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Abstract

Genetics plays a role in age-related macular degeneration (AMD), a common cause of blindness in 

the elderly. There is a need for powerful methods for carrying out region-based association tests 

between a dichotomous trait like AMD and genetic variants on family data. Here, we apply our 

new generalized functional linear mixed models (GFLMM) developed to test for gene-based 

association in a set of AMD families. Using common and rare variants, we observe significant 

association with two known AMD genes: CFH and ARMS2. Using rare variants, we find 

suggestive signals in four genes: ASAH1, CLEC6A, TMEM63C, and SGSM1. Intriguingly, 

ASAH1 is down-regulated in AMD aqueous humor, and ASAH1 deficiency leads to retinal 

inflammation and increased vulnerability to oxidative stress. These findings were made possible 

by our GFLMM which model the effect of a major gene as a fixed mean, the polygenic 

contributions as a random variation, and the correlation of pedigree members by kinship 

coefficients. Simulations indicate that the GFLMM likelihood ratio tests (LRTs) accurately control 

the Type I error rates. The LRTs have similar or higher power than existing retrospective kernel 

and burden statistics. Our GFLMM-based statistics provide a new tool for conducting family-

based genetic studies of complex diseases. Supplementary materials for this article, including a 

standardized description of the materials available for reproducing the work, are available as an 

online supplement.

Keywords

Age-related macular degeneration; Association study; Complex diseases; Extended pedigree; 
Generalized functional linear mixed models; Rare variants

1. Introduction

Age-related macular degeneration (AMD) is a common complex disease that leads to 

irreversible vision loss in the elderly and afflicts almost 10 million individuals in the United 

States (Friedman et al. 2004). AMD is caused by an interaction of aging, genetics, and 

environmental/nutritional factors (Fritsche et al. 2014). Family-based linkage studies 

detected major susceptibility loci for AMD on chromosomes 1 and 10 (Fisher et al. 2005). 

Using population data, dozens of disease-causing genes and hundred of mutations have been 
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discovered by genome-wide association studies (Age-Related Eye Disease Study Research 

Group 1999; Seddon et al. 2007; Chen et al. 2010; Neale et al. 2010; Fritsche et al. 2013, 

2016). However, no gene-based association studies have been performed to dissect AMD 

using family data so far, although next-generation sequencing technologies provide massive 

data resources, such as those of whole genome sequencing (WGS) and whole exome 

sequencing (WES) which are rich resources to search for causal genetic variants of complex 

disorders (Abecasis et al. 2012; Tennessen et al. 2012; Lek et al. 2016). To accommodate 

family data, we develop generalized functional linear mixed models (GFLMM) and related 

software in this work to analyze a dichotomous trait for sequencing data. We apply the 

GFLMM to a real exome chip dataset to identify AMD associated susceptibility genes 

(Weeks et al. 2000, 2004).

Although rich data resources are available and a data-intensive and data-driven analysis era 

is coming, powerful and computationally efficient statistical methods and related software 

are needed to test for association between complex traits and variants, to screen for causal 

variants and to reduce false positives and to properly deal with high dimensionality (Bansal 

et al. 2010; Kiezun et al. 2012). Few statistical methods are available to analyze extended 

pedigrees for sequencing studies. For family data, one needs to take pedigree structure into 

account to model correlations of pedigree members. To control for population structure and 

familial or cryptic relatedness in genome-wide association studies (GWAS) while analyzing 

common variants, mixed models were developed for association studies and gained 

popularity due to their ability to control false positive rates and their good power 

performance (Henderson 1984; Price et al. 2006; Yu et al. 2006; Aulchenko, De Koning, and 

Haley 2007; Zhao et al. 2007; Kang et al. 2008; Astle and Balding 2009; Kang et al. 2010; 

Zhang et al. 2010; Lippert et al. 2011; Yang, Lee, et al. 2011; Yang, Weedon, et al. 2011; 

Korte et al. 2012; Listgarten et al. 2012; Segura et al. 2012; Svishcheva et al. 2012; Zhou 

and Stephens 2012; Listgarten, Lippert, and Heckerman 2013; Pirinen, Donnelly, and 

Spencer 2013; Yang et al. 2014; Zhou and Stephens 2014; Hayeck et al. 2015; Loh et al. 

2015; Song, Hao, and Storey 2015; Chen et al. 2016). To our knowledge, the mixed models 

developed so far cannot be directly applied to the analysis of rare variants or a combination 

of rare and common variants. Here, a variant is considered rare if its minor allele frequency 

(MAF) is less than or equal to 0.03 (the cutoff can be different in certain circumstances). 

There is a need to develop statistical methods to analyze next-generation sequencing data 

which may contain rare and common variants for familial data and may correct for 

population stratification.

In recent years, a class of fixed effect models has been developed for unrelated samples to 

test for region-based or gene-based association between a quantitative/dichotomous/survival 

trait and genetic variants in a region or within a gene (Cordell and Clayton 2002; Luo, 

Boerwinkle, and Xiong 2011; Luo, Zhu, and Xiong 2012, 2013; Fan et al. 2013, 2014, 2015; 

Vsevolozhskaya et al. 2014, 2016; Zhang, Boerwinkle, and Xiong 2014; Svishcheva, 

Belonogova, and Axenovich 2015; Wang et al. 2015; Fan, Chiu, et al. 2016; Fan, Wang, 

Chiu, et al. 2016; Fan, Wang, Yan, et al. 2016; Zhao, Zhu, and Xiong 2016). Since gene 

boundaries can be defined at the transcript level, gene-based can be changed to transcript-

based. To simplify our presentation, we only use terminology gene-based hereafter and one 

may change it to region-based or transcript-based. The fixed effect models can be functional 
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regression models or traditional additive models. In functional regression models, 

genotyping data are viewed as a realization of a stochastic process that varies along a 

chromosome region (Ross 1996). Using functional data analysis techniques, it is natural to 

summarize an individual’s genetic information as a stochastic function (de Boor 2001; 

Ramsay and Silverman 2005; Ramsay, Hooker, and Graves 2009; Ferraty and Romain 2010; 

Horvath and Kokoszka 2012). An individual’s discrete genotypes can be used to estimate 

his/her genetic variant function (GVF) using a collection of smooth basis functions. The trait 

variable is related to the GVF while adjusting for covariates to build theoretical functional 

regression models. By using functional data analysis techniques, the theoretical functional 

regression models are revised to be ordinary regression models which can be used to test for 

association between the traits and the genetic variants. One advantage of the functional 

regression models is that they can properly reduce the high dimensionality of the sequencing 

data to draw useful information. In short, functional models turn the curse of dimensionality 

of sequencing data to be a blessing.

