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a b s t r a c t

We give an overview of random matrix theory (RMT) with the objective of highlighting
the results and concepts that have a growing impact in the formulation and inference of
statistical models and methodologies. This paper focuses on a number of application areas
especially within the field of high-dimensional statistics and describes how the develop-
ment of the theory and practice in high-dimensional statistical inference has been
influenced by the corresponding developments in the field of RMT.
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1. Introduction

Statistics has entered into an age where an increasingly larger volume of more complex data is being generated, often
through automated measuring devices, in a wide array of disciplines such as genomics, atmospheric sciences, commu-
nications, biomedical imaging, economics and many others. The representation of such data in any nominal coordinate
system often leads to so-called high-dimensional data that are frequently associated with phenomena transcending the
boundary of classical multivariate statistical analysis. The continued growth of these new data sources has given rise to the
incorporation of different mathematical tools into the realms of statistical analysis, which include convex analysis,
Riemannian geometry and combinatorics. Random matrix theory has emerged as a particularly useful framework for
posing many theoretical questions associated with the analysis of high-dimensional multivariate data.

In this paper, we mainly focus on several application areas of random matrix theory (RMT) in statistics. These include
problems in dimension reduction, hypothesis testing, clustering, regression analysis and covariance estimation. We also
briefly describe the important role played by RMT in enabling certain theoretical analyses in wireless communications and
econometrics. Different themes emerging from these problems have in turn led to further investigation of some classical
RMT phenomena. Among these, the notion of universality has profound implications in the context of high-dimensional data
analysis in terms of the applicability of many statistical techniques beyond the classical framework built upon the
multivariate Gaussian distribution. With these perspectives, the treatment of the topics will focus on those aspects of RMT
relevant to the statistical questions. Thus, the topics in RMT that receive most attention in this paper are those related to the
behavior of the bulk spectrum, i.e., the empirical spectral distribution, and the behavior of the edge of the spectrum, i.e., the
extreme eigenvalues, of random matrices. Also, the sample covariance matrix being a dominant object of study in most of
the multivariate analyses, much of the paper is devoted to the study of its spectral behavior. For more detailed accounts of
these topics, the reader may refer to Anderson et al. (2009), Bai and Silverstein (2009) and Pastur and Shcherbina (2011).
More complete and self-containing treatments of a number of “core” topics of RMT not covered in this paper, including the
Riemann–Hilbert approach to the asymptotics of orthogonal polynomials and random matrices, the distribution of spacings
and correlation functions of eigenvalues and their connections with determinantal point processes, and the role of the
eigenvalue statistics in physics, can be found in the monographs (Akemann et al., 2011; Anderson et al., 2009; Deift, 2000;
Deift and Gioev, 2009; Forrester, 2010; Guionnet, 2009; Mehta, 2004; Tao, 2012), and the survey articles (Diaconis, 2003;
Soshnikov, 2000). The connection between RMT and free probability theory, another significant topic not discussed here, is
explored in detail in Anderson et al. (2009), Hiai and Petz (2000), Mingo and Specicher (2006), Nica and Speicher (2006) and
Edelman and Rao (2005). Finally, wireless communications and finance are two areas beyond physics and statistics where
tools and concepts from RMT have been successfully applied and thus we give a brief overview of these topics in Section 4.
Applications of RMT in wireless communications are the focus of Coulliet and Debbah (2011) and Tulino and Verdú (2004),
while for a detailed look at applications in finance one may refer to Bouchaud et al. (2003) and Bouchaud and Potters (2009).
A survey of some of the statistical topics covered in this review can be found in Johnstone (2007).

We now give a brief outline of this paper. There are two different ways in which RMT has impacted modern statistical
procedures. On one hand, most of the mathematical treatment of RMT have focused on matrices with high degree of
independence in the entries, which one may refer to as “unstructured” random matrices. The results from the corresponding
theory have been used primarily in the context of hypothesis testing where the null hypothesis corresponds to the absence of
any directionality, or signal component, in the data. On the other hand, in high-dimensional statistics, we are primarily interested
in problems where there are lower dimensional structures buried under random noise. An effective treatment of the latter
problem often requires going beyond the realms of the classical RMT framework and into the domain of statistical regularization
schemes. Keeping these perspectives in mind, we devote Sections 2 and 3 to the motivations and theoretical developments in
RMT, while focusing on the statistical applications of RMT in Section 4. Finally, in Section 5, we focus on modern statistical
regularization schemes based on various forms of sparse structures for dealing with high-dimensional statistical problems.
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RMT does not play any direct role in this context, except possibly in the theoretical analysis of some estimation schemes, but
provides guidance for potential implications of violating the structural assumptions underlying the inferential procedures.

2. Background and motivation

Randommatrices play a central role in statistics in the context of analysis of multivariate data. There are numerous books
on classical multivariate analysis, most notably Anderson (1984), Mardia et al. (1980), and Muirhead (1982), that describe
the major problems addressed through the use of analysis of random matrices. Most of these problems are naturally
formulated in terms of the eigen-decomposition of certain Hermitian or symmetric matrices. These problems can be broadly
categorized into two groups – the first group involves the eigen-analysis of a single Hermitian matrix, often referred to as a
single Wishart problem; and the second group involves a generalized eigenvalue problem involving two independent
Hermitian matrices of the same dimension, often referred to as a double Wishart problem. The first group includes principal
component analysis (PCA), factor analysis and tests for population covariance matrices in one-sample problems. The second
group includes multivariate analysis of variance (MANOVA), canonical correlation analysis (CCA), tests for equality of
covariance matrices and tests for linear hypotheses in multivariate linear regression problems. In addition, random matrices
play a natural role in defining and characterizing estimates in multivariate linear regression problems and in classification
(within sample covariance matrices) and clustering problems (pairwise distance or similarity matrices). Thus, analyzing the
behavior of eigenvalues and eigenvectors of random symmetric or Hermitian matrices has a precedence in statistics that
goes back to the work of Pearson (1901) who introduced the notion of dimension reduction of multivariate data through
PCA. In this section, we briefly discuss each of the classical problems mentioned in the previous paragraph.

Principal component analysis (PCA) is a highly versatile nonparametric tool for data reduction and model building. For an
extensive discussion of the various applications and variants of PCA, one may refer to Jolliffe (2002). The formulation of PCA
in classical multivariate analysis at the population level is as follows. Suppose that we measure p variables (assume real-

valued, for simplicity), expressed as a random vector X ¼ ðXð1Þ;…;XðpÞÞT . Suppose also that the random vector X has finite
variance Σ≔E½ðX�E½X�ÞðX�E½X�ÞT �. The primary goal of PCA is to obtain a lower dimensional representation of the data in the
form of linear transformations of the original variable, subject to the condition that the residual variance is as small as
possible. This can be achieved by considering a sequence of linear transformations given by vTkX, k¼ 1;2;…; p, satisfying the
requirement that Var ðvTkXÞ is maximized subject to the conditions that vk are unit norm vectors in Rp (or Cp if the data is
complex-valued), and vk is orthonormal to fvj : j¼ 1;…; k�1g, i.e., vTkvj ¼ 0 for j¼ 1;…; k�1. This optimization problem can
be solved in terms of the spectral decomposition of the nonnegative definite Hermitian matrix Σ:

Σvk ¼ ℓkvk; k¼ 1;…; p; ð1Þ
where vk are the orthonormal vectors. Here ℓk (always real-valued) is an eigenvalue associated with vk. Note that in this
formulation the eigenvalues ℓk are ordered, i.e., ℓ1Z⋯ZℓpZ0. If ℓk is of multiplicity one, then vk is unique up to a sign
change. In practice, we do not know Σ and we typically observe a sample X1;…;Xn for the variable X. In that case, the
empirical version of PCA involves replacing Σ by its natural estimate Sn ¼ ðn�1Þ�1∑n

i ¼ 1ðXi�X ÞðXi�X ÞT , and performing the
spectral decomposition for Sn analogous to (1). The corresponding eigenvectors bvk are often referred to as the sample

principal components. The corresponding ordered eigenvalues bℓk are typically used to detect the dimension of the reduction
subspace. One of the commonly used techniques is to plot the eigenvalues against their indices (so-called “scree plot”) and
then look for an “elbow” in the plot. There are formal tests based on likelihood ratios (see e.g., Anderson, 1984; Muirhead,
1982) that assume that, after a certain index, the eigenvalues are all equal and that the observations are Gaussian. Notice
that the name single Wishart arises from the fact that if X1;…;Xn are i.i.d. Npðμ;ΣÞ, then ðn�1ÞSn has Wishart ðp;n�1;ΣÞ
distribution. Under Gaussianity, one of the commonly used tests for sphericity, i.e., the hypothesis H0 : Σ¼ Ip, is Roy's largest

root test (Roy, 1953) which rejects H0 if bℓ1, the largest eigenvalue of S exceeds a threshold determined by the level of
significance. If H0 : Σ¼ s2Ip for some unknown s2, the corresponding generalized likelihood ratio test, under an alternative

that assumes Σ to be a rank-one perturbation of s2Ip, rejects for large values of bℓ1=ð∑p
j ¼ 2

bℓjÞ (Graybill and Johnson, 1972;

Nadler et al., 2008). We return to these problems in Section 4.
A factor analysis problem can be seen as a generalization of PCA in that it assumes a certain signal-plus-noise

decomposition of the observation vector X:

X�μ¼ Lf þɛ; ð2Þ
where f is an m� 1 dimensional random vector, L is a p�m dimensional nonrandom matrix, f and ɛ are uncorrelated, and
ɛ has mean 0 and variance Ψ , a p� p diagonal matrix. For identifiability, it is typically assumed that E½f � ¼ 0 and E½ff T � ¼ Im.
Under this setting, the covariance matrix of X is of the form Σ¼ LLT þΨ . Thus, if Ψ is a multiple of the identity, the problem
of estimating L from data can be formulated in terms of a PCA of the sample covariance matrix. One important distinction
between PCA and factor analysis is that, in the latter case, the practitioner implicitly assumes a causal model for the data. In
general, factor analysis problems are often solved through a maximum likelihood approach (see Tipping and Bishop, 1999).
A more enhanced version of the factor analysis model, the so-called dynamic factor model, is used extensively in
econometrics, where the factors f are taken to be time-dependent (Forni et al., 2000, 2004, 2005).
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A detailed discussion of various versions of the double Wishart eigen-problem, including a summary of the associated
distribution theory when the observations are Gaussian, can be found in Johnstone (2008, 2009). Within this framework, we
first consider the canonical correlation analysis (CCA) problem. Again, first we deal with the formulation at the population
level. Suppose that real-valued random vectors X and Y are jointly observed, where X is of dimension p and Y is of dimension
q. Then a generalization of the notion of correlation between X and Y is expressed in terms of the sequence of canonical
correlation coefficients defined as

ρk ¼ max
ðu;vÞASk

jCorðuTX; vTYÞj; k¼ 1; 2;…;minfp; qg; ð3Þ

where

Sk≔fðu; vÞARpþq : uTΣXXu¼ vTΣYYv¼ 1; uTΣXXuj ¼ vTΣYYvj ¼ 0; j¼ 1;…; k�1g;

with ΣXX ¼ VarðXÞ, ΣYY ¼ VarðYÞ, and ðuk; vkÞ denoting the pair of vectors for which the maximum in (3) is attained. If
ΣXY ¼ CovðX;YÞ, then the optimization problem (3) can be formulated as the following generalized eigenvalue problem: the
successive canonical correlations ρ1Z⋯Zρminfp;qgZ0 satisfy the generalized eigen-equations

detðΣXYΣ�1
YY ΣYX�ρ2ΣXXÞ ¼ 0: ð4Þ

When we have n samples fðXi;YiÞ : i¼ 1;…;ng we can replace ΣXX , ΣXY and ΣYY by their sample counterparts and, assuming
n4maxfp; qg, the corresponding sample canonical correlations r1Z⋯Zrminfp;qgZ0 satisfy the sample version of (4). It is
shown in Mardia et al. (1980) that in the latter case, we can reformulate the corresponding generalized eigen-analysis
problem as solving

detðU�r2ðUþVÞÞ ¼ 0; ð5Þ

where U and V are independent Wishart matrices if ðXi;YiÞ are i.i.d. Gaussian and ΣXY ¼O, i.e., X and Y are independently
distributed.

Next, we consider the problem of testing hypotheses in a multivariate linear regression model given by

Y¼ BXþE; ð6Þ

where Y is a p�n matrix consisting of n measurements on p response variables, X is the q� n nonrandom (known) matrix
of measurements on the q predictor variables, and B is the p� q matrix of regression coefficients, while ε is the matrix of the
residuals which is typically assumed to have i.i.d. columns with mean 0 and variance Σ, say. Then, as described in Mardia
et al. (1980), the union-intersection test for the linear hypothesis of the form H0 : CBD¼O where C is c� p and D is q� d,
and both are specified, can be expressed in terms of the largest eigenvalue of UðUþVÞ�1 where U and V are appropriately
specified independent Wishart matrices (under Gaussianity of the entries of E).

The two sample test for equality of variances assumes that we have i.i.d. samples from two normal populations Npðμ1;Σ1Þ
and Npðμ2;Σ2Þ of sizes n1 and n2, say. Then several tests for the hypothesis H0 : Σ1 ¼ Σ2 can be formulated in terms of

functionals of the eigenvalues of UðUþVÞ�1 where U¼ ðn1�1ÞS1 and V¼ ðn2�1ÞS2 are the sample covariances for the two
samples, which would follow independent Wishart distributions in p dimension with d.f. n1�1 and n2�1 and dispersion
matrix Σ1 ¼Σ2 under H0.

The MANOVA (multivariate analysis of variance) problem supposes that there are g normal populations for p-
dimensional variables with means μ1;…; μg and common covariance Σ, and we have independent samples of sizes ni,
i¼1,…,g. The problem is to test H0 : μ1 ¼⋯¼ μg . A natural test is to reject H0 for large values of the largest eigenvalue of
V�1U where U is the between-sample covariance matrix and V is the within-sample covariance matrix, which are
independent Wishart (up to normalization) under H0.

