmp =
get_feature_subset(_feat, charge, 0.03);

124 / %
* Now, we have a list of putative features that are
% charge—state dependent, and consistent with respect
#* to the currently considered charge (charge). We need to
x loop through all of them and score each one against
129 x every pattern that we are considering.
*/
typename std :: list <MsDetectedFeature<_Tpl> >::iterator
_tmp_iter , _tmp_end = tmp.end();
for (_tmp_iter = tmp.begin(); _tmp_iter != _tmp_end;

++_tmp_iter) {
/1 try all of the patterns.
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134 _Tpl mass = charge % get_mass(_tmp_iter —>begin (),
~tmp_iter —>end () );

[ *
* We have a specific set of data peaks that we can
139 * score, so we need to score it against all of the
* patterns that we are considering. The first step
* is to update each reference pattern with the
* contaminating isotopes for a species of the
* current molecular weight.
144 [
for(size_t i = 0; i < _refs.size(); ++i) {
if (mass > _refs[i].mass) {
c_pattern[i] =
is—>update_distribution ( _refs[i]. pattern,
is—>null_distribution (mass — _refs[i].mass));
}
149 else {
c_pattern[i] = _refs[i]. pattern;

}
c_pattern[i].resize (max_pattern_size, 0.0);
}
154 /1 Each pattern is now convoluted with the isotopic
/1 distribution of a peptide of the current MW.

int loop_size = _tmp_iter—>size () — max_pattern_size;
159
/ %
* Since the process up to this point may have produces a
* list of peaks that are charge—state consistent but
* xmayx have been produced by >1 molecular species, we’ll
164 * loop through all subsets of the list that are
* sufficiently long that we could score against them.
* This feature may or may not be desirable , and more
* testing should be done to establish this.
*
169 typename MsDetectedFeature<_Tpl >::iterator __loop_iter =
_tmp_iter —>begin (), __loop_end = _tmp_iter —>end () ;
while(——loop_size >= 0) {
for(size_t i = 0; i < _refs.size(); ++i) {
__probs[i]. first = (__loop_iter == __loop_end ? 0.0

get_aligned_score(c_pattern[i], __loop_iter,

__loop_end));
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}

}
}

return

199 #endif

ms_tag.h

__rms_error[i] = (__loop_iter == __loop_end ? 0.0
get_aligned_rms_error (c_pattern[i], __loop_iter,
__loop_end));

}

__tmp_probs = get_bayesian_probility (__probs);

[ *
x This is the only source of filtering that happens in
* this function, the rest is just looping and scoring.
* To tighten up the searching, more elaborate filtering
* can be added at this step. Alternatively , more
* elaborate filtering can be added at the total feature
x scoring / graph theoretic analysis of the

* putative matches.
*/
if(__tmp_probs[0] > 0.5 ) {
__r.push_back (MatchedPattern<_Tpl>(__loop_iter —>mz,
__loop_iter —>intensity , scan_.num, charge,
__tmp_probs[0], __rms_error[0]));

}

++__loop_iter;

__r;

/1 PATTERN_LIB_.MOD_H_INCLUDED

1 #ifndef MS_TAG_H_INCLUDED
#define MS_TAG_H_INCLUDED

/

EEE S

this

file contains two main structures , the MsTag

structure that contains isotopic distribution information,

prior

probability , tag mass, and any other attributes that

may prove to be useful.
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* The second class is an MsMatch type, which includes the
« peaks that were matched to create the given pattern,

11 =« the probability , retention time, etc.
* /
#include “isotope.h”
#include “ms_feature.h”

16
[ % %

21 * @struct MsTag
* @brief Contains information on various tags including
* molecular weight, prior probability , and mass
*
* @var pattern The isotopic pattern of the tag

26 * @var prior_probability The probability that any random
* molecular species would be labeled with this tag
x @var mass The molecular weight of the tag
*/

template <typename _Tp>
31 struct MsTag

{

typename Isotope<_Tp>::isotope_distribution pattern;

_Tp prior_probability;

prior_probability (prob),

pattern ,

the

score of

_Tp mass;
36
MsTag () prior_probability (0.0), mass(0.0) { }
MsTag(typename Isotope<_Tp>::isotope_distribution __p,
_Tp prob, Tp __m) pattern(__p),
mass(-_m) { }
41 };
46
[
x @struct MsMatch
* @brief Contains information on a matched isotopic
% including the peaks that matched, the
51 match, and the scan number
*
x @var peaks An MsDetectedFeature of the peaks that matched
* the pattern
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@var
56 @var
@var

@var
@var

I SR S S S I

61
*
*/
template

probability The score of the data against the pattern
score A secondary score that can be used along with
probability for a match, e.g., weighted RMS difference.
scan_num The scan number in which the current match was
located

charge The charge state of the best matched feature
start_mz The m/z value of the first peak in the best
matched feature

<typename _Tp>

struct MsMatch

66 {

MsDetectedFeature<_Tp> peaks;
_Tp probability;

_Tp score;

unsigned short scan_num;
71 unsigned short charge;
Tp start_mz;

MsMatch () : probability (0.0), score(0.0), scan_num (0),
charge (0), start_mz (0.0) { }
MsMatch (MsDetectedFeature<_Tp> __peaks,

76 Tp

prob, unsigned short scan, unsigned short __c, _Tp mz)

peaks (__peaks),

probability (prob), scan_num (scan), charge(__c),
start_mz (mz) { }

s
#endif

/1 MS_TAG_H_INCLUDED

matched_pattern.h

1 #ifndef MATCHED PATTERN_H_INCLUDED
#define MATCHED_PATTERN_H INCLUDED

#include
5 #include
#include
#include

#include
10

<iostream >
<vector >
<list >
<math . h>

>ms_feature.h”
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#ifndef SQUARE
#define SQUARE(x) ((x)x(x))

#endif

[ %

x @brief This class is derived from the generic MsPeak
* template , with an added variable to keep track
% of charge.

s/

template <typename _Tp>

class MatchedPattern : public MsPeak< Tp>

{

public:

unsigned short charge;
/1'< The molecular weight of the parent ion of this match.
_Tp parent_mass;
//'< The probability of this match being real
_Tp probability;
//'< The secondary score of this match, e.g., the RMS
I/l error between the best match and the reference.
_Tp score;

MatchedPattern () : MsPeak<_ Tp>(), charge(0) { }

MatchedPattern (. Tp _-_mz, _Tp __int, unsigned int __s,
unsigned short __charge)

MsPeak< Tp>(._mz, __int, __s), charge(__charge),
probability (0.0), score(1000.0) {parent_mass = (_-_mz —
1.0) % __charge; }

MatchedPattern (. Tp __mz, _Tp __int, unsigned int __s,
unsigned short __charge, _Tp prob, _Tp __score)

MsPeak<_Tp>(-_mz, __int, __s), charge(__charge),
probability (prob), score(__score) {parent_-mass = (__mz
1.0) % __charge; }

MatchedPattern (_Tp _-_mz, _Tp __int, unsigned int __s)
MsPeak< Tp>(-_mz, __int, __s), charge(0) ,
probability (0.0), score(1000.0){ }
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50

[ %%
x This class is an encapsulation of lists of MatchedPattern
* features that are supplied from a graph decomposition.
55 s This class keeps track of elution range, charge states
x found, parent ion mass, etc
®/
template <typename _Tp, unsigned int MAX CHARGE-

class FinalFeature

60 {
public
_Tp parent_mass;
Tp stddev;
Tp total_intensity;
65 _Tp max_intensity;

unsigned int scan_start;
unsigned int scan_end;
vector <bool> charge_states;
int count;

70 float score;
float max_probability;
float min_rms_error;

FinalFeature (std :: list <MatchedPattern<Tp> > &_1);
75

80
[ % *
* @brief Constructs a feature from a list of matched patterns
* that have been somehow correlated.
*

85 x @note This is the function that should be modified to alter
* feature scoring of subgraphs.
*
* @param _1 A list of MatchedPattern objects used to construct
* a view of the mapped features

90 =/

template <typename _Tp, unsigned int MAX CHARGE>
FinalFeature <_Tp ,MAX CHARGE>:: FinalFeature (std :: list <MatchedPattern<_Tp>
> &_1)

{
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scan_start = 10000000;
scan_end = 0;

charge_states.resize (MAXCHARGE + 1, false);

// implement parent mass as an average.

// NOTE: this could be done as an intensity —weighted average
double tmp_parent_mass = 0.0;

double SS_parent_mass = 0.0;

total_intensity = 0.0;
max_intensity = 0.0;
count = 0;
min_rms_error = 1000.0;

max_probability = 0.0;

typename std :: list <MatchedPattern<.Tp> >::iterator __iter,
__end = _l.end();

for(__iter = _l.begin(); __iter != __end; ++__iter) {
++count;
tmp_parent_mass += (__iter —>mz — 1.0) % __iter —>charge;
charge_states[__iter —>charge] = true;

if ( __iter —>probability > max_probability )

max_probability = __iter —>probability;
if( __iter —>score < min_rms_error )
min_rms_error = __iter —>score;

if (__iter —>scan_num < scan_start)
scan_start = __iter —>scan_num;

if (__iter —>scan_num > scan_end)
scan_end = __iter —>scan_num;

if (__iter —>intensity > max_intensity)
max_intensity = __iter —>intensity;

SS_parent_mass += SQUARE( (__iter —>mz — 1.0) =
__iter —>charge);
total_intensity += __iter —>intensity ;

}

if (count < 2) {
stddev = —1.0;

}
else {
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stddev
stddev
stddev

/=

parent,mass

int c_states

for(size._

t

count — 1;

sqrt(stddev);

tmp_parent_mass

- 0;
int max_charge_state = 0;

= 0; 1 <= MAXCHARGE;

if (charge_states[i]) {

++c_states ;

max_charge_state = i;

}
}

Il Scoring function
score = 2.0;

if (c_states

if(c_states >= 3) score += 2.0;

if( (c_states == 1) &% (charge_states[1]) )
if (count >= 10) score += 2.0;

if (count >= 25) score += 2.0;

if (count >= 50) score += 2.0;

if (count >= 100) score += 2.0;

if (count >= 250) score += 2.0;
if(min_rms_error < 0.1) score += 2.0;

if (min_rms_error < 0.05) score += 2.0;

if (scan_end — scan_start >= 10) score +=

if (max_charge_state >= 4) score += 2.0;

}
#endif

sample parameters file

>= 2)

# Charge states to

charge_min:

1

3 charge_max: 5

score += 2.0;

consider:

/ count;

stuff goes here.

