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ABSTRACT OF THE DISSERTATION

Evaporation from Air-Water Interfaces at Very Low Grashof Numbers

by

Jessica P. T. Medrado

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Carlos F. M. Coimbra, Chair

The physics of air-water interface transport processes under very low mixing conditions is

still poorly characterized due to the difficulty in balancing the combined heat and mass transfer

mechanisms at play. Such processes are ubiquitous in lab facilities, biological systems and in a

vast number of engineering applications. Correlations for mass transfer rates at very low Grashof

numbers in weakly convective flows are not readily available, which often leads to incorrect

estimations of evaporation rates derived from simplified 1-D models. This work investigates a

number of fundamental free water-evaporation processes at very low Grashof (�A) numbers.

First, the free evaporation from a small-scale circular pool at �A numbers under dominant

downward flow is examined. Experiments performed at normal conditions of temperature and
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pressure (NCTP) and for a wide range of relative humidity values are described and compared to

numerical simulations. A downward thermally-induced flow originated at the rim of the pool

overcomes the concentration-induced buoyancy, consequently forcing the far-stream dry air to

descend into the lower temperature air-water interface. Experimental results show that a somewhat

stable steady-state recirculation zone near the air-water interface develops for �A numbers greater

than or equal to 50. The Sherwood number ((ℎ) for this geometry scales with �A1/4 for drier

free-stream boundary conditions, while it approaches a constant value for smaller mass transfer

potentials (i.e., wetter environments). A (ℎ number correlation as a function of �A number is

proposed, covering �A numbers from 10 to 105.

The mass transport dynamics is also analysed for free evaporation from open tubes. The

mass transport results in complex patterns due to the interaction between the vertical walls

and the buoyant flow. Evaporation undergoes a multi-regime process where, depending on

the driving potential, stable convective cells develop inside the tube. These convective cells

enhance the evaporation rate in most circumstances. The dependence of the diffusion-driven and

convection-driven regimes as functions of the geometrical aspect ratio of the tube is studied. A

new (ℎ number correlation valid for �A numbers ranging from 50 to 4,000 is proposed. This

correlation, which is nearly invariant with temperature, expresses the relationship between the (ℎ

and �A numbers for varying aspect ratios.
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Chapter 1

Introduction

Evaporation of water has been studied in detail for decades. Most of the published

work concerns with forced evaporation, where usually forced convection (i.e., a heated body of

liquid or forced gas stream) is used to impart high mass transfer rates at the gas-liquid interface

[9, 11, 48, 20, 21, 49]. On the other hand, evaporation process without forced convection into the

system has been investigated less often due to the sensitivity of the flow to boundary conditions.

There is a clear need to investigate unforced convection transport processes in order to avoid usage

of inappropriate mass transfer rate correlations in practical applications.

Free evaporation (under unheated conditions) occurs due to a difference in water vapor

concentration at the two sides of the interface. Mass concentration gradients under gravitational

body forces in turn induce convective motion. Because inertial, gravitational and viscous forces

are all generally weak under free conditions, usually negligible radiation effects also become

important. As a result, consideration of non-linear first order and higher order terms in the

governing equations and boundary conditions require simultaneous solution. Despite the fact

that evaporation can develop under (quasi) isothermal conditions, in most free convection cases

interface cooling will develop and induce a measurable temperature drop at the gas-liquid interface.

The temperature drop increases with the mass driving potential, and in general results in gas-side
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temperature gradients that are in opposite direction with respect to the mass concentration

gradients. For horizontal gas-liquid interfaces with non-unity Lewis numbers, this opposing

transport mechanism results in complex patterned recirculation zones even at very low Grashof

(�A) numbers.

As discussed by Sharpley, Boelter, Gordon, and Griffin [39, 6], small water vapor

concentration differences results in substantial changes in the flow structure above the air-water

interface of a small pool. When the concentration difference is relatively high (e.g., heat supply at

the liquid side) the flow is directed primarily upward (also referred to as parallel-flow evaporation),

a rising plume will form above the interface with the saturated air leaving in an upward jet

structure. As the concentration difference decreases (approaching the limit of free evaporation),

the mixture above the air-water interface is denser, leading to a dominant downward flow, which is

also know as contraflow. To interpret these two distinct flow configurations, a common approach

is to assume that a boundary layer forms at the interface, while the temperature of the liquid

remains fixed at some predefined value [50]. The dry air enters the boundary layer from the edges

of the container when the temperature of the water is higher than the ambient temperature. In this

case, the incoming air is characterized by a quasi-stagnant velocity and enters the boundary layer

at near ambient temperatures. If instead, the surface water is colder (but not so cold as to induce

condensation), the dry air will enter the boundary layer at the center of the interface.

Several studies on water evaporation from a heated liquid pool have been conducted.

Sharpley and Boelter [39], provided some of the earliest results suggesting a correlation of the

form (ℎ = � (21/3'0=, where � is constant, to estimate the evaporation rate from heated pans in

quiescent air. These earlier correlations were based solely on experimental observations. Similar

studies were later conducted by Boelter et al. [6], Sparrow et al. [42] and more recently by

Bower and Saylor [9]. Bower and Saylor [9, 10] concluded that for an upward convection, the

power = is affected by turbulence and restrictions of the flow in the proximity of the air-water

interface. For example, power = values found from experimental investigations ranged from 0.213

2



to 0.306. Dollet and Boulogne [17] also studied evaporation under upward convection, but for an

isothermally evaporating disk, with the disk geometry defined as a circular evaporating surface

laying on an infinite plane. In their work, the authors derive a (ℎ number correlation based on

the flux from different zones that theoretically develop in the boundary layer above the air-water

interface. They suggest a correlation where (ℎ' ∼ c/2 (�1 +�2 �A
1/5
'
) with constants �1 and �2

obtained from experimental results. Among the (ℎ number correlations, Sparrow et al. [42] is

the most relevant for evaporation driven by downward flow, a flow structure present in processes

where the air-water interface is colder than the surrounding. The low-temperature interface results

in opposing thermal-concentration buoyant effects.

The boundary layer approach is generally not valid when small scale pool evaporation

processes occur in the presence of opposing thermal-concentration buoyant flows due to inexistence

of a length scale that ismuch smaller than the integral length scale. Opposing thermal-concentration

effects may induce the formation of recirculation zones, which render the analysis of the flow by

analytical methods more challenging. In buoyant flows originating from a flat horizontal surface,

the direction of buoyancy is often orthogonal to the horizontal surface, and for fluids charecterized

by (2 ≠ %A (!4 ≠ 1) the boundary layer approximation is not applicable due to development of

stagnation regions with associated recirculation zones near the surface [37, 44]. These stable but

weak flow fields create additional challenges for experimental observation at such low �A number

flows, ultimately limiting the range of available correlations.

When it comes to the evaporation from open tubes, the 1-D stagnant film solution — often

referred to as the "Stefan diffusion tube" or "Stefan tube" solution, is the most common approach.

The Stefan tube solution allows for high mass transfer (convective) rates at the interface, but it is

essentially a diffusion-controlled process where only one species (the vapor at the interface) is

transported while the background species (air) is stationary. Particularly with respect to aqueous

solutions, high mass transfer rates that require convective corrections are never experienced

under Normal Conditions of Temperature and Pressure (NCTP). Conditions required for the 1-D

3



solution, in fact, are very often not satisfied in practice. The required conditions mainly depend

on tubes with a large aspect ratio (slender tubes, sometimes referred to as small diameter tubes or

long tubes) [23, 29, 21, 49], processes occurring in a relatively wet environment while a sweeping

air stream is imposed over the open-end to establish a locally predefined concentration. Reducing

the evaporation from an open tube to a 1-D problem when these conditions are absent can be

highly inaccurate.

Buoyancy effects driven by the difference of molecular weights between air and water

causes an air-side convective mixing that substantially affects evaporation rates when compared to

1-D model solutions of open tube evaporation. Even in the simplified 2-D Stefan diffusion tube

(axisymetric), the introduction of buoyant effects added to the interaction of the flow with vertical

walls lead to a rather complex velocity and mass concentration profiles [33, 29]. Convection due

to buoyancy inside tubes can manifest according to different modes, with the first mode being the

diametrically-antisymmetric (asymmetric) flow, in which only one convection cell is observed

inside the tube [47, 22, 36, 13].

Free evaporation from open tubes (i.e., no imposed conditions such as solvent stream at

the open-end) was first investigated by Nunez and Sparrow [35], where the authors studied how

the buoyancy would impact the Stefan tube solution. To account for natural convection, they

imposed axial symmetry to solve the conservation equations in the radial and vertical coordinates.

Axial symmetry was subsequently adopted by Sparrow and Nunez [43] and Hsieh and Kuo [24].

Finally, through a detailed numerical and experimental investigation of open tube evaporation,

McBain et al. [30] suggested that the fluid flow inside the tube is not axially symmetric in all

situations, but instead experience the diametrically antisymmetric configuration. In this case,

flow from the surrounding would enter the open tube from one of its sides and leave through the

opposite side. To numerically simulate this condition, they first used a slightly tilted gravitational

field to establish the diametrically anti-symmetric mode of the flow. The result was then used

as a first guess solution to the subsequent non-tilted steady-state simulation. After running the
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free evaporation of water for a range of �A numbers, they were able to accurately predict the

dimensionless evaporation rate, the (ℎ number, for an aspect ratio (�') equal to 4 (�' being the

ratio between the distance from the air-water interface to the open-end and the radius of the tube,

!/'), with agreement between theory and experiments. The diametrically anti-symmetric model

allowed them to correct at which critical �A number the onset of the convection driven regime

would occur: a value 5 times lower than what was estimated from axially symmetric models [30].

It is worth mentioning that Zion et al. [25] also studied the evaporation from different geometries

including open tubes (referred to by the authors as well), however for the evaporation of a heavy

solute (hydrocarbons) in a light solvent (air). They concluded that for this specific condition,

buoyancy has a negligible effect on the evaporation rate from an open tube (well), resulting in the

process being diffusion-dominated and therefore the 1-D approximation sufficient to estimate the

evaporation rate.

For a light solute evaporating in a heavy solvent (i.e., water into air), McBain et al. [30]

demonstrated that blowing effects are negligible at the gas-liquid interface for processes at low

�A numbers. Instead, the strong buoyancy is what brings the evaporation problem into regimes

mostly dependent on the multidimensional distribution of the species concentration at the air-side.

Yet, despite their important contribution, numerous questions regarding free evaporation from

open tubes remain unanswered and because of that, existing mass transfer correlations are not

available in the literature.

