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Abstract 
The Yuma myotis bat (Myotis yumanensis) is a small vespertilionid bat and one of 52 species of new world Myotis bats in the subgenus 
Pizonyx. While M. yumanensis populations currently appear relatively stable, it is one of 12 bat species known or suspected to be susceptible 
to white-nose syndrome, the fungal disease causing declines in bat populations across North America. Only two of these 12 species have ge-
nome resources available, which limits the ability of resource managers to use genomic techniques to track the responses of bat populations 
to white-nose syndrome generally. Here we present the first de novo genome assembly for Yuma myotis, generated as a part of the California 
Conservation Genomics Project. The M. yumanensis genome was generated using a combination of PacBio HiFi long reads and Omni-C 
chromatin-proximity sequencing technology. This high-quality genome is one of the most complete bat assemblies available, with a contig N50 
of 28.03 Mb, scaffold N50 of 99.14 Mb, and BUSCO completeness score of 93.7%. The Yuma myotis genome provides a high-quality resource 
that will aid in comparative genomic and evolutionary studies, as well as inform conservation management related to white-nose syndrome.
Key words: California Conservation Genomics Project, CCGP, chiroptera, long-read assembly, Myotis yumanensis, reference genome

Introduction
Bats (order Chiroptera) are the second-most diverse mam-
malian order, representing 22% of global mammal diversity 
(Simmons and Cirranello 2018; Mammal Diversity Database 
2022). Despite their global distribution and ecological and 
economic importance, the conservation status of bats is less 
well understood than other species of mammals or birds 
(Frick et al. 2020). In step with data gaps in the global con-
servation status of bats, genomic resources for bats are also 
underdeveloped. Since the first reference genome of the little 
brown bat (Myotis lucifigus) was published by the Broad 
Institute in 2011 (Lindblad-Toh et al. 2011), 50 additional 
bat reference genomes have been made publicly available, al-
though 37 (74%) of these genomes are highly fragmented, 

primarily short-read assemblies. Eleven of the 19 currently 
recognized chiropteran families have at least one reference ge-
nome, and most are from species in the families Pteropodidae, 
Phyllostomidae, and Vespertilionidae, including four in the 
genus Myotis. Given that the genus contains more than 120 
globally distributed species, many of which have experienced 
declines in recent decades, additional genomic resources are 
sorely needed for the group.

The Yuma myotis bat (hereafter “Yuma bat”; Myotis 
yumanensis; Allen 1864) is one of 47 bat species endemic to 
North America. The Yuma bat is abundant and widely dis-
tributed, occurring as far north as British Columbia, Canada, 
south throughout most of the western United States, and 
as far south as Morelos, Mexico (Braun et al. 2015). Yuma 
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bats are closely associated with riparian habitat for foraging 
(Brigham et al. 1992; Duff and Morrell 2007) and utilize a 
variety of natural (Braun et al. 2015) and manmade (Evelyn et 
al. 2004) roost types (Fig. 1). There are six putative subspecies 
of Yuma bat including M. y. lambi, M. y. lutosus, M. y. ox-
alis, M. y. saturatus, M. y. sociabilis, and M. y. yumanensis, al-
though the extent to which these subspecies are supported as 
evolutionarily distinct lineages by genomic data is unknown 
(Braun et al. 2015).

The Yuma bat is also one of 12 bat species in North America 
with confirmed detection of Pseudogymnoascus destructans 
(Pd), the fungus responsible for white-nose syndrome (WNS). 
For some species of bats such as the little brown bat, WNS has 
resulted in more than 90% loss from certain colonies (Frick 
et al. 2010). Furthermore, although the IUCN considers the 
Yuma bat stable across its native range (Solari 2019), occu-
pancy models derived from acoustic data indicate a slight 
decline in summer occupancy over the three-year period of 
2016–2019 (Udell et al. 2022). As WNS continues to spread 
across North America (Duncan 2023), it will be important to 
monitor common, abundant species such as the Yuma bat to 
detect and document population declines as they occur.

