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Meta-analysis (MA) combines multiple studies to estimate a quantity of interest.

Some existing MA models have shortcomings in the form of 1) inappropriate infer-

ence targets, 2) strong assumptions about how studies are sampled, and 3) prior

distributions for variance parameters with inadequate shrinkage.

In Chapter 2 we build a three-random effect (3RE) Bayesian random effects MA

model for observational contingency table data as an extension of the standard two-

random effect (2RE) model. We add a random effect for the log-odds of having a

risk factor with random effects for the log-odds of an event and for the log-odds ratio

of the event for those with or without the risk factor. The 3RE model allows for

calculation of more statistics than the 2RE model, and we define a novel estimand

for statistics calculated from contingency tables – the expected value of a statistic
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for a new study given the hyperparameters. The new estimand shows less bias and

higher 95% credible interval coverage as compared with a naive plug-in estimator.

We apply the model to a dataset of studies on patients presenting to the emergency

department with syncope.

In Chapter 3 we propose a new approach to combining multiple selection models

for publication bias using Bayesian stacking of posterior distributions. We demon-

strate the effectiveness of stacking selection models through simulations and real

datasets that exhibit symptoms of publication bias.

Chapter 4 proposes a new class of prior distributions for the covariance matrix of

random effects in MA. The new priors allow random effects variances to be shrunk

towards zero and for shrinkage of correlations between random effects. We show

through both synthetic and real data examples that the new prior distributions lead

to less diffuse posterior distributions and shorter 95% credible intervals in a 3RE MA

model for observational data and an arm-based network meta-analysis (AB-NMA)

model for randomized controlled trials.
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CHAPTER 1

Introduction

Medical practitioners must remain up to date on the best available scientific evi-

dence to guide their decision-making while providing care for patients. In any given

healthcare setting there are often multiple studies that have investigated a particular

question with varying results. For example, there may be multiple studies examining

the effect of a new drug compared to the current best treatment, and there is interest

in combining the results from each study. Meta-analysis (MA) is a set of statistical

models used for evidence synthesis, where results from multiple studies investigating

the same question can be modeled together to get a pooled estimate of a quantity of

interest. In this chapter we describe three current issues in meta-analysis and give a

brief description of the solution we offer in each case.

Chapter 2 A common type of data to arise in medical studies is observational

2×2 contingency table data, where rows of the table are defined by the presence

or absence of a risk factor (RF) and columns are defined by presence or absence of

an adverse event. The data is observational because neither the number of subjects

with/without the risk factor (row totals) or the number of subjects with/without the

event (column totals) are fixed by investigators. The inference targets are contin-

gency table statistics (CTSs), which measure the diagnostic utility of the RF. Some
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commonly measured CTSs are sensitivity and specificity, which are the probability of

having or not having the RF given the presence or absence of the event, respectively,

and positive and negative predictive values, which are the probability of having or

not having the event given the presence or absence of the RF, respectively.

The standard Bayesian meta-analysis model for 2×2 contingency table data is the

random effects (RE) model, where we assume that the true underlying parameters

describing each study population, such as the log-odds ratio, are different for each

study and vary around some unknown global mean with some unknown RE variance.

The global mean parameters and RE variances are hyperparameters in the model.

The inference targets in a MA of observational 2×2 data are global CTSs. Study-

specific CTSs can be calculated using study-specific parameters. Existing models

for observational 2×2 data calculate global estimates for CTSs by plugging in global

mean parameters for study-specific parameters and ignore the RE variance between

studies; we call this the plug-in estimator. In Chapter 2 we define a novel estimand

for CTSs, the expected value of a given CTS for a new study given all hyperparam-

eters, which takes into account the RE variances. We propose a nested Monte Carlo

procedure to sample from the posterior distribution of the new estimand, and we

compare the new estimand to the naive plug-in estimator in a simulation study and

analyze a set of real studies on patients presenting to the emergency department with

syncope and assess the diagnostic utility of various regularly-measured covariates.

Chapter 3 Publication bias (PB) is a major threat to the validity of any meta-

analysis. PB is an amalgamation of multiple sources of bias including language

bias (favoring studies in English), familiarity bias (favoring studies from the lead

investigator’s own discipline), availability and cost bias (favoring studies that are free
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and/or easily available), and reporting bias (unfavorable results within studies are

not reported). PB may lead to an unrepresentative sample of studies and therefore

biased meta-analysis results. In Chapter 3 we offer a new method of adjusting for

PB. There is a diverse set of tools available to analysts who suspect their sample of

studies may exhibit symptoms of PB. There are hypothesis tests that measure the

asymmetry of a funnel plot, which plots estimated effect sizes against their standard

errors, and return a p-value indicating the probability of observing as bad or worse

asymmetry from chance alone. There are also sensitivity analyses, which assume

varying degrees of publication bias and calculate bias-adjusted estimates under each

scenario. If results change a lot with mild assumed bias, then results are sensitive

to PB; if results remain fairly consistent even with severe assumed bias, the results

are robust to PB. Selection models are a class of statistical models which define a

mechanism through which studies are chosen to be included in the meta-analysis,

and allow for bias-adjusted estimates of quantities of interest. However, posterior

distributions for the bias-adjusted mean effect size can vary widely based on the

selection model. For example, an assumption that selection of studies is based on

one-sided p-values will tend to adjust the mean estimate towards the null more

than an assumption that selection is based on two-sided p-values. Thus, a main

issue is that results of the MA depend on the selection mechanism chosen by the

meta-analyst. Recent approaches have used Bayesian model averaging (BMA) over

multiple candidate models to increase robustness (Guan and Vandekerckhove, 2016;

Maier et al., 2022). BMA performs well when the true model is one of the candidate

models. However, a newer method of model combination called Bayesian stacking

(Yao et al., 2018) has been shown to outperform BMA in situations where the true

model is not in the list of candidate models. In Chapter 3 we argue that in the case

3



of publication bias, no model is “true” because the mechanisms of publication bias

are too complex to capture in any single model. Therefore, we propose the stacking

of multiple selection models for publication bias as a new robust method of adjusting

for publication bias in meta-analysis.

Chapter 4 Many MA models have multiple random effects (REs) which are al-

lowed to vary across studies. In a Bayesian RE model, one needs to model the

covariance matrix associated with REs with an appropriate prior distribution. Co-

variance modeling in meta-analysis and network meta-analysis (NMA) has not been

thoroughly researched. There are only a handful of prior distributions that have

been discussed in the literature, and commonly used default prior distributions give

lower prior density to some plausible values of variance parameters. For example,

if we believe the variance of a certain random effect may be zero, the priors cur-

rently used in meta-analysis and NMA do not adequately allow for shrinkage of RE

variance and will have posteriors that support larger variance values and not values

near zero. Additionally, when there are few studies and/or few subjects per study,

there is very little information in the data on correlations between REs when one of

the REs has very small variance, and default covariance or correlation prior distri-

butions will yield diffuse posterior distributions for correlation parameters. Inflated

posterior variances and diffuse posteriors for correlations will in turn yield diffuse

posterior distributions for other quantities of interest, such as absolute risks. In

Chapter 4 we define a new class of prior distributions for the RE covariance matrix

that allows for variances to shrink towards zero, and offers the option of shrinking

correlations towards zero for REs that have very small variance. The new class of

priors tend to yield more conservative mean estimates for quantities of interest, as
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well as shorter 95% credible intervals, which we show through both synthetic and

real data examples.

Each of Chapters 2, 3, and 4 is a standalone paper that can be read independently,

and each Chapter has its own notation and data structure. Both Greek and non-

Greek notation has a different meaning in each Chapter.
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CHAPTER 2

Bayesian Meta-analysis of Observational

Contingency Table Data with a Nested Monte

Carlo Procedure for Estimating Global Effects

2.1 Introduction

Data from medical studies can often be tabulated in a 2×2 contingency table. The

tables have columns stratified by a dichotomous outcome and rows stratified by a

dichotomous covariate. Summary statistics from a 2×2 contingency table include

positive/negative predictive value (PPV/NPV), sensitivity and specificity (Sens and

Spec), and positive and negative likelihood ratios (LR+ and LR-), among others. We

refer to a statistic that can be calculated as functions of some or all of the four values

in a 2×2 contingency table as a contingency table statistic (CTS). For an individual

study’s table, this would mean using the counts in each cell to calculate an observed

CTS, and for a population it would mean using the underlying multinomial cell

probabilities to calculate a population CTS. CTSs describe the relationship between

the outcome and the covariate, and calculating most CTSs requires conditioning on

either rows or columns. Meta-analysis methods for contingency table data reflect this

conditioning, and can generally be segregated into two groups that allow inference
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for different CTSs.

Meta-analysis models for randomized controlled trials (RCTs) allow inference for

treatment CTSs (T-CTSs), and naturally condition on the dichotomous covariate

treatment/placebo. T-CTSs include the odds ratio (OR), relative risk (RR), risk

difference (RD), and positive/negative predictive values (PPV/NPV). A standard

random effects model for T-CTSs is given in Smith et al. (1995), with the log-odds

ratio log(OR) as the main inference target. The model of Smith et al. (1995) has been

extended to network meta-analysis with K treatment groups (Lu and Ades, 2004;

Dias et al., 2013; Zhang et al., 2014). Models for diagnostic tests allow inference for

diagnostic CTSs (D-CTSs) that condition on the presence or absence of an adverse

event, denoted by E or E. D-CTSs include sensitivity (Sens), specificity (Spec),

ORs, and positive/negative likelihood ratios (LR+/LR-). Ma et al. (2016) reviews

meta-analysis models that condition on event status, including the summary receiver

operating characteristic (SROC) curve (Rutter and Gatsonis, 2001; Moses et al.,

1993; Lian et al., 2019), bivariate random effects models (Reitsma et al., 2005; Chu

and Cole, 2006; Arends et al., 2008; Chu et al., 2012; Guo et al., 2017; Hoyer and

Kuss, 2018), and trivariate random effects models (Chu et al., 2009; Ma et al., 2018;

Wynants et al., 2018). Models for T-CTSs and D-CTSs are similar in that they use

binomial likelihoods conditioning on rows or columns, respectively. Multiple models

(Chu et al., 2009; Rutter and Gatsonis, 2001; Ma et al., 2018) aim to estimate

global statistics, synonymously referred to as “overall”, “summary”, or “population”

statistics that are not study-specific.

An area of medical literature particularly suited to generating 2×2 data is emer-

gency department (ED) visits for syncope (fainting), where around 5-10% of older

syncope patients experience an adverse event in the 30 days after their initial ED
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visit (Gibson et al., 2018). Many studies provide 2×2 tables of counts for dichoto-

mous risk factors (RFs) that are regularly collected during an ED visit for syncope

patients, including demographics, comorbidities, symptoms, and test characteristics.

The syncope data is unique in that 1) it is observational, with neither row totals nor

column totals fixed by study investigators, and for which we are interested in both

T-CTSs and D-CTSs, and 2) given the large number (> 30) of regularly-measured co-

variates in the ED for syncope patients, we would like to “weed out” those covariates

that are unrelated to the probability of 30-day adverse events.

To make inference on T- and D-CTSs together we propose a novel 3 random

effect (3RE) Bayesian meta-analysis model as an extension of the model in Smith

et al. (1995), with study-level random effects on the average log-odds of an event,

the log(OR) of the event, and the log-odds of having the risk factor. Existing 3RE

models (Chu et al., 2009; Ma et al., 2018; Wynants et al., 2018) model the probability

of a positive diagnostic test simultaneously with sensitivity and specificity, but their

methods use plug-in estimators, plugging in hyperparameters to calculate global

statistics, to provide median estimates of global T-CTSs and D-CTSs. We instead

posit that global mean effects are more desirable and define a novel estimand, the

expected value of a given statistic for a new study, which accounts for all appropriate

variability, and we outline a procedure to sample from the posterior distribution of the

estimand. We use a fully Bayesian approach which has advantages in interpretation

and flexibility, and our parameterization is different in that it builds off of Smith

et al. (1995) with the log(OR) as the natural parameter. Whether or not a risk

factor is related to 30-day adverse events corresponds to a natural scientific question

in random effects meta-analysis of whether or not the mean log(OR) for a given risk

factor is different from zero (Higgins et al., 2009). We introduce a mixture spike-and-
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slab prior distribution (George and McCulloch, 1993, 1997; Kuo and Mallick, 1998;

Ishwaran et al., 2005) on the mean parameter for the random effects on the log(OR)

in the 3RE model, which allows us to calculate the posterior probability that the

null hypothesis is true. The mixture prior places point mass on the probability that

the mean log(OR) = 0 (the spike), and if not 0, models uncertainty in the mean

log(OR) with a continuous prior distribution (the slab).

We present the 3RE meta-analysis model, a nested Monte Carlo procedure for

calculating global CTSs, and a spike-and-slab prior on the global log(OR) in Section

2.2. Section 2.3 presents a simulation to show how well the model identifies true

zero and non-zero effects and how accurately and precisely the nested Monte Carlo

procedure estimates common CTSs as compared with plug-in estimators. Section 2.4

applies the model to our motivating syncope data. The paper closes with discussion.

2.2 Three RE meta-analysis model

In the usual meta-analysis, each study i = 1, . . . , S reports a 2×2 table of counts nijk

with rows j = 0, 1 defined by the absence or presence of a risk factor (RF), denoted

RF and RF, and columns k = 0, 1 defined by no adverse event (E) or adverse event

(E). Let ni1 = ni10 + ni11 and ni0 = ni00 + ni01 be the number of people with or

without the risk factor, respectively, Ni = ni1 + ni0 be the total sample size in study

i, and πij is the probability of an adverse event for a patient in study i, group j as

illustrated in Table 2.1. Assuming binomial sampling, the standard Bayesian random
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No Event Event Total
j = 0, RF Absent ni00 ni01 ni0

j = 1, RF Present ni10 ni11 ni1

j = 0, RF Absent 1− πi0 πi0 1
j = 1, RF Present 1− πi1 πi1 1

Table 2.1: Sample contingency table for study i with subject counts (top) and a
probability representation conditional on presence or absence of the risk factor (bot-
tom).

effects meta-analysis model is

nij1|πij ∼ Bin(nij, πij) (2.1)

logit(πij) =

 βi − δi
2

j = 0

βi +
δi
2

j = 1,
(2.2)

where logit(a) = log(a/(1 − a)), 0 < a < 1, βi is a random intercept term for the

log-odds of the event for study i and δi is a random effect for the log(OR) of the

event in study i. We model δi and βi as normal with unknown mean and variance

βi|β0, σ2
β ∼ N(β0, σ

2
β), (2.3)

δi|δ0, σ2
δ ∼ N(δ0, σ

2
δ ), (2.4)

where population means β0 and δ0 and variances σ2
β and σ2

δ have priors p(β0), p(δ0),

p(σβ), and p(σδ) which we discuss in Section 2.2.3.

With this model we can make inference on T-CTSs. For observational data

where we also want to make inference on D-CTSs, we expand model ((2.1)) - ((2.4))

to include a random effect ψi = P(RF in study i), the probability of a subject having
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the risk factor in study i. Assuming binomial sampling of ni1 from Ni as Bin(Ni, ψi),

we model νi = logit(ψi) as normal with unknown mean and cross-study variance σ2
ν

on the logit scale

ni1|ψi ∼ Bin(Ni, ψi) (2.5)

νi|ν0, σ2
ν ∼ N(ν0, σ

2
ν), (2.6)

where the unknown population parameters ν0 and σ2
ν have priors f(ν0) and f(σ

2
ν).

2.2.1 Predictive contingency table statistics

There are study-specific and global versions of each CTS. Let Y be the data from

all S studies, define θi = (βi, δi, νi)
′, the parameter vector for the ith study, and let

γ = (β0, σβ, δ0, σδ, ν0, σν)
′ be the vector of hyperparameters. The unknown study-

specific CTSi’s are functions of

πi1 = expit(βi + δi/2)

πi0 = expit(βi − δi/2)

ψi = expit(νi),

(2.7)

where expit(x) = 1/(1 + exp(−x)). The T-CTSs PPV, NPV, RD, and RR for study

i are

PPVi = P(E|RF) = πi1 NPVi = P(E|RF) = 1− πi0

RRi =
P(E|RF)
P(E|RF)

=
πi1
πi0

RDi = P(E|RF)− P(E|RF) = πi1 − πi0,
(2.8)
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and the D-CTSs Sens, Spec, LR+, and LR− are

Sensi = P(RF|E) = πi1ψi

πi1ψi + πi0(1− ψi)
LR−i =

1− Sensi
Speci

Speci = P(RF|E) = (1− πi0)(1− ψi)

(1− πi0)(1− ψi) + (1− πi1)ψi

LR+i =
Sensi

1− Speci
.

(2.9)

Each CTSi is then a function g(θi) of the study-specific parameters θi for appropriate

choice of g(·).

Usually the purpose of meta-analysis is to consolidate information from multiple

studies, and we are interested in global rather than study-specific CTSs. Existing

methods use plug-in estimators, CTSplug(β0, δ0, ν0) as estimates of global CTSs, by

plugging in

π1 = expit(β0 + δ0/2)

π0 = expit(β0 − δ0/2).

