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Abstract of the Dissertation 

 
An Analysis of Recurrent Hippocampal Networks: Synchronization, Time, and Episodic Memory  

 
By 

 
Conor Dean Cox 

 
Doctor of Philosophy in Biomedical Sciences 

 
 University of California, Irvine, 2017 

 
Professor Gary Lynch, Chair 

 
 
 

   Episodic memory is the memory of complex sequences of events; basically memories 

that contain information about ‘what’ occurred, ‘where’ it happened, and ‘when’. It is unclear how 

episodic memory is stored in the brain.  The first part of this dissertation presents a model 

whereby the recurrent connections of hippocampal field CA3 are used to store a cue while 

tracking its appearance in time to allow the trace of temporally separated cues to be bound by 

long term potentiation (LTP). This process allows disparate elements of an episode to be linked 

and recovered in correct order while maintaining their temporal relationships.  The proposed 

activities of field CA3 evident in the model were then validated by electrophysiological 

experiments showing that the CA3 network can produce long and broad network reverberations 

in vitro without the reverberation of individual pyramidal cells. Additional studies demonstrated 

that CA3 was required for storage of the ‘when’ component of episodic memory.   

Episodic memory storage and organization happens continuously without supervision; 

however animals and humans use past experience to organize incoming complex information. 

Research described in the second part of the dissertation used exploration and learning of a 

complex unsupervised environment to test if prior experience with environmental complexity 

influenced exploration strategies and learning. We found that rats spontaneously organize their 
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behavior into episodes and that rats with prior experience with complexity use these episodes to 

more efficiently explore and learn the environment as compared to rats with prior exercise or 

handling. Using this behavioral task we then determined where learning-related synaptic 

modifications occurred. Analysis of the distribution of synapses with evidence of recent LTP 

showed that ‘prior experience’ animals store their information in spatially discrete segments of 

hippocampus, and primarily in field CA1. We then used a second behavioral task to determine 

where episodic vs contingency-based learning was stored. We found that in the exploration 

paradigm, synaptic changes associated with exploration were prominent in a different collection 

of zones including CA1 striatum oriens and CA3c. These mapping studies reinforce the 

conclusion that different types or components of memory are encoded through activities of 

different hippocampal subfields.  
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Introduction and Overview of the Dissertation 

 
Episodic or narrative memory involves the assembly of a complex sequence of disparate 

types of information into a unit (Tulving, 1985). Such episodes contain truly remarkable amounts 

of data about the nature of dozens of cues (‘what’), their spatial relationships (‘where’), and the 

temporal order and delays between them (‘when’) (Clayton et al., 1998). These points help 

explain the immense capacity of memory and the ability to quickly retrieve particular items, a 

process that commonly involves locating an episode and then searching through it for the target 

items. Despite considerable evidence that these activities are central to cognition and inferential 

thinking, little is known about how they are executed by brain networks. The first part of this 

dissertation addresses an important part of this question: how elements are linked together 

during experience and then recalled in a proper sequence. An hypothesis will be evaluated in 

which the remarkable recurrent collateral system found in hippocampal field CA3 allows for 

recurrent activation of neurons, thereby maintaining a representation of a cue long past the 

period in which it was actually present. This ‘trace’ can then be linked to a later arriving input via 

conventional mechanisms of long term potentiation (LTP). Arguments postulating that 

interconnected neurons can provide a kind of transient memory have a long history in 

neuroscience and the proposed role for CA3 is a logical extension of this. (Amit, 1995; Compte 

et al., 2000; Hopfield, 1982; Marr, 1971) Relatedly, there is a growing consensus that an 

essential function of the hippocampus involves temporal processing of a type beyond the 

capabilities of the much more elaborate circuitry found in cerebral cortex.(Eichenbaum, 2014) 

The commissural/associational system of field CA3 has no parallels, regarding the presence of 

massive reverberating associational connections, elsewhere in the extended hippocampal 

formation or in the telencephalon and thus is a logical site for the execution of the postulated 

time related functions of hippocampus. 
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Assuming, as is the case here, that most complex computations by brain represent 

network level operations, then simulations of large numbers of neurons provide the only 

currently available means for investigating the proposed role of CA3. We therefore built a 

biophysical model with more than one thousand neurons along with anatomically dictated 

connections, interneurons, and inputs from the dentate gyrus and entorhinal cortex to determine 

if the basic design of CA3 is capable of the above across time operations. Simulations of this 

type serve to define minimal sufficient conditions for performing the suspected function 

(association between delayed cues) but are also useful for identifying unsuspected 

neurobiological features required for the function. Because of their considerable complexity, and 

incorporation of stochastic features of neurons, simulations on occasion generate unexpected 

effects that are of computational and psychological interest. They also allow direct manipulation 

of parameters in order to gain insight into to how, and under what conditions, the anatomically- 

and physiologically-based model produces such effects, and by extension how these behaviors 

may be possible in biological neuronal networks. As will be described, the present model 

produces effects that go well beyond cue linkages and that are key features of episodic 

memory. 

We supplemented the modeling work with experiments to test specific predictions of the 

hypothesis that the dense associativity of the CA3 system enables the temporal functions of the 

hippocampus in laying down an episodic memory trace. Surprisingly, there have previously 

been no direct tests of the common assumption that reverberating activity maintained by the 

recurrent collateral projections can maintain firing by individual pyramidal neurons. The 

simulations also suggested a first direct test of the central argument that field CA3 is essential 

for encoding the temporal order in which cues occur. This project required the development of 

novel rodent behavioral paradigms for assessing the basic ‘what’, where’, and ‘when’ elements 

of an episode. 
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Organizing the flow of experience into discrete episodes occurs continuously and without 

supervision. It is undoubtedly the case, however, that people use their past experience with 

complex environments to guide the acquisition of now present episodic information. This 

process of transferring rules or strategies from earlier encounters with the real world is a 

prominent topic in human research (Baldwin et al., 1988; Pan et al., 2010). It follows from these 

points that analysis of episodic like memory in animals will ultimately have to employ behavioral 

paradigms involving unsupervised movement through environments containing ‘what’, ‘where’, 

and ‘when’ data as well as subjects with a history of dealing with complexity. As described 

below, we have gradually evolved a first protocol that incorporates these features and in which 

rats use discrete, episode-like forays to explore a novel, challenging environment. These 

developments allowed us to identify the nature of the material transferred from prior encounters 

with complexity and to show that this process markedly enhances memory formation, advances 

that bring the animal work substantially closer to the human condition. 

Using the above behavioral tests, we addressed the question of where learning related 

synaptic modifications occur in the hippocampus when animals are using multiple episodes to 

master complex, high choice situations. The results were unexpected and suggest that an 

integration of experience, rather than acquisition of specific information, dominates hippocampal 

encoding in realistic real world conditions.     
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Chapter 1 Recurrent Networks as a Means for Associating Temporally 

Spaced Cues 

 
 

Connecting cues separated in time is a fundamental memory operation but one that 

presents serious, largely unrecognized problems for current neurobiological and computational 

hypotheses about synaptic encoding operations. (Wallenstein et al., 1998) It is broadly assumed 

that memory-related synaptic modifications occur when an afferent input and its target neuron 

are activated at the same time. This hypothesis, often referred to as the ‘Hebb Rule’, proves to 

have powerful computational advantages, as shown in hundreds of network models 

(Bienenstock et al., 1982; Hopfield, 1982). The discovery and subsequent analysis of long-term 

potentiation (LTP) described a biological implementation for the above simple version of the rule 

(Bliss et al., 1993)  (other aspects of the postulated Hebb synapse are not realistic) (Granger et 

al., 1994).  LTP is an activity-induced increase in synaptic strength. The LTP effect occurs when 

the presynaptic depolarization and release is accompanied by the engagement of voltage 

sensitive postsynaptic receptors, something that requires an unusual level of postsynaptic 

depolarization. Thus, pre- and post-synaptic events must occur within a narrow time frame as 

proposed in the Hebb rule. LTP satisfies demanding constraints for a memory mechanism: it is 

induced by naturalistic patterns of afferent activity, occurs in a synapse-specific manner, and 

can last for weeks or longer (Abraham et al., 2002; Baudry et al., 2011; Lynch et al., 1984). 

However, the very requirement for temporal contiguity raises the problem of how two cues 

spaced in time by hundreds of milliseconds or more become associated by LTP-type plasticity. 

This problem has received surprisingly little attention from neuroscientists and persons 

modeling neuronal networks but one of two solutions is usually advanced when the issue does 

arise: ‘fire and hold’ cells of the type found in motor systems, and reverberating network activity 

(Eichenbaum, 2014; Jochems et al., 2013; Wallenstein et al., 1998). The hippocampus plays a 

critical role in the learning of sequential cues and thus it is a logical site to test for these two 
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mechanisms (Dede et al., 2016; Farovik et al., 2010). This chapter first describes the anatomy 

of hippocampus and then considers the possibility that recurrent networks in the structure could 

provide the substrate for linking temporally displaced cues.   

1-1. Hippocampal anatomy and cue association.  

The hippocampus receives its primary input from entorhinal cortex (ERC), a complex 

area itself, receives input from diverse set of regions (Oh et al., 2014; Seltzer et al., 1976). In 

network maps of the brain, it often emerges as a central hub of convergence of lower level 

sensory networks and higher-level memory and processing network.  And, in a recent analysis 

of connectivity among cortical regions, the lateral aspect of ERC stood out as the cortical field 

with connections to the greatest number of cortical regions (Bota et al., 2015). The ERC also 

contains a clearly delimited topography along several axes. The medial portion of the entorhinal 

cortex (MEC) has been proposed as a major site of convergence of sensory information relating 

to an animal’s location in space and contains cells that help map location in extended 

environments (Hafting et al., 2005; Hargreaves et al., 2005). This is also the likely relay for 

transmitting auditory cues to the hippocampus (Chen et al., 2013; Deadwyler et al., 1979). The 

lateral portion of entorhinal cortex (LEC) is primarily concerned with cue identity(Eichenbaum et 

al., 2012; Wilson et al., 2013). The neurons within layer 2 of both the medial and lateral 

entorhinal cortices project to the dentate gyrus, which is the primary site of information transfer 

into hippocampus (Rolls, 2008). This projection has an interesting topography, the LEC projects 

to the distal one third of the dendritic layer of the dentate gyrus (the dentate gyrus molecular 

layer) while the MEC innervates the middle third (Amaral et al., 2007). Both collections of ERC 

fibers continue into pyramidal cell field CA3, which also receives processed and heavily filtered 

information from the dentate gyrus via the peculiar mossy fiber axons of the dentate gyrus 

granule cells. Layer 3 cells of LEC also connect to pyramidal neurons of field CA1 (Treves et al., 

1994). These projections are to the most distal portion of target dendrites and are thought to 

require repeated spiking or coordinated input from CA3 to bring CA1 neurons to their firing 
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threshold (Jarsky et al., 2005). Layer 5 cells in the ERC receive input (and, in a sense circuit 

feed-back input) from the CA1 and subicular pyramidal cells. This deep layer projects to the 

more superficial layers of ERC resulting in a many stage entorhinal-hippocampal-entorhinal loop 

(Canto et al., 2008); in vivo physiological recording studies have confirmed that this system can 

support the transmission of a signal from the hippocampus to the ERC and then back to 

hippocampus (Deadwyler et al., 1976).   

The hippocampus on the other hand has a heavily structured topography. It has three 

evident subdivisions (dentate gyrus, CA3, CA1) recognized by early anatomists to constitute a 

serial network that later workers sometimes refer to as the ‘tri-synaptic circuit’. As mentioned 

above, the entorhinal cortex densely innervates the two outer lamina of the dentate gyrus; the 

inner dendritic zone receives a topographically dispersed excitatory input from the cells located 

below the primary neurons (granule cells) of the dentate gyrus (Deadwyler et al., 1975). These 

neurons are targets of granule cell axons, resulting in a positive feedback loop. Interestingly, the 

three major, laminated afferents to the granule cell dendrites each express a different version of 

LTP (W. Wang et al., 2016). If and how these elements interact to bind the object and space 

information transmitted from the entorhinal cortex is a matter of active research. The dentate 

gyrus granule cells generate the mossy fiber axons that project in a tight bundle to the most 

proximal dendrites of the CA3 pyramidal cells. This is one of the most unusual connections in 

the brain. It is extremely sparse with each fiber connecting to approximately 15 cells and each 

CA3 neuron only receiving input from 50 granule cells (Amaral et al., 1990; Treves et al., 1994). 

However, the projection is also extremely potent: mossy fiber boutons envelope multiple spines 

near the soma of CA3 cells leading to ‘detonator’ synapses (Urban et al., 2001).  

Field CA3 is the second stage of hippocampal processing and, like the dentate, is an 

unusual structure. Its pyramidal cells receive ~70% of their input from within CA3, and 

specifically from pyramidal cells of CA1 (Amaral et al., 1990; Treves et al., 1994), with about half 

of this coming from the contralateral side; this massive commissural/associational system is a 
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singular feature of hippocampus. Because of this, the region has been the subject of a number 

of modeling studies with the major hypothesis being that CA3 is the primary site of object  

identity storage (Kesner et al., 2015). This is due to its superficial similarity to the proposed 

Hebb-Marr nets (Marr, 1971), which were later adapted into Hopfield nets (Hopfield, 1982), a 

computational model that is capable of storing inputs, retrieving degraded information, and 

recovering sequences with no gaps. Work of this type led to the broad idea that CA3 constitutes 

a ‘pattern completion’ system, though it’s operation as a Hebb-Marr net would require features 

that are not known for field CA3 (for example, the capacity to erase stored information) 

(Dunwiddie et al., 1978; Kesner et al., 2015).  

The third and final stage of the hippocampal network is field CA1, a region that is 

anatomically relatively simple in comparison to the CA3 and DG. It receives inputs 

topographically from field CA3 with those cells closer to the DG (CA3c) projecting to the more 

distal portions of the CA1 dendrites, and those closer to the CA1 terminating more proximally on 

the CA1 dendritic tree. CA3 neurons located closest to CA1 project the basal side of the target 

dendritic tree, a region that is unusually responsive to synaptic modification. (Roth et al., 1995) 

Interestingly, no matter where the input is along the CA1 dendrite, it’s response at the cell body 

is relatively constant. Synapses further from the cell body have been shown through multiple 

means to have more receptors than those terminating more proximally such that similar 

physiological responses occur along the whole dendritic tree (Jarsky et al., 2005; Nicholson et 

al., 2006; Smith et al., 2003). This feature of CA1 is not found elsewhere in the cortex.  