/1 MATCHED_PATTERN_H_INCLUDED

++1) {

SS_parent_mass — (SQUARE(tmp_parent_mass) / count);
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# m/z tolerance — usually slightly looser than the actual
# instrumental requirements would dictate. A value of

# mz_tolerance: 0.025 works well for orbitrap data. The

# mz_tolerance_2 value is a parameters used to determine

# if peaks are potentially isotopically related , and is

# typically a smaller value than mz_tolerance.

# mz_tolerance_-2 = 0.014 is a good value for orbitrap data.

mz_tolerance: 0.025
mz_tolerance_2: 0.014;

# the number of scans that two features can be separated by and
# still be considered ’related’
scan_tolerance: 2

# the number of points to be considered in matching a feature:
pattern_size: 6

# The minimum score for reported features:
min_score: 10

# The peak reported in an inclusion list. For example, with the
# dibrmoide tag it is desired that the middle (M+2) peak be used
# for an inclusion list as it is the most intense peak. Note

# that include_mass_mode accepts floating point values, but

# values that are significantly different from integer

# quantities do not make sense. This value defaults to 0.0
include_mass_mod: 2.0

# pattern matching parameters. Sigma is the absolute variance in
# peak signal intensity for pattern matching purposes, while

# per_sigma is the percentage variance in signal intensity for
# pattern matching purposes. The value of sigma does not seem to
# be overly important, while the value of per_sigma = 0.085

# appears to be idea for matching the dibromide pattern in

# orbitrap data.
sigma: 0.0
per_sigma: 0.085

# Name of file to log output:
log_file: ms_searching.log
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The pattern of interest to search for: as a list of peak
intensities separated by 1 m/z unit. For example, the
dibromide pattern would be input at

pattern: 0.25, 0, 0.5, 0, 0.25; mw=300
where trailing zeroes are appended to reach the defined
pattern size , and the entire pattern is normalized to a
total signal of 1.0. Patterns longer than pattern_size
are removed. The mw= tag is used to input the molecular
weight of the pattern to be accounted for. This number
plays a role in how the pattern is adjusted to account
for contaminating isotopes in a data—dependent fashion.
Using a large mw= tag will force the program to use the
pattern unaltered during searching. The prior= tag is a
weighting factor that is used in a Bayesian method to
determine a final score for the search pattern accounting
for the goodness of fit of the other alt_patterns defined
below. Priors are effectively normalized to 1.0.

earch_pattern: pattern=0.25, 0.0, 0.5, 0.0, 0.25; mw=100;

prior=0.0001

Alternative patterns to score against. At least one

alternative pattern is necessary (usually
alt_pattern: 1; mw=0; prior=1),

while additional patterns can be added empirically

to reduce the occurance of false—positive matches.

alt_pattern: pattern=1; mw=0; prior=1;
alt_pattern: pattern=0.1, 0.5, 0.25; mw=300; prior=0.0001
alt_pattern: pattern=1, 1, 1, 1, 1, 1, 1; mw=10000; prior=0.001

# Outputs to use. Values are assumed to be false if not defined.
full _output: true # A detailed output of all search
# resulcs.
inclusion_list: false # only m/z values
mz_charge: true # m/z values with charge state
mz_charge_scan: true # the m/z value, charge state, and scan
# numbers of detected features
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Isotopic envelope computation

Description

This is an implementation of the isotopic envelope calculation algorithm discussed
in Section 4.4. The present implementation only supports the biologically common
elements (hydrogen, carbon, nitrogen, oxygen, sulfur) along with chlorine, bromine,
and zinc. However, additional elements can be added readily, and comments can be
found in the code indicating the location to do so.

C++ code

isotope.h

#ifndef ISOTOPE_H_INCLUDED
#define ISOTOPE_H_INCLUDED

#include <vector >
#include <iostream >

/A general minimum function

#ifndef __ms_min

#define __ms_min(x,y) ((x) < (y) ? (x) : (y))
#endif

/

*

@class Isotope
@brief This class contains information for rapidly computing
isotopic distributions of organic molecules

This class relies on the fundamental idea that the
isotopic pattern for a molecule is idepdendent of the
way in which the elements are grouped. For example,
the isotopic pattern of C5 is the same as C(C4) =
C((C2)2). From this, we can start with the basic
distribution of the natural abundance of each isotope
of interest, and then compute a ‘basis set’ of
isotopic distribution of the 2—powers of elements,
e.g. C, C2, C4, C8, ... C256, etc. The isotopic
distributions of more complex molecules can then

be computed using the binary representation of the
element counts. For exampe, to determine the isotopic
pattern generated from C6HI205N, we start with

¥R XK K X K K XK K X X K XK X X X XX
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* d = dist(C4),

* then:

% d = convolute(d, dist(C2))

* d = convolute(d, dist (HS8))

* d = convolute(d, dist(H4))

% d = convolute(d, dist (0O4))

* d = convolute(d, dist (O))

* d = convolute(d, dist(N))

* In addition, isotopic patterns of peptides can be
* predicted solely from their mass by using the
* ‘averagine’ composition.

* [

template <typename _Tp>
class Isotope
{
public:
typedef std::vector<.Tp> isotope_distribution;

EE

* @struct averagine

* @brief Contains information on the ‘averagine’ peptide.

*

x Each variable contains the expected number of elements of
x that type that would be found in a peptide of molecular

x weight 1.0. This is a useful format since the expected

* number of, e.g., carbons in a peptide of mass M is

* easily given by M % averagine::C

* /

struct averagine

{

static const Tp C = 0.044439885; /1< Carbon
static const _Tp N = 0.012217729; /1< Nitrogen
static const _Tp H = 0.069815722; /1< Hydrogen
static const _Tp O = 0.01329399; /1< Oxygen
static const _Tp § = 0.000375252; /1'< Sulfur

}s

/!l some access constants — in order to add

/!l additional elements to this class, access constants

/!l should be made for those elements.

static const unsigned short bromine =
static const unsigned short carbon =
static const unsigned short hydrogen =
static const unsigned short nitrogen =

static const unsigned short oxygen =
static const unsigned short sulfur =

N DN = O
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static const
static const
static const
static const
Isotope () ;

unsigned
unsigned
unsigned
unsigned

isotope_distribution
isotope_distribution &second);

isotope_distribution

short chlorine = 6;
short zinc = 7
short carbonl3 = 8;
short num_isotopes = 9;

convolute (
isotope_distribution &first ,

isotope_distribution &second,

size_t

size);

isotope_distribution
update_distribution (isotope_distribution &__r,

isotope_distribution second);

isotope_distribution

update_distribution (isotope_distribution &__r,

unsigned short type, unsigned int num);

isotope_distribution null_distribution (_Tp mass);

isotope_distribution get_distribution (unsigned short type,

unsigned short count);

private:
typedef std::vector<isotope_distribution >

+s

[ %%
*

*

* /

isotope_distribution_list;

void convolute_direct (unsigned short type,

unsigned short index,
isotope_distribution &ret);

/1< A basis
std :: vector<isotope_distribution_list> __basis_set;

@brief The

default

the isotopic

set of element

constructor
basis sets

compositions

initializes

const

convolute (isotope_distribution &first ,



119

124

129

134

139

144

149

154

159

B.5 ISOTOPIC ENVELOPE COMPUTATION

214

template <typename _Tp>
[sotope<.Tp>::Isotope ()

{

isotope_distribution tmp;
isotope_distribution_list tmp_arr;

tmp_arr. push_back (tmp) ;
__basis_set.resize (num_isotopes , tmp_arr);

/! bromine

tmp. push_back (0.5069);
tmp. push_back (0.0) ;
tmp. push_back (0.4931);

__basis_set[bromine][0] = tmp;

/1l carbon

tmp. clear () ;

tmp. push_back (0.9893) ;

tmp. push_back (0.0107);
__basis_set[carbon][0] = tmp;

/1 nitrogen

tmp. clear () ;

tmp . push_back (0.99636) ;
tmp . push_back (0.00364)

__basis_set[nitrogen][0] = tmp;

I/ sulfur
tmp. clear () ;
tmp. push_back (0.9493); /1 328

tmp. push_back (0.0076) ;

tmp . push_back (0.35904734) ; /1 34S
tmp . push_back (0.0) ;

tmp . push_back (0.0002) ; Il 368
__basis_set[sulfur][0] = tmp;

/'l oxygen

tmp. clear () ;

tmp . push_back (0.99757) ;

tmp . push_back (0.00038) ;

tmp. push_back (0.00205) ;
__basis_set[oxygen][0] = tmp;

/1 hydrogen

tmp. clear () ;
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tmp . push_back (0.999885) ;
tmp. push_back (0.000115);
164 __basis_set[hydrogen][0] = tmp;

/!l carbon 13
tmp. clear () ;
tmp . push_back (0.0) ;
169 tmp.push_back (1.0);
__basis_set[carbonl3][0] = tmp;

/!l chlorine
tmp. clear () ;
174 tmp. push_back (0.7576);
tmp . push_back (0.0) ;
tmp . push_back (0.2424) ;
__basis_set[chlorine ][0] = tmp;

179 /! zinc
tmp. clear () ;

tmp. push_back (0.48268); /] 64Zn
tmp . push_back (0.0) ;
tmp. push_back (0.27975); /] 66—Zn
184 tmp.push_back(0.04102); Il 67—Zn
tmp . push_back (0.19024) ; /] 68—Zn
tmp . push_back (0.0) ;
tmp . push_back (0.00631); Il 70—Zn
__basis_set[zinc][0] = tmp;
189
// Add additional elements here by creating
/!l a distribution of the natural abundances
Il of their isotopes relative to the lightest
/] existing isotopes, as can be seen above.
194
for(size_t i = 0; i < __basis_set.size(); ++i) {
for(int j = 0; j < 125 ++j) {
__basis_set[i].push_back(convolute(__basis_set[i][j],
__basis_sec[i][j], 8));
}
199 }
}
204
[ % %

* @brief Returns the combined isotopic signature
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of two separate patterns

@param first The first isotopic pattern
@param second The second isotopic pattern
@return The convoluted isotopic signature of the
* two supplied distributions

x|

template <typename _Tp>

std :: vector <_Tp> Isotope<.Tp>::convolute (
isotope_distribution &first ,

isotope_distribution &second)

{

I S

isotope_distribution __r;

if( (first.size() < 1) || (second.size() < 1) )
return __r;

__r.resize(first.size () + second.size() — 1, 0.0);

for(size_t i = 0; i < first.size(); ++i)

for(size_t j = 0; j < second.size(); ++j)
_r[i+j] += first[i] * second[j];

return __r;
}
/%%
* @brief Returns the combined isotopic signature
* of two separate patterns
*
* @param first The first isotopic pattern
* @param second The second isotopic pattern
* @return The convoluted isotopic signature of
* the two supplied distributions
* /

template <typename _Tp>
std :: vector <_Tp> Isotope<.Tp>::update_distribution (
isotope_distribution &first ,
isotope_distribution second)
{
isotope_distribution __r;
if( (first.size() < 1) || (second.size() < 1) )
return __r;
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__r.resize(first.size () + second.size() — 1, 0.0);
254

for(size_t i = 0; i < first.size(); ++i)

for(size_t j = 0; j < second.size(); ++j)
_r[i+j] += first[i] * second[j];
259 return __r;
}

264

template <typename _Tp>
std :: vector <_Tp> Isotope<.Tp>::update_distribution (
isotope_distribution &first ,
const unsigned short type,
269 unsigned int num)
{
if (num < 1) return first;
return update_distribution (first , get_distribution (type ,num));

}
274

*

279

@brief Returns the combined isotopic
signature of two separate patterns

@param first The first isotopic pattern

@param second The second isotopic pattern

@param max_size The maximum length of the
returned isotopic pattern

284

¥ OK K X X ¥ X X ¥

@return The convoluted isotopic signature of
the two supplied distributions

*

x/
289 template <typename _Tp>
std :: vector <_Tp> Isotope<.Tp>::convolute (
isotope_distribution &first ,
isotope_distribution &second,
size_t max_size)
294 {
isotope_distribution __r;
if( (first.size() < 1) || (second.size() < 1) )
return __r;
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max_size = __ms_min(max_size, first.size ()
+ second.size() — 1 );
__r.presize (max_size, 0.0);

for(size_t i = 0; i < first.size(); ++i) {
for(size_t j = 0; j < second.size(); ++j) {
if( (i + j) >= max_size )
break;