ψ = expit(ν0),

in equations ((2.8)) - ((2.9)) in place of study-specific πi1, πi0, and ψi. The plug-

in method ignores 1) the nonlinear relationship between the mean hyperparameters

(β0, δ0, ν0) and the global CTSs, and 2) the heterogeneity present across studies rep-

resented by σβ, σδ and σν . In contrast, we define the target estimand as the predictive

mean CTS0(γ) of a CTS for a new study given γ, CTS0(γ) = E[g(θS+1)|γ], where

θS+1 = (βS+1, δS+1, νS+1) and βS+1, δS+1, and νS+1 are distributed as in ((2.3)),

((2.4)), and ((2.6)), and study index i can take on value S + 1. For brevity, define

CTS0 ≡ CTS0(γ) and CTSplug ≡ CTSplug(β0, δ0, ν0).
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For given γ, we approximate CTS0 = E[g(θS+1)|γ] with a Monte Carlo estimate

E[g(θS+1)|γ] =
∫
g(θS+1)P (θS+1|γ)dθS+1

≈ 1

L

L∑
l=1

g(θ
(l)
S+1)

(2.10)

where integer L is chosen to make Monte Carlo error in (2.10) desirably small, and

θ
(l)
S+1 are drawn from the predictive distribution P (θS+1|γ). To draw samples m =

1, . . . ,M from the posterior distribution P (CTS0|Y ) within a Markov chain Monte

Carlo (MCMC) algorithm we approximate the integral
∫
g(θS+1)P (θS+1|γ)dθS+1 in

each iteration m with a Monte Carlo calculation. Given M MCMC samples γ(m),

m = 1, . . . ,M from the posterior of P (γ|Y ), for each m we

1. Take L draws θ
(m,l)
S+1 , l = 1, . . . , L from the predictive distribution P (θS+1|γ(m))

and calculate the CTS g(θ
(m,l)
S+1 ) for each of the L draws,

2. Estimate CTS0(γ
(m)) = E[g(θS+1)|γ(m)] ≈ 1

L

∑L
l=1 g(θ

(m,l)
S+1 ).

Sampling γ(m) and CTS0(γ
(m)) in each iteration of MCMC sampling yields approx-

imate samples from the posterior distribution for the expectation of the CTS given

data Y and γ, p(CTS0|Y ), where uncertainty in CTS0 is due to uncertainty in the

parameters γ. We refer to this method as the MC procedure.

2.2.2 Spike-and-slab prior for the log-odds ratio

We want to formally test the null hypothesis H0: δ0 = 0 that the log(OR) is 0 against

HA: δ0 ̸= 0. The Bayesian approach to testing builds an encompassing model where

both H0 and HA have positive probability, for example, with a spike-and-slab (SAS)
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prior p1(δ0) for δ0

δ0 =

 δ ρ = 1

0 ρ = 0
(2.11)

ρ ∼ Bernoulli(p) (2.12)

δ ∼ N(0, b2δ), (2.13)

where p is the prior probability that δ0 = 0. In the absence of other prior information

we usually choose p = 0.5. We call the 3RE model ((2.1)) - ((2.6)) with prior ((2.11))

- ((2.13)) the 3RE-SAS model. In the absence of prior information one can set prior

standard deviation bδ = 2 to give support to values of δ0 ∈ (−4, 4), where a log(OR)

δ of −4 or 4 corresponds to an OR of 0.02 or 55. A special case has ρ = 1, and

δ0 ≡ δ, which is a continuous prior for δ0.

2.2.3 Prior distributions

For the mean parameters β0 and ν0 we propose normal distributions with known

means aβ, aν and variances b2β, b
2
ν

β0 ∼ N(aβ, b
2
β) (2.14)

ν0 ∼ N(aν , b
2
ν). (2.15)

Prior means aβ and aν are prior guesses at the mean log-odds of an event and log-odds

of the risk factor, respectively, and the standard deviations bβ and bν are chosen to be

large enough to give support to all plausible values of the parameters. As a default

we assign each of the prior standard deviations σβ, σδ, and σν weakly informative
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half-Cauchy prior distributions truncated above 5

σβ ∼ half-Cauchy(Aβ)1[σβ<5] (2.16)

σδ ∼ half-Cauchy(Aδ)1[σδ<5] (2.17)

σν ∼ half-Cauchy(Aν)1[σν<5] (2.18)

where σ ∼ half-Cauchy(A) with scale parameter A > 0 has density p(σ) ∝ (A2 +

σ2)−1
1[σ>0] (Gelman, 2006). The scale parameters Aβ, Aδ, and Aν should generally

be set between 0.25 and 1. We should expect standard deviations σβ, σδ, and σν to

be below 1.5, as values above 1.5 may signal problems with model fit/appropriateness

or the data because heterogeneity that large is unlikely to occur naturally. Taking

A = 0.25 yields a prior probability P (σ < 1.5) ≈ 0.9, while A = 1 yields P (σ <

1.5) ≈ 0.65. The choice of A matters less with more studies in the meta-analysis.

With fewer than 10 studies we recommend A ∈ (0.25, 0.5). With very few studies

(2 or 3), large standard deviations can lead to specificity having posterior mass very

close to 1, inducing calculation problems and occasional unrealistically large values

for the statistic LR+ = Sens/(1−Spec). A priori, we do not believe that LR+0 > 30

in our syncope data analysis. Thus it would be sensible to restrict LR+0 < 30 in the

prior, on top of the prior specification for γ. In practice, the restriction LR+0 < 30

or some other value may or may not be needed. The need might be indicated by

a long right tail in the posterior for LR+0, possibly indicated by a posterior SD of

LR+0 larger than the mean, or any posterior probability of LR+0 > 30. If needed it

can be implemented with a post-hoc removal of any MCMC posterior samples where

LR+0 > 30 or other chosen upper bound. In our simulations and data analysis we

restrict LR+0 < 30.
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2.2.4 Special case: fixed effect for the log-odds ratio

If we have evidence that the standard deviation σδ of random effects δi is small, i.e.

σδ ≈ 0, we can instead model a fixed effect for the log(OR) δ0 where δ1 = · · · = δS =

δ0. Modify equation ((2.2)) to

logit(πij) =

 βi − δ0
2

j = 0

βi +
δ0
2

j = 1,
(2.19)

where δ0 has the SAS prior ((2.11)) - ((2.13)). We call this the 2RE-SAS model.

The posterior probability P (δ0 = 0|Y ) is then the probability that δi = 0 for every

study i in the analysis, as well as for a future study S +1. Because δS+1 = 0 implies

π[S+1]1 = π[S+1]0, then RD[S+1] = 0, RR[S+1] = 1, LR+[S+1] = 1, and LR−[S+1] = 1,

and the posterior probability P (δ0 = 0|Y ) is also the posterior probability that

RD0 = 0, RR0 = 1, LR+0 = 1, and LR−0 = 1, where 0 and 1 are the null values

for the respective CTSs. This is in contrast to the 3RE-SAS model, where δ0 = 0

does not imply that RR, RD, LR+ and LR− are exactly equal to their null values,

as σδ > 0.

2.3 Simulation studies

We perform three simulations to

1. Determine appropriate choices for L in calculating CTS0 in the MC procedure;

2. Compare the MC procedure CTS0 to the plug-in estimator CTSplug with known

target values CTS0; and
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3. Assess the posterior probability of the null hypothesis δ0 = 0 in the 3RE-SAS

model.

Each simulation varies different factors, and we refer to each combination of factors

as a scenario.

Certain simulation parameters are held constant in all three simulations. We

fix β0 = ν0 = log(.15/.85) and independently draw the number of subjects for each

study from a discrete Uniform(250, 2500) distribution to match values typical of the

syncope data analysis. We set 4000 MCMC iterations in each of 4 chains, discard the

first 2000 iterations as burn-in and use a thin of 2, leaving 4000 MCMC samples from

each posterior. We set prior means aβ = aν = −1, prior variances bβ = bδ = bν = 4,

and Aβ = Aδ = Aν = 1√
2
≈ .707. For the SAS prior we use a prior probability

P (δ0 = 0) = 0.5. Initial values for mean parameters are drawn independently from a

Uniform(-1, 1) distribution, and initial values for random effect standard deviations

σβ, σδ, and σν are drawn independently from a Uniform(0.2, 1) distribution. We fit

all models using JAGS (Plummer et al., 2003) in R (R Core Team, 2021).

2.3.1 Simulation 1: Choice of L for Monte Carlo procedure

Simulation 1 consists of two smaller simulations. First we compare posterior standard

deviations (SDs) and 95% credible interval (95% CI) lengths for LR+0 for several

choices of L with 95% CIs having 2.5% probability content in each tail. We take the

number of studies S = 10, fix δ0 = 2, and generate K = 100 datasets with random

effect standard deviations (RESDs) σβ = σδ = σν = 0.5 or = 1.0.

Table 2.2 shows average posterior standard deviations (SDs) and 95% CI lengths

of LR+0 for each L for the two simulation scenarios. As L increases ∈ {1, 10, 100,
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σβ = σδ = σν = 0.5 σβ = σδ = σν = 1
L SD 95% Length SD 95% Length
1 1.969 7.502 3.869 14.876
10 0.868 3.360 2.295 8.646
100 0.642 2.508 1.730 6.472
1000 0.615 2.400 1.640 6.138
10000 0.612 2.390 1.633 6.099

Table 2.2: Simulation 1: Average posterior standard deviation (SD) and 95% interval
length of LR+0 for different values of L across K11 = 100 simulation iterations.
Second and third columns are results when data was generated with σβ = σδ = σν =
0.5, and in fourth and fifth columns σβ = σδ = σν = 1. SDs and 95% interval lengths
decrease with increasing L with diminishing returns.

1000, 10000}, Monte Carlo error from Equation (2.10) of CTS0(γ) decreases and

this can be inferred from Table 2.2 because the average posterior SD and 95% CI

length decrease to an apparent limit. For sufficiently large L the error is negligible

in comparison to the posterior SD of CTS0(γ).

The effect of further increasing L has decreasing impact on SD and 95% CI length.

If true RESDs are moderate (≈ 0.5), then L = 100 seems sufficient. However, if

RESDs are large then L = 1000 seems preferable and picking a smaller L might have

an impact on inferences. Taking L = 10000 offers little additional precision.

In a second simulation we measure uncertainty in approximating CTS0(γ) with

equation (2.10) for RESDs = 0.5 or 1.0. We sample 10000 replicates of LR+0.

The sampling standard deviation of LR+0 is 1.703 when the RESDs are 0.5 and is

4.674 when the RESDs are 1. Therefore the standard error SEwithin of the CTS0(γ)

calculation in equation (2.2.1) for LR+0, is 1.703/
√
L or 4.674/

√
L, and the user

must decide what value of L makes SEwithin desirably small. The bottom row of

Table 2.2 with L = 10000 offers a close approximation to the between-MC standard
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deviation SDbetween for CTS0. The user’s choice of L should depend on the ratio of

within-MC SE to between-MC SD. We recommend at least SEwithin/SDbetween < 0.1.

For Simulations 2 and 3 and the Syncope data analysis we use L = 1000.

2.3.2 Simulation 2: estimating CTS0

Simulation 2 evaluates how accurately the posterior mean of CTS0, E[CTS0|Y ], from

the 3RE model estimates the true CTS values LR+0, LR−0, PPV0, NPV0, Sens0,

and Spec0 for a new study and how far off the naive plug-in estimator CTSplug is from

CTS0. We fix δ0 = 2, vary σδ ∈ {0.1, 0.25, 0.5}, and vary the number S of studies

per meta analysis with S ∈ {10, 30, 50} in a 3×3 factorial design for 9 scenarios.

Let Tk be the posterior mean of the estimand of interest in simulation iteration

k, k = 1, . . . , K, and define the simulation mean T = 1
K

∑K
k=1 Tk and variance

VT = 1
K−1

∑K
k=1(Tk −T )2, and let µ be the known target value that Tk is estimating.

We choose K to make the Monte Carlo standard error (MCSE) of relative bias,

MCSE(rBias) =
√
VT/(Kµ2), sufficiently small for each scenario. In this simulation

we define Tk as the posterior mean Tk = E[CTS0|Yk] for the CTSs LR+, LR−,

NPV, PPV, Sens, and Spec. We calculate target values µ for each scenario by

generating 100,000 probability tables from equations ((2.2)) - ((2.7)) using the known

hyperparameters γ, calculating the desired CTSs for each probability table, and

averaging each CTS across tables. Using a preliminary set of 100 simulations, we

calculate K2 = 2500 such that MCSE(rBias) < 0.0025 for all scenarios and CTSs.

We record the posterior mean, SD, and 95% CI for every CTS for both CTS0

and CTSplug and calculate bias, 95% CI coverage, average 95% CI length, and root

mean-squared error (RMSE) for the CTSs LR+, LR−, NPV, PPV, Sens, and Spec.
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Figure 2.1 shows bar plots of 100∗bias for each CTS, combination of S and σδ,

and CTS0 or CTSplug. Dotted bars plot the bias for CTSplug and solid bars plot

the bias for CTS0. For sample sizes S = 30 and 50, CTSplug has bias that is both

significantly different from zero and larger than bias for CTS0, with CTSplug bias

surprisingly increasing as sample size increases for NPV and Spec, which we discuss

further in Section 2.5. There is a similar pattern in Figure 2.2 for RMSE, where

RMSE for CTS0 is smaller than for CTSplug when S ∈ {30, 50}, although not always

significantly. Figure 2.3 shows that 95% CI coverage of CTS0 is always greater than

or equal to 95%, while CTSplug 95% coverage falls significantly below 95% for NPV,

PPV, and Spec as S increases for all values of σδ, and for LR+ when σδ = 0.5. We

expect CTS0 to have larger uncertainty than CTSplug because CTS0 accounts for

variation in random effects, so an unexpected result in Figure 2.4 was that 95% CIs

using CTS0 are shorter on average than those of CTSplug for LR− and Sens.

Overall, CTS0 from the MC procedure tends to have lower bias and lower RMSE

than the plug-in estimator as S increases. It also maintains at least nominal coverage

as S increases, while the plug-in estimator sees coverage probabilities fall below

nominal levels for multiple CTSs.

2.3.3 Simulation 3: true zero and non-zero effects

For simulation 3, we vary δ0 ∈ (0, 1, 2) and σδ ∈ (0.1, 0.25, 0.5) in a 3×3 factorial

experiment with 9 scenarios. The number of simulation iterations K3 is set equal to

1000 so that the posterior probability Tk = P (δ0 = 0|Yk) has MCSE(T ) < 0.005. For

each scenario we generate K3 = 1000 datasets, where every dataset Yk has S = 10

studies. For each iteration k = 1, . . . , 1000 we fit the 3RE-SAS model to data Yk and
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calculate P (δ0 = 0|Yk) as the proportion of MCMC samples in which ρ = 0.

Posterior P (δ0 = 0|Y )
σδ δ0 = 0 δ0 = 1 δ0 = 2

Mean
0.10 0.9286 0.0001 0.0000
0.25 0.8976 0.0011 0.0000
0.50 0.8494 0.0249 0.0001

SD
0.10 0.0655 0.0003 0.0000
0.25 0.0920 0.0068 0.0000
0.50 0.1251 0.0566 0.0002

Table 2.3: Simulation mean and SD of posterior P (δ0 = 0|Y ) across 1000 simulation
iterations for each combination of σδ ∈ {0.1, 0.25, 0.5} and δ0 ∈ {0, 1, 2}. The first
three rows give the mean over simulations of the posterior probability P (δ0 = 0|Y )
that the logs odds ratio δ0 is zero, and the last three rows give the SD over simulations
of P (δ0 = 0|Y ).

Figure 2.5 presents boxplots of the distribution of P (δ0 = 0|Yk) for each combi-

nation of (δ0, σδ) and we report the mean and standard deviation of P (δ0 = 0|Yk)

for each situation in Table 2.3. There is a clear distinction in Figure 2.5 between

simulations with δ0 = 0 (left-most boxplot in each panel) and simulations with δ0 ̸= 0

(middle and right-most boxplot in each panel). The simulation mean of P (δ0 = 0|Yk)

is near zero for true non-zero effects δ0 ∈ (1, 2), and ranges from 0.79 to 0.91 for true

mean zero effects δ0 = 0.

2.4 Syncope data analysis: assessing diagnostic utility of

regularly measured covariates

Syncope, defined as transient loss of consciousness with rapid and spontaneous recov-

ery, accounts for approximately 1.3 million emergency department (ED) visits every

year in the United States (Probst et al., 2015). Syncope is often harmless, but may
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be a harbinger of an impending serious cardiac event. ED physicians have difficulty

determining which patients are at high risk for an event, and as a result admit up

to 85% of older adults presenting with syncope (Birnbaum et al., 2008) even though

only 5-10% of those presenting to the ED will have an event in the ensuing 30 days

(Gibson et al., 2018). Given the difficulty of predicting serious cardiac events, we

wish to measure the diagnostic value of regularly measured risk factors and deter-

mine which risk factors may have zero diagnostic value in predicting 30-day adverse

events. Potential risk factors include demographics/comorbidities, symptoms, phys-

ical findings, and biomarkers.

There are 12 studies which each report information on some but not all risk

factors; we meta-analyze 31 risk factors for which at least 2 studies provided a 2×2

table. For each analysis we first assess P (δ0 = 0|Y ) using the 3RE-SAS model and

then we re-run the model with a continuous prior for δ0 and summarize posteriors

of LR+0, LR−0, PPV0, and NPV0. We remove samples in which LR+0 > 30; the

largest fraction of samples removed was 1.35%. To account for the trimmed posterior

sample size, in each analysis we set 5100 MCMC iterations in each of 4 chains, discard

the first 1000 iterations as burn-in and use a thin of 2, leaving at least 8000 MCMC

samples from each posterior after trimming. If the posterior probability of the risk

factor having no effect is > 0.5, one would usually forego computing CTS0 estimates

because they would be close to their null values and would be unlikely to provide

any diagnostic value.

Tables 2.4 and 2.5 detail results for the 20 RFs with P (δ0 = 0|Y ) < 0.5, and

Tables 2.6 and 2.7 detail results for the 11 RFs with P (δ0 = 0|Y ) > 0.5. Rows

for each Table are sorted by P (δ0 = 0|Y ), labeled “Spike”, from lowest to highest.

