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Abstract

Motivation: As whole-genome tumor sequence and biological annotation datasets grow in size,

number and content, there is an increasing basic science and clinical need for efficient and accurate

data management and analysis software. With the emergence of increasingly sophisticated data

stores, execution environments and machine learning algorithms, there is also a need for the inte-

gration of functionality across frameworks.

Results: We present orchid, a python based software package for the management, annotation and

machine learning of cancer mutations. Building on technologies of parallel workflow execution, in-

memory database storage and machine learning analytics, orchid efficiently handles millions of

mutations and hundreds of features in an easy-to-use manner. We describe the implementation of

orchid and demonstrate its ability to distinguish tissue of origin in 12 tumor types based on 339 fea-

tures using a random forest classifier.

Availability and implementation: Orchid and our annotated tumor mutation database are freely

available at https://github.com/wittelab/orchid. Software is implemented in python 2.7, and makes

use of MySQL or MemSQL databases. Groovy 2.4.5 is optionally required for parallel workflow

execution.

Contact: JWitte@ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a complicated disease driven largely by genomic alterations.

To better understand and characterize the genetic architecture underly-

ing carcinogenesis, thousands of tumor genomes have been sequenced.

This work has detected a large number of somatic mutations, gleaning

meaningful biological insight such as identification of functional driver

mutations in dozens of genes like KRAS, APC, P53, PI3K, SMAD4

(Vogelstein et al., 2013) that are involved in many cancers.

A key challenge in the analysis of tumor genomes is how to inter-

pret mutations with uncertain function. This is further complicated

by the fact that many mutations may have no relevant function, but

arise simply as artifacts of an unstable and mutated tumor genome

(i.e. as passengers). To address these issues, several statistical and

computational algorithms have been developed that attempt to pri-

oritize or annotate mutations by finding genes with higher than

expected mutation rates (Dees et al., 2012; Lawrence et al., 2013),

by analyzing predicted functional effects of mutations (Choi et al.,

2012; Kumar et al., 2009) and by exploiting interaction networks

of protein pathways to infer relevant disrupting mutations

(Subramanian et al., 2005; Vandin et al., 2012).

Recently a new class of methods inspired by machine learning

paradigms have emerged that determine ‘deleteriousness’ of muta-

tions in both general and cancer-specific contexts. These consist of

models trained in evolutionary conservation (Kircher et al., 2014;

Quang et al., 2015), protein sequence, domain and/or structural
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information (Adzhubei et al., 2010; Carter et al., 2009), and parsi-

monious analysis of a broad range of tumor datasets (Kumar et al.,

2016).

Despite successful applications, there remain limitations to such

statistical and machine learning approaches. For one, few methods

annotate or score mutations that fall outside of coding regions

despite the known regulatory importance of many intergenic bodies

(e.g. enhancers, promoters, transcription factor binding sites, or

microRNAs) (Raphael et al., 2014). There are also issues with the

collection, parsing and integration of tumor and annotation infor-

mation that is scattered across dozens of databases and in a variety

of formats, many of which are not suited for high-throughput analy-

sis. Finally, methods that can score variants at a base-level resolution

tend to be general in what they predict (e.g. evolutionary conserva-

tion), making more refined predictions difficult (e.g. likelihood of

being a prostate cancer driver mutation).

To address some of these issues, we developed orchid, an open

source tumor mutation management and machine learning analysis

framework. Orchid makes the management, annotation and analysis

of tumor mutations more programmatically elegant and computa-

tionally efficient by integrating mutation data with popular data-

bases and python-based numeric and machine learning frameworks.

Orchid is capable of accepting a wide assortment of feature types

and is agnostic to the desired classification task, making it easy to

build a variety of models quickly. Furthermore, it accepts and anno-

tates mutations from any region of the genome, allowing for the

analysis of non-coding mutations.

To demonstrate orchid, we applied it to the task of inferring can-

cer tissue-of-origin based upon copy number information and simple

somatic mutations found in the genomes of 12 tumor types. This

application highlights the value of orchid in generating models that

can potentially be used in the diagnosis of metastatic tumors from

which primary tumor cannot be located (called ‘cancers of unknown

primary’ or CUPS), which represent 2–4% of all cancers (Pavlidis

and Pentheroudakis, 2012), or in identifying tissue-of-origin from

mutations found within cell-free DNA (cfDNA).