It should be noted here that until the analysis of large random matrices came into play, the theoretical analysis of each of
the methods mentioned above was restricted to one of the following settings: (i) the observations are independent and have
multivariate normal distributions, in which case closed-form expressions of the distribution of certain statistics could be
derived; or, (ii) the observations are independent, though not necessarily Gaussian, and asymptotic analyses are carried out
in the framework where the dimensionality of the observations remains fixed while the amount of data, or sample size,
increases to infinity. Both these frameworks have their limitations, even though they have played very significant roles in
formulating statistical techniques over a long period of time. The limitations of these procedures become more tangible
when one notices that many of the distributional results, either exact or approximate, do not really apply in the context of
data that are of only moderately large dimension, in comparison with the sample size. And so, in order to accommodate the
analysis of a large variety of data being collected nowadays, arising in fields such as genomics, economics, atmospheric
science, chemometrics and astronomy, to name a few, it is imperative to either modify or reformulate some of the statistical
techniques. This is where RMT has been playing a significant role, especially over the last decade. The relevant asymptotics
take both data dimensionality and sample size to infinity. A third and less explored alternative, particularly relevant from
the point of view of signal processing, keeps both dimensionality and sample size fixed, but takes the noise level to zero. The
next two sections deal with the development of RMT that provide at least partial answers to some of the issues. Then, in
Section 4, we return to the application of those results in the context of high-dimensional statistical inference.
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3. Large random matrices

In this section, we deal with two kinds of random matrices that have been central to most of the developments in
RMT – (i) the sample covariance matrix, often referred to as the Wishart matrix, and (ii) the Wigner matrix. Both being
symmetric or Hermitian matrices, depending on the entries of the matrix being real- or complex-valued, there are
similarities in the type of results derived about their spectra in the RMT literature, although there are interesting differences
in their asymptotic behavior. We first give a basic introduction to these matrix models and then proceed towards dealing
with some of the key questions associated with the eigenvalues and eigenvectors of such matrices.

The classical RMT model for Wishart matrices requires specifying two sequences of integers n, the sample size, and
p¼ pðnÞ, the dimension, so that p-1 as n-1, and

lim
n-1

p
n
-γA 0;1ð Þ: ð7Þ

Suppose that X¼ ðXij : 1r irp;1r jrnÞ is a p�n matrix with real- or complex-valued entries, such that the columns
Xj ¼ ðXijÞpi ¼ 1 of X are independent. Then the p� p matrix S¼ n�1XXT is defined as the (uncentered) sample covariance
matrix. The unnormalized version nS¼XXT is often referred to as the Wishart matrix. The name derives from the fact that if
the columns of X are independently distributed as Npð0;ΣÞ for some positive semidefinite matrix Σ, then the distribution of
nS is theWishart distribution Wpðn;ΣÞwhere n stands for the degrees of freedom, p denotes the dimension, and Σ is the scale
parameter. The distribution was first studied by Wishart (1928) and has remained a central object of study in multivariate
statistical analysis. Detailed study on the properties of this distribution can be found in Anderson (1984) and Muirhead
(1982). In statistics, the sample covariance matrix is more commonly defined as ~S ¼ ðn�1Þ�1ðXXT �nXX

T Þ where
X ¼ ð1=nÞ∑n

j ¼ 1Xj is the sample mean. However, for mostly all of the interesting results in RMT under the framework (7),
the distinction between S and ~S is not material. Hence, except when the latter is explicitly needed, we concern ourselves
with the behavior of the spectrum and eigenvectors of S.

The Wigner matrix has also been an object of elaborate study in the RMT literature starting with its introduction by
Wigner (1955, 1958) to model the spectra of heavy atoms. In quantum mechanics, the energy states of a system is described
by the eigenvalues of a Hamiltonian H (a Hermitian operator). Wigner's hypothesis was that the spacings between the lines
in the spectrum of a heavy atom should resemble the spacings between the eigenvalues of a symmetric or Hermitian
random matrix. In effect his proposal was to replace the Hamiltonian H with a large n� n Hermitian matrix with random
entries. This led to the investigation of the spectrum of large dimensional random Hermitian matrices by physicists such as
Dyson (1962a,b,c). Subsequently randommatrices have found applications in different branches of physics including nuclear
physics, solid state physics (Bahcall, 1996) and quantum chaos (Bohigas et al., 1984). An overview of some of the physical
applications of matrix models can be found in Forrester (2010) and Mehta (2004). AWigner matrix X¼ ðXij : 1r i; jrnÞ is an
n� n matrix with real or complex entries such that (i) Xij ¼ Xji (where the bar denotes the complex conjugate) for the
complex case and Xij ¼ Xji for the real case, for 1r io jrN; and (ii) the entries fXij : 1r io jrNg are independent random
variables with mean 0 and variance 1. Since X is symmetric (in the real case) or Hermitian (in the complex case), the
diagonal entries fXii : 1r irng are necessarily real-valued random variables. It may be noted that, Wigner (1955)
considered a random sign matrix with zero diagonal entries. Quite often the diagonal entries of a Wigner random matrix
have variances different from the variance of the off-diagonal entries.

3.1. Behavior of the bulk spectrum

Suppose that X is an N � N matrix with eigenvalues λ1;…; λNAC. The empirical distribution of the eigenvalues of X,
usually referred to as the empirical spectral distribution (ESD) of X, is the function N�1∑N

i ¼ 1δλi where δy denotes the Dirac
mass at y. If X is Hermitian, so that the eigenvalues of X are real, we can define the empirical distribution function of X as
FXðxÞ ¼N�1∑N

j ¼ 11fλj rxg for xAR. In RMT, the ESD of a random matrix plays a central role in studying the properties of the
spectrum. One motivation is that many statistics associated with a random matrix X can be expressed as a linear functional
of its ESD, or a linear spectral statistic, i.e., a function of the form

R
gðxÞ dFXðxÞ for some suitably regular function g. For

example, the logarithm of the determinant of a sample covariance matrix S (of dimension p� p, say) is an important object
of study in wireless communication (cf. Tulino and Verdú, 2004), and it can be expressed as ∑p

j ¼ 1 log λj ¼ p
R
log x dFSðxÞ,

where the λj's are the eigenvalues of S. Many classical test procedures in multivariate statistics use traces of polynomials of
the sample covariance matrix, which also fall in this category. Thus, detailed knowledge of the asymptotic behavior of the
ESD can help in understanding the behavior of linear spectral statistics.

One of the first questions one can ask about the ESD is whether, after appropriate normalization of the matrix, this
random distribution converges to a probability distribution in an appropriate sense as the dimension of the matrix grows.
The celebrated semicircle law provides a first answer to this in the context of Wigner matrices, i.e., square Hermitian
matrices with independent entries on and above the diagonal with zero mean and unit variance. Wigner (1958) showed that
the expected ESD of an n� n Wigner matrix with Gaussian entries, multiplied by 1=

ffiffiffi
n

p
, converges in distribution to the

semicircle law that has p.d.f.

f xð Þ ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�x2

p
1½�2;2� xð Þ: ð8Þ

D. Paul, A. Aue / Journal of Statistical Planning and Inference 150 (2014) 1–29 5



Author's personal copy

Arnold (1967, 1971) showed that the ESD of the normalized Wigner matrix itself almost surely converges in distribution to
the semicircle law. There have been numerous further developments that determined in particular the necessary and
sufficient conditions for the convergence of the ESD. We have the following version that states the result under the weakest
moment conditions.

Theorem 3.1. Suppose that X is an n�n Wigner matrix whose diagonal entries are i.i.d. real random variables with mean0 and
variance1, and those above the diagonal are i.i.d. complex random variables with mean0 and variance1. Then, as n-1, the ESD of
X=

ffiffiffi
n

p
almost surely converges in distribution to the semicircle law with p.d.f. given by (8).

An analogous result was derived for the sample covariance matrix by Marčenko and Pastur (1967) assuming that the
fourth moments of the entries of the data matrix are finite. The important facet of this result is the dependence of the
limiting distribution on the limiting ratio γ ¼ limn-1p=n. Since then, numerous researchers, notably Wachter (1978), Yin
(1986), and Yin et al. (1983), have contributed to weakening the conditions on the matrix entries as well as extending the
class of matrices for which the ESD has a nonrandom limit. The following version is under the minimal moment conditions.

Theorem 3.2. Suppose that X is a p�n matrix with i.i.d. real- or complex-valued entries with mean0 and variance1. Suppose
also that (7) holds. Then, as n-1, the ESD of S¼ n�1XXn converges almost surely in distribution to a nonrandom distribution,
known as the Marčenko–Pastur law and denoted by Fγ . If γAð0;1�, then Fγ has the p.d.f.

f γ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ ðγÞ�xÞðx�b� ðγÞÞ

p
2πγx

1½b� ðγÞ;bþ ðγÞ� xð Þ; ð9Þ

where b7 ðγÞ ¼ ð17 ffiffiffi
γ

p Þ2. If γAð1;1Þ, then Fγ is a mixture of a point mass0 and the p.d.f. f 1=γ with weights 1�1=γ and 1=γ,
respectively.

An obvious implication of Theorem 3.2 is the spreading of the eigenvalues of the sample covariance matrix around their
population counterpart, and the increase in this spread as the limiting dimension-to-sample-size ratio γ increases from 0 to
1. When p=n-0, both the largest and the smallest eigenvalues of S converge to 1 and thus the Marčenko–Pastur law does
not hold for the ESD of S (Fig. 1). In Bai and Yin (1988), it was proved that after suitable normalization, the ESD of S tends to
the semicircular law in this setting. Bao (2012) and Pan and Gao (2009) extended this result when dealing with sample
covariance matrices that can be expressed as n�1A1=2XXnA1=2, where A denotes a sequence of p� p nonnegative definite
matrices whose eigenvalues have certain regularity as p increases, and the n�p data matrix X has i.i.d. standardized entries,
while p;n-1 such that p=n-0. Incidentally, these results also provide a connection between the Wishart and Wigner
matrices from the point of view of statistical analysis, and underline the importance of studying Wigner matrices in
statistics when dealing with moderately large dimensional data.

Theorems 3.1 and 3.2 have been cornerstones of an increasingly growing body of literature in RMT. One aspect of these
investigations has been to relax the assumptions on the entries of the matrices, for example removing the condition of
independence of the entries in a Wigner matrix, while allowing for more complex structures in the matrices, for example
dealing with the ESD of the sample covariance matrix corresponding to the data matrix Y¼A1=2XB1=2 where A and B are
nonnegative definite matrices and X has i.i.d. entries. The other aspect of these studies has been the exploration of finer
issues associated with the ESD, including rates of convergence, fluctuations of linear spectral statistics, spectrum separation,
etc. Both these aspects have had significant impacts on the recent developments of inferential techniques for high-
dimensional statistics. Before turning to these topics, we briefly summarize the two main techniques that have been widely

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Density functions of Marcenko−Pastur law

x

de
ns

ity

p/n = 1
p/n = 0.5
p/n = 0.25
p/n = 0.1

Fig. 1. Marčenko–Pastur density functions for γ ¼ p=n¼ 0:1;0:25;0:5;1.
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used in RMT for proving limit theorems about the ESD of a random matrix – the method of moments and the method based
on Stieltjes transforms.

3.1.1. Method of moments
The method of moments has been used extensively for determining the behavior of the ESD as well as extreme

eigenvalues of a random matrix. For detailed accounts on the application of this approach to RMT, which depends heavily on
the combinatorics of graph partitioning, one may refer to Anderson et al. (2009), Bai (1999), Bai and Silverstein (2009),
Guionnet (2009) and Sodin (2007). The following result (quoted from Bai and Silverstein, 2009), known as Carleman
condition, is a key ingredient in proving the limiting behavior of the ESD of a Wigner matrix or a sample covariance matrix
(Theorems 3.1 and 3.2).

Lemma 3.1. Let βk ¼ βkðFÞ≔
R
xk dFðxÞ for k¼ 1;2;…, where F is a probability distribution on R. If the Carleman condition

∑
1

k ¼ 1
β�1=2k
2k ¼1 ð10Þ

is satisfied, then F is uniquely determined by the moment sequence fβk : k¼ 1;2;…g.
This result is used in conjunction with the following lemma.

Lemma 3.2. A sequence fFng of probability distributions on R converges in distribution to a probability distribution F if the
following conditions are satisfied:

1. Each Fn has moments of all order.
2. For each fixed integer k, βn;k ¼

R
xk dFnðxÞ converges to βk ¼

R
xk dFðxÞ as n-1.

3. The coefficients fβkg of the limiting distribution F satisfies (10).

For a symmetric or Hermitian random matrix X, the k-th moment of the ESD of X equals trðXkÞ. Thus, in view of Lemma
3.2, in order to prove that the ESD of X almost surely converges in distribution to some nonrandom distribution F, one needs
to check that its moment sequence fβk ¼ βkðFÞg satisfies (10), and that for every kZ1, trðXkÞ-βk almost surely. In both
Theorems 3.1 and 3.2, the entries of the relevant matrices are only assumed to have finite second moments. Thus, the results
are first proved for settings where the entries of the random matrix have all the moments. Then the entries of the original
data matrix are appropriately truncated and centered and it is shown that the difference between the ESD of the original
matrix and that of its truncated version vanishes as the dimensionality becomes large.

3.1.2. Stieltjes transform
The Stieltjes transform plays nearly as useful a role in RMT as the Fourier transform in classical probability theory. The

Stieltjes transform of a measure μ on the real line is defined as the function

Sμ zð Þ ¼
Z

1
x�z

μ dxð Þ; zACþ ; ð11Þ

where Cþ≔fxþ iy : xAR; y40g. Note that Sμ is analytic on Cþ and maps into Cþ . The following inversion formula allows
one to reconstruct the distribution function from its Stieltjes transform.

Lemma 3.3. Let P be a probability measure on the real line. If aob are points of continuity of the associated distribution
function, then

P a; bð Þð Þ ¼ 1
π
lim

v-0þ

Z b

a
I SP uþ ivð Þð Þ du: ð12Þ

The following lemma (cf. Geronimo and Hill, 2003) gives a necessary and sufficient condition for the limit of Stieltjes
transforms of a sequence of probability measures to be the Stieltjes transform of a probability measure.