Genomic data provide an effective, efficient tool to monitor 
WNS-related mortalities in bat populations, as well as the genes 

underlying survival. Using whole genome resequencing data, 
researchers have identified single nucleotide polymorphisms 
related to torpor and immune function in bat populations 
that survive WNS (Lilley et al. 2020b; Gignoux-Wolfsohn 
et al. 2021) and have investigated potential declines in ge-
nomic diversity following mass die offs (Lilley et al. 2020b). 
Genomic studies such as these rely heavily on the availability 
of high-quality reference genomes (Brandies et al. 2019).

Here, we describe the genome assembly for M. yumanensis, 
generated through the California Conservation Genomics 
Project (CCGP; Shaffer et al. 2022). One of the primary 
goals of the CCGP is to generate reference genomes and 
whole genome resequencing data for a comprehensive set of 
153 ecologically and phylogenetically diverse species across 
California (Shaffer et al. 2022), and the Yuma bat is one of 
two chiropteran species in the project. Using PacBio HiFi 
long reads and Omni-C chromatin-proximity sequencing 
technology, we generated the first assembly for the species. 
The Yuma bat genome is an invaluable resource for basic 
research on diversification among Myotis species and the 
evolution of unique traits like echolocation and disease re-
sistance, as well as more applied work on population size, 
connectivity, and genomic health that will aid in WNS man-
agement planning.

Fig. 1. (A) Profile view and (B) front-on view of Yuma myotis bats (Myotis yumanensis). (C) M. yumanensis day roost in a longitudinal joint of a bridge in 
Riverside County, California, USA.
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Methods
Tissue collection and cell culture
We captured a juvenile male Yuma bat from a maternity colony 
located in Chester, Plumas County, California. The specimen 
was collected by California Department of Fish and Wildlife 
(CDFW) staff under the department’s jurisdiction as the trustee 
for wildlife management in the state of California, CA Fish & 
Game Code § 1802 (2015). The animal was transported to a 
CDFW laboratory facility where it was humanely euthanized via 
a combination of isoflurane and cervical dislocation. The carcass 
was immediately dissected and tissues were collected for genome 
sequencing. Several aliquots of kidney, lung, heart, spleen, liver, 
testes, intestine, skeletal muscle, and brain were washed sequen-
tially in molecular grade water, ethanol, and water again before 
being flash frozen in liquid nitrogen. One aliquot of each tissue 
was reserved for generating primary cell cultures. Species iden-
tity was confirmed through Sanger sequencing of a fragment of 
the cytochrome oxidase subunit 1 (COI) mitochondrial gene 
using the methodology of Walker et al. (2016).

Primary cell cultures from the skin (plagiopatagium and 
body), heart, brain, cartilage, and eye were grown following 
Yohe et al. (2019) with modifications. Tissue samples were 
rinsed serially in baths of DPBS, 70% ethanol, and DPBS, and 
then stabilized in a cell culture medium consisting of BenchStable 
DMEM/F12 (Gibco Cat. #A4192002, Thermofisher Scientific 
Inc., Waltham, MA) supplemented with 20% FBS (Gibco Cat. 
#26140087), 0.2% Primocin (InvivoGen Cat. #ant-pm-1, San 
Diego, CA), and 15 mM HEPES (Gibco Cat. #15630080). 
Tissues were minced in 500 µL of DPBS using surgical scissors, 
and the tissues were digested overnight in 1 mg/mL Collagenase 
IV (Stemcell Technologies Cat. #07909, Vancouver, Canada) 
supplemented with 0.2% Primocin. The dissociated tissues 
were centrifuged at 500 × g for 5 min, and washed twice with 
DPBS (Gibco Cat. #14190144). Cells were plated in T75 flasks 
containing cell culture media formulated as described, and 
grown in a 37 °C incubator with 5% CO2 atmosphere.

Adherent cells were passaged four days post-collection 
(“Passage 0”) using 0.05% Trypsin-EDTA (Gibco Cat. 
#25300054). Cells were then counted and replated in high 
glucose DMEM (Gibco Cat. #10569010) with pyruvate 
and GlutaMax supplementation, plus 10% FBS and 1% 
penicillin-streptomycin (Gibco Cat. #10378016). Three T175 
flasks were seeded with approximately two million cells each 
after the first passage to generate triplicates of 10 million cell 
aliquots for DNA and RNA extraction.

