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Opinion Dynamics and Social Power Evolution:

A Single-Timescale Model
Peng Jia, Noah E. Friedkin, Francesco Bullo, Fellow, IEEE

Abstract

This paper studies the evolution of self-appraisal and social power, for a group of individuals who discuss and form

opinions. We consider a modification of the recently proposed DeGroot-Friedkin (DF) model, in which the opinion

formation process takes place on the same timescale as the reflected appraisal process; we call this new model the

single-timescale DF model. We provide a comprehensive analysis of the equilibria and convergence properties of the

model for the settings of irreducible and reducible influence networks. For the setting of irreducible influence networks,

the single-timescale DF model has the same behavior as the original DF model, that is, it predicts among other things

that the social power ranking among individuals is asymptotically equal to their centrality ranking, that social power

tends to accumulate at the top of the centrality ranking hierarchy, and that an autocratic (resp., democratic) power

structure arises when the centrality scores are maximally nonuniform (resp., uniform). For the setting of reducible

influence networks, the single-timescale DF model behaves differently from the original DF model in two ways. First,

an individual, who corresponds to a reducible node in a reducible influence network, can keep all social power in the

single-timescale DF model if the initial condition does so, whereas its social power asymptotically vanishes in the

original DF model. Second, when the associated network has multiple sinks, the two models behave very differently:

the original DF model has a single globally-attractive equilibrium, whereas any partition of social power among the

sinks is allowable at equilibrium in the single-timescale DF model.

Index Terms

opinion dynamics, reflected appraisal, influence networks, mathematical sociology, network centrality, dynamical

systems, coevolutionary networks

I. INTRODUCTION

Problem description and motivation: This article focuses on a model for the evolution of social power and

self-appraisal in an influence network. The model combines an opinion dynamics process from network systems and

a reflected appraisal process from applied psychology. The model is a variation of a recently-proposed dynamical

system, called the DeGroot-Friedkin (DF) model, proposed and characterized in [19]; in this proposed variation, the
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opinion dynamics process takes place on the same timescale as the reflected appraisal process. In other words, in

the (original) DF model reflected appraisal played out over an issue discussion sequence where opinion consensus

was reached on each issue; here it plays out during the opinion influence process on a single issue. The model we

study in this paper was also independently proposed and studied by Xu et al. [25]. The purpose of this article is to

provide a rigorous and comprehensive analysis of the asymptotic behavior of the proposed model and to compare

it with the DF model.

Literature review: Influence networks and opinion formation processes have been the subject of a rich literature,

starting with the averaging model proposed by French in [9], studied also by Harary in [14] and DeGroot in [8], the

Abelson model [1], the Friedkin-Johnsen model [11], [13], and the Hegselmann-Krause model [15] among others.

Empirical evidence in support of the averaging model (including its variations) is described in [12], [5]. These

models are now standard in surveys and textbooks such as [4], [16], [22], [3].

Recently, by combining the DeGroot model of opinion dynamics and a reflected appraisal mechanism, Jia et

al. [19] proposed a DF model (the DF model) to describe the evolution of individuals’ self-appraisal and social

power in a network along an issue sequence. Empirical evidence in support of the reflected appraisal mechanism

and other aspects of the DF model is provided in [10], which present a remarkable suite of issue-sequence effects

on influence network structure consistent with theoretical predictions.

Building on the modeling ideas in [19], several extensions and variations have been proposed recently. For

example, Mirtabatabaei et al. extended the DF model to include stubborn agents who have attachment to their

initial opinions in [21]. A continuous-time self-appraisal model was introduced by Chen et al. in [7]. Considering

time-varying doubly stochastic influence matrices, Xia et al. [24] investigated the convergence rate of the modified

DF model, which was proven to converge exponentially fast. Very recent submissions (essentially simultaneous

with and independent of this article) include [26], [6], [2]; specifically, the works [26], [6] deal with time-varying

(deterministic or stochastic) influence networks and the article [2] provides novel stability analysis methods for

nonlinear Markov chains (motivated by the DF model).

Finally and notably, motivated by [19], Xu et al. [25] proposed a modified DF model where the social power

is updated without waiting for opinion consensus on each issue to take place, i.e., the local estimation of social

power is truncated. In this sense, the time-constant of the opinion dynamic process is now the same as that for the

reflected appraisal process. The analysis of the equilibrium points and their attractivity properties was given in [25]

only for the setting where the interaction matrix is doubly stochastic. This is the model studied in this paper under

the name “single-timescale DeGroot-Friedkin (DF) model.”

Statement of contributions: Section II introduces the main modeling assumptions and the definition of the

single-timescale DF model. Section III provides a comprehensive analysis of the proposed model for irreducible

influence networks. Specifically, Theorem 3.1 characterizes the system behavior over influence networks with star

topology and Theorem 3.2 treats the general case. The latter theorem subsumes the specific setting of doubly-

stochastic influence networks. Lemma 3.3 characterizes the relationship with the DF model: the two models (over

irreducible influence networks) converge to the same equilibria and therefore predict the same phenomena, e.g.,

social power ranking equal to an appropriate centrality ranking and social power accumulation at the top. Next,
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Section IV treats the setting of reducible influence networks. Theorem 4.1 shows that the single-timescale DF model

behaviors similarly to the DF model over reducible influence networks with globally reachable nodes, but its set of

equilibrium points contain all vertices of a simplex, including the cases that reducible nodes have all social power.

In contrast, the reducible nodes loss their social power asymptotically in the DF model. Theorem 4.2 considers the

most general case where the associated network has multiple sinks and the two models behave very differently:

the DF model has a single globally-attractive equilibrium, whereas any partition of social power among the sinks

is allowable at equilibrium in the single-timescale DF model. Finally, Section V contains some final remarks and

all proofs are in the Appendices in the supplementary file.

In summary, we believe that these results are meaningful as they extend the validity and scope of the original

analysis. It is important to establish the weakest possible conditions under which social power and self-appraisal

evolve in a way comparable (or identical) to that predicted by the DF model. This paper, together with other efforts

on time-varying influence networks, establishes some robustness in the dynamic behavior with respect to modeling

uncertainties.

II. THE SINGLE-TIMESCALE DF MODEL

In this section we introduce and motivate the dynamical model for the evolution of the social influence network

where social opinions and social power evolve simultaneously. This model combines the concepts of the DeGroot

model for the dynamics of opinions over a single issue and of the Friedkin model for the dynamics of self-weight

and social power over a sequence of issues.

We consider a group of n ≥ 2 individuals who discuss an issue according to a DeGroot opinion formation

model with an influence matrix W . Assume that individual opinions about the issue are described by a trajectory

t 7→ y(t) ∈ Rn that is determined by the DeGroot averaging model

y(t+ 1) = Wy(t), t = 0, 1, 2, . . . , (1)

with given initial conditions yi(0) for each individual i. Here, the influence matrix W is row-stochastic, i.e., each

entry of W is non-negative and each row sum of W equals 1. By (1), each individual i updates its opinion according

to the convex combination:

yi(t+ 1) = wiiyi(t) +
∑n

j=1,j 6=i
wijyj(t).

From a psychological viewpoint, the diagonal and the off-diagonal entries of an influence matrix W play conceptually

distinct roles. Specifically, the diagonal self-weight wii is the individual’s self-appraisal (e.g., self-confidence, self-

esteem, self-worth) and corresponds to the extent of closure to interpersonal influence of the ith individual. Instead,

the off-diagonal entries wij , j 6= i, are interpersonal weights that the ith individual accords to other individuals.

For simplicity of notation, we adopt the shorthand xi ∈ [0, 1] to denote the self-weight wii of the ith individual.

Because 1 − xi is the aggregated influence on the ith individual of all other individuals, we may decompose the

off-diagonal entries as wij = (1− xi)cij , where the coefficients cij are the relative interpersonal weights that the

ith individual accords to other individuals. Given cii = 0, the matrix C, called the relative interaction matrix is
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row-stochastic with zero diagonal. Our construction assumes that the matrix C is constant. With these notations

and assumptions, a time-dependent influence matrix is written as

W (x(t)) = diag(x(t)) + (In − diag(x(t)))C, (2)

and the opinion dynamic process (1) is rewritten as

y(t+ 1) = W (x(t))y(t), t = 0, 1, 2, . . . .

If C is further assumed to be irreducible, the Perron-Frobenius Theorem for non-negative matrices implies that the

influence matrix W (x) with x ≥ 0 admits a unique left eigenvector w(x)> ≥ 0 associated with the eigenvalue 1,

with non-negative entries. We may normalize w(x) so that w(x) ∈ ∆n. We refer to this row vector w(x)> the

dominant left eigenvector of W (x). If W (x) is aperiodic additionally, then

lim
t→∞

W (x)t = 1nw(x)>.