In genetics, a “major” gene has a relatively large effect on the trait. In contrast, a polygene 

means a gene where the effects of variants within the gene are small and the effects are 

likely in a similar scale across the gene region (Lange 2002). When genetic effects are 

relatively large (i.e., a major gene), the effects of variants are unlikely to be constant across 

the gene region, and it is reasonable to model genetic effects as a fixed function as in 

functional regression models (Luo, Boerwinkle, and Xiong 2011; Luo, Zhu, and Xiong 

2012, 2013; Fan et al. 2013, 2014, 2015; Vsevolozhskaya et al. 2014, 2016; Svishcheva, 

Belonogova, and Axenovich 2015; Wang et al. 2015; Fan, Wang, Chiu, et al. 2016; Fan, 

Wang, Yan, et al. 2016). For polygenic effects, it is reasonable to model the genetic effects 

as a random variable with a mean of zero and a constant variance as is done by the sequence 

kernel association tests (SKAT), its optimal unified tests (SKAT-O), and a combined sum 

test of rare and common variants (SKAT-C) (Wu et al. 2011; Lee et al. 2012; Ionita-Laza et 

al. 2013a). The fixed effect models have similar or higher power than SKAT procedure to 

analyze major genes while SKAT procedure performs better in analysis of polygenes (Fan, 

Chiu, et al. 2016).

In association analysis, we mainly search for major genes. We argue that the regression 

models which treat major gene’s contribution as fixed effects are more appropriate in 

association analysis. In addition to major genes, geneticists have long known of the 

existence of polygenes. The functional models and SKAT procedure are complimentary to 

each other. Moreover, the functional models are well-suited for analyzing next-generation 

sequencing data since they can be used to analyze: (1) rare variants; (2) common variants, 

and (3) a combination of the two. This motivates us to extend the unrelated population-based 

fixed models to analyze related pedigree data.

In the literature, the research to analyze rare variants on general extended families for 

dichotomous traits focuses on kernel and collapsing/burden tests (De et al. 2013; Ionita-Laza 

et al. 2013b; Schaid et al. 2013; Wang et al. 2013; Svishcheva, Belonogova, and Axenovich 

2014; Yan et al. 2015; Fernandez et al. 2018). The kernel and collapsing/burden tests are 

good to analyze polygenes but less powerful to analyze major genes which have relatively 

large effects on the traits (Fan, Chiu, et al. 2016).
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Motivated by the need to analyze family AMD data, we develop gene-based GFLMM by 

extending the generalized functional linear models previously discussed for population data 

(Cordell and Clayton 2002; Fan et al. 2014). The GFLMM model the major gene effect as a 

fixed mean, the polygenic contributions as a random variation, and the correlations between 

pedigree members by kinship coefficients. We then test for association between the 

dichotomous trait and the genetic variants by testing if the fixed mean is zero using 

likelihood ratio test (LRT) statistics. To assess the behavior of our GFLMM LRT statistics 

and to make sure the methods can be used to analyze AMD family data, we conduct 

simulation studies to evaluate Type I error rates and power, and compare our statistics with 

prominent statistical methods from the literature (Schaid et al. 2013).

2. Applications to AMD Pedigree Data

Our goal is to analyze real exome chip data from the UCLA/Pittsburgh family-based study 

of AMD which include extended pedigrees (Weeks et al. 2000, 2004). To analyze the AMD 

pedigree data, we use GFLMM and build related LRT statistics (Section 3).

2.1. AMD Pedigree Data

In the AMD studies, an individual was considered affected with AMD according to the “C” 

diagnostic scheme previously defined (Weeks et al. 2000, 2004); an individual was 

considered unaffected if they were unaffected and at least 65 years old at last exam. After 

sample quality checks using a thorough and rigorous data cleaning pipeline (Laurie et al. 

2010), which included checks for chromosomal aberrations, gender, Hardy–Weinberg 

equilibrium, relatedness, duplicates, and genotype quality, 976 genotyped individuals of 

European ancestry were available for analysis. To completely connect pedigrees, we 

included non-genotyped individuals who shared the same family with those 976 genotyped 

individuals. The connected pedigrees contained 2727 pedigree members, 1275 with a known 

AMD trait (1031 affected and 244 unaffected). A total number of 111,547 autosomal 

variants were included in the study; 30,096 were common (MAF > 0.05), and 81,451 were 

rare (MAF ≤ 0.05). In the analysis, we adjusted for gender since it is significantly associated 

with AMD in the null model (p-value = 0.00197).

2.2. Application to AMD Data

As we were interested in the possibility that different transcripts might convey different risk 

for AMD, we carried out transcript-based tests to investigate AMD susceptibility genes on 

autosomes using the LRT statistics, the retrospective kernel-based and burden tests (Schaid 

et al. 2013). Gene boundaries were defined at the transcript level and sets of transcripts that 

shared identical boundaries were only tested once. Tests were conducted in two different 

ways. First we considered a combination of common and rare variants, and tested a total 

number of 16,913 autosomal transcripts at a genome-wide significance threshold of 2.96 × 

10−6 after Bonferroni correction. We next excluded all common variants, and focused on the 

genes having at least two polymorphic rare variants. A total number of 14,961 transcripts 

were tested, associated with a significance threshold of 3.34 × 10−6 after Bonferroni 

correction.
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Table 1 showed significant and suggestive significant signals for the AMD data. Only the 

results of the LRT GFLMM statistics (6) were shown (as these converged more often than 

LRT GFLMM statistics (5) did). For the analysis of the common and rare variants, we 

confirmed that strong association was detected between AMD and CFH and ARMS2, two 

known AMD susceptibility genes (Table 1). The kernel and burden tests except kernel_BT 
and burden_BT reached genome-wide significance (see the p-values in bold associated with 

CFH and ARMS2 in Table 1).