Nucleic acid library preparation
High molecular weight genomic DNA (HMW gDNA) was 
isolated from cultured cells following a protocol described 
previously (Jain et al. 2018). Briefly, 10 million cultured skin 
fibroblast cells were lysed with 2 mL lysis buffer containing 
10 mM NaCl, 25 mM EDTA, 0.5% (weight/volume) SDS, 
and 100 µg/mL Proteinase K overnight at room temperature. 
The lysate was treated with RNase A for 30 min at 37 °C 
and cleaned with equal volumes of phenol/chloroform using 
phase lock gels (Quantabio Cat. #2302830, Beverly, MA). The 
HMW gDNA was precipitated by adding 0.4× volume of 5 
M ammonium acetate and 3× volume of ice cold ethanol. The 
pellet was washed with 70% ethanol twice and resuspended 
in elution buffer (10 mM Tris, pH 8.0). The purity was 
accessed using NanoDrop spectrophotometer (260/280 = 1.8 
and 260/230 = 2.0) and the integrity of the HMW gDNA was 

verified on a Femto pulse system (Agilent Technologies, Santa 
Clara, CA).

The HiFi SMRTbell library was constructed using the 
SMRTbell Express Template Prep Kit v2.0 (Pacific Biosciences 
of California [PacBio] Cat. #100938900, Menlo Park, CA) ac-
cording to the manufacturer’s instructions. HMW gDNA was 
sheared to a target size distribution between 15 and 20 kb. 
The sheared gDNA was concentrated using 0.45× of AMPure 
PB beads (PacBio Cat. #100265900) for the removal of single-
strand overhangs at 37 °C for 15 min, followed by further 
enzymatic steps of DNA damage repair at 37 °C for 30 min, 
end repair and A-tailing at 20 °C for 10 min and 65 °C for 
30 min, ligation of overhang adapter v3 at 20 °C for 60 min 
and 65 °C for 10 min to inactivate the ligase, then nuclease 
treated at 37 °C for 1 h. The SMRTbell library was purified 
and concentrated with 0.45× AMPure PB beads for size selec-
tion using the BluePippin/PippinHT system (Sage Science Inc. 
Cat. #BLF7510/HPE7510, Beverly, MA) to collect fragments 
greater than 79 kb. The 15–20 kb average HiFi SMRTbell li-
brary was sequenced at the University of California, Davis, 
DNA Technologies Core (Davis, CA) using three SMRT Cell 
8M Trays (PacBio Cat. #101389001), Sequel II sequencing 
chemistry 2.0, and 30-h movies each on a PacBio Sequel II 
sequencer.

The Omni-C library was prepared using a Dovetail 
Omni-C Kit (Dovetail Genomics Cat. #21005, Scotts 
Valley, CA) according to the manufacturer’s protocol with 
slight modifications. First, cultured cell pellets (Sample ID: 
MYYU_CA2020_CCGP) were resuspended in 1× PBS. Then, 
chromatin was fixed in place in the nucleus, and the fixed chro-
matin was digested with DNase I and extracted. Chromatin 
ends were repaired and ligated to a biotinylated bridge adapter 
followed by proximity ligation of adapter-containing ends. 
After proximity ligation, crosslinks were reversed and the 
DNA was purified from proteins, purified DNA was treated to 
remove biotin that was not internal to ligated fragments, and 
a sequencing library was generated using the NEBNext Ultra 
II (New England Biolabs Inc. Cat. #E7645, Ipswich, MA) with 
an Illumina compatible y-adaptor. Biotin-containing fragments 
were then captured using streptavidin beads. The post capture 
product was split into two replicates prior to PCR enrichment 
to preserve library complexity with each replicate receiving 
unique dual indices. The library was sequenced at the Vincent 
J. Coates Genomics Sequencing Laboratory (Berkeley, CA) on 
an Illumina NovaSeq 6000 platform (Illumina, San Diego, CA) 
to generate approximately 100 million 2 × 150 bp read pairs 
per Gb of genome size.