Our model is completed by formulating how the self-weights t 7→ x(t) evolve during the opinion formation. By

adopting to the psychological concept of reflected appraisal, we assume that individual social powers are adjusted

along group discussions and the self-weight of an individual is set equal to the social power that the individual

exercised over the influence network. We proposed a natural dynamical process [19] that allows each individual

to accurately estimate her perceived power. The dynamical process is distributed in the sense that each individual

only needs to interact with her influenced neighbors (i.e., those who accord positive interpersonal weights to the

individual). By assuming that she is aware of the direct interpersonal weights accorded to her and the perceived

powers of her influenced neighbors, each individual updates her perceived power as a convex combination of her

own and her influenced neighbors’ perceived powers. That is, in each discussion iteration, each individual i estimates

her perceived power pi(t) according to

pi(t+ 1) = wii(t)pi(t) +
∑n

j=1,j 6=i
wji(t)pj(t),

t = 0, 1, 2, . . . ,

(3)

or, equivalently, p(t+1) = W (t)>p(t), where W (t) represents the influence matrix associated to the issue discussion

process. By assuming the self-weight of an individual is set equal to the social power that the individual exercised

over the influence network, we have p(t) = x(t) for all t. In short, the appraisal update mechanism “self-weight

:= relative control from the influence network” is written as

x(t+ 1) = W (x(t))>x(t), t = 0, 1, 2, . . . . (4)

Because of the row stochastic W (t), the sum of all elements of x(t) is constant. Therefore, it is convenient to

assume that the self-weight vector x(t) takes value in ∆n for all time t.

Given a vector x = [x1, . . . , xn], we denote x2 = [x21, . . . , x
2
n] with a slight abuse of notation and then e2i = ei.

We conclude this modeling discussion with a summary definition.

Definition 2.1 (The single-timescale DF model for the evolution of social influence networks): Consider a group

of n ≥ 2 individuals discussing an issue. Let a row-stochastic zero-diagonal irreducible matrix C be the relative
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interaction matrix encoding the relative interpersonal weights among the individuals. The single-timescale DF model

for the evolution of the self-weights t 7→ x(t) ∈ ∆n is defined as

x(t+ 1) = F (x(t)) := C>x(t) + (I − C>)x2(t)

= C>
(
x(t)− x2(t)

)
+ x2(t).

(5)

In this paper, we aim to (i) characterize the existence, stability, and region of attraction of the equilibria for the

single-timescale DF model, and (ii) compare the behavior of the single-timescale DF model with the DF model.

Based upon Definition 2.1 of the single-timescale DF model and the definition of the DF model in [19], both

models try to describe and predict evolving social-power configures within a social network and try to explain

when and why specific configures of self-weights (e.g., x = ei, namely autocratic configuration, or x = 1
n1n,

namely democratic configuration) are attractive. Nevertheless, the evolution of the single-timescale DF model is

defined on a single issue discussion, that is, the process of opinion dynamics and the process of reflected appraisal

take place over comparable timescales (in sense that the individual self-weight xi is set equal to the individual

perceived power pi in (3) right after each opinion discussion iteration). Compared with that, the DF model is

applied to group discussion on a sequence of issues, that is, the timescales for the two processes are separate: the

opinion dynamics are faster than the reflected appraisal dynamics in the influence network. In other words, opinion

consensus is achieved before individual self-weights are updated.

III. THE SINGLE-TIMESCALE DF MODEL OVER IRREDUCIBLE INFLUENCE NETWORKS

In this section we begin the mathematical analysis of the single-timescale DF model. We consider two meaningful

situations where the relative interaction matrix C has star topology and where the digraph associated to C is row-

stochastic (including its special case where C is doubly-stochastic). We will show that the first situation leads to the

emergence of an autocratic power structure with a single leader from all initial conditions, and the second situation

leads to the general convergence of self-weight configures, including the emergence of a democratic power structure

for doubly-stochastic C.

A. Interactions with star topology and autocratic influence networks

Consider the first case where the digraph associated to the relative interaction matrix has star topology. We

assume n ≥ 3 because the case n = 2 is trivial (where C is necessarily symmetric and doubly-stochastic).

Theorem 3.1 (Single-timescale DF model with star topology): For n ≥ 3, consider the single-timescale DF

dynamical system x(t + 1) = F (x(t)) defined by a relative interaction matrix C ∈ Rn×n that is row-stochastic,

irreducible, and has zero diagonal. If C has star topology with center node 1, then

(i) (Equilibria:) the fixed points of F are the autocratic vertices {e1, . . . , en}, and

(ii) (Convergence property:) for all non-autocratic initial conditions x(0) ∈ ∆n \ {e1, . . . , en}, the self-weights

x(t) converges asymptotically to the autocratic configuration e1 as t→∞.

The result of Theorem 3.1 can be interpreted as follows. For the single-timescale DF model associated with star

topology, the autocrat is predicted to appear on the center node along the opinion formation process – independently
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of the initial values in almost all scenarios (except those autocratic states corresponding to the equilibrium points

of the system (5)). This is identical to the DF model.

B. Row-stochastic interactions and democratic influence networks

Now we consider the second case where the relative interaction matrix C is row-stochastic. Note that C =0 1

1 0

 for n = 2 is such that, for any (x1, x2) ∈ ∆2 with strictly positive components, F in (5) always satisfies

F (x1, x2) = (x1, x2). We therefore discard this trivial case n = 2.

Theorem 3.2 (Single-timescale DF model with row-stochastic interactions): For n ≥ 3, consider the single-

timescale DF dynamical system x(t+ 1) = W (x(t))>x(t) defined by a relative interaction matrix C ∈ Rn×n that

is row-stochastic, irreducible, and has zero diagonal. Assume that the digraph G(C) associated to C does not have

star topology and let c> be the dominant left eigenvector of C. Then

(i) (Equilibria:) the set of fixed points of F is {e1, . . . , en, x∗}, where x∗ lies in the interior of the simplex ∆n

and the ordering of the entries of x∗ is equal to the ordering of the entries of c, and

(ii) (Convergence property:) for all non-autocratic initial conditions x(0) ∈ ∆n \ {e1, . . . , en}, the self-weights

x(t) exponentially converges to the equilibrium configuration x∗ as t→∞.

Based upon the proof of Theorem 3.1 (i) in Appendix A and the proof of Theorem 3.2 (i) in Appendix B , we

immediately have the following extended results.

Lemma 3.3 (Relationship with the DF model over irreducible networks): Given the same C and the same non-

autocratic initial state x(0), the dynamical system (5) for the single-timescale DF model converges to the same

equilibrium as the dynamical system for the DF model in [19]. Consequentially, the social power in the dynamical

system (5) is accumulated to the individuals {i} in the social network with high {ci} values.

The social power accumulation statement of Lemma 3.3 is directly from the same property of the DF system.

(See details in [19].)

Although the opinion formulation and social power evolution timescales for the single-timescale DF model and

the DF model are different, the equilibrium results of Theorem 3.2 and Lemma 3.3 are identical to those of the DF

model with an identical C: the equilibrium properties from both models are uniquely determined by the dominant

left eigenvector c> of C (where c can be called eigenvector centrality scores as from [19]). In details, given an

irreducible C without star topology, the vector of self-weights x(s) in the single-timescale DF model converges to

a unique equilibrium value x∗ for all initial conditions, except the autocratic states. This equilibrium value x∗ is

uniquely determined by the eigenvector centrality score c. The entries of x∗ are strictly positive and have the same

ordering as that of c, that is, if the centrality scores satisfy ci > cj , then the equilibrium social power x∗ satisfies

x∗i > x∗j , and if ci = cj , then x∗i = x∗j . The model exhibits an interesting phenomenon similarly as from the DF

model: an accumulation of social power in the central nodes of the network. The accumulation phenomenon is most

evident for the star topology case: the center individual with ci = 0.5 has a self-weight of 1, and all other individuals

have 0 social powers even they may have strictly positive centrality scores. In contrast, if C is doubly-stochastic,

Theorem 3.2 and Lemma 3.3 imply the self-weights of the single-timescale DF system exponentially converge to

a democratic configure where the social power of each individual is uniform.
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Numerical examples on irreducible networks

In this section we compare the dynamical behavior of the single-timescale DF model (5) with that of the DF

model in [19] over an influence network with star topology and over a general irreducible influence network.

a) A network with star topology: We first simulate the self-weight evolution in a network with star topology

C.

C =



0 1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0



. (6)

In a network associated with C given in (6), the dynamical trajectories of the self-weights generated by the

single-timescale DF model and by the DF model are illustrated in Figure 1. Two models converge to the same

equilibrium. Specifically, individual 1 has 1/2 eigenvector centrality score and her equilibrium self-weight (social

power) is 1; the rest 9 individuals have 1/18 eigenvector centrality score for each and their equilibrium self-weights

(social powers) are 0. The social power accumulation phenomenon is most evident in such a network with star

topology.

b) Reduced Krackhardt’s advice network: Krackhardt’s advice network, as illustrated in Figure 2, is based upon

a US manufacturing organization, which represents 21 managers and a directed advice network C characterizing

who sought advice from whom [20]. If individual i asks for advice from ni different individuals, then we assume

that cij = 1/ni for j in these ni individuals, and cik = 0 for all other individuals k. (See a similar example in [16].)

Moreover, self-weighting is not considered in C, that is, cii = 0 for all i ∈ {1, . . . , 21}.

The complete Krackhardt’s network includes four managers (i.e., individuals 6, 13, 16 and 17) from whom no

other individual requests advice. Hence, the complete Krackhardt’s network is reducible. Here, we simulate the

single-timescale DF model on a reduced Krackhardt’s advice network (as shown in Figure 3) without these four

nodes. The social power accumulation phenomenon within the reduced Krackhardt’s advice network is demonstrated

in Figure 4. We may also check from the simulation that the ordering of the vector components of x∗ is consistent

with that of c, that is, x∗i > x∗j if and only if ci > cj for i, j ∈ {1, . . . , 17}.