For gene CFH, two transcripts reached genome-wide significance (Table 1). The larger 96 

kb region with 15 variants contained the other smaller one with only 3 variants, which 

indicated that the primary CFH variants associated with AMD might be located within the 

smaller region between 196,621,007 and 196,670,695 bp on chromosome 1. For gene 

ARMS2, both of the variants in our exome chip data were common variants with MAF = 

0.39 and 0.10, respectively, so they were not included in the rare variant analysis. For CFH, 

the 96 kb region contained 7 rare variants (MAF ≤ 0.05, Table A.1 of Supplementary 

Materials I); the models failed to reach the significance threshold using the 7 rare variants, 

indicating that the common variants within CFH might play a pivotal role in the significant 

association signal.

In Table A.1 of Supplementary Materials I, we listed all variants within CFH and ARMS2, 

and examined their association on an individual variant level by conducting the WQLS test 

suggested by Thornton and McPeek (2007) and the LRT GLMM statistic (3). For the gene 

ARMS2, a single nucleotide polymorphism (SNP) rs10490924 is strongly associated with 

AMD. For the gene CFH, 7 SNPs are strongly associated with AMD and each of them is a 

common variant. Hence, it makes sense to perform a gene-based associated analysis for the 

gene CFH for a unified analysis.

Quantile-quantile (Q-Q) plots of the gene-based statistics in Figure 1 show that, while the 

LRT statistics had lower λGC values, the kernel and burden test statistics had quite elevated 

λGC values to analyze both common and rare variants. Thus, when analyzing common and 

rare variants, the kernel and burden test statistics are not appropriate because they have high 

false positive rates. For the analysis of the rare variants with MAF ≤ 0.05, which is expected 

to be less powerful, only suggestive association were found. In the Q-Q plots in Figure 2, the 

LRT statistics and the kernel and burden test statistics had similar λGC values when only 

rare variants were analyzed.

By using rare variants, the LRT statistics show suggestive association signal with AMD for 

four genes, ASAH1, CLEC6A, TMEM63C, and SGSM1, since they provide p-values 

slightly larger than the threshold of 3.34 × 10−6 (Table 1). For the four genes, the kernel and 

burden test statistics also provide some suggestive association signals. Since both the LRT 

statistics and the kernel and burden test statistics had similar λGC values around 1.0 in 

Figure 2, the suggestive signals are useful for further investigation when more data are 

available. The suggestive signal at ASAH1 is especially interesting because, as we explain 

more fully in Section 5, ASAH1 may play a role in AMD (Petrov et al. 2019; Qu et al. 2019; 

Sugano et al. 2019).
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3. Methods: Generalized Functional Linear Mixed Models

3.1. Generalized Functional Linear Mixed Models

Consider a single pedigree from a family-based study. The pedigree includes n participants 

with a dichotomous trait of interest coded as 1 and 0 denoting affected and unaffected, 

respectively. In addition, the n participants are genotyped within a chromosome region. Let i 
denote the ith individual with m genetic variants in the region. The physical locations of the 

m variants, denoted by 0 ≤ u1 ≤ u2 ≤ · · · um, are normalized on the unit region [0, 1]. For the 

ith individual, let yi denote his/her disease status, and Zi = (zi1, …, zic)′ denote a c × 1 vector 

of fixed effect covariates. In addition, let Xi = (xi(u1), …, xi(um))′ denote the genotypes at 

the m variants, where xi(uj) (= 0, 1, 2) is the number of minor alleles of individual i at the jth 

variant. For the n individuals who are phenotyped and genotyped, let Ω be a n × n matrix 

containing diagonal elements Ωii = 1 + hi, where hi is the inbreeding coefficient for 

individual i, and off-diagonal elements Ωik = 2ϕik. The parameter ϕik is the kinship 

coefficient between individuals i and k, the probability that a randomly chosen allele at a 

given locus from individual i is identical by descent (IBD) to a randomly chosen allele from 

individual k conditional on their ancestral relationship (Lange 2002). In practice, the 

pedigree may include members who are not genotyped or phenotyped and they can be used 

to calculate relationships between the pedigree members, that is, kinship and inbreeding 

coefficients.

Let us denote the ith individual’s GVF as Xi(u), u ∈ [0, 1]. Using the observed discrete 

genotypes Xi, we may estimate the related GVF Xi(u), which will be discussed below. To 

relate the GVF to the trait status adjusting for covariates, we consider the following 

GFLMM

logit πi = α0 + Zi′α + ∫
0

1
Xi(u)β(u)du + Gi, (1)

where πi = P(yi = 1|Zi, Xi, Gi) is the disease probability of the dichotomous trait for subject 

i, conditional on the covariates Zi, genotype vector Xi, and polygenic variation Gi, α0 is a 

regression intercept, α is a c × 1 vector of fixed regression coefficients of covariates, β(u) is 

the genetic effect of GVF Xi(u) at position u, and G = (G1, …, Gn)′ is a multivariate normal 

random polygenic vector with mean 0 and covariance matrix σG
2 Ω. Here σG

2  is a polygenic 

variance component. In the GFLMM (1), the GVF Xi(u) is assumed to be smooth. This 

assumption can be relaxed by considering the following beta-smooth only GFLMM

logit πi = α0 + Zi′α + ∑
j = 1

m
xi uj β uj + Gi, (2)

where the genetic effect function β(u) is assumed to be continuous/smooth and so it is called 

beta-smooth only GFLMM. In the above model (2), the integration term ∫0
1Xi(u)β(u)du in 

GFLMM (1) is replaced by a summation term ∑j = 1
m xi uj β uj , and we make no assumption 

about smoothness of the GVF Xi(u). We use the raw genotype data Xi = (xi(u1), …, xi(um))′ 
directly in the beta-smooth only GFLMM (2).
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Fan et al. (2014) proposed generalized functional linear models for analyzing case control 

association studies for unrelated population data. There were no random terms Gi in the 

models of Fan et al. (2014). In this article, the GFLMM (1) and (2) are developed to analyze 

pedigree data. In addition to the fixed effect terms, the random terms (G1, …, Gn)′ are 

utilized to model polygenic variation σG
2  and correlation among the pedigree members.