2 Materials and methods

We created an open-source mutation management and modeling

software package called orchid which consists of the orchid-db

script for loading and annotating mutations into a MySQL-like

database system, and orchid-ml, a python module that interfaces

with the popular python numeric analysis library, pandas (http://pan

das.pydata.org/) and with scikit-learn (Pedregosa et al., 2012)

(http://scikit-learn.org/), a python framework for machine learning.

Orchid has the ability to parse raw data in various common formats

and can be used to generate annotated tumor mutational databases

and models in as little as ten lines of code. A diagram of the orchid

workflow is shown in Figure 1.

2.1 Orchid-db
2.1.1 Datasets for tumor database generation

To build a tumor mutational database for subsequent supervised

machine learning tasks, we first downloaded and collected raw

tumor variants calls, copy number information and metadata for

multiple tumor types as well as variant annotation data from several

biological databases. For tumor data, we choose to make use of the

International Cancer Genome Consortium (ICGC) given its exten-

sive collection of tumor data across dozens of studies and tissue

types. For annotation data, we hand selected biological features to

represent a broad range of functional genomic annotations, priori-

tizing genome-wide annotation datasets when available. Data was

populated into a MySQL or MemSQL database (see Supplementary

Material) using the orchid software running on either a 2013

MacPro (OSX Sierra) or a PBS Cluster (Red Hat Linux v6.6). A

MemSQL version of this database is available for public use; please

see https://github.com/wittelab/orchid.

2.1.2 Real ICGC mutations

From the ICGC data portal, we selected patients from release 25

with genome wide simple somatic mutation and/or copy number

tumor data that were publically available (non PCAWG), for a total

of 3604 individuals. We then excluded outliers by removing those

individuals whose tumors had less than 10 or more than 30 000

mutations. Finally, we excluded tissues with fewer than 80 tumors

and randomly sampled 80 from the remaining, resulting in 960

tumors from twelve cancer types (Bladder, Blood, Bone, Brain,

Breast, Esophagus, Head and neck, Pancreas, Prostate, Skin,

Stomach and Uterus). In total, 3 489 978 mutations were populated

into the database with tissue means ranging from 281 for Bladder to

15 202 for Esophagus (Supplementary Fig. S1). Conceptually, we

grouped this data into two levels of specificity for analysis: 1) the

mutational level—where real mutations found within patients of a

single tumor type are compared to mutations that might occur by

chance through careful simulation; and 2) the tumoral level—where

real mutations from patients (either of the same tumor type of differ-

ent tumors) are compared to each other. Possible classification out-

comes (i.e. labels) are ‘observed’ (or ‘real’) and ‘simulated’ for

mutational level classifications, and any patient-level stratifier (e.g.

tumor tissue-of-origin, stage, aggressiveness) for the tumoral level.

The tissue-of-origin application presented in this paper represents

classification of tumoral-level data.

2.1.3 Biological features

We collected, downloaded and curated mutational annotation from

15 biological databases and annotation tools (Supplementary Table

S1; http://wittelab.ucsf.edu/orchid). These features include func-

tional annotation (SnpEff, Cingolani et al., 2012); cancer gene net-

work presence (KEGG, Kanehisa and Goto, 2000); phylogenetic

Fig. 1. Diagram of Orchid Workflow. The make_database shell script builds a

database of annotated cancer mutations from raw source data using the

orchid-db populate and annotate subscripts and can be run on a single com-

puter or in a cluster environment. Afterwards, data can be quickly imported

and analyzed with machine learning algorithms using orchid-ml
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conservation (phylop, Pollard et al., 2010); location within snoRNA

and microRNA regions (wgrna, Griffiths-Jones, 2004); locations

within predicted enhancers, promoters and transcription start sites

(segmentation, Ernst and Kellis, 2012; Hoffman et al., 2012; rfecs,

Rajagopal et al., 2013; dbsuper, Khan and Zhang, 2016; encode,

Kundaje et al., 2015); locations within DNAse I hypersensitivity

sites (dnase, Thurman et al., 2012); trinucleotide contexts

(Alexandrov et al., 2013); assorted composite scores (funseq2, Fu

et al., 2014; cadd, Kircher et al., 2014; dann, Quang et al., 2015);

and various other measures (targetscans, Agarwal et al., 2015;

remap, Griffon et al., 2015; gwas, MacArthur et al., 2017).

There are a wide variety of suitable biological annotations and

file types that can serve as mutation features. We therefore designed

our annotation software tool to be flexible in the file formats it

accepts. Features in tabix, bed, or wig file formats can be added to

the modeling process with no modification while other formats can

be integrated with minimal effort—namely by converting to bed for-

mat or by providing orchid with UNIX awk commands to pre- and

post-parse feature lookup data.