The dynamical trajectories of the self-weights generated by the single-timescale DF model (in dot lines) and by the

DF model (in solid lines) are illustrated in Figure 5. Given non-autocratic initial conditions, both models converge

to the same equilibrium, which is independent of initial conditions. These results are consistent with Theorem 3.2

and Lemma 3.3. Moreover, we observe from this and all following simulations that the single-timescale DF model

has less monotonic behaviors and takes more iterations to converge, compared with the DF model.



8

Issue/Iteration
5 10 15

Se
lf-
w
ei
gh
t

0

0.2

0.4

0.6

0.8

1
Node 1

Issue/Iteration
100 200 300

Se
lf-
w
ei
gh
t

0

0.2

0.4

0.6

0.8

1
Node 1

Issue/Iteration
5 10 15

Se
lf-
w
ei
gh
t

0
0.01
0.02
0.03
0.04
0.05
0.06

Node 2

Issue/Iteration
100 200 300

Se
lf-
w
ei
gh
t

0
0.01
0.02
0.03
0.04
0.05
0.06

Node 2
Issue/Iteration
5 10 15

Se
lf-
w
ei
gh
t

0
0.01
0.02
0.03
0.04
0.05
0.06

Node 3

Issue/Iteration
100 200 300

Se
lf-
w
ei
gh
t

0
0.01
0.02
0.03
0.04
0.05
0.06

Node 3

Fig. 1. Self-weight evolution for a network with star topology: we simulate both dynamics of the single-timescale DF model and of the DF

model with the same initial conditions; we display the trajectories of 3 nodes. The dot lines are related to the single-timescale DF model and

the solid lines are related to the DF model. The top figures show the short-term behaviors and the bottom figures show the long-term dynamics.
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Fig. 2. Krackhardt’s advice network with all 21 nodes. The color gradation of the nodes and the font size of the node labels represent ci.
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in Figure 2 are excluded. The color gradation of the nodes and the font size of the node labels represent ci.
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Fig. 4. Comparison between the eigenvector centrality scores and the equilibrium self-weights for the reduced Krackhardt’s advice network:

the social power accumulation.

IV. THE SINGLE-TIMESCALE DF MODEL OVER REDUCIBLE INFLUENCE NETWORKS

The analysis in the previous section assumes that the relative interaction matrix C is irreducible, i.e., the associated

digraph is strongly connected and each node is reachable by any other node in the network. In this section we

consider two different scenarios where the social influence network is not strongly connected as C is reducible.

The part of work is comparable to the DF model analysis over reducible networks as in [18].

First, in Subsection IV-A the matrix C is assumed to be reducible and its associated digraph has globally reachable

nodes. One can easily check that such a C admits a unique dominant left eigenvector. The analysis of the single-

timescale DF model in this scenario is essentially similar to that for an irreducible matrix C. On one hand, given
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Fig. 5. Self-weight evolution for the reduced Krackhardt’s advice network: We display the trajectories of 6 nodes with the same initial condition;

the dot lines represent the single-timescale DF dynamics and the solid lines represent the DF dynamics.

non-autocratic initial conditions, the equilibrium of the single-timescale DF model is identical to that of the DF

model with the same C; on the other hand, given autocratic initial conditions, the equilibrium of the single-timescale

DF model is not necessarily the same as that of the DF model.

Second, in Subsection IV-B the matrix C is assumed to be reducible and its associated condensation digraph

has multiple sinks. We then establish the existence and attractivity of the equilibria for the single-timescale DF

dynamics with this most general setting. Different from the DF model which has a unique equilibrium, any partition

of social power among the sinks is allowable at equilibrium of the single-timescale DF model here.

A. Reducible relative interactions with globally reachable nodes

In this subsection we consider the single-timescale DF model in the setting of reducible C with globally reachable

nodes. Recall that C is reducible if and only if G(C) is not strongly connected. Without loss of generality, assume

that the globally reachable nodes are {1, . . . , r}, for r ≤ n, and let G(Cr) be the subgraph induced by the globally

reachable nodes. One can show that there does not exist a row-stochastic matrix C with zero diagonal and with

only one globally reachable node. However, if r = 1, by assuming that node 1 is the only globally reachable node,

it is necessary that w11 = 1 and then x(0) = e1 as W is row-stochastic by definition. The single-timescale DF

dynamics then converge to x∗ = x(0) even if C is not well defined. We therefore assume r ≥ 2 in the following.

Theorem 4.1 (Single-timescale DF behavior with reachable nodes): For n ≥ r ≥ 2, consider a single-timescale

DF dynamical system x(t+ 1) = F (x(t)) as defined in (5) associated with a relative interaction matrix C ∈ Rn×n

which is row-stochastic, reducible and with zero diagonal. Let {1, . . . , r} be the globally reachable nodes of G(C).

Then the set of equilibrium points of F are {e1, . . . , en, x∗}, where x∗ ∈ ∆n has the following properties:
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(i) if r = 2, then x∗ = {(α, 1−α, 0, · · · , 0)>} for any α ∈ [0, 1], and the self-weights x(t) exponentially converge

to x∗ given a non-autocratic initial x(0);

(ii) if r ≥ 3 and G(Cr) has star topology with the center node 1, then x∗ = e1, and the self-weights x(t)

asymptotically converge to e1 given any non-autocratic initial x(0);

(iii) if r ≥ 3 and G(Cr) does not have star topology, then x∗ ∈ ∆n \ {e1, . . . , en} satisfies: 1) x∗i > 0 for

i ∈ {1, . . . , r} and x∗j = 0 for j ∈ {r + 1, . . . , n}, and 2) the ranking of the entries of x∗ is equal to the

ranking of the eigenvector centrality scores c; moreover, the self-weights x(t) exponentially converge to x∗

given any non-autocratic initial x(0).

Remark 1 (Comparison with the DF model): While the DF model and the single-timescale DF model have

the same equilibrium set over irreducible networks, this is not true anymore for reducible networks with globally

reachable nodes. By Theorem 4.1, all vertices of the simplex ∆n, {e1, . . . , en} are the equilibrium points of

the single-timescale DF dynamical system, whereas only the vertices corresponding to globally reachable nodes,

{e1, . . . , er}, are the equilibrium points of the DF model. Nevertheless, the equilibrium point x∗ in the interior of

∆n for the single-timescale DF dynamics is identical to that associated with the DF model. In both models, x∗ is

almost globally attractive.

Numerical examples on reducible networks with globally reachable nodes

In the following, we simulate the single-timescale DF dynamics on the complete Krackhardt’s advice network

(as shown in Figure 2) and on a reducible network with star topology on its irreducible nodes.

a) Complete Krackhardt’s advice network: The complete Krackhardt’s network, as illustrated in Figure 2,

includes four managers (i.e., individuals 6, 13, 16 and 17) from whom no other individual requests advice. Hence,

this network is reducible but with globally reachable nodes (i.e., the rest 17 individuals). Similar to the reduced

Krackhardt’s network, if individual i asks for advice from ni different individuals, then we assume that cij = 1/ni

for j in these ni individuals, and cik = 0 for all other individuals k. Moreover, self-weighting is not considered in

C, that is, cii = 0 for all i ∈ {1, . . . , 21}. The corresponding vectors c and x∗ − c of the complete Krackhardt’s

advice network are demonstrated in Figure 6 to show the phenomenon of social power accumulation. Meanwhile,

we can check that the ordering of the vector components of x∗ is consistent with that of c, that is, x∗i > x∗j if and

only if ci > cj for i, j ∈ {1, . . . , 21}.

The dynamical trajectories of the self-weights in the Krackhardt’s advice network generated by the single-

timescale DF model and the DF model are compared in Figure 7. For non-autocratic initial conditions, both models

converge to the same equilibrium.

b) A reducible network with star topology on its irreducible subgraph: We additionally simulate the single-

timescale DF dynamics on a reducible network with star topology on its irreducible subgraph. The single-timescale

DF model and the DF model are compared in Figure 8 and Figure 9. We can observe that (i) given a non-autocratic

initial condition, both dynamical systems converge to the same equilibrium e1, which implies all social power is

accumulated on individual 1; (ii) given an autocratic initial condition on one reducible node, then the two systems

converge to different equilibria. These statements are consistent with our discussion in Theorem 4.1.
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Fig. 8. Self-weight evolution for a network with star topology on its irreducible subgraph (that includes 10 nodes where node 10 is reducible

and node 1 is the center): we simulate both dynamics of the single-timescale DF model and of the DF model with the same non-autocratic

initial conditions. The dot lines represent the single-timescale DF dynamics and the solid lines represent the DF dynamics. The top subgraphs

shows the short-term behaviors and the bottom subgraphs shows the long-term behaviors. Both systems converge to the same equilibrium e1.
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model with the same autocratic initial conditions x(0) = e10. The dot lines represent the single-timescale DF dynamics and the solid lines
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two systems converge to two different equilibria e10 and e1, respectively.
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B. Reducible relative interactions with multiple sink components

In this subsection we generalize the treatment of the single-timescale DF model to the setting of reducible C

without globally reachable nodes. Such matrices C have an associated condensation digraph D(G(C)) with K ≥ 2

sinks.