The trait correlation of related individuals or family members is modeled as being partly due 

to genetic influences, that is, the sharing of alleles IBD contributes to the correlation of the 

traits of related individuals (Lange 2002). In this article, we assume the correlation is from 

polygenes. This is a typical approach used in association analysis of familial data (Thornton 

and McPeek 2007). At one gene locus, there are three possible scenarios of allele sharing 

IBD. For one polygene, it is impossible to know which scenario it is for two related 

individuals unless the two individuals are from an identical twin (and so they share two 

genes IBD for sure). Hence, the three scenarios cannot be separately treated. The random 

variation Gi in GLMM (3) collectively models all effects of polygenes and the number of 

polygenes is usually very large. We have to use kinship coefficients to measure the 

correlation.

3.2. Additive Generalized Linear Mixed Models (GLMM)

By using the genotype data directly, we may relate the m genetic variants to the trait status 

while adjusting for covariates by the following additive generalized linear mixed model 

(GLMM)

logit πi = α0 + Zi′α + ∑
j = 1

m
xi uj βj + Gi, (3)

where βj is the genetic effect of variant xi(uj) and the other terms are the same as those in the 

GFLMM (1). There is only one difference between model (2) and model (3). The genetic 

effect coefficients βj in GLMM (3) are each individually estimated and so are “free” and not 

forced to lie on a continuous function of the position u. In contrast, in model (2) we assume 

that the genetic effect function β(u) is a continuous function of the position u. Therefore, 

β(uj), j 1, 2, …, m, are the values of function β(u) at each of the m physical positions. The 

GLMM (3) hardly ever converges when the number of genetic variants is large which leads 

to a large number of parameters. Hence, the GLMM (3) is not useful for analyzing sequence 

data.

3.3. Revised Generalized Functional Linear Mixed Models

The genetic effect function β(u) in GFLMM (1) and GFLMM (2) is assumed to be a 

continuous function of physical position u. One may expand it using B-spline or Fourier 

basis functions. Formally, let us expand the genetic effect function β(u) using a series of Kβ 

basis functions ψ1(u), …, ψKβ(u) as β(u) = ψ1(u), …, ψKβ(u)  β1, …, βKβ
′ = ψ(u)′β, where 

β = β1, …, βKβ
′ as Kβ × 1 vector of coefficients and ψ(u) = ψ1(u), …, ψKβ(u) ′. We consider 

two types of basis functions: (1) the B-spline basis: ψk(u) = Bk(u), k = 1, …, Kβ; and (2) the 

Fourier basis: ψ1(u) = 1, ψ2r+1(u) = sin(2πru), and ψ2r(u) = cos(2πru), r = 1, …, (Kβ – 1)/2. 

Jiang et al. Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2021 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here for Fourier basis, Kβ is taken as a positive odd integer (de Boor 2001; Ramsay and 

Silverman 2005; Ramsay, Hooker, and Graves 2009; Ferraty and Romain 2010; Horvath and 

Kokoszka 2012).

To estimate the GVF Xi(u) from the genotypes Xi, we use an ordinary linear square 

smoother (Ramsay and Silverman 2005; Ramsay, Hooker, and Graves 2009; Luo, 

Boerwinkle, and Xiong 2011; Luo, Zhu, and Xiong 2012, 2013; Fan et al. 2013, 2014, 2015; 

Vsevolozhskaya et al. 2014, 2016; Zhang, Boerwinkle, and Xiong 2014; Svishcheva, 

Belonogova, and Axenovich 2015; Wang et al. 2015; Fan, Chiu, et al. 2016; Fan, Wang, 

Chiu, et al. 2016; Fan, Wang, Yan, et al. 2016; Zhao, Zhu, and Xiong 2016). Let ϕk(u), k = 1, 

…, K, be a series of K basis functions. Let Φ denote the m × K matrix containing the values 

ϕk(uj), and we let ϕ(u) = (ϕ1(u), …, ϕK(u))′. Using the discrete realizations Xi = (xi(u1), …, 

xi(um))′, we estimate the GVF Xi(u) using an ordinary linear square smoother as follows

Xi(u) = xi u1 , …, xi um Φ Φ′Φ −1ϕ(u) . (4)

Assume that the genetic effect function β(u) is expanded by a series of basis functions 

ψk(u), k = 1, …, Kβ, as β(u) = ψ(u)′β. Replacing Xi(u) in the GFLMM (1) with Xi(u) in (4) 

and β(u) with the expansion, we have the following revised GFLMM

logit πi = α0 + Zi′α + xi u1 , …, xi um Φ Φ′Φ −1

× ∫
0

1
ϕ(u)ψ′(u)duβ + Gi

= α0 + Zi′α + W i′β + Gi,

(5)

where W i′ = xi u1 , …, xi um  Φ Φ′Φ −1∫0
1ϕ(u)ψ′(u)du. In the statistical packages R or 

Matlab, codes to calculate Φ[Φ′Φ]−1 and ∫0
1ϕ(u)ψ′(u)du are readily available (Ramsay, 

Hooker, and Graves 2009).

Denote W i′ = ∑j = 1
m xi uj ψ1 uj , …, ψKβ uj . For the beta-smooth only GFLMM (2), β(uj) is 

introduced as the genetic effect at the position uj. Expanding β(uj) by B-spline or Fourier 

basis functions as above, the GFLMM (2) can be revised as

logit πi = α0 + Zi′α + ∑
j = 1

m
xi uj ψ1 uj , …, ψKβ uj

× β1, …, βKβ
′ + Gi

= α0 + Zi′α + W i′β + Gi .

(6)

3.4. Handling Missing Genotype Data

Missing genotypes, which are invariably encountered in analyses of real data, can be 

handled by modifying (4) so that each individual’s GVF is estimated using only the 

available genotype data. For example, suppose the genotype information is missing at the 

first variant for individual i, so we have Xi = (?, xi(u2), …, xi(um))′. Then let Φ1 be the (m − 
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1) × K matrix containing the values ϕk(uj) where j ∈ (2, …, m). Then we can estimate the 

GVF using the available genotype data as

Xi(u) = xi u2 , …, xi um Φ1 Φ1′Φ1
−1ϕ(u) . (7)

Furthermore, in addition to modifying the calculation of the GVF, the summations over the 

m variants need to be appropriately adjusted. For example, in our case where the genotype at 

the first variant is missing, model (6) becomes

logit πi = α0 + Zi′α + ∑
j = 2

m
xi uj ψ1 uj , …, ψKβ uj

× β1, …, βKβ
′ + Gi .