Two sites in the above architecture have been proposed to implement the above noted 

mechanisms for linking cues separated in time. Regarding the idea that individual neurons serve 

this role, results from chronic recordings suggest that layer 2 cells in the MEC contribute to 

encoding of cue sequences by hippocampus via repeated firing in gap-times between cues. 

However, this effect could be secondary to prolonged events in the hippocampus that are fed 

back to the MEC via CA1 and subiculum; there is also a possibility that the animal maintains 
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contact with a first cue before shifting its attention to a later one (Jochems et al., 2013). Other 

work has used a pharmacological treatment to test if layer II entorhinal neurons express the ‘fire 

and hold’ property that could serve to link separated stimuli (Hasselmo et al., 2006). In one 

study, twenty percent of the cells were found to continue spiking in vitro and in vivo after 

activation in the presence of carbachol, a cholinergic receptor agonist that depolarizes neurons 

and thereby brings them closer to the action potential threshold (Jochems et al., 2013). While of 

considerable interest, these results do not document the presence of fire and hold neurons, as 

described for striatum, in hippocampal networks. However, some theorists have built on the 

data for such specialized neurons to develop a hypothesis in which the direct connections from 

ERC to field CA1 constitute a system for associating cues across time without the rest of the 

hippocampus (Jochems et al., 2013). This proposal makes fairly few network predictions as it is 

strictly biophysical and raises a number of largely ignored problems, such as how these cells 

are turned off, and what determines which of them fire and hold vs. fire and forget. It would in 

any event be surprising if the relatively weak entorhinal input to CA1 were solely responsible for 

what is thought to be a fundamental hippocampal operation.  

The second postulated mechanism for maintaining signals so as to allow for 

associations across time --- sustained firing due to dense interconnectivity between neurons --- 

aligns with the above-summarized anatomy of field CA3 (Wallenstein et al., 1998). And brain 

slice experiments show that the region occasionally (1-3 times per second) and spontaneously 

synchronizes its neurons, creating large extracellular potentials referred to as Sharp Waves 

(SPW). These events had been known for years from chronic recording studies of animals but 

their comparable occurrence in slices strongly encourages the idea that even relatively small 

populations of CA3 neurons periodically engage in sustained firing due to recurrent networks 

(Rex, Colgin, et al., 2009). However, experimental or modeling evidence for the idea is lacking.  

Testing for sustained activity via recurrent connections is difficult. It necessarily involves 

large numbers of CA3 cells, likely separated by considerable distances to account for the time 
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delays necessary to allow for maintenance of a signal. It is important to note that in these 

regards sustaining a representation of a transient cue does not necessarily imply that the same 

neurons are held in an active state until the arrival of a second cue. Given a sufficiently dense 

associative network, stimulation of an original population of cells could result in a series of 

active cell populations that cycle among themselves for extended periods of time. In this sense, 

associations between cues would involve an association between derivatives of the original 

representation active at the time delay in which the second signal arrived. Testing such ideas 

even with very large numbers of recording electrodes or with calcium imaging is not feasible 

because of distances involved and the possibility, noted above, that the pertinent cell 

populations are continually evolving.  The alternative is to generate biologically grounded 

models that allow for predictions of what might be required for a network to generate these 

operations.  

The following section develops and modifies a biophysical model of SPWs generated by 

CA3 to include a dentate gyrus input. It then tests the traits of this model to determine the range 

of potential outputs and then moves to the question of whether modified versions of the 

simulation support sustained firing of neurons over psychologically meaningful time scales. 

Initial tests for such activity in brain slices are also described. We then ask if the addition of an 

LTP-effect to the model enables a simple but fundamental behavioral phenomenon involving 

cue associations across time. 

 

1-2. Description of the model (adapted from (Gunn et al., 2017)). 

We used SPWs, large composite excitatory post synaptic potentials (EPSPs) that form 

part of the SPW-ripple complex, as an initial endpoint measure. SPWs originate autonomously 

within subfield CA3b, in part resulting from stochastic release from mossy fibers, and propagate 

to the remainder of hippocampus via the dense CA3 associational projections (Kubota et al., 

2002; Rex, Colgin, et al., 2009). Moreover, the initiation and characteristics of SPWs are 
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regulated by GABAergic interneurons and modulatory inputs to the hippocampus (Hajos et al., 

2013; Kubota et al., 2002; Maier et al., 2003; Rex, Colgin, et al., 2009; Schlingloff et al., 2014). 

SPWs are a well-characterized example of the coordinated operation of CA3 cells acting 

through their unusually dense associational projections (Buzsáki, 1986; Kubota et al., 2002). 

The initiation of SPWs requires both excitatory and inhibitory transmission, although a 

consensus on the essential mechanisms remains to be established.  

 We modified a previously reported CA3-CA1 hippocampal model that produces 

simulated SPWs (Taxidis et al., 2012) to include a dentate gyrus (DG) component, and used 

this model to assess the influence that synaptic transmission at the single cell level has upon 

the generation of these network events. Briefly, the DG was comprised of 1000 cells with no 

recurrent connections and a low probability (1 in 1000) of connectivity to CA3 pyramidal cells. 

The DG activity was determined using a Poisson distribution around a set frequency. The CA3 

and CA1 were comprised of 1000 pyramidal cells and 100 interneurons each (i.e. 10:1 

pyramidal cell to interneuron ratio). The distance between neurons was 10 µm for both regions, 

with interneurons positioned equidistantly (one every ten cells) throughout the array. Pyramidal 

cells were modelled by the two-compartment Pinsky-Rinzel model (Pinsky et al., 1994) adapted 

from ModelDB (accession no 35358; Migliore et al., 2003) while interneurons were modelled on 

the single-compartment Wang-Buzsaki model (Wang & Buzsáki, 1996). In CA3, pyramidal cells 

were recurrently connected to each other as well as to inhibitory interneurons, providing strong 

feedforward and feedback inhibition. In contrast, CA1 interneurons were strongly connected with 

one another without recurrent excitatory connections. The CA3 and CA1 arrays were separated 

by a distance of 100 µm, with CA3 pyramidal cells connecting to both pyramidal cells and 

interneurons within the CA1. A Gaussian distribution was used to determine the probability of 

connectivity among cell types as previously described (Taxidis et al., 2012). (Fig. 1-1). In both 

the CA3 and CA1, excitatory and inhibitory synaptic interactions among cells were mediated by 

AMPA and GABAA receptors respectively. Synaptic interactions were modelled as previously 
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described where the synaptic conductance was set to 1 nS for all synapses (Taxidis et al., 

2012); see supplemental methods). As such, the strength of synaptic events was controlled by 

the variable αsyn.  Values for αsyn were specific for each excitatory and inhibitory synapse among 

cells. The decay time (τ) of excitatory currents was set to 2 ms, and for GABAAR-mediated 

currents at 7 ms and 2 ms for synapses targeting pyramidal cells and interneurons, respectively. 

Conductance velocity for pyramidal cell axons (CA3 and CA1) was 0.5 mm/ ms, and for CA1 

and CA3 interneurons conductance velocities were set as 0.1 mm/ ms and instantaneous 

respectively (Taxidis et al., 2012). Heterogeneity in the system was introduced through variation 

in the reversal potential of neurons that was distributed over cells using a Gaussian distribution. 

A firing reset voltage of -60 mV was introduced. To prevent oscillations in cell voltages (and 

model collapse) the maximum number of synaptic inputs to an individual cell, at the same time, 

was capped at 100. 

We used the DG-CA3-CA1 model to examine the effect of changes in the frequency of 

EPSCs targeting CA3 pyramidal cells on the generation of SPWs in both the CA3 and CA1 

arrays. The frequency of simulated EPSCs onto CA3 pyramidal cells was sensitive to 1) the 

frequency of DG activity and 2) the strength of excitatory synaptic conductance (scaled DG and 

CA3 synapses). Frequency of DG activity was increased at 0.5 Hz increments (range 0.5 to 4 

Hz) and the frequency of EPSCs in CA3 pyramidal cells and the number of SPWs in CA3 and 

CA1 were quantified. The synaptic strength onto CA3 pyramidal cells was similarly increased in 

0.5 increments (arbitrary units [a.u.] in range 0.5 to 3.5) and frequencies of EPSCs and SPWs 

similarly assessed. The hippocampal model was run over a 10 second period and repeated 10 

times for each DG frequency and synaptic strength value. 

The effect that the residual depolarizing current onto CA3 pyramidal cells had upon 

generation of SPWs in CA3 and CA1 was assessed using the adapted CA3-CA1 model (i.e. 

without a DG component). A depolarizing current was applied to CA3 pyramidal cells for the 

duration of each simulation (i.e. 10 seconds), with a range in amplitude of 0.15 to 0.24 nA, and 
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the frequency of SPWs in the CA3 and CA1 arrays were measured. This model was run over a 

10 second period and repeated 10 times for each different current step. 

The effect that synchronization of multiple mossy fiber inputs had upon SPW generation 

in the CA3 array was assessed by determining how the number of DGGC cells firing (% of total) 

over different periods of time (10, 50, 100 and 200 ms) influenced the probability of a single 

SPW occurring. We identified a threshold that seemed to be of physiological relevance, in this 

case 200 DGGCs (i.e. 20 % of total), and the probability of a SPW being generated was 

calculated from a 1 second period that was repeated 30 times for each time period (i.e. 10, 50, 

100 and 200 ms). We used a synaptic strength measure of 1.5 a.u. for our baseline measure 

that was reduced to 1.4 a.u. to model potential effects of CRHR1 inhibition.  

A SPW was defined as >100 cells firing within a 50 ms time period in the CA3 array and 

>500 cells firing within the same time epoch in CA1. Adjacent epochs that were also above 

threshold were considered the same event. The frequency of SPWs was calculated as the 

number of events over the 10 second run time. SPW traces were generated from 55 firing cells, 

consisting of both pyramidal cells and interneurons, and were displayed as the average Vmembrane 

across these cells. The potential difference (i.e. Vmembrane) was recorded from the dendritic and 

somatic compartment of pyramidal cells and interneurons respectively. A similar approach was 

used to generate the firing properties of individual CA1 pyramidal cell and interneuron firing 

patterns during a SPW. 

The frequency of EPSCs was determined using an amplitude threshold (-5 mV) with a 

baseline reset of -2 mV. The hippocampal model was run over a 10 second period and repeated 

10 times for each DG frequency and synaptic strength. SPW frequency was calculated from the 

number of events per 10-second simulation run. 
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1-3. The simulation spontaneously generates sharp waves.  

Recurrent connections between CA3 neurons resulted in widely spaced synchronization 

of spontaneous EPSCs measured in CA3 neurons, as occurs during SPWs (Fig. 1-2a). These 

composite events were spaced apart by hundreds of milliseconds and in this regard resembled 

the extracellular waves recorded in slices (Fig 1-2b). The level of depolarization produced was 

substantially greater than the amplitude of evoked EPSCs routinely recorded as fEPSPs; thus, 

the SPWs seen in the simulation would be readily detected with extracellular electrodes. We 

investigated the nature of pyramidal cell and interneuron spiking (at the single neuron level) 

related to population level behavior of the network. The simulated firing rate was higher in CA1 

pyramidal cells and interneurons in comparison to their CA3 counterparts, most likely due to 

amplification of CA3 output, associated with a high level of connectivity between CA3 pyramidal 

cells and CA1 neurons. Consistent with experimental data (Rex, Colgin, et al., 2009), the 

strength of mossy fiber synapses (i.e. αsyn, see above) within our simulation greatly influenced 

the generation of SPWs. Furthermore, the degree of synchronization of a threshold level of 

mossy fiber input (20 % of DGGC firing) was found to profoundly influence the probability of 

SPW initiation. Specifically, 20 % of DGGCs firing over a 10, 50, 100 and 200 ms period 

resulted in a 23 %, 7 %, 3 % and 0 % chance of a SPW occurring within the CA3, respectively.    

We tested if a change in the frequency of excitatory synaptic transmission influences 

SPW generation in the hippocampal simulation. Because the model has no cortical inputs (i.e. 

no input from entorhinal cortex), we modulated the frequency of EPSCs onto CA3 pyramidal 

cells by manipulating the nature of the output from the DG. Increasing the frequency of DG 

output resulted in an activity-dependent increase in the frequency of EPSCs in individual CA3 

pyramidal cells (Fig 1-2c,d). Remarkably, this effect was associated with a greater incidence of 

SPWs in both CA3 and CA1 (Fig 1-3c,d). Thus, the model faithfully recapitulated 

electrophysiological observations using antagonists of small endogenous peptides (Gunn et al., 

2017). Additionally, increasing the frequency of EPSCs on to CA3 pyramidal neurons via a 
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second manipulation (enhancing the scaled synaptic strength; Figure 1-3a,b), also resulted in 

augmented SPW frequency in both regions. (This effect was likely associated with a reduction in 

the probability of SPW generation as reducing the scaled synaptic strength (from 1.5 to 1.4 a.u.) 

completely attenuated the likelihood of SPW initiation at threshold levels (20 % DGGCs firing) 

and was irrespective of input synchrony to CA3 pyramidal cells.  

To probe if augmentation of SPW generation was specifically associated with phasic 

excitatory transmission, we used the hippocampal model to examine how the amplitude of a 

residual excitatory current in CA3 pyramidal cells influenced these events. Interestingly, 

increasing the amplitude of such a depolarizing current in CA3 pyramidal cells had no effect 

upon the frequency of SPWs in the CA3 (Fig 1-4a,d), but did cause a reduction in the amplitude 

of these events (Fig 1-3a bottom). The reduced amplitude and lack of effect upon the 

frequency of SPWs in the CA3 array likely results from a desynchronization of pyramidal cell 

spiking as illustrated by the raster plot (Figure 1-5A top) and the observation that the size of 

pyramidal cell clusters does not change in response to the residual current amplitude (Fig 1-

3b1). However, the number of pyramidal cell clusters does increase in an input-dependent 

manner (Fig 1-3b2) and may explain the qualitative increase in the small SPW-like events 

observed in the CA3 (Figure 1-3a bottom). Paradoxically, increasing the residual excitatory 

current in CA3 pyramidal cells did result in an increase in the SPW frequency in the CA1 (Fig 1-

5B, D). This effect likely results from the strong amplification of the signal generated by the 

small clusters of pyramidal cells spiking in CA3 (Figure 1-3a) through the Schaeffer collateral 

connection to the CA1 array (Fig 1-1). 