Nuclear genome assembly
We assembled the M. yumanensis genome following the 
CCGP assembly pipeline Version 5.0, as outlined in Table 
1, which lists the tools and nondefault parameters used. The 
pipeline uses PacBio HiFi reads and Omni-C data to pro-
duce high quality and highly contiguous genome assemblies. 
First, we removed the remnant adapter sequences from the 
PacBio HiFi dataset using HiFiAdapterFilt (Sim et al. 2022) 
and generated the initial dual or partially phased diploid 
 assembly (http://lh3.github.io/2021/10/10/introducing-dual- 
assembly) using HiFiasm (Cheng et al. 2022) on Hi-C 
mode, with the filtered PacBio HiFi reads and the Omni-C 
dataset. We then aligned the Omni-C data to both 
assemblies  following the Arima Genomics Mapping Pipeline  
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(https://github.com/ArimaGenomics/mapping_pipeline) and 
scaffolded both assemblies with SALSA (Ghurye et al. 2017, 
2019).

Both genome assemblies were manually curated by iteratively 
generating and analyzing their corresponding Omni-C contact 
maps. To generate the contact maps we aligned the Omni-C 
data with BWA-MEM (Li 2013), identified ligation junctions, 
and generated Omni-C pairs using pairtools (Open2C et al. 
2023). We generated a multi-resolution Omni-C matrix with 
cooler (Abdennur and Mirny 2020) and balanced it with 
hicExplorer (Ramírez et al. 2018). We used HiGlass (Kerpedjiev 
et al. 2018) and the PretextSuite (https://github.com/wtsi-
hpag/PretextView; https://github.com/wtsi-hpag/PretextMap; 
https://github.com/wtsi-hpag/PretextSnapshot) to visualize the 
contact maps where we identified misassemblies and misjoins, 
and finally modified the assemblies using the Rapid Curation 
pipeline from the Wellcome Trust Sanger Institute, Genome 
Reference Informatics Team (https://gitlab.com/wtsi-grit/

rapid-curation). Some of the remaining gaps (joins generated 
during scaffolding and curation) were closed using the PacBio 
HiFi reads and YAGCloser (https://github.com/merlyescalona/
yagcloser). Finally, we checked for contamination using the 
BlobToolKit Framework (Challis et al. 2020).

Genome assembly assessment
We generated k-mer counts from the PacBio HiFi reads using 
meryl (https://github.com/marbl/meryl). The k-mer counts 
were then used in GenomeScope 2.0 (Ranallo-Benavidez et al. 
2020) to estimate genome features including genome size, het-
erozygosity, and repeat content. To obtain general contiguity 
metrics, we ran QUAST (Gurevich et al. 2013). We evaluated 
genome quality and functional completeness using BUSCO 
(Manni et al. 2021) with the Mammalia ortholog database 
(mammalia_odb10) which contains 9,226 genes. Assessment 
of base level accuracy (QV) and k-mer completeness was 

Table 1 Assembly pipeline and software used. Software citations are listed in the main text

Assembly Software and any non-default options Version 

Filtering PacBio HiFi adapters HiFiAdapterFilt Commit 64d1c7b

K-mer counting Meryl (k=21) 1

Estimation of genome size and heterozygosity GenomeScope 2

De novo assembly (contiging) HiFiasm (Hi-C Mode, –primary, output p_ctg.hap1, p_ctg.hap2) 0.16.1-r375

Scaffolding

  Omni-C data alignment Arima Genomics Mapping Pipeline Commit 2e74ea4

  Omni-C scaffolding SALSA (-DNASE, -i 20, -p yes) 2

  Gap closing YAGCloser (-mins 2 -f 20 -mcc 2 -prt 0.25 -eft 0.2 -pld 0.2) Commit 0e34c3b