In order to cover the gap related to free evaporation, this work investigates two distinct

evaporation systems: free evaporation from pools and from open tubes. While the former represents

the case of unbounded natural convection driven by free evaporation, in the later constraint domain

effects are introduced as buoyancy is bounded by the walls of the container. Both systems are

numerically and experimentally investigated across a wide range of background relative humidity

values under NCTP. Experimental results are obtained from a pressure-temperature-humidity

controlled chamber which defines the far stream conditions for the boundary-value problem. A
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high precision balance placed inside the chamber measures the amount of liquid evaporating

for the ascribed conditions of temperature, pressure and relative humidity. Temperature sensors

and a hygrometer measure the respective temperature and relative humidity far away from the

evaporating surface during the process. A finite-element numerical model is applied to the same

experimental conditions. In the model, the mass, momentum and energy conservation equations

are simultaneously solved for the given far-stream or environmental (in this work also referred to as

the 4-state) conditions. Because the evaporative processes under study here are weak, quasi-steady

laminar flow conditions are assumed for each 4-state. Moreover, boundary conditions at the

interface are in accordance with the balance between heat diffusive-convective and mass flows

from the liquid side, from the gas side and from surface radiation, as all contribute to the heat

of vaporization due to the ongoing phase change process. The agreement between numerical

and experimental results allows for the extending of numerical simulations to a vast range of

geometrical aspect ratios and thermodynamic states. Based on the validated numerical results, (ℎ

number correlations as functions of the �A numbers are then proposed for pool evaporation and

open tube evaporation.
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Chapter 2

Pool evaporation

Natural convection driven by free evaporation of water into moist air is a complex multi-

physics process involving combined heat and mass transfer. The Grashof numbers (�A) relevant

to laboratory-scale evaporation of water in air under gravitational forcing range from unity to

several million. While several studies was conducted to characterize high �A number flows,

small �A number processes lack examination since they are prone to the intermittent formation of

toroidal ring-like jets and recirculation zones near the air-water interface. Nonetheless, detailed

rates of water evaporation into air under low �A numbers are needed to understand a number of

natural processes and engineered applications such as spore dispersal mechanisms developed by

fungi [18], water desalination systems [2], geothermal engineering [8, 7] and microscopic DNA

mapping [3, 19]. Several recent papers investigate geometrical, composition, and surface related

effects on gravitationally-driven liquid evaporation under different environmental conditions (see,

e.g., [12, 26, 48, 11, 14]).

Here, we study �A number regimes relevant to the common phenomena involving pool

sizes comparable to a glass of water or a laboratory beaker, where opposig bouyant effect and

recirculation zones above a horizontal air-water interface are present. We develop precision-

controlled experiments and appropriate numerical simulations to study stable conditions that
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naturally form from the thermally-driven downward convection towards the interface. For �A

numbers on the order of 50 and above, experimental results reveal that the recirculation zone is

stable, that is, moderate heterogeneities of the surrounding impart a negligible effect in the net

mass and heat transfer.

In addition to carefully designed experiments, we use Finite Element Model (FEM)

numerical simulations to simulate the natural convection due to evaporative processes in the

presence of downward thermal and upward concentration buoyancy induced flows. The simulations

are carried onwithout the need to enforce a predefined temperature at the interface, thus reproducing

the experimental setup. As such, we allow evaporative cooling to take place so that there is

equilibrium at the air-water interface for given environmental temperatures and relative humidities.

Boundary conditions at the interface are defined in accordance to heat and mass balances such that

the heat of vaporization is the sum of the diffusive-convective heat flow contributions from the

liquid side, from the gas side and from surface radiation. Because mass fractions of water vapor

in air are small at room temperatures (low mass transfer process), the downward thermal-induced

buoyant force dominates over the concentration-induced buoyancy, which results in a net downward

oriented flow in the far-stream field, sustained by a toroidal ring-like jet originating at the rim of

the pool. Numerical simulations then extended to lower �A numbers indicate that the (ℎ number

converges to a nominal value (the pure diffusion limit). In the light of this result, we propose a

universal correlation valid for a range of �A numbers between 10 and 100,000.

2.1 The physical problem

Water evaporates from a cylindrical container in a controlled environment. Constant

values of temperature, pressure and relative humidity away from the air-water interface define both

the thermodynamic condition and the water vapor concentration of the (far-stream) environment,

or the 4-state (see Figure 2.1). Under quasi-steady conditions, the evaporation process achieves a
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near-stationary rate for each combination of )4, %4 and RH4. Gravity-induced natural convection

due to thermal and concentration gradients are the main driving mechanisms for fluid motion

on the gas side. For modeling purposes, we assume the buoyant forces to follow the Boussinesq

approximation, where the density variations are considered to be relevant only in the buoyancy

terms of the momentum equation. The radius of the container is the length scale of interest for

both the thermal and mass Grashof numbers:

�A') =
6V) ()B −)4)'3

a2
6

(2.1a)

�A'<
=
6V< (<1,B −<1,4)'3

a2
6

(2.1b)

as well as for the Sherwood number:

(ℎ' =
g<1'

dD12
=

¤<′′'
B<1dD12

. (2.2)

The interface mass flux ¤<′′ and the mass driving potential B<1 are related through the

mass transfer conductance of species 1 (water vapor) g<1 as ¤<′′ = g<1B<1 , while the mass

driving potential is defined as (for more details see reference [34])

B<1 =
<1,B −<1,4

1−<1,B
. (2.3)

The average Sherwood number is expressed as a function of the combined thermal and

concentration Grashof number, and averaged over the entire surface area of the air-water interface

B.

The heat flux from the liquid side, from the gas side, and the radiative heat exchange

between the air-water interface and the surrounding environment all play a part in determining the

combined heat and mass transfer rates for given conditions. The sensible, latent and radiative heat
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fluxes are all very small in this problem, so the relative balance between each of these different

transfer mechanisms requires careful consideration. Here we assume an infinitely thin interface

without impurities, which leads to temperature continuity (i.e., thermal equilibrium) on both sides

of the air-water interface. The interface temperature drops due to the loss of thermal energy

from the liquid molecules left in the liquid state as water molecules evaporate into the vapor

phase. Due to the high enthalpy of vaporization of water, the temperature drop at the interface

is felt throughout the depth of the liquid pool. The liquid pool is shallow for its characteristic

conduction length scale, therefore convection and surface tension circulations induced by small

thermal and density gradients on the liquid side are weak, so that the heat flux from the liquid side

to the interface approaches the value found by considering a hydrostatic pool with no circulation

induced by thermal effects. However, the nonslip condition at the air-water interface induces

liquid motion, and this effect is taken into account in our numerical simulations. Under normal

conditions of temperature and pressure, the equilibrium saturation temperature (approximately

the wet bulb temperature) and associated mass fraction of water vapor on the gas side are both too

small to induce Stefan flow across the interface, so the problem under study here involves low

mass transfer rates only.

Overall, the low mass transfer rate process is a combined heat and mass transfer problem

regulated by a delicate balance between natural convection and radiative heat transfer rates. The

convective transfer process results from complex gravity-induced flow patterns on the gas side of

the interface.

2.1.1 Governing equations and boundary conditions

On the liquid side, the governing equations for mass, momentum, and energy conservation

are:

∇ ·u = 0 , (2.4)
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u · ∇u = − 1
d;
∇? + a;∇2u , (2.5)

u · ∇) = U;∇2) . (2.6)

The governing equations on the gas side are also derived from the mass, momentum,

energy and species conservation equations. The gas is considered a binary ideal gas system

formed by water vapor and dry air:

∇ ·u = 0 , (2.7)

u · ∇u = − 1
d6
∇%+ a6∇2u+6 (V<Δ<1 + V)Δ)) k̂ , (2.8)

u · ∇) = U6∇2) , (2.9)

u · ∇<1 = D12∇2<1 . (2.10)

The symbol % indicates pressure (including the gravitational potential ? +6Id6), and the symbols

V< and V) are respectively the mass and thermal volumetric coefficients of expansion. More

details about these coefficients are given in Appendix A. Since the absorption of air in water is

negligible, we assume that only one species is being transferred (water vapor and denoted by the

subscript 1) at the interface.

The set of governing equations are subjected to the following boundary conditions (see
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Figure 2.1.a for reference). At all surfaces at the 4-state we have

u = 0 , (2.11a)

) = )4 , (2.11b)

<1 = <1 (RH4, )4) , (2.11c)

∀ G, H, I in 4.

chamber

e-state

balance

container

z

x

y

qc,s ·m′ ′ hfgqr,s

qc,u

s

liquid side

u

a) b)

gas sidew surface

Figure 2.1: a) Schematic view of the experimental setup and the coordinate system of reference
used in the study of water evaporating from a small container. The origin of the coordinate
system is at the air-water interface. At the 4-state, values of the temperature, pressure and
mass concentration of water vapor are known (determined by measurements). b) Schematic of
the energy transport dynamics at the air-water interface. The interface receives energy from
radiation @A ,B, gas-side convection @2,B and liquid-side convection @2,D , while releasing thermal
energy through ¤<′′ℎfg as the water evaporates.
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At the air-water interface (using the Cartesian coordinate system depicted in Fig. 2.1):

DG (I = 0+) = DG (I = 0−) , (2.12a)

DH (I = 0+) = DH (I = 0−) , (2.12b)

DI = 0 , (2.12c)

`6
mDG

mI

����
I=0+

= `;
mDG

mI

����
I=0−

, (2.12d)

`6
mDH

mI

����
I=0+

= `;
mDH

mI

����
I=0−

, (2.12e)

) (I = 0+) = ) (I = 0−) = )B (A) , (2.12f)

−d6D12
m<1
mI

����
I=0+

ℎfg + Yf()4
B −) 4

4 ) = −:6
m)

mI

����
I=0+
− : ; m)

mI

����
I=0−

, (2.12g)

<1 = <1 (%sat, )B) , (2.12h)

∀ G, H in B, and for I also in B (I = 0). The symbol D12 refers to the binary diffusion coefficient of

water vapor in air [34] (see appendix), ℎfg to the enthalpy of vaporization evaluated at )4, and

Y to the emissivity of the water, here considered as a blackbody for longwave radiation. Note

that the interface energy balance (Eq. 12g) implies low mass transfer rates explicitly, as expected

for a air-water interface at ambient temperatures. Inclusion of Stefan fluxes does not change the

numerical results for the conditions under study.

The water vapor at the interface is saturated at the local interface temperature, )B. The

mass fraction <1 depends on the partial pressure of species 1, which in turn depends on the
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saturation pressure. The saturation pressure for water vapor is obtained according to the Tetens

equation of state [46], as described in the appendix.

Continuity of temperature and continuity of heat flow are imposed between the vertical

walls of the container and the surrounding fluid (water or air), while zero mass flux is applied at

the walls of the container exposed to the gas side:

) = )f , (2.13a)

n · @ = :f∇) | f , (2.13b)

∇<1 = 0 , (2.13c)

∀ G in F,∀ H in F and ∀ I in F.
In order to investigate the effect of boundary conditions at the bottom of the liquid pool,

we consider two different conditions: specified temperature equal to )4 (equivalent to assuming

a thermal reservoir at temperature )4 under the container); and zero heat flow at the bottom of

the pool. The real condition depends on the thermal losses by the pool walls. In this study,

the dimensions of the pool were selected to minimize surface tension (meniscus) and internal

circulation effects.

2.2 Mass transfer correlations

The Sherwood number (ℎ for forced flow evaporation can be expressed as (ℎ = (ℎ0 +
�'4<(2=, so that

(ℎ = (ℎ0 +�
(
*2!2

a

)< (
a

D12

)=
, (2.14)
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in which (ℎ0 is the dimensionless mass transfer rate in the pure diffusion limit,*2 the characteristic

velocity and !2 the characteristic length. The exponent < is 1/2 for laminar flow and approaches

4/5 turbulent flow, whereas the exponent = is 1/3 for %A numbers higher than 0.5 in laminar flows.