_r[i+j] += first[i] * second[j];
}
}

return __r;
}
[ %
* @brief Returns the default distribution for a peptide of a
* given mass
*
* This function estimates the number of each elemental
* type based on the ‘averagine’ peptide composition,
* and then uses this prediction to estimate the
* isotopic pattern of a peptide of the provided
* molecular weight. For speed of calculation, this
* function only includes terms which are estimated
* contribute >5% to the final distribution.
*
% @param mass The mass of the peptide
x @return The estimated isotopic pattern of a peptide
* of the given mass
* /
template <typename _Tp>

std :: vector <_Tp> Isotope<_Tp>::null_distribution (_Tp mass)

{

isotope_distribution __r;

if (mass <= 0) return __r;

__.r = get_distribution (carbon, (int)(averagine::C * mass =
0.5) );

/] These cutoffs speed up computation considerably
/1 by only considering elements that are likely



344 // to be significant contributors to the net
/! distribution , but would lead to errors if the
/1 results are used for further calculations.
if (mass > 1880) __r = update_distribution(__r,
get_distribution (oxygen, (int)(averagine::O x mass +
0.5)));
if (mass > 1145) __r = update_distribution (__r,
get_distribution (nitrogen , (int)(averagine::N x mass
0.5)));
349 if (mass > 4548) __r = update_distribution(__r,
get_distribution (hydrogen, (int)(averagine::H % mass +
0.5)));
if (((int)(averagine::S % mass + 0.5)) > 0)
-_-r = update_distribution(__r, get_distribution (sulfur,
(int) (averagine::S % mass + 0.5)));
return __r;
354 }
359 /%%
* @brief Returns the isotopic pattern of a given
* number of a given element
*
% @param type The element the pattern is based on
364 * @param count The number of atoms of the given element
x @return The isotopic pattern of the given number of
* atoms of a given type
x/

369 std ::vector<_Tp> Isotope<.Tp>::get_distribution (unsigned short

374

379
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template <typename _Tp>

type,

unsigned short count)

{

isotope_distribution __r;
/!l We don’t know this element
if ( type >= __basis_set.size() ) return __r;

__r.push_back (1.0);

/! null distribution .
if ( count == 0 ) return __r;

for(int i = __basis_set[type].size() —1; i >= 0; —i) {
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if ((0x01 << i) <= ~count) {

convolute_direct (type, i, -_r);
384 count —= (0x01 << i);
¥
}
return __r;
389 }
394 /%%

x @brief Convolutes the supplied pattern with a

* given number of elements of a given type
*
% @param type The element the pattern is based on
399 % @param count The number of atoms of the given element
* @param ret The isotopic distribution that we are
* starting with
*/

template <typename _Tp>

404 void Isotope<_ Tp>::convolute_direct(unsigned short type,
unsigned short index,
isotope_distribution &ret)

{
if (type >= __basis_set.size() ) return;
409 if (index >= __basis_set[type].size() ) return;
ret = convolute(ret, __basis_set[type][index]);
}
#endif /1 ISOTOPE_H_INCLUDED

B.6 Peak integration

B.6.1 Description

The following C++ files constitute a generalized mass spectral peak integration mod-
ule, allowing for the relative quantification of three-dimensional mass spectral peaks.
Individual peak_integrand objects define a bounded two-dimensional area over which
the intensity should be integrated, defined by scan numbers in the range [¢;, t2] and
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m/z values in the range [mz — 0, mz + 6], where 0 is a parameter defining the m/z
width of each integrand. After processing all relevant data, each peak integrand will
contain the value

m/z+dm

peak_integrand(m/z, t1,t2, 0m) = /tQ/ I(m/z,t)d(m/z)dt (B.1)

t1 m/z—dm

which can be obtained by calling the peak_integrand.integrand() method. The class
ion_integrand is a wrapper class that contains a list of peak_integrand objects, each of
which is initialized so as to represent isotopic peaks of a given molecular species at a
defined charge state. The class mol_integrand is a further abstraction, which contains
a list of ion_integrands, representing different charge states of the same molecular
species.

The total integral values for each of these classes can be called through the .integrand()

method. This is defined as

mz;+om
ion_integrand(m’z, t1, ta,0m) = Z / / I(mz,t)d(mz)dt  (B.2)

mz; EMz mzi—

for the ion integrand class, where 7z is the list of all m/z values in the ion, each repre-
senting an isotopic peak of the ion’s isotopic envelope. For the mol_integrand object,
ion_integrands are summed over charge states, and the total value then becomes

mol_integrand(mass, ¢omin, Cmaz, t1, t2, dm) (B.3)

_ i: 3 / / T Lz, t)d(ma)dt

C=Cmin \ Mz cEMke mzic—om
Cmazx
= E ion_integrand(m?Z., t1, {2, om)

C=Cmin

where mz; . is the m/z value of the i" isotopic peak of the ion with charge ¢, and niz.
is the list of all isotopic peaks for the ion with charge c.

The class integration_engine is the main engine that must be called to integrate
peaks, and is operated in two distinct phases. In the first phase, pointers to peak_integrand
objects are passed to the class through the push_back( - - ) method, building an inter-
nal list of peaks that must be integrated. After building this list, the class is locked to
further addition of integrands, and raw MS data (in the form of lists (m/z, intensity)
pairs) is passed to the engine in order of scan number. After all data has been passed to
the integration class, the data can be accessed through the original integrand objects
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(peak_integrand, ion_integrand, or mol_integrand). The integration_engine takes any
of these data types when building its internal list through the push_back(: - - ) method.

The file input_parser.h includes code that can parse an input file containing in-
formation about peak-, ion-, or molecule integrands. The main function, main.cpp,
takes two inputs: an input file containing information on the peaks to be integrated,
and an mzXML file to be the source of the data. The file sample_input.txt gives an
example of the formatting required for the first input.

C++ code

peak_integrand.h

1 #ifndef PEAKINTEGRAND_H_INCLUDED
2 #define PEAK INTEGRAND_H_INCLUDED

#include <string >
#include <sstream >

VANET:

x @class peak_integrand This class stored information

* about a given area in an MS datafile that should
% be integrated , including thestarting and ending scans
* (time domain) and an m/z value with awindow (m/z
12 =« domain). The object can be used to perform a two—
* dimensional integration of the form:
* \f[
* Vint_{t_-1}{ce2}\int_{m/z — \delta} " {m/z + \delta}
* [(t, m/z)d(m/z)dt
17 = \f]
* which is wuseful for quantitative applications of MS,
* including ICAT-like systems.
x/

template <typename _Tp>
22 class peak_integrand

{
public:
/1 Ctors
peak_integrand () ;
27 peak_integrand (int start, int end, _Tp mz, _Tp delta):
_start(start), _end(end), _mz(mz), _d_mz(delta),
_val (0.0) {}

“peak_integrand () {};
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/%%
* @brief Adds an intensity value to the current integrand.
* @param intensity The value to be added to the current
* integrand.
* /
void add(_Tp intensity) {
_val += intensity;

}

IET

* @brief Returns the current value of the integrand, if
* integration is complete, this should be the value
* \f [

* \ine_{t_1}"{t-2}

* \int_{m/z % — \delta}"{m/z + \delta}

* I(t, m/z) d(m/z)dt

* \ f]

* if the integration has been completed.

x @return The current value of the integrand.

* /

_Tp integrand () {

return _val;

}

IEE
* @brief Returns the first scan of the integrand,
* \f$ -1 \f$
* @return The first scan of the integrand, \f$ ¢_2 \f$
* /
int start() {
return _start;

}

IET

* @brief Returns the final scan of the integrand,

* \f$ t-2 \f$

* @return The final scan of the integrand, \f$ ¢_2 \f$
* /

int end () {

return _end;

}

[ % x
x* @brief Returns the m/z value of the center of the
* peak.

* @return The m/z value of the center of the peak.
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*/
77 Tp mz() {

return _mz;

}

[ % %
82 x @brief Returns the distance from the center m/z value
% that will be included in the integrand,
* \f$ \delta \f$.
x @return The distance from the center m/z value that
* will be included in the integrand, \f$ \delta
\ f$.
87 x/
Tp delta() {
return _d_mz;
}
92 [x %
x @brief Tests to see whether a given m/z value is within
* the range of the current integration object.
* @param mz The m/z value to be checked.
* @return true if the supplied value is in the interval
97 * \f$ [m/z — \delta, m/z + \delta] \f$,
* false otherwise.
*/
bool in_range (.Tp mz) {
bool __r = false;
102 if( (mz > (_mz — _d_mz)) &&X
(mz <= (_mz + _d_mz)) )
__Ir = true;
return __r;
}
107
/% *
* @brief Tests whether a given m/z value is less than than
* \f$ m/z — \delta \f$.
* @param mz The m/z value to be checked.
112 x @return true if the supplied value is greater than
* \f$ m/z + \delta \f$, false otherwise.
x/
bool is_before (_-Tp mz) {
bool __r = false;
117 if( (cmz + _d_mz) < mz)
__I = true;
return __r;
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122 [ % *
* @brief Tests whether the given iterator is completely
* past the supplied m/z value.
* @param mz The m/z value to be checked.
* @return true if the supplied value is less than
127 * \f$ m/z — \delta \f$, false otherwise.
*/

bool is_after (_Tp mz) {

bool __r = false;

if ((.Lmz — _d_mz) > mz)
132 __Ir = true;
return __r;
}
[ % %
137 * @brief A comparator function that compares two
* integration objects by their starting scans.
* /

static bool by_start(peak_integrand < Tp>& a,
peak_integrand <. Tp> &b) {
return (a.start () < b.start());

142 }

/%%
* @brief A comparator function that compares two pointers
* to integration objects by their starting scans.
147 */
static bool by_start_p (peak_integrand < Tp>x a,
peak_integrand < Tp>x b) {
return (a—>start () < b—>start ());

}

152 [ % %
* @brief A comparator function that compares two pointers
% to integration objects by their starting scans.
®/

static bool by_end(peak_integrand < Tp>& a,
peak_integrand <. Tp> &b) {
157 return (a.end() < b.end());

}

IEE
* @brief A comparator function that compares two pointers
162 * to integration objects by their starting scans.