Omni-C contact map generation

  Short-read alignment BWA-MEM (-5SP) 0.7.17-r1188

  SAM/BAM processing samtools 1.11

  SAM/BAM filtering pairtools 0.3.0

  Pairs indexing pairix 0.3.7

  Matrix generation cooler 0.8.10

  Matrix balancing hicExplorer (hicCorrectmatrix correct --filterThreshold -2 4) 3.6

  Contact map visualization HiGlass 2.1.11

PretextMap 0.1.4

PretextView 0.1.5

PretextSnapshot 0.0.3

Genome quality assessment

  Basic assembly metrics QUAST (--est-ref-size) 5.0.2

  Assembly completeness BUSCO (-m geno, -l mammalia) 5.0.0

Merqury 2020-01-29

Contamination screening

  Local alignment tool BLAST+ (-db nt, -outfmt ‘6 qseqid staxids bitscore std’ , -max_tar-
get_seqs 1, -max_hsps 1, -evalue 1e-25 )

2.1

  General contamination screening BlobToolKit 2.3.3

Mitochondrial assembly

  Mitochondrial genome assembly MitoHiFi (-r, -p 50, -o 1) 2.2

Comparing available genome assemblies

  Genome contiguity ggplot2 3.4.1 (R version 
4.2.3)

Custom script (https://github.com/joeycurti3/myyu_joh) Commit 3f5c8dd

  Genome genic completeness gVolante (-cuttoff length = 1, -sequence type = Genome (nucleotide), 
-ortholog search pipeline = BUSCO v5, -ortholog set = mammalia

2.0.0
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performed using the previously generated meryl database 
and merqury (Rhie et al. 2020). We further estimated ge-
nome assembly accuracy via BUSCO gene set frameshift 
analysis using the pipeline described in Korlach et al. (2017). 
Measurements of the size of the phased blocks are based on 
the size of the contigs generated by HiFiasm on HiC mode. 
We followed the quality metric nomenclature established by 
Rhie et al. (2021), with the genome quality code x·y·P·Q·C, 
where, x = log10[contig NG50]; y = log10[scaffold NG50]; 
P = log10 [phased block NG50]; Q = Phred base accuracy 
QV (quality value); C = % genome represented by the first 
“n” scaffolds, following a karyotype of 2n = 44 (Braun et al 
2015). Quality metrics for the notation were calculated on the 
assembly for Haplotype 1.

Mitochondrial genome assembly
We assembled the mitochondrial genome of M. yumanensis 
from the PacBio HiFi reads using the reference-guided pipe-
line MitoHiFi (Allio et al. 2020; Uliano-Silva et al. 2021). 
The mitochondrial sequence of an existing M. yumanenis 
(NCBI:NC_036319.1; Platt et al. 2018) was used as the 
starting reference sequence. After completion of the nuclear 
genome, we searched for matches of the resulting mitochon-
drial assembly sequence in the nuclear genome assembly 
using BLAST+ (Camacho et al. 2009) and filtered out contigs 
and scaffolds from the nuclear genome with a percentage of 
sequence identity >99% and size smaller than the mitochon-
drial assembly sequence.

Comparing available genome assemblies
We queried the National Library of Medicine’s National 
Center for Biotechnology Information (NCBI) on 11 April 
2023 for all representative genome assemblies using the taxon 
id for Chiroptera (search term: txid9397[Organism:exp]). 
For each assembly, we recorded the genomes’s global statis-
tics including genome size, scaffold number, scaffold N50, 
contig number, and contig N50. To compare the conti-
guity of available genomes, we accessed NCBI full sequence 
reports for all 50 available bat genomes and plotted the cu-
mulative coverage of the genome by scaffold of a given size 
(NGx plot) in R (R Core Team 2022), using the package 
“ggplot2” (Wickham 2016) following scripts from Lin et 
al. (2022). To compare completeness of available genomes, 
we downloaded fasta sequences for all 50 available bat 
genomes on NCBI and we used gVolante (Nishimura et al. 
2017, 2019) to run BUSCO using the Mammalian ortholog 
database (mammalia_odb10).