In free evaporation, the characteristic velocity of the flow depends on the ambient condition

into which the process is subjected. In a dry atmosphere, for instance, the velocity of the gas

reaches values on the order of 10−2 m/s. Since in this problem the characteristic length is on

the order of centimeters, the Grashof number is of order 10, indicating that the inertial forces

are slightly dominant over the viscous forces. Under this circumstance, the buoyancy term in the

conservation of momentum equation scales with the convective term, resulting in a characteristic

velocity proportional to the square root of the total Grashof number:

O
(
*2

!

)
∼ O(6V) () −)4) +6V< (<−<1,4)), (2.15a)

or

* ∼ a

!2
�A

1/2
!2
. (2.15b)

For evaporation occurring at high relative humidity, the velocity of the system tends to

zero due to the weaker driving forces, in turn leading to a buoyant force proportional to the viscous

forces and the characteristic velocity proportional to the total Grashof number:

O
(
a
*

!2
2

)
∼ O(6V) () −)4) +6V< (<−<1,4)), (2.16a)

* ∼ a

!2
�A!2 . (2.16b)

The Sherwood number would then become proportional to �A1/2. However, the tem-

perature and mass concentration gradients are greatly reduced in this condition, which lead to
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variations in the Sherwood number likely negligible for Grashof numbers near zero. As a result,

for Grashof numbers near zero the dimensionless evaporation rate would be around the diffusion

limit value, that is

(ℎ = (ℎ0 +�a (2
1/3�A1/2 ≈ (ℎ0 (2.17a)

to then increase proportionally to the 1/4 power on the Grashof, as the Grashof number increases:

(ℎ = �b+�c (2
1/3�A1/4. (2.17b)

hygrometer

manometer

IR sensor

balance

to valves

A

A

a) b)

section A-A

Figure 2.2: Schematic view of the vacuum-sealed chamber (a) and its interior (b, section A-A),
the experimental setup used to measure the evaporation rate of water from a small container
under downward convection. The high precision balance weights the remaining liquid water
inside the pool as water evaporates. A hygrometer positioned away from the pool records the
relative humidity inside the chamber. A manometer positioned on top of the setup reads the
interior pressure, and 10 thermocouples type-K (not shown in the Figure) spread throughout
read the chamber’s interior and wall temperatures. A downward-facing infrared (IR) sensor
measures the averaged air-water interface temperature.
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2.3 Experimental method

A small container is completely filled with water and left to evaporate inside a vacuum-

sealed chamber, as shown in Figure 2.1. The atmosphere of the chamber is thermodynamically

controlled and the container is placed over a high precision balance (4212B-102, A&D) that

measures the remaining amount of liquid water. The chamber, made of stainless steel 304L, has a

cylindrical shape with the inner diameter and inner length respectively around 0.3 m and 0.7 m in

size. The longitudinal axis of the chamber is in the horizontal position, with the balance placed in

the center as showed by Figure 2.1. The chamber was manufactured to have channels along the

walls serving as passages for a working fluid driven by a chiller (Thermo Scientific Accel 500 LT).

Through the recirculation of the working fluid it is possible to set the temperature of the walls of

the chamber to a desired value.

The chamber is properly equipped with sensors that allow the full control over its

thermodynamic state. A high precision chilled mirror dewpoint hygrometer (Optidew Remote,

Michell) is used to measure the relative humidity of the chamber’s interior. The relative humidity

is decreased by forcing the air against a compartment filled with molecular sieve, which retains

the water vapor molecules in its pores while drying out the air. Ten type K thermocouples are

used to measure the temperature inside the chamber, 6 of which are directly attached to the walls.

The inside pressure can be set to any value within the range of 1 to 0.1 atm. Once defined, the

pressure at which the experiment is conducted is kept constant while a capacitance manometer

(CMX1, Brooks Instrument) records the pressure level. Lastly, the temperature of the air-water

interface is measured by an infrared sensor (1045 B, Phidgets) with a 10◦ field of view. The

sensor is positioned in such a way as to read only the average temperature associated with the

interface. Figure 2.2 is a schematic depiction of the experimental setup.

For each experimental run, the balance is re-calibrated and the hygrometer reset. In order

to assure that the system is in quasi-steady state, the first one to two hours after the preparation
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stage are discarded. As the water evaporates, the level of water in the container decreases, and to

guarantee that the container stays completely filled during the measurements, the entire process is

repeated for different targets of relative humidity. No mechanism keeping the relative humidity

constant is applied during the experiments, in an effort to avoid disturbances influencing the

system and, as consequence, the relative humidity continuously increases as the experiment goes

on. However, owed to the fact that natural evaporation is a slow process, the same experiment can

still be considered in quasi-steady state if it is divided into sub-experiments with sufficiently small

relative humidity variation. Here, the sub-experiment is a time window in which the difference

between the maximum and minimum relative humidity values is less than 1%.

After the experimental run finishes, a series of mass fluxes are obtained by performing a

linear regression on the acquired mass and time data belonging to the selected time window (or

to the sub-experiment, as explained previously). A j2 test is used to determine the number of

degrees of freedom (DOF - number of data points minus the number of parameters in the fit) to be

used, in which the number of DOF is progressively increased until it includes all the values in the

respective window, starting with a minimum of 200 DOF. The mass flux is obtained from the data

range correspondent to a number DOF yielding the best goodness of fit. All the other measured

variables are calculated as the average of all the values belonging to the selected range.

Table 2.1: Mesh independence study for the numerical simulation of water evaporating from a
small pool, showing the average Sherwood number for different quantities of triangular elements
at the interface and total degrees of freedom (DOF) in the mesh.

Total DOF Triangles (ℎ' % diff.

59,136 106 2.801 -
108,602 230 2.739 2.2 %
205,723 475 2.704 1.3 %
394,483 976 2.692 0.4 %
778,147 1965 2.683 0.3 %
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2.4 Numerical method

A three-dimensional geometry, composed by the gas and liquid domains is solved using

COMSOL MultiphysicsTM, which employs the finite element method for the solution of boundary

value problems. We implement the governing equations along with the boundary conditions in

a steady-state simulation using a direct solver, and apply a relative residual tolerance of 10.−3

To account for the cooling effect due to the phase change of water, we consider the interface

as a boundary heat source in which energy is lost through heat of vaporization and energy is

added through radiative heat exchange. The sum of all heat fluxes is compared to the total heat of

vaporization for every numerical simulation, as a means to check the fidelity of the energy balance

(Eq. 2.12g). All differences found were smaller than 0.05%. The water container is modeled as

a shell since the thickness of the water container is considerably smaller than the characteristic

length of the chamber (<1mm vs. 300mm). We enforce continuity of temperature and continuity

of heat flux between the walls and the surrounding fluid. In order to employ fluxes as boundary

conditions, the method of Langrange multipliers was used instead of directly taking the local

gradient of the variables in question.

The geometry is discretized using tetrahedral elements, including a thorough mesh

refinement near the air-water interface. Results between nodes in the mesh are interpolated using

cubic shape functions. A mesh independence study is reported in table 3.1, with the Sherwood

number given in terms of the number of triangles at the interface as well as in terms of the total

degrees of freedom. One can notice that using more than approximately 1000 triangle elements at

the interface results in minor changes of the Sherwood number.

2.5 Results

Here we show the central result of this study, a (ℎ-correlation valid for Grashof numbers

in a range of 10 to 105. The correlation is obtained from numerical results in excellent agreement
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Table 2.2: Sherwood number values for the evaporation from a small pool in the purely diffusive
limit as a function of the ratio �/'.

�/' 1/3 1 2 5 10

(ℎ' 2.4 2.1 2.0 1.9 1.9

with experimental data, covering a wide range of temperature and relative humidity conditions.

Overall, the correlation recovers the pure diffusion limit as the Grashof number goes to zero and

obeys the scaling law followed by unbounded free evaporation.

2.5.1 Evaporation in the purely diffusive limit

In the purely diffusive limit, the velocity of the system is zero and both the temperature and

the species concentration fields satisfy the Laplace equation. Boundary conditions are given by

equations 2.11, 2.12 (with all velocities equal to zero) and 2.13. The problem of free evaporation

from a pool at the purely diffusive limit is analogous to the electrostatic problem of two oppositely

charged circular parallel conducting disks of radius 0 separated by a distance :0. The potential
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Figure 2.3: Normalized water vapor mass concentration q for water evaporating into air from
a small pool in the pure diffusion limit. The results are obtained from numerical simulations,
according to three different �/' ratios. The water vapor mass concentration isosurfaces approach
asymmetric oblate spheroidal shapes. When the container is short, the concentration isosurfaces
near the container’s walls are confined to a small region, yielding maximum evaporation rates.
The isosurfaces spread apart as the container height is increased, until a point after which
increasing the container’s height has no significant effect on evaporation rates. See table 2.2 for
complementary information.
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field in this case is made of plane-symmetric spheroids superposing each other [28, 4]. In the

case of free evaporation from a pool with no convection, numerical results also indicate that the

water vapor concentration profiles are plane-symmetric spheroids (see Figure 2.3) with the plane

of symmetry defined by the plane supporting the pool. Far away from the air-water interface,

the water vapor concentration remains at a predefined value according to the far-stream relative

humidity condition. The evaporation rate depends weakly on how far the air-water interface is

from the plane of symmetry, that is, the height of the pool - an analogous interpretation to the

charged disks problem where decreasing the separation between plates increases the influence of

charge distribution from one plate to the other [4].

One difference between the evaporation from a pool under negligible convection and the

oppositely charged parallel disks is that, in the former, there is a zero flux boundary condition

at the walls of the container, while in the latter such condition is nonexistent. Figure 2.3 shows

the normalized mass concentration q for three different heights, while table 2.2 contains the

respective Sherwood number values. In short containers, the distribution of the isolines of mass

concentration near the walls is confined into a small space, forcing slightly higher mass fluxes. As

the height of the pool increases, the isolines of water vapor become gradually less compressed,

until a point in which increasing further the height produces no significant effect.

Under the idealized scenario of a purely diffusive regime, the (ℎ number shows a weak

dependency on the height of the pool, as demonstrated by the results of numerical simulations in

the pure diffusion limit (table 2.2). Since such dependence is weak, it is reasonable to expect

that the (ℎ number (based on the radius of the pool) asymptotes to values around 2 when the �A

number approaches zero for a wide range of pool heights.
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2.5.2 Evaporation under downward flow motion

Figure 2.4 shows the mass flux along with the temperature of the interface as a function

of relative humidity for different ambient conditions, and for the container having either a fixed

temperature at the bottom (290K and 310K test), or zero-flux (300K test). As one can see,

the numerical results closely describe the experimental data in all cases. The good agreement

between theory and experiment corroborates the use of the simplified boundary conditions used

in the numerical simulations for the far-stream. There is in fact a considerable temperature drop

at the interface caused by evaporative cooling that creates thermal gradients on both the liquid

and gas side. It is also important to recognize that this drop in interface temperature is strongly

dependent on the evaporation rate.

