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Abstract 
Embodied cognition theorists have in recent years proposed 
that a cognitive agent's "representations" or "inner world" can 
at least partly be constituted by internal emulations or 
simulations of its sensorimotor interaction with the world, i.e. 
covert perception and action. This paper recapitulates some of 
the empirical evidence, distinguishes between implicit, 
internal and external anticipation, and discusses possible 
neural correlates. Furthermore a robotic neurocomputational 
model of external anticipation is presented and analyzed.  

Keywords: Anticipation; Emulation theory; Inner world; 
Simulation theory. 

Introduction 
Cognitive scientists have for a long time considered some 
kind of internal model a conditio sine qua non for (higher-
level) cognition. The possible advantage of having internal 
models was described early on by Kenneth Craik (1943) 
 

If the organism carries a “small scale model” of external 
reality and of its own possible actions within its head, it is 
able to try out various alternatives, conclude which is the 
best of them, react to future situations before they arise… 
(Craik, 1943, p. 61)  

 
Traditionally much artificial intelligence (AI) research took 
this quite literally and equipped robots with internal maps as 
analogs of the “small scale models” in our heads, which 
explicitly labeled the topology and content of the world with 
conceptual/semantic descriptions. Simulation (or emulation) 
theories  have approached the same problem from a 
biological and embodied perspective taking much 
inspiration from neuroscience (Cotterill, 2001; Grush, 2004; 
Hesslow, 2002; Jeannerod, 2001), which have inspired new 
robot models in AI (e.g. Ziemke, Jirenhed, & Hesslow, 
2005). These theories view thinking as mental simulations 
rooted in perception and action. Simulation theories claim 
that thinking is the (predictive) coupling of covert actions 
and perceptions, i.e., reactivations of perceptions and 
actions (cf. e.g. Hesslow, 2002, see also Figure 1). That 
means, covert actions can internally generate sensory 
feedback (a covert perception) without actually having to 
perform the corresponding action in the environment and a 
covert perception may generate a covert or overt action. 
Coupling covert actions and perceptions may lead to long 
chains of simulated interactions. 

The existence of covert actions and perceptions in 
cognition is supported by a wide range of empirical research 
(Svensson, 2007; Svensson, Lindblom, & Ziemke, 2007). 
For example, motor imagery experiments have shown that 

mentally (covertly) simulating an action is similar to overt 
action in the following aspects: execution time including the 
reproduction of Fitt’s law and isochrony (e.g. Grush, 2004; 
Guillot & Collet, 2005), physiological effects (e.g. Yue & 
Cole, 1992), PET, fMRI, and TMS responses (e.g. 
Jeannerod, 2001). Although the reactivation of actions is 
most pronounced in motor imagery, similar effects have 
been found in many other cognitive abilities (for a review 
see Svensson et al., 2007). Simulation theories address 
many cognitive functions, but this paper focuses on the 
general ability to construct an inner world that can be used 
instead of the real world, i.e., the ability to construct mental 
simulations of previous and future agent-environment 
interactions. We argue that mental simulations consist of the 
neural processes used for implicit, internal, and external 
anticipation. The view of simulation presented here 
incorporates ideas from a number of other models of 
simulation theories (Baldassarre, 2002; Cotterill, 2001; 
Hesslow, 2002; Shanahan, 2006). Furthermore, we propose 
a novel architecture, based on Echo State Networks (ESNs), 
for computationally modeling the external anticipation 
aspect of simulation processes in a simple mobile robot and 
present some initial results. 

Neural pathways of simulation 
As simulation processes are likely to be part of many 
different cognitive functions their implementation in the 
brain requires the recruitment of several areas and neural 
mechanisms. In this section, we distinguish three different 
functional parts of the simulation process, partly based on 
their neural substrate: implicit anticipation, internal 
anticipation, and external anticipation. Implicit anticipation 
refers to sensorimotor anticipations that are only 
behaviorally instantiated, internal anticipations involve 
predictions of future bodily states, and external anticipation 
refers to predictions of exteroceptive inputs.  