In all, the model faithfully generates the emergent, and network synchronizing SWRs, 

recapitulates several physiologically realistic phenomena previously predicted and seen in vivo, 

and generates surprising behavior, the cell clustering from current input, that hints at a potential 

difference between what is seen with dentate stimulation, and what is seen by direct current 

injection, as might be seen during theta. Primarily, increasing the strength or frequency of the 
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strength of the dentate input directly leads to increases in the out rate of sharp wave ripples, an 

unsurprising result given that both lead to a type of convergence on a small number of inputs. 

Also, as the machinery in the CA3 was necessary to generate SPWs, this implies, if episodic 

information is contained within them, as has been postulated my many labs, that episodic 

information cannot be primarily contained in the CA1 as required by the ‘fire and hold’ literature.  

The heterogeneous output of this model and its biological accuracy make it a tantalizing target 

for further investigation of the CA3 recurrent connections and their role in memory. To this end 

the model will be simplified for speed and LTP will be added to produce tight cores of 

converging activation, which emerge spontaneously in this model.  

 

1-4. Associating temporally separated cues. 

Changes to the model. We added LTP to the simulation as an increment of baseline 

(excitatory) synaptic strength for a collection of active inputs that produced a large increase in 

postsynaptic calcium. These are conditions in which stable potentiation occurs in slices and in 

vivo. LTP was not included in the mossy fibers in our first tests. Other changes to the system 

included the following: the neurons were simplified from Pinksy-Rinzel cells to Wang-Buszaki 

cells. As the primary feature needed from these neurons was their ability to feed signal and not 

their specific biophysical characteristics, Pinksy-Rinzel cells run approximately 2-3x slower in 

simulation so the neurons were simplified to allow for more rapid prototyping. Second, CA3 cells 

were resorted to allow interconnected subnetworks to be spatially close. (Fig 1-6B) In the real 

CA3 network, recent papers, and the model presented below, predict that recurrent networks in 

the CA3 will be broadly spatially spread to allow multiple input delays. Physiological evidence 

presented later will provide a potential mechanism for this spreading. However, this would 

require a massive network, which would be incompatible with simulation and even less 

compatible with rapid prototyping. To fix this, cells were ‘grouped’ into neighborhoods with 

random delays applied. This also allows for more convenient visualization. The higher order 
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structure of the CA3 network is as yet unknown but, for the convenience of the model, several 

sets of ‘close’ cells (cores) were wired together. These cores represent what is likely a realistic 

convergence phenomenon in a large-scale network (Guzman et al., 2016; Miles et al., 1986). 

The essential features of the network need to be developed to test this point so for the moment 

it is left as a necessary simplification. Finally, global inhibition was left intact in the rewired 

network but the previous local, high speed inhibition was converted to a slow feedback inhibition 

from the CA3; this is a simplification of the actual situation but the fully accurate rapid feedback 

would likely require an unrealistic scaling up of the network. (Fig1-6A) 

Recurrent activity and sustained neuronal activity. ‘Cues’ were inserted into the 

simulation via the distal apical dendrites, the terminal zone of the direct projection from the 

entorhinal cortex, and the mossy fibers. Different frequencies for the two inputs were tested but 

in all cases a stimulus lasted for 100 msec. The number of firing CA3 pyramidal neurons 

steadily increased during cue presentation due to recruitment via the associational projections 

but then stabilized at a maximal value. The latter event reflected an interaction between 

recurrent feedback and local inhibition. Surprisingly, the population of cells assembled during 

the presence of the cue continued firing after its cessation (Fig 1-6C), in part because the loss 

of inhibition engaged by the two inputs substitutes for the missing excitation with regard to the 

maintenance of recurrently active neurons. The maintained spiking of the cells continued for 

hundreds of milliseconds but then decreased and typically stopped towards one second. 

Cessation reflected the stochastic properties of the simulation (see above) and so the time at 

which it occurred varied between simulation runs. 

We used high performance cluster computing to evaluate the size of the parameter 

space in which the above results occur. This proved to be surprisingly large. Inhibitory values, 

and time delays inserted to mimic the distance between the CA3 cells had incredibly wide 

ranges often 2-3 fold and 10-20 fold respectively. The LTP vs. excitation ratio was the most 

sensitive value, with too much excitation leading to the cores rapidly triggering each other. 
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Interestingly by starting with high excitation values and small LTP values, it was possible to 

develop a system that would evolve over time as seen below. Size of ‘neighborhood’ had 

surprisingly results. As this was raised beyond the tuned values, the size of the stable cluster 

grew to a ceiling, likely due to the ratio of the inhibitory/excitatory signal, as would be predicted 

by BCM theory (Bienenstock et al., 1982). But reducing the neighborhood size by even 20% 

caused a total collapse of the maintained signal, in accord with the idea that the unusual local 

vs. distant connectivity feature of CA3 promotes sustained signaling. We conclude from this 

exercise that the observed results are robust and accordingly likely applicable to the actual CA3 

network. 

Prompted by these results, we conducted the first tests of whether activation of CA3 

pyramidal cells during clamp recording in hippocampal slices can result in sustained firing 

(collaboration with B. Gunn). When a CA3 cell is patched in a slice preparation there are clear 

miniature activation events (Fig 1-6D). It is likely these events are due to the recurrent 

connections of the CA3. However, it is possible that the reverberation is due to an internal 

process i.e. the cell activating itself. To test this, glutamatergic transmission was blocked while 

the cell was patched. As expected the EPSCs were eliminated demonstrating these activation 

events are caused by external stimulation. (Fig 1-6E) Depolarizing current pulses sufficient in 

size and duration to induce spikes were applied at gamma (50 Hz) frequency for not more than 

100 msec. The gamma pattern was commonly followed by an extended period during which the 

recorded neuron received a series of EPSCs. Repetitive spiking by the recorded neuron was 

also seen during the period following the initial excitation (Fig 1-6F), as expected from the 

EPSCs. 

These findings results establish the plausibility of the results obtained with the simulation 

and constitute the first direct evidence for the hypothesis that the massive field CA3 feedback 

system can maintain sustained firing. Notably, slice preparation eliminates much of this system 

because the pertinent axons exhibit a low level of topography --- the collaterals instead extend 
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for considerable distances along the septo-temporal axis. This, together with the removal of the 

large commissural projection from recurrent operations, indicates that the amount of feedback 

available for sustaining the activity of individual neurons in slices is vastly reduced from that 

present in vivo. We accordingly conclude that the magnitude and duration of sustained firing 

described in our modeling work is biologically realistic. 

Interactions between two cues.  Two cue tests in the model involved activating separate 

populations of entorhinal projections and two different but overlapping sets of mossy fibers. 

Each input lasted for 100 msec with varying intervals between them. A first effect obtained was 

as follows: the sustained activity initiated by cue A continued into the cue B period but then, as 

the cue B representation built up, most of the originally active cells stopped firing. The observed 

interaction in part reflects the greater density of interconnections in neighborhoods of neurons 

than that between widely separated cells (particularly true for commissural connections) and the 

presence of broadly distributed feedforward inhibition. These arrangements create a type of 

‘winner-take-all’ circumstance in which the most intensely activated clusters (cue B because of 

now present external input) tend to suppress firing in other clusters (Fig 1-6G).    

Next, we implemented the above noted LTP rule for synapses between neurons 

engaged in sustained activity after cue A and those cells brought into play by cue B. As 

expected, this intensified the cue B response when it occurred within hundreds of milliseconds 

of cue A in tests after earlier pairing of the two cues. Suppression of activity initiated by the first 

signal occurred as in (Fig 1-6G). Further analyses suggested that such effects could be related 

to a fundamental form of learning: cued recall. Cues A and B were first associated via the LTP 

rule and then tested with A cue. Cue A was able to fully retrieve nearly the complete B cue. In 

essence, the enhanced depolarization produced by the potentiated A:B synapses sufficed to 

initiate recruitment of a near complete representation of B. (Demonstrated in Fig 2-1a) 

While maintenance of a cue over time has been demonstrated in cortical models 

(Compte et al., 2000) (‘bump’ models), they usually use one cue and test its representation’s 
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robustness in response to noisy inputs. These tend to be models of working memory, and 

therefore are usually not concerned with the linking of cues over time but with the maintenance 

of a single cue. We changed this by adding a second cue was to demonstrate that multiple 

bumps could be stored and retrieved in sequence. Others have developed bump models with 

multiple inputs; however previous multi-bump models have each bump immediately terminate 

the bump before it. (Vogels et al., 2005) The current model merges common working memory 

models with short time retrieval networks, like those seen in Hopfield or Marr networks 

(Hopfield, 1982; Marr, 1971) and establishes a network that can both hold a stable cue over 

time and bind it to other cues within itself. Next this model will be expanded to k eep time and to 

retrieve multiple cues in order. 
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Figure 1-1 Connectivity of the hippocampal model 
A. Schematic representation of the full DGCA3-CA1 model. Principal cells (grey) and 
interneurons (red) are illustrated at 1:4 ratio for clarity (instead of the real 1:10). The connectivity 
is illustrated qualitatively through an exemplar pyramidal cell (dark grey) and interneuron (red) in 
the CA3 and CA1. B. Connectivity matrixes for all connections within the hippocampal model. 
Note that the source and target cells are on the x and y axes respectively. The color scale 
represents the number of multiple connections. 
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Figure 1-2 Activation of the hippocampal model generates SPWs. 
A. Neuronal synchronization illustrated by raster plots of spike times for each pyramidal cell in 
the whole CA3 (A1 top) and whole CA1 (A2 top) array following the activation of the full 
simulation. The corresponding SPWs generated by 55 neurons in the CA3 (A1 bottom) and CA1 
(A2 bottom). A section (shaded area) shows SPWs from the CA3 (B1) and CA1 (B2) on an 
expanded time scale The pyramidal cell (C1-2) and interneuron (D1-2) spiking pattern from a 
single neuron during the exemplar SPW for each region (B1-2). Scale bars: (B) y = 10 mV, x = 
0.5 s; (C-D) y = 10 mV (E) y = 20 mV, x = 100 ms. 
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Figure 1-3 Relationship between mossy fiber activity to the frequency of EPSCs onto CA3 
pyramidal cells and the generation of SPWs. 
A. Representative sections (5 s) of simulation illustrating the frequency of EPSCs in CA3 
pyramidal cells at increasing levels of dentate gyrus (DG) activity. Scale bars y = 20 nA, x = 1 s 
B. Graph illustrating the mean frequency of simulated EPSCs onto CA3 pyramidal cells versus 
DG activity. C. Raster plots of spike times for each CA3 and CA1 pyramidal cell (whole array) in 
the simulated network at three values of DG activity. Corresponding simulated SPWs generated 
in the CA1 for each value (bottom). Scale bars y = 10 mV, x = 1 s. Mean frequency of SPWs in 
CA1 (D1) and CA3 (D2) versus level of DG activity. 
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Figure 1-4 The strength of excitatory synaptic conductance onto CA3 pyramidal cells 
influences the frequency of EPSCs and the generation of SPWs 
A. Representative sections (5 s) of simulation illustrating the frequency of EPSCs in CA3 
pyramidal cells at increasing levels of scaled synaptic strength onto these cells. Scale bars y = 
20 nA, x = 1 s. B. Graph illustrating the mean frequency of simulated EPSCs onto CA3 
pyramidal cells versus scaled synaptic strength. C. Raster plots of spike times for each CA3 and 
CA1 pyramidal cell (whole array) in the simulated network at three values of scaled synaptic 
strength. Corresponding simulated SPWs generated in the CA1 for each value (bottom). Scale 
bars y = 10 mV, x = 1 s. Mean frequency of SPWs in CA1 (D1) and CA3 (D2) versus scaled 
strength of excitatory synapses onto CA3 pyramidal cells. 
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Figure 1-5 Depolarizing CA3 pyramidal cells desynchronizes CA3 pyramidal cell firing 
and reduces SPW amplitude. 
A. Raster plots (top) of spike times for each CA3 pyramidal cell (whole array) in the simulated 
network at three values of depolarizing current into CA3 pyramidal cells. Corresponding 
simulated SPWs (below) generated from 55 cells for each depolarizing current value. Note the 
decrease in synchronous pyramidal cells spiking in the raster plots accompanied by a reduction 
in the amplitude of SPWs generated in CA3. Scale bars y = 10 mV, x = 1 s. Graph illustrating 
the mean number of clusters of spiking CA3 pyramidal cells (B1) and the mean number of 
pyramidal cells per cluster (B2) in response to increasing depolarizing current injection to these 
neurons.  C. Raster plots (top) of spike times for each CA1 pyramidal cell (whole array) in the 
simulated network at three values of depolarizing current into CA3 pyramidal cells. 
Corresponding simulated SPWs (below) generated from 55 cells for each depolarizing current. 
Note that in comparison to CA3 the SPW amplitude appears less reduced. Scale bars y = 10 
mV, x = 1 s. (D). Mean frequency of SPWs in the CA1 and CA3 versus depolarizing current onto 
CA3 pyramidal cells.  
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Figure 1-6 Structure of the CA3 model and electrophysiological tests of predictions from 
it. 
(A) Schematic of the CA3 model. Triangles represent pyramidal cells that connect heavily to 
their local neighborhood. The red circle represents local inhibitory cells that feed back to their 
local neighborhood; these interneurons control both the functional size of neighborhoods and 
enable shifting between them (see Chapter 4). Blue circles are global inhibitory cells that 
prevent active pyramidal cells from over exciting other neighborhoods; combined with the 
influence of local inhibitory neurons, these more widely projecting elements maintain a relatively 
constant level of network activity. Green cells represent the feedforward inhibition produced by 
mossy fiber connections with a subgroup of CA3 interneurons. This disynaptic circuit helps to 
turn off activated cores when new cores are being turned on.  (B) Schematic of network 
architecture. Subgroups of pyramidal neurons strongly interconnect with each other (a 
neighborhood) and connect more weakly to other, similar functional groupings. This is similar to 
rich club architecture. (C) Demonstration of network firing; each dot is a single cell. Arrow 
indicates an initial, transient input that starts the cells cycling; as it terminates, the cells continue 
firing at their spontaneous network size. This activity continues for an extended period (x axis: 
msecs) until it stochastically collapses. (D) In vitro whole cell recoding baseline network activity. 
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Cell is spontaneously activated by recurrent network at baseline. (E) Kynurenic acid blocks this 
activity. The same cell in the presence of the glutamate receptor antagonist does not receive a 
lengthy series of EPSPs, indicating that this effect is dependent on locally generated input. (F) A 
single cell depolarized at the gamma frequency (start of the trace) receives network activity 
sufficient to cause spiking for up to several seconds; numerous EPSPs that do not produce 
spikes are evident in the trace. Panels E and F indicate that CA3 neurons do express ‘fire and 
hold’ behavior. (G) Simulation of two inputs to the model. The second input overlaps the 
recurrent activity set in motion by the first until feed forward and global inhibition suppress the 
latter’s. The second then continues firing. 
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Chapter 2 Recurrent Networks and Episodic Memory 