In an isothermal system there exists only positive buoyancy generating an upward flow

COIMBRA RESEARCH GROUP
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  Validation of numerical results

 J. P. T. Medrado, R. H. Inman and C. F. M. Coimbra, Free Pool Evaporation at Low Grashof Numbers under Thermally-Driven Downward Convection, in preparation

Te
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Te

Figure 2.4: Mass flux and temperature of the air-water interface as a function of relative humidity
for water evaporating into air under downward flow motion. Three different ambient conditions
are evaluated: 290 K (blue), 300 K (gray) and 310 K (orange), all at 1 atm. In the 300 K and 1
atm case, the experimental setup is arranged so as to have the bottom of the container exposed
to the surrounding flow motion (zero flux), while in the other cases the bottom is fixed at the
ambient temperature )4. The good agreement between numerical and experimental results
indicates the consistency of the energy balance at the interface (Eq. 2.12g) and of the thermal
condition offered by the container. The error bars associated to the experimental data (often
covered by the markers in this plot) indicate 2 standard deviations.
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Figure 2.5: Flow structure for water evaporating into air under dominant downward flow motion.
a) Streamlines of the flow above the interface with the presence of a stable recirculation zone
where both the vertical and horizontal velocity components near the surface are of the same
order of magnitude. b) The dimensionless velocity profile of both horizontal, *̃A = DA/(a/'),
and vertical, *̃I = DI/(a/'), components at different radial positions (center, middle and edge),
in dimensionless coordinates, Ã = A/'. The horizontal component of velocity is zero at the
center, while toward the edge both components are of similar magnitude for distances smaller
than 1 radius from the interface. At a height of 4 radii, the vertical component of the velocity is
considerably more negative and the flow is almost downward vertical.

recirculation zone

|u | [m/s2]

weak ring jetstrong ring jet

× 10−2

top view A (left)a) RHe = 10%

A A

b) RHe = 90%top view A (right)

Figure 2.6: Toroidal (ring-like) jet formation around the pool for water evaporating under
dominant downward flowmotion. Streamlines and velocity magnitudes are shown for evaporation
at )4 = 300K and a) RH4 = 10% and b) RH4 = 90%. The high mass flux near the edge of the
pool induces lower temperatures near the rim. The result is a downward motion of the air that
is accelerated around the walls of the pool. This acceleration generates a toroidal jet structure.
For drier free-stream conditions, the air is drawn towards the the rim of the pool from above
(stronger ring jets). Such effects becomes weaker under wetter free-stream conditions, causing
weaker ring jets.
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motion. For the case of an isothermal system with the evaporating surface being a disk, Dollet

and Boulongne [17] found a correlation for the Sherwood number consisting of a power law term

plus a constant term, (ℎ ≈ c
2 (0.31�A1/5 +0.48). According to these authors, the two terms result

from the difference in local flux contributions along the interface. Once opposing buoyant forces

take place, the flow is no longer necessarily upward. For the regimes studied here, the flow is

mostly driven downward with the saturated air leaving by the edges. There are also possible

stagnation points appearing close to the interface, as shown in Figure 3.4. Stagnation points

can be a characteristic of natural flows adjacent to horizontal surfaces undergoing opposing

thermal-concentration buoyant effects. The numerical results thus suggest that the horizontal and

vertical components of the velocity have the same order of magnitude next to the interface (see

ϕ,
θ

ϕ

R
H
e =

 1
0%

R
H
e =

 9
0%

heatlinesθmasslines
(a) (b)

(c) (d)

Figure 2.7: Isolines for thermal and mass concentration profiles along with the masslines and
heatlines for water evaporating into air under downward flow motion. Results are given for
RH4 equal to 10 % and 90 % with )4 at 300 K. The surface of both the thermal and mass
concentration gradients approach mushroom-type shapes, which are deformed under buoyant
forcing. Under dry conditions (a, b), the high mass flux near the edge induces an intense sinking
motion of the air near the rim, that in turn pulls down the isolines around the wall resulting in an
enhanced evaporation rate. At high relative humidities (c, d), the flow strucuture is relatively the
same, however with a less intense effect. Notice that, near the air-water interface, the pattern
of mass and heat flows resembles more the pattern of the recirculation zones when in a wet
environment, indicating that under such condition the mass and heat fluxes at the interface are
more susceptible to disturbances of the recirculation zones.
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Figure 3.4.b) and, for this reason, the boundary layer approach is not applicable [37, 44].

The stagnation points appearing next to the interface are associated to flow reversal or

recirculation zones. The recirculation zones appear when the flow accelerates downward, creating

a flow structure that resembles a toroidal ring-like jet near the rim of the pool. The downward

accelerated flow is induced by the sinking motion of air, as a result of the low temperature

near the rim. A more detailed analysis shows that the temperature varies along the air-water

interface due to the nonuniform radial mass flux [15, 16]. Because mass fluxes are higher near

the edge, a significant lower temperature drop is expected in those locations. Yet, the resulting

temperature of the edge depends on how efficiently heat can be transported to that region, which

in turn depends on the thermal resistance of the fluid and of the container [38]. It is possible that

in the present study the interface is indeed coldest at the rims, since the thermal conductivity

of the very thin-walled (<1 mm) container is lower than the thermal conductivity of liquid

water (:container ≈ 0.3−0.4W ·m−1K−1). The colder air near the rim sinks to the bottom or base

of the pool, which is at a slightly higher temperature, resulting in the aforementioned local

acceleration of the flow. Such flow patterns then sustain the overall downward motion of the

air in the near and far flow stream. An example of such ring-like jet structure encircling the

recirculation zones is presented in Figure 2.6 for the evaporation process at )4 = 300K. In drier

environments (RH4 = 10%), air is drawn from the above towards the top edge of the pool (strong

ring jet), creating a local acceleration of the flow. Such pulling induced motion becomes weaker

(RH4 = 90%) in a wet environment, that nonetheless still produces higher flow velocities near the

rim (weak ring jet). As expected, the recirculation zone has a reduced size in the presence of the

strong ring jet when compered to the wet condition, in which the recirculation zone is larger.

Figure 2.7 shows how the spatial distribution of temperature and water vapor concentration

are affected by the overall flow. The Bejan’s masslines and heatlines [27] representing the

respective net flow of mass and heat transport are also depicted. The isolines are given in terms of

the dimensionless mass concentration q and the dimensionless temperature \, both defined in
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equations 2.18 and 2.19:

q =
<1−<1,4

<1,B −<1,4
, (2.18)

\ =
) −)4
)B −)4 , (2.19)

while masslines and heatlines are respectively given as

m"

mI
= D<1−D12

m<1
mG

(2.20a)

−m"
mG

= F<1−D12
m<1
mI

(2.20b)

and

m�

mI
= d2?D) − : m)

mG
(2.21a)

−m�
mG

= d2?F) − : m)
mI

(2.21b)

At lower relative humidities, the mass driving force is stronger due to a higher mass

concentration difference, and as such more energy is required for evaporation to occur. A more

pronounced cooling effect near the air-water interface induces higher thermal gradients, at the

same time that it intensifies the sinking motion near the rim. The isolines are then pulled

downward around the walls of the pool in consequence of the stronger downward flow. As the

relative humidity increases, the flow structure is relatively the same, however less intense and

having a more protruding recirculation zone. Notice how, near the air-water interface, the pattern

of the masslines and heatlines are more aligned to the shape of the recirculation zone in a wet
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environment than in a dry environment, indicating that in such condition the mass and heat flows

are likely more sensitive to any effect consequent from disturbances of the recirculation zone.

Despite the downward acceleration locally induced near the edge of the air-water interface,

which at first suggests that the evaporation rate is dependent on the effective height of the pool,

numerical and experimental results show that a universal correlation can be developed to estimate

the evaporation of water under downward flow motion, regardless of the geometrical aspect ration

�/'. To evaluate an universal correlation, we conducted experiments with �/' ratios from 0.6

to 1.7, while the ratio was extended to cover values from 0.3 to 5 in the numerical simulations. By

using the form of equations 2.17a and 2.17b to perform a fit on the numerical results, we found

the following (ℎ-correlation:

(ℎ' ≈ 2 (2.22a)

for �A' ≤ 10, and

(ℎ' = 1.73+0.26(21/3�A1/4
'

(2.22b)

for 10 < �A' < 105.

The Sherwood number is represented in Figure 2.8 in terms of the absolute value of the

total Grashof number, |�A'<
+�A') |. For the sake of simplicity, we suggest for Grashof number

values less than 10, the approximation (ℎ' ≈ 2, which is the value expected in the pure diffusion

limit. For �A values higher than 10, we correlate the Sherwood number to the 1/4 power on the

Grashof number. The experimental values are virtually within ±10% of the nominal correlation

result, as seen through the region represented by the shaded area around the suggested curve. The

proposed correlation is additionally compared to the one proposed by Sparrow et al. [42], also

developed for free evaporation with a downward flow motion and Grashof numbers ranging from

104 to 106. Both correlations initially agree for Grashof numbers around 104, but they slightly
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diverges as the Grashof number increases, due to the difference in the power on the Grashof

number. While Sparrow et al. [42] suggests (ℎ ∝�A0.205, the correlation proposed here preserves

the characteristics of a buoyant laminar flow, besides maintaining the contribution from pure

diffusion.

The simplified liquid pool approximation (where buoyancy and surface tension are

neglected) yields consistent agreement across the range of experimental conditions described here.

The good agreement between the numerical simulations and the experiments, particularly with

H/R ∼ 1.7

∼ 0.6
∼ 0.8

∼ 1.5

Figure 2.8: Sherwood number as a function of the total Grashof number for water evaporating
into air under downward flow motion. Experimental results are conducted for Grashof numbers
between 50 and 104. The corresponding error bars indicate 2 standard deviations. The numerical
results are expanded to cover Grashof numbers from near 1 to 105. The Sherwood number
approaches 2 for Grashof numbers less than 10, consistent with the expected in the pure diffusion
limit. As the Grashof number increases, the flow velocity also increases, leading the Sherwood
number to become proportional to �A1/4 - as it is expected for unbounded natural evaporation.
The results take into account different geometrical aspect ratios �/', in turn demonstrating
the correlation to be independent of the effective height of the pool. When compared to the
correlation proposed by Sparrow et al. (1983) - in which the Sherwood number is proportional to
�A0.205, both correlations initially agree at Grashof numbers around 104, but they start to slightly
diverge as the Grashof number increases due to the difference in the respective powers. Flow
recirculations for �A numbers below 100 are unstable and can only be achieved numerically
under idealized boundary conditions.
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respect to the air-water interface temperature, corroborates the use of the hydrostatic condition

in our simulations. This happens because the general downward flow on the air-vapor side is

not affected by the simplified liquid pool model as long as the average heat flux from the liquid

to the air-liquid interface is correctly estimated. Multiple simulations comparing the solution

with buoyancy terms in the liquid pool at different pool bottom temperatures with simulations

considering a hydrostatic pool with virtually conduction heat transfer only reveal that the simplified

hypothesis results in heat transfer rates to the interface that differ by 2% or less. Nonetheless, the

strength and the exact position of the circulation zone highlighted in Fig. 5 may be affected by

consideration of other boundary conditions at the bottom of the pool given the weak convective

flows in this problem.