Implicit Anticipation 
An implicitly anticipatory animal is capable of anticipatory 
behavior without having a model of its own body, cognitive 
system, or the external environment (Butz, Sigaud, & 
Gérard, 2003). In the mammalian brain, the cerebellum 
learns implicit predictions in the form of associations 
between a stimulus and action (e.g. Downing, in press). 
Several models suggest that also the basal ganglia learn to 
match actions with sensory situations on the basis of the 
expected future rewards of performing that action. Even 
though the animal learns to behave as if it has access to 
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what the reward is, the learning process does not establish 
representations of what the reward is but only behavioral 
programs (Downing, in press).  

An animal capable of simulation processes is likely to 
reuse the mechanisms for implicit anticipation. The need to 
select actions is just as important for a simulation process as 
it is when interacting with the environment (cf. Humphries 
& Gurney, 2002). It is not viable to simulate every possible 
action and its consequence. The same neural circuitry might 
also control whether or not an action should be executed or 
merely simulated (Cotterill, 2001). The idea that simulation 
processes are dependent on implicit anticipations produced 
by cerebellar and basal ganglia circuits is consistent with 
neuroimaging studies which show activation of both the 
cerebellum and basal ganglia in motor imagery (Jeannerod, 
2001). Single-neuron studies have also provided evidence 
for predictively activated motor representations in the brain 
(Cisek & Kalaska, 2004). They could show by recording 
neurons in the dorsal premotor cortex of monkeys that these 
neurons fired both during the performance of the task and in 
anticipation of the task. Furthermore, the predictive and 
performance related activity was strikingly similar. Also, 
canonical neurons could be seen as implementing a 
prediction of an action (cf. Miall, 2003). 

Internal Anticipation 
Internal anticipation means that the animal has a model of 
its own body. Thus, the animal can use predictions of the 
future state of its body to influence its behavior. It is widely 
believed that, in mammalian brains, the cerebellum 
implements an internal model of the bodily consequences of 
performing a certain action in a certain situation (i.e., a 
forward model) (e.g. Doya, 1999; Wolpert, Miall, & 
Kawato, 1998). The model can be used to produce 
predictions in the form of a state representation or in the 
form of sensory information (Wolpert et al., 1998). The 
motor system needs to act on this predictive knowledge of 
future states to, for example, compensate for feedback 
delays (Wolpert et al., 1998) Furthermore, it has been 
suggested that the sensory predictions can be feed back to 
the cerebellum to generate further state or sensory 
predictions, perhaps in cooperation with the basal ganglia 
(e.g. Doya, 1999; Grush, 2004; Wolpert et al., 1998). Thus, 
mental simulations that are about, or need information 
about, the details of performing an action is likely to be 
mediated by simulation processes in a cerebellar-cortico-
basal ganglia circuit. For example, this would be the case in 
athletes engaging motor imagery of their sports.  

External Anticipation 
An animal capable of external anticipation is an animal with 
the ability to generate predictions that describe the state of 
the world. Suggestive evidence has been found for external 
anticipation in rats. In one type of experiment, a rat is first 
subjected to a learning scheme where one action (e.g. lever 
pressing) results in one type of reward and the other action 
(e.g. chain pulling) results in another type of reward. 

Subsequently, outside the previous learning context, one of 
the rewards is made less desirable for the rat. The result is 
that the rat chooses the action associated with the now more 
desirable effect, which suggests that the rat is able to predict 
the resulting reward stimulus of performing lever pressing 
and chain pulling (cf. e.g. Balleine & Dickinson, 1998; J. 
Hoffmann, 2003). The existence of response-effect 
predictions has been found in several experiments with 
humans as well (reviewed in detail in Kunde, Elsner, & 
Kiesel, 2007). Furthermore, some of these experiments 
suggest that the effects are in the form of covert perceptions 
as suggested by simulation theories (Kiesel & Hoffmann, 
2004; Kunde, 2003 in Kunde et al., 2007).  