All annotation and mutational data is based on genome coordi-

nates from human reference sequence version GRCh37 (hg19). Data

should be in the same coordinate system for database population.

For convenience, GRCh38 (hg38) coordinates are also provided in

our publically accessible database.

2.2 Orchid-ml
Orchid-ml exists as a standalone python module that can be

imported into any python script. To load, transform, model and vis-

ualize mutation data, we designed the MutationMatrix object, an

extension of the pandas DataFrame object. Transformations of the

data include loading, encoding, imputing, feature scaling and feature

selection. Modeling consists of selecting a prediction label and run-

ning orchid’s built-in support vector machine (SVM) or random for-

est (RF) wrapper functions or any of the scikit-learn classifiers.

Finally, visualization produces ROC curves, confusion matrices and

other performance metric tables.

2.2.1 Loading and encoding

We implemented several functions to load and encode data as a

MutationMatrix. The first, load_mutations(), will take a MySQL

connection string for a database populated by orchid-db and load all

(or a desired subset of) mutations and their basic associated meta-

data (chromosome, position, donor_id, sequence, etc.). The second,

load_features(), will import all (or a desired subset of) annotation

features. Finally, encode() will transform categorical features into

numeric values so they can be properly modeled. This is accom-

plished through the specification of encoding strategies given as a

dictionary to the function (strategies¼ {feature: strategy}). Choices

for strategy are ‘one-hot’, ‘binary’, ‘label’ or ‘rarity’ (i.e. a feature

value’s frequency). Alternatively, or if not specified, orchid will use

a one-hot encoder (see Supplementary Material for more details).

2.2.2 Collapsing

In some situations, it may be desirable to aggregate mutational level

data to the tumoral level to compare tumor mutational profiles with

each other. For this purpose, we created the collapse() function to

aggregate feature values within each patient (i.e. tumor) using fea-

ture median or mean values. In practice this is can be done with any

grouping column by passing the column name as the ‘by’ parameter.

Collapsing should be performed after encoding has occurred but

before normalization.

2.2.3 Imputation and feature scaling

Most machine learning algorithms require numeric, non-missing,

feature-scaled data for effective learning. With orchid-ml, one can

specify strategies for imputation and scaling using the set_normali-

ze_options() function which takes parameters ‘nan_strat’ and

‘scaler_strat’ to respective missing and scaling strategies. Imputation

strategies include setting all unknown feature values to 0 (‘zero’), or

to the feature mean (‘mean’), median (‘median’), or most frequent

(‘most_frequent’) values. Feature scaling is performed using a min-

max scaler (‘mms’), where feature values are transformed to a [0, 1]

range based on the minimum and maximum values or a z-score

based method (‘standard’), where feature values are subtracted by

their mean and divided by their unit variance. We used orchid-ml’s

default values for normalization, ‘median’ and ‘standard’, unless

otherwise stated.

2.2.4 Feature selection

Classifiers with a large numbers of features can potentially begin to

model noise specific to the training dataset (a.k.a. overfitting),

which decreases overall performance and classification generaliz-

ability. To avoid this pitfall, we employ a feature selection method

that reduces feature number to a desired subset size—generally one-

tenth the number of training examples. This is accomplished

through orchid-ml’s select_features() function. This function nor-

malizes, shuffles and divides data into training and testing sets in a

75:25 ratio. Next, it trains a user-specified model (or by default a

random forest) with training data and accuracy is assessed in test

data. Then, for each feature, it shuffles the feature values, remodels

the data, and then compares the resulting accuracy to the original

model to generate an error percentage for that feature. It repeats this

process 50 times and reports mean error percentages for each fea-

ture. The specified top number of features whose permutation

caused the largest decrease in model accuracy are retained for subse-

quent modeling.

2.2.5 Model generation

To model tumor data, orchid-ml first requires a label column to

be set with the set_label_column(column_name) function. This

flags one of the data columns in the MutationMatrix for use as

class labels during supervised learning and test prediction. Orchid-

ml can then perform modeling with the svm() or random_forest()

function, which interface with scikit-learn’s sklearn.ensemble.

RandomForestClassifier and sklearn.svm.SVC modules, respec-

tively. The Mutation Matrix() is also compatible with other sk-learn

classifiers. For random forest models, we set default values of max_

features¼‘auto’, max_depth¼None, min_samples_split¼2 and

min_samples_leaf¼1. For support vector machine models, we set

the kernel default to ‘linear’, C¼1.0 and probability¼True.