Results
The Omni-C and PacBio HiFi sequencing libraries generated 
120.4 million read pairs and 4.7 million reads, respectively. 
The latter yielded ~40-fold coverage (N50 read length 
16,323 bp; minimum read length 43 bp; mean read length 
16,158 bp; maximum read length of 52,146 bp) based on the 
Genomescope 2.0 genome size estimation of 1.9 Gb. Based 
on PacBio HiFi reads, we estimated 0.194% sequencing error 
rate and 0.809% nucleotide heterozygosity rate. The k-mer 
spectrum based on PacBio HiFi reads show a bimodal distri-
bution with two major peaks at ~38 and ~75-fold coverage, 
where peaks correspond to homozygous and heterozygous 
states of a diploid species (Fig. 2A).

The final assembly (mMyoYum1) consists of two partially 
phased haplotypes that vary slightly in size compared with 
the estimated value from GenomeScope 2.0 (Fig. 2A), as 
has been observed in other taxa (see e.g. Pflug et al. 2020). 
Haplotype 1 consists of 476 scaffolds spanning 1.94 Gb with 
contig N50 of 28.03 Mb, scaffold N50 of 99.14 Mb, longest 
contig of 120.09 Mb, and largest scaffold of 240.34 Mb. 
The Haplotype 2 assembly consists of 250 scaffolds, span-
ning 2.05 Gb with contig N50 of 26.79 Mb, scaffold N50 of 
94.21 Mb, longest contig of 59.72 Mb, and largest scaffold of 
216.39 Mb. Assembly statistics are reported in Table 2, and 
graphical representation for the primary assembly in Fig. 2B.

During manual curation, we generated a total of 12 breaks 
and 153 joins, with 6 breaks per haplotype, 79 joins for 
Haplotype 1, and 74 joins were made for Haplotype 2. We 
were able to close 45 gaps, 19 on Haplotype 1 and 26 on 
Haplotype 2, and we filtered out 2 contigs (1 per haplotype), 
corresponding to mitochondrial contamination. No further 
contigs were removed. The Omni-C contact maps show that 
both assemblies are highly contiguous (Fig. 2C and 2D). We 
have deposited both assemblies on NCBI (see Table 2 and 
Data Availability for details).

Haplotype 1 has a BUSCO completeness score of 93.7% 
using the Mammalian ortholog database, a per-base quality 
(QV) of 63.62, a kmer completeness of 89.64, and a frameshift 
indel QV of 40.98. Haplotype 2 has a BUSCO completeness 
score of 91.2% using the same ortholog database, a per-base 
quality (QV) of 63.88, a kmer completeness of 93.97, and 
a frameshift indel QV of 40.27. The Omni-C contact maps 
show that both assemblies are highly contiguous with some 
chromosome-length scaffolds (Fig. 2C and 2D, respectively; 
see Table 2 and Data availability for details).

The final mitochondrial genome size was 17,366 bp. The 
base composition of the final assembly version is A = 33.55%, 
C = 22.93%, G = 13.44%, T = 30.08%, and consists of 22 
unique transfer RNAs and 13 protein-coding genes.

Across all available bat genomes, genome contiguity based 
on scaffold N50 values ranged from 0.0107 to 171.1 Gb 
(x̄ = 29.73). Furthermore, completeness based on BUSCO 
percentage of complete genes detected ranged from 47.33 to 
96.61 (x̄ = 85.39). Generally, short-read genome assemblies 
were less contiguous (x̄ = 11.03 Mb) and less complete 
(x̄ = 81.91) than assemblies that used a combination of long 
and short reads (x̄ = 92.44 Mb and x̄ = 95.21%, respectively).