External anticipations are likely to involve the neocortex 
and the hippocampus (e.g. Cotterill, 2001; Downing, in 
press; Hawkins & Blakeslee, 2004). The hierarchical 
structure of the motor and sensory cortices and the 
reciprocal connections between them at various levels 
(Fuster, 1997, 2004) suggest the possibility of the cortex 
implementing both predictions from motor to sensory 
activity and the reverse. Cotterill (2001) argued that 
premotor areas send information back to the sensory cortex 
by way of axon collaterals. He further noted that “there are 
three such efference copy routes…One goes directly, 
another passes through the anterior cingulate, and the third 
goes via the thalamic ILN” (p. 22). Efference copy routes 
might indeed be a ubiquitous property throughout the 
sensorimotor hierarchy (Hesslow, personal communication 
cf. Fuster, 2004). Gomez et al. (2004) have, based on their 
own experiments with the contingent negative variation and 
other corroborating studies, suggested that there exists an 
attentional-anticipatory system that “include[s] not only the 
frequently described prefrontal, SMA, and primary motor 
cortices, but posterior parietal cortex, cingular cortex, and 
pulvinar thalamic nuclei too. The neural substrate of the 
perceptual domain is not so well-described, but, of course, 
the participation of primary sensory areas has been 
hypothesized” (p.67). Gomez et al.’s studies do not, 
however, show decisively how the preparatory activity of 
the sensory cortex is elicited, i.e., directly via the sensory 
cue or indirectly by preparatory activity of the motor related 
cortices. The study by Kastner et al. (1999) shows influence 
from frontal and parietal areas on extrastriate cortex during 
covert attention shifts, suggesting the possibility of motor 
areas modulating the activity of sensory areas in an 
anticipatory manner.  

The mirror neuron system might also be implicated in 
external anticipations. Projections from area F5 of the 
ventral premotor cortex, through area PF, and to STS, 
essentially “convert[s] the motor plan back into a predicted 
visual representation (a sensory outcome of the action)” 
(Miall, 2003). However, it should also be pointed out that 
Miall (2003) argued similar transformations might be 
implemented by pathways incorporating the cerebellum.  

The likely existence of explicit predictions and the 
observation of reactivations of covert perceptions 
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throughout the sensory cortices suggest that they have an 
important function in mental simulations. 

Experiment 
The main purpose of the experiment in this paper is to test 
whether a model of external anticipations based on an echo 
state network (ESN), could be implemented in a mobile 
robot and be made to generate “mental” simulations. 
Although, the robot model at this point does not map 
entirely to the possible simulation pathways of the 
neocortex described above, the ESN has been shown to 
exhibit some of the computational properties of the 
neocortex. Thus, the focus is here to come up with an 
existence proof rather than a full implementation and 
account of the view of simulation outlined above.  

Related Work 
Our robot experiment takes inspiration from the previous 
robot experiments performed in our lab (Jirenhed, Hesslow, 
& Ziemke, 2001; Ziemke et al., 2005) as well as some other 
neurobiologically inspired models (Baldassarre, 2002; 
Gross, Heinze, Seiler, & Stephan, 1999; Shanahan, 2006; 
Tani & Nolfi, 1999). These models have shown that it is 
possible to produce accurate predictions, which can be used 
to establish simulations, and they outperform reactive 
models. Functionally, our and the previous models tries to 
learn a forward model, i.e., sensory and motor states (or 
context) are used as input and the architecture outputs future 
sensory states (and motor states). Previously, both 
supervised learning and global reinforcement learning 
algorithms (evolutionary learning) have been used to 
establish the predictions.  