3.5. Likelihood Functions

For subject i, assume that his/her likelihood Li depends only on (Zi, Xi, Gi) and is 

independent of (Zj, Xj, Gj), j ≠ i. Given the covariates Zi, genotypes Xi, and random 

polygenic variation Gi, the likelihood of GLMM (3) or GFLMM (5) or (6) of subject i is 

Li yi ∣ Zi, Xi, Gi = πi
yi 1 − πi

1 − yi. Given the covariates Z = (Z1, …, Zn)′, genotypes X = 

(X1, …, Xn)′, and random polygenic variations G = (G1, …, Gn)′, the likelihood of GLMM 

(3) or GFLMM (5) or (6) is

L(y ∣ Z, X, G) = Πi = 1
n Li yi ∣ Zi, Xi, Gi = Πi = 1

n πi
yi 1 − πi

1 − yi .

The integrated likelihood function of (α0, α, β, σG
2 ) is

L(y ∣ Z, X) = 2π −n/2det σG
2 Ω −1/2∫ Πi = 1

n πi
yi 1 − πi

1 − yi

× exp −
G′ σG

2 Ω −1G
2 dG .

(8)

The likelihood (8) is built in a traditional way where random effects are integrated out and 

has been used in genetic studies before (Chen et al. 2016). Then, LRT can be calculated 

based on the integrated likelihood function (8). Our models can analyze rare variants and a 

combination of rare and common variants, while the approach of Chen et al. (2016) handles 

only single individual variants.

3.6. Parameter Estimation

In the proposed models (5) and (6), the contributions of a random vector (G1, …, Gn)′ are 

correlated according to the pedigree structure with a covariance matrix σG
2 Ω. The covariance 

matrix differs from pedigree to pedigree. Routines for mixed models in standard packages 

cannot be used for parameter estimation. For linear mixed models for quantitative traits 

under normal assumptions, the marginal likelihood has a closed form and maximum 

likelihood estimation can be performed conveniently. However, in models (5) and (6), the 
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marginal likelihood does not have a closed form and must be approximated using, for 

example, a Laplacian approximation (Gilmour, Anderson, and Rae 1985; Schall 1991; 

Breslow and Clayton 1993; Vazquez et al. 2010). In this article, we use the R package 

pedigreemm which is an extension of the lme4 R package (Bates and Vazquez 2014; Bates 

et al. 2015). The pedigreemm package uses the capabilities of lme4 while allowing for 

correlations between pedigree members by applying Cholesky decomposition of the 

covariance structure of the random effects (G1, …, Gn)′. Briefly, let Ω = CC′ and 

G1*, …, Gn* ′ = C−1 G1, …, Gn ′, where C is the Cholesky factor (Harvillel and Callanan 

1989). Then, we have

var G1*, …, Gn* ′ = C−1Ω C′ −1σG
2 = InσG

2 ,

where In is an n × n identity matrix. Thus, the elements of G1*, …, Gn* ′ are mutually 

independent, and lme4 procedure can be applied because the random effects are now 

independent (Bates 2009).

3.7. LRT Statistics

To test for association between the dichotomous trait and the m genetic variants, the null 

hypothesis is H0 : β = β1, …, βKβ
′ = 0. Under the null, the GFLMM (5) and (6) are 

simplified as

logit πi = α0 + Zi′α + Gi . (9)

The GFLMM (5) or (6) and the null model (9) are nested. By fitting the GFLMM (5) or (6) 

and the null model (9), we may test the null H0 : β = 0 by a χ2-distributed LRT statistic with 

Kβ degrees of freedom using the pedigreemm R package (Vazquez et al. 2010).

In total, these combinations define three different LRT statistics, as outlined in Table 2. In 

addition to evaluating their Type I error rates via simulation (as described below), we also 

evaluated their power as well as the power of six different kernel and burden tests developed 

by Schaid et al. (2013); these are also listed in Table 2.

4. Simulation Studies

To evaluate the performance of the proposed GFLMM and LRT statistics, we simulated data 

to estimate empirical Type I error rates and power levels. In our simulations, a variant is 

considered to be rare if its MAF is ≤ 0.03. Two scenarios were considered: (1) some variants 

are common and the rest are rare; (2) all variants are rare.

4.1. Simulation Design

4.1.1. Pedigree Template of 25 Families—We first simulated 25 families including 

11 two-generation nuclear pedigrees and 14 three-generation extended pedigrees by 

randomly choosing progeny sizes from a negative binomial distribution (Cavalli-Sforza and 

Bodmer 1999). We assumed that each child within the second generation has a 25% chance 
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of having offspring. The pedigree structures included 228 individuals (119 males and 109 

females; 70 founders and 158 nonfounders) within 25 families. The pedigree size ranged 

from 4 to 24 with an average value of 9.12.

4.1.2. Pedigree Template of 50 Families—By doubling the 25 families, the pedigree 

structures included 456 individuals (238 males and 218 females; 140 founders and 316 

nonfounders) within 50 families.

4.1.3. Genetic Variants—The sequence data are of European ancestry from 10,000 

chromosomes covering a 1 Mb region, simulated by Yun Li at the University of North 

Carolina, Chapel Hill using the calibrated coalescent model as programmed in COSI 

(Schaffner et al. 2005). The sequence data were generated using COSI’s calibrated best-fit 

models, and the generated European haplotypes mimic CEPH Utah individuals with ancestry 

from northern and western Europe in terms of site frequency spectrum and linkage 

disequilibrium (LD) patterns (Schaffner et al. 2005; The International HapMap Consortium 

2007). To evaluate empirical Type I error and power levels, we randomly sampled two 

haplotypes for each founder. For each nonfounder, we chose one haplotype at random from 

his or her parents. Genotypes were constructed by summing up two haplotypes for each 

individual to determine the number of minor alleles.

4.1.4. Type I Error Simulations—To evaluate Type I error rates of our LRT statistics, 

we utilized the 50 two- or three-generation families with a total of 456 related individuals as 

a template as well as the 25 families with 228 individuals as another template. For each 

pedigree, we generated phenotype datasets using the model

logit πi = α0 + zi1 + zi2 + Gi, (10)

where α0 = −4.60, zi1 is a dichotomous covariate taking values 0 and 1 with a probability of 

0.5, zi2 is a continuous covariate from a standard normal distribution N(0, 1), and (G1, …, 

Gn)′ is generated as a normal vector sampled from a multivariate normal with mean 0 and 

covariance matrix σG
2 Ω with σG = 0.2. After assigning the phenotype for each individual, 

pedigrees were ascertained if they contained at least one pair of affected siblings, either in 

the second or third generation, or both. Through the ascertainment, we effectively sampled 

cases enriched for the dichotomous trait, thus weakening the influence of the polygenic 

effect.