*/
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static bool by_end_p(peak_integrand < Tp>x a,
peak_integrand <_Tp>x b) {
return (a—>end () < b—>end());

}

167
[ % *
* @brief A comparator function that compares two
* integration objects by their center m/z values.
*
172 static bool by_mz(peak_integrand <. Tp> &a,
peak_integrand <. Tp> &b) {
return (a.mz() < b.mz());
}
/%%
177 * @brief A comparator function that compares two pointers
* to integration objects by their center m/z
* values.
* /

static bool by_mz_p(peak_integrand < Tp>x a,
peak_integrand < Tp>x b) {
182 return (a—>mz() < b-—>mz());

}

/%%
* @brief A comparator function that compares two

187 * integration objects by their minimum m/z
* values , \f$ m/z — \delta \f$
* /

static bool by_first_mz (peak_integrand < Tp> &a,
peak_integrand <. Tp> &b) {
return ((a.mz() — a.delta()) < (b.mz() — b.delta()));
192 }

[ % %

* @brief A comparator function that compares two pointers

* to integration objects by their minimum m/z
197 * values ,\ f$ m/z — \delta \f$
* /

static bool by_first_mz_p (peak_integrand < Tp>x a,
peak_integrand <_Tp>x b) {
return ((a—>mz() — a—>delta()) < (b-—>mz() — b—>delta()));
}
202
[ % %

* @brief Returns a string representation of the current
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* integrand.
* @return A string representation of the current
% integrand object.
*/
std ::string princ () {
std :: ostringstream _o;
0 << 7(7 << _start << 7,.7 << _end << V) _—>.7 << _mz <<
Vo4l —.7 << domz << 7. (total=" << _val << 7)7;
return _o.str () ;
}
protected :
/!l The beginning scan number of the integrand, t_1
int _start;
// The ending scan number of the integrand , t_.2
int _end;
I/ The center of the m/z region to be integrated
Tp _mz;
/! The distance from the center m/z value to be
/1 integrated , \f$ m/z — \delta to m/z + \delta \f$
Tp _d_-mz;
// The total value of the integrand,
I \fl
/[l Nint_{e-1} " {c2}\int_{m/z —
Il \delta} " {m/z + \delta} I(t, m/z)
/1 d(m/z)dt \ f]
Tp _val;
}s
#endif /1 PEAK_INTEGRAND_H_INCLUDED
ion_integrand.h
#ifndef ION_INTEGRAND_H_INCLUDED

#define ION_INTEGRAND_H_INCLUDED

#include <list >
#include <string>
#include <sstream >
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#include ”peak_integrand.h”

[ %%

x @class ion_integrand lon Integrand is a class that

* integrates the peaks for an entire ion over

% a given scan range, including a defined number

* of isotopic peaks for the ion and a width for the

* integration of each of those peaks. For each object,
* the total integration of the the isotopic peaks with
* \f$ N \f$ peaks in the envelope, will be given by

* \f$ \sum_{k=1}"N

* \ine_{t_1}"{t-2}

* \int_{mz_k — \delta} " {mz_k + \delta}

* I(t, mz) d(mz)dt

* \ f]

* where \f$ mz_k \f$ is the m/z value for the

* \f$ k" {th} \f$ peak in the isotopic envelope, and

* is determined based on the mass of the parent

* molecule and the charge state being considered as

s \f$ mz k = (\f$base mass \f$ + k + \f$

* charge\f$ — 1) / \f$ charge.

*/

template <typename _Tp>
class ion_integrand

{

protected :

/!l The integrands of each individual isotopic peak.

std :: list <peak_integrand <. Tp> > peaks;

public:

typedef typename std:: list <peak_integrand <_Tp> >::iterator

integrand_iterator;

[ % x

* @brief Returns an iterator to the beginning of the

* integrands list.
*/

integrand_iterator begin () {
return peaks.begin () ;

}

[ % x
* @brief Returns an iterator to the end of the
* integrands list.

x/
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integrand_iterator end () {
return peaks.end();

}

[ x

* @brief Returns the total integration of all peaks

*

*/

in the ion integrand.

_Tp integrand () {
Tp _-r = 0.0;

integrand_iterator __iter, __end = end();
for(_-_iter = begin(); __iter != __end; ++__iter)
__r += __iter —>integrand () ;
return __r;

/1 Ctor

ion_integrand (_Tp mass, int charge, _Tp delta, size_t
n_peaks,
int start, int end);

[ % x

* @brief Prints out a string representation

* of the integrand.

*/

std ::string princ() {

std :: ostringstream ost;

integrand_iterator __iter, __end = end();
for(__iter = begin(); __iter != __end; ++__iter)

ost << __iter —>print() << std ::endl;

return osSt.str () 5

}
s

[ %
x @brief
*
*
* @param
* @param
* @param
*
*
* @param
k

Constructor that makes an entire list of integration
objects based on a provided scan range, an ion mass,
ion charge, m/z tolerance, and number of peaks.

mass The mass of the ion

charge The charge of the ion.

delta The tolernace in the m/z value. Integrattion
will be over the range $$mz — \delta, mz + delta$$
for each peak with m/z value $ mz §$.

n_peaks The number of peaks to be integrated

for the ion.
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* @param start The first scan to be integrated
* @param end The last scan to be integrated.
*/
template <typename _Tp>
ion_integrand <_Tp>::ion_integrand (_Tp mass, int charge, _Tp
delta ,
size_t n_peaks, int start, int end)
{
for(size_t i = 1; i <= n_peaks; ++i) {
Tp mz = (mass + charge + i — 1.0) / ((_Tp)charge);
peaks.push_back(peak_integrand < Tp>(start, end, mz, delta));
}
}
#endif /1 ION_INTEGRAND_H_INCLUDED

mol_integrand.h

#ifndef MOLINTEGRAND_H INCLUDED
#define MOLINTEGRAND_H INCLUDED

#include <list >
#include <string>

#include <sstream >

#include “ion_integrand.h”

IET

* @class mol_integrand Mol Integrand is a class that

* integrates the peaks for an entire molecule

* over a given scan range, for a given mass over

* an indicated number of charge states, for each

* charge state including a defined number of isotopic
* peaks for the ion and a width for the integration

* of each of those peaks. For each object, the total

* integration of the the isotopic peaks with \f$ N \f$
* peaks in the envelope, will be given by

* \f[

* \sum_{c \in charges}\sum_{k=1}"N \int_{c_1}"{c-2}
* \int_{mz_{k,c} — \delta} " {mz_{k,c} + \delta}

* I(t, mz) d(mz)dt

* \ f]

* where \f$ mz_{k,c} \f$ is the m/z value for the
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class

{

I S

*

* /
template <typename _Tp>

\f$ k“{th} \f$ peak in the isotopic envelope with
charge state \f$ ¢ \f$, and is determined based on
the mass of the parent molecule and the charge state
being considered as \f$ mz_{k,c} = (\f$base

mass\f$ + k + ¢ — 1)

/¢ \f$.

mol_integrand

protected :
std :: list <ion_integrand <_Tp> > ions;

public:

typedef typename std::list <ion_integrand <. Tp> >::iterator
ion_iterator ;

[ %

x @brief Returns an iterator to the beginning of the

*

%/

ions list.

ion_iterator begin () {
return ions.begin();

}

[ % %

x @brief Returns an iterator to the end of the

*

%/

ions list.

ion_iterator end () {
return ions.end () ;

}

[ x

* @brief Returns the integrand for all peaks

*

®/

integrated for the molecule.

_Tp integrand () {
Tp --r = 0.0;

ion_iterator __iter , __end = end();

for(__iter = begin(); __iter != __end; ++__iter)
__r += __iter —>integrand () ;

return __r;

[ % %
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EE G U R G SRR N N SR SR SRR R U SR o
*

*

%/

* @brief Returns a string representation of all
* peaks in the mol_integrand.
*/
std :: string print () {
std :: ostringstream ost;
ion_iterator __iter , __end = end();
for(__iter = begin(); __iter != __end; ++__iter)
ost << __iter —>print () << std::endl;
return ost.str () ;

}

mol_integrand (_Tp mass, int charge_min, int charge_max, _Tp
delta, size_t n)\
_peaks, int start, int end);

@brief Constructor that makes an entire list of

ion_integrand objects based on a provided
scan range, charge range, an ion mass, m/z
tolerance , and number of peaks per ion.

@param mass The mass of the ion

@param charge_min The minimum charge to consider

@param charge_max The maximum charge to consider

@param delta The tolernace in the m/z value. Integration

will be over the range
\f$ [mz — \delta, mz + delta] \f$
for each peak with m/z value \f$ mz \f$.

@param n_peaks The number of peaks to be integrated

for each ion.

@param  start The first scan to be integrated
@param end The last scan to be integrated.

template <typename _Tp>
mol_integrand <_Tp >:: mol_integrand (_Tp mass, int charge_min, int

{

charge_max, _Tp delta, size_t n_peaks, int start, int end)

for (int ¢ = charge_min; ¢ <= charge_max; ¢ += 1.0)

}

ions.push_back(ion_integrand <_Tp>(mass, c, delta, n_peaks,
start , end));

111 #endif /1 MOLINTEGRAND_H_INCLUDED
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integration_engine.h

1 #ifndef INTEGRATION_ENGINE_H INCLUDED
#define INTEGRATION_ENGINE_H_INCLUDED

4 #include <vector>
#include <list >
#include <string>
#include <sstream >

9 #include ”peak_integrand.h”
#include “ion_integrand .h”
#include “mol_integrand.h”

*

14 @class integration_engine Integration engine is a class that
provides a framework for performing two—dimensional
integrations on LC-MS datasets over areas bounded in
the time domain as well as in the m/z domain of the
form \f[ \inct_{t-1}"{c_2}\int-{m/z — \delta} " {m/z +
\delta} I(t, m/z) d(m/z)dt \f] where the function \f$
I[(t,m/z)\f$ is the signal intensity at the time \f$
t\f$ and the m/z value \f$ m/z \f$. This class works
by adding data in two phases: first, all integration
areas (of the type peak_integrand) are added to the
working list. After all areas have been added, peak lists
(in the form of an std::vector, in mz / intensity pairs)
are analyzed sequentially by scan number. Upon the
addition of each peak list, integration objects are
moved to an active list if the current scan number is

19

24

29 greater or equal to the starting scan for that object.
Then, active integration objects are sorted by m/z
values , and intensities that fall within an active
object’s integration range are added to the total

integration of that object. Finally, after the scan is

KO OK K X K K K K K KKK K K KK X X X XX

34

analyzed , integration objects that are ”finished” are
moved to a third list.

*

* /
template <typename _Tp>
class integration_engine
39 {
protected :
std :: list <peak_integrand <_Tp> %> starting_integrands;
/1 The initial list of peak_integrands
/1 as they are added to the class.
44 std :: list <peak_integrand <. Tp> %> active_integrands;
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I/ The list of currently active peak_integrands.
std :: list <peak_integrand <. Tp> %> finished_integrands;
I/ The list of peak_integrands which

// have been completely processed .

typedef typename std::list <peak_integrand <. Tp> >::iterator
integr\
and_iterator;
typedef typename std:: list <peak_integrand <. Tp>«>::iterator
integr)\
and_pointer_iterator;

/1A flag indicating whether or no the class is locked
I/ to the addition of more peak_integrands.

bool _locked;

/A flag indicating whether or not there has been an error
bool _err;

/1 The number of the previous error.
int _err_no;

/A description of the previous error.
std :: string _err_string;

// The first scan required for integration.
int _first_scan ;

/] The last scan required for integration
int _last_scan;

/1 The next scan expected during integration.
int _expected_scan;

void integrate_scan (std::vector<float> &peaks);
void update_active (int scan_num);
void update_finished (int scan_num) ;

public:

integration_engine () : _locked (false), _err(false),
_err_no(—1){}

std ::string print_starting () ;
std :: string print_active ()
std :: string print_finished () ;
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std ::string princ_all ();

89
IEE
x @brief Adds a pointer to a peak_integrand to the initial
* list.
* @param A pointer to a peak integrand which is to be
94 * added to the list.
*/
void push_back(peak_integrand <_Tp> % a) {
if (! _locked) {
starting_integrands . push_back(a);
99 }
else {
_err = true;
_err_no = 1;
_err_string = “attempted_to_add_peak_integrand._to.
locked_object.”;
104 }

}

[ % *
* @brief Adds a pointer to a peak_integrand to the initial
109 * list.
* @param An std :: list <peak_integrand <_Tp> >::iterator for

* which the data should be added to the list.
x/
void push_back(integrand_iterator __iter) {

114 if (! _locked) {

starting_integrands.push_back (&= __iter);
}
else {
_err = true;
119 _err_no = 1;
_err_string = attempted._to_add_peak_integrand_to.
locked_object.”;

}
}

124 IET
* @brief Adds a pointer to a peak_integrand for each
* integrand in an ion_integrand object.
* @param a A reference to an ion_integrand object.
*

129 void push_back(ion_integrand <. Tp> &a) {
integrand_iterator __iter, __end = a.end();

for(__iter = a.begin(); __iter != __end; ++__iter)
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push_back (__iter);
}
134
IEE
* @brief Adds a pointer to a peak_integrand for each
* integrand in each ion of a mol_integrand objet.
* @param a A reference to a mol_integrand object.
139 */
void push_back(mol_integrand <_Tp> &a) {

typename mol_integrand <. Tp >::ion_iterator __iter , __end =
a.end () ;
for(__iter = a.begin(); __iter != __end; ++__iter)
push_back (x __iter);
144 }
[ % %

x @brief Returns the current error state of the class.