 
The previous chapter described the first evidence supporting the hypothesis that 

anatomical/physiological properties of field CA3 are appropriate for connecting temporally 

spaced cues. A now considerable literature involving brain imaging studies and work with brain 

damaged individuals indicates that the hippocampus utilizes linkages across time to integrate 

sequential information into unitary memory of a type that is far more complex, and cognitively 

interesting, than that described in Chapter One (Dede et al., 2016). Tulving (Tulving et al., 1988) 

was the first to formalize the idea that people assemble the complex series of events 

encountered in real world environments into discrete episodes and to explain how these are 

distinct from the memory types emphasized in behaviorist theories. Episodes are acquired 

without prior training and do not involve rewards or external supervision; they incorporate 

information about the identity of cues (semantic data), spatial relationships between them, and 

the temporal order in which they occurred (‘what, ’where’, and ‘when’) (Clayton et al., 2001; 

Easton et al., 2012). Sampling tasks involving the ‘what’ component activate the lateral 

entorhinal cortex (LEC) that, via its lateral perforant path (LPP), innervates the outer dendritic 

third of the dentate gyrus’ granule cells (van Strien et al., 2009; Wilson et al., 2013). Tests for 

spatial information (‘where’) preferentially engage the medial entorhinal cortex (MEC), which 

projects densely via the medial perforant path (MPP) to middle third of the same dendritic field 

(Hargreaves et al., 2005). Lesion and recording studies involving rodents confirm that ‘what’ and 

‘where’ data are transferred to hippocampus by the two subdivisions of the entorhinal cortex 

(Hafting et al., 2005). These observations fit well with well-established connections of the 

entorhinal cortex. The region has dense two-way relationships with association cortices; these 

include, but are not restricted to, complex spatial representations relayed to the MEC and 

semantic ones transferred to the LEC. The LEC is also closely related to the piriform cortex, a 

simple form of associational cortex that processes olfactory cues (Chapuis et al., 2013). 
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The critical question of how the temporal component of an episode is added returns us 

to the discussion of cue associations included in Chapter One. Imaging studies report that 

temporal ordering activates fields CA3 and CA1 (Eichenbaum, 2014; Salz et al., 2016). Given 

that the former is by far the major source of input to the latter, it is reasonable to assume that 

processing of time engages CA3 and its massive recurrent system with the output being fed into 

CA1. However, it has been argued that CA1 performs the essential computations through direct 

interactions between it and the entorhinal cortex (see above).(Jochems et al., 2013). This 

hypothesis, in its simplest form, requires the unlikely corollary that the observed CA3 activation 

is irrelevant to processing of cues by CA1. The work described below investigated whether 

recurrent activity of CA3 and its transmission to CA1 suffice to produce complex episodic 

phenomena. 

A critical feature of episodic memory involves retrieval of sequential information, such 

that activation of a representation that occurred early in a series leads to the appearance of the 

encodings associated with later, related events. An individual questioned about whether they 

had encountered a specific item will typically replay a fraction of an episode so as to find the 

pertinent data, an everyday operation that illustrates the immense capacity of this form of 

storage.(Dede et al., 2016) Our studies began with this essential retrieval feature of episodes. 

 

2-1. Retrieval of cue identity and temporal information contained within an episode.  

Cue information, temporal order, and intervals. We used the LTP rules described in 

Chapter One to encode a sequence of three cues separated by 300 msec and then tested the 

network when only of the first of these was subsequently presented. Presented with only the 

first cue, the revised model first generated the expected cue A response, which persisted for 

about 100 msec before a second representation corresponding to cue B emerged. This led to a 

cessation of the population associated with the first stimulus. These events were followed by the 

delayed appearance of the cue C population of neurons (Fig 2-1a). These first experiments 



29 
 

establish that an approximation of the CA3 associational system can perform retrieval and so 

provide a fundamental operation of episodic memory.  

Next we tested if the model incorporates information about the relative delays between 

the cues that occurred during encoding. Cue B followed Cue A by 150 msec while cue C was 

delayed by 500 msec during sequence acquisition. During retrieval, B emerged after a shorter 

delay than that for C (Fig 2-1b,c); thus the system captured information about relative time in 

the learned sequence. Analysis indicated that this unexpected effect reflected the following. 

During acquisition, the population of neurons activated by the now present cue recruits 

neighboring cells, a process that continues after the input terminates. While the size of the 

maintained collection is reasonably constant, individual cells that are active at any given time 

segment varies. This means that LTP occurred between those (different) cells activated by the 

B input and the particular A neurons that were firing at that particular time. During retrieval, the 

cue A population cycles though its members until a sufficient number of those connected (via 

LTP) to the B group are engaged at about the same time to drive B neurons into the active state 

(Fig 2-1d,e). Longer delays between cues during learning results in ever greater divergence 

between the population responding to cue A and the cells active when cue B arrives. Thus, 

longer cycling time during retrieval is needed before the A-B neurons are engaged. 

The temporal component of an episode includes both the order of the elements in a 

sequence but as well as information about expected delays. The above results lead to the 

remarkable conclusion that both of these seemingly complex operations can be executed by a 

simplified version of the basic design of field CA3. 

Time compression. A salient feature of episodic memory is that replay can take much 

less time than the actual experience that led to its formation (Eichenbaum, 2014; Nádasdy et al., 

1999). This feature occurred in some runs of the basic CA3-CA1 simulation (Fig 2-1f). 

Acquisition occurs when an attentive agent is sampling a real world circumstance and 

processing in the hippocampus necessarily dominated by the pace of events. Retrieval on the 



30 
 

other hand involves an effort to activate stored content, typically in the absence of engagement 

with surroundings. Switching between these hippocampal states likely depends on cholinergic 

input from the septum, which is distributed largely to the dentate gyrus and field CA3. Released 

acetylcholine causes a modest and slow increase in the excitability of pyramidal cells that 

appears to be mediated by muscarinic receptors. We are currently testing predictions from this 

aspect of the modeling work using optogenetic stimulation of the septal cholinergic projections 

to field CA3.   

Hypothesized role of field CA1. The above results establish that the basic features of 

field CA3 are capable of encoding and retrieving essential elements of episodic time including 

cue order, relative intervals between cues, and temporal compression. The question then arises 

as to what types of further processing occur in field CA1 when these events are transferred to it 

via the massive projections from CA3. One intriguing possibility is that the region uses LTP to 

encode representations of cue-time-cue triads that are then used to recognize such episodic 

items on future occasions. The sequential signals arriving from CA3 during the first encounter 

with the serial events will strengthen their connections with CA1 preferentially on those neurons 

also receiving direct input from the entorhinal cells activated by the individual cues. Prior 

modeling work showed the potent basket cell mediated feedback inhibition creates a ‘winner-

take-all’ situation in which initially activated neurons block firing by their neighbors (Ambros-

Ingerson et al., 1990; Coultrip et al., 1992). This device acts to ensure that a fixed and small 

population of cells is active at any given moment in time. The net result of these arrangements 

is that a particular spatio-temporal pattern developed in CA3 will be associated with a unique 

sequence of cues. Note that a subsequent presentation of any item in the sequence is likely to 

activate a major portion of this CA1 representation for the entire episode. 

This argument is consistent with the well-described anatomical/physiological 

characteristics of field CA1 and the CA3 features discovered in the modeling work described 

above. We intend to test it using biophysical simulations. But as it stands, the proposed 
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hypothesis provides the beginnings of an explanation for a very difficult question relating to 

episodic memory: how does the cortex carry out computations involving large numbers of 

episodes, each of which contains an enormous amount of information? The hypothesis 

advanced here is that field CA1 provides the cortex with a unitary signal for a given episode 

along with compacted data relating to its content. The first of these elements could then be used 

for rapid computations (e.g., placing the episode in a category) while the details are retrieved via 

slower processes of the type described above. We will return to these ideas in a later section 

(Chapter Four) concerned with where in hippocampus most of LTP-like synaptic modifications 

occur during episodic learning.       

Experimental tests of the role of CA3 in the acquisition of temporal information. We 

conclude from the above that field CA3 performs the essential operations required for 

incorporating a temporal element to an episode. There is very little experimental evidence that 

bears directly on this point. Chronic recording studies have described CA3 and CA1 cells that 

fire in a time related manner in rodent tests involving serial odors but these studies used 

extensive reward based training (MacDonald et al., 2011; Salz et al., 2016). Other studies have 

used highly supervised or extremely simple behaviors such as context fear conditioning or trace 

blink conditioning to test time processing (McEchron et al., 2003; Modi et al., 2014). But given 

that episodes are encoded in humans in a routine and unsupervised manner, it is questionable 

whether the findings from the recording studies are applicable to the questions raised by the 

modeling work. Accordingly, experiments were conducted using transient, unilateral silencing of 

field CA3 and serial cue protocols that do not require prior training or explicit rewards 

(collaboration with B. Cox). As described, CA3 receives about 50% of its recurrent feedback 

from commissural projections. It is evident from our simulations that removal of this input will 

drastically reduce circulating activity in the otherwise intact contralateral CA3 while leaving 

feedforward operations (entorhinal cortex>dentate gyrus>CA3>CA1) operations intact.                
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The behavioral procedures developed for the experiment are illustrated in Fig. 2-2b,d. 

The animal was given free access to two identical odorants for 3 minutes, removed from the 

chamber, and then returned two minutes later to explore a second pair of odors. This was 

repeated for a third and fourth odor, resulting in an A:A, B:B, C:C, D:D sequence. A test trial in 

which A was paired with D (A:D) was then conducted five minutes later. The animals exhibited a 

clear preference for D in the test phase, indicating that they had remembered A despite the 

intervening cues and so had acquired a simple form of order information. We then injected Gi-

DREADD virus into the CA3 of one hippocampus followed by a three-week period to allow for 

expression (Fig 2-2a). Electrophysiological assays confirmed that infusions of the DREADD 

agonist clozapine-N-oxide into slices from transfected animals caused a pronounced (>50%) 

reduction in fEPSPs. Peripheral administration of the agonist, but not vehicle, prior to odor 

sampling entirely eliminated the selection of cue D relative to cue A in transfected (Fig 2-2c).  

In contrast, unilateral transfection had no detectable effect on the acquisition of ‘what’ 

data. For these experiments, animals were given an A:A, B;B, C:C sequence and then tested for 

discrimination between familiar odor A and a novel odor D (A:D). Time spent exploring the novel 

odor were comparable for the two groups (Fig 2-2d,e). That the unilateral hippocampus suffices 

for the ‘what’ problem is as expected given that bilateral silencing the LEC is required to block 

acquisition in this paradigm. In all, the results accord with the prediction that recurrent networks 

in field CA3 play a central role in processing of temporal order.  

The above data demonstrates the CA3 is capable of maintaining and changing cues 

over time. This change gives the CA3 the ability keep track of time, as a signal’s evolution 

corresponds to the time since the cue was activated. The evolution of a signal from an initially 

stable bump is often seen in ‘bump’ models when any unevenness is introduced in a model with 

no LTP-like mechanism. This evolution is typically seen as a flaw in these models or is used as 

a mechanism of oscillatory activity. (Vogels et al., 2005) However, as demonstrated above, this 
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is a potential mechanism of time keeping. The rate the signal propagates is relatively constant 

due to excitatory/inhibitory balance.  

Physiologically the CA3 was shown to perform long reverberations on repeated 

stimulation. The exact meaning of these reverberations and the network architecture that allows 

the CA3 to be activated seconds later is unclear. These features and how they are represented 

or can be incorporated in to the model will need to be further explored in mathematical analyses 

of real-scaled, computationally intractable large networks. However, these physiological results 

demonstrate that even an extremely reduced CA3 slice preparation has large scale network 

convergence and continued activation. This implies higher order structure to the CA3 which has 

recently become a major topic of research (Guzman et al., 2016).  

Finally, the above behavioral data demonstrates that not only is the CA3 required for 

episodic-like memory but also that the complete CA3 is required. Eliminating half the inputs of 

the CA3, and most importantly the commissural system, specifically eliminated animal’s ability 

to learn ‘when’ memory.  While no commissural system was included in the model, elimination 

of a small number of inputs in the model caused it to collapse.  