Genotypes were selected from variants in 6, 9, 12, 15, 18, and 21 kb subregions randomly 

selected from the 1 Mb region. Note that the trait values are not related to the genotypes, and 

so the null hypothesis holds. For each simulation scenario, 3 × 106 phenotype-genotype 

datasets were generated to fit the models and to calculate the test statistics and related p-

values. Then, an empirical Type I error rate was calculated as the proportion of p-values of 

the convergent models in the 3 × 106 datasets which were smaller than a given α level.

4.1.5. Empirical Power Simulations—To evaluate the power of our LRT statistics, 

trait status was determined for each individual based upon the genotypes. To do this, we 

considered a mixed effect logistic regression genetic model to compute the probability of 
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being affected for an individual. We simulated datasets under the alternative hypothesis by 

randomly selecting subregions to obtain causal variants. First, we generated genotypes of m 
variants in a selected subregion, similar to the Type I error simulations. Then, M of the m 
variants were randomly selected to be causal, yielding causal genotypes (xi(u1), …, xi(uM)). 

For each dataset, the causal variants are the same for all the individuals in the dataset, but we 

allow the causal variants to be different from dataset to dataset. Then, we generated the 

dichotomous disease traits by

logit pi = α0 + zi1 + zi2 + β1xi u1 + ⋯ + βMxi uM + Gi, (11)

where α0, zi1, zi2, (G1, …, Gn)′ were the same as in the Type I error model (10), (xi(u1), …, 

xi(uM))′ were genotypes of the ith individual at the causal variants, and the β’s are additive 

effects for the causal variants defined as follows. Modeled as the approach of Wu et al. 

(2011), we used |βj| = c|log10(MAFj)|, where MAFj was the MAF of the jth variant. Three 

different settings were considered: 5%, 10%, and 15% of variants in the subregions are 

chosen as causal variants. When 5%, 10%, and 15% of the variants were causal, c = log(90)/

k, log(70)/k, and log(50)/k, respectively. For the template of 50 two- or three-generation 

families with a total of 456 related individuals, the constants k and genetic effect sizes 

decrease as region sizes increase

k =

3.5 if region size = 6 kb,
4.0 if region size = 9 kb,
4.5 if region size = 12 kb,
5.0 if region size = 15 kb,
5.5 if region size = 18 kb,
6.0 if region size = 21 kb.

(12)

In addition to varying the percentage of causal variants in the subregion, we also varied the 

direction of effect. We considered situations where (i) all causal variants have positive 

effects; (ii) 20%/80% causal variants have negative/positive effects; and (iii) 50%/50% 

causal variants have negative/positive effects. Burden tests are expected to be most powerful 

when all causal variants have effects in the same direction (e.g., under scenario (i)). For each 

setting, 3000 datasets were simulated to calculate the empirical power as the proportion of p-

values which are from the convergent models and smaller than a given α level.

4.2. Functional Data Analysis Parameters and Dynamic Rule

In the data analysis and simulations described above, we used functions from the fda R 

package to create the basis functions (Ramsay et al. 2014). In the simulations presented in 

the main text, we implement a dynamic rule to handle the genotype data to make sure that 

the results are stable. The order of the B-spline basis was 4, the upper limit of B-spline basis 

functions was K = Kβ = 16, and the upper limit of Fourier basis functions was K = Kβ = 17. 

First, we perform a principal component analysis to evaluate the effective dimension of the 

genotype data Mgao (Gao, Starmer, and Martin 2008). Then,
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1. if Mgao ≤ 18, the number of B-spline basis functions was K = Kβ = 6, and the 

number of Fourier basis functions was K = Kβ = 7;

2. if 18 < Mgao ≤ 24, the number of B-spline basis functions was K = Kβ = 8, and 

the number of Fourier basis functions was K = Kβ = 9;

3. if 24 < Mgao ≤ 30, the number of B-spline basis functions was K = Kβ = 10, and 

the number of Fourier basis functions was K = Kβ = 11;

4. if 30 < Mgao ≤ 36, the number of B-spline basis functions was K = Kβ = 12, and 

the number of Fourier basis functions was K = Kβ = 13;

5. if 36 < Mgao ≤ 42, the number of B-spline basis functions was K = Kβ = 14, and 

the number of Fourier basis functions was K = Kβ = 15;

6. if Mgao > 42, the number of B-spline basis functions was K = Kβ = 16, and the 

number of Fourier basis functions was K = Kβ = 17;

In Supplementary Materials II, Appendix B, we present additional simulation results when 

the order of the B-spline basis was 4, the number of B-spline basis functions was K = Kβ = 

6, and the number of Fourier basis functions was K = Kβ = 7 for the 50 family template.

In Supplementary Materials III, Appendix C, we present additional simulation results when 

the order of the B-spline basis was 4, the number of B-spline basis functions was K = Kβ = 

16, and the number of Fourier basis functions was K = Kβ = 17 for the small 25 family 

template. In Supplementary Materials IIII, Appendix D, additional simulation results are 

shown when the order of the B-spline basis was 4, the number of B-spline basis functions 

was K = Kβ = 6, and the number of Fourier basis functions was K = Kβ = 7 for the small 25 

family template.

In the data analysis, the order of the B-spline basis was ≤4. As these data were more sparsely 

genotyped than the simulated data, to improve convergence rates, we used the modified 

dynamic rule as defined in Appendix E, since 15,099 out of 16,913 gene regions contain less 

than 12 variants.

4.3. Simulation Results

In this subsection, we present simulation results for the Type I error rates and power levels 

using bar plots for the templates of 50 and 25 two- or three- generation families, where the 

statistics evaluated are referred to using the notation defined in Table 2. In the table, three 

LRT statistics, three kernel tests and three burden tests are presented. The three LRT 

statistics are based on the GFLMM (5) and (6). The kernel and burden tests are from Schaid 

et al. (2013). Extensive simulations were carried out, comparing the Type I error rates at 

three nominal significance levels of the three different LRT statistics (listed in Table 2), 

varying the region size from 6 to 21 kb.