* @return True if an error has been encoutered, false
149 * otherwise .

*/

bool err () {

return _err;

}

154
[ * %
* @brief Returns a description of the last error.
* @return A description of the last error.
*/
159 std ::string err_string () {
return _err_string;
}
/% *
164 * @brief Returns the number of the previous error.
* @return The number of the previous error.
*/
int err_no () {
return _err_no;
169 }
[ % x
x @brief Clears the error status of the class.
x/
174 void clear () {
_err = false;

}
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int first_scan ();
179 int last_scan ();
void lock ();

void add_scan(std::vector<float> &peaks, int scan_num);

bool done () ;

184
void sort_active () {
active_integrands.sort (peak_integrand < Tp>::by_start_p);
}
189 };
[ % %
* @brief Prints all of the integrands in the
194 « initial list, which are integrands that
* have not yet been activated.
* /

template <typename _Tp>
std :: string integration_engine < Tp>::print_starting ()

199 {

std :: ostringstream __o;
typename std :: list <peak_integrand < Tp> % >::iterator __iter,
__end =\
starting_integrands.end () ;
for(__iter = starting_integrands.begin(); __iter != __end;
++ __iter)
204 _.0 << (% __iter)—>print() << std::endl;
return __o.str ();
}
209
[ %
x @brief Prints all of the active integrands.
*/

214 template <typename _Tp>
std :: string integration_engine < Tp>::print_active ()

{

std :: ostringstream __o;
typename std :: list <peak_integrand <. Tp> *>::iterator __iter,
_—end =\

219 active_integrands .end () ;
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for(__iter = active_integrands.begin(); __iter !=

++ __iter)

_.0 << (% __iter)—>print() << std ::endl;

return

224}

[ % x

__o.str ();

229 % @brief Prints the contents of the finished

* /

template <typename _Tp>
std :: string integration_engine < Tp>::print_finished ()

{
234 std

typename std :: list <peak_integrand <. Tp> x>::iterator

for(__iter = finished_integrands.begin(); __iter
++ __iter)

:rostringstream __o;

_—end =\
finished_integrands.end () ;

—_0 << (% __iter)—>print () << std::endl;

lists .

endl;

endl;

239
return __o.str ();
}
244
[ % *
x @brief Prints the contents of all internal
x/
template <typename _Tp>
249 std ::string integration_engine < Tp>::print_all ()
{
std :: ostringstream __o;
o << 7 \nStarting :7 << std ::
.0 << print_starting () << std ::endl;
254 __o0 << 7 \nActive:” << std::endl;
-0 << print_active () << std ::endl;
__o << 7 \nFinished:” << std ::
——0o << print_finished () << std::endl;
return __o.str ();

259 }

__end;

integrands.

__iter ,

__end;
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264
EE
x @brief Returns the first scan in the starting list.
* /
template <typename _Tp>
269 int integration_engine <Tp>::first_scan ()
{
if (! _locked) {
_err = true;
_err_no = 2;
274 _err_string = “attempted_to_read_scan_information_before.
locking .\

>

class .”;

}

return _first_scan ;

279

[ % %
284 s« @brief Returns the first scan in the starting list.
*/
template <typename _Tp>
int integration_engine < Tp>::last_scan ()

{
289 if (! _locked) {

_err = true;
_err_no = 2;
_err_string = “attempted_to_read_scan_information_before.
locking .\
»
class.”;
294}

return _last_scan;

299
[ %%
* @brief Locks the object so that no more integration objects
% can be added, determines the first and last scans
304 that are necessary , and allows the actual

integration
* processes to begin.
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x/

template <typename _Tp>
void integration_engine < Tp>::lock ()

309 {

314

319

324

329

334

339

if(_locked) return;
_locked = true;
/! determine the first scan .

if (starting_integrands.size () < 1) return;

starting_integrands.sort(peak_integrand <_Tp>::by_start_p);

integrand_pointer_iterator __iter =
starting_integrands.begin () ;

_first_scan = (% __iter)—>start ();

starting_integrands.sort(peak_integrand <_Tp >::by_end_p);
starting_integrands.reverse () ;

__iter = starting_integrands.begin();

_last_scan = (% __iter)—>end () ;

// we want to end with everything sorted in order by
/] starting scan number .

_expected_scan = _first_scan;

starting_integrands.sort(peak_integrand < Tp>::by_start_p);

* %

* @brief Integrates the next scan in the file.

* @param peaks The MS data to be integrated , in mz/intensity
* pairs with m/z values at even indices.

* @param scan_num The scan number from which the data came.

* Scans are expected to be processed in numerical order.
*/

template <typename _Tp>
void integration_engine < Tp>::add_scan(std::vector<float>

344
{

349

&peaks ,

int scan_num)

if (! _locked) {
_err = true;
_err_no = 3;
_err_string = “data_processed_before_object_locked..__
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Results _may_be_inconsistent.”;

[/l if this sc

an is outside of the

3]

range ,

Il the rest of the function will do nothing.

if (scan_num <
if (scan_num >

if (scan_num !

_first_scan) return
_last_scan) return;

= _expected_scan) {

/! this is an error.
_err = true;
_err_no = 4;

_err_string

Integration_results _.may_not_be_correct.”;

update_active

>

= "scans._not_processed_in_numerical _order..__

(scan_num) ;

integrate_scan (peaks);
update_finished (scan_num) ;

// increment

the expecte scan:

_expected_scan += 1;

3]

x @brief Updates the list of active integrands based on the

ent scan number.

* @param scan_num The scan number

[ % %

* curr
* set
®/

of peaks came from.

template <typename _Tp>
void integration_engine < Tp>::update_active (int scan_num)

{

integrand_pointer_iterator __iter
starting_integrands.end () ;
starting_integrands.begin(); __iter
)—>start () == scan_num) {
active_integrands .push_back(x __iter);

for(__iter =
if ((x __iter

__iter =

}
else {

++ __iter

starting_integrands .

from which the

, __end =

erase( __iter);

current

__end;) {
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394
}
399
EE
x @brief Updates the list of finished integrands based on the
* current scan number.
*/

404 template <typename _Tp>
void integration_engine <Tp>::update_finished (int scan_num)
{
integrand_pointer_iterator __iter, __end =
active_integrands .end () ;
for(__iter = active_integrands.begin(); __iter != __end;) {
409 if ((x __iter)—>end () == scan_num) {
finished_integrands.push_back(* __iter);
__iter = finished_integrands.erase(__iter);
}
else {
414 ++ __iter ;

419
[ % %
* @brief Integrates the current scan, analyzing integration
424 « objects that are currently in the active_integrands
* list. It is important that this list be up—to—date
* before calling integrate scan.
* @param peak A list of MS peaks in ms/intensity pairs
* with m/z values at even inidices.
429  x/
template <typename _Tp>
void integration_engine < Tp>::integrate_scan (std::vector<float>
&peaks)
{
if (peaks.size () < 2) return;
434

I/ sort the active integrands by starting m/z value .
active_integrands.sort(peak_integrand <. Tp>::by_mz_p);



B.6 PEAK INTEGRATION 243

integrand_pointer_iterator __iter = active_integrands.begin();
integrand_pointer_iterator __midl = __iter;
439 integrand_pointer_iterator __mid2 = __iter;
integrand_pointer_iterator __end = active_integrands.end();
I« At each increment through the peaks array, the iterators
444 * __midl and _-_mid2 are updated so that all integrands that
x contain the point peaks[i] are in the range [__midl,
x __mid2). After these boundaries are setup, __iter is
* allowed to iterate over the range, integrating all peaks
« in that set. x/
449
[+« NOTE: This loop is currently O(n"2), and it should be
* possible to reduce it to O(n) with smart limits on the
* range of integrands that is iterated over in each step
* of the loop. This can be done if performance is an
454 * issue. x/
for(size_t i = 0; i < peaks.size(); i += 2) {
// initialize the starting point
/* while ( ( --midl)—>is_before (peaks[0]) && (_-_midl != __end))
459 * ++__midl; // update the ending point while( !(
* __mid2)—>is_after (peaks[0]) &% (_-_mid2 != __end)) ++__mid2;
¥ std ::cout << ”__midl == __mid2 ? 7 << (__midl == __mid2 ? 7
x yes 7 : 7 no”) << "\n7; x/
464
for(__iter = __midl; __iter != __end; ++__iter) {
if ((x __iter)—>in_range (peaks[i]))
(¢ __iter)—>add (peaks[i+1]);
}
469 }
}
474
[ %
x @brief Tests whether all objects in the class have been

* completely integrated.

* @return True if all integrands have been finished , false
479 otherwise .

*/

template <typename _Tp>

bool integration_engine < Tp>::done ()
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484 bool __r = true;
if (starting_integrands.size () > 0) __r
if (active_integrands.size() > 0 ) __r
return __r;

false ;
false;

}
489 #endif Il INTEGRATION_ENGINE_H_INCLUDED

input_parser.h

1 #ifndef MSINTEGRAND_PARSER _H_INCLUDED
#define MSINTEGRAND_PARSER H_INCLUDED

#include <fstream >
#include <sstream >
6 #include <boost/regex.hpp>

#include ”peak_integrand.h”

#include

#include
11

namespace integrand_parser

{

“ion_integrand .h”
"mol_integrand .h”

>

[ *
16 * @brief Converts a string to a numerical value
x of the specified type.
*/
template <typename _Tp>
Tp from_string(std::string s) {

21 std ::istringstream __i(s);
Tp -_r;
—oi>>
return __r;
}
26
IEE
x @brief Parses an input file to obtain lists of peak,
x ion, and molecular integrands, and adds their values to
x the supplied lists.
31 *
* @param fname The file name of the list to be parsed.
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* @param PI A reference to a list of peak integrands.
* @param Il A reference to a list of ion integrands.
* @param MI A reference to a list of mol integrands.