The suggested (ℎ number correlation is also compared to the correlations for upward

convection as provided in Figure 2.9. In order to obtain all the correlations according to the same

Present study

Sparrow et al. (1983)

Bower and Saylor (2011)

Sharpley and Boelter (1938)

Boelter et al. (1946)

downward convection
upward convection

Figure 2.9: Comparison among several (ℎ number correlations for downward (straight lines)
and upward (dashed lines) convection. The correlations obtained from previous studies were
converted to the same characteristic length (hydraulic diameter) for comparison. For upward
convection correlations the power-law exponent = may differ due to turbulence effects and
air-water interface conditions that depend on the heat flow input to the liquid pool.
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characteristic length, the correlations were converted to (ℎ and �A number values based on the

hydraulic diameter, L = �/%, where � is the area of the interface and % is the corresponding

perimeter. The correlations corresponding to the upward convection cover in general ranges of

�AL number of the order of magnitude from 104 to 106. For upward convection, the (ℎ number

is in general given as a power law function where the obtained power = differs in each study,

varying from 0.213 for Sharpley and Boelter [39] to 0.306 for Bower and Saylor [9, 10]. Such

variation is likely to be the result of turbulence effects that appear as the liquid pool is heated and

alters the dynamics of water vapor transport away from the interface [9, 10].

The relative contribution from the heat fluxes present in the energy balance at the interface

(Eq. 2.12g) to the total energy of vaporization is nearly independent of environmental conditions.

It does, however, depend on the thermal condition of the container, as shown in Figure 2.10.

RH
e

Te
a)

b)

Figure 2.10: Heat flux contribution from numerical results for water evaporating into air under
downward flow motion. Each term in the energy balance (see equation 2.12g) is evaluated by
varying the RH4 at three different ambient conditions: 290 K (blue), 300 K (gray) and 310 K
(orange) - all at 1 atm. The relative contributions are influenced by the thermal condition of the
container, which in this study was analysed by changing the thermal condition at the bottom. For
instance, when the temperature of the bottom is fixed at the ambient temperature (condition a),
the heat flux from the liquid @c,D accounts for approximately 80% of the total heat flux, while the
heat flux from the gas @c,B and from radiatiation @r,B share similar parcels of 10% each. When
the condition of the bottom becomes zero flux (condition b), @c,D reduces to approximately 60%,
while @r,B increases to around 25%, and @c,B to 15%. Overall, the relative contribution from
each transport mechanism is virtually the same regardless of environmental condition.
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When the bottom of the container is fixed at the temperature )4, the heat flux from the liquid

accounts for approximately 80% of the total required energy, while the heat flux from the gas side

and from surface radiation are responsible for relative amounts close to 10% each. Consequently,

the heat flux from the liquid is the dominating term. As shown by the results from the three

different environmental conditions presented (290K, 300K and 310K, all at 1 atm), the relative

contributions to the total energy of vaporization stays virtually the same, regardless of the

environmental condition. When the thermal condition at the bottom of the container changes to

zero flux, the heat flux from the liquid remains as the leading term, but now having a reduced

relative contribution: the heat flux from the liquid in this case accounts for approximately 60% of

the total energy, as the contribution from the gas and from surface radiation increase to 15% and

25%, respectively. As expected, the heat fluxes coming from the gas side and from radiation are

enhanced as the energy input through the bottom of the container is lowered.

2.6 Concluding Remarks

Free evaporation of water into air from a small-scale circular pool for low Grashof numbers

under dominant downward flow motion is examined. Repeatable experiments performed at

atmospheric pressure for air temperatures at 290K, 300K and 310K and relative humidity values

ranging from 30% to 60%, are described and compared to detailed Finite Element Method

(FEM) numerical simulations. For the free evaporation regimes considered here, a downward

thermally-induced flow originated at the rim of the pool overcomes the concentration-induced

buoyancy, consequently forcing the far-stream warm dry air to descend into the lower temperature

air-water interface. Experimental results show that a steady-state recirculation zone near the

air-water interface develops for �A numbers greater than or equal to 50. The Sherwood number

for this geometry appropriately scales with �A1/4 for drier free-stream boundary conditions, while

it approaches a constant value for smaller mass transfer potentials (i.e., more humid environments).
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A stable Sherwood number correlation as a function of �A values is proposed, covering �A values

from 10 to 105.

Chapter 2, in full, is a reprint of the material as it appears in Pool Evaporation Under Low

Grashof Number Downward Convection 2021. Medrado, J. P. T.; Inman, R. H.; Coimbra, C. F.

M., International Journal of Heat and Mass Transfer, 181, 2021. The dissertation author was the

primary investigator and author of this paper.
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Chapter 3

Isothermal free evaporation from open

tubes

Open tube evaporation processes are ubiquitous in laboratory settings [45, 40], biological

systems [1, 5] and engineering applications [51, 41, 53, 52, 54]. When asked to estimate

evaporation rates from test tubes, most science and engineering practitioners resort to the classical

Stefan diffusion tube, a simplified 1-D binary model where the background (or solvent) species is

stationary. Conditions required for an accurate application of Stefan diffusion tube are often not

met, specially for processes involving free evaporation from open tubes. In free evaporation from

open tubes, strong buoyancy effects induces a multi-dimentional flow structure that in turn leads

to a multi-phase regime as the process switch over dry and wet environment conditions.

Natural convection driven by the free evaporation from open tubes under isothermal or

near-isothermal conditions is here investigated, using detailed numerical models to solve for the

full coupled nonlinear conservation of mass and momentum equations. The validated numerical

simulation allows for the analysis of the (ℎ-�A curve behavior in the pre- and post-critical regimes.

Relative humidity from 0 to 99% and the near-ambient conditions of 1 atm pressure at 290 K and

310 K temperatures are in this way investigated for aspect ratios varying from 2 to 11.
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A (ℎ number correlation is developed for isothermal and near-isothermal open tube

evaporation valid in a range of �A 50 to 4000. The correlation covers all regimes observed under

NCTP and is composed by functions representing the behavior of the critical (ℎ and �A numbers

in terms of the aspect ratio as well as expressions for (ℎ under the convection driven regime.

3.1 Problem description and method of solution

When natural evaporation occurs, the temperature at the air-water interface decreases

compared to the surroundings due to evaporative cooling, or the liquid molecules adjacent

to the interface that continuously looses thermal energy to the ongoing phase-change process.

Consequently, the natural occurrence of isothermal evaporation is virtually inhibited. Yet, an

external energy input to the system combined with a reduced thermal resistance between the

air-water interface and the surrounding for processes with a low driving potential (NCTP) can

induce the evaporation process to occur under near-isothermal conditions. For example, the

approach of minimizing the thermal resistance was applied by Sparrow and Nunez [43] in their

study of isothermal open tube evaporation. They used a container made of aluminum with a

thin wall (i.d. = 3.80 cm, o.d. = 4.12 cm). Likewise, McBain et al. [30] used a thin wall tube

(i.d. = 3.49 cm, o.d. = 3.64 cm) made of polycarbonate walls and an aluminum base, with

the purpose of enhancing the amount of energy flowing from the surrounding to the air-water

interface and thereby mitigate the interfacial temperature drop. In both studies, an external

energy was not forced into the system. Yet, Sparrow and Nunez [43] and McBain et al. [30]

observed sufficiently small temperature drop in their respective experiments, which allowed them

to consider a quasi-isothermal evaporation process.

Here we too examine an isothermal system where water evaporates from an open tube.

Pressure and relative humidity values far away from the air-water interface are known. Due to

the slow nature of the natural evaporation process, we assume the process to be in quasi-steady
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state. A solution is obtained for each combination of temperature, pressure and relative humidity

imposed to the system. Because of the near-ambient condition, the mass transfer driving potential

inducing the removal of water vapor away from the interface is sufficiently small (X<1 < 0.1) to

allow us the use of the low mass transfer rate theory (no blowing at the interface) and a laminar

flow condition. The mass, momentum and species conservation equations at the gas side are

respectively

∇ ·u = 0 , (3.1)

u · ∇u = − 1
d6
∇%+ a6∇2u+6 V<Δ<1 k̂ , (3.2)

u · ∇<1 = D12∇2<1 , (3.3)

where % is the pressure including the gravitational potential, % = ? +6Id6, and V< is the mass

volumetric coefficient of expansion as defined in the appendix. The subscript 1 denoting species

1, refers to the water vapor.

chamber (e-state)

surface w

z

x s
u

Figure 3.1: Schematic representation of the geometry used in the numerical model along with
the coordinate system of reference whose origin is at the center of the air-water interface. The
inside of the chamber is seen through its plane of symmetry, the I-G plane, the same plane where
a slightly tilt on the gravitational field is applied to only give the fluid flow a preferred direction
to establish the anti-symmetric flow. Also depicted is the B and D surfaces representing the
air-water interface at the air side and water side respectively, along with the boundaries referring
to the 4-state (delimited by the walls of the chamber) and the F surface (the walls of the tube).
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The governing equations are subjected to the following boundary conditions:

u = 0 , (3.4a)

<1 = <1 (RH4, )4) , (3.4b)

∀ G ∈ 4, ∀ H ∈ 4 and ∀ I ∈ 4, where 4 refers to the boundary representing the 4-state (see Fig. 3.1).
At the air-water interface:

DG (I = 0+) = DG (I = 0−) , (3.5a)

DH (I = 0+) = DH (I = 0−) , (3.5b)

DI = 0 , (3.5c)

`6
mDG

mI

����
I=0+

= `;
mDG

mI

����
I=0−

, (3.5d)

`6
mDH

mI

����
I=0+

= `;
mDH

mI

����
I=0−

, (3.5e)

<1 = <1 (%sat, )4) , (3.5f)

∀ G ∈ B, ∀ H ∈ B and I = 0, where B represents the air-water interface at the air side, while D, the

air- water interface at the water side. Notice that the normal velocity at the interface is set to

zero, instead of the velocity due to the balance of convective and diffusive flow resulting from the

impermeability of air into water, that is

DI = − 1
1−<1,B

D12
m<1
mI

����
B

. (3.6)
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Including the normal velocity in the model had virtually no effect for the (ℎ-�A curve. The largest

observed difference was for the point correspondent to the condition 310 K, RH4 = 0 (the largest

B<1 analysed here), where the difference was only 2%. For lower temperatures and higher relative

humidity values (hence lower B<1), the difference observed between the models diminishes even

further, as expected. We therefore reinforce that the blowing effect for evaporation processes

under NCTP can be neglected, as it imparts little change in the solution. We should, however,

reframe the importance in accounting for the tangential velocity at the interface induced by the

convective cell emerging inside the tube for evaporation under the convection driven regime.

Even though a rigid interface can also give accurate results for processes at around the critical

�A number [30], the results for a dry condition (near RH4=0) might be significantly affect by the

imposition of a rigid interface. The parameter D12 is the diffusion coefficient of water vapor in air

[34] (see C). The mass concentration of species 1, <1, depends on the saturation pressure, here

obtained according to the Tetens equation [46] (see B). Zero mass flux is applied at the walls of

the container exposed to the gas side:

∇<1 = 0, (3.7)

∀ G ∈ F, ∀ H ∈ F and ∀ I ∈ F.
The governing equations and boundary conditions were implemented numerically using

the finite element method based software COMSOL Multiphysics. The domain, as shown in

Fig. 3.1, was meshed using tetrahedral elements where the region surrounding the interface was

comparatively more refined. Results between nodes were estimated according to third order

polynomial shape functions. Similarly to McBain et al. [30], the model was first solved for a

transient-state with prescribed temperature, relative humidity and pressure. The initial velocity

was set to zero, while initial concentration of species 1 (water vapor) defined according to the

prescribed relative humidity. In order to excite the anti-symmetric flow mode inside the tube, the

gravitational field was tilted one degree from the vertical direction to the right (positive x). The

result obtained from this first transient simulation was subsequently used in a steady-state model
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Table 3.1: Mesh independence study for numerical simulation of isothermal free evaporation
from open tubes. The average Sherwood number is evaluated according to the number of
triangular elements at the air-water interface and total dregrees of fredom (DOF).