4.3.1. Empirical Type I Error Rates of 50 Family Template—The empirical Type I 

error rates are reported in Table 3 at four nominal significance levels α = 0.01, 0.001, 

0.0001, and 0.00001. In the table, the results of three LRT statistics were reported for the 

GFLMM (5) and (6). The LRT statistics control the Type I error rates correctly, no matter 
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whether the genotype data are smoothed or not and which basis functions are used to smooth 

the GVF and β(t) (Table 3). When the number of B-spline basis functions was K = Kβ = 6 

and the number of Fourier basis functions was K = Kβ = 7, the results are reported in Table 

B.1 in Supplementary Materials II, Appendix B and the LRT statistics control the Type I 

error rates correctly.

4.3.2. Empirical Type I Error Rates of 25 Family Template—When the number of 

B-spline basis functions was K = Kβ = 16 and the number of Fourier basis functions was K 
= Kβ = 17, the results are reported in Table C.1 in Supplementary Materials III, Appendix C. 

In Table D.1 of Supplementary Materials IIII, Appendix D, we present simulation results 

when the order of the B-spline basis was 4, the number of B-spline basis functions was K = 

Kβ = 6, and the number of Fourier basis functions was K = Kβ = 7. In Tables C.1 and D.1, 

we find that the LRT statistics control Type I error rates accurately.

4.3.3. Empirical Power Simulations of 50 Family Template—Based on the 

simulated data, the power of the LRT statistics was compared with the power of the 

retrospective kernel and burden statistics developed by Schaid et al. (2013): three different 

weighting schemes were considered for both the kernel and burden statistics (Table 2). The 

results are reported in Figures A.1–A.12 in Supplementary Materials I. In Figures A.1–A.6, 

some variants are common and the rest are rare. In Figures A.7–A.12, the variants are all 

rare. In plots (a1)–(a3) of each figure, all causal variants have positive effects; when 

20%/80% causal variants have negative/positive effects, we present the results in plots (b1), 

(b2), and (b3) for each figure; when 50%/50% causal variants have negative/positive effects, 

the results are presented in plots (c1), (c2), and (c3).

When the region sizes are between 6 and 15 kb, the LRT GFLMM (5) and (6) statistics have 

higher power than the kernel and burden tests in Figures A.1–A.4 and A.7–A.10. When the 

region sizes are 18 and 21 kb, the power levels of kernel and burden tests are lower or 

similar to those of LRT GFLMM (5) and (6) in Figures A.5, A.6, A.11, and A.12. The 

choice of the B-spline or the Fourier basis has little effect on power. The three LRT GFLMM 

statistics (5) and (6) control Type I error rates well and have similar good power levels as 

shown in Figures A.1–A.12. The power levels of the LRT beta-smooth only GFLMM (6) 

statistics are almost identical to those of the LRT GFLMM statistics (5) which smooth both 

the GVFs Xi(u) and the genetic effect function β(t), regardless of basis choice. Hence, the 

three LRT GFLMM statistics (5) and (6) are very stable in terms of power performance and 

they do not strongly depend on whether the genotype data are smoothed or not, or which 

basis functions are used.

When some variants are common and the rest are rare, the kernel-based approach with 

Madsen–Browning weights performs the best among the kernel and burden statistics in 

Figures A.1–A.6. When all variants are rare, the kernel-based approach with weights based 

on the beta distribution performs the best (Figures A.7–A.12). As noted in Schaid et al. 

(2013), the kernel statistics have higher power than burden ones.

In Supplementary Materials II, Appendix B, we present simulation results when the order of 

the B-spline basis was 4, the number of B-spline basis functions was K = Kβ = 6, and the 
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number of Fourier basis functions was K = Kβ = 7. The power levels of LRT GFLMM 

statistics (5) and (6) in Figures B.1–B.12 can be low.

4.3.4. More Simulation Results of 25 Family Template—In Supplementary 

Materials III, Appendix C, we present simulation results when the order of the B-spline 

basis was 4, the number of B-spline basis functions was K = Kβ = 16, and the number of 

Fourier basis functions was K = Kβ = 17. The power levels of LRT GFLMM statistics (5) 

and (6) are presented in Figures C.1–C.12. In Supplementary Materials IIII, Appendix D, we 

present simulation results when the order of the B-spline basis was 4, the number of B-

spline basis functions was K = Kβ = 6, and the number of Fourier basis functions was K = 

Kβ = 7. Compared with the results of Supplementary Materials III, Appendix C, the power 

levels of LRT GFLMM statistics (5) and (6) in Figures D.1–D.12 are lower.

5. Discussion

AMD is a common complex disease and is caused by an interplay of aging, genetics, and 

environmental factors. While AMD family data has been collected (Ratnapriya et al. 2020), 

most AMD association studies have mainly focused on using population data to identify 

genes and variants which are associated with AMD, partly because of a dearth of powerful 

methods for carrying out region-based association tests of a dichotomous trait like AMD on 

family data. Here we apply GFLMM we developed to test for association between the 

dichotomous AMD trait and genetic variants in each gene region in our AMD family dataset. 

Using common and rare variants, we observe strong association between AMD and two 

known AMD susceptibility genes: CFH and ARMS2. Gene-based rare variant burden 

analyses were carried out by the International AMD Genomics Consortium in a large dataset 

of 16,144 advanced AMD cases versus 17,832 controls (Fritsche et al. 2016); the analyses 

ignored family structure—for example, the dataset included a set of unrelated individuals 

extracted from the family dataset we analyze here. When testing was restricted to the 703 

genes, CFH attains significance, but ARMS2 and the other genes listed in our Table 1 are 

not among their top hits. However, note that they used only rare protein-altering variants, 

while our analysis that gives a signal for ARMS2 used both common and rare variants.

By using rare variants, we find suggestive association signals in four gene regions, ASAH1, 

CLEC6A, TMEM63C, and SGSM1. The Consortium did not see significant burden test 

signals at these genes in Fritsche et al. (2016). The suggestive signal at ASAH1 is especially 

interesting because ASAH1 deficiency leads to retinal inflammation (Petrov et al. 2019) and 

underexpression of ASAH1 makes retinal cells more vulnerable to oxidative stress (Sugano 

et al. 2019). Consistently, in the aqueous humor, ASAH1 is identified as a down-regulated 

protein in AMD as compared to controls (Qu et al. 2019). Thus, several lines of congruent 

evidence complement our suggestive gene-based association of ASAH1 with AMD to 

suggest that ASAH1 may play a role in AMD.