Columns of Tables 2.4 and 2.6 give posterior means and 95% CIs for the CTSs LR+,
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LR−, NPV, PPV, and columns of Tables 2.5 and 2.7 give posterior means and CIs

for Sens and Spec. Risk factors with more studies have smaller posterior SDs, and

risk factors with high posterior probability of specificity near 1 tend to have wider

CIs for LR+0. In many circumstances, a threshold of LR+ > 10 or LR− < 0.1 are

used to either rule in or rule out an impending adverse event with the presence or

absence of a risk factor, respectively (Deeks and Altman, 2004; Ranganathan and

Aggarwal, 2018). No variables have posterior mean LR+0 > 6.62 or LR−0 < 0.44,

which highlights the difficulty physicians face in determining which syncope patients

are at high risk of an adverse event. Results for all 31 RFs are available in Web

Table 3 of the Supporting Information, which also includes results for sensitivity and

specificity.

The biomarkers troponin, urea, and creatinine have the fewest studies in this

meta-analysis, but appear to be promising diagnostic predictors of adverse events

with large mean values of LR+0. The RFs history CHF (congestive heart failure)

and Dyspnea (shortness of breath) have the highest mean PPVs. Figure 2.6 shows

contour plots of LR+0 vs LR−0 for the four risk factors with the smallest posterior

P (δ0 = 0|Y ), which are age, male gender, CHF, and history of heart disease. We see

varying degrees of correlation between LR+ and LR−, with a correlation of −0.15

for age and of −0.94 for male gender.

2.5 Discussion

Given information such as the probability of the risk factor ψS+1, in a future study

S+1, one can incorporate the information to more accurately predict CTS[S+1]’s. For

example, say we know that 5%, 10%, or 25% of people in some new population have
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elevated blood troponin. Table 2.8 lists posterior summaries for CTS0s given known

values of P(elevated troponin in new study) = ψS+1 ∈ {.05, .10, .25}. We see that

rising prevalence of elevated blood troponin corresponds with increasing sensitivity,

and decreasing specificity, LR− and LR+, while there is no effect on NPV and PPV

because NPV and PPV condition on the presence or absence of the risk factor.

The Monte Carlo-within MCMC procedure to calculate CTS0 is conveniently im-

plemented with a post-processing step after MCMC fitting, rather than implemented

within MCMC. Given posterior draws γ(m),m = 1, . . . ,M , we estimate CTS0(γ
(m))

for each m outside of the MCMC algorithm.

In simulation 2 comparing CTS0 and the plug-in estimators, the bias for NPVplug

and Specplug increased with the number of studies S. The CTSs, either plug-in or

predictive are non-linear functions of the means or of the random effects. NPV

and Spec in particular have upper bounds of 1 and their posteriors or predictive

distributions tend to have long left tails. With increasing S, posteriors of the mean

parameters β0, δ0, and ν0 will become more bell curve shaped with smaller variances.

In contrast, with increasing S, the random effects variances will converge to their

true values and will not decrease. For NPVnew and Specnew, these long left tails

remain with increasing S, while for NPVplug and Specplug, the decreasing variance

with increasing S means that the non-linear transformation is better and better

approximated by a linear transformation and the long left tails are reduced with

increasing S. Thus the plug-in estimators’ posterior means tend to look more like

the non-linear function applied to the posterior means of β0, δ0, and ν0 while posterior

means for NPVnew and Specnew will be consistently less than NPVplug and Specplug.

One can incorporate information from studies that only report a log(OR) δ̂i and
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its standard error SE(δ̂i). We model δ̂i as drawn from a normal distribution centered

around its true log(OR) δi with variance equal to SE(δ̂i)
2

δ̂i|δi ∼ N(δi, SE(δ̂i)
2),

where the true log(OR) δi is distributed as in ((2.4)). Studies reporting pairs(
δ̂i, SE(δi)

)
provide information on the mean and variance (δ0, σ

2
δ ) of the random

effects for the log(OR). If there is a set of additional studies reporting 2×2 tables

with fixed row-totals, we can model them using ((2.1)) - ((2.3)). They provide in-

formation on (δ0, σ
2
δ ) and the mean and variance (β0, σ

2
β) of the random effects for

the log-odds of the event but not on the value of νi. If the set of additional studies

instead have fixed column-totals, one can reformulate the model using the “opposite”

parameterization, where the parameters (βi, δi, νi) represent the log-odds of the risk

factor, the diagnostic log(OR), and the probability of the event respectively in study

i. Column totals are often fixed for case-control or diagnostic studies.

If there is suspected correlation between the random effects βi, δi, and νi, they

may be modeled with a multivariate normal distribution


βi

δi

νi

 ∼ N



β0

δ0

ν0

 , Σ =


σ2
β ρβδσβσδ ρβνσβσν

ρβδσβσδ σ2
δ ρδνσδσν

ρβνσβσν ρδνσδσν σ2
ν




with an inverse-Wishart prior on the covariance matrix. In this paper we model

the random effects as independent because the syncope data analysis showed nearly

identical results.

There is also potential for meta-analysis results to be used for prior specification
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in the design and analysis of a future study. The posterior probability P (δ0 = 0|Y )

can be used to either screen out variables in future analyses, or can be used as prior

probabilities in a Bayesian variable selection model using spike-and-slab priors for

regression coefficients, as was done in Probst et al. (2020).
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Figure 2.1: Bar plot of 100 ∗ bias for each CTS and for each combination of S ∈
{10, 30, 50} on the y-axis and σδ ∈ {0.1, 0.25, 0.5} indicated by green, red, and blue,
respectively. Dotted bars plot bias for the plug-in estimator CTSplug and solid bars
plot bias for the Monte Carlo estimator CTS0. Error bars represent ±1.96×MCSE.
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Figure 2.2: Plot of RMSE for CTS0 (solid lines) and CTSplug (dotted lines). Each
panel plots RMSE for a different CTS against sample size ∈ {10, 30, 50} on the x-axis
and σδ ∈ {0.1, 0.25, 0.5} indicated by green, red, and blue lines, respectively. Vertical
error bars plot ±1.96×MCSE.
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Figure 2.3: Coverage probabilities for 95% posterior intervals (PIs) for CTS0 (solid
lines) and CTSplug (dotted lines) methods. Each panel plots coverage probability
for different a different CTS against sample size ∈ {10, 30, 50} on the x-axis, with
σδ ∈ {0.1, 0.25, 0.5} indicated by green, red, and blue lines respectively. Vertical bars
plot ±1.96×MCSE.
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Figure 2.4: Average 95% posterior interval (PI) lengths for CTS0 (solid lines) and
CTSplug (dotted lines). PI endpoints were taken as the 2.5th and 97.5th posterior
quantiles. Each panel plots average 95% PI length for a different CTS against sample
size ∈ {10, 30, 50} on the x-axis, and σδ ∈ {0.1, 0.25, 0.5} indicated by green, red,
and blue lines respectively. Vertical bars, though difficult to see for most points, plot
±1.96×MCSE.
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odds ratio is zero for each combination of σδ and δ0 in simulation 3.
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Figure 2.6: Posterior contour plots of LR− on the y-axis against LR+ on the x-axis
for the four syncope risk factors with the smallest posterior P (δ0 = 0|Y ). These
are old age, male gender, history of congestive heart failure (CHF), and history of
heart disease. Higher (lower) values of LR+ (LR−) signal stronger diagnostic utility.
Contour lines represent 5%, 25%, 50%, 75%, and 95% credible regions.
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CHAPTER 3

Mitigating Publication Bias Using Bayesian

Stacking

Results from a meta-analysis may be skewed and unreliable in the presence of pub-

lication bias, where the publication or non-publication of a study depends on the

statistical significance or magnitude of its results (Rothstein et al., 2006). Various

statistical methods have been proposed for meta-analysis with suspected publica-

tion bias, including hypothesis tests for the presence/magnitude of publication bias,

methods for calculating bias-corrected parameter estimates, and sensitivity analyses

that use a grid representing varying levels of publication bias and estimate param-

eters of interest under each assumed scenario. If results do not change much under

an assumption of severe publication bias they are robust, and if results do change

under an assumption of mild publication bias they are sensitive. Most methods are

either based on the funnel plot or selection models.

Methods based on the funnel plot (Light and Pillemer, 1984) – a scatterplot

of effect sizes on the x-axis against their standard errors on the y−axis – inspect

the plot’s asymmetry to test or correct for bias. Say we have S studies indexed

by i = 1, . . . , S with estimated effect sizes yi and associated standard errors si. A

popular non-parametric test for publication bias (Begg and Mazumdar, 1994) defines
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standardized effect sizes y∗i as

y∗i = (yi − y)/(v∗i )
1/2

y =
(∑

j

(v−1
i )yi

)
/
(∑

j

v−1
i

)
v∗i = vi −

(∑
j

v−1
i

)−1

,

where y is the inverse-variance weighted mean effect size and v∗i is the variance of

yi − y. Begg and Mazumdar (1994) measure the rank correlation between pairs

(y∗i , vi) with Kendall’s tau, where a symmetric funnel plot would have correlation

near zero. Egger’s test (Egger et al., 1997) fits a linear regression of standardized

effect sizes yi/si against the inverse standard errors 1/si, i.e.

yi/si = α + β × (1/si) + ϵi, ϵi
iid∼ N(0, σ2). (3.1)

Egger et al. (1997) test the null hypothesis H0:α = 0; justification for testing α = 0

is that, on a plot with 1/si on the x-axis and yi/si on the y-axis, small studies will

have small 1/si and small yi/si and will thus be close to zero on both x− and y−axes,

while large studies will have large 1/si and large yi/si if the treatment is effective and

will be far from zero on both x− and y−axes. So a set of studies from a homogeneous

population with no publication bias will produce a regression line running through

the origin at y/s = 0. Macaskill et al. (2001) proposed a variant of Egger’s test for

binary outcome data comparing a treatment with placebo, regressing log-odds ratios

yi on total sample sizes ni and weighting observations by the inverse variance of the

pooled log-odds of the event in study i. Peters et al. (2006) proposed a weighted

regression similar to Macaskill et al. (2001), but instead regresses effects yi on the
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reciprocal of the sample size. Lin and Chu (2018) develop a measure for the severity

of publication bias based on the skewness of standardized effects yi/si.

Another funnel plot-based method, the trim-and-fill method (Duval and Tweedie,

2000), calculates a bias-adjusted estimate for the mean effect θ by 1) estimating the

number of missing studies k0, 2) “trimming” (removing) the smaller studies that are

causing funnel plot asymmetry, 3) estimating the mean effect θ with the remaining

studies, and 4) replacing trimmed studies, imputing their missing counterparts to

recreate a symmetric funnel plot, and re-estimating the mean effect and its variance.

Duval and Tweedie (2000) recommend using trim-and-fill as a sensitivity analysis

based on the potential number of missing studies, with general guidelines for sensi-

tivity analysis for trim-and-fill given in Shi and Lin (2019). The trim-and-fill method

is the only funnel plot-based method that offers an adjusted mean estimate, and it

is not recommended in a random-effects meta-analysis (Jin et al., 2015).

A second class of methods are based on selection models, first described in Hedges

(1984). Let Y be a random variable of effect sizes for studies in a population and let

Θ be the parameters determining the sampling density fY (y; Θ). Selection models

assume a biased sampling scheme where only a subset of all studies in the popula-

tion are included in a meta-analysis, and the probability of a study being observed

(published) is given by a weight function w(y;λ), where λ, a scalar or vector param-

eter, determines how certain studies may be more or less likely to be published. The

observed effects yi, i = 1, . . . , S come from the weighted density

f ∗(yi; Θ, λ) =
f(yi; Θ)w(yi;λ)∫
f(y; Θ)w(y;λ)dy

(3.2)
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and the likelihood function for Θ based on the observed studies is

L(Θ, λ) =
S∏

i=1

f ∗(yi; Θ, λ). (3.3)

Some selection models explicitly model the probability of publication for individual

studies as a function of their p-values (Iyengar and Greenhouse, 1988; Hedges, 1992;

Givens et al., 1997; Vevea and Hedges, 1995) or as a function of both the effect

size and standard error (Copas, 1999; Copas and Shi, 2000, 2001). Hedges (1992)

introduced stepped weight functions of p-values by dividing the unit interval [0, 1] into

K segments with K − 1 change points, where studies that have p-values in different

segments have different probabilities of publication. We refer to stepped selection

functions by the number of change points, i.e. a 1-step selection function has a single

change point at possibly p = 0.05, or a 2-step function might have change points at

p = 0.05, 0.10. Selection models have been recommended primarily for sensitivity

analyses because of identifiability issues in smaller meta-analyses (Vevea and Woods,

2005; Jin et al., 2015). However, Bayesian implementations of the Copas selection

model (Mavridis et al., 2013; Bai et al., 2020) have been proposed for estimation of

mean effect sizes.

Recent approaches to mitigating publication bias have used Bayesian model av-

eraged meta-analysis (BMA-MA) to consider a set of potential selection functions.

Guan and Vandekerckhove (2016) consider four different selection functions of p-

values, including a no-bias model, an extreme-bias model where studies with p-values

p > α are never published, a 1-step function where studies with p > α are published

with some probability π < 1 and studies with p < α are published with probability

1, and a model where the probability of publication decreases exponentially with
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p. Guan and Vandekerckhove (2016) only implement the models in a fixed-effects

framework. Maier et al. (2022) evaluates a set of 12 models, using a 2×2×3 factorial

design with fixed/random effects, a true null/alternative hypothesis, and the pres-

ence/absence of publication bias with two possible selection functions. Maier et al.

(2022) fit one-step and two-step selection functions based on p-values when publi-

cation bias is assumed, where the probability of publication changes at p = 0.05

(one-step) or at both p = 0.05 and p = 0.10 (two-step). They call their method

Robust Bayesian Meta-analysis (RoBMA).

Bayesian model averaging (BMA) effectively assumes that one of the considered

models is the “true” model, which is called the M-closed setting (Bernardo and

Smith, 2009). BMA does not perform as well under the M-complete or M-open

settings, where the true data generating mechanism is too complex to implement or

to put into a probabilistic framework (Bernardo and Smith, 2009; Le and Clarke,

2017). Multiple issues arise for BMA in these settings, including (a) the need to

specify prior model probabilities, which makes little sense when we know the true

model is not in our list, and (b) the model weights from BMA will converge to 1

for the model “closest” to the true model in terms of Kullback-Leibler divergence,

and 0 for all others (Clyde and Iversen, 2013). Yao et al. (2018, 2021) proposed

Bayesian stacking of predictive distributions as a method for model combination and

showed that it outperforms BMA in a variety of M-complete and M-open settings

and avoids issues (a) and (b) above. Given data y = (y1, . . . , yS) and K candidate

models M1, . . . ,MK , the goal is to find a predictive distribution that is close to the

unknown true data generating mechanism. Yao et al. (2018) suggest a weighted

average of model-specific posterior predictive distributions and find model weights

r = (r1, . . . , rK) in the K-simplex r ∈ RK
1 = {r ∈ [0, 1]K :

∑K
k=1 rk = 1}. They do
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this by maximizing the expected log-predictive density (elpd) of the weighted leave-

one-out (LOO) predictive densities p(yi|y−i,Mk) evaluated at yi, where y−i is the

data y with observation i left out. It would be computationally costly to refit each

model Mk S times, so LOO densities p(yi|y−i,Mk) are approximated using Pareto-

smoothed importance sampling (Vehtari et al., 2017). We explain Bayesian stacking

in detail in Section 3.1.1.

Given that the true data generating mechanism for publication bias is likely much

too complex to be specified in a simple selection model, we propose using Bayesian

stacking to mitigate publication bias by fitting multiple Bayesian selection models

and stacking over them. Models of publication bias that poorly predict the observed

data with LOO cross validation will be given little weight. We propose stacking

over multiple types of models, including step functions (Vevea and Hedges, 1995)

Bayesian Copas selection models (Mavridis et al., 2013; Bai et al., 2020), and a novel

sloped selection model based on p-values. Section 3.1 describes Bayesian stacking,

the selection models for publication bias that we use, and how to implement Bayesian

stacking of selection models. We then describe and summarize a simulation study

in Section 3.2. The purpose of the simulation is to compare a stacked estimate of

the mean effect size to estimates from individual selection models and RoBMA when

the true data generator is not one of the fitted selection models. We use the stacked

model to adjust for publication bias for three datasets on (1) the effects of second-

hand smoke on the likelihood of developing lung cancer, (2) gender effects in grant

proposals, and (3) the effects of cognitive behavioral therapy on recidivism in Section

3.3. The paper closes with discussion.
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3.1 Methods

We are doing a meta-analysis with S studies indexed by i = 1, . . . , S, where each

study provides an estimated effect yi and standard error si. We calculate study i’s 1-

sided p-value as p(yi, si) = 1−Φ(yi/si) and study i’s 2-sided p-value as p(yi, si) = 2×(
1−Φ(|yi|/si)

)
where Φ(·) is the standard normal cumulative distribution function.

The sampling density for study i is

yi = θi + siϵi (3.4)

θi|θ, τ 2 ∼ N(θ, τ 2) (3.5)

where θi is a random study effect normally distributed around global mean θ with

unknown variance τ 2, and ϵi ∼ N(0, 1) is a random residual. We marginalize over

random effects θi in model (3.4) - (3.5) giving a marginal model for yi as

yi|θ, τ 2 ∼ N(θ, s2i + τ 2). (3.6)

We will fit K separate selection models Mk, k = 1, . . . , K to the S studies in the

analysis. No model is likely to capture the true data generating mechanism, so we

will stack over the K models to find a predictive distribution closer to the true data

generating mechanism. We describe Bayesian stacking before defining the models

that we stack over.
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3.1.1 Bayesian stacking

We have K candidate models Mk indexed by k = 1, . . . , K and data y = {yi},

where each model Mk includes a common parameter θ. We want to build a more

robust model to make inference about θ by combining the model-specific posteriors

Pk(θ|y), where Pk(θ|y) is the posterior distribution of θ under model Mk. The M-

open perspective assumes our list of candidate models does not include the true data

generating mechanism (Bernardo and Smith, 2009). Bayesian stacking (Yao et al.,

2018) is an alternative to Bayesian model averaging that has been shown to have

superior performance in several M-open data analysis scenarios.