These three lines of evidence will need to be reconciled using network analysis and in 

vivo recording. What is clear is that the CA3 contains machinery that could support time 

processing, can reverberate electrically on extremely long time scales, and requires its full 

architecture to process ‘when’ memory.  To further explore this processing and storage we 

examined where memory was stored at the synaptic level across the hippocampus. 
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Figure 2-1 Retrieval of a learned sequence by a CA3 model: order of cues, relative 
intervals between them and time compression 
(A) The model was trained on a sequence of three cues during which LTP rules were active. 
Subsequent presentation of the first cue alone led to sustained activity that eventually activated 
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the cells associated with the second cue; note that this was associated with inhibition of the 
activity initiated by the first. After a delay, activity associated with the retrieved second cue 
triggered cells representing the third cue, with suppression of cue B. (B) Evolution of signals 
over time with slightly modified LTP rules during learning. The potent feedforward inhibition from 
the mossy fibers stimulated by a brief cue (red arrow) was allowed to reduce the strength of LTP 
between CA3 neurons activated by the same fibers. Additionally, the magnitude of potentiation 
was lowered for all CA3:CA3 contacts during learning. Note that these changes resulted in a 
response to cue A that evolved over time by spreading to neurons other than those initially 
activated cue A. As above, presentation of cue B terminated the activity triggered by A and 
produced a signal that evolved over its own time course. These events repeated when cue C 
was delivered during learning. (C) Retrieval of the signal in panel 8B following reactivation of 
cue A only (red arrow). The signals were reactivated in the correct order and maintained their 
relative temporal spacing. (D,E) Zooms of panels 8B and 8C to show cells active during learning 
and retrieval; the horizontal line marks the position of cell #300. The green box includes the 
population of cells around neuron #300 (horizontal) that were active during encoding. When a 
sufficient number of the same cells are reactivated during retrieval, they cue the neurons in the 
storage core for cue B. (F) Retrieval is time compressed relative to storage. Panels 8B (red) and 
8C (blue) overlaid. The cues from panel 8C occur faster than their original storage rate, both by 
moving through their time evolution at a higher rate and by reactivating the next cue in the 
sequence earlier in the time range. 
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Figure 2-2 “When” learning but not “What” learning is dependent on unilateral CA3 
(A) An AAV-Gi-DREADD was injected into dorsal (top) and ventral (bottom) CA3 unilaterally 
which resulted in receptor expression of CA3 cells and their ipsilateral and contralateral 
projections (green). Scale bars = 500 mm. (B) Illustration of the serial odor “When” Task. (C) 
Animals injected with Gi-DREADD in the unilateral CA3 were tested in the “When” Task 
paradigm after Vehicle or CNO treatment. Vehicle animals spent 64±6% of their total exploration 
time sampling the “old” odor more than the “recent” odor (*p<0.05, n=5, paired t-test), while the 
CNO treated animals did not show a bias for the odors (n.s. : not significant., n=6, paired t-test). 
The difference between the two groups was significant (**p<0.01, unpaired t-test). (D) 
Illustration of the serial odor “What” Task. (E) CA3 Gi-DREADD injected animals were tested in 
the “What” paradigm. Vehicle animals spent 63±5% more time with the “novel” odor (*p<0.05, 
n=7) and CNO animals spent 62±3% (**p<0.01, n=7).  There was no significant difference 
between the two groups.  
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Chapter 3 Routine Episodic Learning in Complex Environments 

 
Episodic memories in real world circumstances are encoded without past training or 

explicit rewards (unsupervised or experiential learning). They differ in this important regard from 

the cue-response-reward type of learning used in the great majority of studies using laboratory 

animals and also commonly studied in humans. Accordingly, the behavioral studies described in 

Chapter 2 used unsupervised experience to separately analyze the acquisition of three basic 

elements (‘what’, ‘where’, ‘when’) of an episode. However, these elements occur together in 

natural environments along with other features. We thought it necessary to develop behavioral 

tests that capture these features in order to advance the analysis of how the hippocampus 

contributes to the formation of episodes. These studies brought us into contact with another 

large question that is vital to episodic learning but poorly studied in animals: transfer of learning 

from past experience with complexity.    

We attempted to develop a testing apparatus in which rats deal with a very complex 

situation by dividing their behavior into discrete episode-like forays and then measuring their 

unsupervised learning. Success in this has opened the way to studies on the role of the 

hippocampal pathways discussed above in processing sequential sematic, spatial, and temporal 

information in conditions approximating those encountered in nature and in which humans 

routinely organize the flow of experience into episodes. A next step for such studies is to ask 

whether synaptic encoding of information is localized to particular intra-hippocampal 

connections or instead is uniformly distributed. This question will be addressed later in this 

thesis.              

 

3-1. Episode-like learning in a complex environment.      

Testing apparatus. Our attempts to develop a testing situation in which rats divide their 

behavior into numerous episodes began with a straightforward extension of a well-known 

phenomenon: the reduction of spontaneous locomotor activity over time by rats in a novel open 
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field. While open field testing was originally introduced (Hall et al., 1932) to measure 

emotionality in rodents, it became widely used as a simple test for memory involving the speed 

at which well-handled rodents become familiar with a new environment (Walsh et al., 1976). 

Traditionally termed “habituation”, this behavior serves as a simple example of unsupervised 

experiential learning in animals. We extended this simple paradigm to a complex novel 

environment including internal barriers, passageways, local objects, and distant visual cues. 

Prior work (Eilam et al., 1989) demonstrated that rats in open fields spontaneously choose a 

“home base” location from which they make exploratory forays and to which they tend to return 

at a higher rate of speed; based on this result and to ameliorate the aversive component of 

open-field testing we included a small, dark, enclosed “refuge” chamber to serve as an 

ethnologically relevant home base candidate attached to the complex environment (Fig 3-1E,F). 

Exploration in the complex arena was thus voluntary, and divided by the animals themselves 

into discrete forays (Fig 3-1G). 

Our initial experiments produced surprising results: rats given extensive handling twice 

daily for a week showed very little evidence of learning during two 30 minute sessions 

separated by one day. Their exploration rates changed only slightly on day one (short-term 

memory: habituation) and behavior on day two was little changed from day one. It thus 

appeared that the apparatus was too complex to be acquired in 30-minute periods. We 

accordingly ran a full scale study using three large groups: 1) six daily five-hour exposures to an 

enriched environment (EE group); 2) an equivalent period of free access to exercise, in the form 

of running wheels (WR group); 3) twice daily episodes of standard handling (SH group) (Fig 3-

1A,B,C,D). The analysis below begins with the classic measures of open field learning in terms 

of habituation rates (reduction in rates of exploration as measured by distance traveled and 

changes in this measure over time), and then turns to analysis of the forays. 

Short-term memory. Exploration within the simple refuge compartment as measured by 

distance travelled began at a high level then progressively and sharply decreased during the 
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first 15 minutes of the session and changed little afterwards for all groups (Fig 3-2A), exhibiting 

the classic habituation curve of a rat in an unstructured open field. It thus appears that past 

experience has relatively little effect on rapid habituation within a simple environment. 

In the complex arena, Standard Housed (SH) rats conducted considerably more 

exploration as measured by total distance travelled over the entire 30 minutes (110.0 ± 4.6 

meters) than did either Enriched Environment (EE) (77.4 ± 4.1 meters) or Wheel running (WR)  

(75.4 ± 3.9 meters) rats (p<0.0001, Fig 3-2B). Yet SH animals exhibited no significant decrease 

in exploration of the arena over the course of the session (unlike their behavior within the refuge 

compartment), showing a flat, non-significant habituation curve (r2 = -0.11, p = 0.5) over the 30 

minute test; the WR group showed a moderate degree of habituation (r2 = 0.8, p < 0.01), while 

that for the EE group (r2 = 0.97, p = 0.0001) was steeper and much more pronounced (Fig 3-

2C). These group differences (Fig 3-2D) were highly significant (p<0.0001), with the slope of the 

EE group’s curve greater than that of SH or WR animals (p<0.001 for both comparisons, Tukey 

post hoc tests).  We conclude from these results that past experience with complexity enables 

rapid learning of a new, high choice environment.          

  Long-term memory. Despite extensive exploration of the arena on day one, total 

distance traveled by SH animals was only slightly reduced (<10%) in a second session 

conducted 24 hours later; in contrast, EE rats’ travel through the arena decreased by 

approximately 30% across the two days (Fig 3-2E).  Prior exercise did not reproduce the effects 

of enrichment on total exploration: there was no significant change from day one to day two for 

these animals. Similarly, the habituation curve for SH rats after the first 5 minutes was only 

slightly steeper on day two relative to day one (Fig 3-2F) and did not approach that for the EE 

group on day one or two. In all, evidence for long term memory in the standard handled rats was 

modest.  In marked contrast, the EE group exhibited a robust between-days change in 

habituation: exploration decreased dramatically between the first and second 5 minute time 
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intervals on day two (p = 0.0003), an effect not seen on day one (Fig 3-2G). Habituation on day 

two by the WR animals was not detectably different from that on day one (Fig 3-2H).   

Numerous studies have shown that exploration of an unstructured open field by rodents 

produces clear evidence of long term memory (reduced activity) in tests carried out on 

subsequent days; the weakness or lack of such effects for the SH and WR groups in our study 

indicates that stable encoding is much more difficult for animals confronting a complex arena. It 

appears that prior learning by the EE cases, though acquired in a very different complex 

environment, proved to be transferable to the novel circumstances such that encoding on day 

one was both rapid and enduring.  

Notably, the EE and SH rats were not detectably different on multiple, conventional 

measures of arousal and anxiety including movement speed, percent time active, preference for 

darkened spaces, and defecation (Fig 3-3). These findings indicate that differences in arousal 

and anxiety were not likely to have contributed to the learning differences between EE rats and 

the other groups. 

 

3-2. Transfer from past experience shapes search strategies.  

The rapid learning by the EE group raised the possibility that their past interactions with 

a very complex environment resulted in search strategies that were sufficiently flexible to be 

applicable in new challenging circumstances. We investigated this by closely examining the 

patterning of exploration by the EE and SH rats. As noted, the inclusion of the small, dark, 

enclosed, and empty chamber (‘refuge’) to serve as an ethologically relevant home base 

attached to the complex environment led all three groups of to divide their behavior into distinct 

exploratory episodes, here called ‘forays’, into the complex arena, punctuated by stays of 

varying duration within the (simple) refuge. 

The total number of exploratory forays made during the first session by SH animals was 

not significantly higher than the EE group (p>0.07) but was greater than in the WR animals (Fig 
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3-4A). Like distance traveled, clear group differences emerged in how foray counts evolved over 

time during the session. This was assessed by dividing the session into 10 minute time intervals 

and assigning each foray to the interval in which it began. In the SH group foray counts changed 

little over the three intervals (slope: -0.10 ± 0.03), but EE rats began with a high foray count, 

dropped by half during the second time interval, and halved again in the final ten minutes 

(slope:-0.41 ± 0.03) (Fig 3-4B). WR rats were similar to SH for the first two intervals but showed 

a decrease in foray initiations in the third, resulting in a slightly steeper habituation curve overall 

(-0.19 ± 0.03). The difference in slopes between the EE and other groups was highly significant. 

These results suggest that rats with past experience in dealing with complexity implement a 

different exploratory strategy for investigating a new and challenging environment than rats 

without such experience.  

Foray counts across days were nearly constant for SH (20.2 ± 0.9 to 20.0 ± 0.8) and WR 

(14.9 ± 0.7 to 15.2 ± 0.9) groups, a further indication that these animals did not form robust long 

term memory on day one, while EE rats showed a marked decrease in the total number of 

forays between the two test sessions (17.5 ± 0.9 to 12.3 ± 1.2) (Fig 3-4C). Most of the between-

days decrease in forays seen in the EE group (~60%) occurred during the first 10 minutes of 

session two (Fig 3-4D); the other two groups did not reduce their forays during this period (Fig 

3-4E). It thus appears that EE, but not SH or WR, animals learned enough about the complex 

test environment on day one such that they quickly recognized it and so were less inclined to 

initiate exploratory forays 24 hours later. Long-term memory effects in the latter two groups 

were minimal. 

Next, we examined foray characteristics during the first session in an attempt to identify 

features that could account for the enhanced learning by the EE group. The space was divided 

into a 7x7 grid (49 cells) and the percentage of these entered by the animal measured for each 

of its forays. All rats made forays using a range of different arena coverage values, with foray 

counts peaking for forays between 40-60% coverage for rats in all groups (Fig 3-5A). However, 
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EE rats shifted their distribution away from high-coverage (> 60% coverage) forays (Fig 3-5B) 

compared to the other two groups, while making approximately the same number of low and 

moderate coverage forays as SH rats (counts of forays with coverage < 60%, p=0.9, t-test; see 

Fig 3-5A); by contrast WR rats made fewer forays overall (as we saw above, Fig 3-4A) but their 

distribution of forays of different coverage values was similar to that of SH animals, shifting the 

entire curve downwards (Fig 3-5A).  

We next considered the pattern of forays used by the animals to first attain full coverage 

of the arena during initial exploration. Accordingly, the subset of initial forays cumulatively 

covering ≥ 90% of the arena was examined for each animal; one rat in each group had values 

that were more than 10 SDs from the mean of the remaining 30 and so were excluded from the 

analysis. Full coverage occurred relatively quickly. EE rats required 5.5 ± 0.3 forays with the last 

of starting at 3.5 ± 0.4 minutes; SH animals used a similar number of forays (5.2 ± 0.3) but with 

the last of these at 5.0 ± 0.4 min (p=0.011 vs. EE). The WR group were extremely variable on 

these measures: 41% of the animals (11/27) covered the arena quickly (1.35 ± 0.16 min) with a 

small number of forays (2.2 ± 0.2) while the remainder had much higher values (5.6 ± 0.5 

forays, 8.7 ± 1.2 min).          

As expected from the above, the mean duration of the forays used for initial coverage of 

the arena was markedly lower in the EE group: 31.0 ± 1.8 seconds (s), versus SH rats 49.0 ± 

3.8 s and WR 73.7± 12.6 s (p < 0.0001, Fig 3-5C). The EE group rats thus adopted a strategy of 

shorter, more frequent forays which, when combined, cover the same cumulative percent of the 

arena, compared to the other groups. 

Do the forays made by EE rats also tend to overlap less? That is, do the above results 

suggest that EE rats divided the arena into smaller, more distinct exploratory portions per foray? 

To investigate this, we measured the extent to which successive forays overlapped, expressed 

as the percent of grid cells visited in the current foray that were not visited in the immediately 

previous one. For the initial set of forays first leading to full coverage of the arena described 
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above, EE rats’ foray distinctness was, on average, slightly but significantly higher (EE: 63.2 ± 

2.2%; SH: 58.9 ± 2.3%; WR:54.4 ± 2.9%; p=0.009, ANOVA, with EE vs SH p=0.04 and EE vs 

WR p=0.01, WR vs SH (p=0.8), Tukey post-hoc tests). Indeed this result held for the entire 

session (p=0.003, Fig 3-5D). Of interest, this measure showed a weakly negative correlation 

with foray number (that is, overlap tended to increase slightly for later than earlier forays) that 

was stronger for EE rats than the other two groups (p=0.02, Fig 3-5E). 

Finally, we tested for group differences in movement choices within individual forays 

using a line-crossings measure. A 10x10 grid superimposed over the video image of the arena 

allowed measurements of the number of times each rat repeated crossings of the same grid 

segment during individual forays. The EE rats showed a substantially larger proportion of forays 

in which most (≥75%) line crossings were unique than did the WR or SH rats; WR and SH 

groups were not different on this measure (p<0.003, Fig 3-5F). It thus appears that a primary 

effect of prior environmental enrichment, but not exercise, is to increase the likelihood of forays 

in which rats do not repeat material sampled in the immediate past. 

The above findings indicate that the rapid learning by the EE group during the first 

session was not due to more exploration of the test arena - to the contrary. Instead, relative to 

the SH and WR rats, these animals began with a higher frequency of briefer, less repetitive 

forays to explore the arena. This suggests that the material transferred from earlier complexity 

included a flexible strategy for dealing with high dimensional circumstances. 