In this article, we analyzed the AMD family data in two different ways: (1) all genetic 

variants and (2) rare variants only. From the results, we can see that it is a good strategy to 

analyze all variants in addition to only analyzing rare variants. It is reasonable to assume that 

Jiang et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2021 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a combination of rare and common variants affects the risk of many complex disorders. 

After all, we are searching for causal variants, not rare or common variants.

To analyze the related pedigrees and high dimensional sequencing data, we developed 

GFLMM for analyzing familial dichotomous trait data. In these models, the effect of a major 

gene is modeled as a fixed mean, the polygenic contributions is modeled as a random 

variation, and the correlation of pedigree members is modeled by inbreeding and kinship 

coefficients. LRT statistics based on the GFLMM are built to test for association between a 

dichotomous trait and the genetic variants. Simulation results indicate that the LRT statistics 

accurately control the Type I error rates for a pedigree dataset of moderate sample size (i.e., 

456 individuals in 50 pedigrees), as well as for a small sample size dataset (228 individuals 

in 25 pedigrees). In our analysis of the AMD data, the kernel and burden tests have high 

false positive rates while the GFLMM control the Type I errors well. In addition to properly 

controlling Type I error rates, GFLMM can handle both common and rare variants, avoiding 

arbitrary MAF threshold-based filtering of variants. Functional models are very flexible 

since they can analyze: (1) rare variants, (2) common variants, and (3) a combination of the 

two. This elegant feature deserves further utilization in dissecting complex disorders.

It can be challenging to get linear mixed models to converge. To improve convergence rates, 

in addition to selecting a better optimizer and increasing the number of function evaluations, 

we added the dynamic rule defined above to better match the statistical model to the 

underlying dimensionality of the data. This improved the convergence rate. For example, for 

the GFLMM (6) power simulation results in Figure A.6(a1), the LRT of GFLMM (6) using 

the B-spline basis converged 97.1% of the time; the convergence rate using the Fourier basis 

of 93.7% was poorer, suggesting the B-spline basis version should be preferentially used for 

GFLMM (6). In these power results about 63% of the time a warning was generated about a 

boundary fit, likely indicating that the random component is not needed. For the simulations 

presented here, we conservatively evaluated each statistic on replicates with no errors or 

warnings.

While the dynamic rule presented above worked reasonably well on the simulated data, 

when applied to the real AMD data, it did not work as well, likely because these data are 

more sparsely genotyped than the simulated data. To improve convergence rates, we used the 

adjusted dynamic rule presented in Appendix E. While we have shown that our statistics are 

promising, future work is needed into choosing an optimal dynamic rule for one’s particular 

data to improve convergence rates and to reduce errors and warnings when fitting these 

models.

In major gene analysis, the LRT statistics of GFLMM have higher power than the kernel-

based and burden tests proposed by Schaid et al. (2013). The kernel-based tests proposed in 

Schaid et al. (2013) perform better than burden tests. In the previous work, it was shown that 

the tests of fixed effect regression models have higher power than SKAT for population data 

in major gene association studies (Fan, Chiu, et al. 2016). Therefore, the proposed models 

provide an alternative competitive method for carrying out gene-based association tests.
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One major difference between our statistics and the kernel-based tests is that we model the 

major gene contribution by a fixed effect mean while kernel-based tests model the gene 

contribution as a random term with a zero mean and a constant variance. In the previous 

work and the current article, it is shown that our models have higher power in major gene 

association analysis and kernel-based tests perform better for polygenic analysis (Fan, Chiu, 

et al. 2016). If the number of causal genetic variants at a locus is very large and each causal 

variant contributes a small amount to the traits, the kernel-based test assumption of means of 

zero is likely to be satisfied and kernel-based tests could perform better. However, assuming 

means of zero for regression coefficients is unlikely to be valid. For instance, if some of the 

causal variants’ contributions to the traits are relatively large, it is unlikely that regression 

coefficients of genetic variants are around zero. In major gene association studies, we argue 

that our LRT statistics perform better than kernel-based tests in most cases.

The GFLMM (5) and (6) are designed to analyze familial data from one population. 

Comparing with previous fixed models which were designed to analyze unrelated population 

samples, one random term Gi is added to model the polygenic variation and familial 

correlation for pedigree members (Cordell and Clayton 2002; Fan et al. 2013, 2014, 2015; 

Fan, Chiu, et al. 2016; Fan, Wang, Chiu, et al. 2016; Fan, Wang, Yan, et al. 2016). The 

models can be extended to accommodate population structure and cryptic relatedness by 

adding extra random terms to the models (Chen et al. 2016). For cryptically related 

individuals, one may replace the kinship coefficients with empirical genetic relationship 

matrix (GRM). The empirical GRM can be calculated based on marker data to account for 

population structure and cryptic relatedness (Yang et al. 2010; Gianola et al. 2016; Wang 

2016). For individuals i and j from different pedigrees, the kinship coefficient ϕij = 0. 

However, the empirical genetic relationship coefficient of i and j can be different from 0 

since they can be cryptically related to each other. More research is needed to characterize 

the properties of models which accommodate population structure and cryptic relatedness as 

well as adding variance component at the major gene to the models.
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Figure 1. 
Q-Q plots for the LRT GFLMM statistics (5) and (6), and the retrospective kernel and 

burden tests when all common and rare variants are analyzed for AMD data.
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Figure 2. 
Q-Q plots for the LRT GFLMM statistics (5) and (6), and the retrospective kernel and 

burden tests when only rare variants are analyzed for AMD data.
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Table 2.

Notation used in the figures.

Notation Description and interpretation

LRT GFLMM FR LRT of GFLMM (5) with the Fourier basis vs. null model (9)

LRT_beta_BS LRT of GFLMM (6) with the B-Spline basis vs. null model (9)

LRT_beta_FR LRT of GFLMM (6) with the Fourier basis vs. null model (9)

kernel BT Kernel test with weights based on Beta distribution

kernel MB Kernel test with Madsen-Browning weights

kernel UW Kernel test with equal weights

burden BT Burden test with weights based on Beta distribution

burden MB Burden test with Madsen-Browning weights

burden UW Burden test with equal weights
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