Bayesian stacking utilizes proper scoring rules (Gneiting and Raftery, 2007),

which measure the concordance of a probabilistic forecast P over a sample space

Y with the true data-generating mechanism Q over Y . Formally, say Y is a sample

space on [−∞,∞]; for a probabilistic forecast P over Y , identified by its density

function p(y), y ∈ Y , the log-score S is defined as S(P, y) = log(p(y)) for a realiza-

tion y from Y . The expected score of a forecast P under the true sampling density

Q is

S(P,Q) =

∫
S(P, y)dQ(y). (3.7)

The generic stacking problem is to find the optimal vector of model weights r =

(r1, . . . , rK) in the K-simplex that maximizes the expected log-score of the weighted

sum of predictive distributions
∑K

k=1 rkp(ỹ|y,Mk) of future data ỹ relative to the

hypothetical true distribution of future data pT (ỹ|y). Yao et al. (2018) define the
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stacking problem as solving

arg max
r∈RK

1

S
( K∑

k=1

rkp(ỹ|y,Mk), pT (ỹ|y)
)

(3.8)

for r. Because we do not know the true distribution pT (ỹ|y), Yao et al. (2018) re-

place the “true” predictive distribution pT (ỹ|y) with the empirical CDF F̂n(x) =

1
n

∑
i 1[yi<x], and replace model k’s predictive distribution p(ỹ|y,Mk) with its corre-

sponding leave-one-out (LOO) predictive distribution

p̂k,−i(yi) =

∫
p(yi|θk,Mk)p(θk|y−i,Mk)dθk, (3.9)

where θk are the parameters in model k and subscript −i denotes the data y with

observation i left out. The expected log-score is then a sum over the n data points

yi rather than an integral over the true sampling distribution. The stacking problem

with S(P, y) = log(y) reduces to solving for weights r with

(r̂1, . . . , r̂K) = arg max
r∈RK

1

1

n

n∑
i=1

S
( K∑

k=1

rkp̂k,−i, yi

)
(3.10)

= arg max
r∈RK

1

1

n

n∑
i=1

log
K∑
k=1

rkp̂k,−i(yi). (3.11)

The stacked posterior distribution of a common parameter θ is the mixture P (θ|y, r̂) =∑
k r̂kPk(θ|y), and samples from the stacked posterior are obtained by mixing r̂k×T

random samples from each model k’s posterior distribution Pk(θ|y) and combining

them for a total of T posterior samples.

Rather than refitting each model Mk S times, Bayesian stacking uses Pareto
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smoothed importance sampling (PSIS) (Vehtari et al., 2017) to calculate LOO pre-

dictive densities p̂k,−i(yi). The PSIS calculation provides a diagnostic value ĥki for

each LOO approximation p̂k,−i(yi) which measures the reliability of the approxima-

tion to pk,−i(yi), where ĥki > 0.7 signals a potentially unreliable approximation. For

calculations of p̂k,−i(yi) with diagnostic ĥki > 0.7, we refit the model to sample from

the exact LOO distribution pk,−i(yi). To calculate LOO predictive densities for mod-

elsMk using PSIS, we need the posterior distribution of the point-wise log-likelihood

pk(yi|θk,Mk) for each observation yi.

3.1.2 Stepped selection function of p-values

To model the process through which studies are chosen to be in a meta-analysis,

define a stepped weight function w(·) (Vevea and Hedges, 1995; Vevea and Woods,

2005) that is constant on intervals, where w(p) is the probability that a study with

p-value p is observed. We divide the unit interval into J sub-intervals, where a study

with a p-value pi has a probability of publication that corresponds to the sub-interval

pi falls into. Let aj−1 > aj, j = 1, . . . , J , be decreasing change points where a0 = 1

and aJ = 0 and define

w(p) =


ω1 if a1 < p < 1

ωj if aj < p < aj−1

ωJ if 0 < p < aJ−1.

(3.12)

Let ω = (ω1, . . . , ωJ) be the vector of weights associated with the J sub-intervals of

[0, 1]. The likelihood contribution for each study i given θ, τ 2, and weight function
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w(·) is

f(yi|θ, τ 2,ω) =
ϕ(yi; θ, τ

2 + s2i )× w(pi)∫
ϕ(x; θ, τ 2 + s2i )× w(p(x, si))dx

, (3.13)

where ϕ(x; a, b) is a normal probability density function evaluated at x with mean

a and variance b. Maier et al. (2022) place a cumulative-Dirichlet prior distribution

on the weights ω, by first placing a symmetric Dirichlet prior on an auxiliary J × 1

vector parameter ω̃ in the J−simplex,

ω̃ ∼ Dirichlet(1J) (3.14)

and setting elements ωj of ω to be the cumulative sum

ωj =

j∑
k=1

ω̃k, j = 1, . . . , J, (3.15)

where 1J is a J-vector of 1’s. This restricts ω to have increasing probability of

publication with decreasing p-values, and ωJ = 1. The symmetric Dirichlet prior

on ω̃ leads to prior means ( 1
J
, 2
J
, . . . , 1) for ω. Restricting ωJ = 1 means each ωj is

the relative probability of publication for a study in interval j compared to a study

in interval J . We consider a variety of weight functions w(p) by varying both the

number of intervals J and the choice of change points aj and consider both one-sided

and two-sided p-values.

3.1.3 Sloped selection function of p-values

We define a new sloped publishing probability w(p) as a continuous non-increasing

piecewise linear function of p-values that is constant on the first and last intervals.
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We again divide the unit interval into J segments with J − 1 decreasing knots aj,

j = 1, . . . , J − 1, with a0 = 1 and aJ = 0, and define the publishing probability as

w(pi) =


ω1 if a1 ≤ pi ≤ 1

ωj +
ωj−1−ωj

aj−1−aj
(pi − aj) if aj ≤ pi < aj−1

ωJ−1 if 0 ≤ pi < aJ−1.

(3.16)

We set ωJ−1 = 1 so that w(pi) is the probability of observing a study with p-value pi

relative to a study with p-value in the interval [0, aJ−1]. At the knots, (3.16) ensures

that w(aj) = ωj, and w(pi) decreases linearly from ωj to ωj−1 when aj < pi < aj−1.

For study i with effect yi, standard error si, and p-value pi, the sampling density of

yi is

f(yi|θ, τ 2,ω) =
ϕ(yi; θ, τ

2 + s2i )× w(pi)∫
ϕ(x; θ, τ 2 + s2i )× w(p(x, si))dx

. (3.17)

Computation of the integral in the denominator of (3.17) is tricky, but calculation

is made easier by breaking the integral into a sum of smaller integrals. For one-sided

p-values, we divide the real line [−∞,∞] into J sub-intervals defined by cut points

a∗j = siΦ
−1(1− aj), where a

∗
0 = −∞ and a∗J = ∞. The denominator of (3.17) can be

rewritten as
J−1∑
j=0

∫ a∗j+1

a∗j

ϕ(x; θ, τ 2 + s2i )× w(p(x, si))dx (3.18)

where each range (a∗j , a
∗
j+1) corresponds to the range of x values that produce p-

values in the range (aj+1, aj) given standard error si. The first and last integrals in
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the sum (3.18) are

∫ a∗1

−∞
ϕ(x; θ, τ 2 + s2i )dx = Φ

(
(a∗1 − θ)/

√
τ 2 + s2i

)
and

ω1

∫ ∞

a∗J−1

ϕ(x; θ, τ 2 + s2i )dx = ω1

(
1− Φ

(
(a∗J−1 − θ)/

√
τ 2 + s2i

))
and are each calculated with one evaluation of the normal CDF. The integrals in

(3.18) for j = 1, . . . , J − 2 can be calculated using quadrature methods, but to

increase computation speeds we instead use properties of the normal distribution as

∫ a∗j+1

a∗j

ϕ(x; θ, τ 2 + s2i )w(p(x, si))dx

=

∫ a∗j+1

a∗j

ϕ(x; θ, τ 2 + s2i )
(
ωj+1 +

ωj − ωj+1

aj − aj+1

(1− Φ(x/si)− aj+1)
)
dx

=
(
ωj+1 +

ωj − ωj+1

aj − aj+1

(1− aj+1)
) ∫ a∗j+1

aj

ϕ(x; θ, τ 2 + s2i )dx

−
(ωj − ωj+1

aj − aj+1

)∫ a∗j+1

a∗j

ϕ(x; θ, τ 2 + s2i )Φ(x/si)dx.

(3.19)

The first term in equation (3.19) is the difference of two normal CDFs, while the

second integral can be rewritten with a change of variables

∫ a∗j+1

a∗j

ϕ(x; θ, τ 2 + s2i )Φ(x/si)dx

=

∫ ã∗j+1

ã∗j

ϕ(x; 0, 1)Φ
(x√τ 2 + s2i + θ

si

)
dx

(3.20)
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where ã∗j = (a∗j − θ)/
√
τ 2 + s2i is standardized. Define BvN(z1, z2; ζ) as the CDF of

a bivariate normal distribution with both means 0, both variances 1, and correlation

ζ, evaluated at z1 and z2. Owen (1980) showed that the integral

∫ U

−∞
ϕ(x; 0, 1)Φ(c1 + c2x)dx = BvN

( c1√
1 + c22

, U ; ζ =
−c2√
1 + c22

)
.

Thus equation (3.20) simplifies to

∫ ã∗j+1

−∞
ϕ(x; 0, 1)Φ

(x√τ 2 + s2i + θ

si

)
dx−

∫ ã∗j

−∞
ϕ(x; 0, 1)Φ

(x√τ 2 + s2i + θ

si

)
dx

(3.21)

= BvN
(
A, ã∗j+1; ζ

)
− BvN

(
A, ã∗j ; ζ

)
, (3.22)

where

A =
θ/si√

1 +
τ2+s2i
s2i

ζ =
−(τ 2 + s2i )/s

2
i√

1 +
τ2+s2i
s2i

.

We found that using (3.21) - (3.22) to calculate the sum of integrals (3.18) results

in posterior sampling speeds 3-4 times faster than calculating the integrals using

quadrature methods. For two-sided p-values the integral in the denominator of (3.17)

can be analogously broken into 2J − 1 x-value ranges that produce p-values in the

ranges (aj+1, aj), j = 1, . . . , J − 1, where a∗j = Φ−1(aJ−j/2) and a
∗
2J−j−1 = siΦ

−1(1−

aJ−j/2) for j = 1, . . . , J − 1, a0 = −∞, and a∗2J−1 = ∞.

We generally use the sloped weight function with two change points a1 and a2 so
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that there is a single parameter ω in (3.16) which is the probability of publication

for the largest p-value interval. We model ω as Uniform(0, 1).

3.1.4 Copas selection model

The Copas selection model (Copas, 1999; Copas and Shi, 2000, 2001) models the se-

lection probability of publication as a function of study effect yi and inverse standard

error 1/si. The probability of publication is modeled with a probit model. Introduce

latent variable zi modeled as

zi = γ0 +
γ1
si

+ δi, (3.23)

where zi models the publication process such that study i is selected (published) only

if zi > 0, Φ(γ0) is the baseline probability of publication as 1/si approaches zero , γ1

is the coefficient of 1/si, and δi is a random normal residual. Residuals ϵi from (3.4)

and δi are modeled as bivariate normal

ϵi
δi

 | ρ ∼ N

0

0

 ,

1 ρ

ρ 1

 (3.24)

where corr(ϵi, δi) = ρ. If ρ = 0 then the selection process does not depend on observed

effect sizes, regardless of standard errors si, and the estimate of θ from model (3.6) is

unbiased without selection modeling. Positive values of ρ indicate that larger values

of yi, relative to their true mean θi, are being selected for, while negative values of ρ

would show selection favoring larger negative values of yi.
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The unconditional probability that a study with standard error si is published is

P (zi > 0|si, γ0, γ1) = Φ(γ0 +
γ1
si
).

Thus, if γ0 is large and positive then all studies are published with high probability

regardless of the value of si or γ1. We restrict γ1 to be positive under the assumption

that larger studies are more likely to be published for several reasons, such as more

funding, and quality of writing. Larger values of γ1 lead to larger differences in

publication probabilities for studies with different standard errors.

We consider two Bayesian adaptations of the Copas model proposed by Mavridis

et al. (2013) and Bai et al. (2020). Both authors recommend a vague normal prior

for θ, such as N(0, 100). Bai et al. (2020) place priors directly on γ0 and γ1 as

γ0 ∼ Uniform(−2, 2)

γ1 ∼ Uniform(0, smax),
(3.25)

where smax is the largest observed standard error. This range of values for γ0 and

γ1 leads to unconditional selection probabilities between Φ(−2) = 2.5% and Φ(3) =

99.7% by restricting most of the mass for latent variables zi to the range (−2, 3).

Mavridis et al. (2013) instead places priors on the lower and upper bounds for the

probability of publication, Plow and Phigh, as

Plow ∼ Uniform(L1, L2)

Phigh ∼ Uniform(U1, U2),
(3.26)

where (L1, L2) and (U1, U2) represent plausible ranges for the probability of publica-
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tion for the studies with the largest and smallest standard errors, respectively. They

then transform (Plow, Phigh) to (γ0, γ1) with a 1-to-1 transformation

γ0 +
γ1
smax

= Φ−1(Plow)

γ0 +
γ1
smin

= Φ−1(Phigh)
(3.27)

where smin is the smallest observed standard error in the sample of S studies.

Priors (3.25) are meant to be default prior distributions, while (3.26) may re-

quire more problem-specific tuning, and the two priors lead to surprisingly different

posterior distributions for the mean parameter θ.

Mavridis et al. (2013) and Bai et al. (2020) both give ρ a noninformative

Uniform(−1, 1) prior distribution. We also consider two more informative prior

choices that may be preferred. The first is a boundary-avoiding prior for ρ, whose

density goes to zero at ρ = −1 and ρ = 1,

ρ̃ ∼ Beta(2, 2)

ρ = 2ρ̃− 1.
(3.28)

The boundary-avoiding prior is more conservative than the uniform prior and shrinks

ρ towards zero, and is a preferred option to avoid over-correcting for publication bias.

The second informative prior may be used if there is strong prior evidence that

publication bias is present. In a review of over 1000 meta-analyses from the Cochrane

Database of Systematic Reviews, Kicinski et al. (2015) found that “outcomes favor-

ing treatment had on average a 27% higher probability to be included than other

outcomes,” and also noted that meta-analyses including older studies were more
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likely to have publication bias. We define a positive-leaning prior

ρ ∼ N(aρ, bρ)1ρ∈(−1,1) (3.29)

where aρ > 0 and bρ > 0 are known. Prior (3.29) gives more prior mass to positive

values of ρ than negative values, indicating a prior belief that publication bias fa-

voring positive results is more likely than publication bias favoring negative results.

For example, setting aρ = 0.44 and bρ = 1 gives ≈ 1.5 times the prior mass to values

of ρ ∈ (0, 1] compared to ρ ∈ [−1, 0].

3.1.5 Stacking selection models for publication bias

It would be naive to think that any of the stepped selection functions in Section

3.1.2, sloped selection functions in Section 3.1.3, or the Copas models in Section

3.1.4 represent the true data generating mechanism for publication bias. As Bayesian

stacking is designed to perform well in the event that our model list does not contain

the true model, we propose stacking over both Copas models (Mavridis et al., 2013;

Bai et al., 2020) and a variety of stepped and sloped selection functions to obtain a

more robust posterior distribution for the mean parameter θ.

To fit the Copas models rewrite model (3.4) - (3.5), (3.23) - (3.24) as

yi
zi

 ∼ N

 θ

ui

 ,

τ 2 + s2i ρsi

ρsi 1

1zi>0. (3.30)

We need to calculate the log-likelihood for each observation i to stack models, and

55



model construction (3.30) leads to a simple form for the log-likelihood

L(θ, τ 2, ρ, γ0, γ1|{yi, si, zi}) =
S∑

i=1

log[p(yi|zi > 0, si)]

=
S∑

i=1

log

[
p(zi > 0|yi, si)f(yi|si)

p(zi > 0|si)

]

=
S∑

i=1

[
log Φ(vi) + log

(
ϕ(yi; θ, τ

2, si)
)

− log Φ(ui)
]

(3.31)

where ui = γ0 +
γ1
si

is the marginal mean E[zi|si],

vi =
ui + ρ̃i

yi−θ√
τ2+s2i√

(1− ρ̃2i )

is the mean of zi conditional on yi and si divided by its conditional standard deviation

E[zi|yi, si]/
√
Var[zi|yi, si], and

ρ̃i =
si

(τ 2 + s2i )
1/2
ρ

is the correlation cor(yi, zi).

While Bai et al. (2020) use default prior distributions (3.25) for the parame-

ters γ0 and γ1, Mavridis et al. (2013) instead advise meta-analysts to use expert

elicitation or historical data to specify (L1, L2) and (U1, U2) in (3.26) as plausible

bounds for the lower and upper probabilities of publication. To avoid the need for

strictly informative prior values, we specify (L1, L2) = (0, 0.5) and (U1, U2) = (0.5, 1),

meaning we believe the lower bound for publication probability is between 0-0.5,
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and the upper bound is between 0.5-1. Mavridis et al. (2013) gives τ a half-

normal prior τ ∼ N(0, 102)1τ>0, while Bai et al. (2020) uses a half-Cauchy prior

τ ∼ Cauchy(0, 1)1τ>0. We use the half-normal and half-Cauchy prior in the Mavridis

Copas and Bai Copas models, respectively. We fit the two Copas models in JAGS

(Plummer et al., 2003) and include them in every analysis.