Orchid-ml uses default scikit-learn values for all other parameters,

but a user can pass custom sklearn parameter value pairs through

orchid. To estimate model stability, orchid performs k-fold cross-

validation (k¼10 by default) and reports mean accuracy and stand-

ard deviation. Optionally, it will also permute class labels, remodel

data and report accuracy for comparison with a null model, which

has an expected accuracy equivalent to randomly guessing a class

(that is 1/C where C is the number of classes). This ‘sanity check’

helps ensure no systematic bias—such as large class imbalance—is

falsely contributing to classification accuracy. Modeling can also be

performed with custom train/test sizes by specifying the proportion

of samples to withhold for testing.
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2.2.6 Visualization and performance

Orchid-ml includes several functions for visualizing data and reporting

model performance. These functions depend on the python modules

seaborn (https://seaborn.pydata.org/), matplotlib (https://matplotlib.

org/) and sci-kit learn. Orchid has the ability to generate dendrograms

of mutations clustered by both feature and sample in the form of the

show_dendrogram() function and can also easily generate performance

metric reports (print_report()); display confusion matrices (show_con-

fusion_matrix()); draw violin plots to compare classification probabil-

ity distributions (show_confidence_plot(); Supplementary Fig. S3);

show Receiver Operating Characteristic (ROC) or Precision-Recall

(PR) curves (show_curves(); Supplementary Fig. S4); and indicate

feature importance for classification (show_feature_importances()).

The orchid code repository provides further documentation on each of

these.

2.3 Application of orchid: tissue of origin dataset
We first downloaded whole-genome sequencing data from ICGC

and biological annotation features as described, populating data

into the multi25_20170710 database (see repository). Next, we

used orchid-ml to load mutations and features, encode ordinal

features and collapse mutations by patient tumor using mean feature

values (this is accomplished with orchid_ml’s load_mutations(),

load_features(), encode() and collapse() functions respectively). This

resulted in a total 960 tumor tissue profiles. From these profiles, we

imputed missing data with a ‘median’ strategy, normalized the entire

matrix with the ‘mms’ min/max transformation, and selected the 20

most-performant features as described. Model performance was

then assessed with 10-fold cross validation and label permutation.

Finally, a predictive model was generated with 65% of the data, and

tissue predictions were made in the remaining 35%.

3 Results

3.1 Orchid
To facilitate the task of machine learning on tumor mutational pro-

files, we created orchid, an open-source software framework to effi-

ciently annotate, manage and model tumor mutations on a genome-

wide scale. A user can begin with mutational data from ICGC or in

VCF format and annotation feature data in various formats, and

then use orchid to import, manage, annotate and model data.

Orchid is divided into two components, orchid-db, which loads and

annotates mutations into a database system (e.g. MySQL or

MemSQL), and orchid-ml, a python module that facilitates machine

learning using the popular scikit-learn framework.

3.2 Orchid-db
We designed orchid-db to efficiently process, parse and transform

raw data into a structured MySQL-like database to maximize subse-

quent access speed and analysis. Mutation and feature data can be

imported individually using two orchid-db subcommands (populate

and annotate), or simultaneously, in parallel, with the workflow

management tool, nextflow (v. 0.17; https://www.nextflow.io/) (Di

Tommaso et al., 2017). For the latter option, we provide the make_

database shell script to control nextflow execution through a single

configuration file that specifies data locations and processing

options. Nextflow is capable of executing seamlessly on a desktop

machine, on a cluster, or in cloud environments (Amazon,

DNANexus, Docker, Singularity, Apache Ignite, PBS, SGE,

SLURM), and can interface with a local or remote SQL-like data-

base system. Orchid specifically supports software compatibility

with a performant, distributed, in-memory database system,

MemSQL (http://www.memsql.com/) making the import of tens of

millions of mutations and hundreds of feature annotations possible

on the order of a few hours (see Supplementary Material for more

details).

3.3 Orchid-ml
We also developed orchid-ml, a python module that interfaces with

orchid-db data and provides convenience functions for machine

learning of tumor variant data. Our module extends the pandas

DataFrame class object into a MutationMatrix that adds support

for importing, encoding, and subsetting tumor mutation data from

the database produced by orchid-db. Our modeling functions

use the scikit-learn framework for machine learning due to its flexi-

bility, excellent documentation and large variety of algorithms.

Additionally, orchid-ml is capable of visualizing data and model per-

formance that generate plots with seaborn and matplotlib.