Even though there are successful models of simulations in 
various tasks, producing simulations is not trivial. For 
example, Jirenhed et al. (2001) were not able to generate 
extended simulation behaviors in h- and T-shaped mazes 
and Ziemke et al. (2005) were not able to generate 
successful simulations based only on proximity sensors of a 
simple robot in a simple environment. Tani and Nolfi 
(1999), on the other hand, achieved almost perfect 
prediction performance using a recurrent version of the 
adaptive mixture of local experts approach. Baldassarre’s 
(2002) model with a similar type of architecture produced 
higher prediction errors, but was still able to perform well. 
On the other hand, prediction errors can be problematic. 
Jirenhed et al. (2001) found that their robot failed to predict 
sensors that were seldom active, which could explain the 
robot’s failure to develop extended simulations. 

Experimental Setup 
The task of the robot in our setup is to navigate blindly 
through a square shaped environment consisting of four 
equally long corridors (see Figure 2, left), similar to the 
world used by (Ziemke et al., 2005). In the learning phase, 
the robot is controlled by a simple behavior program that 
allows the robot to move along the corridors 
counterclockwise. During this time the robot learns to 

predict the sensory inputs and the motor outputs at the next 
time step. In the test phase, the robot, instead of receiving 
inputs from the environment uses its learnt predictions.  

Figure 2. (Left) Webots simulator. (Right) Motion 
trajectories of the robot. See text for details 

 
The robot experiment was performed using a simulated E-

puck robot (www.e-puck.org) running on a robot simulation 
platform (Webots 5.10.0). The e-puck has a circular body 
with a diameter of 70 mm, and is equipped with 8 infrared 
proximity sensors around its body with a range of 
approximately 6 cm. It has two motors, which 
independently control the two wheels, one to each side. The 
wheels can rotate forward and backward independently, 
such that the robot can turn on the spot if they rotate in 
opposite directions.  

Architecture  
The architecture of the robot controller is based on an ESN. 
ESNs and liquid state machines (LSM) introduce new 
computational features that may allow us to model even 
more complex tasks. The ESN provides a somewhat 
biologically plausible model for external anticipations in 
mental simulations, which is described in this section.  

Although its exact make up and function is debated in 
neuroscience, the neocortex consists of units called 
microcolumns (Hawkins & Blakeslee, 2004; Mountcastle, 
1997). Our aim here is not to model the specific circuitry 
and make up of cortical micro-columns, but rather to model 
the following four properties of real cortical micro-columns 
(Markram, Wang, & Tsodyks, 1998). (1) Cortical micro-
columns are observed to be non-chaotic. (2) Cortical micro-
columns do not display stable attractor dynamics (their 
activity quickly decays on cessation of input). (3) Input size 
to cortical micro-columns is sparse relative to the size of the 
micro-column. (4) The state space achieved by an active 
‘firing’ micro-column is large and sensitive to its input. 

The reason we focus on these specific properties of 
biological cortical micro-columns is that they turn out to 
have very useful computational implications by making 
highly non-linear features linearly separable much as a 
kernel warping function does (cf. Cristianini & Shawe-
Taylor, 1999), and also by acting as a fading memory 
(Maass, Natschläger, & Markram, 2002). 

As a starting point then we use the ESN to model the role 
of the cortex in simulation processes. The ESN that was 
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used to perform the robot experiment reported here is 
derived from a random weights matrix populated with 20% 
connectivity and adjusted so as to have a spectral radius < 1, 
i.e. |λmax| < 1, where λmax is the eigenvalue of w which has 
the largest absolute value, thus the ESN is uniquely 
controlled by the input and the effect of initial states 
disappears. By observation this would also seem to be true 
of cortical micro-columns. The ESN reservoir is cycled 
according to standard DTRNN equations: ai = Σyj wij + ii 
where neuron output is computed by: yi = tanh(ai). and input 
to the reservoir is provided via weights generated by the 
same method as the ESN weights, except a higher 
connectivity (80%). 
 
Controller The architecture controlling the robot consists of 
an input and output layer of perceptrons and a hidden layer 
consisting of the ESN just described. The input layer 
receives eight inputs from the robot’s proximity sensors, as 
well as two motor inputs (normalized to values between 0 
and 1).  