In the set of stacked models we include eight stepped models, with either two-

sided or one-sided selection (Two-side or One-side) and either one or two change

points,

1. Two-side (1): single change point at p = 0.05,

2. Two-side (2): two change points at p = 0.05 and 0.50,

3. Two-side (3): two change points at p = 0.05 and 0.20,

4. Two-side (4): two change points at p = 0.01 and 0.10,

5. One-side (1): single change point at p = 0.025,

6. One-side (2): two change points at p = 0.025 and 0.50,

7. One-side (3): two change points at p = 0.025 and 0.10,

8. One-side (4): two change points at p = 0.005 and 0.05.

We include six sloped selection models with either two-sided or one-sided selection

(Slope-T or Slope-O) and two knots,

1. Slope-T (1): knots at p = 0.05 and 0.95,

2. Slope-T (2): knots at p = 0.05 and 0.50,
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3. Slope-T (3): knots at p = 0.01 and 0.10,

4. Slope-O (1): knots at p = 0.025 and 0.50,

5. Slope-O (2): knots at p = 0.025 and 0.10,

6. Slope-O (3): knots at p = 0.005 and 0.05.

We fit the stepped and sloped selection models in Stan (Gelman et al., 2015) because

of the ability to code the custom probability distribution (3.13), which also makes

calculation of the log-likelihood simple. We include the 8 stepped selection models

in all simulations and data analyses. Sloped selection models take much longer to

fit than stepped models, so we omit them in the main simulation in Section 3.2

but include them in a smaller simulation in Section 3.2.3 and in the data analyses

in Section 3.3. The two Copas models are included in every simulation and data

analysis.

3.2 Simulations

The aim of the simulation is to assess how well the stacked model described in Section

3.1.5 stacks up against the individual selection models and against Robust Bayesian

Meta-analysis (RoBMA) (Maier et al., 2022) in estimating the true mean effect θ.

We simulate data for meta-analyses using a 2× 2× 2× 4 factorial design with

• Two selection functions where one is one-sided and one is two-sided;

• There is a moderate and an extreme version for each selection function;

• Mean effect size θ0 = 0.1 or 0.5;
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• A small (10), medium (20), large (40), or very large (80) number of studies Sj

per meta-analysis on average;

for j = 1, . . . , 32 simulation scenarios. For the each simulation scenario j we generate

S̃j studies that are filtered through the selection function for scenario j such that

an average of Sj studies per analysis survive the selection mechanism and enter the

analysis. We set between-study SD τ = 0.2 and let study-specific standard errors

sij, i = 1, . . . , S̃j, be distributed as Uniform(0.1, 0.8). Study-specific true mean

effects θij are distributed as θij|θ0j, τ 2 ∼ N(θ0j, τ
2), i = 1, . . . , S̃j. We then sample

yij|θij ∼ N(θij, s
2
i ) as observed study effects. Each study i has a selection probability

αij as a function of its p-value 1−Φ(yij/sij) and inclusion or exclusion is determined

by independent Bernoulli random variables Bij|αij ∼ Bernoulli(αij). The selection

functions are chosen deliberately such that none of the stepped selection models,

sloped selection models, or Copas models can individually capture the true selection

mechanism.

We stack over the two Copas models, 8 stepped selection models, the standard

random effects model for K = 11 candidate models. With L simulation replicates,

for a given model with posterior mean estimates θ̂(l), l = 1, . . . , L, we evaluate model

performance using bias calculated as bias = 1
L

∑
k(θ̂

(l) − θ), 95% credible interval

(CI) coverage where 95% CI endpoints are the 2.5th and 97.5th posterior quantiles,

and root-mean squared error (RMSE) calculated as RMSE =
√

1
L

∑
l(θ̂

(l) − θ)2.

3.2.1 Selection functions

Figure 3.1 shows moderate (M) and extreme (E) forms for the two selection mecha-

nisms (SMs). The two SMs are deliberately designed such that none of the selection
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models fitted to a selected dataset can capture the true SM. SM1 is a function of a

one-sided p-value, has non-increasing selection probabilities with increasing p, and

has the general form

f1(p) =



1 if 0 ≤ p < 0.005

exp(c1 × p) if 0.005 ≤ p < 0.2

exp(c2 × p) if 0.2 ≤ p < 0.5

c3 if 0.5 ≤ p ≤ 1

(3.32)

where c = (c1, c2, c3) = (−0.5,−1, 0.5) for f1M and c = (−2,−4, 0.1) for f1E. SM1

is constant with selection probability 1 on the interval [0, 0.005), exponential decay

with different rates on [0.005, 0.2) and [0.2, 0.5), and constant selection probability

on [0.5, 1]. We define SM2 as a function of a one-sided p-value such that the selection

probability is lowest at p = 0.5 (i.e. effect y = 0). SM2 is asymmetric about p = 0.5

and has the general form

f2(p) =



1 if 0 ≤ p < 0.005

exp(d1 × p) if 0.005 ≤ p < 0.2

exp(d2 × p) if 0.2 ≤ p < 0.5

exp(d3 × (1− p)) if 0.5 ≤ p < 0.8

d4 if 0.8 ≤ p < 0.975

d5 if 0.975 ≤ p ≤ 1

(3.33)
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where d = (d1, d2, d3, d4, d5) = (−0.5,−1,−2, 0.7, 0.9) for f2M and d = (−2,−4,−5,

0.4, 0.6) for f2E. SM2 has the same form as SM1 on [0, 0.5), and then has exponential

increase on [0.5, 0.8) and constant selection probabilities on [0.8, 0.975) and 0.975, 1].

SM1 and SM2 are shown in the top and bottom panels of Figure 3.1, respectively.

3.2.2 Simulation results

We generated L = 200 replicates for all 32 scenarios. RMSE for each scenario

is shown in Figures 3.2 and 3.3, where Figure 3.2 is for SM1 and Figure 3.3 is for

SM2. Left/right panels represent θ = 0.1 or 0.5, respectively, and top/bottom panels

represent extreme or moderate selection. The standard random effects meta-analysis

is shown in blue, RoBMA is red, and stacking is green. The grey lines show the 10

selection models used for stacking. Stacking tends to have lower RMSE than both the

standard model and RoBMA as sample sizes increase, and performs particularly well

with extreme selection and small θ. Figures 3.4 and 3.5 show 95% interval coverage

for every scenario. CI coverage rates for the standard model and RoBMA decrease

considerably as sample sizes increase, while stacking maintains coverage near the

95% nominal level in all scenarios except a) extreme selection with small true mean

θ, and b) moderate selection with small θ and average sample size of 80. In (a),

no model shows coverage probabilities near the nominal level, although stacking is

among the closest for each sample size. For (b), all models except one-sided selection

with steps at p = 0.025, 0.5 have coverage probabilities drop below 0.9.

Figures 3.6 and 3.7 show bias for each model and simulation scenario. Stacking

shows low bias for each sample size and combination of θ and selection severity, often

having smaller bias than any individual model. One exception is the case of small
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sample sizes, moderate selection, and large θ, where stacking tends to give weight to

one-sided models that over-correct for publication bias. The standard model without

any correction for publication bias has the largest bias in almost every scenario. The

scenario with selection function 1, extreme selection, and θ = 0.1 yields the largest

bias across the board, with no model able to come close to reproducing the true

mean.

3.2.3 Secondary simulation including sloped selection models

In a smaller simulation we additionally include 6 sloped selection models defined in

Section 3.1.5 in the ensemble, giving K = 17 models to stack over, including the

6 sloped models, two Copas models, 8 stepped selection models, and the standard

model. We use selection function f2E and sample sizes S = 10 and 40. We compare

results from the stacked model with the standard model and RoBMA with bias, 95%

CI coverage, and RMSE.

Figure 3.8 shows bias, 95% CI coverage, and RMSE for each model. Stacking

has smaller bias than either the standard model or RoBMA, and the difference is

significant with an average sample size of S = 40 (stacking bias = 0.0007, RoBMA

bias = 0.035, standard bias = 0.069). RMSE is comparable for RoBMA and stacking,

around 0.11 for S = 10 and 0.06 for S = 40, and both are significantly better than

the standard model. The standard model and RoBMA have 95% CI coverage less

than the nominal level for S = 40 (RoBMA coverage = 0.88, standard coverage =

0.725) while stacking maintains the nominal coverage level.

Including the sloped selection models in stacking results in smaller absolute bi-

ases and smaller RMSE compared with the stacked model without sloped selection
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models. Without including the sloped models, bias for the stacking model was -0.071

for S = 10 and -0.01 for S = 40, compared with -0.029 and 0.0007 when including

the sloped models. RMSE without the sloped models was 0.137 or 0.060 for S = 10

or S = 40, and with the sloped models RMSE was 0.116 or 0.055 for S = 10 or

S = 40.

3.3 Data analyses

We illustrate Bayesian stacking of selection models for publication bias on three

datasets previously analyzed in the meta-analysis literature. In each example the

stacked model is comprised of 17 models including Two-sidd (1) - (4), One-side (1) -

(4), Slope-T (1) - (3), Slope-O (1) - (3), Mavridis Copas, Bai Copas, and the standard

random effects model. We compare the stacked posterior distribution of the mean

parameter θ with the posterior for θ from the standard meta-analysis model. In

each example the results from the standard model are nearly or exactly equivalent

to results reported in the original analyses, while the stacked model has posterior

mean closer to the null value θ = 0 and wider 95% CIs.

3.3.1 Second-hand smoke and lung cancer

Hackshaw et al. (1997) analyzed a set of 37 studies measuring the effects of second-

hand smoke on the likelihood of developing lung cancer. The studies included in

the analysis each measured the relative risk of lung cancer for women living with

spouses who smoked vs women living with spouses who do not smoke. The authors

performed a standard random-effects meta-analysis, finding a pooled relative risk

(RR) of 1.24 (95% CI 1.13-1.36). The dataset from Hackshaw et al. (1997) has been
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used to illustrate publication bias models in the past (Sterne et al., 2005; Ning et al.,

2017; Takagi et al., 2006).

Model Mean SD 2.5% 97.5% Stacking Weight
Stacked 0.111 0.076 -0.046 0.248 –
Standard 0.219 0.052 0.122 0.327 0.000
Mavridis 0.103 0.073 -0.036 0.255 0.244
Bai 0.167 0.081 -0.016 0.309 0.000
Two-side (1) 0.189 0.052 0.094 0.297 0.000
Two-side (2) 0.178 0.049 0.087 0.279 0.000
Two-side (3) 0.188 0.051 0.098 0.296 0.000
Two-side (4) 0.168 0.050 0.078 0.274 0.000
One-side (1) 0.179 0.055 0.072 0.293 0.000
One-side (2) 0.107 0.082 -0.064 0.249 0.266
One-side (3) 0.183 0.052 0.084 0.289 0.000
One-side (4) 0.130 0.059 0.019 0.248 0.342
Slope-T (1) 0.189 0.052 0.093 0.294 0.000
Slope-T (2) 0.183 0.050 0.093 0.285 0.000
Slope-T (3) 0.191 0.051 0.098 0.299 0.000
Slope-O (1) 0.101 0.091 -0.106 0.258 0.148
Slope-O (2) 0.156 0.062 0.034 0.276 0.000
Slope-O (3) 0.186 0.052 0.088 0.291 0.000

Table 3.1: Posterior summaries for each model using the second-hand smoke data
from Hackshaw et al. (1997). The stacked model has a drastically different posterior
distribution for θ than the standard meta-analysis, with a mean closer to 0 and larger
SD. Models contributing to the stacked posterior are the Mavridis Copas model, one-
sided stepped models with steps at (.025, .5) and (.025, .1), and a one-sided sloped
selection model with knots at (.025, 5).

The main endpoint θ is the log-relative risk (log(RR)). Summaries for θ under

each model are shown in Table 3.1. Four models contributed to the stacked posterior

distribution: the Mavridis Copas model (weight = 0.244), one-sided stepped selec-

tion model with steps at p = 0.025, 0.5 (weight = .266), and the one-sided stepped

selection model with steps at p = 0.025, 0.1 (weight = .342), and one-sided sliding
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selection with knots at p = .025, .5. Figure 3.9 shows posterior distributions for θ for

each model. The stacked mean of θ is 0.111, with a 95% CI of (-0.046, 0.248), which

transforms to a mean relative risk of 1.12 (0.96, 1.28). Compared to the original

results from Hackshaw et al. (1997), the stacked model estimates a mean increased

risk of 12% rather than the 24% originally reported, with a much wider range of

plausible values including the null value of 1.

3.3.2 Gender effects in grant proposals

Bornmann et al. (2007) compared the odds of a successful grant proposal for grants

written by men compared to women using a dataset of 66 peer review procedures

from 21 studies. Each study generally reported on one type of award and multiple

peer review procedures for that award (e.g. TMR Marie Curie Fellowship for chem-

istry, engineering, mathematics, earth sciences, economics, physics and life sciences).

Bornmann et al. (2007) fit a random effects meta-analysis model with the log-odds

ratio (logOR) as the main endpoint θ. The empirical Bayes estimate for the logOR

of grant acceptance for men compared to women was 0.07 (95% CI 0.01-0.13), indi-

cating a significant effect in favor of men. A funnel plot of study-specific effect sizes

against their standard errors shows potential evidence of publication bias, so we fit

the stacking procedure to the set of 66 results.

Table 3.2 shows model-specific point estimates and 95% CIs. The two models

yielding the highest stacking weights were the Mavridis Copas model (weight =

.288), the Bai Copas model (weight = .475), the two-sided stepped selection model

with steps at p = 0.05, 0.50 (weight = .236), and one-sided sloped selection with

knots at p = .025, .5 (weight = .001). Figure 3.10 shows posterior distributions of
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Model Mean SD 2.5% 97.5% Stacking Weight
Stacked 0.051 0.034 -0.020 0.116 –
Standard 0.069 0.030 0.012 0.128 0.000
Mavridis 0.032 0.035 -0.038 0.104 0.288
Bai 0.060 0.032 -0.003 0.122 0.475
Two-side (1) 0.057 0.028 0.005 0.116 0.000
Two-side (2) 0.054 0.026 0.005 0.108 0.236
Two-side (3) 0.056 0.027 0.005 0.109 0.000
Two-side (4) 0.055 0.027 0.006 0.109 0.000
One-side (1) 0.055 0.031 -0.005 0.117 0.000
One-side (2) 0.012 0.041 -0.073 0.089 0.000
One-side (3) 0.049 0.031 -0.011 0.109 0.000
One-side (4) 0.041 0.032 -0.021 0.105 0.000
Slope-T (1) 0.061 0.028 0.008 0.117 0.000
Slope-T (2) 0.061 0.028 0.008 0.119 0.000
Slope-T (3) 0.057 0.027 0.006 0.113 0.000
Slope-O (1) 0.009 0.045 -0.084 0.090 0.001
Slope-O (2) 0.052 0.032 -0.011 0.114 0.000
Slope-O (3) 0.055 0.031 -0.004 0.118 0.000

Table 3.2: Posterior summaries for each model using the gender effects in grant
proposals data from Bornmann et al. (2007). While the standard model yields a
95% CI excluding zero, the stacked posterior shifts the mean towards zero and the
posterior CI includes zero. Models contributing to the stack are the Bai and Mavridis
Copas models, two-sided stepped selection with change points at (.05, .5).

θ for the standard model, stacked model, and the three models contributing to the

stacked model. The stacked posterior mean logOR was 0.051 with a 95% CI of (-

0.020, 0.116), still indicating a trend of grant proposals favoring men, but the 95%

interval includes the null value of 0.

3.3.3 Recidivism and cognitive behavioral therapy

Landenberger and Lipsey (2005) analyzed a collection of 58 studies measuring how
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cognitive behavioral therapy (CBT) interventions are associated with recidivism in

both adult and juvenile offenders. The authors fit a random effects meta-analysis

model and report a mean odds ratio of 1.53 (logOR = 0.425) with p < 0.001. Figure

3.11 shows a funnel plot of the 58 studies. We that studies with larger standard

errors tend to have larger logORs, indicating the possible presence of publication

bias favoring studies with results that favor the CBT intervention.

Model Mean SD 2.5% 97.5% Stacking Weight
Stacked 0.338 0.125 0.063 0.531 –
Standard 0.425 0.063 0.303 0.552 0.487
Mavridis 0.236 0.089 0.058 0.408 0.227
Bai 0.326 0.090 0.124 0.485 0.134
Two-side (1) 0.403 0.063 0.284 0.532 0.000
Two-side (2) 0.378 0.063 0.255 0.507 0.000
Two-side (3) 0.386 0.065 0.259 0.513 0.000
Two-side (4) 0.392 0.063 0.275 0.519 0.000
One-side (1) 0.396 0.066 0.267 0.527 0.000
One-side (2) 0.230 0.123 -0.047 0.438 0.028
One-side (3) 0.368 0.070 0.229 0.503 0.000
One-side (4) 0.368 0.071 0.223 0.506 0.000
Slope-T (1) 0.396 0.063 0.276 0.522 0.000
Slope-T (2) 0.397 0.064 0.276 0.526 0.000
Slope-T (3) 0.401 0.065 0.275 0.531 0.000
Slope-O (1) 0.214 0.131 -0.072 0.440 0.124
Slope-O (2) 0.387 0.069 0.249 0.522 0.000
Slope-O (3) 0.390 0.070 0.252 0.527 0.000

Table 3.3: Posterior summaries for each model from numerical example 3 using
data from Landenberger and Lipsey (2005). The stacked model yields posterior
distribution of θ with mean shifted towards zero and fatter tails compared with the
standard model. Models contributing to the stack are the standard model, Mavridis
and Bai Copas models, the one-sided stepped selection model with steps at (.025,
.5), and the one-sided sloped selection model with knots at (.025, .5).

Table 3.3 shows posterior summaries for the mean logOR for each model. The
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five models contributing to the stacked posterior were the standard model (weight

= .487), Mavridis Copas (weight = 0.227), Bai Copas (weight = 0..134), one-sided

stepped selection with change points at p = 0.025, 0.5 (weight = 0.028), and one-

sided sloped selection with knots at p = .025, .5 (weight = .124). The stacked

posterior mean logOR was 0.338 (95% CI 0.063, 0.531). Figure 3.12 shows posterior

distributions for the standard model, stacked model, and the 3 models contributing

to the stacked posterior. The stacked posterior logOR is shifted towards zero and is

much more diffuse than the standard model.