Discussion
Here we provide the first genome assembly for the Yuma 
bat. This genome is highly contiguous and when compared 
against standards set by the Vertebrate Genome Project (VGP; 
https://vertebrategenomesproject.org/), this genome exceeds 
the proposed standards for the VGP2020 category (Rhie et al. 
2021), with the exception of the “chromosome status” quality 
category, since we did not name or match chromosomes. This 
genomic resource is comparable in its contiguity and com-
pleteness to other modern de novo genome assemblies that 
use a combination of short and long-read technologies, and 
is one of the most contiguous bat genomes currently avail-
able based on scaffold N50 (99.14 Mb for Yuma bat, range 
of other taxa: 0.0107–171.1 Gb). When compared with the 
other available genomes for bats in the genus Myotis, this 
genome is the most contiguous based on scaffold N50 (99.14 
Mb for Yuma bat, range of other taxa: 3.226–94.45 Mb; Fig. 
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Fig. 2. Visual overview of genome assembly metrics. (A) K-mer spectra output generated from PacBio HiFi data without adapters using 
GenomeScope2.0. The bimodal pattern observed corresponds to a diploid genome. K-mers covered at lower coverage and lower frequency correspond 
to differences between haplotypes, whereas the higher coverage and higher frequency k-mers correspond to the similarities between haplotypes. 
(B) BlobToolKit Snail plot showing a graphical representation of the quality metrics presented in Table 2 for the M. yumanensis primary assembly 
(mMyoYum1.0.hap1). The plot circle represents the full size of the assembly. From the inside-out, the central plot covers length-related metrics. The red 
line represents the size of the longest scaffold; all other scaffolds are arranged in size-order moving clockwise around the plot and drawn in gray starting 
from the outside of the central plot. Dark and light orange arcs show the scaffold N50 and scaffold N90 values. The central light gray spiral shows the 
cumulative scaffold count with a white line at each order of magnitude. White regions in this area reflect the proportion of Ns in the assembly. The dark 
versus light blue area around it shows mean, maximum, and minimum GC versus AT content at 0.1% intervals (Challis et al. 2020). (C-D) The Omni-C 
contact map for the primary (C) and alternate (D) genome assemblies generated with PretextSnapshot. Omni-C contact maps translate proximity of 
genomic regions in 3D space to contiguous linear organization. Each cell in the contact map corresponds to sequencing data supporting the linkage (or 
join) between two such regions. Scaffolds are separated by black lines, and higher density corresponds to higher levels of fragmentation (See online 
version for color figure).
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3), and the second most complete based on its BUSCO score 
of 93.7% (range of other taxa: 86.57%–96.18%). Future 
work could further improve this assembly through addi-
tional manual curation of scaffold placement and targeted 
DNA-FISH to assign scaffolds to true karyotypes (Shakoori 
2017). Such work, along with gene annotation using RNA-
seq for gene prediction, is planned for future versions of this 
assembly.

Genomic data are increasingly being applied to investi-
gate the unique traits bats possess, including the ability 
to act as hosts to many pathogens without succumbing 

to illness (Chattopadhyay et al. 2020; Moreno Santillán 
et al. 2021), the physiological basis of unique feeding 
behaviors like sanguivory (blood feeding; Zepeda Mendoza 
et al. 2018), and the exceptional longevity of bats relative 
to their small body size (Foley et al. 2018; Sullivan et al. 
2022). While these and other bat genomic studies have the 
potential to prove useful to human biomedical research as 
well as our understanding of chiropteran evolution, they 
are often severely limited by the availability and quality 
of genomic resources. For example, of the 50 bat refer-
ence genomes currently available, 34 (74%) are short-read 

Table 2 Sequencing and assembly statistics, and accession numbers

Bio Projects & Vouchers CCGP NCBI BioProject PRJNA720569

Genera NCBI BioProject PRJNA765635

Species NCBI BioProject PRJNA777197

NCBI BioSample SAMN30526064

Specimen identification MYYU_CA2020_CCGP

Genome Sequence NCBI Genome accessions Haplotype 1 (Primary) Haplotype 2 (Alternate)

Assembly accession JAPQVT000000000 JAPQVU000000000

Genome sequences GCA_028538775.1 GCA_028536395.1

Sequencing Data PacBio HiFi reads Run 1 PACBIO_SMRT (Sequel II) run: 4.7 M spots,
76.5 G bases, 57 Gb