The output layer consist of 10 units that use the sigmoid 
activation function, i.e., the outputs are between 0 and 1, 
which for the two motor units means that 0 corresponds to 
full speed backward rotation, 0.5 corresponds to no motion, 
and 1 corresponds to full speed forward rotation. The output 
layer is trained online by a simple supervised learning 
scheme using a standard delta rule: Δwi = α(a p(1 - a p))(t p – 
a p)xi

p. At every time step the motor units of the output layer 
is feed back to the ESN and used as additional inputs. 

In the testing phase, there are two modes of behavior in 
which activations of the output layer units influence the 
behavior of the robot in different ways. In blind sensory 
mode, activations of the 8 output units that correspond to 
sensor input are copied to the input layer and used in place 
of the robot’s sensory input. In this mode, the robots motor 
output is then generated by the predefined motor program. 
In blind all mode, both the sensor and motor output units are 
copied back to the input layer and used to control the 
behavior of the robot. 

Results and Analysis 
Figure 2 (right) shows a plot of the path traversed by the 
robot during four different conditions, normal (top left), 
blind sensory with walls (top right) and with the 
surrounding walls removed,(bottom left) and blind all with 
no walls (bottom right). The behavior of the robot in the 
blind modes (red dotted lines) closely corresponds to the 
behavior of the normal mode (black full line). The slightly 
skewed path seen in the blind behaviors without the 
restricting walls (lower half of Fig. 2, right) is partly due to 
the predefined motor program which allows the robot to 
slide against the walls during the turns, which means that 
while the motor program dictates a certain path it becomes 
restricted by the surrounding walls.  

Figure 2 (right) shows only one lap for each blind mode, 
but the simulations are able to carry on for more than one 
lap, although it is worth noting that a single lap already 

consists of simulations that are 200 time steps long. The 
graph in Figure 3 shows the difference between the 
internally generated input and the actual input summed over 
all ten inputs (8 sensory and 2 motor) during 1300 time 
steps. The robot is able to generate relatively accurate 
simulations for roughly 800 time steps. However, as seen in 
the Figure 3 the difference between the real and simulated 
increases rapidly after that.  

 

 
Figure 3. Difference between normal and blind all mode 

for all output units at each time step 
 

Hoffmann & Möller (2004) also reported an accumulation 
of error as the chains of predictions increase in length, but 
that the errors still are very small. Even though the increase 
in difference might suggest that the robot stops simulating 
the inputs, it is more accurately described as the simulation 
going out of phase. More specifically, it is due to the timing 
of the corners getting out of sync with the real world. This is 
illustrated in Figure 4, which plots the two front sensors. 
The peaks indicates that the robot approaches a corner and 
we can see that around the 800th time step the peaks of the 
simulated and real front sensors starts to go out of sync. 
However, it is noticeable that the simulated sensors continue 
predicting a wall even though they do not get the timing 
right. The average one-step predictions errors were quite 
low (0.02/output unit).  

 

 
Figure 4. Front sensors: normal (red) and blind all mode 

(blue, dashed). 

Discussion and Conclusion 
There are at least two criteria which can be used to asses 

whether our model generates simulation processes. 
Internally generated states should be similar to the states 
observed in normal interactions. A weaker criterion 
consistent with the reactivation hypothesis is the reuse of 
the same mechanisms or the same resources used for online 
interactions in simulations. The predicted sensory and motor 
states as well as the internal states of the ESN (not 
illustrated, due to space restrictions) have been shown to 
closely correspond to the “real” ones. Thus, according to the 
first criterion the model models simulation processes. The 
model also uses the same resources since the same neural 
networks and weight matrices are used in covert and overt 
operation modes, except for the blind sensory mode where 
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the external behavior rules are used to generate the motor 
output.  