Lemma 3.4. Suppose that fPng is a sequence of Borel probability measures on the real line with Stieltjes transforms fsng. If
limn-1snðzÞ ¼ sðzÞ for all zACþ , then there exists a Borel probability measure P with Stieltjes transform SP ¼ s if and only if

lim
v-1

ivsðivÞ ¼ �1; ð13Þ

in which case Pn converges to P in distribution.

To see why the Stieltjes transform plays such an important role in the study of the asymptotic behavior of ESDs, suppose
that for each NZ1, WN is an N � N Hermitian random matrix, so that its eigenvalues are all real, with ESD FWN . Then, the
Stieltjes transform of FWN , say sN, is given by sNðzÞ ¼N�1 trððWN�zINÞ�1Þ. Notice that ðWN�zINÞ�1 is the resolvent of the
matrix WN and its points of singularity are at the eigenvalues of WN . In view of Lemma 3.4, in order to prove that the
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sequence of ESDs FWN converges to a distribution F, say (in probability or almost surely), one needs to check that fsNg
satisfies the conditions of the lemma (in probability or almost surely).

In many classical problems in RMT, especially those where the random matrix of interest is a Wigner or Wishart-type
matrix, it is relatively easy to derive an approximate iterative equation for the Stieltjes transform of its ESD by using
appropriate inversion formulas for block matrices. As an illustration, suppose thatWn ¼Xn=

ffiffiffi
n

p
where Xn is the n�nWigner

matrix described in Theorem 3.1. Also, for simplicity, assume that the entries Xij are uniformly bounded. For each k¼1,…,n,
let αn;k be the ðn�1Þ � 1 vector that is the k-th column of Wn with the k-th element removed, and let Wn;k be the ðn�1Þ �
ðn�1Þ matrix derived by removing the k-th row and k-th column from Wn. If sn denotes the Stieltjes transform of Wn, then,
by using a standard matrix inversion formula:

sn zð Þ ¼ 1
n
tr ðWn�zInÞ�1
� �

¼ 1
n

∑
n

k ¼ 1

Xkkffiffiffi
n

p �z�αn

n;kðWn;k�zIn�1Þ�1αn;k

� ��1

:

By the description of Wn, for each k, αn;k and Wn;k are independent and αn;k has i.i.d. entries with zero mean and variance

1=n. Hence, the quadratic form αn

n;kðWn;k�zIn�1Þ�1αn;k concentrates around n�1 trððWn;k�zIn�1Þ�1Þ. Notice also that the

Wn;k's are identically distributed as 1=
ffiffiffi
n

p
times an ðn�1Þ � ðn�1Þ Wigner matrix so that for each k, n�1 trððWn;k�zIn�1Þ�1Þ

can be approximated by sn�1ðzÞ and subsequently by sn(z). Finally, noting that the contribution from the terms Xkk=
ffiffiffi
n

p
can

be neglected, we have the following approximate identity:

snðzÞ �
1

�z�snðzÞ

for large enough n. From these heuristics, it is expected that for each zACþ , sn(z) converges almost surely to s(z) which
satisfies the identity sðzÞðzþsðzÞÞ ¼ �1, the latter being satisfied by the Stieltjes transform of the semicircle law with p.d.f.
(8).

A different decomposition is used to deal with the ESD of a Wishart matrix Sn ¼ n�1XnXn

n, where Xn is p�n and has i.i.d.
standardized entries, when p=n-γAð0;1Þ. An important ingredient here is the following representation of the resolvent
RnðzÞ≔ðSn�zIpÞ�1:

zRn zð ÞþIp ¼ Rn zð ÞSn ¼
1
n

∑
n

j ¼ 1
Rn zð ÞXjX

n

j : ð14Þ

Define Rð� jÞðzÞ ¼ ðSn�ð1=nÞXjX
n

j �zIpÞ�1, and use the rank one perturbation formula for inverses to write

Rn zð Þ ¼ Rð� jÞ zð Þ�
1
n
Rð� jÞ zð ÞXjX

n

j Rð� jÞ zð Þ

1þ1
n
Xn

j Rð� jÞ zð ÞXj

; j¼ 1;…;n:

Substituting this in (14), after straightforward algebra, one has

z
p
tr Rn zð Þð Þþ1¼ n

p
�1
p

∑
n

j ¼ 1

1

1þ1
n
Xn

j Rð� jÞðzÞXj

:

Now, snðzÞ ¼ p�1 trðRnðzÞÞ is the Stieltjes transform of the ESD of Sn. In addition, for each j, by the structure of Xj and the fact
that it is independent of Sn�n�1XjX

n

j , we have the approximation Xn

j Rð� jÞðzÞXj � trðRð� jÞðzÞÞ which holds in a probabilistic
sense. Indeed, the concentration of random quadratic forms of this kind appears repeatedly in the analysis of random
Hermitian matrices. Further, by approximating trðRð� jÞðzÞÞ by trðRnðzÞÞ, which can be justified whenever zACþ , and
replacing p=n by its limiting value γ, we have the approximate equation: γzsnðzÞþγ � 1�ð1þγsnðzÞÞ�1, which, after a
simplification, can be expressed as

sn zð Þ � 1
1�γ�γzsnðzÞ�z

; zACþ :

A limiting version of this equation is satisfied by the Stieltjes transform of the Marčenko–Pastur law (see Eq. (20) and
Theorem 3.4).

For a rigorous proof of these results, using a formal application of the principles indicated here, one may refer to Chapters
2 and 3 of Bai and Silverstein (2009). The key steps are the following:

(i) A truncation and centralization of the entries of the random matrix so that the resulting entries have zero mean and are
uniformly bounded while the ESDs of the original and truncated matrices are asymptotically equivalent.

(ii) Establishing that snðzÞ�E½snðzÞ�-0 a.s. for each zACþ by using martingale decomposition techniques.
(iii) Establishing that E½snðzÞ�-sðzÞ for each zACþ for some limiting function s(z).
(iv) Proving that the limiting function s(z) is the unique solution of a functional equation satisfied by the Stieltjes transform

of the limiting ESD.
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3.1.3. Convergence rate of the ESD
Since the derivation of limiting ESDs in the context of Wigner and Wishart matrices, there have been numerous

investigations to obtain the rates of convergence of the ESDs to their limits. Pioneering works by Bai (1993a,b) established
Berry–Esseen type inequalities for the difference of the two distributions in terms of their Stieltjes transforms for Wigner
and Wishart matrices when the data matrices have independent entries. Applying this inequality, a convergence rate for the
expected ESD of a large Wigner matrix was proved to be Oðn�1=4Þ and that for the sample covariance matrix was shown to
be Oðn�1=4Þ if the ratio of the dimension to the degrees of freedom is far from 1, and Oðn�5=48Þ if the ratio is close to 1. Some
further developments can be found in Bai et al. (1997, 1999, 2002). In Bai et al. (2003), the rate of convergence for the ESD of
a sample covariance matrix when γ ¼ 1 was improved to Oðn�1=8Þ. In Götze and Tikhomirov (2003, 2004), for both Wigner
and Wishart matrices, assuming sufficient number of moments for the entries, it was shown that as long as γ is away from 1,
the rate of convergence of expected ESD and the ESD to the limiting ESD is Oðn�1=2Þ. The works of Tao and Vu (2011, 2012a)
show that the rate of convergence is at most Oðn�1 log nÞ. In Tao and Vu (2012b), they derived a sharp concentration
inequality for the number of sample eigenvalues of a normalized Wigner matrix in any interval, which shows that the
eigenvalues in the bulk spectrum are localized to an interval of width Oðn�1ðlog nÞOð1ÞÞ. These results are then used to
provide sharp concentration bounds for individual sample eigenvalues around the corresponding quantiles of the semicircle
law. These also extend certain results in Erdős et al. (2009, 2012) on the local behavior of the sample eigenvalues of a Wigner
matrix. Among related works, Gustavsson (2005) established asymptotic normality of the k-th eigenvalue of a Gaussian
complex Wigner (GUE) matrix as well as the joint distribution of several such eigenvalues, when both k and n�k tend to
infinity as n-1. O'Rourke (2010) extended this result to the setting of Gaussian real Wigner matrices (GOE). Tao and Vu
(2010b, 2011) extended the result of Gustavsson (2005) for the GUE to a class of Hermitian Wigner matrices with non-
Gaussian entries whose first four moments match the Gaussian moments, which is an instance of the universality
phenomena discussed in detail in Section 3.3. In addition, Pillai and Jin (2011) showed that, if the entries of the data matrix
have sub-exponential decay, then the Stieltjes transform of the normalized standard Wishart matrix converges to the
Marčenko–Pastur law at rate Oðn�1Þ, with rate constant depending on the imaginary part of the complex number at the
Stieltjes transform being evaluated.

3.1.4. Extension to non-i.i.d. settings
There have been several extensions of Theorems 3.1 and 3.2 that established asymptotic limits of ESDs corresponding to

data matrices that do not necessarily have i.i.d. entries. If in Theorems 3.1 and 3.2, the assumptions are weakened to require
that Xjk's are only independent, then one assumes the additional Lindeberg-type condition

1
η2n2∑

j;k
E Xjkj21fjXjkj4η

ffiffi
n

p g
��� i

-0 as n-1 for any η40:
h

ð15Þ

Since in statistics, random vectors commonly have arbitrary positive definite matrices as their population covariances, a

lot of effort has gone into deriving asymptotic results for ESDs of matrices of the form W¼ n�1A1=2XXnA1=2 where X has
independent entries with zero mean and unit variance, and A is a random matrix which is positive definite and is

independent of X, and A1=2 is the Hermitian square-root of A. Clearly, if Y¼A1=2X, then conditionally on A, the columns of Y
are independent with zero mean and common covariance A, a setting commonly studied in multivariate analysis. As
discussed in Section 2, a context in which the study of eigenvalues of such matrices becomes important is in MANOVA
where we encounter the generalized eigenvalue problem

detðX1X
n

1�λX2X
n

2Þ ¼ 0; ð16Þ
where Xj are p� nj random matrices with entries having zero mean and finite variance, and X1 and X2 are independent. In

this case, the roots λ of (16) are the eigenvalues of the matrix n�1
1 X1X

n

1A, or equivalently of n�1
1 A1=2X1X

n

1A
1=2 where

A¼ ðn1=n2Þðn�1
2 X2X

n

2Þ�1. A matrix of the latter type is referred to as a multivariate F-matrix since it is a generalization of the

F-statistic used in univariate hypothesis tests. We remark that the eigenvalues of X1X
n

1ðX2X
n

2Þ�1 are in one to one

correspondence with the eigenvalues of X1X
n

1ðX1X
n

1þX2X
n

2Þ�1, the so-called double Wishart matrix. Since the pioneering
work of Wachter (1980), who considered the limiting behavior of the solution of (16) when the entries of X1 and X2 are i.i.d.
Nð0;1Þ, many researchers, including Silverstein (1985), Yin (1986), Yin et al. (1983, 1988), and Yin and Krishnaiah (1983),
have investigated the limiting spectral distribution of the multivariate F-matrices, or more generally of products of two
independent random matrices. Yin and Krishnaiah (1983) established the existence of the limiting ESD of the matrix
sequence SnAp, where Sn is a standard Wishart matrix of dimension p and degrees of freedom n with p=n-γAð0;1Þ, Ap is a

sequence of p�p positive definite matrix satisfying p�1 trðAk
pÞ-hk as p-1, and the sequence fhkg satisfies the Carleman

condition. Yin (1986) extended the result to the setting where Sn is the sample covariance matrix corresponding to a p� n
data matrix with i.i.d. real random variables with zero mean and unit variance. Yin et al. (1983) proved the existence of the
limiting ESD for a sequence of multivariate F-matrices and Silverstein (1985) derived the functional form of the limiting ESD.
Note, however, that the correspondence between the sample canonical correlation coefficients based on two independent
sets of variables and the generalized eigenvalue problem (16) is exactly valid only if the variables are jointly Gaussian. Yang
and Pan (2012) proved the existence of the limiting ESD of canonical correlation coefficients under much weaker
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distributional assumptions. Recently, Bai et al. (2012) proved the existence of the limiting ESD for the eigenvalues of beta matrices,
i.e., matrices of the form UðUþαVÞ�1 where U and V are independent Wishart-type matrices and α is a positive constant.

A result on the existence of the limiting ESD for products of random matrices is given below.

Theorem 3.3. Suppose that the entries of the p�n matrix Xn are independent complex random variables satisfying (15), that Ap

is a sequence of Hermitian matrices independent of Xn, and that the ESD of Ap tends to a nonrandom limit FA in probability (or
almost surely). If p=n-γAð0;1Þ, then the ESD of the product ðn�1XnXn

nÞAp tends to a nonrandom limit in probability (or almost
surely, accordingly).

A generalization of this result, which is particularly useful in statistics, was proved by Silverstein and Bai (1995).

Theorem 3.4. Suppose that the entries of the p� n matrix Xn are complex random variables that are independent for each n and
identically distributed for all n and satisfy E½jX11�EðX11Þj�2 ¼ 1. Also, assume that Ap ¼ diagðτ1;…; τpÞ, where τjAR and the
empirical distribution function of fτ1;…; τpg converges almost surely to a probability distribution function H as n-1. Let
~Wn ¼ Bnþn�1Xn

nApXn where Bn is an n� n Hermitian matrix satisfying that FBn converges to FB almost surely, where FB is a
distribution function on R. Assume further that Xn, Ap and Bn are independent. Then as n; p-1 such that p=n-γAð0;1Þ, the
ESD F

~Wn of ~Wn converges to a nonrandom distribution ~F , where, for any zACþ , its Stieltjes transform s ¼ sðzÞ is the unique
solution in Cþ of the equation

s ¼ sB z�γ

Z
τdHðτÞ
1þsτ

� �
; ð17Þ

where sB(z) is the Stieltjes transform of FB.