In what follows, nk denotes the number of nodes in sink k, k ∈ {1, . . . ,K}, of the condensation digraph; by

construction nk ≥ 1. Assume that the number of nodes in G(C), not belonging to any sink in D(G(C)), is m,

that is,
∑K
k=1 nk +m = n. After a permutation of rows and columns, C can be written as

C =



C11 0 . . . 0 0

0 C22 . . . 0 0
...

...
. . .

...
...

0 0 . . . CKK 0

CM1 CM2 . . . CMK CMM


, (7)

where the first (n−m) nodes belong to the sinks of D(G(C)) and the remaining m nodes do not. By construction

each Ckk ∈ Rnk×nk , k ∈ {1, . . . ,K}, is row-stochastic and irreducible. The Perron-Frobenius Theorem for

irreducible matrices implies that Ckk has a unique positive dominant left eigenvector c>kk = (ckk1 , . . . , ckknk
),

satisfying ckk ∈ ∆nk
, independently of whether Ckk is aperiodic or periodic. Under these assumptions, the matrix

C has the following properties [18]: 1) eigenvalue 1 has geometric multiplicity equal to K, the number of sinks in

the condensation digraph D(G(C)); 2) C has K dominant left eigenvectors associated with eigenvalue 1, denoted

by ck> ∈ Rn for k ∈ {1, . . . ,K} and cki > 0 if and only if node i belongs to sink k. We may check that cki = ckkj

for j = i−
∑k−1
l=1 n`. We also denote x = (x>11, x

>
22, . . . , x

>
KK , x

>
MM )>, where xkk = (xkk1 , . . . , xkknk

)> ∈ Rnk

are the self-weights associated with sink k. Similarly, xi = xkkj for j = i −
∑k−1
l=1 n`. Given x and C with the

form (7), the corresponding W has the following form:

W =



W11 0 . . . 0 0

0 W22 . . . 0 0
...

...
. . .

...
...

0 0 . . . WKK 0

WM1 WM2 . . . WMK WMM


, (8)

where WMi = (Im − diag(xMM ))CMi for i < M and Wkk = diag(xkk)+(Ink
− diag(xkk))Ckk for k{1, . . . ,K}.

Similar to the discussion on the single-timescale DF model with reducible C and with globally reachable nodes,

for a social network with multiple sink components and with reducible nodes, the social power moves from the

reducible nodes (by diminishing exponentially fast) to the sinks. The social power of each sink only increases or

remains constant depending upon the initial conditions and the network structure. The social power dynamics in

each sink are similar to those discussed in the irreducible case Theorem 3.2, though the total social power of the

sink is neither equal to 1 nor constant in general.

Theorem 4.2 (Single-timescale DF behavior with multiple sinks): For n ≥ 3, consider the single-timescale DF

dynamical system x(t + 1) = F (x(t)) as defined in (5) associated with a relative interaction matrix C ∈ Rn×n.
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Assume that the condensation digraph D(G(C)) contains K ≥ 2 sinks and that C is written as in equation (7).

Then the following statements hold.

(i) (Equilibrium:) The set of equilibrium points of F is the union of the set of vertices {e1, . . . , en} and of the

set {x∗ = x∗(ζ∗) ∈ ∆n | ζ∗ ∈ ∆K}, where ζ∗k is the total self-weight of sink k and where x∗ is uniquely

determined by ζ∗ and has the following properties:

(i.1) if node i, i ∈ {1, . . . , n}, does not belong to any sink, then x∗i = 0;

(i.2) if node i, i ∈ {1, . . . , n}, belongs to sink k ∈ {1, . . . ,K} and nk = 2, then x∗i = ζ∗k/2 if ζ∗k < 1, or

x∗kk = (α, 1− α)> for some α ∈ [0, 1] if ζ∗k = 1;

(i.3) if node i, i ∈ {1, . . . , n}, belongs to sink k ∈ {1, . . . ,K} and nk ≥ 3, then x∗i > 0 if ζ∗k > 0, or else

x∗i = 0 if ζ∗k = 0;

(i.4) for sinks with nk ≥ 3 and ζ∗k > 0, the ranking of the entries of the vector x∗kk is equal to the ranking of

the eigenvector centrality scores ckk.

(ii) (Monotonicity of sink social power:) For all t ≥ 0, the sink social power ζk(t), equal to the sum of the

individual self-weights in each sink k ∈ {1, . . . ,K}, is non-decreasing, i.e., ζk(t + 1) ≥ ζk(t); if ζk(0) = 0

for a sink k and xi(0) = 0 for any reducible node i such that there exists a direct path from i to the sink k

in the associated influence network, then ζ∗k = ζk(t) = 0 for all t ≥ 0.

(iii) (Convergence of self-weights:) For any initial x(0) ∈ ∆n \ {e1, . . . , en}, the self-weights x(t) exponentially

converge to an equilibrium point x∗ as t→∞, where x∗ is specified as in statement (i).

Remark 2 (Eigenvector centrality): Similar to the DF model on reducible networks with multiple sinks [18], we

may regard ζ∗kckk as the individual eigenvector centrality scores in sink k. A node has zero eigenvector centrality

score if it does not belong to any sink. When the number of the sinks is K ≥ 2 and ζ∗k > 0 for all k ∈ {1, . . . ,K},

we have ζ∗kckki < 0.5 for any sink with at least two nodes. Consequently, the star topology in a sink does not

correspond to an equilibrium point with all sink social power on the center node of the sink, as the eigenvector

centrality score of the sink center is less than 0.5. Meanwhile, the social power accumulation is observed in each

sink k: for any individuals i, j ∈ {1, . . . , nk} with centrality scores satisfying ckki > ckkj > 0, the social power is

increasingly accumulated in individual i compared to individual j, that is, x∗kki/ckki > x∗kkj/ckkj .

Remark 3 (Comparison with the DF model): For this most general case, the single-timescale DF model behaves

very differently from the DF model: any partition of social power among the sinks is allowable at equilibrium of the

single-timescale DF model, whereas the DF model has a single globally-attractive equilibrium, uniquely determined

by C. In addition, all vertices of the simplex {e1, . . . , en} are equilibrium points of the single-timescale DF model,

but none of them is an equilibrium point of the DF model.

Numerical examples on the Sampson’s monastery network

We demonstrate the single-timescale DF dynamics with a numerical application to the Sampson’s monastery

network [23]. We compare the single-timescale DF model with the DF model in terms of dynamical trajectory

and equilibrium. The Sampson’s monastery network and the corresponding C have been specified in our previous
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work [18] and we use the same setup of the network. In particular, C associated with Sampson’s empirical data on

esteem interpersonal relations is reducible. The condensation digraph associated with C includes two sinks: sink

1 consists of the nodes {1, 2}, and sink 2 consists of the nodes {3, . . . , 15}, and the rest nodes are reducible; see

Figure 10.
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Fig. 10. Sampson’s monastery network

We simulate both the single-timescale DF model and the DF model on this monastery network with the same

randomly selected initial states x(0) ∈ ∆18.

The dynamical trajectories of 6 selected nodes in the Sampson’s monastery network are illustrated in the first

6 subgraphs of Figure 11. The trajectories of the total self-weights in the two sinks under the same set of initial

conditions are shown in the last two subgraphs of Figure 11.

In addition to the differences observed from Figure 11, we also note that, given different initial conditions and

a constant C, the DF model always converges to the same equilibrium (see [18]), but the single-timescale DF

model converges to different equilibria by simulation. Specifically, regarding the DF model, the reducible nodes

have 0 self-weights after the second issue discussion iteration and the sum of the self-weights for each sink after

the second iteration is uniquely determined by C but not x(0). Moreover, the sink social power for each sink keeps

constant afterwards. Regarding the single-timescale DF model, the social power on reducible nodes converges to

0 exponentially in general. Then at each iteration social power keeps migrating from reducible nodes to their

connected sinks. Such dynamics depend not only upon C but also upon the self-weight profile x(t). As a result,

each sink social power keeps increasing. The simulations may illustrate how different x(0) lead to different social

power evolving processes and, therefore, different equilibria.