The model implements external anticipation since (1) 
ESNs model aspects of neocortical processing, which, as 
discussed above, is particularly involved in such predictions 
and (2) it is used to predict the sensory input generated by 
the environment. The generation of overt and covert actions 
was achieved by a hardwired behavior program or the ESN 
(in blind sensory mode). Thus, the model can be said to in 
this mode to minimally model implicit anticipation in the 
form of simple stimulus-response associations mediated by 
cerebellar circuits. However, it lacks the learning 
mechanisms associated with cerebellar and basal ganglia 
mediated implicit anticipation. To more fully incorporate 
implicit anticipation, the current architecture could be 
extended to also include a separate neural network for 
learning and generating overt and covert actions based on 
reinforcement learning principles (e.g. Baldassarre, 2002). 
The ability to model the distinction between external and 
bodily prediction is, however, limited when using a robot 
with a very simple morphology such as the E-puck robot. 

Ziemke et al. (2005), who used a similar kind of 
simulated robot, world, and task, but used a computationally 
simpler architecture were not able to generate successful 
simulations based only on proximity sensors of a simple 
robot in a simple environment. By using another sensor they 
were able to establish blind navigation, but curiously, this 
time the generated sensory predictions did not correspond to 
the real sensory input, i.e., it did not actually simulate the 
sensory input. Still, it was able to travel the world blindly. A 
possible explanation of why the robot in the current robot 
experiment managed to internally generate sensory input 
that closely matched the input from the proximity sensors is 
the fading memory of the echo state network. The particular 
150 neuron ESN reported here has a “memory trace” of 
roughly 20 time steps, which exceeds the number of time 
steps without sensory input from a corner wall. 

A major issue for robotic models of simulation theories 
has been the ability and usefulness of abstractions, i.e., 
changing the level of granularity of the simulations. This 
has earlier been done by a number of different methods, 
such as chunking similar sensory input to some form of 
concept (e.g. Holland & Goodman, 2003; Stening, 
Jakobsson, & Ziemke, 2005) or simply train to predict a 
situation with a sensory situations x time steps ahead. The 
current model did not change the level of granularity, but 
the fading memory of the ESN allows the robot to have a 
more holistic view of the situation it is currently in, that 
spans backwards in time. Thus, although it does not allow 
the simulations to occur on a faster time scale, by predicting 
several time steps ahead in each simulation step, it might 
embody some of the benefits of a hierarchical system in 
which higher levels of abstraction influences the predictions 
at lower levels. This, and the issue of abstraction in mental 
simulations, remains to be investigated in more detail. 

Although the task is relatively simple it is comparable to 
mental imagery, in particular motor imagery of cyclic 

movements such as walking and paddling, which have been 
shown to closely match the time the take to actually perform 
them (cf. Guillot & Collet, 2005). However, it has also been 
shown that a number of different variables affect the speed 
at which an action is imagined. For example, a higher level 
of expertise as well as simpler tasks leads imagery processes 
with the same speed as performing the action (Guillot & 
Collet, 2005). Thus, given that we investigated a simple task 
involving cyclic actions and extensive training the robot 
should and were able to “imagine” the “walk” at a similar 
speed as the actual “walk”. Prior robot studies of simulation 
theory have put little emphasis on matching the speed of 
mental imagery processes except for speeding up the 
simulations by decreasing the level of detail. While it is 
likely that the level of detail decreases when a task is 
imagined faster than it is performed, the actual speed of the 
imagery process might also be increased. Although not 
analyzed here in much detail, we observed in many of our 
trials that the simulation process speed increased without 
decreasing the level of detail of the simulations. Future 
studies should investigate how the speed of the simulations 
is affected by different parameters, such as task complexity.  

As indicated above, the robot experiment described here 
uses only a very simple square-shaped environment and 
only serves as a first proof-of-concept of the architecture. It 
should be noted though that the robot experiment has also 
been replicated successfully with more complex 
environments, e.g. with corridors of different lengths and L-
shaped environment, where not all turns are in the same 
direction. Due to space restrictions, these results will need 
to be documented in detail elsewhere (e.g. Svensson, under 
preparation).  
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