When Bn is the zero matrix, (17) reduces to

z¼ �1
s
þγ

Z
τ dHðτÞ
1þsτ

ð18Þ

which gives an explicit inverse function for sðzÞ. Assume further that An is positive definite. Defining
sðzÞ ¼ ð1=γÞðsðzÞþð1�γÞ=zÞ and noticing that the nonzero eigenvalues of

Wn≔
1
n
A1=2
p XnXn

nA
1=2
p ð19Þ

coincide with those of n�1Xn

nApXn, it can be easily deduced that, under the assumptions of Theorem 3.4, the ESD FWn of Wn

converges to a nonrandom distribution F almost surely, where the Stieltjes transform s¼ sðzÞ of F is the unique solution in
the set fsAC : �ð1�γÞ=zþγsACþ g of

s¼
Z

dHðτÞ
τð1�γ�γzsÞ�z

: ð20Þ

Eqs. (18) and (20) are sometimes referred to as the Marčenko–Pastur equations. These are the building blocks for
downstream analyses about the behavior of the limiting ESDs of covariance matrices considered here, a topic first studied
by Silverstein and Combettes (1992). They characterized the analytic properties of the limiting distribution F, in particular,
proving the existence of a continuous density on Rþ for F when γAð0;1Þ, and determining the support of F in terms of the
zeros of the derivative, with respect to s (restricted to R), of z satisfying (18). These equations have also been very useful in
estimating the spectrum of Ap when one observes data of the form Yn ¼ A1=2

p Xn, which is a topic studied in Section 4.
Significant relaxations on the conditions of Theorem 3.4 have been made by Bai and Zhou (2008) who dealt with

matrices of the form n�1YnYn

n where the columns of the p�n matrix Yn are independent but there may be arbitrary
dependence within each column. They proved the existence of the limiting ESD requiring only that E½Y jkYlk� ¼ alj for
1r l; jrp and the quadratic forms Yn

kCYk have suitable concentration around trðCApÞ for every p� p matrix C with bounded
norm, where Yk denotes the k-th column of Yn and Ap ¼ ððajlÞÞ. They used this result to prove that the ESD of a sample
correlation matrix converges almost surely to the Marčenko–Pastur law, thus extending the scope of a result by Jiang (2004).
Further applications include proving the existence of the limiting ESD of a sample covariance matrix when the columns of
Yn are i.i.d. stationary time series, e.g., a causal VARMA process (Jin et al., 2009), and more generally, a linear process (Pfaffel
and Schlemm, 2012; Yao, 2012).

A powerful method for extending the class of random matrices for which nonrandom limiting ESD exists has been
developed by Chatterjee (2006) using the so-called “Lindeberg principle”, which allows one to compare the expectations
E½f ðX1;…;XnÞ� and E½f ðY1;…;YnÞ�, for a smooth function f and sequences of random variables fXjg and fYjg, by replacing an X
variable by a Y variable in a telescoping sum. In applications, it is assumed that one of the sequences, say fYjg, has
independent entries, and the behavior of E½f ðY1;…;YnÞ� is well-understood, while the first and second moments of
Xj, conditional on X1;…;Xj�1, are close to the first and second moments of Yj, for all j. Chatterjee (2006) used this approach
to generalize the Wigner's semicircle law by showing that, after appropriate normalization, the ESD of the n�n matrix
Xn=

ffiffiffi
n

p
converges to the semicircle law, where Xn is symmetric and the entries on and above the diagonal are exchangeable

random variables with finite fourth moment.
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Apart from relaxing the assumption on the entries of the matrices, there have been several attempts to extend the
structure of the matrices for which limiting ESDs exist. Bryc et al. (2006) used combinatorial methods to prove the existence
of limiting ESDs for random matrices of Hankel, Toeplitz and Markov types. Further theoretical developments for such
matrices were made by Bose and Sen (2008). Recently, El Karoui (2009a), Paul and Silverstein (2009) and Zhang (2006),
under slightly different assumptions, have proved the existence of the limiting ESD for matrices of the form

Wn ¼ 1
n
A1=2
p XnBnXn

nA
1=2
p ; ð21Þ

where Xn is p�n with complex entries with zero mean and unit variance, Ap and Bn are positive definite matrices of

dimension p�p and n�n, respectively, and the ESDs FAp and FBn converge to distributions FA and FB, respectively, while (7)
holds. Wn given by (21) may be seen as the sample covariance matrix corresponding to a data matrix having a separable
covariance structure commonly assumed in spatio-temporal statistics. El Karoui (2009a), Paul and Silverstein (2009) and
Zhang (2006) showed that the Stieltjes transform of the limiting ESD is obtained as the unique solution of a coupled
functional equation. In related developments, Hachem et al. (2006) studied the limiting ESD of the sample covariance matrix
corresponding to a p�n data matrix Yn whose entries are given by Yjk ¼ sðj=p; k=nÞXjk where Xjk are i.i.d. with mean zero
and unit variance and s : ½0;1� � ½0;1�-ð0;1Þ is a continuous function. Similar ideas have been used by Hachem et al.
(2005) to derive the limiting ESD of n�1YnYn

n when the entries of Yn have the moving average representation
Yjk ¼∑ðl;l′ÞAZ2hl;l′Zl� j;l′�k, where Zl;l′ are i.i.d. complex Gaussian with zero mean and unit variance, and the deterministic

complex sequence fhl;l′g satisfies ∑ðl;l′ÞAZ2 jhl;l′jo1.
Another class of matrices that has become popular in RMT, partly due to its applicability in wireless communications, is

the sample covariance matrix corresponding to an “information-plus-noise” matrix, i.e.,

Wn ¼
1
n
RnþsXnð ÞðRnþsXnÞn; ð22Þ

where the “information matrix” Rn is a p�n matrix which is independent of the “noise matrix” Xn which has independent
real or complex entries with zero mean and unit variance, and s40 is a scale parameter. Dozier and Silverstein (2007b,a)
proved the existence of the limiting ESD of Wn given by (22), and analyzed the behavior of the limit if (7) holds and the ESD
of n�1RnRn

n converges to a nonrandom limit distribution on Rþ . Hachem et al. (2007) considered a further generalization
and derived deterministic equivalents of the Stieltjes transform of the ESD ofWn given byWn ¼ ðRnþYnÞðRnþYnÞn where Yn

is a p�nmatrix with Yjk ¼ sjkðnÞXjk=
ffiffiffi
n

p
, 1r jrp, 1rkrn, where Xjk are i.i.d. with zero mean and unit variance, and fsjkðnÞg

is an array of uniformly bounded nonnegative numbers satisfying certain regularity conditions, and Rn is a p�n
deterministic matrix.

3.1.5. Linear spectral statistics
Let Fn be the ESD of an Nn � Nn Hermitian random matrix with eigenvalues λ1;…; λNn . Specifically, for Wishart-type matrices

Nn ¼ p and for Wigner-type matrices Nn ¼ n. We define a linear spectral statistics (LSS) corresponding to the function g defined
on the real line to be the quantityZ

g xð ÞdFn xð Þ ¼ 1
Nn

∑
Nn

j ¼ 1
g λj
� 	

: ð23Þ

If, as n-1, Nn-1 and Fn converges to a limiting distribution F (in probability or almost surely) and g is a continuous function,
then

R
gðxÞ dFnðxÞ-

R
gðxÞ dFðxÞ (in probability or almost surely, respectively). Under such a scenario, it is of interest to study the

fluctuations of
R
gðxÞ dFnðxÞ around

R
gðxÞ dFðxÞ. One may expect that the process GnðxÞ ¼ αnðFnðxÞ�FðxÞÞ, when viewed as a

random element in D½0;1Þ (the metric space of functions with discontinuities of the first kind along with the Skorohod metric)
to converge to some limiting process for an appropriate normalizing sequence αn-1. Unfortunately, that this is not possible in
general follows from the results by Bai and Silverstein (2004) for Wishart matrices and those by Diaconis and Evans (2001) for
Haar matrices. However, it may still be possible to find an appropriate sequence αn such that the random variables

GnðgÞ≔αn

Z
gðxÞðdFnðxÞ�dFðxÞÞ ð24Þ

may converge to some limit law for a suitably regular class of functions g. One of the first works in this direction was done by
Jonsson (1982), who took gðxÞ ¼ xr , rZ1 an integer, and Fn as the ESD of a normalized standardWishart matrix with dimension p
and degrees of freedom n, assuming that (7) holds. Similar results for the Wigner matrix were obtained by Sinai and Soshnikov
(1998) who also allowed the power of the monomial to grow slowly with n. Further research proving similar results under a
variety of settings has been carried out by Anderson and Zeitouni (2006), Bai and Silverstein (2004), Bai and Yao (2005),
Chatterjee (2006), Johansson (1998), Lytova and Pastur (2009) and Shcherbina (2011), among others. Among results
involving non-smooth functionals, for Gaussian complex Wishart matrices, Costin and Lebowitz (1995) and Soshnikov
(2002b) proved a CLT for the number of eigenvalues falling within an interval (cf. Theorem 4 in O'Rourke, 2010).

A central limit theorem (CLT) for the Stieltjes transforms for the classical Wigner and sample covariance matrices was
proved by Girko as early as 1975 (see Girko, 2001 for references) and further refinements on these results were made by
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Khorunzhy et al. (1996). Bai and Silverstein (2004) proved a CLT for the random vector ðGnðg1Þ;…;GnðgK ÞÞ with αn ¼ n under
(7), when the following assumptions hold:

(i) Fn ¼ FWn is the ESD of Wn ¼ n�1A1=2
p XnXn

nA
1=2
p , where Ap is a p�p random positive definite matrix whose ESD converges

to a nonrandom distribution FA , and is independent of the p�n matrix Xn with i.i.d. real- or complex-valued entries Xjk

satisfying E½X11� ¼ 0, E½jX11j2� ¼ 1, E½jX11j4�o1; and E½X4
11� ¼ 3 if X11 and Ap are real, while E½X2

11� ¼ 0 and E½jX4
11j� ¼ 2 if

X11 is complex;
(ii) g1;…; gK are analytic functions on an open interval containing ½lim inf λAmin1ð0;1ÞðγÞð1� ffiffiffi

γ
p Þ2; lim sup λAmaxð1þ

ffiffiffi
γ

p Þ2�, where
λAmin and λAmax denote the smallest and the largest eigenvalues of Ap, respectively.

Certain restrictions are also imposed on the rate of convergence of the ESD of Ap. A central idea in the proof is the following
representation which uses the Cauchy integral formula:

Gn gð Þ ¼ � 1
2πi

∮Cg zð Þ n sn zð Þ�s zð Þð Þð Þ dz;

where C is a positively oriented contour enclosing the support of F and Fn, and s and sn are the Stieltjes transforms of F and
Fn, respectively. So, the problem of finding the limit distribution of Gn(g) reduces to finding the limiting process of
MnðzÞ ¼ nðsnðzÞ�sðzÞÞ. Bai and Silverstein (2004) constructed a truncated version of Mn(z) on a suitably chosen contour and
applied martingale decomposition techniques on the latter process to derive the final result.

For Gaussian Wigner matrices, Johansson (1998) characterized a large class of functions g for which the CLT holds by making
use of the explicit form of the joint density of the eigenvalues. Bai and Yao (2005) proved an analogous CLT for linear spectral
statistics when Fn is the ESD of the matrix Xn=

ffiffiffi
n

p
where Xn is a Wigner matrix whose entries on and above the diagonal are

independent with zero mean and finite fourth moments, the entries above the diagonal have unit variance while the entries on
the diagonal have equal variance. Bai et al. (2009) and Bai et al. (2010) used Bernstein polynomial approximation for g, which is
now required to be only four times continuously differentiable, to extend the results in Bai and Silverstein (2004) on the CLT of
(24) for Wigner and Wishart matrices, respectively. Lytova and Pastur (2009) and Shcherbina (2011) extended the scope of the
results of Bai and Silverstein (2004) and Bai and Yao (2005) by relaxing the conditions on the moments of the entries of the data
matrices, while requiring that the tails of the Fourier transform of g decay at certain rates, which translate into the requirement
that g has bounded derivatives of a certain finite order. In contrast to the Stieltjes transform-based approaches, Lytova and Pastur
(2009) used the Fourier transform of the LSS as the basic building block. Their method depends on first proving the results for
matrices with Gaussian entries and then utilizing an interpolation between the random matrix ensemble of interest and a
conveniently chosen Gaussian matrix, and then making use of an extension of the well-known Stein's Lemma (see Proposition 3.1
of Lytova and Pastur, 2009). Chatterjee (2006) used an approach based on Stein's method for normal approximation (see Diaconis
and Holmes, 2004 for an exposition) for proving CLTs of LSS that additionally gives a bound on the total variation distance
between the distribution of the normalized LSS and the limiting Gaussian distribution. Further developments in terms of
deriving limit laws for normalized individual entries of the matrix gðWnÞ,1 whereWn is a normalized Wigner or Wishart matrix,
have been made in O'Rourke et al. (2011a,b), Pastur and Lytova (2011) and Pizzo et al. (2012). A CLT for the log-determinant of a
Wigner matrix with first four moments matching with either the GUE or GOE ensemble and with explicit mean and variance
terms has been established by Tao and Vu (2012c). A rate of convergence for the CLT of the log-determinant of random matrices
with independent random variables has been established by Nguyen and Vu (2012). CLTs for certain special classes of linear
spectral statistics, for example the log-determinant of the sample covariance matrix, have been proved in many different
contexts, including for information-plus-noise type data matrices (Hachem et al., 2012), and for data matrices having
independent entries with a given variance profile (Hachem et al., 2008). The latter results are applicable to problems involving
models arising inwireless communication. Zheng (2012) proved a CLT for the LSS of F-matrices (or double Wishart matrices) and
Bai et al. (2012) dealt with related “Beta” matrices, which are applicable to problems involving testing equality of the covariance
matrices of two populations.

In addition to limit theory, there have been several recent works yielding finite sample probability inequalities on the
fluctuations of LSS around their means under minimal smoothness assumptions on g, and under appropriate tail behavior
on the entries of the data matrix. One of the simplest versions is the following result (Theorem 6.1 of Guionnet, 2009) about
LSS for Wigner matrices.

Theorem 3.5. Suppose that Wn ¼Xn=
ffiffiffi
n

p
where Xn is a Wigner matrix and the entries fXjk : 1r jrkrng are independent and

their probability distributions satisfy a logarithmic Sobolev inequality with constant co1.2 Then, for any Lipschitz function g on

1 If X an N�N Hermitian matrix with spectral decomposition X¼ E diagðλ1 ;…; λNÞEn where E is unitary, then gðXÞ≔E diagðgðλ1Þ;…; gðλNÞÞEn .
2 A probability measure P on RN is said to satisfy the logarithmic Sobolev inequality with constant c if, for any differentiable function f : RN-RZ

f 2 log
f 2R
f 2 dP

r2c
Z

J∇f J22 dP

where J∇f J22 ¼∑N
j ¼ 1ð∂xj f Þ2. A distribution satisfying a logarithmic Sobolev inequality has sub-Gaussian tails (see Ledoux, 2001 for further characterizations).