In all, rapid learning using discrete sampling episodes requires the individual to have a 

history of interacting with complicated environments and well-developed internal rules for 

investigating unfamiliar situations. The enormous power of episodic memory does not occur in 

isolation but rather occurs in the presence of guidelines acquired over a lifetime. That rats 

exhibit simple versions of these phenomena is surprising but encouraging with regard to 

experimental work on fundamental components of cognition.  
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Figure 3-1 Pretreatments and behavioral testing 
(A) Illustration of standard handling procedure at rat home cage. (B) Wheel-running bins. (C) 
The enriched environment, approximately 40x the volume of a standard rat home cage, included 
internal complexity with different levels and objects. (D) Schedule of pretreatments and 
behavioral tests by days (d). (E) Diagram of complex unsupervised learning arena (USL), 
showing 4 rooms, passageways, 4 distinct objects, and attached refuge. Each room may be 
accessed by at least three different routes. Distant visual cues (not shown) were visible from the 
arena. (F) Overhead camera view, with rat entering the arena; the rat is visible within the refuge 
only to the infrared-equipped camera. (G) Representative 30m trajectory, with the rat’s first foray 
made into the complex arena shown in red. 
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Figure 3-2 Enrichment accelerated habituation in the complex arena: short and long term 
memory. 
Panels A-D show measures for the first session; E-H show changes in the second session given 
24h later. (A) Distance travelled in the refuge during the first session is shown in six 5 min time 
intervals: all groups showed robust habituation in this simple environment. (B) Total distance 
traveled in the complex arena during the first session was greater for SH rats than the other 
groups (ANOVA: p<0.0001, SH vs. EE or WR; p<0.0001 on Tukey post-hoc tests). (C) Plots of 
distance traveled in 5 min time intervals in the arena on the first session show an effectively flat 
habituation curve for SH rats; WR rats display some habituation, and EE rats exhibit a much 
steeper habituation curve than the other groups. (D) Slopes of curves in panel C show the rate 
of habituation is greater for EE than SH or WR rats (ANOVA: p<0.0001, SH vs. EE or WR; 
p<0.001 on Tukey post-hoc tests). (E) The change from day 1 to day 2 in the total distance 
traveled in the arena was < 10% for SH rats (p=0.08, paired t-test day 1 vs day 2), while this 
drop was about 30% for EE rats across the two days (p=0.002, paired t-test), and unchanged 
for WR rats. (F) SH rats showed an only slightly steeper habituation curve in the complex arena 
on session two (p=0.02, paired t-test). (G) The EE group curve for the second day showed a 
steep drop from the first to the second time bin (p=0.0003, paired t-test), thus shifting the entire 
curve downwards relative to the first day. (H) WR group curves did not change between test 
days.  (***) P<0.001. 
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Figure 3-3 Little to no evident difference in measures of arousal and anxiety 
(A) Speed of movements in the arena during the first session. Unexpectedly, WR group rats 
showed a small drop in average movement speed. SH and EE rats were not different. (B) 
Another measure of arousal, percent time moving while in the arena, was similar between the 
groups. (C) Percent of the first 10 minutes of the session that was spsent in the refuge; groups 
did not differ significantly on this measure. (*) p < 0.01. Additionally, the (empty, refuge-less) 
open field test was originally introduced by Hall to measure anxiety, primarily via quantification 
of defecations which, in rat, also serves as a conventional measure of anxiety or fearfulness; in 
our studies, likely in part due to the presence of the refuge and extensive handling, these counts 
were very low: usually none, with no group differences (data not shown). 
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Figure 3-4 Number and timing of exploratory forays are influenced by prior enrichment 
(A) SH rats made more forays during the first test session (day 1) than did WR rats (p=0.0002, 
ANOVA; SH vs. WR: p<0.001; other post-hoc comparisons were not significant). (B) EE rats 
began the session with a high foray count which halved in each successive 10-minute interval; 
changes in foray counts for SH and WR rats were more modest, with the slope of the EE curve 
much steeper than the other groups’ (p<0.0001, ANOVA; EE vs SH or WR: p<0.0001; SH vs. 
WR: not significant). (C) Plot of day 2 foray counts show that EE rats markedly decreased total 
number of forays relative to 24 h earlier (P<0.0005, paired t-test) whereas SH and WR rats were 
unchanged (dotted line) (P<0.0005, paired t-test). (D) Foray starts in 10 minute bins on day 2. 
(E) Change in foray counts during the first 10 min of session 1 vs first 10m of session 2 dropped 
sharply for EE rats but not WR or SH rats (p<0.0001, ANOVA; EE vs. SH or WR, p<0.001). (***) 
P<0.001. 
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Figure 3-5 Patterns of exploration in the novel complex arena are affected by prior 
enrichment 
(A) Percent of the arena covered by each foray is plotted in bins of 20% arena coverage. The 
curve for EE rats is left shifted, away from high-coverage forays, compared to SH rats; WR rats 
made fewer forays overall but with a similar distribution to SH rats. (B) The percent of high-
coverage forays (> 60% of the arena) was lower for EE rats than for other groups (p=0.01, 
Kruskal-Wallace rank sum test, p<0.01 and p<0.04 for EE vs SH and WR respectively; SH and 
WR not different). (C) The average duration of the “initial covering set” of forays first used to 
attain full arena coverage (at least 90% of arena visited) was significantly shorter for EE group 
rats (p<0.0001, ANOVA; in post-hoc comparisons EE vs SH p<0.002, EE vs WR p<0.0001, SH 
vs WR p=0.06). (D) Plot shows the percent of each foray not visited in the immediately prior 
foray: EE rats had a small but significant increase in non-overlap of successive forays compared 
to the other groups (p=0.003, ANOVA, post-hoc tests p=0.009 and 0.007 against SH and WR). 
(E) The non-overlap measure was negatively correlated with foray number for EE rats (Pearson 
correlation coefficient; p=0.02, ANOVA, EE vs SH p<0.04, vs WR p <0.05). (F) Percent of forays 
with low repetition (> 75% of line crossings were unique) was greater for EE rats than for other 
groups (p<0.003 ANOVA; EE vs. SH: p =0.01; EE vs. WR: p<0.01; SH vs. WR: not significant). 
(*) P<0.05, (**) P<=0.01, (***) P<=0.001. 
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Chapter 4 Locus of Encoding Sites Used during Acquisition of 

Episodic-like Memory 

 
The neurobiological substrates for transfer from unsupervised learning to current 

conditions, as discussed in Chapter Three, have largely been a matter of conjecture. One widely 

discussed proposal holds that the earlier experience leads to the construction of anatomical 

networks that promote subsequent encoding (Tse et al., 2011); this idea stems from the 

observation that weeks or longer interactions in an enriched environment leads to the growth of 

dendritic branches and spines in the hippocampus and cortex in rodents (Globus et al., 1973; 

Greenough et al., 1973; Leggio et al., 2005; van Praag et al., 2000). However, the immense 

capacity of memory presents difficulties for this hypothesis: experiential learning in complex 

circumstances is a routine event in humans and animals outside the laboratory and it seems 

likely that growth would quickly encounter limits. We investigated this question by conducting 

the first detailed analysis of synapse numbers in hippocampus in rats that did or did not have 

several days of experience with an enriched environment.  

An alternative to the dendritic growth hypothesis is that modifications to existing 

synapses involving LTP are used to encode effective acquisition strategies and relevant domain 

information during the enrichment period, and that these are sufficiently flexible to be applied in 

novel circumstances (see above). In support of this possibility, modeling work on hippocampal 

networks using empirically derived LTP induction rules, which do not involve new growth, found 

that memory capacity scales linearly with neuron number (Granger et al., 1994) and thus 

provides good evidence for sufficient capacity in mammalian brains. Related to these points is 

the question of how previously acquired strategies facilitate subsequent encoding. In the 

present case, transferred search patterns or exploratory behaviors could allow enriched 

environment (EE) animals to more effectively (more quickly and/or robustly) learn the many and 

diverse features of the new complex environment. This would be expected to produce greater 
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evidence for LTP in each of the intra-hippocampal connections associated with these 

characteristics. The present studies constitute a first test of the prediction that past enrichment 

increases the number of synapses expressing an LTP marker after exploration in a different 

complex context. Results confirmed this prediction, but the regional distribution of these 

changes was surprising. 

 

4-1. Effect of past experience with complexity on synapse numbers in hippocampus.    

We explored this idea that past interactions with an enriched environment increases 

connectivity in hippocampus so as to promote future learning by counting the number of 

synapses, labeled with an antibody against the synapse scaffold protein PSD-95, in nine 

anatomical hippocampal subdivisions. There were no evident differences between EE vs. 

Standard Housed (SH) rats in the number or size of contacts. Rats were sacrificed at the 

conclusion of a first 30-minute session in the test apparatus, during which the learning 

differences between EE and SH rats described above were replicated (not shown), and brain 

tissue sections collected and processed for immunofluorescence microscopy using antibodies 

against PSD-95, a protein that is uniformly distributed across post-synaptic densities at 

excitatory (glutamatergic) contacts (Petersen et al., 2003; Sassoé-Pognetto et al., 2003; 

Valtschanoff et al., 2001) (Fig 4-1A). Automated counting and measurement systems (see 

Methods) were used to collect synaptic data from nine dendritic sample zones in a cross section 

from the rostral hippocampus (Fig 4-1B). Mean counts of synapses across the measured 

hippocampal subfields were not greater in the enriched group (Fig 4-1C).  

Synapse size is another variable that relates to communication within hippocampal 

networks because it correlates with the number of AMPA-type glutamate receptors attached to 

them (L. Y. Chen et al., 2007); the size of the AMPA receptor pool dictates the size of the EPSC 

elicited by a release event and thus relates to the potency of individual contacts. We used 3-D 

reconstruction technology to estimate the volume of the tens of thousands of immunostained 
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synapses found within a sampling field. The frequency distribution for sizes (percent of all 

contacts that fall into graduated size bins) was described by a Poisson curve, as described for 

EM measurements (Harris et al., 1992), and was not detectably different between SH and EE 

brains for each of the hippocampal subfields measured (Fig 4-1D, p=0.09). Next, we measured 

the density of PSD95 protein at clusters matching the size constraints of synapses. There were 

no evident differences between SH and EE animals in comparisons of the nine subfields (Fig 4-

1F, p=0.24).   

We conclude from these results that six days of experience with a very complex 

environment does not produce lasting changes to the numbers, size, or structure of 

hippocampal synapses. 

 

4-2. Effects of episodic-like learning on overall changes in the density of an LTP marker.  

We tested for the induction of a synaptic marker for LTP during the first session in the 

novel complex arena. Studies on hippocampal slices showed that LTP consolidation requires 

activation of a complex array of signaling cascades leading to the formation and subsequent 

stabilization of actin networks in dendritic spines (L. Y. Chen et al., 2007). Phosphorylation 

(inactivation) of the actin severing protein cofilin is a critical step in the actin polymerization 

phase of this process (Rex, Chen, et al., 2009). Rats were sacrificed at the conclusion of a first 

30-minute session in the arena, during which the above described learning differences between 

EE and SH rats were replicated (not shown), and 4-5 sections collected from the rostral 

hippocampus. These were processed for dual immunostaining of PSD-95 and phosphorylated 

(p) cofilin (Fig 4-2A) as described in previous work cited above. The percentage of contacts with 

dense concentrations of pCofilin was measured for 66 contiguous sampling zones that covered 

apical and basal dendritic fields of CA1, CA3, and dentate gyrus in an entire cross section (Fig 

4-2B). Comparisons were thus made between rats (EE group) that rapidly learned during the 

session vs. animals that did not (SH group), although both groups explored the space to about 
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the same degree. We began the analysis with ten primary anatomical divisions of the 

hippocampal dendrites (see above). The total number of pCofilin immuno-positive contacts was 

the same for the two groups (SH: 0.73 ± 0.05 million/rat; EE: 0.75 ± 0.04; Fig 4-2C). Moreover, 

the mean number of double-labeled synapses was comparable for the two groups across each 

of the eleven zones (Fig 4-2D). Note that absolute values differed between zones and were well 

correlated between SH and EE groups (r=0.995). The relatively low variance and high degree of 

correlation indicates that the same regions were reliably outlined between sections, animals, 

and groups.  

We then tested if the percentage of synapses co-localized with high concentrations of 

pCofilin was detectably different between the two groups in averages for all eleven sampling 

fields covering an entire cross section of hippocampus. Frequency distributions (percent of 

double labeled contacts vs. density of pCofilin) were constructed by averaging the distributions 

for the animals for each region. The resultant curves for the two cohorts of SH rats did not 

perfectly align and a comparable shift between cohorts was seen in the EE group (Fig 4-2E). 

We therefore compared the SH vs. EE frequency distributions separately for each cohort. The 

curves for the EE rats were slightly skewed to the right (higher densities) in each cohort relative 

to those for the SH group (2-way RM- ANOVA: p<0.0001 in each case), indicating that the 

former had a small but reliable increase in synapses with high levels of phosphorylated cofilin. 

The slight differences in the shape of the frequency curves for the two cohorts argued against 

combining them into a composite curve for either the SH or EE groups. We therefore subtracted 

the mean SH curve in a cohort from each animal (SH and EE) in that cohort, thereby creating a 

difference from control curve for individual rats. The difference curves were then combined for 

the two cohorts. The results indicate that the EE animals progressively deviated from the SHs 

across higher density bins (p<0.0001; Fig 4-2F), in agreement with the rightward skew seen in 

the frequency distributions for each cohort. These results establish that effective learning of a 

complex arena by rats having prior experience with complexity is accompanied by a small 
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overall increase in contacts associated with an LTP marker, compared to rats without such 

experience that did not display behavioral evidence of learning. 

 

4-3. Regionally differentiated effects of episodic like learning. 