V. CONCLUSION

In this paper we have characterized the equilibrium and asymptotic behavior of a single-timescale DF model for

the evolution of social power in a social influence network. Compared with the DF model, a fundamental assumption

in this modified model is that individual social power evolves at the same timescale as the group opinion forms. That
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Fig. 11. Self-weight evolution for the Sampson’s monastery network: we simulate both dynamics of the single-timescale DF model and of

the DF model with the same initial conditions. The dot lines represent the single-timescale DF dynamics and the solid lines represent the DF

dynamics. We observe the common points for the two systems, including 1) for two nodes {1, 2} in sink 1 with n1 = 2, the equilibrium

self-weights are strictly positive and equal; 2) for the nodes in sink 2 with n2 = 13, all equilibrium self-weights are strictly positive and

x∗
i > x∗

j if and only c2i > c2j , in particular, node 4 has the max eigenvector centrality score in the sink, node 11 has the min score, and node

6 has a score in between; 3) the nodes {16, 17, 18}, which do not belong to any sink, have zero equilibrium self-weights. We also observe the

differences between two systems, including 1) the convergence behaviors for a sink with two nodes are significantly different; 2) the equilibrium

self-weight sums are different for each sink between two systems, even given the same initial conditions; 3) the convergence of the self-weight

sum at each sink occurs in two steps for the DF model, but it may take more steps for the single-timescale DF model.

is to say, social power is updated without waiting for opinion consensus. We have derived a concise dynamical model

for the single-timescale DF evolution and completely characterized its asymptotic properties on both irreducible

and reducible networks; our results are consistent with the partial and independent analysis in [25]. We have also

compared the new model with the DF model in terms of their dynamical behaviors. The analytical and numerical

results show that (i) the single-timescale DF model has the same behavior as the DF model over irreducible networks;

(ii) the single-timescale DF model behaves differently from the DF model over reducible networks: the new model

has a broader equilibrium set including all autocratic points, and including equilibrium points corresponding to any

partition of social power among the sinks if the underlying network has multiple sink components. Meanwhile,

social power accumulation is also observed in the new model.

This paper completes the application of reflected appraisal mechanism to DeGroot’s opinion dynamics model and

extends the validity and scope of the original analysis on the DF model. This paper, together with other efforts on

time-varying influence networks, establishes some robustness on social power and self-appraisal evolution predicted

by the DF model with respect to modeling uncertainties. Much work remains to be done in order to understand

social power evolution on various opinion formation processes. The potential examples include the Friedkin-Johnsen

model [11], [12], where individuals tend to anchor their opinions on their initial values, and include influence
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networks with non-cooperative individuals (e.g., a preliminary work on existence of stubborn individuals [21]).
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APPENDIX A

PROOF OF THEOREM 3.1

Proof: Regarding fact (i), we first show that the set of vertices {e1, . . . , en} are the fixed point of the dynamical

system (5). Given x(t) = ei and any C, it is clear that

x(t+ 1) = F (ei) = C>ei + (I − C>)e2i = C>ei + (I − C>)ei = ei.

Second, for C associated with star topology, we show that there does not exist a fixed point in the simplex except

the vertices. By contradiction, assume that there exists a vector x ∈ ∆n \ {e1, . . . , en} such that x = F (x). The

fixed point equation x = F (x) implies

xi =

n∑
j=1,j 6=i

cji
(
xj − x2j

)
+ x2i , for all i ∈ {1, . . . , n}. (9)

If C is with star topology and the central node is 1, then cij = 0, cj1 = 1 and c1j > 0 for all j, i ∈ {2, . . . , n}.

Especially, c1j > 0 for all j ∈ {2, . . . , n} because, otherwise, C is reducible as cij = 0 for all i ∈ {1, . . . , n} given

j. Therefore, from (9),

xj = c1j
(
x1 − x21

)
+ x2j , for all j ∈ {2, . . . , n},

x1 =

n∑
j=2

(
xj − x2j

)
+ x21.

That is to say,

x1 − x21 =

n∑
j=2

(
xj − x2j

)
, (10)

which implies x1−x21 > 0 as x ∈ ∆n\{e1, . . . , en}, and hence (xj−x2j ) = c1j
(
x1 − x21

)
> 0 for all j ∈ {1, . . . , n}

as c1j > 0. Moreover, as xi(1− xi) is concave for xi ∈ [0, 1], given n ≥ 3 and x ∈ interior ∆n, we have
n∑
j=2

xj(1− xj) >
n∑
j=2

xj
1− x1

(1− x1)x1 = x1(1− x1), (11)

which contradicts equation (10). Overall, for C with star topology, all fixed points of the dynamical system (5) are

the vertices of the simplex.

Regarding fact (ii), based upon the analysis above, for C with star topology, the dynamical system x(t + 1) =

F (x(t)) is specified as follows:

xj(t+ 1) = c1j
(
x1(t)− x1(t)2

)
+ xj(t)

2, for all j ∈ {2, . . . , n},

x1(t+ 1) =

n∑
j=2

(
xj(t)− xj(t)2

)
+ x1(t)2.

(12)

It is clear that the function F (x) is continuous for x ∈ ∆n. If x(0) ∈ ∆n \ {e1, . . . , en}, then there exists a node j

such that 1 > xj(0) > 0, which, together with (12), implies x1(1) > 0. If x1(1) = 1, then x(t) = e1 for all t ≥ 1,

http://dx.doi.org/10.1109/ACC.2015.7170871
http://dx.doi.org/10.1016/j.ifacol.2017.08.1426
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and if x1(1) < 1, then xj(2) > 0 for all j ∈ {2, . . . , n}. Iteratively, we can show either x(t) = e1 or x(t) > 0 for

all t ≥ 1. Moreover, if x(t) > 0, then from (11),

x1(t+ 1)− x1(t) =

n∑
j=2

(
xj(t)− xj(t)2

)
− (x1(t)− x1(t)2) > 0. (13)

Define a Lyapunov function candidate V (x) = 1 − x1 for x ∈ ∆n. A sublevel set of V is defined as

{x | V (x) ≤ β} for a given constant β. It is clear that 1) any sublevel set of V is compact and invariant, 2)

V is strictly decreasing anywhere along the trajectory of x(t) in ∆n \{e1, . . . , en}, and 3) V and F are continuous.

Therefore, every trajectory starting in ∆n \ {e1, . . . , en} converges asymptotically to the equilibrium point e1 by

the Lyapunov theorem for discrete-time dynamical systems.

APPENDIX B

PROOF OF THEOREM 3.2

Proof: Regarding fact (i), the equilibria of the influence evolution system (5) include all vertices of the simplex

as we already demonstrate in Theorem 3.1. Now, for C irreducible and without star topology we show that there

exists a unique x∗ ∈ interior ∆n satisfying x∗ = F (x∗) and that the ordering of the elements of x∗ is consistent

with that of c. The fixed points of the dynamical system (5) shall satisfy

x∗ − x∗2 = C>(x∗ − x∗2). (14)

It is clear that if x∗ /∈ {e1, . . . , en}, then x∗ − x∗2 6= 0. Therefore, (x∗ − x∗2) is a scalar multiple of the left

eigenvector of C associated with eigenvalue 1. For C without star topology, we have

x∗ − x∗2 = α∗c, or equivalently, x∗i = α∗
ci

1− x∗i
, for all i ∈ {1, . . . , n},

where the scalar α∗ is such that x∗ ∈ ∆n, that is to say,

α∗ =
1∑n

j=1 cj/(1− x∗j )
.

It is clear that such an x∗ is exactly the same as the non-vertex fixed point we obtained from the DF model.

Therefore, the uniqueness of x∗ is directly from Theorem 4.1 in [19].

Regarding fact (ii), from (4), we have

x(t+ 1) =

t∏
k=0

W (t− k)>x(0),

where W (t− k) := W (x(t− k)) for simplicity. If we can show the product
∏t
k=0W (k) converges, then x(t) also

converges. To do so, we claim:

(A1) for any x(0) ∈ ∆n \ {e1, . . . , en}, W (t) is aperiodic and irreducible for all t ≥ 0 and x(t) > 0 for all

t ≥ n− 1;

(A2) the minimum positive entries of W (t) are lower bounded uniformly for all t.

These two claims guarantee the exponential convergence to x∗ for the dynamical system (4) and (5). (See Lemma

D.1 in [17].)
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Regarding the first claim (A1), as x(0) ∈ ∆n \ {e1, . . . , en}, there exist m ≥ 2 nodes with non-zero initial

self-weights. Without loss of generality, we assume xi(0) > 0 for i ∈ {1, . . . ,m} and the rest n −m nodes with

zero initial self-weights. Then, we obtain

x(1) = C>
(
x(0)− x2(0)

)
+ x2(0) = C>



x1(0)− x1(0)2

...

xm(0)− xm(0)2

0
...


+



x1(0)2

...

xm(0)2

0
...


. (15)

Since xi(0) < 1 for i ∈ {1, . . . ,m}, xi(0) − xi(0)2 > 1. Moreover, since C is irreducible, there exist at least on

edge from the last n −m agents to the first m agents, which implies at least one cij > 0 for i > m and j ≤ m.

Consequently, based upon (15), xi(1) > 0 for such i > m and xk(1) > 0 for all k ≤ m. By iteration, we obtain

that x(t) > 0 for all t ≥ r given any non-vertex x(0), where r is the diameter of the digraph associated to C (i.e.,

the maximum distance between any two nodes in G(C)).

Furthermore, consider W (x(0)) = diag(x(0)) + (In − diag(x(0)))C. Since In − diag(x(0)) has all positive

diagonal entries for non-vertex x(0), W (x(0)) is irreducible. As diag(x(0)) 6= 0, W (x(0)) is then aperiodic and

primitive. The row stochasticity of W (x) is directly from the row stochasticity assumption on C.

Regarding the second claim (A2), by the definition of W (t) in (2) and the constant non-negative C, the minimum

positive entries of W (t) are lower bounded uniformly if there exists a finite time τ ≥ 0 such that all entries of

x(t) are lower bounded uniformly for all t ≥ τ .

First, we have proved above that x(t) > 0 for all time t ≥ r with r as the diameter of the digraph associated to

C.