D. Paul, A. Aue / Journal of Statistical Planning and Inference 150 (2014) 1–2912



Author's personal copy

R with Lipschitz norm jgjL, and for any δ40

P

Z
gðxÞ dFWn ðxÞ�E

Z
gðxÞ dFWn ðxÞ

� ����� ����4δ

� �
r2 exp � n2δ2

4cjgj2L

 !
: ð25Þ

A survey of such concentration inequalities for a wide class of random matrices can be found in Anderson et al. (2009),
Guionnet (2009) and Guionnet and Zeitouni (2000).

3.1.6. Spectrum separation
A natural question is how does the finite sample behavior of the ESD compare with the limiting distributions? This question is

relevant, since the limiting ESD results do not clarify whether a vanishingly small fraction of the extreme eigenvalues
behaves somewhat differently from the bulk spectrum. A significant step towards answering this was taken by Bai and
Silverstein (1998) who worked in the setting of Theorem 3.4 with Bn being the zero matrix, and showed that if JAn J is
bounded, then almost surely, for a large enough n, none of the eigenvalues of the sample covariance matrixWn given by (19)
lies in a closed interval outside the support of the limiting ESD. A further refinement of this result was made by Bai and
Silverstein (1999). To describe their main result, first note that if the limiting spectrum of the population covariance (i.e., An)
consists of a finite number of disjoint components, then as is to be expected, the support of the limiting ESD ofWn also splits
into the same number of disjoint components provided γ ¼ limn;p-1p=n is sufficiently small. Bai and Silverstein (1999)
showed that, under this setting, for large n, almost surely exactly the same fractions of eigenvalues lie in disjoint intervals
containing the different components of the support of the limiting ESD. These results were proved by showing the
convergence of Stieltjes transforms at an appropriate rate, uniform with respect to the real part of z over certain intervals,
while the imaginary part of z converges to zero. They have important implications in array signal processing, where a simple
model is that an unknown number q of sources emit signals onto an array of p sensors in a noise-filled environment ðqopÞ
and one goal is to estimate q from independent samples. The result by Bai and Silverstein (1999) allows one to determine
the fraction of sources to sensors, i.e., q=p, provided the sample size is large enough so that the support of the limiting ESD of
the sample covariance matrix of the data splits into two components corresponding to the signal and noise. Such results
have also been used to estimate the spectrum of the underlying population covariance matrix from the spectrum of the
sample covariance matrix (see, e.g. Mestre, 2008). These results have been extended to other classes of matrices. For
example, Bai and Silverstein (2012) and Paul and Silverstein (2009) generalized the result of Bai and Silverstein (1998) to
sample covariance matrices of the kind (21) and (22), respectively.

3.2. Behavior at the edge of the spectrum

Extreme eigenvalues of a sample covariance matrix play an important role in statistical analysis. Several questions arise
naturally from the description given in Section 3.1 about the limiting ESD of a random matrix. What happens to the extreme
eigenvalues of a random matrix? Do they converge to the extreme points of the support of the limiting ESD? This question is non-
trivial as one may see from Theorem 3.2, the convergence of the ESD of Sn to the Marčenko–Pastur law Fγ does not rule out
the possibility that o(n) number of sample eigenvalues remain outside the support of Fγ evenwhen n-1. That this does not
happen was first shown by Geman (1980) who proved that the largest eigenvalue of Sn converges almost surely to ð1þ ffiffiffi

γ
p Þ2

under a growth condition on all the moments of the underlying distribution. Later, Yin et al. (1988) proved the same result
only assuming finiteness of the fourth moment, a condition that was shown to be necessary by Bai et al. (1988). Under the
same assumption, Bai and Yin (1993) proved that the smallest eigenvalue of the sample covariance matrix converges to
ð1� ffiffiffi

γ
p Þ2 when pon. Bai and Yin (1988) found the necessary and sufficient conditions for almost sure convergence of the

largest eigenvalue of a Wigner matrix to 2, which, by symmetry of Wigner matrices, is also valid for the almost sure
convergence of the smallest eigenvalue to �2. A generalization of these results was obtained by Bai and Silverstein (1999)
for matrices of the form n�1A1=2

p XnXn

nA
1=2
p where Ap is a p� p positive definite matrix with ESD converging to a limiting

distribution on Rþ as (7) holds, and the p�n matrix Xn has i.i.d. entries with zero mean and unit variance.
These results brought to focus the question of fluctuations of the extreme eigenvalues of random matrices around their

limits. Since classical test procedures in multivariate analysis like Roy's largest root test are defined in terms of the extreme
eigenvalues of single or double Wishart matrices, obtaining precise quantitative answers to such questions, for example by
obtaining limiting distributions for appropriately normalized extreme eigenvalues for certain classes of random matrices, is
of immense importance from the point of view of obtaining precise cut-off thresholds or p-values for these tests. The last
decade has seen many exciting new developments towards deriving such results, starting from the somewhat idealized
scenario of independent Gaussian data and followed by subsequent study of universality of such phenomena. We present a
summary of these developments in the rest of this subsection.

3.2.1. Connection to orthogonal polynomials
Joint distributions of eigenvalues of the three classical random matrix models – Wigner, Wishart and double Wishart,

where the entries of the data matrix are real or complex Gaussian, are available in close form. The densities (for the
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unordered eigenvalues of unnormalized matrices) are given in the following general form:

f w;βðx1;…; xNÞ ¼ cw;β ∏
N

j ¼ 1
wðxjÞβ=2 ∏

1r jokrN
jxj�xkjβ; ð26Þ

where w is a nonnegative weight function on R, β¼ 1 or 2 corresponds to the entries of the data matrix being real- or
complex-valued, and cw;β is a normalizing constant. Note that the weight functions w determine some classical families of
orthogonal polynomials as described in Table 1. Since these matrices are orthogonally or unitarily invariant according to
whether the entries of the data matrix are real (corresponding to β¼ 1) or complex (corresponding to β¼ 2) Gaussian, the
standard terminology for referring to such matrix ensembles is as follows. Wigner matrices with i.i.d. real entries are
referred to as the GOE (Gaussian Orthogonal Ensemble) and those with complex Gaussian entries are referred to as the GUE
(Gaussian Unitary Ensemble). In each case the entries of the data matrix are i.i.d. with mean zero and variance one. Similarly,
the Wishart matrices, for which the entries of the data matrix are i.i.d. real or complex Gaussian (with zero mean and unit
variance), are referred to as LOE and LUE, respectively, where ‘L’ stands for Laguerre. Correspondingly, the double Wishart
matrices, for which the entries of the data matrix are i.i.d. real or complex Gaussian, are referred to as JOE and JUE,
respectively, where ‘J’ stands for Jacobi.

3.2.2. Tracy–Widom laws for the extreme eigenvalues
In a collection of celebrated papers Tracy and Widom (1994a,b, 1996), and Widom (1999) analyzed the limiting

distributions of the extreme eigenvalues of a Wigner matrix and derived formulae for describing the distribution of the
extreme eigenvalues of a Wishart matrix by utilizing the joint density of the eigenvalues (26). They derived that for the GOE
and GUE, as the dimension increases to infinity, the largest eigenvalue converges in distribution to the respective Tracy–
Widom laws defined below. Johnstone (2001) showed that the largest eigenvalues for the LUE and LOE, after appropriate
normalization, also converge to the corresponding Tracy–Widom laws, as p;n-1 such that p=n-γA ð0;1� (and so for
γA ½1;1Þ, by interchanging the role of n and p). Slightly earlier, Johansson (2000) proved that the scaling limit for the largest
eigenvalue for the LUE is the Tracy–Widom law F2 given by (27) below.

The c.d.f. of the Tracy–Widom distribution corresponding to GUE and LUE, denoted by F2, is given by

F2ðsÞ ¼ exp �
Z 1

s
ðx�sÞq2ðxÞ dx

� �
; sAR; ð27Þ

while the c.d.f. of the Tracy–Widom distribution corresponding to GOE and LOE, denoted by F1, is given by

F1 sð Þ ¼ exp �1
2

Z 1

s
q xð Þþ x�sð Þq2 xð Þ� 	

dx
� �

; sAR; ð28Þ

where q(x) satisfies the Painlevé II differential equation q″ðxÞ ¼ xqðxÞþ2q3ðxÞ with the feature that qðxÞ�AðxÞ-0 as x-1,
where A(x) denotes the Airy function (for properties of the Airy function, one may refer to Olver, 1974). In terms of these
distributions, the main results of Johnstone (2001) can be stated as follows.

Theorem 3.6. Suppose that the entries of the p� n matrix X are i.i.d. complex Gaussian with mean zero and variance one. Let l1;p
denote the largest eigenvalue of XXn. If p=n-γA ð0;1�, as n-1, then

l1;p�μn;p
sn;p

⟹W2; ð29Þ

where

μn;p ¼ ð ffiffiffi
n

p þ ffiffiffi
p

p Þ2; sn;p ¼
ffiffiffi
n

p þ ffiffiffi
p

p� 	 1ffiffiffi
n

p þ 1ffiffiffi
p

p
� �1=3

:

Table 1
Weight functions for random matrix ensembles.

w(x) Domain of w(x) Orthogonal polynomial Matrix ensemble

e� x2=2 ð�1;1Þ Hermite Wigner

xae� x, (a40) ð0;1Þ Laguerre Wishart

ð1�xÞað1þxÞb , (a;b40) ð0;1Þ Jacobi Double Wishart
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If the entries of X are i.i.d. real Gaussian with mean zero and variance one, and l1;p denotes the largest eigenvalue of XXT , then as
n-1, so that p=n-ð0;1�,

l1;p�μ′n;p
s′n;p

⟹W1; ð30Þ

where

μ′n;p ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
n�1

p
þ ffiffiffi

p
p Þ2; s′n;p ¼

ffiffiffiffiffiffiffiffiffiffiffi
n�1

p
þ ffiffiffi

p
p� � 1ffiffiffiffiffiffiffiffiffiffiffi

n�1
p þ 1ffiffiffi

p
p

� �1=3

;

here the random variables W1 and W2 have distributions with c.d.f. F1 and F2, respectively.

An explanation of the appearance of the Tracy–Widom law in terms of the limit of the Fredholm determinant of certain
integral operator is given at the end of this subsection. Johnstone (2008) proved similar scaling limits for the largest
eigenvalues of JOE and JUE, i.e., the double Wishart matrix ensembles: UðUþVÞ�1 where U¼XXn (respectively, XXT ) and
V¼ YYn (respectively, YYT ), where X and Y are independent matrices of dimension p�m and p� n, respectively, with i.i.d.
complex or real standard Gaussian entries. He showed that under the assumption that

m¼m pð Þ-1; n¼ n pð Þ-1 as p-1 s:t: lim
p-1

minfp;ng
mþn

40 and lim
p-1

p
m
o1; ð31Þ

the normalized quantity ½logðθ1;p=ð1�θ1;pÞÞ�μp�=sp, where θ1;p denotes the largest eigenvalue of UðUþVÞ�1, and μp and sp
are appropriate centering and scaling sequences, converges in distribution to the Tracy–Widom laws F2 and F1, in the
complex and real settings, respectively. Jiang (2009) proved Tracy–Widom limits for the largest eigenvalue of the Jacobi
ensemble under a different asymptotic regime where m2=n-1 while p=n-γAð0;1Þ, which essentially corresponds to
having m�1U� Ip (Fig. 2).

A striking feature of all these results is the Oðn2=3Þ scaling for the fluctuations of the normalized largest eigenvalue
(analogous scaling holds also for GOE and GUE), instead of the O(n) scaling for the classical extreme value theory for i.i.d.
random variables with appropriate tail behavior, which reflects the fact that eigenvalues of a random matrix repel each
other. The latter can be seen from the presence of the Vandermonde determinant in the expression (26) for the joint density
of the eigenvalues, which ensures that the eigenvalues of these ensembles are more regularly spaced than what would be
the case for i.i.d. random variables.

Many generalizations of these results have been achieved. One class of models for which explicit Tracy–Widom-type
limit laws for the extreme eigenvalues have been found is the class of β-ensembles (Dumitriu, 2003; Dumitriu and Edelman,
2002) which correspond to random matrices that can be expressed as WWn, where W is a bi-diagonal matrix with
independent χ-distributed entries on the diagonal and the main subdiagonal, with degrees of freedom controlled by the
parameter β (β¼ 1 and 2 correspond to the real and complex Wishart ensembles). Ramírez et al. (2011) described such limit
laws in terms of the eigenstates of a stochastic Airy operator introduced by Edelman and Sutton (2007) and Sutton (2005).
Sodin (2010) studied the asymptotic distribution of the eigenvalues of random Hermitian periodic band matrices. Sodin
(2009) proved a Tracy–Widom limit law for the largest eigenvalue of a class of sparse random matrices obtained from the
adjacency matrix of a random graph by multiplying every entry by a random sign.