Once populated in the database by orchid-db, data is easily

accessed and modeled with orchid-ml. A typical workflow is sum-

marized as follows:

1. Specify access to the database generated by orchid-db with a

SQL connection string.

2. Load mutations and features either in their entirety or by a

desired subset (e.g. by tumor).

3. Encode categorical features using default or user-defined strat-

egies (e.g. one-hot).

4. Optionally collapse mutations by tumor (e.g. by averaging).

5. Set a prediction label and select features.

6. Model data with any of the scikit-learn machine learning

algorithms.

For convenience, random forest and support vector machine func-

tionality is built directly into orchid-ml, automatically performing

data normalization, train/test splitting, cross-validation and label

permutation for null model generation. Orchid-ml visualization

functions can be used to assess performance and explore relation-

ships within the data; these include mutation dendrograms, feature

weight boxplots, class prediction and confusion matrix heatmaps,

receiver operating characteristic (ROC) curves and Precision Recall

(PR) curves.

3.4 Application of orchid: tissue of origin
To demonstrate orchid’s ability to facilitate machine learning with

biologically relevant classification tasks, we applied a classification

model used to determine tissue-of-origin from 12 tissues. The code

for this task is provided as a jupyter notebook (http://jupyter.org/) in

the orchid software repository.

For this application, we prepared data as described in Materials

and methods and randomly sampled 100 tumor profiles for visual-

ization with orchid-ml’s show_dendrogram() function, using com-

plete linkage hierarchical clustering on both features and tissues.

This was done to assess segregation of tumor profiles by feature

groups, and to see if patterns emerged that correspond to biology of

underlying tissue type (Fig. 2).

From this we observed a small amount of tissue level grouping

with particular feature combinations differentially driving segrega-

tion. For example, cancers of the stomach, uterus, head and neck

and bladder appeared to show increased mutation burden in tran-

scribed regions (Fig. 2a), and conversely lower mutation burden in

repressed regions (Fig. 2e) of encode cell lines. For head and neck

cancer, mutations were of higher frequency and enriched in both the
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G [T>A] G trinucleotide context and 30UTR regions (Fig. 2b). Upon

cross referencing the ICGC data portal, we noted the very common

chr7: 140453136C [A>T] C mutation in the 30UTR region of

BRAF, representing 44% of patients, as potentially driving this sig-

nal. Finally, when considering the V, D, J and C immunoglobulin

biotype features, separation of blood cancers was observed (Fig. 2c

and d). We also clustered the full 960 tissues on just tissue-of-origin

an observed similar patterns (Supplementary Fig. S2), as well as

additional trinucleotide signatures that corresponded to those previ-

ously reported by Alexandrov et al. (2013).

Next, we modeled these profiles using a random forest classifier.

First, we first employed feature selection to guard against overfitting

by reducing the number of features from 339 to 20 using the permu-

tation method described in Materials and methods. Of the retained

features, their permutation caused an increase of between 2.5 and

5.2% in classification error. Ten of the twenty most important fea-

tures were trinucleotide context features, four were transcript bio-

types and two were related to cancer pathways. The remaining

retained features were the modifier impact category, Nhlf enhancer,

HeLa-S3 transcription and CADD. From this reduced dataset, we

performed 10-fold cross validation with a random forest classifier

using orchid_ml’s random_forest() function. The resulting models

had a mean accuracy for tissue classification of 0.94 6 0.02. To help

ensure systematic artifacts such as class label imbalance were not

driving signal accuracy, orchid was used to re-train the models after

permuting training labels, and the expected null performance was

observed (accuracy¼0.08 6 0.09; expected¼0.08). Finally, the

random_forest() function was called to build a predictive model

using a randomly subset population of patients (n¼624; 65%),

while the remaining were withheld for testing (n¼336; 35%). For

this final model, we plotted the feature weights on a per-tissue basis

(Fig. 3a), showing that several features were particularly useful for

classifying just one of the tissue types (e.g. IG variable segment for

blood and many of the C>T trinucleotide context features). We also

used orchid-ml’s show_curves() function to produce ROC curves in

a one-vs-rest fashion for each tissue (Fig. 3b). Tissues have an AUC

range between 0.80 (brain) and 0.98 (bone).