Second, we will show that all entries of x(t) are uniformly lower bounded away from 0 for all t ≥ τ with some

τ ≥ 0. Let β := max1≤i,j≤n cij and xi(t) = 1− α. It is clear that 0 < α < 1 and 1
n−1 ≤ β ≤ 1. Two cases (B1)

β < 1 and (B2) β = 1 are considered in the following.

If (B1) β < 1, as

xi(t+ 1) = xi(t)
2 +

n∑
j=1,j 6=i

cji
(
xj(t)− xj(t)2

)
,

we have

xi(t+ 1) ≤ xi(t)2 + (n− 1)β

(
α

n− 1
− α2

(n− 1)2

)
= (1− α)2 + βα− β α2

(n− 1)
,

(16)

where the inequality holds as β ≥ cij for all 1 ≤ i, j ≤ n and the scalar function y − y2 is concave on (0, 1).

From (16), if α < 1−β
1−β/(n−1) or equivalently β < α−α2

α−α2/(n−1) , by simple calculation, we have xi(t + 1) <

(1− α)2 + α − α2 = 1− α = xi(t). That is to say, if xi(t) > 1− 1−β
1−β/(n−1) , then xi(t+ 1) < xi(t). Moreover,

xi(t) − xi(t + 1) ≥ (α − α2) − βα + β α2

(n−1) : when α < 1−β
1−β/(n−1) , the right hand of this inequality has the

minimum positive value at the largest xi(t) (corresponding the smallest α) or at the point xi(t) = 1− 1−β
1−β/(n−1) ;
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in both cases xi(t) − xi(t + 1) is strictly greater than 0. That implies the uniform decrease of xi(t) along t for

α < 1−β
1−β/(n−1) .

Furthermore, if xi(t) = 1− α < 1− 1−β
1−β/(n−1) with α > 1−β

1−β/(n−1) , from (16),

xi(t+ 1) ≤ (1− α)2 + βα− β α2

(n− 1)

= 1 + (β − 2)α+
(

1− β

n− 1

)
α2

= 1 + (β − 2)

(
1− β

1− β/(n− 1)
+ b

)
+
(

1− β

n− 1

)( 1− β
1− β/(n− 1)

+ b

)2

= 1− 1− β
1− β/(n− 1)

− βb+
(

1− β

n− 1

)
b2,

(17)

where b = α− 1−β
1−β/(n−1) . It is clear that 0 < b < β

1−β/(n−1) . Consequently, the part of the right hand side of (17)

satisfies

−βb+
(

1− β

n− 1

)
b2 = b

(
−β +

(
1− β

n− 1

)
b

)
< 0. (18)

Hence, xi(t+ 1) < 1− 1−β
1−β/(n−1) from (17) and (18). Overall, if one entry of x(t) is greater than 1− 1−β

1−β/(n−1) ,

then via the single-timescale DF model (5), the value of the underlying entry is uniformly decreasing until it is

less than 1 − 1−β
1−β/(n−1) . If one entry of x(t) is less than 1 − 1−β

1−β/(n−1) , then it is less than 1 − 1−β
1−β/(n−1) for

all following iterations (t + k), k ∈ N. In other words, there exists a finite time τ such that all entries of x(t)

for all t ≥ τ are bounded away from 1 uniformly. Consequently, from the equation (5), the facts x(t) > 0 and C

irreducible, we have all entries of x(t) are also bounded away from 0.

If (B2) β = 1, without loss of generality, assume ci1 = β = 1 for some 2 ≤ i ≤ n. This implies that the i-th

individual only accords relative interpersonal weight to the first individual in the group. As C is row-stochastic,

cij = 0 for all 2 ≤ j ≤ n. Moreover, as C is not with star topology, at least one individual j has cj1 < 1.In the

following, we will show that, for a sufficiently large α satisfying 0 < α < 1, if x1(t) > α for t ≥ n − 1, then

x1(t+ 1) ≤ x1(t).

Here we first consider two exclusive and complete scenarios for the case (B2):

(C1) C satisfies cn1 < 1 and ci1 = 1 for all rest individuals i 6= 1; and

(C2) C satisfies cj1 < 1 for n ≥ j > m and ci1 = 1 for m ≥ i > 1 where n− 1 > m > 1.

Note that 1) in scenario (C1), cin = 0 for all i 6= 1 and 0 < c1n < 1; 2) we can always re-arrange the indices of

individuals such that scenario (C2) occurs for more that one individuals only accord interpersonal weights to the

first individual.

Regarding the scenario (C1), by (5) and by the fact that C is not with star topology,

x1(t+ 1) =

n∑
i=2

ci1(xi(t)− xi(t)2) + x1(t)2

=

n−1∑
i=2

(xi(t)− xi(t)2) + cn1(xn(t)− xn(t)2) + x1(t)2.

(19)

Here we also assume cn1 < 1 without loss of generality.
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We have proved that x(t) > 0 for t ≥ r, where r is the diameter of the digraph associated to C and r ≤ n− 1.

Following the equation (19), to prove x1(t + 1) ≤ x1(t) for x1(t) sufficiently close to 1, it is sufficient to show

that
n−1∑
i=2

(xi(t)− xi(t)2) + cn1(xn(t)− xn(t)2) + x1(t)2 ≤ x1(t). (20)

From the dynamical system (5), we have

x(t+ 1)− x(t) = (C> − I)(x(t)− x(t)2) for all t ≥ 0,

or equivalently for x(t) > 0 and x(t) 6= x∗,

x(t+ 1) diag(x(t))−1 = (C> − I)(1n − x(t)) + 1n = C>(1n − x(t)) + x(t).

Therefore, for xn(t) > 0 and xn(t) 6= x∗n,

xn(t+ 1)

xn(t)
=

n−1∑
i=1

cin(1− xi(t)) + xn(t) = c1n(1− x1(t)) + xn(t) < 1. (21)

That is to say, xn(t + 1) < xn(t). Moreover, as xn(t + 1) > c1n(x1(t) − x1(t)2), the following statement also

holds:

xn(t) > c1n(x1(t)− x1(t)2) ≥ γ(1− x1(t)) = γ

n∑
i=2

xi(t), (22)

with 0 < γ ≤ c1nx1(t) < 1.

Moreover, based upon (22) and for a sufficient large x1(t) < 1, we have the following statements related:
n−1∑
i=2

(xi(t)− xi(t)2) + cn1(xn(t)− xn(t)2) + x1(t)2 < x1(t)

⇐⇒
n−1∑
i=2

(xi(t)− xi(t)2) + cn1(xn(t)− xn(t)2) <

n∑
i=2

xi(t)− (

n∑
i=2

xi(t))
2

⇐⇒ (1− cn1)(xn(t)− xn(t)2) > (

n∑
i=2

xi(t))
2 −

n∑
i=2

xi(t)
2

⇐= (1− cn1)(γ

n∑
i=2

xi(t)− γ2(

n∑
i=2

xi(t))
2) ≥ (

n∑
i=2

xi(t))
2 −

n∑
i=2

xi(t)
2

⇐⇒ (1− cn1)γ

n∑
i=2

xi(t) ≥ ((1− cn1)γ2 + 1)(

n∑
i=2

xi(t))
2 −

n∑
i=2

xi(t)
2

⇐= (1− cn1)γ

n∑
i=2

xi(t) ≥ ((1− cn1)γ2 +
n− 1

n
)(

n∑
i=2

xi(t))
2

⇐⇒ (1− cn1)γ

(1− cn1)γ2 + n−1
n

≥
n∑
i=2

xi(t) = 1− x1(t).

(23)

The last statement holds for x1(t) ≥ 1− (1−cn1)γ

(1−cn1)γ2+n−1
n

, where γ < (n−1)/n guarantees 0 < (1−cn1)γ

(1−cn1)γ2+n−1
n

< 1.

Therefore, the inequality (20) holds. That is, x1(t+ 1) ≤ x1(t) for x1(t) ≥ 1− (1−cn1)γ

(1−cn1)γ2+n−1
n

. In addition, for the

system (5), we have for all x1(t) ≤ 1− (1−cn1)γ

(1−cn1)γ2+n−1
n

:= β,

x1(t+ 1) =

n∑
i=2

ci1(xi(t)− xi(t)2) + x1(t)2 < β2 + (1− β)(1− 1− β
n− 1

) < 1. (24)
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This implies that there exists a finite time τ such that x1(t) for all t ≥ τ are bounded away from 1 and bounded

way from 0.

Regarding the scenario (C2), we may regard the set of individuals (m + 1,m + 2, · · · , n) as a single ”node”,

as they are only directly connected to the first individual but not the rest set of individuals (2, 3, · · · ,m). Similar

arguments as for the scenario (C1) hold here to prove x1(t + 1) ≤ x1(t). First, we have the similar statement to

(21). For any xj(t) > 0,m ≤ j ≤ n, and xj(t) 6= x∗n,

xj(t+ 1)

xj(t)
=

n−1∑
i=1

cij(1− xi(t)) + xn(t)

=

n∑
i 6=j,i=m+1

cij(1− xi(t)) + c1n(1− x1(t)) + xn(t) < n−m− 1 + 1 = n−m.