3.4 Discussion

Our proposal to use Bayesian stacking of different selection models for publication

bias is motivated as much by philosophy as it is by favorable statistical properties.

As Rothstein et al. (2006) describes, publication bias is an umbrella term that en-

compasses a number of information suppression mechanisms, including language bias

(favoring studies in English), availability bias (favoring easily available studies), cost

bias (favoring studies that are low cost or free), familiarity bias (favoring studies

from one’s own discipline), and reporting bias (primary authors favoring results that

tend toward statistical significance within a published article). We believe it is un-

likely that any individual selection model captures the true mechanism of selecting

studies for publication and inclusion in meta-analyses, so consideration of a number

of different models is desirable. While Bayesian model averaging considers multiple

models, it also assumes that one of the fitted models is the “true” model, which is

undoubtedly false in this scenario. Bayesian stacking makes no such assumption,

and instead weights models according to their predictive ability, which we see as a
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philosophical advantage that also lends statistical advantages. Advantages include

1) the lack of a need to specify prior model probabilities, and 2) the ability to add

multiple similar models without necessarily taking weight away from other models.

In our simulation we considered multiple designs for the number of studies per

meta-analysis. Papers in the publication bias literature tend not to specify exactly

what they mean by “number of studies” in a simulation. One option is to generate

studies one at a time until a fixed target number of studies has survived the selection

mechanism, in which case each simulation iteration for a given scenario will have

the same number of studies included in the analysis. A second option is to start

with a fixed initial number of studies representing the population of studies that

has been conducted, and filtering the population through the selection mechanism.

Here the number of studies per analysis would differ across simulation iterations for

a given scenario, and will also differ in terms of the average number of studies across

scenarios (e.g. a more severe selection mechanism will suppress more studies than

a moderate selection mechanism). We chose to calculate the necessary number of

initial studies for each simulation scenario such that the average number of studies

across scenarios was 10, 20, 40, or 80 for small, medium, large, and very large meta-

analyses respectively.

While stacking selection models performed well compared to individual selection

models in simulations, especially in terms of bias and 95% interval coverage, none of

the models, including the stacked model, performed well in the scenario with extreme

selection bias and small true effect θ. The outlook in this particular scenario is grim,

as it appears we do not have a model capable of fully mitigating the effects of

publication bias even though selection models offer a preferable alternative to the

standard model. Better results may be achieved by using stronger prior distributions
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on parameters that determine the strength of selection (that is, ρ for Copas models,

ω for stepped selection models). Researchers may shy away from this practice, as

it might induce over-correction of effect sizes in situations where publication bias is

more moderate.
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Figure 3.1: Selection Mechanisms (SMs) 1 and 2. SM1 has declining selection proba-
bilities with increasing one-sided p-values, with change points at p = 0.2 and p = 0.5
and exponential decay between change points. SM2 has asymmetric two-sided selec-
tion with change points at p = 0.005, 0.2, 0.5, 0.8, and 0.975. The function minimum
is at p = 0.5, i.e. two-sided p-value = 1.
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Figure 3.2: RMSE from 200 simulation replications using Selection Mechanism 1.
Left and right panels have θ = 0.1 and θ = 0.5, respectively. Top and bottom panels
have extreme or moderate selection severity respectively. The blue lines are for the
standard random effects model, green is the stacked model, red is RoBMA, and grey
lines are the individual selection models. Vertical error bars show ±1.96 × MCSE.
The stacked model has much lower RMSE than the standard model or RoBMA with
extreme selection and small θ, and with moderate selection and small θ when sample
sizes are larger.
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Figure 3.3: RMSE from 200 simulation replications using Selection Mechanism 2.
Left and right panels have θ = 0.1 and θ = 0.5, respectively. Top and bottom
panels have extreme or moderate selection severity respectively. The blue dots/lines
are the standard random effects meta-analysis, green is the stacked model, red is
RoBMA, and grey lines are the individual selection models. Vertical error bars show
±1.96×MCSE. The stacked model has smaller RMSE than the standard model or
RoBMA when there is extreme selection when θ = 0.1 (upper left panel), but has
higher RMSE with moderate selection and θ = 0.5 (bottom right panel).
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Figure 3.4: Proportion of 95% CIs covering the true mean θ from 200 simulation
replications using Selection Mechanism 1. Left and right panels have θ = 0.1 and
θ = 0.5, respectively. Top and bottom panels have extreme or moderate selection
severity respectively. The blue line is the standard random effects model, green
is the stacked model, red is RoBMA, and grey lines are the individual selection
models. Vertical error bars show ±1.96 ×MCSE. The stacked model has better or
equal 95% CI coverage rates compared to the standard and RoBMA models for each
combination of selection, θ, and sample size.
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Figure 3.5: Proportion of 95% CIs covering the true mean θ from 200 simulation
replications using Selection Mechanism 2. Left and right panels have θ = 0.1 and
θ = 0.5, respectively. Top and bottom panels have extreme or moderate selection
severity respectively. The blue line is the standard random effects model, green is
the stacked model, red is RoBMA, and grey lines are the individual selection models.
Vertical error bars show ±1.96×MCSE. Both the standard model and RoBMA tend
to see coverage fall well below the nominal 95% level as sample sizes increase, except
with moderate selection and θ = 0.5. Stacking either maintains at least the nominal
95% level or is among the closest models to 95% as sample sizes increase.
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Figure 3.6: Bias from 200 simulation replications using Selection Mechanism 1. Left
and right panels have θ = 0.1 and θ = 0.5, respectively. Top and bottom panels
have extreme or moderate selection severity respectively. The blue dots/lines are the
standard random effects meta-analysis, green is the stacked model, red is RoBMA,
and grey lines are the individual selection models. Vertical error bars show ±1.96×
MCSE. The stacked model has smaller bias than the standard model and RoBMA
regardless of sample size when there is extreme selection and also has smaller bias
with moderate selection and larger sample sizes.
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Figure 3.7: Bias from 200 simulation replications using Selection Mechanism 2. Left
and right panels have θ = 0.1 and θ = 0.5, respectively. Top and bottom panels
have extreme or moderate selection severity respectively. The blue dots/lines are the
standard random effects meta-analysis, green is the stacked model, red is RoBMA,
and grey lines are the individual selection models. Vertical error bars show ±1.96×
MCSE. The stacked model has the smallest bias in each panel when sample sizes
are large (40 or 80 studies per analysis). RoBMA has small bias when θ = 0.5 and
sample sizes are smaller.
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Figure 3.8: Bias, RMSE, and 95% CI coverage from 200 simulation iterations includ-
ing sloped selection models. The standard random effects model is blue, RoBMA is
red, and stacking is green, and selection models used for stacking are grey. Error
bars represent ±1.96×MCSE. Bias is smaller for stacking than for RoBMA or the
standard model with average sample sizes of 10 and 40, but the difference in biases
is only significant with 40 studies. RMSE is comparable for RoBMA and stacking,
and both are better than the standard model. Only stacking maintains at least the
95% nominal coverage level as the number of studies increases.
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Figure 3.9: Posterior distributions of θ for each selection model using lung cancer
data from Hackshaw et al. (1997). Colored lines show models where stacking weight
was at least 0.01 (1%). Yellow dashed line is the standard meta-analysis. Red dashed
line shows stacked posterior distribution.
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Figure 3.10: Posterior distributions of θ for each selection model using grant appli-
cation data from Bornmann et al. (2007). Colored lines show models where stacking
weight was at least 0.01 (1%). Yellow dashed line is the standard meta-analysis. Red
dashed line shows stacked posterior distribution.
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Figure 3.11: Inverted funnel plot of studies from Landenberger and Lipsey (2005),
with log-odds ratios (logOR) on the x-axis and their standard errors on the y-axis.
There is strong asymmetry, where studies with larger standard errors tend to have
larger logORs, indicating the likely presence of publication bias.
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Figure 3.12: Posterior distributions of θ for each selection model using recidivism data
from Landenberger and Lipsey (2005). Colored lines show models where stacking
weight was at least 0.01 (1%).Yellow dashed line is the standard meta-analysis. Red
dashed line shows stacked posterior distribution.
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CHAPTER 4

Covariance Modeling in Meta-analysis with

Regularized Horseshoe Priors

In meta-analysis, a usual aim is to estimate some parameter by averaging results

across a number of studies that estimate some parameter. A fixed-effects model

assumes that heterogeneity in results across studies is due to solely to sampling vari-

ation. A random-effects (RE) model instead assumes that study-specific parameters

are drawn from a common distribution with some variance to be estimated. If there

are two or more REs per study, the REs may either be assumed to be a priori inde-

pendent from each other or they are jointly modeled as multivariate normal (MVN)

or some other multivariate distribution. In a Bayesian meta-analysis with multiple

REs one needs to assign prior distributions to both the vector of mean parameters

and the covariance matrix Σ. Priors for mean parameters are generally set to be

diffuse normal distributions, but there is less consensus on appropriate priors dis-

tribution for the covariance matrix Σ, where different choices may lead to different

posterior inferences (Wang et al., 2020), especially when there are few studies in the

analysis.

Observational 2×2 contingency table data arises when neither row- nor column-

totals of the 2×2 table are fixed by study investigators. Bayesian meta-analysis
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models for observational 2×2 contingency table data (Gibson et al., 2018; Ma et al.,

2018) have three random effects (3RE) per study. Existing 3RE models either model

the random effects with independent normal distributions with unknown means and

variances (Gibson et al., 2018), or with a trivariate normal distribution with unknown

vector of means and unknown covariance matrixΣ (Ma et al., 2018). Ma et al. (2018)

gives Σ an inverse-Wishart (IW) prior, which is often used because it is conjugate

in a multivariate normal model. The IW prior is inflexible because there is only

one degree of freedom (df) parameter, ν, for all of the RE variances – the diagonal

elements of Σ – and the IW prior gives little prior mass to values near zero for RE

variances. If the true variance of one of the random effects is near zero, the observed

correlations associated with that random effect are very noisy if there are few studies

or the sample sizes per study are small, and the IW prior will have a very diffuse

posterior distribution for correlations.

Network meta-analysis (NMA) extends traditional meta-analysis to the case of

multiple treatment comparisons. The two main approaches to NMA are the contrast-

based (CB) (Lu and Ades, 2004; Dias et al., 2013) and arm-based (AB) models

(Zhang et al., 2014; Hong et al., 2016; Zhang et al., 2017). Let T be the number of

treatments including some reference treatment and say the dichotomous outcome is

presence or absence of an adverse event. The CB model treats log-odds ratios for each

non-reference treatment relative to the reference treatment as exchangeable, whereas

the AB model treats the log-odds of the event for each treatment, including the

reference treatment, as exchangeable. The AB-NMA model has advantages over CB-

NMA in estimating absolute risks (ARs) and functions of ARs, such as AR differences

and marginal log-odds ratios. Each study in the AB-NMA typically provides data

on some subset of the T treatments, often only on two. AB-NMA treats missing
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treatments as missing at random (MAR), and models all treatments for each study

as coming from a T -dimensional MVN distribution with T × T covariance matrix

Σ and mean vector µ. A number of prior distributions have been proposed for

modeling Σ. The IW prior directly on Σ is among the most popular. Another

approach uses a separation strategy that decomposes Σ = WPW where T × T

diagonal matrix W has standard deviations σt, t = 1, . . . , T , along the diagonal,

and P is a correlation matrix with 1’s on the diagonal and off-diagonal elements

Pt,t′ which are the correlation between the random effects for treatments t and t′

(Barnard et al., 2000). Priors are then placed on each σt and on P or elements of P .

Covariance priors using the separation strategy have been shown to estimate ARs

and mean treatment effects more accurately than the IW prior (Wang et al., 2020),

but may still suffer from a lack of information in the data when certain treatments

are only included in a few studies. The standard AB-NMA model includes only

fixed treatment effects and random study-treatment effects, which induces positive

correlations among treatment random effects if event rates tend to be higher or lower

across the board for a given study. Thus, if variation in different treatments can be

explained by a single study random effect, the true treatment RE variances may be

close to zero and the IW and separation strategy priors may not provide adequate

shrinkage.

Methods for inducing sparsity in a covariance matrix Σ or precision matrix Σ−1

have been proposed in both the frequentist and Bayesian covariance estimation lit-

erature. Dempster (1972) first proposed a method of setting certain elements of

Σ−1 be exactly zero, and termed the method covariance selection. Friedman et al.

(2008) introduced the graphical LASSO (GLASSO) to estimate a sparse Σ−1 us-

ing an L1 penalty on the elements of Σ−1. Bayesian versions of the GLASSO have

85



since been proposed (Banerjee and Ghosal, 2015). Wong et al. (2003) and Cripps

et al. (2005) instead decompose the precision matrix as Σ−1 = ABA, where A is a

diagonal matrix containing the square roots of partial precisions and B is a partial

correlation matrix. Partial precision and partial correlation are the precision or cor-

relation given the other parameters. Cripps et al. (2005) induce sparsity in Σ−1 by

setting spike-and-slab priors on the partial correlations Bij, where Bij is the (i, j)th

element of B. Chen and Dunson (2003) and Cai and Dunson (2006) decompose Σ

as Σ = ΩΓΓ′Ω where Ω is a diagonal matrix with elements ωi that are proportional

to random effects standard deviations and Γ is lower triangular with 1’s on the di-

agonal and off-diagonal elements related to random effects correlations. They place

spike-and-slab priors on the elements of Ω and Γ to allow random effect variances

and correlations to be exactly zero.

We propose a new covariance selection prior for the 3RE and AB-NMA models

which uses the decomposition Σ = ΩΓΓ′Ω and the regularized horseshoe (RHS)

prior (Piironen and Vehtari, 2017) on elements of Ω. The RHS prior allows RE

variances to shrink to nearly zero which allows REs to effectively drop from the

model. We introduce a new conditional shrinkage prior for elements γij of Γ that

can regularize correlations conditional on RE variances, and we develop a simple

method for setting prior parameters for RHS prior for both 3RE and AB-NMA

models. Using synthetic and real data examples we compare the new RHS prior

with regularly used default priors using expected log-predictive density (elpd) and

by comparing posterior distributions of quantities of interest for the 3RE and AB-

NMA models. To distinguish between study-level variation in event rates and study-

treatment variation we offer a new formulation for the AB-NMA model that models

study main effects and study-treatment random effects.
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Section 4.1 describes 3RE and AB-NMA meta-analysis models and details a new

AB-NMA model formulation for separating random study effect variance from ran-

dom study-treatment variances and correlations. We describe the new covariance

selection prior in Section 4.2 and describe how to choose default input values and in-

corporate prior information. We illustrate the covariance selection prior in Section 4.3

using both synthetic and real data examples. The paper closes with discussion.

4.1 Meta-analysis models

We describe two meta-analysis models, the 3RE model for observational contingency

table data and arm-based network meta-analysis (AB-NMA) model for MTC data.

The 3RE and AB-NMA models have multiple random effects which can be modeled

as multivariate normal.

4.1.1 3RE meta-analysis model for observational contingency table data

In a meta-analysis of observational contingency table data, each study i = 1, . . . , S

reports a 2×2 table of counts nijk of people with rows j = 0, 1 defined by the absence

(j = 0) or presence (j = 1) of a risk factor (RF), denoted RF and RF, and columns

k = 0, 1 defined by no adverse event (E, k = 0) or adverse event (E, k = 1). Let

ni1 = ni10 + ni11 and ni0 = ni00 + ni01 be the number of people in study i with or

without the risk factor, respectively, and Ni = ni1 + ni0 be the total sample size

in study i. Let πij be the unknown probability of an adverse event for a patient

in study i, group j, and ψi be the unknown prevalence of the risk factor in the

population studied by study i. A three-random effect (3RE) model for observational
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2×2 contingency table data is

nij1|πij ∼ Bin(nij, πij) (4.1)

logit(πij) =

 βi − δi
2

j = 0

βi +
δi
2

j = 1,
(4.2)

ni1|ψi ∼ Bin(Ni, ψi), (4.3)

where βi is a random study effect for the average log-odds of the event between groups

j = 0 and j = 1, and δi is a random study effect for the log-odds ratio of the event.

The random effects βi, δi, and νi = logit(ψi) can be modeled with independent

normal distributions if there is no suspected correlation between them, or with a

multivariate normal distribution if there are suspected correlations. For example,

consider the scenario where we believe the probability of an event for those without

the risk factor is relatively constant across studies (i.e. πi0 ≈ π0 for all i), but that

the event rate πi1 for those with the risk factor varies across studies. This would

imply a positive correlation between log-odds ratios δi and the average log-odds of

an event βi. If there are suspected correlations between the random effects, we give

them a multivariate normal prior distribution with mean parameter (β0, δ0, ν0) and

covariance matrix Σ
βi

δi

νi

 |Θ ∼ N



β0

δ0

ν0

 , Σ =


σ2
β ρβδσβσδ ρβνσβσν

ρβδσβσδ σ2
δ ρδνσδσν

ρβνσβσν ρδνσδσν σ2
ν


 , (4.4)

where Θ = (β0, δ0, ν0, σ
2
β, σ

2
δ , σ

2
ν , ρβδ, ρβν , ρδν). A common prior choice for Σ is the

inverse-Wishart IWM(V, v) with degrees of freedom v and scale matrix V where the
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prior ΣM×M |V, v ∼ IWM(V, v) has density

IWM(Σ;V, v) =
|V |v/2

2vM/2ΓM(v/2)
|Σ|−(v+M+1/2e−

1
2
tr(VΣ−1) (4.5)

where M is the dimension of Σ, ΓM is the multivariate gamma function, and tr(·) is

the trace function. With scale matrix V and degrees of freedom v, the prior mean for

Σ is V/(M − v − 1) for v > M − 1. The IW prior is popular because it is conjugate

in a multivariate normal model. However, the IW prior is inflexible in that the prior

uncertainty for each variance component is controlled by a single degrees of freedom

parameter and there is very little prior weight given to values near zero. We instead

propose the covariance selection approach to be presented in Section 4.2 to show our

prior belief that certain random effect variances may be near zero.