Accession SRX19740654

Omni-C Illumina reads Run 2 ILLUMINA (Illumina NovaSeq 6000) runs: 120.5 
M spots, 36.4 G bases, 11.9 Gb

Accession SRX19740655, SRX19740656

Genome Assembly Quality Metrics Assembly identifier (Quality code*) mMyoYum1(7.7.P7.Q63.C96)

HiFi Read coverage§ 33.26X

Haplotype 1 Haplotype 2

Number of contigs 685 465

Contig N50 (bp) 28,025,655 26,795,370

Contig NG50§ 28,147,841 28,130,932

Longest Contigs 120,097,812 597,242,388

Number of scaffolds 476 250

Scaffold N50 99,144,700 94,205,551

Scaffold NG50§ 99,144,700 109,018,441

Largest scaffold 240,344,003 2,163,927,272

Size of final assembly 1,952,479,771 2,050,500,308

Phased block NG50§ 27,204,636 27,189,810

Gaps per Gbp (# Gaps) 107 (209) 104 (215)

Indel QV (Frame shift) 40.98297536 40.27268042

Base pair QV 63.6294 63.8881

Full assembly = 63.76

k-mer completeness 89.6446 93.9753

Full assembly = 99.442

BUSCO completeness
(mammalia) n = 9226

 C S D F M 

H1‡ 93.70% 90.20% 3.50% 1.00% 5.30%

H2‡ 95.80% 92.20% 3.60% 1.00% 3.20%

Organelles 1 complete mitochondrial sequence CM053173.1

* Assembly quality code x.y.P.Q.C derived notation, from (Rhie et al. 2021). x = log10 [contig NG50]; y = log10 [scaffold NG50]; P = log10 [phased block 
NG50]; Q = Phred base accuracy QV (Quality value); C = % genome represented by the first ‘n’ scaffolds, following a known karyotype for M. yumanensis 
of 2n = 44 (Braun et al 2015). Quality code for all the assembly denoted by Haplotype 1 assembly (mMyoYum1.0.hap1)
§ Read coverage and NGx statistics have been calculated based on the estimated genome size of 1.95 Gb
‡ (H1) Haplotype 1 and (H2) Haplotype 2 assembly values.
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assemblies with very low overall contiguity and complete-
ness (Supplementary Materials). Our Yuma bat assembly 
provides a high quality, near-chromosome level resource in 
support of these research efforts. At the level of California 
biodiversity, the Yuma bat genome is the first chiropteran 
reference genome sequenced by the CCGP, filling a major 
gap in our emerging phylogeny of California biodiversity 
(Toffelmier et al. 2022). It contributes a new reference ge-
nome that will help in resolving outstanding questions on 
both species delimitation and phylogenetic relationships 
for the hyperdiverse genus Myotis, including the role of hy-
bridization in shaping contemporary genomic architecture 
(Korstian et al. 2022). The CCGP will also generate 163 
resequenced genomes throughout the species’ distributional 
range, including all currently recognized subspecies, and this 
reference genome will be critical to evaluating the validity 
of, and relationships among, those taxa.

Genomic resources can also enhance the conservation and 
management of bat species, both in California (Fiedler et 
al. 2022) and globally. Two major foci of bat conservation 
are to better understand the susceptibility of individuals 
and species to WNS, and predict the spread of the pathogen 
among North American populations. Currently, only 5 of 20 
bat species known to be affected by WNS have available ge-
nomic resources, including the reference genome presented 
here. Increasing genomic resources for these species will fa-
cilitate research on impacts of WNS, including the loss of 
genetic diversity due to population declines (Lilley et al. 
2020b) and genomic predictions regarding individual-to-
individual spread of the pathogen across landscapes (Lilley 
et al. 2020a).

In conclusion, we present the first high-quality genomic 
resource for the Yuma bat, a currently abundant and wide-
spread North American species. This highly contiguous 
and complete de novo genome assembly will be a valuable 

resource for studies aimed at understanding the evolution of 
unique bat traits and will contribute to bat conservation and 
management planning.

Supplementary material
Supplementary material can be found at http://www.jhered.
oxfordjournals.org/.
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