That is to say, xj(t + 1) < xj(t)(n − m) for all m + 1 ≤ j ≤ n. Moreover, as the digraph associated with C

is irreducible, there exists at least one m + 1 ≤ j ≤ n such that xj(t + 1) > c1j(x1(t) − x1(t)2), this implies

xj(t) ≥ γj(1− x1(t)) for some γj < 1 and independent of time t. Consequently, there exists at least one different

individual m + 1 ≤ i ≤ n, i 6= j such that xi(t + 1) > cji(xj(t) − xj(t)2) > cjixj(t) > γi(1 − x1(t)). Similarly,

we have all individuals m + 1 ≤ j ≤ n with cj1 < 1 satisfying xj(t) ≥ γj(1 − x1(t)) for some γj < 1. Second,

we have the similar statement to (23):
m∑
i=2

(xi(t)− xi(t)2) +

n∑
j=m+1

cj1(xj(t)− xj(t)2) + x1(t)2 ≤ x1(t)

⇐⇒
m∑
i=2

(xi(t)− xi(t)2) +

n∑
j=m+1

cj1(xj(t)− xj(t)2) ≤
n∑
i=2

xi(t)− (

n∑
i=2

xi(t))
2

⇐⇒
n∑

j=m+1

(1− cj1)(xj(t)− xj(t)2) ≥ (

n∑
i=2

xi(t))
2 −

n∑
i=2

xi(t)
2

⇐= (n−m)(1− cj1)(γj

n∑
i=2

xi(t)− γ2j (

n∑
i=2

xi(t))
2) ≥ (

n∑
i=2

xi(t))
2 −

n∑
i=2

xi(t)
2

(where j = argminm<i≤n(1− ci1)(xi(t)− xi(t)2))

⇐= (1− cj1)γj

n∑
i=2

xi(t) ≥ ((1− cj1)γ2j + 1)(

n∑
i=2

xi(t))
2 −

n∑
i=2

xi(t)
2

⇐= (1− cj1)γj

n∑
i=2

xi(t) ≥ ((1− cj1)γ2j +
n− 1

n
)(

n∑
i=2

xi(t))
2

⇐⇒ (1− cj1)γj

(1− cj1)γ2j + n−1
n

≥
n∑
i=2

xi(t) = 1− x1(t).

(25)

Hence, for x1(t) ≥ 1− (1−cj1)γj
(1−cj1)γ2

j+
n−1
n

, from (25), we have

x1(t+ 1) =

n∑
i=2

ci1(xi(t)− xi(t)2) + x1(t)2 ≤ x1(t).

As (23) always holds, we can prove that there exists a finite time τ1 such that x1(t) for all t ≥ τ1 are bounded

away from 1 and from 0.
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Overall, given any C irreducible and row-stochastic, each individual i in the network must satisfy one among the

three cases (B1) (although we assume all non-zero cij < 1 in (B1), we only require cji < 1 for all j 6= i given i in

the proof), (C1) and (C2). That is, there always exists a finite time τ1 such that x1(t) for all t ≥ τ1 are bounded

away from 1 and from 0, given non-vertex x(0). Consequently, from the equation (5) and the facts C irreducible,

there always exists a finite time τi such that all entries of xi(t) for all t ≥ τi are bounded away from 1 and from

0 uniformly. Hence, there exists a finite time τ such that all entries of x(t) for all t ≥ τ are bounded away from 1

and from 0. As a result, the claim (A2) holds, which completes the proof of fact (ii).

APPENDIX C

PROOF OF THEOREM 4.1

Proof: By definition,

xi(t+ 1) = xi(t)
2 +

n∑
j=1,j 6=i

cji
(
xj(t)− xj(t)2

)
.

As x(0) is in a simplex, if xi(0) = 1 then xj(0) = 0 for all j 6= i. It is clear that x∗i = xi(1) = 1 and therefore,

x∗ = ei given x(0) = ei for all i ∈ {1, . . . , n}. That is to say, {e1, . . . , en} are always the fixed points of the

dynamical system (5).

Regarding fact (i), without loss of generality, we assume that node 1 and node 2 are globally reachable. The

corresponding C has the following block matrix form

C =

C1 0

C21 C22

 , (26)

where C1 ∈ R2×2 is row stochastic, and C22 ∈ Rn−2×n−2 is substochastic as C21 ≥ 0 and C21 6= 0. Given

x(t) ∈ ∆n \ {e1, . . . , en}, the weight matrix W (t) has the block matrix form via (2) as follows.

W (t) =

W1(t) 0

W21(t) W22(t)

 . (27)

Here

W1(t) := W1(x(1,2)(t)) = diag x(1,2)(t) + (I2 − diag(x(1,2)(t)))C1,

W21(t) := W21(x(3,··· ,n)(t)) = (In−2 − diag(x(3,··· ,n)(t)))C21,

W22(t) := W22(x(3,··· ,n)(t)) = diag x(3,··· ,n)(t) + (In−2 − diag(x(3,··· ,n)(t)))C22,

given x(1,2) :=
[
x1 x2

]>
and x(3,··· ,n) :=

[
x3 · · · xn

]>
.

The single-timescale DF dynamics associated with C in (26) is as follows.

x(1,2)(t+ 1) = W1(t)>x(1,2)(t) +W21(t)>x(3,··· ,n)(t),

x(3,··· ,n)(t+ 1) = W22(t)>x(3,··· ,n)(t), t = 0, 1, 2, . . . .

As C22 is substochastic and x(0) ∈ ∆n \{e1, . . . , en}, W22(0) is substochastic. That is,
∑n
i=3 xi(1) ≤

∑n
i=3 xi(0)

and max3≤i≤n xi(1) ≤ max3≤i≤n xi(0) for max3≤i≤n xi(0) 6= 0. These statements hold for all t ≥ 0 iteratively.

In particular, for x(3,··· ,n)(0) = 0, x(3,··· ,n)(t) = 0 for all t ≥ 0. Moreover, as C is reducible and has globally
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reachable nodes, given any initial conditions of x(3,··· ,n)(0), the zero and non-zero pattern of x(3,··· ,n)(t) shall keep

constant for all t ≥ n − 2. That is, for 3 ≤ i ≤ n and t ≥ n − 2, if xi(t) > 0 then xi(t + k) > 0 for all finite

k ≥ 0, and if xi(t) = 0 then xi(t+ k) = 0 for all k ≥ 0.

Next, we will show that, given x(3,··· ,n)(0) 6= 0, limt→∞ x(3,··· ,n)(t) = 0 exponentially. By appropriately re-

indexing all individual 3 ≤ i ≤ n, we have C22 have the following normal form:

C22 =


A11 0 0 · · · 0

A21 A22 0 · · · 0
...

...
...

...

Am1 Am2 Am2 · · · Amm

 .

If C22 is irreducible then m = 1; otherwise, each block matrix Aii is irreducible for i = {1, . . . ,m}. Moreover, as

C22 is substochastic and C is stochastic and have globally reachable nodes, each Aii is substochastic with at least

one row sum strictly less than 1. Consequently, from (27), we have

W22(t) =


B11(t) 0 0 · · · 0

B21(t) B22(t) 0 · · · 0
...

...
...

...

Bm1(t) Bm2(t) Bm2(t) · · · Bmm(t)

 .

where Bii(t) = diag(xsi(t))+
(
I|si| − diag(xsi(t))

)
Aii, given si is the set of individuals corresponding to the rows

evolving in the block matrix Aii and |si| denotes the cardinality of the set si. It is clear that Bii(t) is irreducible,

substochastic, and has at least one row sum strictly less than 1, for all t ≥ 0. Moreover, as the maximum of the

elements of xsi(t) is less than or equal to the maximum of the elements of x(3,··· ,n)(0), the elements of Bii(t)

are upper bounded uniformly for all t ≥ 0. Meantime, all Bii(t) for t ≥ n − 2 shall have the same zero and

non-zero pattern on elements. As a result of all these facts and from [3, Corollary 4.11],
∏t
k=0Bii(t) converges to

0 exponentially for each block matrix and hence,
∏t
k=0W22(t) converges to 0 exponentially. From (5), x(3,··· ,n)(t)

converges to 0n−2 exponentially.

As x(1,2)(t+ 1) = W1(t)>x(1,2)(t) +W21(t)>x(3,··· ,n)(t) and C1 =

0 1

1 0

, we have

W1(t) = diag x(1,2)(t) + (I2 − diag(x(1,2)(t)))C1 =

 x1(t) 1− x1(t)

1− x2(t) x2(t)

 .
Once x(3,··· ,n)(t) converges to 0n−2 exponentially, x(1,2)(t) simultaneously converges to an equilibrium x∗(1,2)

satisfying

x∗(1,2) := lim
t→∞

x(1,2)(t) = lim
t→∞

W1(t)>x(1,2)(t).

That is x∗1
x∗2

 =

 x∗1 1− x∗2
1− x∗1 x∗2

x∗1
x∗2

 =

(x∗1)2 + x∗2 − (x∗2)2

x∗1 − (x∗1)2 + (x∗2)2

 ⇐⇒ x∗2 − (x∗2)2 = x∗1 − (x∗1)2.