4.1.2 Arm-based network meta analysis (AB-NMA)

Multiple treatment comparisons (MTC) data has S studies indexed by i = 1, . . . , S,

and a set of T treatments T = {1, . . . , T} indexed by t = 1, . . . , T . Each study

i reports the number of events yit and number of subjects nit for some subset of

treatments Ti ∈ T . An arm-based network meta-analysis (AB-NMA) (Hong et al.,

2016) for MTC data is given by the model

yit|pit ∼ Bin(nit, pit) (4.6)

logit(pit) = µt + ηit, (4.7)

where pit is the unknown probability of an event for the tth treatment in the ith study,

µt is the mean log-odds of the event for the tth treatment, and ηit is a study random
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effect for the tth treatment. We call linear model (4.7) the standard model.

As each study only reports on a subset of the T treatments, the AB-NMA model

treats unreported treatment arms as missing data. The mean effects µt are given

vague independent normal prior distributions with known variance s2µ, and the ran-

dom effects ηit are given a multivariate normal distribution

µt|s2µ ∼ N(0, s2µ) (4.8)

(ηi1, . . . , ηiT )
′|Σ ∼ N(0,Σ) (4.9)

where Σ is a T × T unstructured covariance matrix of random effects variances

for each treatment on the diagonal and the covariances between treatment random

effects on the off-diagonal.

We have seen in our work that often there are very high observed correlations

between random effects. This is likely induced by a main study effect ηi0 that applies

to all treatments for a given study, and additional variation apart from the main

study effect may be very small. An alternative parameterization to the standard

model (4.6) - (4.9) adds a main study effect ηi0 to the linear predictor

logit(pit) = µt + ηi0 + ηit

ηi0|σ2
η ∼ N(0, σ2

η)

ηit|σ2
t ∼ N(0, σ2

t ),

(4.10)

where random effects ηit and ηit′ are independent. We call linear model (4.10) the

separate variance (SV) model.

Several priors for Σ under model (4.6) - (4.9) are summarized in Wang et al.
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(2020). The most common prior is the conjugate IWT (V, T + 1) with degrees of

freedom T +1 and where V is a known T ×T scale matrix (Hong et al., 2016; Zhang

et al., 2017). Another option is the separation strategy Σ = WPW , where W is a

diagonal matrix containing random effect standard deviations (σ1, . . . , σT )
′ and P is a

T×T correlation matrix (Barnard et al., 2000). We then place independent priors on

σ1, . . . , σT and P , with several options available for both. The most common priors

for standard deviations σt are Uniform(0, 5), half-normal, or half-t. Meta-analysts

often opt for a compound-symmetric structure for P with 1 on the diagonal and all

correlations ρtt′ = ρ, where ρ ∼ Uniform(− 1
T−1

, 1) as a vague prior that ensures P

is positive definite. If P is unstructured, another popular prior is the LKJ(aP ) prior

for correlation matrices (Lewandowski et al., 2009), where the shape parameter aP

determines how much the correlation matrix is shrunk towards the identity matrix.

If aP = 1, the LKJ prior is uniform over correlation matrices of order T , and aP > 1

shrinks the correlation matrix towards the identity.

4.2 Covariance selection with regularized horseshoe priors

Given a P × P covariance matrix Σ as in (4.4) or (4.9) we propose a selection-

shrinkage model for estimating random effects variances and covariances using the

modified Cholesky decomposition

Σ = ΩΓΓ′Ω (4.11)
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where Ω is a diagonal matrix with elements ωp ≥ 0, p = 1, . . . , P , and

Γ =


1 0 · · · 0

γ21 1 · · · 0
...

...
. . .

...

γP1 γP2 · · · 1

 (4.12)

is a lower triangular matrix with 1’s on the diagonal and P (P − 1)/2 free elements

γpq, p = 2, . . . , P , q = 1, . . . , p − 1. As a function of the elements of Ω and Γ, the

(p, q)th element of Σ, σpq, is

σpq =


ωpωq

(
γpq +

∑q−1
k=1 γpkγqk

)
p > q

ωpωq

(
γqp +

∑p−1
k=1 γpkγqk

)
p < q

ω2
p

(
1 +

∑p−1
k=1 γ

2
pk

)
p = q

(4.13)

for p, q = 1, . . . , P . From (4.13), the correlation ρpq = σpq/(σppσqq) between random

effects p and q is

ρpq =
γpq +

∑q−1
k=1 γpkγqk√(

1 +
∑p−1

k=1 γ
2
pk

)(
1 +

∑q−1
k=1 γ

2
qk

) . (4.14)

for p > q. Usually γpq has the largest impact on the magnitude of ρpq. This con-

struction of Σ guarantees that Σ is positive-semidefinite when all ωp > 0.

To model the possibility that certain diagonal elements of Σ might be effectively

zero, we propose using the regularized horseshoe (RHS) prior (Piironen and Vehtari,

2017) for the elements ωp of Ω. The RHS prior is a type of global-local shinkage prior,

where a global shrinkage parameter τ shrinks all elements ωp towards zero, and local
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shrinkage parameters λp allow certain ωp to “escape” the shrinkage. We model ωp as

ωp ∼ N(0, τ 2λ̃2p)1[ωp>0]

τ ∼ C+(0, τ0)

λ̃i =
c2λp

c2 + τ 2λ2p

λp ∼ C+(0, 1)

c2 ∼ IG
(v
2
,
s2v

2

)
,

(4.15)

where τ is the global shrinkage parameter, λ̃p are local shrinkage parameters, C+(0, τ0)

is the half-Cauchy distribution with scale τ0 > 0 and density

C+(τ ; 0, τ0) ∝ (τ 20 + τ 2)−1
1[τ>0], (4.16)

c is the slab width for elements of Ω, and τ0, v, and s
2 are known values. The slab

width c is the prior standard deviation of ωp when ωp is far from zero. The parameter

τ is the global shrinkage parameter and λp are local shrinkage parameters. With the

RHS prior τ 2λ2p ≪ c2 implies the element ωp is close to zero. When τ 2λ2p ≫ c2, the

prior (4.15) approaches a half-normal N(0, c2)1[ωp>0]. The RHS prior can be seen as

a continuous alternative to a spike-and-slab prior with finite slab width.

Often we want to shrink correlation elements ρpq towards zero if either diagonal

element σii or σjj is close to zero, for example if there are few studies and there is

little information in the data on correlation parameters. The decomposition (4.11),

does this by shrinking elements γpq towards zero if either element ωp or ωq is near

zero, as ωp is proportional to σpp and γpq generally has the largest impact on the

93



magnitude of ρpq. We propose a conditional shrinkage (CS) prior p(γpq|ωp, ωq) for

elements γpq

γpq|ωp, ωq ∼ N(0, α2
pq)

α2
pq = a20

( 1

ω2
p

+
1

ω2
q

)−1

,
(4.17)

where a0 > 0 is known. In (4.17) the variance α2
pq of γpq will be small if either ωp

or ωq is small and γpq will be shrunk towards zero. Figure 4.1 is a contour plot of

(4.17) as a function of ωp and ωq for a0 = 4, showing how the standard deviation αpq

of γpq increases as ωp and ωq both deviate from zero. We call the prior for Σ with

regularized horseshoe priors (4.15) on ωp and the conditional shrinkage prior (4.17)

on elements γpq the RHS-CS prior.

If we do not want to shrink correlations ρpq, we give elements γpq a normal prior

centered at zero with known variance a2

γpq ∼ N(0, a2). (4.18)

We call the model with RHS prior (4.15) on ωp and prior (4.18) on γpq (no shrinkage)

the RHS-NS prior.

4.2.1 Choosing input values

We need to choose reasonable values for prior parameters τ0, v, s
2, and a20 in equations

(4.15) and (4.17).

The choice of v in (4.15) has little impact on posterior inferences, and we generally

choose v = 2 so that the prior mean slab width is E[c2|v, s2] = s2. A larger s2 gives
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Figure 4.1: Contour plot showing prior standard deviation αpq for γpq given ωp, ωq,
and a0 = 4. Contour lines are for αpq = 0.2, 0.5, 0.75, 1, 1.5, and 2.

more prior mass to larger values of c2. We recommend choosing several values of s2 to

see the impact on posterior inferences, and have found that choices near s2 = 4 allow

for adequate shrinkage of random effects variances that are near zero while allowing

random effects variances far from zero to remain unshrunk. For a20, random effects

for both the 3RE and AB-NMA models are on the logit scale and their standard

deviations should not be much larger than 1, so parameters ωp should also not be

much larger than 1. Observed correlations become nearly flat on [−1, 1] when one

random effects standard deviation is < 0.05, and a prior variance αpq < 0.22 for γpq

results in > 80% of the prior mass for ρpq ∈ (−0.2, 0.2). This suggests a20 = 42 as
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a reasonable default value, as α2
pq = 42(1/0.052 + 1/12)−1 ≈ 0.22. As with the prior

value s2, we recommend fitting a model with a few different values of a0. This is

because a value of a0 that is too small will result in shrinkage of correlations even if

standard deviations σp and σq are moderate, while an a0 that is too large will result

in little shrinkage even if σp or σq is small.

The prior parameter τ0 is chosen as a measure of how much information there

is in the data for the parameters that are modeled with the RHS prior. Piironen

and Vehtari (2017) recommend choosing τ0 based on the expected number of relevant

(non-zero) parameters and the sampling variance of the outcome. When the outcome

being modeled is normal response data and the parameters being modeled are a set

of P regression coefficients, a generic formula for τ0 is

τ0 =
p0

P − p0

σ

N
(4.19)

where p0 is a guess at the expected number of relevant coefficients, σ is the sam-

pling standard deviation of the response variable, and N is the sample size. To our

knowledge, RHS priors have not been used for covariance modeling, and we need

to modify (4.19) to suit our model. In our case, the outcome data are essentially

standard deviations of random effects, and P = 3 for the 3RE model and P = T

in the AB-NMA model where T is the total number of treatments. To calculate an

estimate of how much information there is in the data for the standard deviations of

random effects, we replace σ/N with the average standard deviation of the standard

deviation of random effects. That is, the average of SD(σβ), SD(σδ), and SD(σν) in

the 3RE model, and the average of SD(σt), t = 1, . . . , T in the AB-NMA model.

To calculate SD(σβ), SD(σδ), and SD(σν) in the 3RE model, we first calculate

96



crude estimates β̂i, δ̂i, and ν̂i for each study i = 1, . . . , S as

β̂i =
1

2

(
log
( ni11

(ni1 − ni11)

)
+ log

( ni01

(ni0 − ni01)

))
δ̂i = log

(ni11ni00

ni10ni01

)
ν̂i = log

(ni1

ni0

) (4.20)

and calculate the sample standard deviations sβ, sδ, and sν of βi, δi, and νi across

studies. Assuming β̂i, δ̂i, and ν̂i are random samples from a normal distribution, we

calculate unbiased estimates for the standard deviations SD(sβ), SD(sδ), and SD(sν)

of sample standard deviations sβ, sδ, and sν as

SD(sβ) = sβH(S)

SD(sδ) = sδH(S)

SD(sν) = sνH(S)

H(S) =
Γ(S−1

2
)

Γ(S/2)

√
S − 1

2
−
(
Γ(S/2)

Γ(S−1
2
)

)2

.

(4.21)

The function H(S) is a correction factor to give an unbiased estimate of SD(s); see

Appendix A for details. We then usually set p0 = 2 to indicate that we think one of

the random effects has variance near zero, and calculate τ0 with

τ0 =
p0

3− p0

SD(sβ) + SD(sδ) + SD(sν)

3
, (4.22)

where the second fraction is the average of SD(sβ), SD(sδ), and SD(sν).

We follow similar calculations as in (4.20) - (4.22) to calculate τ0 for the AB-
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NMA model. Let St be the set of studies S ⊆ {1, . . . , S} that report information on

treatment t, let Ti be the set of treatments included in study i, and let St = |St| be the

number of studies reporting on treatment t and Ti = |Ti| be the number of treatments

in study i. Calculation of τ0 in the AB-NMA model depends on whether we use the

standard linear model (4.7) or the SV linear model (4.10). For the standard model

(4.7), for each observed study i and treatment t reported on in study i we calculate

µ̂t + η̂it as

µ̂t + η̂it = logit
( yit
nit

)
(4.23)

and calculate the observed standard deviation st of the µ̂t + η̂it across the St studies

reporting on treatment t. We then calculate the standard deviation SD(st) of the

sample standard deviations for each treatment t as

SD(st) = stH(St) (4.24)

where the function H(·) is as defined in (4.21). We then set

τ0 =
p0

T − p0

1

T

T∑
t=1

SD(st). (4.25)
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For the SV model (4.10) we calculate

µ̂t =
1

St

∑
i∈St

logit(yit/nit)

η̂i0 =
1

Ti

∑
t∈Ti

(
logit(yit/nit)− µ̂t

)
η̂it = logit

(
yit/nit

)
− (µ̂t + η̂i0)

(4.26)

and calculate st as the standard deviation of η̂it across studies i ∈ St and calculate

SD(st) = stH(St). We then set τ0 equal to p0/(T − p0) multiplied by the mean of

(SD(s1), . . . , SD(sT )) as in equation (4.25).

We generally prefer to avoid using the data in priors in a Bayesian analysis, and

this method described for choosing τ0 in the RHS prior for the 3RE and AB-NMA

models uses the data for setting prior parameters. However, τ0 as calculated in (4.22)

and (4.25) gives only a crude estimate of how precise estimates of random effects

standard deviations should be given the number of studies S. In our experiments,

perturbing τ0 by a factor of 0.5 or 2 had a negligible impact on posterior inferences.

The local shrinkage parameters λ̃p easily outweigh the global shrinkage parameter τ

if the data supports random effects standard deviations away from zero.

4.2.2 Incorporating prior information

Sometimes we may have prior information that the correlation between two random

effects may be either positive or negative. If we believe the correlation ρpq between

random effects i and j is positive (negative), we can center the prior for γpq at a

known positive (negative) value, such as 0.5 (-0.5).
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4.3 Data analyses

We illustrate the 3RE-RHS and AB-NMA-RHS models using both synthetic and real

world data examples.

4.3.1 3RE: Synthetic example

We generate a single dataset with S = 5 studies. For each study i = 1, . . . , S,

the probability πi0 of the event given no risk factor is constant at πi0 = 0.05. The

probability πi1 of the event given the risk factor is varied from πi1 = 0.075 for i = 1

and increasing to π51 = 0.3, so that

(π11, . . . , π51)
′ = (0.075, 0.13125, 0.1875, 0.24375, 0.3)′.

The probability ψi of the risk factor is held constant at ψi = 0.25 for all studies i.

Sample sizesNi for each study 1 to 5 are (N1, . . . , N5)
′ = (1500, 1000, 2500, 2000, 500)′,

so that sample sizes vary but have little correlation with πi1. Study i’s contingency

table is drawn from a multinomial distribution with size Ni and with cell probabilities

πijk, j, k = 0, 1

πi11 = πi1ψi

πi10 = (1− πi1)ψi

πi01 = πi0(1− ψi)

πi00 = (1− πi0)(1− ψi).

The design of probabilities πi0 and πi1 induces a non-zero variance for both ran-
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dom effects βi and δi, true zero variance for νi = logit(ψi). Correlation between βi

and δi is strong and positive, and the covariance with the random effect νi is zero.

We compare posterior distributions of random effects standard deviations σβ, σδ,

and σν and correlations ρβδ, ρβν , ρδν from models with three priors:

1. IW: IW(η, I3) with degrees of freedom η = S+1 and an identity input matrix;

2. LKJ: A separation strategy with Σ = WPW , where W is diagonal with ele-

ments σβ, σδ, and σν which each have half-Cauchy(0, 1/
√
2) priors, and P is a

correlation matrix with an LKJ(1) prior;

3. RHS-CS: The Cholesky decomposition Σ = ΩΓΓ′Ω with RHS prior (4.15)

on the diagonal elements ωk, k = 1, . . . , 3, and the conditional shrinkage prior

(4.17) on the lower-triangular free elements of Γ.

For the RHS-CS prior we calculate τ0 as in Section 4.2.1, and set v = 4, s2 = 1, and

a0 = 3.

Figure 4.2 shows posterior distributions for random effects standard deviations.

Posterior distributions are similar for σδ under the three priors. The posterior for

σβ is shifted right slightly for IW compared to LKJ and RHS-CS, and IW has large

positive bias for σν while both LKJ and RHS priors yield posteriors with modes

near zero. Figure 4.3 shows posterior distributions for the correlations ρβδ (top), ρβν

(middle), and ρδν (bottom) under the IW (red), LKJ (green), and RHS-CS (blue)

priors. The posterior distribution for correlations under the RHS-CS prior looks

similar to the IW and LKJ priors for ρβδ (top) when both random effects βi and δi

have variance far from zero. The random effect νi has very small variance, and the
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RHS-CS prior heavily shrinks ρβν (middle) and ρδν (bottom) towards zero, while the

IW and LKJ priors yield diffuse posterior distributions.

Table 4.1 presents posterior means and credible intervals (CIs), with CIs taken

from the 2.5th and 97.5th posterior quantiles, for the global contingency table statis-

tics (CTSs) positive and negative likelihood ratios (LR+/-), positive and negative

predictive values (PPV/NPV), and sensitivity and specificity. The three priors tend

to have similar mean estimates for all CTSs, and the RHS-CS prior yields equal or

shorter CI lengths compared to LKJ and strictly shorter CI lengths compared to

IW for all CTSs. LR+ has the largest difference in CI lengths between the Models,

where IW and LKJ have ≈ 40% and 20% wider CIs than RHS-CS.