*/

template <typename _Tp>

void parse (charx fname, std::list <peak_integrand < Tp> > &PI,
std :: list <ion_integrand <. Tp> > &II,

std :: list <mol_integrand <_Tp> > &MI) {

boost :: cmatch what;
size_t blocksize = 1024;
char memblock|[blocksize |;
std :: string data;

std ::ifstream __in (fname, std::ios::in);
/!l read the entire file.
while (__in. getline (memblock, blocksize)) {

/! Comment lines start with a #.
if (boost:: regex_search (memblock, what,
boost::regex (7 " \\s*#7)))

continue ;

/1 peak integrands
/1 peak: mz, delta, start, stop
std ::string re;
re = 77\\sxpeak:\\s*x([0—=9\\.]+) ,\\s«([0—=9\\.]+),7s
re += “\\s*x([0—=9]+) ,\\s*x([0=9]+)7;
if (boost:: regex_search (memblock, what,
boost:: regex(re.c_str()))) {
Tp mz = from_string < Tp>(std ::string (what[1]. first ,
what[1].second));
Tp delta = from_string<-Tp>(std::string (what[2]. firsc ,
what [2].second));

int start = from_string<int>(std ::string (what[3]. first ,
what [3].second));
int stop = from_string<int>(std::string (what[4]. first,

what [4].second));

PI.push_back(peak_integrand <. Tp>(mz, delta, start,
stop));

/] ion integrands

// ion: mass, charge, n—peaks, delta, start, stop
re = "7\\sxion:\\s*([0—=9\\.]+) ,\\s*x([0—=9]+),’

re += “\\s*x([0—=9]+) ,\\'s*([0—=9\\.]+) ,\\sx";

245
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re += 7([0-9]+) ,\\s%([0-9]+)"
if (boost:: regex_search (memblock, what,
boost::regex(re.c_str()))) {
/1 parse a bunch of values from here..
_Tp mass = from_string<-Tp>(std::string (what[1]. first ,
what[1].second));
76 int charge =
from_string <int >(std :: string (what[2]. first ,
what [2].second));
size_t n_peaks =
from_string <size_t >(std :: string (what[3]. first ,
what [3].second));
Tp delta = from_string<-Tp>(std::string (what[4]. first ,
what [4].second));

int start = from_string <int>(std ::string (what[5]. first ,
what [5].second));
int stop = from_string<int>(std::string (what[6]. first ,
what [6].second) ) ;
81
IT. push_back(ion_integrand <_Tp>(mass, charge, delta,
n_peaks, start, stop));
}
/! molecule integrands:
86 /] mol: mass, charge—start, charge—end, n—peaks, delta,
/'l start, stop
re = 77\\sxmol:\\s*([0—=9\\.]+) ,\\s*x([0—=9]+) ,\\sx*x";

re += 7([0-91+) \\s £([0-914) ,\\ s ([0 —9\\.]+) ,\\ 5%7
re += " ([0-9]+) ,\\s*([0-9]+)7;
91 if (boost:: regex_search (memblock, what,
boost::regex(re.c_str()))) {
Tp mass = from_string<-Tp>(std ::string (what[1]. first ,
what [1].second));
int chargel =
from_string <int >(std :: string (what[2]. first ,
what[2].second));
int charge2 =
from_string <int >(std :: string (what[3]. first ,
what [3].second));
size_t n_peaks =
from_string <size_t >(std :: string (what [4]. first ,
what [4].second));

96 Tp delta = from_string<Tp>(std::string (what[5]. first,
what [5].second));
int start = from_string <int>(std ::string (what[6]. first ,

what [6].second));
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}

Y11

__in.

int

what [7].second)) ;

delta, n_peaks, start, stop));

end while(file ...)

close () ;

}/l end parse (...)

s // end

namespace

#endif // MSINTEGRAND_PARSER H_INCLUDED

main.cpp

#include
#include
#include
#include

#include
#include
#include
#include

#include

[l mzXML

#include

<iostream >

<list >

<algorithm >
<boost/assign/std/vector.hpp>

peak_integrand .h”
“integration_engine .h”
“ion_integrand .h”
"mol_integrand .h”

"ms_integrand_parser.h”

reading utilities
> ../ shared_lib/ mzxml_lib/ mzxml_reader.h”

using namespace std;
using namespace boost :: assign;

int main(int argc, charxx argv)

{
/1 The

integrand types that we may care about...

list <peak_integrand <float> > PI;
list <ion_integrand <float> > II;
list <mol_integrand <float> > MI;

stop = from_string<int>(std::string (what[7]. first ,

MI. push_back (mol_integrand <_Tp>(mass, chargel , charge2,
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integration_engine <float> IE;
string mzxml_file, ions_file;

ions_file = std::string(argv([1]);
mzxml_file = std::string (argv([2]);

cout << "FILE_NAME: .” << ions_file << endl;
integrand_parser :: parse (ions_file , PI2, II2, MI2);

/ *

* Load up the integration engine with all of the peaks,

x molecules, ions, etc, that we want to integrate.

*/

list <peak_integrand <float> >::iterator piter, pend = Pl.end();
list <ion_integrand <float> >::iterator iiter , iend II.end () ;
list <mol_integrand <float> >::iterator miter, mend MI.end () ;

for (piter = Pl.begin(); piter != pend; ++piter)
IE. push_back (piter);

for(iiter = II.begin(); iiter != iend; ++iiter)
IE. push_back (xiiter);
cout << iiter —>print () << endl;

for (miter = MI.begin (); miter != mend; ++miter)

IE. push_back (x miter);

/1 The integration engine has been loaded,
Il lock it and parse a file.
IE.lock () ;

/! load the mzXML file and read the index and headers.

mzxml :: Reader infile (mzxml_file.c_str ());

infile.read_index_offset () ? cout << “index_offset_read.” <<
endl : cout << “unable_to_read_index_offset” << endl;

infile.read_index () ? cout << “index.read.” << endl : cout <<
“unable _to_read_index.” << endl;

infile.read_instrument_header () ? cout << “instrument_header._
read.” << endl : cout << "unable_to_read_instrument.
header.” << endl;

infile.read_run_header () ? cout << "run_header.read.” << endl

cout << “unable_to_read _run_header” << endl;
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cout << "Scan_count:.” << infile.get_scan_count () << endl;
70
cout << "Integrating._scans.” << IE.first_scan () << "_to.” <<
IE.last_scan () << endl;
for (int scan = IE.first_scan (); scan <= IE.last_scan ();
++scan) {
if ( scan > infile.get_scan_count () ){
75 cout << ”"Warning:_integration._attempted_past_.mzXML._file .
end._Data_may_not_be_valid.” << endl;
break;

}

size_t peaks_count;

80 floatx peaks = infile.read_scan(scan, peaks_count);
vector <float> v_peaks(&peaks[0],& peaks[peaks_count]);
IE.add_scan (v_peaks, (int)scan);

/! Check for errors.

85 if (IE.err ()){
cout << "Error_processing._scan.” << scan << T:.7 <<
IE.err_no () << 7:.7 << IE.err_string () << endl;
IE. clear () ;
}
90
}
/] Done reading mzXML
infile.close () ;
95

/] When finished , this list should be empty:
cout << "All_starting:.” << endl;
cout << IE. print_starting () << endl;

100 /1 This list should contain all integrands. Integrands are
I/ also accessible through the originally created objects
// PI, II, and MI. These can easily be output to a file.
cout << "All_finished:_.” << endl;
cout << IE.print_finished () << endl;

105
return 1;
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sample_input.txt

# This is a sample file containing information on peaks, ions,
# or molecules that should be integrated. Each file can contain
# any number of any of these types.

# Integrate a peak:
peak: 510.25, 0.01, 2, 7;

# lon integrand:
# ion: mass, charge, n—peaks, delta, start, stop
ion: 2000.5, 2, 5, 0.025, 1, 5

# Molecule integrand:

# mol: mass, charge_min, charge_max, n—peaks, delta, start, stop
mol: 1700.23, 1, 3, 3, 0.008, 4, 7
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appendix ¢

Peak detection using a continuous wavelet
transform

Overview

Mass spectrometers collect data that define peaks by a distribution of points. Such
full scan data is termed ‘profile’ data. Before useful information can be extracted
from this data, peaks must be identified. There are a variety of methods that can
be employed to do this. For our purposes, there are a couple desired features — m/z
values should be preserved as accurately as possible, and relative intensities should be
identified accurately, noise should be reduced, and baseline should be eliminated. A
version of the continuous wavelet transform (CWT) proposed in by Du ez 4/. is ideal
for these purposes as it estimates the area under the curve of a given peak, accurately
identifies the 7/z value, automatically corrects the baseline, and eliminates a majority
of high-frequency noise.! Mathematically, the CWT is a two-dimensional transform

defined as:
Z T \/7 [ } (C.1)

where W(¢) is the mother wavelet function, n is the index of the transform, x,, is the
intensity data at the index n, and s is a scaling factor for the wavelet (larger s implies
a wider wavelet). For our purposes, we used the mexican hat wavelet, which is a
normalized second derivative of the gaussian function (a plot of which can be seen in

Figure C-1):
3oml/4 o?

U(t,o) = 2 (1 — ﬁ) et/ (C.2)

In non-mathematical terms, the transform works by convoluting a peak-shaped func-
tion (termed the mother wavelet) with the sample data and integrating the result-
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Figure C-1: A plot of the mexican hat wavelet with o = 0.004 scaled at three different values of s:
s = 4 (orange), s = 2 (red) and s = 1 (blue).

ing function at each point. Peak detection based on this transform starts by using a
wavelet that is slightly wider than the average peaks in the data. Local maxima are
detected in the transform of the data with this wavelet. The wavelet is then narrowed
slightly, and the data transformed with this wavelet. Local maxima from this sec-
ond transform are then compared with the original list of maxima and peaks within
a certain tolerance are correlated together. Peaks from the original transform that are
not correlated are flagged as having missed a ‘scan’. These peaks are then removed if
they do not correlate on the next round of the transform. If the new maximum is of
higher intensity, this intensity and m/z value are recorded*. Peaks in the newer scan
that are not correlated to the original scan are added to the searching list, and the pro-
cess is continued using an even narrower wavelet until a wavelet that is narrower than
all sample peaks is reached. As a side note, some caution must be used in choosing
the proper starting and ending wavelets — by starting too wide, resolution is lost and
peaks may not be identified. On the other hand, there are two potential problems if
the wavelet is allowed to become too narrow — a narrower wavelet implies a higher
frequency, so much of the noise filtering ability of the algorithm is lost if the wavelet
is allowed to become too narrow. In the extreme, the wavelet can behave as a delta
function, returning the sample data amplified to the extreme. In this case, no filtering
of any sort is achieved and the feature detection algorithm breaks down.

The transform of a sample area of raw data can be seen in Figures C-2 and C-3.

*The maximum intensity for a given scan will occur when a wavelet that is the same width as the
peak is used in the transform. This wavelet should most accurately estimate both the 72/z value as well
as the area under the curve of the peak.
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Figure C-2: A 3-dimensional plot of the continuous wavelet transform on a small area of a mass

spectrum showing a synthetic dibromide-labeled glycopeptide. At larger values of s, the ridges are

smooth and broad. As s is decreased, the ridges reach a maximum value depending on the shape of

the actual peak in the raw data. At this maximum value, the CWT accurately estimates the area under

the curve of that peak as well as the 7/z value. As s is further increased, noise becomes more apparent

and intensity then falls again. At even smaller s (not shown), the wavelet begins to behave as a delta
function, and no filtering occurs.