As limt→∞(x1(t) + x2(t)) = 1, x∗2 − (x∗2)2 = x∗1 − (x∗1)2 holds for any pair (x∗1, x
∗
2) satisfying x∗1 + x∗2 = 1.
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Regarding fact (ii), the similar arguments in (i) can prove all {xi(t)} corresponding to reducible nodes converge

to 0 exponentially. Consequently, if
∑n
i=r+1 x(i)(t) = β(t) sufficiently small, the following statement similar to (13)

holds

x1(t+ 1)− x1(t) =

r∑
j=2

(
xj(t)− xj(t)2

)
− (x1(t)− x1(t)2) > 0. (28)

for all x1(t) ≤ 1−
√

β(t)
2 . It is true as

x1(t) ≤ 1−
√
β(t)

2
⇐⇒ β(t) ≤ (1− x1(t))2

2

=⇒ β(t) <
(1− x1(t))2

2− x1(t)
⇐⇒ β(t) < (1− x1(t))2 − β(t)(1− x1(t))

=⇒ β(t) < (1− x1(t))2 − β(t)(1− x1(t)) +

r∑
j=2

xj(t)
2 ⇐⇒ β(t) <

r∑
j=2

xj(t)(1− xj(t)− x1(t))

⇐⇒
r∑
j=2

xj(t)(1− xj(t)) >
r∑
j=2

xj(t)x1(t) + β(t) = (

r∑
j=2

xj(t) + β(t))(1−
r∑
j=2

xj(t)) > (1− x1(t))x1(t),

which implies (28). The asymptotic convergence of x(t) to e1 is then established with the similar arguments in the

proof of Theorem 3.1 (ii).

Regarding fact (iii), the existence and uniqueness of non-vertex equilibrium x∗ is established in the same way

as in Theorem 3.2 (i). x∗ satisfies (14) as well. The convergence property is similar to that of Theorem 3.2 (ii).

Specifically, xi(t) > 0 for all t ≥ n and 1 ∈ {1, . . . , r}. If we write W (t) in the normal form as in (27), the

statements (A1) and (A2) in the proof of Theorem 3.2 (ii) holds for W1(t) by the same arguments. That implies that∏t
k=0W1(t) converge exponentially to a rank–1 matrix with positive identical rows, which is equal to 1r(x∗(1,··· ,r))

>

and x∗(1,··· ,r) is determined by (14). Denote
∏t
k=0W (t) =

 P1(t) 0

P21(t) P22(t)

. It is clear that P1(t) =
∏t
k=0W1(t),

P22(t) =
∏t
k=0W22(t) and P21(t) = P21(t − 1)W1(t) + P22(t − 1)W22(t). As P22(t) converges exponentially

to 0, P21(t) then exponentially converges to 1n−r(x∗(1,··· ,r))
> following the previous statement that

∏t
k=0W1(t)

exponentially converges to 1r(x∗(1,··· ,r))
>. Overall,

∏t
k=0W (t) converge exponentially to a rank–1 matrix with

identical rows such that x(1,··· ,r) converges exponentially to x∗(1,··· ,r) > 0, and x(r+1,··· ,n) converges exponentially

to 0n−r, for any non-vertex x(0).

APPENDIX D

PROOF OF THEOREM 4.2

Proof: Regarding the first part of fact (i), the result is directly from the definition of the single-timescale DF

model and has been proved in Theorem 3.1 and Theorem 4.1: x(0) = ei implies x(t) = x∗ = ei for all t ≥ 0 and

i ∈ {1, . . . , n}.

Regarding fact (i.1), as we discussed in the proof of Theorem 4.1,
∏t
τ=0WMM (τ) converges exponentially

to 0m×m as t goes to infinity, given xi(0) < 1 for all reducible node i. That implies that xMM (t) converges

exponentially to 0m as t goes to infinity.
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Regarding fact (i.2), on an equilibrium x∗ in a sink k with only two nodes, it shall satisfy from (5) that

x∗kk1(1− x∗kk1) = x∗kk2(1− x∗kk2). (29)

If ζ∗k < 1, then the only solution to (29) is x∗kk1 = x∗kk2 = ζ∗k/2. If ζ∗k = 1, then any pair (α, 1−α)> satisfies (29)

and hence, x∗kk = (α, 1−α)> where α ∈ [0, 1] depends upon the initial conditions and the topology of the network.

Regarding fact (i.3) and fact (i.4), the proof is similar to the analysis of Theorem 3.2 (i). For Ckk irreducible and

max{ckki} < 0.5 we will show that there exists a unique x∗kk ∈ interior ∆n satisfying x∗kk = Wkk(x∗kk)>x∗kk +

WMk(x∗MM )>x∗MM = 0. As x∗MM = 0 from fact (i.1) above, the fix points shall satisfy x∗kk − x∗kk
2 = C>kk(x∗kk −

x∗kk). As x∗kk shall be real valued and non-negative, given ζ∗k > 0, (x∗kk − x∗kk
2) is a scalar multiple of the unique

positive left eigenvector of Ckk associated with eigenvalue 1. As max{ckki} < 0.5 and nk ≥ 3,

x∗kk − x∗kk
2 = α∗kkckk, or equivalently, x∗kki = α∗kk

ckki
1− x∗kki

, for all i ∈ {1, . . . , nk}, (30)

where the scalar α∗kk is such that 1>nk
x∗kk = ζ∗k , that is to say,

α∗kk =
ζ∗k∑n

j=1 ckkj/(1− x∗kkj )
.

One may check that this x∗kk have the same form as the non-autocratic fixed point we obtained from the DF

model [18]. Therefore, the uniqueness of x∗kk is directly from Theorem 3.6 in [18]. Moreover, the ordering of the

elements of x∗kk is consistent with that of ckk following (30).

Regarding fact (ii), as xkk(t + 1) = Wkk(t)>xkk(t) + WMk(t)>xMM (t) with Wkk(t) row stochastic and

WMk(t)>xMM (t) ≥ 0, it is clear that 1>nk
xkk(t + 1) ≥ 1>nk

Wkk(t)>xkk(t). That is ζk(t + 1) ≥ ζk(t). For

the second statement in fact (ii), subject to Assumption 1) ζk(0) = 0 and Assumption 2) xi(0) = 0 for any

reducible node i such that there exists a directed path from i to the sink k in the network, we have xkk(1) =

Wkk(0)>xkk(0) + WMk(0)>xMM (0) = 0 as WMk(0)>xMM (0) > 0 contradicts thef second assumption above.

Iteratively, we have xkk(t + 1) = Wkk(t)>xkk(t) + WMk(t)>xMM (t) = 0 for all t ≥ 0, where the second term

shall be equal to 0m for all the time as, otherwise it contradicts the second assumption.

Regarding fact (iii), we will consider the convergence behaviors of self-weights in three different scenarios as

described in facts (i.1)– (i.3).

Scenario 1: The exponential convergence of the self-weights on reducible nodes has been clarified in fact (i.1).

Scenario 2: The convergence of the self-weights on a sink with only two nodes is similar to that described in

Theorem 4.1 fact (i) or fact (iii). The difference is that all self-weights are accumulated on the two irreducible nodes

in Theorem 4.1 fact (i) but here ζ∗k may be less than 1 depending upon the initial condition and the topology of the

network. If ζ∗k = 1, then the convergence process here is exactly the same as Theorem 4.1 fact (i). If ζ∗k < 1, then

the self-weights in the two-node sink here exponentially converge to a unique x∗kk. The analysis is similarly to that

in Theorem 4.1 fact (iii). As these two nodes have the same eigenvector centrality score, the unique equilibrium is

(ζ∗k/2, ζ
∗
k/2)> here.

Scenario 3: The convergence of the self-weights on a sink with three or more nodes is almost the same as that

described in Theorem 4.1 fact (iii). The only difference is that all self-weights are accumulated on the irreducible
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nodes as in Theorem 4.1 fact (iii) but here ζ∗k may be less than 1 depending upon the initial condition and the

topology of the network. If ζ∗k = 1, then the analysis is the same to that of Theorem 4.1 fact (iii) or that of

Theorem 3.2 fact (ii). If ζ∗k < 1, then we have ζk(t) are upper bounded away from 1 for all time t. As ζk(t) is

non-decreasing, if ζk(t) > 0 for t = m (i.e., the max time for the social power migrating from a reducible node

to the sink) then ζk(t) is uniformly bounded away from 0 for all t ≥ m, otherwise, if ζk(m) = 0 then ζ∗k = 0.

Given ζk(t) bounded away from 1 and 0 uniformly, first we have xkk(t) > 0 and each xkki is bounded way from

1. Second, there exists a time τ such that any node in this sink has its self-weight xkki(t) lower bounded away

from 0 for all t ≥ τ . If it is not true, then by the irreducible property of Wkk and the system definition (5), all

its connected nodes (i.e., all nodes in the sink) shall be sufficiently close to 0 or 1 for infinite time instances (see

the similar argument (22) in the proof of Theorem 3.2), that implies that ζk(t) is sufficiently close to 0 or 1 for

infinite time instances, which is a contradiction. Third, the sum ζk(t) of the self-weights in this sink converges

once all self-weights on reducible nodes exponentially converge to 0, and the self-weight dynamics in the sink are

independent from the dynamics occurred in other sinks. Finally, we can conclude that the exponential convergence

of the product of Wkk(t) based upon all results above. Consequently, xkk(t) converges exponentially as we have

shown similarly in Theorem 4.1 fact (iii).
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