CTS IW LKJ RHS-CS
LR− 0.62 (0.43, 0.82) 0.61 (0.43, 0.82) 0.60 (0.44, 0.79)
LR+ 2.68 (1.72, 4.45) 2.64 (1.73, 4.00) 2.58 (1.79, 3.71)
NPV 0.94 (0.89, 0.96) 0.94 (0.90, 0.96) 0.94 (0.92, 0.96)
PPV 0.22 (0.13, 0.34) 0.21 (0.13, 0.33) 0.20 (0.14, 0.31)
Sens 0.53 (0.37, 0.67) 0.53 (0.38, 0.66) 0.53 (0.39, 0.66)
Spec 0.77 (0.68, 0.84) 0.78 (0.76, 0.81) 0.78 (0.76, 0.81)

Table 4.1: Posterior summaries of global CTSs for each covariance prior. Each row
is a different CTS, and each column represents mean and 95% CI taken as the 2.5th

and 97.5th posterior quantiles when modeling the covariance matrix Σ with IW, LKJ,
or RHS priors.

4.3.2 3RE: Diagnostic value of risk factors associated with adverse events

after syncope

Gibson et al. (2018) fit a 3RE meta-analysis on a set of studies on patients presenting

to the emergency department (ED) with syncope. The outcome of interest was 30-

day mortality and serious cardiac events, and 32 potential risk factors were analyzed.
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Risk Factor No. Studies sβ sδ sν τ0
Chest Pain 3 0.48 0.81 0.08 0.42
Male Gender 7 1.05 0.21 0.05 0.25
White Race 3 0.74 0.07 0.82 0.50

Table 4.2: Values of sβ, sδ, and sν for three risk factors in the syncope data. The
final column shows the value of τ0 used in the RHS prior. Bolded values are < 0.10,
signaling that σν may be zero or near-zero for Chest Pain and Male Gender, and σδ
may be zero or near-zero for White Race.

We look for risk factors that might have zero or near-zero RE variance σ2
β, σ

2
δ , or σ

2
ν

by calculating sβ, sδ, and sν using equations (4.20) for all risk factors with at least 3

studies. We select risk factors for which at least one of sβ, sδ, and sν was less than

0.10 to illustrate the value of the new RHS-CS prior. The three risk factors male

gender, chest pain accompanying syncope, and White race each have one of sβ, sδ,

or sν < 0.10, which are shown in Table 4.2 along with the number of studies per risk

factor and the value of τ0 calculated for each risk factor using the method described

in Section 4.2.1

We fit models using IW, LKJ, and RHS-CS priors. For each analysis we set

4000 iterations in each of 4 chains, and discard the first 2000 iterations as burn-

in. Models are fit in Stan (Gelman et al., 2015) with R (R Core Team, 2021). We

compare posterior means and 95% CIs of global CTSs under the three priors.

Table 4.3 gives posterior means and 95% CIs for the CTSs LR−, LR+, NPV,

PPV, sensitivity, and specificity for each RF and Model. We see that differences in

means are modest, and the RHS-CS Model tends to have a shorter right tail. The

RHS-CS prior yields shorter 95% CI lengths than both the IW and LKJ priors for

every RF and CTS, with the IW prior generally having the largest CI lengths.
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RF CTS IW LKJ RHS-CS

Chest Pain

LR− 0.97 (0.79, 1.18) 0.96 (0.81, 1.08) 0.97 (0.86, 1.05)
LR+ 1.69 (0.67, 3.92) 1.91 (0.67, 5.78) 1.62 (0.70, 3.80)
NPV 0.82 (0.62, 0.93) 0.81 (0.56, 0.92) 0.84 (0.65, 0.92)
PPV 0.19 (0.09, 0.39) 0.21 (0.08, 0.47) 0.19 (0.09, 0.39)
Sens 0.14 (0.05, 0.32) 0.12 (0.05, 0.28) 0.11 (0.05, 0.22)
Spec 0.90 (0.77, 0.95) 0.91 (0.84, 0.94) 0.92 (0.88, 0.94)

Male Gender

LR− 0.70 (0.56, 0.85) 0.71 (0.63, 0.78) 0.72 (0.65, 0.78)
LR+ 1.48 (1.22, 1.86) 1.41 (1.31, 1.58) 1.39 (1.31, 1.52)
NPV 0.93 (0.85, 0.97) 0.92 (0.80, 0.97) 0.93 (0.84, 0.97)
PPV 0.13 (0.06, 0.27) 0.14 (0.06, 0.29) 0.12 (0.06, 0.25)
Sens 0.59 (0.48, 0.69) 0.58 (0.54, 0.63) 0.58 (0.55, 0.62)
Spec 0.58 (0.51, 0.66) 0.59 (0.57, 0.61) 0.58 (0.57, 0.60)

White Race

LR− 0.70 (0.37, 1.38) 0.64 (0.45, 0.99) 0.61 (0.46, 0.82)
LR+ 1.26 (0.94, 1.85) 1.27 (1.04, 1.71) 1.25 (1.08, 1.54)
NPV 0.93 (0.78, 0.98) 0.92 (0.68, 0.98) 0.94 (0.83, 0.98)
PPV 0.12 (0.05, 0.32) 0.13 (0.05, 0.40) 0.11 (0.05, 0.26)
Sens 0.76 (0.52, 0.90) 0.76 (0.50, 0.90) 0.77 (0.56, 0.90)
Spec 0.34 (0.18, 0.55) 0.36 (0.18, 0.60) 0.35 (0.19, 0.57)

Table 4.3: Results from syncope data analysis. Columns 3-5 give posterior means and
95% CIs for positive and negative likelihood ratios (LR+/-), positive and negative
predictive values (PPV/NPV), sensitivity (Sens), and specificity (Spec), for 3 Models
using IW, LKJ, and RHS-CS priors for the covariance matrix of random effects.

4.3.3 AB-NMA: Safety of inhaled medications for patients with chronic

obstructive pulmonary disease

We re-analyze a dataset of 41 studies on the safety of inhaled medications (SIM)

in patients with chronic obstructive pulmonary disease (COPD) first analyzed in

Dong et al. (2013). There are 6 treatment arms: tiotropium Soft Mist Inhaler (TIO-

SMI), tiotropium HandiHaler (TIO-HH), inhaled corticosteriods (ICS), long-acting

β2 agonists (LABAs), a LABA-ICS combination, and placebo. Table 4.4 details how

many studies reported on each treatment arm. The outcome is all-cause mortality
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within a 6-month followup period. There are 31 studies reporting on two treatments,

3 studies reporting on three treatments, and 7 studies reporting on four treatments,

with a total of 52462 randomized patients across all treatment arms.

Treatment No. Observations
TIO-SMI 2
TIO-HH 12
ICS 15
LABA 20
LABA-ICS 17
Placebo 33

Table 4.4: Number of studies reporting data on each of the six treatments in the
SIM dataset.

The treatment arm TIO-SMI has only two observations, and in both cases it

is in a 2-arm study compared to placebo. While all other treatment arms exhibit

heterogeneity in the log-odds of the event across studies, the TIO-SMI arm has

near identical event rates of 0.02614 and 0.02617 (log-odds of -3.617 and -3.616),

indicating that the random-effects variance for TIO-SMI may be effectively zero.

The other five treatment arms have large observed correlations between them; we

believe the large correlations may be due to individual study-level random effects,

which would suggest fitting the data with linear model (4.10).

We fit five Models to the SIM data:

1. IW-SM: IW prior on Σ with linear model (4.7),

2. LKJ-SM: separation strategyΣ = WPW with half-Cauchy priors on diagonal

elements of W , LKJ(1) prior on correlation matrix P , and linear model (4.7),

3. RHS-CS-SM: RHS-CS prior on Σ and linear model (4.7),
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4. RHS-NS-SM: RHS prior on Σ and linear model (4.7),

5. RHS-SV: RHS prior on diagonal Σ and linear model (4.10),

where -SM is short for the Standard Model (4.7) and -SV is the Separate Variance

linear model (4.10). We compare Model fit using elpd (Vehtari et al., 2017) with the

loo package in R (Vehtari et al., 2020), with inferences for mean treatment effects µt,

and for absolute risks (ARs) for each treatment arm, where ARt = E[pit|µt, σtt] is the

unknown marginal event rate of treatment t and is a function of µt and σtt. Model

comparison with elpd is similar to using widely applicable information criterion; elpd

≈ −1
2
WAIC (Gelman et al., 2014) and larger values of elpd indicate better model fit.

Model # Model elpd
5 RHS-SV -8425.85
1 IW -8432.32
4 RHS -8433.70
3 RHS-CS -8434.73
2 LKJ -8435.10

Table 4.5: elpd for each fitted Model in the SIM data analysis. The first column is
the Model number; the second column is the Model name, and the third column is
elpd. Rows are sorted from largest elpd to smallest. The RHS-SV Model has the
largest elpd, indicating better model fit.

Table 4.5 shows elpd for each Model, where we see that linear model (4.10) with RHS

prior on Σ has a better fit than all other Models, while the other four SM Models

have comparable fit. The elpd difference (95% CI) between RHS-SV the next closest

Model (IW) is 6.47 (1.04, 11.90).

Figure 4.4 shows mean treatment effects µt for each treatment and Model. All

5 Models have similar mean estimates for each µt. The IW and LKJ Models have

very large 95% CIs for the treatment TIO-SMI, which only 2 studies reported on,
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while the RHS-CS, RHS-NS, and RHS-SV Models have much shorter CI lengths.

The RHS-SV Model also has much shorter CI lengths for the treatments TIO-HH

and ICS, which have the next fewest studies with 12 and 15, respectively. CI lengths

are similar across Models for the other three treatments, which each have at least 17

studies.

Previous implementations of the AB-NMA model (Wang et al., 2021) have used

an approximation from Zeger et al. (1988) to calculate ARt in each iteration of

MCMC,

ARt =

(
1 + exp

(
− µt/

√
1 +

256

76π2
σtt

))−1

. (4.27)

We instead use a nested Monte Carlo (MC) method to calculate ARt in each iteration

of MCMC. The nested MC method calculates E[pS+1,t|µt, σtt], the expected absolute

risk for treatment t in a new study S + 1 given µt and σtt, by approximating the

integral

∫
1

1 + exp(−(µt + η[S+1]t))
p(η[S+1],t|σtt)dη[S+1]t (4.28)

in each iteration m of MCMC by taking L sub-samples η
(m,l)
[S+1]t, l = 1, . . . , L, and

calculating a Monte Carlo estimate

E[p[S+1]t|µ(m)
t , σ

(m)
tt ] ≈ 1

L

L∑
l=1

1

1 + exp(−(µ
(m)
t + η

(m,l)
[S+1]t))

(4.29)

where µ
(m)
t and σ

(m)
tt are the mth posterior samples of µt and σtt and η

(m,l)
[S+1]t ∼

N(0, (σ
(m)
tt )2). The nested Monte Carlo method had slightly smaller mean estimates

and shifted 95% CIs compared to the approximation (4.27).
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Figure 4.5 shows treatment-specific AR posterior means and 95% CIs across Mod-

els 1-5 for all treatments. We see that for all treatments except TIO-SMI, posterior

mean estimates and 95% CIs are similar for Models 1-4, while Model 5 has shorter

CIs for the treatments ICS and TIO-HH. Models 1 and 2 have extremely wide 95%

CIs for TIO-SMI, including implausible ARs above 0.1. Models 3-5 all yield wider

95% CIs for TIO-SMI than for the other treatments that had more studies, but the

CIs avoid implausibly large ARs.

The SIM dataset illustrates that current priors IW and LKJ for Σ are not infor-

mative enough when there are very few studies, and the RHS-CS or RHS-NS priors

are promising alternatives. The RHS priors are informative enough to prevent diffuse

posterior distributions for ARs when there are few studies, but are not so informative

that posteriors are biased for treatment arms with many studies.
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Figure 4.2: Posterior distributions for the SD parameters σβ (top), σδ (middle), and
σν (bottom) in the 3RE synthetic data example for three different priors. The red,
green, and blue lines are for inverse-Wishart (IW), LKJ, and regularized horseshoe
with conditional shrinkage prior (RHS-CS), respectively. All three Models have sim-
ilar posteriors for σδ. The IW Model has positive-shifted posterior distributions for
σβ and σν compared to the LKJ and RHS-CS Models.
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Figure 4.3: Posterior distributions for the correlation parameters ρβδ (top), ρβν (mid-
dle), and ρδν (bottom) in the 3RE synthetic data example for three different priors.
The red, green, and blue lines are for inverse-Wishart (IW), LKJ, and regularized
horseshoe with conditional shrinkage prior (RHS-CS), respectively.
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Figure 4.4: Posterior means and 95% CIs for absolute risks (ARs) for the SIM data
analysis in Section 4.3.3. Each panel is for a different treatment arm, and Models
are differentiated by line color and point shape.
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Figure 4.5: Posterior means and 95% CIs for absolute risks (ARs) for the SIM data
analysis in Section 4.3.3. Each panel is for a different treatment arm, and Models
are differentiated by line color and point shape.
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4.4 Discussion

One criticism of using the Cholesky decomposition for modeling covariance matrices

has been that marginal priors for variance and correlation parameters depend on their

index in the covariance matrix (Wei and Higgins, 2013; Wang et al., 2020). An SD in

a higher index has more elements of the Γ matrix contributing to the marginal prior,

making the prior less informative. For example, σ11 = ω2
1 while σ33 = ω2

3(1+γ
2
31+γ

2
32),

which is more diffuse in the prior. With more than ∼ 5 studies the difference in

marginal priors has a negligible impact on posterior distributions. In the AB-NMA

data analysis in Section 4.3.3 we ordered treatments by the number of observations

in ascending order, giving treatment arms with few studies more informative priors

and treatment arms with more studies less informative priors, which is a

We studied 3RE MA and AB-NMA models in this paper, but RHS-based covari-

ance matrix priors could be used in other meta-analysis models, including CB-NMA

models (Lu and Ades, 2004; Dias et al., 2013) and Copas models for publication bias

(Mavridis et al., 2013, 2014). The CB-NMA model assumes that log-odds ratios δit,

t = 2, . . . , T , relative to a baseline treatment (t = 1) are exchangeable, and models

logit(pit) = µi + δit

δi ∼ N(0T−1,Σ)

where µi is the probability of the event in the baseline treatment group in study i,

δi = (δ2i, . . . , δT i)
′, and Σ is the covariance matrix for random effects δit contain-

ing the variances and correlations of log-odds ratios for each treatment relative to

the reference treatment. If we believe that a certain treatment effect δit should be
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constant across studies, or that certain treatment effects should be uncorrelated, the

RHS-NS or RHS-CS prior would be appropriate choices.

Selection models for publication bias measure the correlation between observed

effects and a latent variable which is the “propensity for publication”, with zero

correlation implying no publication bias and large correlation implying severe publi-

cation bias. In a study design d comparing Td treatments, there are
(
Td

2

)
correlation

parameters to measure. For example, say design d = 1 compares T1 = 3 treatments,

labeled A, B, and C, and S1 studies indexed by i = 1, . . . , S1 studies have design

d = 1. Treatment effects are contrasts yAB
i1 and yAC

i1 with associated standard er-

rors sAB
i1 and sAC

i1 , and measured covariance cid = cov(yAB
id , yAC

id ) reported by studies

i = 1, . . . , S1. A latent variable zi1 with marginal mean ui representing the propensity

for publication is modeled with the contrasts as


yAB
i1

yAC
i1

zi1

 |

ρAB
1

ρAC
1

 ∼ N



θAB
i1

θAC
i1

uid

 ,


(sAB

i1 )2 cid ρAB
1 sAB

i1

cid (sAC
i1 )2 ρAC

1 sAC
i1

ρAB
1 sAB

i1 ρAC
1 sAC

i1 σν 1


1zi1>0 (4.30)

where large ρAB
1 or ρAC

1 implies that the probability of publication is strongly related

to observed effects yAB
i1 or yAC

i1 relative to their means θAB
i1 and θAC

i1 . To model

the belief that publication bias may not be present for all designs and treatment

comparisons, a RHS prior could be used to induce sparsity in the covariance matrices

for each design d by transforming correlations ρ
(·,·)
d with Fisher’s z-transformation and

placing RHS priors directly on the transformed correlations.
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APPENDIX A

Standard deviation of sample standard deviation

Let x1, . . . , xn be a sample of size n from a normal distribution N(µ, σ2). Define the

sample variance s2 and sample standard deviation s in the usual way as

s2 =
1

n− 1

n∑
i=1

(xi − x)2

s =
√
s2

where x is the sample mean. We want the standard deviation of s,

SD(s) =
√
Var(s)

=
√

E[s2]− E[s]2.
(A.1)

Because s2 is unbiased, we have that E[s2] = σ2. From Gurland and Tripathi (1971)

we have that

E[s] =

√
2σ2

n− 1

( Γ(n/2)

Γ((n− 1)/2)

)
(A.2)

⇒ SD(s) =
√

E[s2]− E[s]2 (A.3)

= σ

√
1− 2

n− 1

( Γ(n/2)

Γ((n− 1)/2)

)2
. (A.4)
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To calculate an unbiased estimate of SD(s) we plug in an unbiased estimate

σ̂ = s
(n− 1

2

)1/2Γ((n− 1)/2)

Γ(n/2)
. (A.5)

for σ in (A.4) to get

SD(s) = s

[
Γ((n− 1)/2)

Γ(n/2)

√
n− 1

2
−
( Γ(n/2)

Γ((n− 1)/2)

)2]
= sH(n),

(A.6)

which is the formula we use in Section 4.2.1 to calculate the standard deviation of

random effect standard deviations.
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