Next, we asked if the group effects described above reflect a uniform increase in 

phospho-Cofilin density at synapses across the hippocampus as opposed to regionally 

differentiated effects. Difference curves of the type described in figure 5F were accordingly 

calculated for each of the eleven hippocampal subfields (Fig 4-3; dentate gyrus polymorphic 

zone not shown). Striking regional effects were found: the stratum oriens and stratum radiatum 

of field CA1 both had steeply rising curves reaching values that were double the baseline (SH) 

scores (Fig 4-3A). Labeling in the lacunosum-moleculare lamina of CA1 was also increased as 

was the stratum oriens of field CA3c. There were no statistically significant effects in any of the 

remaining divisions. The increases in densely labeled synapses (≥ density bin 135) for field CA1 

in EE relative to SH rats involved only a small percentage of the entire population (CA1 stratum 

oriens: SH = 1.14 ± 0.15% of the population; EE = 1.98 ± 0.23%; p=0.009, t-test). Thus, the 

largest regional effect associated with rapid learning involved an approximately 1.0% increase in 

densely labeled contacts. Changes across the entire cross section, including regions in which 

group differences were barely detectable, would necessarily be much smaller than this value. In 

all, it appears that the stable encoding of a large amount of information by EE rats during a 30-

minute session in a novel, complex environment is associated with a very economical use of 

storage elements. 

To facilitate comparisons between regions, we calculated the slopes for the difference 

curves for density bins 90-185 for each of the EE rats. This analysis confirmed that the basal 

and proximal apical dendrites contained higher percentages of synapses with dense 

concentrations of pCofilin than the remainder of the hippocampus (Fig 4-3B). As seen in the 

error bars in the previous figure (i.e. Fig 4-2 panels A,B) there was considerable variability 
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between individual rats in the EE group. We therefore normalized the regional values for each 

animal to its mean for all zones, a step that eliminates any between-animal differences in 

slopes. The results confirmed that the two CA1 fields had a much higher percentage of 

synapses associated with high concentrations of pCofilin relative to SH rats than found in the 

nine remaining zones (Fig 4-3C).     

Fine grained analyses of regional effects. The results for large sampling fields establish 

that LTP related synaptic effects in the hippocampus of EE animals are largely restricted to two 

subdivisions of field CA1. The question then arises of whether further differentiation can be 

detected with finer grained analyses. We used 66 contiguous sampling fields and the slopes for 

differences between the positive tails of the frequency distributions to test the point. As 

expected, the within group variability was high for this analysis but there was a clear regional 

effect in the EE group (Fig 4-4A). There were eight zones in which the mean slope in the EE 

group was ≥1.5 (dotted line) but only two of these (CA1-stratum radiatum 3 and 4) were 

statistically different in post-hoc tests (p<0.05, Tukey tests) from the corresponding SH areas 

(Fig 4-4A). One of the EE rats had a mean slope value for all fields that was 3.2 SDs lower than 

the mean value for the remaining rats. Excluding this case, increased the statistical difference 

between the distributions for EE vs. SH groups and added post hoc differences for CA1 stratum 

oriens 3&4 (p<0.01).  

Normalizing the regional values for each of the eleven animals to its mean for all 66 

zones, to reduce within group differences, confirmed that marked regional distributions of slope 

values were present within the EE group (Fig 4-4B). Excluding the one case noted above again 

extended the difference from other regions in the EE group to CA1 SO 3&4 in post hoc tests 

(p<0.01).   

It is noteworthy that 5 of the 8 areas with the greatest differences from controls were 

located in the same medio-lateral region of field CA1 (lateral CA1a and medial CA1b; Fig 4-4C). 

A clustering score was calculated for each rat by comparing the mean values for the eight sites 
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vs. the remaining 58 zones. There was considerable variability within the EE group but clear 

differences were present for each animal: the mean slope (normalized; Panel B) for the target 

fields was 1.17 ± 0.23 and -0.16 ± 0.03 for the remainder (p=0.00001, Fig 4-4D). Having a 

single value for each rat made it possible to test for a predicted correlation between learning 

(initial habituation rate) and pCofilin cluster score. This did not reach statistical significance for 

the entire group (Spearman r = 0.43, one tail p=0.096) in large part because of an animal that 

was much less active during the session than the other members of the group, which varied 

only slightly (49.7 meters vs. 100.1 ± 4.9 meters). Excluding this case resulted in a robust 

correlation (r= 0.72, p=0.012). 

 

4-4. Distribution of encoding sites engaged by a simple form of unsupervised learning.     

The above results can be compared to those obtained from rats that learned a very 

simple environment and without prior experience with complexity. Adult, male rats were divided 

into three treatment groups: ‘contingency’ (n=8), unsupervised exploration (n=8), and home 

cage controls (n=7). All rats were handled twice daily for 6 days, and on the following day were 

given behavioral testing or left in home cages. The testing apparatus (36 x 18 x 18 inches in 

length, width, and height) was divided into two equal-sized compartments distinguished by 

either black-and-white stripes or square dots on one wall, with a 4 square inch connecting 

passage; one compartment had a strobe light (3W LED) and a toy siren alarm fixed above (Fig 

4-5). Rats in the contingency group were placed into the apparatus and allowed 5 min of 

exploration, after which any further entries into the ‘strobe’ compartment activated the strobe 

light and alarm as long as the animal remained there; this strobe contingency period lasted 25 

min. Rats in the unsupervised learning group were given 30 min to explore the compartments 

with no strobe or alarm activation. Home cage controls did not have behavioral testing. On 

removal from the test apparatus (or home cage), each rat was anesthetized and their brains 

removed and fast frozen for later immunofluorescence. In all, one group was allowed free 



56 
 

exploration of a simple space while the other was prevented from doing so: unsupervised 

episodic elements were minimal and there was no opportunity to employ search strategies in 

the small space.  

The free exploration rats distributed their time equally between the two compartments 

(Fig 4-6A), while the rats exposed to the sound / light avoided the pertinent room (Fig 4-6B). 

This pattern was observed for each of the eight rats in the two groups (Fig 4-6B). Importantly, 

the contingency animals periodically triggered the signals with short moves into the room 

throughout the trial (not shown). Exploratory activity, as assessed by total distance traveled 

during the session, tended to be slightly lower in the contingency group (63.9 ± 9.4 meters) than 

in the unsupervised group (79.6 ± 7.8) but this difference did not approach statistical 

significance (p>0.20; 2-tailed t-test). Reductions in activity over time in the test chamber 

(habituation), a measure of short term memory, occurred at similar rates in the two groups: the 

mean of the individual slopes for the exploration group was -0.56 ± -0.05 while the 

corresponding values for the contingency animals were -0.55 ± -0.08 (p>0.76) (Fig 4-6D), a 

result suggesting that stress and arousal levels were not greatly different between groups. 

We ran additional groups (n=8) to test if 30 minutes of experience sufficed to produce 

long-term memory in unsupervised, free exploration rats. Habituation and overall activity on day 

one were comparable to that in the day one group used for synaptic mapping. However, day two 

activity was greatly reduced relative to day one (p<0.0001, two way ANOVA for group effects) 

and, on day two, the rate of habituation was accelerated (p=0.028) (Fig 4-6E). There was no 

difference in overall activity or habituation rates between days one and two for the rats in the 

contingency group (Fig 4-6F); note that these animals experienced a change in the environment 

on day two, namely, no aversive cues on the second day. 

Sections were stained as above with PSD-95 and another marker of LTP, 

phosphorylated CaMKII (Fig 4-7A), and digital images collected. To evaluate the regional 

distribution of the LTP marker at synapses, the hippocampal image was divided into 42 zones 
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that conformed to local cytoarchitectonic and laminar boundaries (Fig. 4-7B). We then 

subtracted the ‘hot spot’ score, a thresholded z-score, for the home cage group from the values 

determined for individual unsupervised exploration and contingency rats. The mean of all 

positive values was greater in the exploration group than in the contingency group (p=0.03). 

Clear differences between the home cage and contingency groups (one SD greater than the 

mean for all positive sites) were absent. However, four regions meeting this criterion were 

present in the exploration group (Fig 4-7C). Three zones in the unsupervised exploration group 

(stars, Fig 4-7C) differed from two or more other zones in that same group by p<0.001 in post-

hoc tests after one-way ANOVA. There were no zones of this type in the contingency group. We 

interpret these results as indicating that unsupervised learning of an open field causes large 

LTP-related synaptic changes in a surprisingly small number of sites, and that this does not 

occur if behavior is channeled by the introduction of a response contingency. 

In all, the maps generated in a simple, non-episodic context are very sparse (few hot 

spots) and bear no resemblance to those described earlier. These maps, especially those 

related to the episodic task constitute evidence that focal sites of memory storage emerge in the 

CA1 during episodic learning. Initially this would seem to contradict the previous modelling 

results. However, pCofilin is an extremely short-lived protein, previous studies have shown it 

peaks around 2-7 minutes and has declined by 15 minutes. (L. Y. Chen et al., 2007). EE 

animals appear to be performing their maximal exploration during the first 5 minutes but 

explored for 30 minutes. It’s possible that the sites represented here are actually sites of some 

sort of consolidation and not of the initial storage. It is also possible that the amount of synapses 

required for temporal storage in the CA3 is broad and requires a small population of cells, less 

than would be detectable for our system, while storage in the CA1 uses a (relatively, still less 

than 1%) large number of focal synapses. 

  



58 
 

 

Figure 4-1 Synapse counts are not different between groups 
(A) Representative image showing PSD95 immunoreactivity; arrows indicate example puncta. 
(B) Illustration of sampling zones in each of dendritic fields of CA1, CA3, and dentate gyrus. (C) 
Mean synapse counts for each subfield sampled were not different between the enriched and 
standard handled groups (p=0.44, 2-way RM-ANOVA). (D) Frequency distribution (percent of all 
synaptic puncta falling into size bins) for each of the nine subfields. There were no differences in 
size measurements between the two groups (p=0.09, 2-way ANOVA). (E) Frequency 
distributions for labeling density for each subfield. There were no differences between the two 
groups (p=0.24, 2-way ANOVA). 
  

E 
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Figure 4-2 Synaptic pCofilin levels show consistent regional measures with enriched rats 
displaying an increase in high density pCofilin labeling after learning in a novel complex 
environment 
(A) Representative deconvolved image shows dual immunolabeling for PSD95 (green) and 
pCofilin (red); arrow indicates double labeling (yellow). Scale bar = 2μm. (B) Diagram illustrating 
the eleven dendritic zones measured, including CA1 stratum oriens (so), stratum radiatum (sr), 
and lacunosum moleculare (lm); field CA3ab (so, sr); field CA3c (so, sr), CA3 lm, the dentate 
gyrus (DG) molecular layer internal leaf (IL) and external leaf (EL), and the polymorphic zone 
(pz) of the dentate gyrus hilus. (C) Total counts of double-labeled puncta across all zones were 

comparable for SH (0.73 ± 0.05 x 10
6
) and EE (0.75 ± 0.04 x 10

6
) rats (p=0.44, 2-way RM-

ANOVA). (D) Counts of double-labeled synapses in each of the eleven zones were similar and 
well correlated (r=0.995) between EE and SH groups. (E) Immunolabeling frequency 
distributions for all zones combined (plots show the percent of double labeled contacts in 
different pCofilin immunolabeling density bins) for the animals in each group, shown for each of 
the two cohorts. A shift between cohorts was apparent in both groups; frequency distributions 
were therefore compared separately for each cohort. Insets: comparison of the right tail (higher 
densities) for each cohort reveals a small but consistent increase in synapses with higher levels 
of pCofilin for EE compared to SH rats (2-way RM-ANOVA: P<0.0001 for each cohort). (F) 
Mean difference from within-cohort SH curve (mean SH curve for a cohort subtracted from the 
curve for each rat from either group in that cohort). EE group rats’ deviation from SH mean 
increases with higher density bins (P<0.0001), in accordance with the rightward skew of the 
frequency distributions. 
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Figure 4-3 Synapses with dense concentrations of synaptic pCofilin are concentrated in 
field CA1 in animals with past experience with complexity 
(A) Percent difference (y-axis) from the positive tail of the mean frequency distribution curve for 
SH rats (x-axis: successively higher pCofilin density bins); results are summarized for 10 of the 
11 hippocampal subfields (polymorphic zone of hilus (pz) not shown). Orange lines show 
average values for 11 EE rats in each panel; average values for the 12 SH rats (blue line) is 
included here to show between-animal variability. Curves for CA1 stratum oriens (str. oriens, so) 
and stratum radiatum (str. radiatum, sr) progressively increased in the EE group across 16 
density bins shown, indicating that the frequency distribution curves for these two areas were 
strongly right shifted from the corresponding zones in the SH group (2-way RM-ANOVA, 
P<0.0001 in each case). CA1 lacunosum moleculare (str. moleculare, lm) and CA3c-so were 
also increased (P=0.002 and P=0.0016 respectively); there were no other significant effects. (B) 
The slopes of the difference curve from the mean of the SH group were calculated for each 
region in the EE rats to provide a single value for comparisons between regions within the EE 
group; there was a clear regional effect (RM-ANOVA: P=0.008) with CA1-so (P=0.005,Tukey 
test) and CA1-sr (P<0.03) increased above other areas. (C) Normalization of regional values for 
each EE animal to its mean (all regions) difference from SH rats confirm that CA1-so and -sr 
have a higher percentage of high-concentration pCofilin synapses than the other zones (RM-
ANOVA: P<0.0001; CA1-so: P=0.002; CA1-sr: P=0.002; Tukey tests). Additional abbreviations: 
DG, dentate gyrus; IL, internal leaf; EL, external leaf. 
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Figure 4-4 Division of the eleven original sampling regions above into 66 contiguous 
subsampling zones reveals hot spots and clustering effects in EE group 
(A) Slopes of EE vs. SH differences across increasing pCofilin density bins (see text) were 
calculated for 66 fields. Regional distribution of differences from SH frequency distribution 
curves were significant (two-way RM-ANOVA, P=0.0005). Two subzones, CA1-sr 4 and 5, 
differed in post-hoc Tukey tests (P=0.03, 0.04). (B) Regional values for each animal in the EE 
group were normalized to the mean score for that animal for all 66 sampling areas; there was a 
strong regional effect (one way ANOVA: P<0.0001) with CA1-sr 4,5 different from other areas in 
post-hoc tests. (C) Locations of eight subfields where mean EE slopes were ≥1.5. Notably, CA1 
‘hotspots’ were located in adjacent basal and apical dendrites (brown dots). (D) The mean 
values for the eight areas were calculated and compared to the means for the remaining 58 
areas for each EE rat to provide a measure of relative clustering. The group difference for the 
two collections of sampling fields was significant (P=0.00001, t-test).  
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Figure 4-5 Diagram of strobe-alarm apparatus 
Under the strobe-alarm contingency condition, overhead video camera tracking triggers the 
strobe light and alarm sound whenever the rat enters the room at right, and shuts off if the 
animal leaves the room. 
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Figure 4-6 Behavioral analyses demonstrate differences in exploratory behavior between 
experimental groups 
One group (contingency) explored freely for 5 min, after which entry into one compartment 
(Room 1) triggered a flashing light and a buzzer over the remaining 25 min; the second 
(unsupervised “exploration”) group was allowed explore both rooms with no contingencies for 30 
min. (A), (B) Heat maps show the time spent at different locations over 30 min in the two 
compartments by representative rats from each group (red > yellow > green > blue). (C) 
Quantification of time spent in Room 1 for each group, in 5 min time segments over the 30 min 
session (n = 8/group). Note the steep drop after minute 5 for the contingency group. (D) 
Distance traveled, in both compartments, by unsupervised “exploration” and response 
“contingency” groups demonstrates similar habituation curves. (E) Comparison of distance 
traveled per 5 min bin in a separate group (n = 8) of unsupervised exploration rats tested on 2 
consecutive days. The between-day difference in these habituation curves was highly 
significant, as was the total distance traveled over 30 min ( p = 0.0001, 2-way ANOVA and t test 
respectively). (F) Same curves as in E but for contingency rats (n = 8; separate set from those 
in C and D); there were no detectable differences between days 1 and 2. 
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Figure 4-7 Dual immunofluorescence localization of PSD95 and pCaMKII T286/287 was 
used to map colocalization across 42 sample zones in rostral hippocampus 
(A) Representative images show immunolabeling for pCaMKII alone (left, red), and for pCaMKII 
plus PSD-95 (right, red and green, respectively) in stratum radiatum (SR) of field CA1b. Scale 
bar, 2 micrometers. Note, both antigens are exclusively and densely localized to small puncta, 
some of which were double labeled (arrows, 2 examples of colocalization). (B) Photomicrograph 
of a rostral hippocampal section processed for the Timm’s stain for heavy metals (brown to 
black) and Nissl staining (violet) to illuminate major lamina and cellular layers, respectively. 
Sampling zones used for automated counting of pCaMKII+ and PSD-95+ elements are 
indicated with dotted lines. Each of the major hippocampal subdivisions (CA1, CA3ab, CA3c, 
DG) were divided into 4 – 6 zones as illustrated for CA1 SR: these numbered zones (1–5) 
extended across the three lamina in fields CA1 and CA3. Numbering within CA3 and the DG 
molecular layer began with CA3a and the lateral aspect of the upper leaf, respectively. LM, 
Lacunosum-moleculare; SO, stratum oriens; UL, upper leaf of the DG molecular layer; LL, lower 
leaf of the DG molecular layer. (C) "Hot spot" scores for unsupervised Exploration (left) and 
Contingency (right) groups following subtraction of mean values from home-cage animals. The 
dotted line is the mean of positive values for the two groups and the height of the gray boxes is 
1 SD above that mean. Subtracting home-cage scores reduced several strongly positive values 
in the exploration animals, mainly in stratum oriens (SO) of CA3a,b, thereby increasing the 
relative sizes of the remaining hot spots. The same subtraction procedure eliminated all values 
>=1 SD above the mean in the contingency group; despite this, the 21 sampling fields within the 
gray boxes were highly correlated with the corresponding sites in the unsupervised exploration 
group. The overall patterns were statistically different between the groups, particularly in the 
noncorrelated region between the gray boxes. The x’s indicate three regions that were robustly 
different ( p < 0.001) than >=2 of the remaining sampling zones in the same Exploration group. 
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Summary and Discussion 