Total DOF Triangles (ℎ! diff.

214,999 38 11.070 -
454,522 75 11.168 0.9%
801,225 149 11.221 0.5%

1,355,662 296 11.255 0.3%

with equal prescribed values of temperature, relative humidity and pressure, but without a tilt in

the gravitational field. In both transient and steady-state simulations, the governing equations

were fully coupled, with all the unknowns being simultaneously solved in each iteration through

the parallel direct linear solver. The non-linearities of the governing equations were handled by

the damped Newton-Raphson method, while streamline and crosswind stabilization methods were

used to prevent numerical instabilities. A mesh study for �' = 8 for ) = 310K and RH4 = 0 was

carried out by consecutively refining the air-water interface. As shown in Table 3.1, increasing

the number of triangles at the interface to values greater than 75 has insignificant effect upon

the dimensionless mass transfer rate. As such, all models were simulated based on an air-water

interface having 150 triangles.

3.2 Results and discussion

Here we discuss the mass transport dynamics associated with the free evaporation of water

from an open tube under isothermal and near-isothermal conditions. We specifically investigate

the dependence of the evaporation rate on the �', a value referent to the distance from the air-water

interface to the open-end of the tube. Overall, we consider evaporation processes occurring for

�' between 2 to 11, at the temperatures 290 K and 310 K and relative humanities ranging from 0

to 99%.
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3.2.1 Model validation

The accuracy of the present numerical model is assessed by comparing the obtained

solution to the experimental results of Sparrow and Nunez [43] and McBain et al.[30].

McBain et al. [30] carefully carried out an analysis of the isothermal evaporation of water

into air, in which they recovered the dimensionless evaporation rate in a wide range of�A numbers

for a tube having an �' equal to 4. In their work, the exact temperature of the experiments is

not specified, and a mean of controlling the temperature is not present. Conversely, the authors

indicate that the study focused on the evaporation at low mass transfer rate (which normally

occurs for temperatures lower than 50 ◦C), suggesting that the experiments were conducted at

ambient conditions. Nunez and Sparrow [43] investigate the isothermal evaporation for various

L

R

AR = L
R

Figure 3.2: Validation of the numerical simulation with the experimental data for the isothermal
free evaporation from open tubes. The experimental data are depicted by the square (Sparrow
and Nunez 1988) and circular (McBain et al. 2000) markers, while the numerical simulation is
represented by the straight thicker (290 K) and thinner (310 K) lines. The experimental values
are recovered for �' equal to 2 and 4 in the entire range of �A number analysed here, indicating
the accuracy of the numerical simulation.
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�', including �' equal to 2 and 4. Each �' was evaluated according to constant values of the

�A number, specifically at �A' number (�A number based on the radius) equal to 1708 and 2000.

In both studies, the experiments were performed with a shell container, that is, a container with

thin walls (Sparrow and Nunez used a 0.32-cm thick container, while McBain et al. adopted

a 0.15-cm thickness). A container with thin walls reduces the thermal resistance between the

energy being transferred from the surroundings to the interface. A lower thermal resistance, in

turn, reduces the temperature drop resulted from the phase change therein.

In order to fully cover the experimental conditions of Sparrow and Nunez [43] and McBain

et al. [30], we numerically simulated the evaporation from a container with thin walls (more

specifically, we simulated a container composed by shells with zero thickness since there is not

temperature variation during the simulated process and the thickness of the container’s wall is

vanishingly small compared to the entire gas domain) at the temperatures of 290 K and 310 K,

all at 1 atm. The numerical simulation is presented in Fig. 3.2 along with the experimental data

from both authors. Our numerical simulation recover the evaporation rate at low (negligible

dependence of (ℎ number on the �A number) and high (strong dependence of (ℎ number on the

�A number) Grashof numbers under ambient conditions, therefore being in agreement with the

experiments. As seen in Fig. 3.2, the (ℎ-�A curves show a slight dependence on temperature, a

quality discussed later in this study. We follow with the analysis of the (ℎ-�A curve at the 290 K

and 310 K temperatures, with �' from 2 to 11, for a shell tube.

3.2.2 Evaporation from an open tube in the pure diffusion limit

In pure diffusion, the evaporation rate is dependent only on the concentration differences

of the evaporating species. McBain et al. [30] developed a (ℎ-expression for the pure diffusion

limit, based on the analysis of an equivalent potential field created by a point source with

cylindrical coordinates as A = 0 (center of the container) and I = � (height of the container),

while a point sink at A = 0 (center of the container) and I = −� (the symmetrical point to �
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based on a symmetrical plane defined at the base of the container). They arrive at the equation

(ℎ0 = �/(0.594+�) for �A = 0. If the distance to which the potential field extends is of the

same order of magnitude as the separation of the point source and point sink, such approximation

becomes inappropriate. An ideal potential field equivalent to the evaporation from a circular

surface bounded by vertical walls (open tube evaporation) would be the one created by parallel

plates capacitors (instead of point sources) of equal magnitude but opposite charges, separated by

a distance 2(� − �' · ') with a boundary from the source to the height �' · ' having zero flux,

and the center of symmetry located at the base of the container. Such analysis is, however, beyond

the scope of this study.

Although the approach used by McBain et al. [30] might not be entirely valid for all

geometrical configurations, the expression they arrive at reveals a compelling characteristic of

open tube evaporation: the asymptotic behavior of the (ℎ number, for which the (ℎ number

asymptotes to an upper limit as the �' increases. We may recall that when �' is vanishingly

small, the open tube evaporation becomes pool evaporation, where the mass concentration of

water vapor in form of spheroids (mushroom-like shape) are much more evident [31]. In this case,

AR = 5

θ θ θ

AR = 2 AR = 8

Figure 3.3: Water vapor concentration gradient distribution for pure diffusion at various aspect
ratios. For small aspect ratios, the gradient distribution approaches a spheroidal profile near
the open-end. As the aspect ratio increases, the gradient distribution gradually turns into a
comparatively more linearly stratified profile, however still carrying a circular outline (cap) at
the top of the tube.
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the isolines of mass concentration in pure diffusion are spread along the external sides of the

container. As the �' increases, the pool evaporation turns into open tube evaporation and the

spheroidal profile of the mass concentration approaches a quasi-linear stratified distribution, with

the isolines now confined along the internal walls. To illustrate, Fig. 3.3 shows how the water

vapor concentration first forms a spheroidal cap near the open end of the container for �' equal

to 2 to then progressively flatten, leading to a comparatively more linear concentration gradient as

�' increases. The overall result is a (ℎ! number (the (ℎ based on the distance ! - see Fig. 3.2)

that asymptotically approaches the unit when increasing the �'.

convection

z
x

θ

θ

U U

U U
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θ θ
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regime

diffusion

regime

b) driven
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AR = 5 AR = 8

U

AR = 2
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Figure 3.4: Fluid flow and mass concentration gradient profiles for the open tube evaporation,
according to the normalized velocity *̃ and water vapor concentration q. In the diffusion
driven regime, the fluid flow is insignificant to the mass concentration gradient, whereas in
the convection driven regime, the mass concentration gradient is compressed and stretched at
opposite sides of the container, following the diametrically anti-symmetric pattern of the flow.
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3.2.3 Natural convection in open tubes driven by free evaporation

In the presence of gravitational forces, natural convection induced by thermal and

concentration gradients enhances the evaporation rate. Such an enhancement depends on the

buoyancy strength and, for open tube evaporation, the buoyancy strength can be classified

according to a diffusion or convection driven regime [30].

For �A numbers near zero, the (ℎ number starts out from the pure diffusion value, weakly

increasing as the �A number increases (diffusion driven regime). It then reaches a critical �A

number where it shifts to the convection driven regime. Figure 3.4 shows the fluid flow and

concentration gradient associated with both diffusion and convection driven regimes, according

to the respective normalized velocity *̃ (normalized according to the maximum velocity in the

domain) and normalized concentration gradient, q =<1−<1,4/<1,B−<1,4. In the diffusion driven

Difusion driven regime Convection driven regime

AR = 2

AR = 5

AR = 8

AR = 2

AR = 5

AR = 8

Figure 3.5: Patterns of the masslines for the isothermal open tube evaporation, for the diffusion
driven and convection driven regimes at various aspect ratios. In the diffusion driven regime,
the net flow of water vapor nearly follows a straight line towards the open-end with virtually
no entrainment from the surrounding. In the convection driven regime, on the other hand, a
significant entrainment of water vapor is present in one side of the tube. The entrainning water
vapor flows towards the air-water interface, where it mixes with the newly formed water vapor.
The mixing is carried away from the interface, exiting the container in the opposite side to the
entrainment, following the single convection cell pattern.
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regime, the flow inside the container is symmetric for �' = 2, becoming non-symmetric for higher

�' values. For all �', the flow under the diffusion driven regime has an insignificant effect

on the concentration gradient, as the gradient profiles still resemble the ones observed in pure

diffusion. On the other hand, the fluid flow in the convection driven regime plays a crucial role on

the distribution of the concentration gradient [30] and consequently on the net transport of water

vapor. The flow enters the container from one of its side and leaves through the subsequent side,

ultimately leading to a simultaneous compression and elongation of the concentration gradient at

opposite sides of the tube. Because of the strong convection, the net mass transport is also altered

D⇤
12 = 2.5 · 10�6 m2/s
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Figure 3.6: (ℎ-�A curve for open tube evaporation at various �' for 290-K (thicker line) and
310-K (thinner line) 4-state temperatures. The (ℎ number approaches the pure diffusion value
as the �A number goes to zero. The (ℎ number increases slightly with �A number until a
critical region that separates the diffusion-driven regime from the convection-driven regime.
The 290 K and 310 K curves are slightly shifted in respect to each other in the y-axis due to the
temperature dependence of d and D12 (left plot). The curves collapse to a single curve when
normalized values of d and D12 are used (right plot). The Stefan tube model, also displayed (red
line), overpredicts the (ℎ number by up to almost 30% in the diffusion driven regime, while
significantly underpredicting the (ℎ number in the convection driven regime.
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in such a way that the configuration of the masslines closely follow the fluid flow pattern. Such

fluid flow establishes the diametrically anti-symmetric flow with a single convection cell for all

�'.

The masslines of water vapor reflecting the net result of the water vapor transport are

shown in Fig. 3.5 for the convection and diffusion driven regimes. While in the diffusion driven

regime the masslines nearly follow a straight path with almost no entrainment of water vapor from

the surrounding, in the convection driven regime the masslines very closely follow the shape of

the single convection cell, with a strong water-vapor entrainment in one side of the tube. At the

bottom of the single convection cell, the entraining air mixes with the water vapor originated at
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Figure 3.7: Derivatives of the (ℎ-�A curves for open tube evaporation, obtained according to
the symmetric difference quotient approach. The complex dependence of the (ℎ number in
respect to the �A number relates to the damping effect caused by the vertical walls bounding
the buoyant flow inside the tube. In shorter tubes (�' = 2), inertial terms are favored, which
leads to a (ℎ ∝ �A1/4 for all the convection driven regime. As the aspect ratio increases, the
evaporation becomes dependent on both the inertial and viscous forces, resulting in a (ℎ number
proportional to �A1/2 and �A1/4. The convection driven regime is also marked by a skewed bell
shaped curve, with a peak after the critical point followed by a monotonic decrease characterized
by a single oscillation of the curve in this regime.
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the air-water interface, forming a mixing-layer. The mixed air flows back to the open-end, exiting

the tube to the surroundings.