The method in which the continuous wavelet transform resolves peaks can be most
easily seen in Figure C-2, while the algorithm used to identify these peaks is probably
most apparent from Figure C-3. The end result of this process can be seen in Figure
C-4, where the original raw data is compared to the detected peaks.

Algorithm

The CWT peak detection and de-noising algorithm used by iteratively computing the
one-dimensional transform where the value of s is fixed. The parameter s is iterated
through a predetermined range of values, and at each value of s, the one-dimensional

transform
an \/’ { n' —n 61 (C.3)
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Figure C-3: A density plot of the same data shown in Figure C-2. Light colors represent high CWT
coeflicient, while dark colors represent low CWT coefficients. Peaks have a very clear ridge-line which
can be traced from high values of s (top) to lower values of s (bottom).
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Figure C-4: The raw data (orange) and the identified peaks (blue) for the same data presented in Figures

C-2 and C-3. The absolute intensities have been normalized separately, so they cannot be expected to

line up exactly. However, the relative intensities between peaks are extremely accurate, as are the m/z
assignments given to the peaks by the algorithm.
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is computed, and local maxima are identified. s is then incremented to the next value,
and the same processes repeated to determine a second set of local maxima, which is
then compared to local maxima from the previous value of s. If the new list contains
a maximum value within a given tolerance of a value in the old list, that list is update
with the new data, and information about the number of times that maximum has
been updated is stored along with information about the length of the ridge (in s-
units). After each round of the transform, local maxima that have not been updated
for a given number of scans are discarded, and maxima that were not updated in the
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previous round are marked as having “missed” an additional scan.

After all desired values of s are analyzed, the finalized list of local maxima are
processed to remove ridges that are insufficient in length in the s-dimension. After
this filtering, remaining ridges are turned into m/z-intensity pairs by determining the
maximum intensity along the ridge, and the corresponding m/z value at this point.
At the highest intensity along the peak ridge, the wavelet used approximates the profile
of the peak, and the corresponding transform is proportional to the area under the

curve!.

Performance

On a modern desktop computer (8GB RAM, 2.66 GHz), the provided code can
processes an orbitrap mzXML data file containing 5000-9000 full scan mass spectra
in 5-10 minutes.

C++ code

The code for the continuous wavelet transform is stored in three files: first, cwt_pd.h
and cwt_pd.cpp contain the code for the actual wavelet transform. The final file,
cwt_peak_detection.cpp contains code to processes mzXML files, performing peak
CWT-transform peak detection on each full scan mass spectrum.

cwt_pd.h

#ifndef CWI.CWITH
#define CWI_CWTH

#include <string >

#include <vector>

#include <assert.h>
#include <math.h>

#include <stdlib .h>
#include “DibroDatatypes.h”

using namespace std;

#define SIZE_FILE 512



C.4 C++ CODE

256

[ * %
* @class CWI This class provides functionality for performing
* a continuous wavelet transform on mass spectral data.
19 % Parameters for the transform are passed to the constructor
* upon initialization , after which any number of mass spectral
* scans can be analyzed using the transform.
*
* The value of sigma, a parameter of key importance, should be
24 =« dependent upon the type of instrumentation being used. In my
* hands, sigma = 0.0025 works very well for orbitrap data
* (typical error in estimating peak integration is < 1%), and
* a value of around 0.005 works well for Q/ToF data. For _best_
«* results , this should be optimized to each instrument, though
29 x the algorithm is quite robust and a rough estimate (or even
* a static value of 7 0.005) will give reasonable (error in
x peak integration < "5%) results.
*/
class CWT
34 {
public:
CWI(double sigma = 0.005, unsigned int s_min = 5,unsigned
int s_max = 20, unsigned int s_step = 5, unsigned int
g-max = 3, unsigned int min_length = 3);
39 void cwt(float % pData);
void cwt(dbdt:: data_t &data);
private:
/!l A few numerical constants:
44 double psi_scale;
double psi_sigma;
double _1_O_PS_2;
double _PS_2;
49 float psi(double t);
float transformPoint (dbdt:: data_t &data, int index,
int s, float bounds, float delta_t);
float transformPoint(float * data, int index, int s,
float bounds, float delta_t, int dataSize);
void cleanMaxima (vector <dbdt:: local_max_t >
&mtMaxima, unsigned int &index, int minLength);
void consolidateMaxima (vector <dbdt:: local_max_t >

&mtMaxima, unsigned int &mtlndex, dbdt:: data_t
&tmpMaxima, unsigned int tmlndex, float corrDist);
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54 dbdt::local _max_t setLMT (float mz, float intensity , int
g, int length);

/x% a few parameters: xx/
unsigned int S_MAX, _S.MIN, _S_STEP;
unsigned int -G.MAX, _MIN_LEN;
59
s
#endif // CWI.CWTH

cwt_pd.cpp

1 #include <math.h>
#include <iostream >

4 #include 7cwt_pd.h”

using namespace std;

[ %%
9 x @brief The standard constructor.

*

* @param sigma A parameter specifying the overall width of

* each wavelet.

* @param s_min The minimum value of the variable s to be used.
14 + @param s_max The maximum value of the variable s to be used.

* @param s_step The step size between values of s to be used.

* @param g_max The maximum size of a gap in a ridge before a

* peak is discarded. Small values are more stringent,

* but values of "2—3 are usually reasonable.
19 % @param min_length The minumum length , in s—numbers of a ridge

* before it is considered to be a peak.

*/

CWTI'::CWTI(double sigma, unsigned int s_min, unsigned int s_max,
unsigned int s_step , unsigned int g max, unsigned int
min_length)

24  psi_sigma = sigma;
-1.0_PS_2 2.0 / (sqrt(psi_-sigma * 3) * pow(3.14159, 0.25))

_PS_2 = psi_sigma x psi_sigma;

G.MAX = g_max;
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-MIN_LEN = min_length;
_S_MIN = s_min;
S_MAX = s_max;
_S_STEP = s_step;

EE

¥ @brief The mexican hat wavelet.

*

* the width of this should depend on the instrument being used-—
x pick a value so that the initial hat is slightly narrower

* than the average peak width. If too narrow of a wavelet

x* function is used,the mother wavelet starts to behave like a
* delta function with the result is that the original data is

% scaled and returned with no filtering done.

x|

float CWT:: psi(double t)

{

}

psi-scale = _1.O.PS_2 x (1 + (-t = t) / (_PS_2));

return psi_scale x exp((—t = t) / (2 = _PS_2));

[ % %
¥ @brief Calculates the continuous wavelet transform
x on the currently loaded dataset, and automatically replaces
x the dataset with the processed peak list.
*
* Several optimizations have been included in this funcrion,
* which may make it unusable for application outside of the
* analysis of full —scan MS data without first validating
* behavior.
*
* @param data The raw MS data
* /

void CWT:: cwt(dbdt:: data_t &data )

{

assert (data.size() > 1);

/] an array of local maxima

vector <dbdt:: local_max_t> mtMaxima;
/] a temporary array of local maxima.
dbdt:: data_t tmpMaxima;
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Il push_back () for vectors in O(n), so repeated calls to this

/! function lead to slow run time. Instead , it is better to

/] just waste the memory to start with to shorten run time
79 mtMaxima. reserve (data.size ());

dbdt:: point ptTmp;

ptITmp.mz = 0.0; ptTmp.intensity = 0.0;

tmpMaxima. resize (data.size (), ptTmp);
84

dbdt:: point ptCur, ptPrev;

float delta_t = 0.0075f;

/] depends on sigma.

89 float bounds = 3.0 % psi_sigma;
/! the distance allowed between correlated slices.
float corr_dist;

/! The correlation distance should be a function
94 Il of psi_sigma, the width of the wavelet.

float corr_scale_dist = psi_sigma/2.0;
int step;
99 bool increasing = false;
unsigned int tmplndex = 0;
unsigned int index = 0;
for (unsigned int s = _S.MAX; s >= _S_MIN; s —= _S_STEP) {
104
corr_dist = s % corr_scale_dist;
Il go in steps that are dependent on s — this significantly

I/ reduces the time it takes to run, especially at higher
109 I/ values of s, but the steps should be small enough that
/] detail isn’t missed.

step = max((int)(s / 6), 1 );

increasing = false;
ptPrev.mz = data[0].mz;
114 ptPrev.intensity = transformPoint(data, 0, s, bounds,
delta_t);

tmplndex = 0;

Il loop through the data at this value of s
119 for (unsigned int i = 1; i < data.size(); i++) {
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ptCur.mz = data[i].mz;
ptCur.intensity = transformPoint(data, i, s, bounds,
delta_t);

/1 check for local maxima
124 if (increasing && (ptCur.intensity < ptPrev.intensity)) {
Il the previous point was actually the maximum
tmpMaxima[tmpIndex++] = ptPrev;

}

129 increasing = (ptCur.intensity > ptPrev.intensity);
ptPrev = ptCur;

}

I/ consolidate the maxima, tracing the ridge
134 consolidateMaxima (mtMaxima, index, tmpMaxima, tmplndex,
corr_dist);

Y/l end for(s...

139 cleanMaxima (mtMaxima, index , _MIN_LEN) ;
data.resize (index);

/] at this point, mtMaxima should actually
/! contain all of the data that we want..

144 for (unsigned int i = 0; i < data.size(); i++) {
data[i].mz = mtMaxima[i].mz;
data[i].intensity = mtMaxima[i]. intensity;

}
}

149
[ % *
* @brief integrates the convolution of the data with
x the wavelet function at the supplied index.
154 =«
x @param data The raw data.
* @param index The current index of the data
* @param s The current value of the scaling factor s
* @param bounds The m/z width over which the transform
159 =« will be calculated (data[index] +/— bounds)
x @param delta_t The sampling interval.
¥ @return The continuous wavelet transform of the data
* at the supplied point.
*/
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164 float CWT:: transformPoint (dbdt:: data_t &data, int index, int s,

169

174

179

184

189

194

199

204

{

float bounds, float delta_t)
float ret = 0.0;

/] estimate a good starting index for j —— this depends on the
Il wavelet coefficient s, delta_t (the sampling interval),

/1 and bounds, which depends on psi_sigma, which defines the
/1 width of the wavelet and is dependent on the resolution of
/!l the instrument.

int j = max(—1, (int)((index — ((bounds * s)/(delta_t)))));

// increment until we are within the proper range,
I/ j >= index — (bounds % s), which is equivalent to
while( (data[j++].mz < (data[index].mz — (bounds % s))) );

while (((data[++j].mz — data[index].mz) < (boundsxs)) && (j <
(int)data.size()) ) {
ret += data[j].intensity * psi( (data[index].mz—data[j].mz)
! ((float) s) );
}

return ret;

ok
* @brief integrates the convolution of the data with

* the wavelet function at the supplied index.

*

* @param data The raw darta.

x @param index The current index of the data

* @param s The current value of the scaling factor s

* @param bounds The m/z width over which the transform
* will be calculated (data[index] +/— bounds)

* @param delta_t The sampling interval.

* @param dataSize The number of points in the dataset
x @return The continuous wavelet transform of the data
* at the supplied point.