To observe whether consistent tissue misclassifications were

present, we generated a confusion matrix using orchid-ml’s show_

confusion_matrix() function (Fig. 3c). For this analysis, we assigned

each tumor profile the tissue with the highest predictive probability

and compared the predicted tissues with their actual types. Tissues

most often confused as others (False Negative Rate) include pan-

creas, prostate and uterus, while bone, head and neck and stomach

were rarely confused. Likewise, tissues were often confused as pros-

tate, brain and breast (False Discovery Rate), but not as often as

blood, skin, uterus, esophagus. Interestingly, we also found that

while some tissue types were confused in bi-directional manner (e.g.

breast () prostate) others were not (e.g. pancreas) breast).

4 Discussion

To better aid the analysis of tumor genomes, we present orchid, a

powerful mutation management and machine learning framework.

We also demonstrate orchid’s ability to determine with high accu-

racy tissue-of-origin from tumor mutation data, which may have

potential use in diagnosing tumors of unknown origin and for

screening cfDNA. To our knowledge, orchid represents the first can-

cer mutation analysis framework with an in-memory database data

storage, parallelization/cluster support and integration with python

numeric analysis and machine learning modules.

While orchid does not represent the first software to annotate

mutations or produce mutation profile models within machine-

learning, it does offer some advantages over other methods. For one,

Fig. 2. Tumor Mutational Profile Dendrogram. Patient mutation values were averaged over all features and labeled with the tissue-of-origin. The orchid-ml show_

dendrogram() function was then used to generate a clustered heatmap. (a) and (e) Fairly strong separation of stomach, head and neck, bladder and uterus tissues

based on encode cell line transcribed regions was observed. (b) In head and neck cancers, a frequent, G [T>A] G context and 30UTR mutational signal was

present. (c) and (d) Blood cancers showed separation from other tissues based on the V, D, J and C immunoglobulin biotype features
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it has the ability to quickly integrate new biological features by

employing a flexible parsing system with parallel processing support

for both a desktop machine and cluster. Secondly, it allows seamless

integration with existing python analysis workflows and provides

functionality for basic machine learning tasks within the scikit-learn

ecosystem. Finally, it provides many convenience functions to aid

the visualization and analysis models.

Despite these advantages, orchid has a few limitations when com-

pared to other software tools designed to model tumor mutations. For

one, it’s design centers around the analysis of simple somatic muta-

tions and copy number variation data, and some cancers are largely

driven by biological mechanisms of higher order genetic architecture,

such as gene fusions (e.g. prostate cancer TMPRSS: ERG), large-scale

structural rearrangements, epigenetic and gene expression changes.

Nevertheless, the analysis of such mechanisms could be incorporated

in future versions of orchid. Secondly, due to dependence on the

scikit-learn ecosystem, some popular machine learning algorithms

(e.g. neural networks) are not available for analysis or are not as fully

featured as in other frameworks. And finally, orchid makes use of

copy number variation data on a very granular mutational level,

potentially missing important associations that could be seen when

such data is analyzed over larger genomic regions.

With regard to our application of orchid to classify tumor tissue-

of-origin, it is important to note that related methods have been

previously developed. In particular, Snyder et al. used a novel nucle-

osome footprint window protection score to demonstrate correla-

tion with patterns of protection and pathological states such as

cancer (Snyder et al., 2016). Likewise, Marquard et al. developed

TumorTracer to classify tissue-of-origin with 85% accuracy across 6

primary sites using both somatic point mutation as well as copy

number information (Marquard et al., 2015). Orchid was able to

achieve slightly a better accuracy of 94% among 12 tumor types,

improving upon these initial methods.

While the tissue-of-origin task demonstrates one potential use of

orchid, it is possible to model other types of data. For example, one

can use orchid to generate a set of null, simulated mutations in con-

junction with observed mutations to see if a particular feature set

can be used to distinguish between the two classes, or even to assign

a probability of class membership. This follows a similar strategy

used by several driver/passenger and other base-level scoring tools

(Fu et al., 2014; Kircher et al., 2014; Kumar et al., 2016; Quang

et al., 2015) and has application in developing models for mutation

prioritization for the design of custom sequencing panels for cancer

detection.

Fig. 3. Model Performance. (a) The twenty most important features for classification were selected using orchid-ml’s select_features() function and plotted on a

per-tissue basis after modeling. (b) The true positive versus false positive classification rates for each tissue are plotted in a one-vs-rest fashion. The dashed diag-

onal line indicates random classification. The macro average over all models is shown and a heavy dashed line and Area Under the Curves (AUCs) are given in

parenthesis for each tissue. (c) A matrix indicating classification predictions from the tissue model. Rows labels are actual tissues and columns labels are tissues

predicted by our model. True positive counts can be found along the diagonal, and of the remaining, false positives are along columns and false negatives are

along rows
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