Figure 3.6 shows the complete (ℎ-�A regime for �' varying from 2 to 11. In all the curves,

we observe that the change from the diffusion to the convection driven regime occurs as a sudden

shift at a specific �A number (now referred to as the critical Grashof number, �A2) as a smooth

transition is not present. An important element to the dynamics of the diffusion-convection regime

separation is the distance from the air-water interface to the open-end. Overall, the surface area of

the walls inhibits the fluid flow motion, hence contributing to the predominance of viscous forces

and to the broadening of the diffusion driven regime. As a consequence, the critical Sherwood

number, (ℎ2, increases with the �A2 number, following an asymptotic behavior similar to the one

observed in the pure diffusion limit. Another important characteristic of the post-critical region

(convection-driven regime) is the dependence of the (ℎ number on different powers of the �A

number. We notice a particular curvature of each (ℎ-�A curve in respect to the respective �'

value, which is attributed to the interaction between viscous and inertial forces.

Figure 3.6 also shows the (ℎ number correspondent to the Stefan tube model approach

(red line). Because in the Stefan model it is assumed that the boundary condition at the open-end

is the mass concentration of the water vapor specified at the prescribed relative humidity value

(1-D condition), the concentration gradient reduces to a linear distribution along ! for evaporation

processes under NCTP. As a result, the (ℎ number equals 1 regardless of the �'. Except for

slender tubes (high �'), treating the concentration gradient as 1-D linearly stratified profile in

free evaporation from open tubes can be misleading, even for the evaporation occurring under

the diffusion drive regime. In the diffusion driven regime, the Stefan tube overestimates the

evaporation rate up to 30% of the actual value when �' = 2. The overestimation drops as the

�' increases, but as for �' = 11 the Stefan tube model still overpredicts the evaporation rate in

around 10%. The disparities between the Stefan tube approach and the numerical simulation is

even more pronounced in the convection driven regime, with now the Stefan tube underestimating
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the evaporation rate: the evaporation rate is up to 13 times (see �' = 11) the value estimated from

the Stefan tube model.

Regarding the temperature dependence, the curves for the two temperatures (290 K and

310 K) are virtually identical, except for a slight shift in the (ℎ number. Such a shift results from

the dependence of the (ℎ number on the product dD12, where d ∝ )−1 and D12 ∝ )1.6. When the

curves are obtained using nominal values of d andD12, the temperature dependence is substantially

minimized, as seen in the right plot of Fig. 3.6. Reducing (ℎ to (ℎ∗ does not compromise the

behavior of the curve, and for the sake of simplicity, the analysis that follows is based on the (ℎ∗.

Further details of (ℎ∗- �A curve in the convection driven regime is obtained through the analysis

of its slope, or its derivative, which eliminates the constant (ℎ∗ value associated with the diffusion

driven regime. For simplicity, we will omit the superscript ∗ on the (ℎ∗ number in the rest of this

manuscript.

As depicted in Fig. 3.7, the approximated derivative (here taken according to the symmetric

difference quotient) shows the complex dependence of the (ℎ number on both the �' and the �A

number. To highlight the dependence of the (ℎ number on different powers of the �A number,

also associated to different values of �', the derivative of the (ℎ-�A curve is shown along with

derivatives proportional to 5 ′ ∝ 3 G1/2/3G (Fig.3.7, left) and 5 ′ ∝ 3 G1/4/3G (Fig. 3.7, right),

both in gray. These derivatives emphasises the dominance of either the viscous forces (where

(ℎ ∝ �A1/2) or inertial forces (in which case (ℎ ∝ �A1/4). From the figure, we notice the rapid

increase of the curve towards a maximum value, right after the �A2 number. The increase to a

maximum value is rather a jump as for low �' (�' equal to 2 and 3), or a gradual follow of a

skewed bell-shaped curve as in higher �'. After the maximum value is reached, the derivative

decreases monotonically, where the dependence of the (ℎ number on different powers of the �A

number as well as on different values of the �' is evident. The damping effect of the walls is of

little importance for �' = 2, in which case inertial velocities are dominant and the (ℎ number

proportional to �A1/4. When the �' increases, the damping effect plays a more notorious role,
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weakening the velocities near the air-water interface and rising the dependence of (ℎ number

on �A1/2 as well. One can also observe that the (ℎ number depends on the strength of the �A

number, or more specifically, on the driving potential of a dry, wet or mixed environment. Overall,

for �' equal to or less than 2, (ℎ ∝ �A1/4 in the entire convection driven regime. As the �'

increases, the (ℎ number becomes in part proportional to �A1/4 and in part to �A1/2, with each

contribution subjected to the �' value.

3.2.4 Sh number correlation for isothermal and near-isothermal free evap-

oration from open tubes

We first evaluate a representation of the critical region, in order to have the (ℎ2 and �A2

numbers expressed as functions of the �'. In Fig. 3.6, the critical points from all curves are

highlighted in the area denominated as the critical region. In that figure we see that the critical

region suggests that the �A2 number converges to a lower bound, or that �A2 number becomes

virtually constant for �' < 2. A sharp transition from the diffusion to the convection driven

regime should vanish for �'→ 0, when the buoyant effect is no longer wall-bounded, allowing

the (ℎ number to be expressed according to �A1/4, or a constant �A number value, depending

on the buoyancy strength [31]. In the direction of �'→∞, the �A2 most likely finds an upper

bound, since that an upper limit for the �A2 number in closed tube has been already demonstrated

[47, 20]. We notice from Fig. 3.6 that for intermediate �' values, the �A2 number increases with

�'. Given all these conditions, a suitable expression to convey the behavior of the �A2 number is

obtained according to a sigmoid function of the form:

�A'2
= 01 +

02− 01

1+ exp[03(�'− 04)] (3.8)

where 01 to 04 are constants to be obtained from a fit to the numerical simulation.
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Table 3.2: Estimated coefficients for the proposed correlation of �A'2
and (ℎ!2

. The �A'2

number is represented by a sigmoid function, having lower bound (01 = 450) and an upper bound
(02 = 1667). The (ℎ'2

number asymptotes to ∼ 1+ 12 = 0.94 as the �' increases, reflecting the
non-planar condition of the mass concentration at the open-end, even at high �' values.

01 02 03 04 11 12

450 1667 -0.38 8.22 0.41 -0.06

As previously discussed, the variation of the (ℎ number is insignificant within the diffusion

driven regime, and thus a constant value can be given to express the (ℎ2 number. In the diffusion

driven regime, the (ℎ2 number also follows a similar asymptotic behavior observed in the pure

diffusion limit, which can be expressed as an asymptotic function of the �' as

(ℎ!2 =
�'

11 + �' + 12 (3.9)

with the constants 11 and 12 also obtained from a numerical fit. Finally, we define for the diffusion

driven regime

(ℎ! = (ℎ!2 (3.10)

for �A' < �A'2
. The correlations proposed here for the �A'2

and (ℎ!2 , obtained by fitting the

numerical simulation with the respective equations 3.8 and 3.9 are shown in Fig. 3.8, while the

fitted parameters are shown in Table 3.2. From the resulting fit, the lower bound of the �A'2

number equals 450, while the upper limit is 1667. At very large �', the critical (ℎ number

asymptotes to 0.94 ((ℎ!2 ∼ 1+12) as oppose to unity, reflecting the non-planar surface distribution
of the water vapor concentration near the open-end, even at large �'.

To evaluate the convection driven regime, we must take into account the increasing

damping effect due to the bounding of the buoyant flow, that eventually leads to the equivalent

importance of viscous and inertial forces. As observed in Fig. 3.7, the (ℎ number becomes

proportional to the combined �A1/2 and �A1/4 terms, with the overall dependence conditioned to

the �' value. When �' = 2, the damping effect is negligible and the entire convection driven
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Figure 3.8: Proposed correlation for the�A'2
and (ℎ!2

numbers according to equations 3.8 and
3.9, respectively. The numerical simulation for the critical points obtained from the normalized
290 K (thicker edge marker) and 310 K (thinner edge marker) are also shown. The �A'2

number
model is composed by lower and upper bounds as the �' goes to zero and +∞, respectively.
The (ℎ!2

number asymptotically approaches the limit ∼ 0.94 as the �' increases.

regime proportional to only �A1/4. For higher �', the curve rapidly increases to a maximum

value after the critical point, to then decrease proportionally to a �A1/2 and �A1/4 combined term.

Such consequent behavior from the damping effect due to the presence of walls can be modeled

as an exponential function representing a single oscillation,

3(ℎ!

3�A'
= 21exp(−22�A') + 23

1
2
�A
−1/2
'
+ 24

1
4
�A
−3/4
'

, (3.11)
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Table 3.3: Estimated coefficients for the (ℎ number correlation in the convection driven regime.
Except for 24, which is a constant value, the variables 21 to 23 are indeed quadratic functions
of the aspect ratio, with the coefficients 20, 21 and 22 obtained from a fit using the numerical
simulation. While 21 and 22 describe the maximum value of the instantaneous slope, parameter
23 reflects the influence of viscous forces and 24 the inertial force upon the evaporation rate (see
equation 3.12).

210 211 212 220 221 222 230 231 232 24

-0.0743 0.171 -0.046 2.73×10−6 -9.30×10−4 0.012 2.04×10−4 0.044 -0.080 0.0183

which upon integration gives the following (ℎ correlation:

(ℎ! = −21
22

exp(−22�A') + 23�A
1/2
'
+ 24�A

1/4
'
+ 25 (3.12)

for �A' > �A'2
. The variables 21, 22, 23 and 24 are non-dimensional, solely depend on �'. They

are well expressed according to a quadratic function of the �', that is,

21,2,3,4 = 20�'
2 + 21�' + 22 . (3.13)

While the variables 21 to 23 are indeed quadratic functions of �', 24 is rather a constant value,
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Figure 3.9: Variables 21 to 24 for the (ℎ number correlation in the convection driven regime, as
quadratic functions of the aspect ratio. The variables 21 to 23 associate to the viscous forces and
predominates at large �'. When �' approaches zero, all variables but 24 vanishes, in which
case the correlation (equation 3.12) reduces to a term proportional to �A1/4 plus a constant
term, in agreement with pool evaporation (no damping effect due to vertical walls bounding the
buoyant flow).
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with its 20 = 21 = 0.