[

float CWT:: transformPoint(float % data, int index, int s, float

{

bounds, float delta_t, int dataSize)
float ret = 0.0;

/] estimate a good starting index for j — this depends on the
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Il wavelet coefficient s, delta_t (the sampling interval),

// and bounds, which depends on psi_sigma, which defines the

/!l width of the wavelet and is dependent on the resolution of
209 /! the instrument.

int j = max(—2, (int) ((index — (2% ((bounds =x

s)/(delta_t))))));

Il we are dealing with (mz/intensity) pairs, so index and j
// need to be separated by a factor of 2n x/
214 if (1((j—index)%2)) —j;

// increment until we are within the proper range,
// j >= index — (bounds % s), which is equivalent to
while ( (data[j] < (data[index] — (bounds * s))) && (j <
dataSize) ) {
219 i e 2,
}

while (((data[j] — data[index]) < (boundsxs)) && (j <
dataSize) ) {
ret += data[j+1] % psi( (data[index]—data[j]) / ((float) s)

224 i

return ret;

229
[ *
* @brief Compares two lists of local maxima, correlating
x peaks if they are within the m/z tolerance, otherwise
234 x inserting a new maximum into the list before returning.
*
* @param mtMaxima The running list of maxima.
* @param mtlndex
* @param tmpMaxima A new list of local maxima.
239 % @param tmplndex
* @param corrDist the maximum distance within which two
* peaks will be correlated.
* /

void CWT:: consolidateMaxima (vector <dbdt:: local_max_t>
&mtMaxima, unsigned int mtlndex, dbdt:: data_t &mpMaxima,
unsigned int tmplndex, float corrDist)

244 {
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if (tmpIndex <= 0) return; // nothing to do.

vector<dbdt:: local_max_t> mtTmp;
dbdt::local_max_t tmpCorr;

I/ a temporary storage point..
tmpCorr = setLMT (0.0, 0.0, 0, 0);

/] reserve enough space for a worse case scenario
mtI'mp. resize (mtlndex + tmplndex, tmpCorr);

I/ the current index of mtTmp that we are at..

unsigned int index = 0;
unsigned int i = 0;
unsigned int j = 0;

while ( (i < mtlndex) && (j < tmplndex) ) {

I/ we don’t want to add negative values — this
/! can be an artefact from the transformation
if ( (tmpMaximal[j]. intensity < 0.0) ) {

j++; continue;

}

if (fabs (mtMaxima[i].mz — tmpMaxima[j].mz) < corrDist) {
tmpCorr = mtMaximal[i];
while ( (j < tmplndex) && (fabs(mtMaxima[i].mz —
tmpMaxima[j].mz) < corrDist) ) {
/1 find the highest correlating peak..
if (tmpMaxima[j].intensity > tmpCorr.intensity) {

tmpCorr.mz = tmpMaximal[j].mz;
tmpCorr.intensity = tmpMaximal[j]. intensity;
}
j++s

}
tmpCorr.g = 0;
tmpCorr.length ++;
i++;
}
else {
if (mtMaxima[i].mz < tmpMaximal[j].mz) {
/! add mtMaxima[i] to the list ...
tmpCorr = mtMaximal[i];
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tmpCorr. g++;
tmpCorr.length ++;

1++;
294 }
else {
/1 add tmpMaxima[j] to the list ...
tmpCorr = setLMT (tmpMaximal(j |.mz,
tmpMaximal[j ]. intensity , 0, 1);
j++s
299 }

Y/ end if (fAbs...
/] add the result to the growing list..
if (tmpCorr.g < _G_-MAX)
mtI'mp[index++] = tmpCorr;
304
}// end while ...

/1 add which ever list is not empty to the end...
for (unsigned int k = i; k < mtlndex; k++) {
309 !/l add the rest of this list to the end..
mtMaximal[k]. g++;
mtMaxima[k]. length ++;
if (mtMaximalk].g < _-G.MAX)
mtI'mp[index++] = tmpCorr;
314 )

for (unsigned int k = j; k < tmplndex; k++) {
if ( (tmpMaximal[j].intensity < 0.0) ) continue;
tmpCorr = setLMT (tmpMaxima[k].mz, tmpMaximalk]. intensity ,
0, 1);
319 mtImp[index++] = tmpCorr;
}

tmpCorr = setLMT (0.0, 0.0, 0, 0);
mtlndex = index;
324 if (mtlndex > mtMaxima. size ()) {
mtMaxima. resize (index , tmpCorr);

}

for(i = 0; i < index; i++) {
329 mtMaxima[i] = mtTmp[i];
}

334
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*
* @brief Create a new local_max_t object from an

* mz/intensity pair, a g—value, and a length.

*

* @param mz The m/z value

% @param intensity The intensity of the point.

* @param g The current g value

* @param length The current length

* @return a local_max_t object with the supplied parameters.
*/

dbdt::local _max_t CWI::setLMT (float mz, float intensity , int g,

{

int length)

dbdt:: local _max_t ret;
ret.mz = mz; ret.intensity = intensity;
ret.g = g; ret.length = length;

return ret;

* %
* @brief Cleans up a list of local maxima by removing

* points that are no longer being considered.

*

* @param mtMaxima A list of local maxima.

* @param index the current index.

* @param minLength The minimum length of a peak ridge to
* be saved. Shorter ridges are discarded.

* /

void CWT':: cleanMaxima (vector <dbdt:: local_max_t > &mtMaxima,

{

unsigned int index, int minLength)

vector <dbdt:: local _max_t> ret;
unsigned int size = 0;
for (unsigned int i = 0; i < index; i++) {
if (mtMaxima[i].length >= minLength) size ++;
}
ret.resize (size);
size = 0;
for (unsigned int i = 0; i < index; i++) {
if (mtMaxima[i].length >= minLength) ret[size++] =
mtMaximal[i];
}
index = size;
for (unsigned int i = 0; i < index; i++) {
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mtMaxima[i] = ret[i];
379 }
}
384
[ %
x @brief A wrapper for the function void cwt(dbdt:: data_t
&data)
x that accepts an array of float values, performs the
transform , and then converts the
x return back to a float array. Not the best solution, but a
temporary fix.
389
* @param pData an array of floating point values
* representing MS data in mz/intensity
* pairs , with mz values at even indicies.
*/

394 void CWT:: cwt(float x pData)
{
I/ a wrapper for the cwt function above that accepts and
/] returns an array of float values.

dbdt:: data_t data;

399  dbdt:: point point;
int index = 0;
while (pData[index] >= 0) {
point.mz = pData[index ++];
404 point.intensity = pData[index ++];

data.push_back (point);

}

cwt(data);

pData = (float % )realloc(pData, 2 % sizeof (float) x
(data.size () + 1));

409 index = 0;

for (unsigned int = 0; i < data.size(); i++) {
pData[index++] = data[i].mz;
pData[index ++] data[i].intensity;

}

—

414 pData[index++] = —1.0;
pDatalindex] = —1.0;
return ;

419 }
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cwt_peak detection.cpp

1 #include <iostream >
#include <fstream >
#include <sstream >
#include <stdlib .h>
#include <stdio .h>

6 #include <math.h>

#include "mzxml_lib/ mzxm!|_writer.h”
#include "mzxml_lib/ mzxml_reader.h”

11 #include “cwt_pd.h”
#include "DibroDatatypes.h”

using namespace std;
using namespace mzxml;

16
[ %
x @brief This program performs a scan—wise peak detection
x on an mzXML datafile. In the current version, only
« full scan mass spectra data are considered, though
21 x this can be ecasily modified.
*
* Command line syntax:

x cwt_peak_detection —i <infile . mzXMI> —o0 <outfile .mzXML>
*/
26 int main(int argc, charxx argv)
{
char x ifName (char *)77; [l = 77
char * ofName (char *)77; [ =77,
for(int i = 0; i < argc; i++) {
31 if (strser(argv[i], "—i7) != NULL) {
ifName = argv[i+1];
}
if (strscr(argv[i], "—0”7) != NULL) {
ofName = argv[i+1];
36 }
}

ostringstream ost;

41 /1 this is only applicable when processing MS data that
// includes tandem data. In the case that only full scans
Il are processed , the map is created to show the mapping of

/] scan numbers between the unprocessed and processed files.
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ostringstream ooOSt;
oost << ofName << 7 .map”;
oost. flush () ;

string scanMap = oost.str ();

cout << "saving._scan.map.in.’ << scanMap << endl;
ofstream fScanMap;
fScanMap . open(scanMap. c_str (), ios::out);

/% initialize reader and writer. *x/
Reader reader;
Writer writer;

/%% set parameters. xx/

CWT xcwt = new CWI(0.005, 5, 20, 5, 3, 3);

RunHeaderStruct runHeader;
InstrumentStruct instrument ;
ScanHeaderStruct scanHeader;

vector<ParentFileStruct> parentFiles;
cout << “ifName_=_." << ifName << endl;

if (! writer.open(ofName)) exit(1);
if (! reader.open(ifName));

if (! reader.is_open()) {
cout << “could_not_open.

endl;

»

<< ifName << 7_for._input.

>

ost << “could_not_open.” << ifName << "_for_input.”;

>

printLog (ost, PID);
}

if (!writer.is_open()) {

cout << “could_not_open.” << ofName << ”_for_output.’

endl;
ost << “coult_not_open.

printLog (ost, PID);

»

<< ofName << 7 _for_output.

cout << "C” << endl;

cout << "Processing._file_.” << ifName << endl;
cout << "_.>_outputting.\”” << ofName << 7\””7 << endl

cout. flush () ;

>

>

>

<<

<<
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/1 Attempt to open and initialize the mzXML input file.

91 ost << “reading_index_offset ........ 7<<
(reader.read_index_offset () ? "OK” : "FAILED”);
ost << “reading_index ........ ... ... 7 << (reader.read_index ()
? 0OK” : ”FAILED”);
ost << “reading_instrument_header...” <<
(reader.read_instrument_header () ? "OK” : "FAILED”);
ost << ’reading._parent_file_info....” <<
(reader.read_parent_file_header () ? "OK” : "FAILED”);
ost << ’reading._run_header ..... ... .. T<<
(reader.read_run_header () 2 "OK” : "FAILED”);
96
/1 write the new header
runHeader = reader.get_run_header ();
instrument = reader.get_instrument_header () ;
parentFiles = reader.get_parent_file_header ();
101
int scanCount = reader.get_scan_count () ;
writer.write_header (runHeader, instrument, parentFiles);
int index = 1;
double retTimeFinal = 0.0;
106 int realScanCount = 0;
Il Processes every scan.
while (reader.scan_exists (index)) {
reader.read_scan_header (index);
111 scanHeader = reader.get_scan_header ();
// only analyze full —scan mass spectra.
if (scanHeader. ms_level > 1) {
cout << “skipping _MS2” << endl;
116 index ++;
continue;
}
realScanCount ++;

121 fScanMap << index << "——>7 << realScanCount << endl;
cout << “scan.” << index << “_of.” << scanCount << endl;
reader.read_scan_header (index);

126 scanHeader = reader.get_scan_header ();

retTimeFinal = scanHeader.retention_time;
float % pDatal = reader.read_scan (index++);
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/! The actual conversion.
cwt—>cwt (pDatal) ;
writer.write_scan (scanHeader , pDatal);

}
// writer =>adjustParams (retTimeFinal , realScanCount);

writer.close () ;
reader.close () ;

Il close the scan mapping file.
fScanMap . close () ;

»

ost << “Conversion_completed_successfully ,.” << (index —

<< 7_scans_written.”;
cout << ost.str () << endl;

printLog (ost, PID);
#ifndef __GNUC__

getchar () ;
#endif

return 0;

1)
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