We briefly describe the key concepts leading to the derivation of Tracy–Widom laws and their subsequent refinements
for the Wishart ensemble. The works of Tracy and Widom showed that for the Wishart ensemble, the c.d.f. of the extreme
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Fig. 2. Tracy–Widom density functions for β¼ 1;2.
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eigenvalues can be expressed in terms of Fredholm determinants of integral operators (for relevant operator theory one may
refer to Gohberg and Krein, 1969 or Reed and Simon, 1972) whose kernels have integral representations in terms of
weighted Laguerre polynomials. In addition, the limiting c.d.f. can be represented in terms of Fredholm determinants of
integral operators with kernels represented in terms of the Airy function. The representations are simpler in the complex
case than in the real case and hence the former is easier to deal with. Johnstone (2001) proved Theorem 3.6 by utilizing
these representations and applying Liouville–Green transformation theory for the convergence of weighted Laguerre
polynomials to Airy functions to show that the corresponding integral operators converge in trace class norm. His derivation
made use of the important fact that the convergence of an operator in trace class norm implies convergence of its Fredholm
determinant. A modified form of the asymptotics of the weighted Laguerre polynomials was used by El Karoui (2003) to
extend the domain of Theorem 3.6 to the setting when p=n-0 as p;n-1. Paul (2011) used the technique of El Karoui
(2003) to prove that under the latter setting, the scaling limits of the normalized smallest eigenvalues are reflected Tracy–
Widom laws, which paralleled a result of Baker et al. (1998) that showed that the reflection of F2 about the origin is the
scaling limit for the largest eigenvalue of the LUE. El Karoui (2007) made further refinements of the asymptotic argument of
Johnstone (2001) to prove a Berry–Esseen type rate of convergence result for the largest eigenvalue of the LUE and Choup
(2006) derived Edgeworth expansions for the same. Ma (2012) derived rates of convergence result, with the appropriate
Oðn�2=3Þ bound, for both the largest and the smallest eigenvalues of LOE and LUE. Johnstone (2008) derived that under (31),
the rate of convergence of the (appropriately normalized) largest eigenvalue of the JOE and JUE to the corresponding Tracy–
Widom limits is Oðn�2=3Þ. Johnstone and Ma (2012) used similar techniques to derive the Oðn�2=3Þ bound on the rate of
convergence for the largest eigenvalue of GOE and GUE.

3.3. Universality

In the last decade, a lot of effort has been devoted to derive universality of results on the behavior of the eigenvalues of
random matrices. Universality essentially means that the limiting behavior of the eigenvalue statistics does not depend on
the distribution of the entries. While the statement does not hold in complete generality, in many settings, the behavior of
both bulk and edge eigenvalues depend essentially on the first four moments of the distribution of the entries. The
investigation on the existence of limiting ESDs as carried out by Bai, Silverstein and contemporary researchers already
showed that at the level of the first order convergence (convergence of the Stieltjes transform of the ESD), the behavior is
universal, as long as the entries of the matrices are standardized independent random variables satisfying a Lindeberg-type
condition. The finer characteristics, such as the limiting distribution of normalized extreme (or edge) eigenvalues, started
receiving increased attention with the works of Soshnikov who proved the Tracy–Widom limit of the normalized largest
eigenvalues on Wigner (Soshnikov, 1999) and Wishart (Soshnikov, 2002a) matrices. However, these results still required the
existence of all moments (in particular, sub-Gaussian tails), symmetry of the distribution of the entries, and for the Wishart
case, assumed that the dimension to sample size ratio approaches one. Péché (2009) extended the results of Soshnikov
(2002a) by allowing the dimension to sample size ratio to approach any nonnegative value. Significant progress was made
on the relaxation of the symmetry requirement in Péché and Soshnikov (2008). Proofs of these results used sophisticated
combinatorial techniques. Bulk universality, expressed for example in terms of the limiting behavior of the correlation
functions of the eigenvalues, has been achieved through a different set of approaches. First results of this kind were proved
by Johansson (2001) and were subsequently improved by Ben Arous and Péché (2005) and Johansson (2009) in the setting
of Gauss divisible Hermitian ensembles for which the matrices are in the form of a Wigner matrix perturbed by a Gaussian
Wigner matrix.

Significant new developments on the universality phenomena have been made by Erdős et al. (2010, 2009, 2012), Erdős
(2010), Erdős and Yau (2012), and Tao and Vu (2010a,b, 2011, 2012a,b) who used analytical techniques to study the question
of both bulk and edge universality and managed to remove much of the restrictions on the distribution of the entries.
Indeed, the “four moments theorems” of Tao and Vu assert effectively that the limiting behavior of the local statistics of
Wigner and Wishart matrices are the same as when the entries are i.i.d. standard Gaussian, provided the first four moments
of the entries match with those of the standard Gaussian. The technical arguments differ somewhat between the bulk
spectrum and the edge of the spectrum. Tao and Vu (2010b) and Wang (2012) proved the universality of local eigenvalue
statistics at the edge of the spectrum for the Wigner and Wishart cases, respectively. An instance of such results is the
following “Four Moments Theorem” (partly restating Theorem 5 in Tao and Vu, 2012a).

Theorem 3.7. Let X¼ ððXijÞÞ and X′¼ ððX′
ijÞÞ be p�n matrices with p;n-1 such that p=n-yAð0;1�. The entries Xij (resp. X

′
ij)

are jointly independent, have mean zero and variance1, and obey the moment condition supi;jE½jXijjC0 �oC for a sufficiently large
constant C0Z2 and some C independent of p;n. Moreover, all the moments of order up to4 are identical for Xij and X′

ij. Let S and
S′ denote the associated covariance matrices. Then the following holds for sufficiently small c0 and for every ɛA ð0;1Þ and for
every kZ1.
Let G : Rk-R be a smooth function obeying the derivative bound

j∇jGðxÞjrnc0
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for all 0r jr5 and xARk. Then for any ɛpr i1o i2o⋯o ikrð1�ɛÞp, and for sufficiently large n depending on ɛ, k, c0, we have

E½jGðnλi1 ðSÞ;…;nλik ðSÞÞ�Gðnλi1 ðS′Þ;…;nλik ðS′ÞÞj�rn� c0 ; ð32Þ
where λj denotes the j-th largest eigenvalue.

The key concepts involved in deriving these results are (i) quantification of the gap between successive ordered
eigenvalues at the edge of the spectrum; (ii) concentration of the fraction of eigenvalues over any interval around the
integral of the p.d.f. of the limiting ESD over the same interval; (iii) delocalization of the singular vectors of the data matrix;
and (iv) asymptotic negligibility of the difference between the expected value of suitably smooth functions of the
normalized eigenvalues at the edge of the spectrum. Steps (i)–(iii) are derived through a very careful analysis of the Stieltjes
transform of the ESD of the randommatrix, while step (iv) is derived by an application of the Lindeberg principle mentioned
in Section 3.1.4. Erdős and coauthors' approach relies on deriving a local semicircle law (for Wigner matrices) and then
proving universality for Gauss divisible matrices through utilizing the notion of Dyson Brownian motion. The final step
involves approximating all Wigner matrix ensembles with Gauss divisible ensembles. This step and the establishment of
local semicircle laws require establishing tight bounds for the individual entries of the resolvent matrices. Erdős et al. (2012)
gave a detailed overview of these techniques and also extended the universality results to so-called generalized Wigner
matrices, where the entries are independent but have different variances, and to certain classes of banded Hermitian
random matrices. Universality at the edge of the spectrum of sample covariance and correlation matrices has been studied
by Feldheim and Sodin (2010), Bao et al. (2012) and Pillai and Jin (2012). Lee and Yin (2012) established necessary and
sufficient conditions for edge universality of a Wigner matrix. Large deviations of the extreme eigenvalues have been
studied by Benaych-Georges et al. (2012).

A different kind of universality that generalizes the weight function w in the joint density of the eigenvalues (26), by
considering fairly arbitrary smooth functions with certain rates of decay, has been studied extensively in the mathematical
physics community. However, the intersection of the class of models commonly encountered in statistical problems with
this universality class is rather limited, and so we do not delve into these interesting mathematical developments. A detailed
account of the results and techniques related to this class of problems can be found in the monograph (Deift and Gioev,
2009).

3.4. Behavior of the eigenvectors

The study of the behavior of the eigenvectors of a sample covariance matrix arises in the context of PCA. In the null
setting (i.e., LOE or LUE) the data matrices have independent standard Gaussian entries, and the joint distributions of the
entries are invariant under rotation by orthogonal or unitary matrices. This implies that the matrix of eigenvectors is Haar
distributed, i.e., the distribution is uniform on the space of orthogonal (in the real case) or unitary (in the complex case)
matrices. Several attempts have been made to derive analogous results evenwhen the entries are not Gaussian. A first result
of this kind was proved by Silverstein (1984) who showed that if the first four moments of the entries of the data matrix
match those of the standard Gaussian, then the matrix of eigenvectors is asymptotically Haar distributed as the dimension
and sample size increase while the dimension-to-sample size ratio approaches a positive, finite constant. This was proved by
using the fact that if an N�N orthogonal matrix U is Haar distributed then for any unit vectors xARn, y¼Ux is uniformly
distributed over the unit sphere in RN , and consequently, for any sequence of unit vectors x, the process

YNðtÞ ¼
ffiffiffiffiffiffiffiffiffi
N=2

p
∑½Nt�

j ¼ 1ðjyjj2�1=NÞ, tA ½0;1�, converges in distribution (in the space D½0;1�) to a Brownian bridge process. This

result was further strengthened in Silverstein (1989, 1990). Bai et al. (2011) provided an additional analytical tool for proving
that the matrix of eigenvectors is asymptotically Haar distributed. Bai et al. (2007) extended the results of Silverstein (1989,

1990) for matrices of the form n�1A1=2
p XnXn

nA
1=2
p where Ap is a p�p nonnegative definite matrix and the p� n data matrix

Xn has i.i.d. standardized entries. Adifferent approach that deals with projections of sample eigen-subspaces onto
population eigen-subspaces has been adopted by Ledoit and Péché (2011) (see Section 4.1).

3.5. Matrix ensembles with heavy-tails

While most of the attention in RMT has been devoted to studying the behavior of eigenvalues of randommatrices whose
entries have finite fourth moments, random matrices with heavy-tailed i.i.d. entries (so-called Lévy matrices) arise naturally
in the context of financial data (Bouchaud et al., 2003). Soshnikov (2004, 2006) showed that under the standard asymptotic
framework on the dimension to sample size ratio, the behavior of the largest eigenvalues of appropriately normalized
Wigner-type matrices with heavy-tailed entries is surprisingly simple. Indeed, in the absence of a finite fourth moment, the
asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix. In particular,
the largest normalized sample eigenvalue has a Fréchet limit distribution. Soshnikov analyzed the setting when the tail
index α (the rate at which tails of the probability distribution decay) of the entries is between 0 and 2. Auffinger et al. (2009)
extended the results by Soshnikov (2004), to prove that for αAð0;4Þ, and for both Wigner and Wishart-type matrices, the
point process of the largest eigenvalues (properly normalized) converges to an inhomogeneous Poisson point process whose
intensity function is determined by the tail index of the (common) distribution of the entries of the matrix. A version of
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these results was also proved by Biroli et al. (2007) at a physical level of rigor. More recently, Davis et al. (2011) considered
sample covariance matrices when the data matrix has i.i.d. rows of linear time series ∑1

j ¼ 1cjZi;t� j where Zi;t 's are i.i.d.

random variables with tail index αA ð0;2Þ. They showed that the point process of eigenvalues of the sample covariance
matrix converges in distribution to a Poisson point process with intensity measure depending on α and ∑1

j ¼ 1c
2
j .

4. Applications

In this section we discuss applications of RMT to statistics and allied fields. The focus is more on the practical
implications than on further theoretical insight. The latter may be obtained from the multitude of references cited.

4.1. Applications to statistics

As mentioned in Section 2, one of the prime motivations for the study of random matrices in statistics is to find
appropriate modifications of the classical multivariate analysis techniques to find approximations and develop new
methodologies that are applicable for samples of moderate to large dimension. In this section, we summarize some of these
applications in the context of PCA, MANOVA, multivariate tests and classification and discriminant analysis problems. In
Section 5, we briefly discuss some statistical methodologies that do not directly use RMT results, but whose developments
are guided by issues associated with large random matrix phenomena.

4.1.1. Signal detection using the Tracy–Widom law
One of the earliest uses of the distribution of the largest eigenvalue of the sample covariance matrix is in testing the

hypothesis H0 : Σ¼ Ip when i.i.d. samples are drawn from a Nðμ;ΣÞ distribution. The Tracy–Widom law for the largest
sample eigenvalue under the null Wishart case, i.e., when the population covariance matrix Σ¼ Ip allows a precise
determination of the cut-off value for this test, which, with a careful calibration of the centering and normalizing sequences,
is very accurate even for relatively small p and n (Johnstone, 2001, 2009). The behavior of the power of the test requires
formulating suitable alternative models. A formulation of such a model with useful practical implications is discussed in the
following subsections. In addition, Tracy–Widom law for the largest eigenvalue has been extensively used for signal
detection (Bianchi et al., 2011; Kritchman and Nadler, 2008; Nadler et al., 2008; Onatski, 2009). Many of these approaches
use a sequential hypothesis testing framework whereby the Tracy–Widom law is used to determine the null distribution for
testing the presence of an additional signal direction.

4.1.2. PCA under the spiked covariance model
In the previous sections, we discussed the behavior of the eigenvalues and eigenvectors of the sample covariance matrix

when the eigenvalues of the population covariance matrix are either identical or are evenly spread out so that none of them
“sticks out” from the bulk. However, in high-dimensional statistics, often the variation in the data is modeled as the
combined effect of a low-dimensional “signal” buried in a “high-dimensional” noise. If one further assumes an additive
structure, then we obtain a convenient description of the data in terms of a factor model. Such models are quite useful from
the point of view of signal detection and estimation when the signal is low-dimensional and embedded in isotropic or near
isotropic noise. Natural statistical questions arising in problems such as dimension reduction can then be easily translated in
terms of the behavior of the eigenvalues and the eigenvectors of the sample covariance matrix. A particularly useful
idealized model of this kind, named spiked covariance model by Johnstone (2001), has been in use for quite some time in
statistics. Under this model, the population covariance matrix Σ is expressed as

Σ¼ ∑
M

j ¼ 1
λjθjθ

T
j þs2Ip; where θ1;…; θM are orthonormal; λ1Z⋯ZλM40 and s240: ð33Þ

This model implies that, expect for M leading eigenvalues ℓj ¼ λjþs2 for j¼1,…,M, the rest of the eigenvalues are all equal.
This model has been studied extensively in the context of high-dimensional PCA since it brings out a number of key issues
associated with dimension reduction in the high-dimensional context. Lu (2002) first demonstrated the inconsistency of the
sample PCA under (33). In the statistical physics literature, the phase transition behavior of the leading sample eigenvalues
has been established by Hoyle and Rattray (2004), Reimann et al. (1996) and Watkin and Nadal (1994). This phase transition
phenomenon is described in its simplest form in the following theorem, where, for convenience, we assume s2 ¼ 1.