 
 

Converging lines of evidence indicate that the hippocampus is critical to the acquisition 

and retrieval of human episodic memory, a conclusion that aligns well with the broader idea that 

the structure plays a major role in a variety of species in the processing of sequential cues. But 

knowing that a brain region is involved in a given operation (its activity correlates with 

performance, silencing blocks function) does not explain the nature of its contribution. The 

hippocampal formation, as described in the literature, is part of a cortical-hippocampal-cortical 

loop that receives input from multiple association areas of cortex and then sends dense 

projections back to these regions (Kesner et al., 2015; Norman et al., 2003; Squire et al., 2004). 

The interconnected cortical portions of these ‘loops’ organize information along many 

dimensions including extended sequences and hierarchical categories. What then is the unique 

contribution of the hippocampus? One approach to this question is to ask if the region 

possesses features that are both logically related to the inferred computations and lacking in the 

remainder of the telencephalon. The dentate gyrus is certainly a striking example of the latter. 

This subdivision, often referred to as the gateway to hippocampus because it is the primary 

target of cortical input, is composed primarily of a peculiar type of neurons, the granule cells, 

whose only comparators are found in the olfactory bulb and cerebellum. The mossy fiber 

projections of the granule cells can only be described as bizarre: they innervate only a single 

region (field CA3 pyramidal neurons), via axon terminals of which most are enormous (Rebola 

et al., 2017). Moreover, the dentate gyrus-CA3 connection is extremely convergent: individual 

granule cells contact a very small number of CA3 neurons (tens to a few hundred) (Rolls, 2008). 

However, while satisfying the criterion of being unique to hippocampus, the dentate gyrus does 

not possess the type of neuron-to-neuron connections generally assumed to provide for 

associations between cues. Indeed, there are currently no formal hypotheses that relate the 

peculiar features of the region to any particular function.  
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In prior work we began to address the above question by comparing signal processing at 

mossy fiber synapses with that at six other steps in a network leading from input to olfactory 

(piriform) cortex through hippocampal field CA1. Responses to a 20 second train of theta 

stimulation, a dominant frequency for hippocampus, were measured at each node of the circuit. 

All steps leading to the dentate gyrus exhibited weak, steadily decaying facilitation while 

connections in the subsequent pyramidal cells had robust and sustained enhancement. In 

contrast to either of these patterns, the mossy fibers responded to theta input with a several-

fold, sustained facilitation. We built a several stage simulation of this cortico-hippocampal 

network to evaluate the functional outcome from these markedly divergent frequency facilitation 

effects and found that the output of the network stabilizes at a high level in large part because of 

the unique behavior of mossy fiber synapses (Fig 5-1). In all, the singular characteristics of the 

dentate gyrus allow that region to serve as an amplifier that compensates for steadily 

decremental input from cortex (Trieu et al., 2015). 

It is clear from the above that the hippocampus thus operates in a very different manner 

than cortex but this conclusion alone does not point to a special role in the processing of 

sequential information. This led us to a second unusual feature of the structure: the massive 

recurrent collateral projections within field CA3. As argued by a number of theorists, this system 

seems well suited for maintaining representations of transient input from cortex across extended 

intervals (Kesner et al., 2015). This would allow for linkages between spaced cues. As a first 

step in testing this idea, we first built a biophysically realistic network simulation, incorporating 

the very potent mossy fibers, to investigate this basic idea and found that it generated the sharp 

wave effect that is a characteristic marker of recurrent hippocampal activity in vivo. A more 

sophisticated model, constrained by a battery of anatomical and physiological CA3 features, 

maintained signals into the seconds range after a experiencing a brief input. Adding LTP based 

synaptic plasticity enabled linkages between temporally spaced cues. An analysis of parameter 

space in the model confirmed the expectation that the density of recurrent innervation is 
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essential for maintaining the activity initiated by a brief initiating signal. We conclude that this 

unique structure in hippocampus enables operations --- connecting widely spaced inputs --- that 

are beyond the capabilities of the weaker associational projections found in cortex. Importantly, 

initiation of cycling activity in CA3 was dependent on the mossy fibers, another factor absent in 

cortex. 

Essential aspects of episodic memory unexpectedly emerged from the model. 

Presentation of a first cue in a sequence triggered representations of subsequent events and in 

the order in which they had been originally sampled. Still more surprising, retrieval of the cues 

was time compressed while maintaining relative delays between them. Analysis of the 

simulations confirmed that these phenomena were generated by those aspects of hippocampus 

not found in the cortical relationships. To the extent it has been studied, these aspects are 

common to the mammals and certain of them appear to have homologies in the other amniotic 

vertebrates (see (Striedter, 2016)). This suggests that aspects of episodic memory, including 

time compression during retrieval (Nádasdy et al., 1999), are emergent properties of designs 

shaped by early evolutionary pressures for less complex, time related operations. We conclude 

that the nature of the contribution made by hippocampus to the processing of sequential cues in 

small-brained rodents and episodic memory in humans i) arises from highly specialized features 

missing from cortex, and ii) involves associations over very long intervals associated with a 

compression of time.  

The ratio between the size of neocortical association areas to that of hippocampus is 

orders of magnitude greater in humans than is the case for rodents. It follows that the manner in 

which the output of the latter is processed by the former will be vastly different; similarly, the 

type and complexity of information received by hippocampus is certain to be radically different 

between the two species. Therefore, while we can imagine that the operations performed by our 

model are common to rats and people, the phenomena generated by cortico-hippocampal-

cortical loops are going to be qualitatively dissimilar. We accordingly expect that many aspects 
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of episodic memory as identified in a large literature on human work will at best be poorly 

expressed in commonly used laboratory animals. In all, we hypothesize that the dentate gyrus-

CA3 system serves as a clocking device that is common to the mammals although producing 

distinct outcomes depending on the size and organization of its cortical relationships. Prior work 

showed that rodents encode the temporal order of cues but surprisingly there have been no 

direct tests of whether this is dependent on field CA3. The modeling studies suggested a means 

for executing such experiments involving transient silencing of the commissural component of 

the subfield’s recurrent collateral system. As predicted, this manipulation entirely removed the 

ability of mice to remember the sequence in which odors had occurred while leaving intact the 

memory of cue identity. 

Rodent work has to date focused on tests in which the basic ‘what’, ‘where’, and ‘when’ 

elements of an episode are studied in isolation. But these aspects occur together in real world 

circumstances and are incorporated into an integrated memory; the degree to which animals 

accomplish this routine human operation is unknown (Easton et al., 2012). Tests of this would 

minimally require assessing the contributions to behavior of hippocampal pathways associated 

with each element in paradigms involving discrete episodes of unsupervised exploration in a 

naturalistic environment. We developed a first test situation of this type by connecting a large 

complex arena with a much smaller, darkened side room; under these circumstances, rats 

explored the larger area using individual forays separated by periods in the attached ‘refuge’. An 

intriguing complication with human relevance was immediately encountered: conventionally 

handled animals showed little evidence of learning during a 30-minute session. This was 

unexpected because rats are known to steadily decrease their exploration of extended open 

fields presumably due to growing familiarity. Moreover, this evidence of learning results in still 

greater decreases in exploration on following days, an effect indicative of long-term memory. 

We concluded that the apparatus was too complicated to be mastered in the allotted test 

periods. Further work then showed that several days of experience with complexity enabled 
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rapid and persistent memory encoding in the novel situation. Humans deal with new and 

challenging circumstances by transferring rules acquired during their past encounters with 

related, though clearly different circumstances (Baldwin et al., 1988; Pan et al., 2010). Our 

studies appear to have uncovered a first instance of this in rodents. Rats with prior experience 

with complexity altered the timing and structure of their exploratory episodes, in ways that 

appear to have promoted more effective encoding, and led to unexpectedly discrete synaptic 

changes in the output stage of hippocampus (see below). We think that this is an important 

development that will open the way to the first neurobiological studies of a critical aspect of 

human episodic memory. Beyond this, the results describe a paradigm for the above noted 

analyses of rodent hippocampus during behavior that involves what’, ‘where’, and ‘when’ during 

discrete instances of episodic exploration. We intend to exploit this opportunity in future work 

using the transient silencing procedure noted above.  

 The present thesis work used this behavioral paradigm to localize sites in hippocampus 

in which learning produced the greatest concentration of synapses associated with a marker for 

LTP. The results were unexpected in that such effects were predominantly found in an area, 

involving both basal and proximal apical dendrites, centered on field CA1b. This area 

constitutes the final step of intra-hippocampal circuitry and we assume that it serves to integrate 

the three episodic memory elements processed at earlier stages. If this is correct, then the most 

intense memory related synaptic changes are likely related to building a unitary code for the 

information collected during a sequence of forays. It is interesting in this regard that in addition 

to records of items, spatial relations, and time, episodic memories are likely to have some type 

of code that distinguishes them from each other. This follows from the commonplace experience 

of first locating an episode and then reading its contents. Operations of this type would be far 

more efficient if some type of marker could be used to identify the stored sequences, which 

must be present in enormous numbers in humans. Relatedly, psychological studies show that 

retrieved episodes can be linked together into novel arrangements, a process argued to be 
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critical to inferential thinking (Zeithamova et al., 2012). Such effects would again be easier to 

achieve if episodes could be treated as units by the cortex. But how would rodents with their 

poorly developed cortical association fields make use of a tagging mechanism for a complex 

series of experiences? One possibility is that it provides a recognition signal for a thoroughly 

explored environment, something likely to be vital for survival. Re-experiencing the environment 

during an initial foray on the day after the first exploration would, by this account, activate a very 

strong output from hippocampus that would depend, for reactivation, on the presence of the 

same cues and spatio-temporal relationships found on the previous day. Changes between 

days in any of these complex associations would result in firing by cells that had not been linked 

via LTP to field CA1 and thus the possibility of an error signal. In essence, the timing device 

provided by the dentate gyrus-CA3 subsystem, together with encoded information about cues 

and their relative locations, would constitute a system that can detect even subtle alterations to 

an environment. 

This above work also includes the development of several technologies with potentially 

broad application. The model of the CA3, if it can be generalized into an algorithm, would 

constitute a novel approach to using a network to store and process episodic information. This 

would allow for systems which could receive and organize complex information spaced at 

human relevant scales. As this system maintains and organizes temporal information into 

spatial information, it is highly applicable to neural network technologies. The mapping 

technology developed here has broad applications to the search for an engram (Lashley, 1950). 

It can be used to map the activation patterns of synapses in any region that has been identified 

as a candidate for memory storage. The technology has to be advanced further to allow 

individual differences in storage sites to be identified. Also further studies must explore the 

exact scale of these ‘hot spots’ of storage. The mapping combined with the modeling also 

allows development of more explicit models that might predict novel network architecture which 

would further increase the power of developed algorithms. 
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In summary, our modeling, physiological, and behavioral studies point to the conclusion 

that the highly specialized and evolutionarily conserved characteristics of hippocampus 

generate unique time related computations. These effects are essential for dealing with the 

complexity of real world environments by most, and perhaps all, groups of mammals. But the 

results go beyond this to describe emergent properties of the networks that help explain the 

origins of salient features of human episodic memory.  
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