Theorem 4.1. Suppose that Σ is a p�p positive definite matrix with eigenvalues ℓ1Z⋯ZℓM41¼⋯¼ 1, and let bℓ1Z⋯Zbℓp

be the eigenvalues of the sample covariance matrix S¼ n�1Σ1=2ZZnΣ1=2 where the p�n data matrix Z has i.i.d. real or complex
entries with zero mean, unit variance and finite fourth moment. Suppose that p;n-1 such that p=n-γA ð0;1Þ. Then, for each
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fixed j¼1,…,M

bℓj⟶
a:s:

ð1þ ffiffiffi
γ

p Þ2 if ℓjr1þ ffiffiffi
γ

p
;

ℓj 1þ γ

ℓj�1

� �
if ℓj41þ ffiffiffi

γ
p

:

8><>: ð34Þ

This result shows that the phase transition of the sample eigenvalues depends only on the magnitude of the
corresponding population eigenvalue. This result was first proved rigorously by Baik and Silverstein (2006) by utilizing a
finite-sample version of the Marčenko–Pastur equation (18).

These phase transition results have been used to explain certain phenomena in various disciplines. For example, Harding
(2008) used this to explain the single factor bias of arbitrage pricing models in finite samples. Patterson et al. (2006) used
the phase transition behavior to explain the nature of difficulties of inferring the population structure from genetic data.

Assuming Gaussianity of the observations, Paul (2007) proved further that a phase transition of the corresponding
eigenvectors also occurs. Specifically, if ℓjr1þ ffiffiffi

γ
p and the j-th largest eigenvalue is of multiplicity one, then the angle

between the j-th sample and population eigenvectors converges to π=2 a.s., while the a.s. limit is less than π=2 if ℓj41þ ffiffiffi
γ

p .
He also proved Gaussian fluctuations of the sample eigenvalues and projections of the sample eigenvectors onto the M-
dimensional signal subspace in the supercritical regime (population eigenvalue above the phase transition limit). Further
refinements of these results have been carried out by various authors. Bai and Zhou (2008) extended the results of Paul
(2007) by dropping the Gaussianity assumption. Nadler (2008) used a finite sample asymptotic framework by allowing
s2-0 in (33). Onatski (2012) gave a more comprehensive description of phase transition phenomenon under a factor model.
Benaych-Georges and Nadakuditi (2011) gave a more intuitive explanation of the phase transition phenomenon that brings
out the central role played by quadratic forms involving the resolvent of a null Wishart matrix. Bai and Yao (2011) extended
the scope of the results further by considering a “generalized spiked model”, where the “noise” eigenvalues of the
population covariance matrix decay slowly rather than remaining constant (Fig. 3).

The behavior of the sample eigenvalues when the corresponding population eigenvalues is at (critical) or below
(subcritical) the phase transition limit has also been a topic of intense study. Baik et al. (2005) applied stationary phase
methods to the joint distribution of the sample eigenvalues when the data were complex Gaussian, and showed that in the
subcritical regime, the limiting distribution of the leading sample eigenvalues is an interpolated Tracy–Widom law. El Karoui
(2007) extended this result to a class of generalized spiked covariance model for complex Gaussian data. Analysis under
critical or sub-critical regime for real-valued observations is technically more challenging. Féral and Péché (2009) used
combinatorial methods to prove such results. Benaych-Georges et al. (2011) gave an analytical proof that depends on the
decomposition by Benaych-Georges and Nadakuditi (2011) and by controlling the gaps between successive eigenvalues of a
Wishart ensemble near the edge, similar to what is used in proving universality results in Tao and Vu (2010b).

There have been several publications on the closely related problem of characterizing the behavior of eigenvalues for
deformed Wigner ensembles with the associated phase transition behavior exhibited by the extreme eigenvalues (see
Benaych-Georges et al., 2011; Capitaine et al., 2009; Féral and Péché, 2007; Pizzo et al., 2013; Renfrew and Soshnikov, 2013;
Knowles and Yin, 2011, 2012 and the references therein). Chapon et al. (2012) dealt with a low rank deformed signal-plus-
noise covariance matrix. Bloemendal and Virág (2010, 2011) studied the limiting distribution of the largest sample
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Fig. 3. An illustration of the phase transition of eigenvalues in a spiked covariance model: here, p¼50, n¼200 and eigenvalues of the covariance matrix are
ℓ1 ¼ 2:5, ℓ2 ¼ 1:5, ℓj ¼ 1 for j¼3,…,p. So, ℓ141þ

ffiffiffiffiffiffiffiffi
p=n

p
and ℓ2 ¼ 1þ

ffiffiffiffiffiffiffiffi
p=n

p
. Blue dots correspond to the population eigenvalues. Black circles correspond to

the sample eigenvalues (based on i.i.d. Gaussian samples) for 50 replicates. Solid red circles indicate the theoretical limits of the first two eigenvalues for
γ ¼ p=n¼ 0:25. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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eigenvalues for certain finite rank deformed Wigner and Wishart ensembles, and characterized the limit laws in terms of
stochastic Airy operators and Dyson Brownian motion.

4.1.3. Application to MANOVA
Johnstone (2008, 2009) gave an extensive account of the use of Roy's largest root test with Tracy–Widom limit

distribution under the various classical double Wishart problems, including CCA, MANOVA and testing of linear hypothesis
under multivariate linear models. The striking feature of this approximation is that even though the result is asymptotic in
nature, it is quite accurate for sample sizes as low as ten with comparable dimensions. However, it is worthwhile
mentioning that for other test statistics such as bℓ1=∑

p
j ¼ 2

bℓ j the convergence to the Tracy–Widom law for finite dimension
and sample size may not be as good. Nadler (2011) discussed possible corrections for this. The detection limit of the largest
root test in the double Wishart setting under a spiked alternative was studied by Nadakuditi and Silverstein (2010), who
established a phase transition behavior qualitatively similar to what is observed in PCA under the spiked covariance model.
Behavior under spiked alternatives but with finite dimensions and sample size, and a noise scale parameter converging to
zero has been investigated by Nadler and Johnstone (2011).

4.1.4. Tests of hypothesis involving the bulk spectrum
Results on the behavior of the limiting ESD for Wishart and double Wishart type matrices have also been applied to

various high-dimensional inferences. We briefly describe a few examples.
Tests for linear hypotheses: Wilk's likelihood ratio test (LRT) is among the most widely used classical test procedure for

testing linear hypothesis about the regression parameter B in a multivariate linear model (6), where ε has i.i.d. columns
distributed as Npð0;ΣÞ and B is a p� q matrix of unknown regression coefficients. However, the computation of the quantiles
of the Wilk's statistic under the null or the alternative requires complex analytic approximations and these distributional
approximations are meaningful only for moderate dimension of the dependent variable. Bai et al. (2012) proposed a
modification to Wilk's test in a high-dimensional context based on a CLT for linear statistic of F-matrices recently developed
by Zheng (2012).

Test for equality of covariance matrices: Bai et al. (2009) considered the problem of testing H0 : Σ1 ¼Σ2 where Σi's are the
population covariance matrices of two independent samples of p-dimensional i.i.d. Gaussian observations. They proposed
corrections to the classical likelihood ratio test statistic when p is proportional to the sample size. Under this setting, the
traditional χ2 approximation of the LR test statistic does not work. Their test is based on the CLT for linear spectral statistics
of sample covariance matrices and applies even to non-Gaussian populations under the framework that the samples are of
the form Σ1=2

i Zi;j where the vectors Zi;j's have i.i.d. standardized entries. They showed that corrected LR tests have realized
size close to the nominal level for both moderate and high dimensions.

Hotelling's T2 and generalizations: Suppose that X1;…;Xn are i.i.d. Npðμ;ΣpÞ, where μARp and Σp is positive definite, and
we want to test the null hypothesis H0 : μ¼ 0 against HA : μa0. The classical test is Hotelling's T2 test that rejects H0 for large
values of the statistic T2≔nX

T
S�1X , where X is the sample mean and S is the sample covariance matrix. For pZn, one

cannot define T2 in this way since Sn is not invertible. Even when pon but p=n is not small, the dimensionality strongly
influences the sampling distribution of the test statistic under both null and alternative hypotheses. Bai and Saranadasa
(1996) addressed this problem, assuming that p=n-γA ð0;1Þ as n-1, and proved a CLT for the T2 statistic, in addition to
showing that Hotelling's T2 test is inconsistent in this setting. To fix this problem, tests based on certain quadratic
functionals of the sample covariance and correlation matrices have been proposed by Chen and Qin (2010) and Srivastava
and Du (2008). In contrast, Chen et al. (2011) proposed a regularized Hotelling's T2 statistic: RHTðλÞ≔nXnðSnþλIpÞ�1Xn,
which is well-defined for all λ40. Assuming Gaussianity, and working under the setting considered by Bai and Saranadasa
(1996), they constructed an asymptotic test by proving a CLT for RHTðλÞ. Under the same framework, Lopes et al. (2012)
proposed a test constructed from averaged Hotelling's T2 statistics based on random projections of the data into lower-
dimensional subspaces. Limit distributions of a generalized version of the Hotelling's T2 statistic have been derived by Pan
and Zhou (2011) under less restrictive distributional assumptions.

4.1.5. Spectrum estimation
The problem of estimating the spectrum of the population covariance matrix Σ based on i.i.d. observations from a

population with mean zero and covariance Σ has received a lot of attention due to their use in many high-dimensional
inference procedures. Many different approaches to this problem in the existing literature start by modeling the ESD of the
population covariance matrix as a mixture of point masses. El Karoui (2008b) used the Marčenko–Pastur equation (18) and
employed a linear programming method to minimize the sup-norm difference between z and the expression on the right-
hand side with the Stieltjes transform of the dual sample covariance matrix as input. Rao et al. (2008) used the asymptotic
distribution of the sample spectral moments to form a pseudo-likelihood and then maximized this with respect to the
parameter. Bai et al. (2010) exploited the relationship between the population spectral moments and the sample spectral
moments to formulate estimating equations. Chen et al. (2011) proposed an improved version of the latter procedure.
Mestre (2008) proposed an estimator based on contour integrals of functions defined in terms of the Stieltjes transform of
the ESD of Sn under the assumption that the sample spectrum separates in clusters corresponding to the mixture
proportions in the population spectrum.
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4.1.6. Eigen-subspace estimation
One component of estimating the covariance matrix of high-dimensional data is the estimation of the distribution of its

eigenvalues, or at least the leading eigenvalues (under a “spiked covariance” setting). The leading eigenvectors can be
estimated with a certain precision under a “spiked covariance” model if the leading population eigenvalues are significantly
larger than the background noise. However, if any simplifying structural assumption on the eigenvectors cannot be reliably
made and the distribution of the eigenvalues of the underlying population covariance matrix may be approximated well by
a finite discrete distribution, efforts have been made to estimate the corresponding eigen-subspaces. The approach of
Mestre (2008) for eigen-subspace estimation falls in this category. Significant progress in formulating a general framework
for inference on eigen-subspaces has been made by Ledoit and Péché (2011) in the case where X¼ B1=2Z with Z having i.i.d.
standardized entries. They proved results about the projections of a group of eigenvectors of Sn, indexed by the sample
eigenvalues, onto a group of population eigenvectors (i.e., eigenvectors of B) indexed by the population eigenvalues. A key
step in their analysis is establishing the limiting behavior of the functional p�1trðgðBÞðSn�zIpÞ�1Þ where g : R-R is a
bounded function with finitely many discontinuities. These results have been used by Ledoit and Wolf (2012) to develop
shrinkage estimators of the population covariance matrix that are rotationally invariant and whose construction only
requires nonlinear shrinkage of the sample eigenvalues. Wang et al. (2012) utilized similar results to develop a shrinkage
estimator of the precision matrix, i.e., the inverse of the population covariance matrix. Coulliet et al. (2012) formulate a
different shrinkage strategy motivated by Huber-type M-estimators (Huber, 1964; Maronna, 1976) to produce a robust
estimate of the population covariance matrix.

4.2. Applications to wireless communication

One encounters large dimensional random matrices in various problems of signal processing, particularly in wireless
communication. Bai and Silverstein (2009), Coulliet and Debbah (2011) and Tulino and Verdú (2004) list several such
problems, which include (i) determination of the channel capacity of a MIMO (multiple-input-multiple-output) channel,
which can be expressed in terms of the logarithm of the determinant of the matrix IþS where S is a random Wishart-type
matrix related to the signal-to-noise ratio in the transmission channels; (ii) determination of the limiting SINR (signal-to-
interference noise ratio) in random channels and in linearly precoded systems, such as CDMA (code-division-multiple-
access) systems (Bai and Silverstein, 2007); (iii) asymptotic performance analysis of receivers; (iv) energy estimation from
multiple sources (Coulliet et al., 2011). Random matrices also arise more generally in various signal processing problems,
e.g., in the detection of input signals (Nadakuditi and Silverstein, 2010; Silverstein and Combettes, 1992), subspace
estimation in a sensory network (Hachem et al., 2012, 2013).

4.3. Applications to finance

RMT has also become popular in dealing with financial data, typically those involving a large number of variables, say
stock prices, and a not so large number of measurements, which may represent the number of trading days. Bouchaud et al.
(2003); Bouchaud and Potters (2009) give many instances of such problems. Frahm and Jaekel (2005) considered a model
for financial data (typically log-returns) that accounts for over-dispersion and elliptically symmetric distribution for the
variables. The observation vectors under this model can be expressed i.i.d. samples Y of the form Y ¼ μþΛΓU, where μARp,
Γ is a p� q matrix, U is uniformly distributed on the unit sphere Sq�1 and Λ is nonnegative random variable independent
of U. The behavior of the corresponding sample covariance matrix has been analyzed in detail by El Karoui (2009a)
who derived Marčenko–Pastur type limiting equations for the ESD under the asymptotic framework where n; p; q-1 such
that n=q and p=q have finite limits. This model is also closely related to the separable covariance model (21). A related model
has been used by Zheng and Li (2011) in the context of estimation of integrated covolatility matrix based on high-
dimensional, high-frequency financial data.

Factor models have also been used extensively in finance and econometrics when the number of economic
variables is high (Bai, 2003; Bai and Ng, 2002, 2007). RMT has been used to explain the bias of arbitrage pricing
models in finite samples (Harding, 2008; Onatski, 2012) and in determining the number of significant factors (Onatski, 2009,
2010).

One of the classical problems in finance is the Markowitz portfolio optimization problem (Markowitz, 1952, 1956). This
problem is about the optimal strategy for investing in p assets subject to certain linear constraints. If the mean and
covariance of the returns from the assets are given by μ and Σ, assuming that both are known, the optimization
problem can be formulated as a quadratic programming problem: minwwTΣw subject to wTμ¼mP and wT1¼ 1, where 1
denotes the vector of all 1's and mP denotes a guaranteed mean return. The solution, denoted wopt, is called the optimal
allocation, and the curve wT

optΣwopt , quantifies the risk associated with the optimal strategy, as a function of mP. Bai et al.
(2009) and El Karoui (2009b, 2010c) analyzed this statistical problem from the point of view of RMT when p=n is
approximately constant and the observations are i.i.d. A key finding from these is the underestimation of the true risk if one
uses the empirical versions of the mean and the covariance matrix. El Karoui (2010c) also suggested ways of correcting
this bias.
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4.4. Other applications

Many statistical problems involve ridge-type shrinkage and/or quadratic forms involving a Wishart-type matrix. A
detailed study of such shrinkage schemes has been carried out by ElKaroui and Koesters (2011). Random matrices have also
been used to describe properties of large random graphs, especially the behavior of eigenvalues of graph Laplacian and the
adjacency matrix (Ding and Jiang, 2010; Jiang, 2012). Moreover, RMT has been utilized to understand the analytic properties
of compressed sensing (Cai and Jiang, 2011; Vershynin, 2012). Effective uses of concepts and tools from RMT have also been
made in the analysis of spectral clustering methods with a growing number of clusters (Rohe et al., 2011), in community
detection problems in large random networks (Nadakuditi and Newman, 2012), and in kernel PCA methods for dimension
reduction when the observations are high-dimensional and the argument of the kernel function depends on the inner
products of pairs of observations (El Karoui, 2010b,a).

4.5. Computational tools

One of the recent developments that will go a long way in making the results of RMT accessible to professional
statisticians and students is the development of computational tools. The densities of Tracy–Widom laws satisfy
complicated nonlinear differential equations and hence are not easily accessible. Johnstone (2009) gave a nice survey of
the applications of Tracy–Widom laws in the context of different hypothesis testing problems arising from classical
statistics. Johnstone and some of his students have developed an R package RMTstat (available from the CRAN website at
http://cran.r-project.org/web/packages/RMTstat/; see Johnstone et al., 2009 for documentation), which can be used to find
p-values of these tests. The same package can also be used to compute the c.d.f., p.d.f. and quantiles of the Marčenko–Pastur
and Tracy–Widom distributions, and draw random samples from the same. It has functions for generating the limit
distributions under a spiked covariance model, i.e., when the population covariance is a finite rank perturbation of a
multiple of the identity matrix. Other significant contributors include Raj Rao Nadakuditi (MATLAB toolbox RMTool), Momar
Dieng (MATLAB toolbox RMLab) and Plamen Koev (mhg package for computing hypergeometric functions of a matrix
argument).

5. Sparse PCA, CCA, LDA and covariance estimation

The lack of consistency of classical inferential procedures for dealing with problems such as PCA, CCA, LDA and
covariance estimation, as outlined by results from RMT, induced a flurry of activity in the statistical community to design
regularized estimation schemes that can be effectively utilized in high-dimensional settings where additional structural
information on the parameters describing the statistical models is available. This approach benefited from increasingly
sophisticated uses of various convex optimization procedures for penalization/regularization and fast algorithms for
implementing them, most notably the l1-norm penalization schemes. These developments were also motivated partly by
the desire to have interpretable predictive models that use a relatively small number of features. This is particularly
important in dealing with high-dimensional data arising in genomic or proteomic studies where the number of variables
(genes, proteins) can run into thousands whereas the sample sizes are often moderate. The popularity of l1-penalized
regression procedures and their variants, such as SCAD, grouped lasso, etc., has underlined the success of sparse
parametrization in statistical models. During the last decade, the notion of sparsity has also been utilized in dealing with
regularization of classical multivariate statistical methodologies which, at a base level, are dependent on some form of the
covariance matrix. An important distinction from regression problems is that, covariance matrices and their inverses, being
intrinsically higher-dimensional objects, allow multiple ways in which structural information may be incorporated.
Therefore, several different notions of sparsity have been utilized in formulating the regularization schemes. In the rest
of this section, we briefly describe some of these approaches and the corresponding theoretical developments.

Since Stein's (1956) influential work, which showed the sample covariance matrix based on multivariate normal
observations to be a poor estimate of the population covariance matrix, several regularization procedures for estimating the
population covariance matrix and their inverses have been proposed. The inverse covariance matrix, or precision matrix, or
concentration matrix is very important in Gaussian graphical models since the location of zeros in the precision matrix
correspond to the absence of edges in the conditional dependency graph among the variables. Earlier approaches, which
were mostly based on some form of shrinkage of the eigenvalues of the sample covariance matrices, adopted the classical
fixed dimensional multivariate Gaussian framework, and evaluated the performance of the estimator in terms of the
minimax risk under appropriate loss functions. Prominent works of this kind include (Dey and Srinivasan, 1985, 1986; Haff,
1977, 1980; Loh, 1991; Stein, 1976). With the advent of high-dimensional data and the phenomena associated with the
eigenvalues of high-dimensional Wishart-type matrices, new considerations were coming into play while adopting
regularization schemes.

5.1. Regularization of covariance and concentration matrices

Bickel and Levina (2008a) proposed two approaches based on banding and tapering applied to the sample covariance
matrix and its Cholesky decomposition to estimate the covariance matrix and its inverse. They also derived rates of
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convergence of the proposed estimator for certain classes of covariance and precision matrices whose entries essentially
decay away from the diagonal at certain algebraic rates. The remarkable aspect of this approach is that the asymptotic
analysis suggested that the method is applicable as long as log p¼ oðnÞ, provided the structural assumptions on the
parameters hold. Related regularization methods have been proposed by Wu and Pourahmadi (2003, 2009). Cai et al. (2010)
proved the minimax rates for tapering estimators of covariance and precision matrices in terms of the spectral norm loss.
Bhattacharjee and Bose (2013) established convergence rates for banded and tapered estimates of large dimensional
covariance matrices under weak dependence among the entries. Cai and Yuan (2012) suggested an adaptive block
thresholding approach and showed that it attains the minimax rate.

In contrast with the banding/tapering/block thresholding approaches that depend on assuming a decay of covariances
away from the diagonal, and thereby require an implicit ordering of the coordinates (variables), a different class of
estimators of the covariance and precision matrices has been formulated based on the notion of sparsity. This notion
assumes that a large fraction of the entries of the covariance (correspondingly, precision) matrix are zero, or of small
magnitude. Thresholding individual entries of the sample covariance matrix is an effective approach when the covariance
matrix is sparse, and with proper choice of thresholds it has been shown to be consistent in the operator norm by Bickel and
Levina (2008b) and El Karoui (2008a). Rothman et al. (2009) considered more general thresholding strategies. Cai and Liu
(2011a) proposed an adaptive thresholding rule and showed that it attains the minimax rate under the spectral norm over a
class of covariance matrices with uniform lq constraint on the rows. Cai and Zhou (2012a) proved the minimax rates for the
thresholding estimator in terms of the matrix l1 norm loss over the same class. A different form of sparse regularization that
depends on imposing an l1 constraint on the off-diagonal entries of the precision matrix through a penalized likelihood
framework has also been investigated by various authors, including Friedman et al. (2008), Rothman et al. (2008), and Yuan
and Lin (2007). Lam and Fan (2009) compared different penalization and thresholding methods for sparse precision matrix
estimation and derived rates of convergence under the Frobenius norm, while Cai et al. (2011) obtained rates of convergence
of the l1-constrained estimator under the spectral norm. Indirect l1-type penalization schemes for determining the zero
entries in the precision matrix have been proposed by Meinshausen and Bühlmann (2006) and Peng et al. (2009).

5.2. Covariance estimation using sparse factor models

A structural assumption on the covariance matrix that is popular in dealing with high-dimensional problems is a factor
model or spiked covariance model structure. Under a spiked covariance model, Σ is modeled by (33). Under this framework,
estimation of the leading, or “signal” eigenvectors (corresponding eigenvalues greater than s2) and estimation of the
covariance or the precision matrix are closely related problems. A key conclusion from RMT is that when p=n↛0, the
eigenvectors of standard PCA are inconsistent estimators of the corresponding population eigenvectors. Therefore, various
regularization schemes, implicitly or explicitly assuming some form of sparsity of the leading eigenvectors, have been
proposed in the literature. For example, Witten et al. (2009) and Zou et al. (2006) imposed l1-type sparsity constraints
directly on the eigenvector estimates and proposed optimization procedures for obtaining them. d'Aspremont et al. (2007)
suggested a semi-definite programming (SDP) problem as a relaxation to the l0-penalty for sparse population eigenvectors.
Assuming a single spike (i.e., M¼1 in (33)) and l0-sparsity for the first eigenvector, Amini and Wainwright (2008) studied
the asymptotic properties of the resulting leading eigenvector of the covariance estimator and obtained the optimal rates of
convergence. Karuthgamer et al. (2013) discussed limitations of the semidefinite programming approach and related
statistical procedures in extracting the signal that is not very sparse.

Combinations of thresholding and eigen-analysis have proved to be effective tools in sparse PCA. Birnbaum et al. (2012)
studied estimation of the leading eigenvectors under (33), assuming lq-sparsity of the leading eigenvectors, and established
lower bounds on the minimax risk for any eigenvector estimator under l2 loss. Under the same model, Johnstone and Lu
(2009) developed an estimation scheme that pre-selects coordinates by thresholding the diagonal of the sample covariance
matrix, followed by the spectral decomposition of the submatrix corresponding to the selected coordinates, and proved
consistency of this estimator assuming p grows at most polynomially with n. Ma (2013) developed iterative thresholding
sparse PCA (ITSPCA), which is based on repeated filtering, thresholding and orthogonalization steps that result in sparse
estimators of the subspaces spanned by the leading eigenvectors. Birnbaum et al. (2012) also proposed an estimation
procedure named ASPCA which is based on a two-stage coordinate selection scheme. Both these estimators are rate-
optimal, so long as the diagonal thresholding scheme is consistent (see Ma, 2013; Paul and Johnstone, 2012). A different
two-stage estimation scheme, based on a regression framework, has been proposed by Cai et al. (2012). Incidentally, in order
to establish upper bounds on rates of convergence of the estimators, Amini and Wainwright (2008), Ma (2013) and Paul and
Johnstone (2012) all utilize results on the concentration of the extreme singular values of a rectangular matrix with i.i.d.
standard Gaussian entries, which translates into finite sample probabilistic bounds on the extreme eigenvalues of a Wishart
matrix. Similar results have been utilized extensively in the literature on compressed sensing and sparse signal recovery.
One may refer to Vershynin (2011) or Vershynin (2012) for detailed discussions on such applications.

5.3. Sparse canonical correlation analysis

Sparse versions of CCA, where the canonical weight vectors (weight vectors for the X and Y variables in the canonical
correlation computation), are constrained to be sparse through imposition of sparse penalty, have also been proposed in the
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literature, notably by Hardoon and Shawe-Taylor (2009), Lee et al. (2009), Parkhomenko et al. (2009) and Witten et al.
(2009). These methods typically formulate the sparse estimation of the canonical vectors in terms of a sequence of iterative
convex or non-convex optimization problems that yield sparse solution depending upon the degree of the penalty. However,
there does not appear to be any rigorous mathematical treatment of these procedures at this point.

5.4. Sparse discriminant analysis

One of the important applications of estimated covariance or precision matrices is in discriminant analysis, where the
interest is in classifying new observations to one of the two classes which are assumed to have possibly different means
μ1, μ2, and either the same or different covariances. The result of Bickel and Levina (2004) proved inconsistency of Fisher's
classical linear discriminant analysis (LDA), which is applicable when the two populations have the same covariance matrix,
under the setting when p=n↛0. This can again be explained in terms of the behavior of the eigenvalues of the pooled sample
covariance matrix. Motivated by this, regularized versions of LDA in the high-dimensional context, for which the
regularization is imposed either through sparse penalization or thresholding of the discriminant function, often in
combination with sparse estimation of the precision matrix, have been proposed and analyzed by Cai and Liu (2011b),
Clemmensen et al. (2011), Shao et al. (2011), Witten and Tibshirani (2009, 2011). A key requirement for good performance of
these procedures is the sparsity of the vector Σ�1ðμ1�μ2Þ, where Σ denotes the common population covariance matrix.
A different approach that ignores the covariance structure, but assumes sparsity of μ1�μ2, has been proposed by
Fan and Fan (2008).

6. Future directions

There are plenty of multivariate statistical techniques which require certain modifications to be effective in dealing with
moderate to high-dimensional data. Here, we briefly discuss some areas where the enhancement of RMT may be beneficial:

� One striking aspect of typical economic/financial problems is that the data are dependent on time, while much of the
theory in this field is under the setting of i.i.d. observations. Thus, a thorough investigation of the potential for extending
the current theory on the eigenvalues of Wishart-type matrices, when the columns of the data matrix can be viewed as a
realization of a high-dimensional multivariate time series, can have a significant impact on econometrics and finance.

� One important open problem is the ability of RMT to handle various forms of missing data in the high-dimensional
context. Although there are some works on Hadamard products of random matrices (Bai and Zhang, 2006; Hachem et al.,
2007, 2008) which are applicable tomissing at random scenarios, a more comprehensive approach using techniques from
RMT is likely to be fruitful.

� The ubiquity of massive streaming data, especially in problems involving array signal processing, trade of stocks and
various online trading schemes, etc., poses an enticing prospect of using tools and concepts from RMT. Processing of such
massive streaming data may be facilitated immensely by reducing computation times through judicious coupling of
random projection techniques with tools from RMT.

� A potentially useful avenue for the application of RMT is in numerical optimization algorithms that use gradient based
methods for large dimensional data. While there has been an explosive growth in mathematical descriptions in the RMT
literature, computational tools have not kept pace with the theoretical developments. Integration of computational tools
with tools for analysis of large dimensional data using RMT principles has the potential of creating a new paradigm for
statistical practices.
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