The variables 21 and 22 relate to the peak of the (ℎ-�A slope. 23 reflects the influence of

the viscous forces, while the variable 24 is the term correspondent to the importance of inertial

forces. Note in Fig. 3.9, where the 2-variables are plotted against the �', that as �' decreases 21

approaches zero, consequently vanishing the exponential term of equation 3.12. The variable

23 also approaches zero with the decrease of �', leaving the variable 24 as the dominating term

for small �'. The reduction of equation 3.12 to a term proportional to �A1/4 plus a constant for

vanishing �' values is in agreement with the correlations for pool evaporation [31]. The variable

25 is obtained as a function of variables 21, 22, 23 and 24, with equation 3.12 evaluated at the

critical point, that is, 25 = (ℎ! (�', (ℎ!2 ,�A'2
).

Figure 3.10 shows a comparison between the proposed correlation and the numerical

simulation for the (ℎ-�A curve’s slope in the convection driven regime. The proposed correlation

Figure 3.10: (ℎ-�A curve’s instantaneous slope in the convection driven regime according to
the numerical simulation and proposed correlation. The proposed correlation reproduces with
accuracy the complex variation of the curve that is particular to each aspect ratio, from the
sudden jump to the maximum value right after the critical point at low �' to the skewed bell
shaped curve for higher �' values.
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recovers in detail the complex dynamics of viscous and inertial force interaction, an interaction

indeed particular to each �'. The suggested model is able to accurately reproduce the sudden

change in the (ℎ-�A curve’s slope as it transitions from the diffusion to the convection driven

regime, as well as the peak followed by the monotonic decrease of the curve. Moreover, the

proposed correlation highlights the physical aspect of the evaporation process, emphasizing the

overall contribution of viscous and inertial forces that depend on the damping effect due to the

bounded buoyant flow. Finally in Fig. 3.11, a comparison of the numerical simulation and

proposed correlation for the (ℎ-�A curves is displayed along with the resulting percentage error.

We see that for the conditions analysed in this study, the maximum percentage error is virtually

within ±5%, for all �' investigated under NCTP.

Figure 3.11: Comparison between the numerical simulation and the proposed correlation for
the (ℎ-�A curve. The percentage error of the proposed correlation is within 5% for all aspect
ratios analysed in this study, reflecting the robustness of the proposed correlation to estimate the
free evaporation from open tubes under isothermal or near-isothermal conditions.
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3.3 Concluding remarks

The evaporation from open tubes is investigated for isothermal or near-isothermal con-

ditions. The mass transport is overall characterized by complex massline patterns due to the

interaction of the vertical walls with the buoyant flow. Using numerical simulations validated

by experimental data for typical NCTP, the water vapor transport dynamics is analysed for open

tubes with aspect ratios ranging from 2 to 11 and relative humidity values from 0 to 99%, all at 1

atm. The dependence of the diffusion-driven and convection-driven regimes as functions of the

geometrical aspect ratio of the tubes is demosntrated. A new Sherwood number correlation valid

for both isothermal and near-isothermal processes in the range of Grashof numbers from 50 to

4,000 is proposed. This correlation, which is nearly invariant on temperature as it is normalized

according to nominal values of d and D12, expresses the Sherwood and Grashof numbers for

variying aspect ratios. The proposed correlation estimates evaporation rates within 5% of values

obtained from 3-D numerical simulations for the entire range of Grashof and Sherwood numbers

under study.

Chapter 3, in full, has been submitted for publication of the material as it may appear in

Isothermal and Near-Isothermal Free Evaporation from Open Tubes. Medrado, J. P. T.; Inman, R.

H.; Coimbra, C. F. M., International Journal of Heat and Mass Transfer, 2021. The dissertation

author was the primary investigator and author of this paper.
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Chapter 4

Non-isothermal evaporation from open

tubes

Open tube evaporation is a common form of low Grashof number convection. However,

the physics underlying this type of flow is not well understood mainly due to the sensitivity of low

Grashof number flows to boundary conditions.

Detailed numerical simulations validated against experimental results are used in this

work to investigate the dynamics of natural convection driven by free evaporation from open tubes

(i.e., low Grashof number flows). Evaporation from tubes having a gas-side aspect ratio equal to

2, 3 and 4 reveals how buoyancy effects present in the gas and liquid domains can culminate in a

fully stable system when the onset of convection is induced in the liquid.

4.1 Problem description and method of solution

When water freely evaporates under NCTP, gas and liquid molecules in the vicinity of the

interface loose energy to the phase change process, resulting in evaporative cooling. Mass and

thermal buoyancy are consequently induced in the gas and thermal buoyancy in the liquid. The
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conservation equations governing the steady momentum and energy transfer in the liquid are

∇ ·u = 0 , (4.1)

u · ∇u = − 1
d;
∇%+ a;∇2u +6 V)Δ) k̂ , (4.2)

u · ∇) = U;∇2) . (4.3)

The gas, which we considered a binary system formed by water vapor and air, is governed

by the following conservation equations:

∇ ·u = 0 , (4.4)

u · ∇u = − 1
d6
∇%+ a6∇2u+6 (V<Δ<1 + V)Δ)) k̂ , (4.5)

u · ∇) = U6∇2) , (4.6)

u · ∇<1 = D12∇2<1 , (4.7)

In both groups of governing equations, % refers to pressure and gravitational potential,

? +6Id6, a term essentially negligiable in this problem. The respective V< and V) are the mass

and thermal volumetric coefficients of expansion - see Appendix A. Densities differences in the

gas as well as in the liquid are accounted for in the body force term, according to the Boussisnesq

approximation.

For the diffusion of energy across the walls of the tube,

∇) = 0. (4.8)

The described governing equations are subjected to the following boundary conditions (see Fig.
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4.1 for reference):

u = 0 , (4.9a)

) = )4 , (4.9b)

<1 = <1 (RH4, )4) , (4.9c)

∀ G ∈ 4,∀ H ∈ 4, and ∀ I ∈ 4. Neglecting solubility of air in water under NCTP, we assume that

only water vapor is transferred at the interface [32]. Thus, at the air-water interface:

DG (I = 0+) = DG (I = 0−) , (4.10a)

DH (I = 0+) = DH (I = 0−) , (4.10b)

DI = 0 , (4.10c)

`6
mDG

mI

����
I=0+

= `;
mDG

mI

����
I=0−

, (4.10d)

`6
mDH

mI

����
I=0+

= `;
mDH

mI

����
I=0−

, (4.10e)

) (I = 0+) = ) (I = 0−) = )B (A) , (4.10f)

−d6D12
m<1
mI

����
I=0+

ℎfg + Yf()4
B −) 4

4 ) = −:6
m)

mI

����
I=0+
− : ; m)

mI

����
I=0−

, (4.10g)

<1 = <1 (%sat, )B) , (4.10h)
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∀ G ∈ B,∀ H ∈ B, and ∀ I ∈ B. Finally, for the walls of the tube

) = )f , (4.11a)

n · @ = :f∇) | f , (4.11b)

∇<1 = 0 , (4.11c)

∀ G ∈ F,∀ H ∈ F, and ∀ I ∈ F.

4.1.1 Numerical method

The finite element solver COMSOL Multiphysics is used to solve the governing equations

and boundary conditions. Tetrahedral elements compose the domain of the problem, with mesh

elements near the air-water interface more refined. Third order polynomial shape functions

interpolate between-node results. As in the work of McBain et al. [30] and Medrado et al. [32],

COIMBRA RESEARCH GROUP
UNIVERSITY OF CALIFORNIA SAN DIEGO
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Figure 4.1: Schematic representation of the domain used in the numerical simulation of free
evaporation from open tubes. The coordinate system is placed at the center of the interface.
The walls of the chamber define the far-stream physical boundary, the 4-state. The gas-side and
liquid side of the interface are respectively represented by surfaces B and D. The walls of the
tube are referred to as the F surface.
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Table 4.1: Mesh independence study for numerical simulation of non-isothermal free evaporation
fromopen tubes. The average Sherwood number is evaluated according to the number of triangular
elements at the air-water interface and degrees of freedom (DOF) for a tube of �' = 2. Models
having more than 150 elements in the interface shows negligible mass transfer rate change.

Total DOF Triangles (ℎ! diff.

418,215 34 1.8493 -
531,173 73 1.8607 0.62%
827,158 150 1.8618 0.06%

1,381,418 300 1.8623 0.03%

the unsteady state simulation of a given pressure, temperature and relative humidity condition is

first solved with a tilted gravitational field to excite the diametrically-asymmetric flow structure

under a dry environment. A steady-state simulation of the same boundary-value problem is

subsequently solved without the tilt in the gravitational field. The governing equations are fully

coupled in order to solve all variables simultaneously — for more details regarding the numerical

procedure, see [32].

Table 4.1 shows a mesh independence study for a non-isothermal open tube evaporation

where the �' = 2. The analysis shows that models having more than 150 elements at the air-water

interface produces virtually no change in the mass transfer rate.

4.1.2 Experimental method

A pressure-temperature-humidity controlled chamber defines the far-stream boundary

condition of the evaporation process. Thermocouples, a pressure sensor and a hygrometer track the

thermodynamic state of the chamber’s interior during the process. A 20-mm O.D. and 14-mm I.D.

open tube made of polyoxymethylene (POM) is partially filled with water and placed inside the

chamber over a high-precision balance. An infrared sensor continuously measures the air-water

interfacial temperature. The balance measures the amount of water evaporating during the process,

and because the level of water in the tube decreases as evaporation goes on, the entire process is

repeated for subsequent targets of relative humidity. In each experimental run, the mass flux is
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calculated according to a linear regression based on sub-ranges of mass measurements over time.

A j2 is applied to determine the number of degrees of freedom to be used in each sub-range of

experimental data. Once each data sub-range is defined, the mass flux and the average value of all

the other variables are calculated. See [31] for more details of the experimental procedure.

4.2 Results

Here we analyse the natural convection induced by buoyant flows in the gas and liquid. It

is specifically demonstrated how convective cells emerge in the system and remain stable during

both convection driven and diffusion driven regimes, if the onset of convection occurs in the

liquid.

4.2.1 Validation of numerical method

The numerical simulation is validated against experiments performed for non-isothermal

free evaporation from open tubes having an �' equal to 2, 3 and 4, with a far-stream temperature

fixed at approximately 300 K. The numerical simulation captures the behavior of the mass transfer

rate across the evaluated range of relative humidity, a range covering values from approximately

10% to 80%. At such low Grashof number flows (i.e., free evaporation) the mass transfer becomes

very sensitive to any disturbance during the evaporation process. For example, we notice that

the temperature of the high precision balance measuring the remaining liquid inside the tube

is slightly above the average temperature of the chamber’s walls (∼ Δ) of 0.2 K to 0.5 K). To

best replicate the conditions of free evaporation during the experiment, we also accounted for

such temperature variation. However, effects related to temperature gradient across the walls

of the chamber is not considered in the simulation due to the complexity involved. Overall, the

numerical simulation reasonably captures the behavior of both evaporation regimes for all aspect

ratios under study: the convection driven regime, where the Sherwood number strongly depends
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on the Grashof number; and the diffusion driven regime, where the Grashof number’s dependence

on the Sherwood number becomes negligible.
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Figure 4.2: Validation of numerical simulations with experimental results for non-isothermal
free evaporation from open tubes. The evaporation is analysed for )4 at 300 K, RH4 values from
0.1 to 0.8, and �' equal to 2 (blue), 3 (purple) and 4 (orange). The mass flux (a) and temperature
of the interface (b) are parameterized according to nominal values (4×10−5 kg/m2s - 0 and
299 K - 300 K). Each corresponding (ℎ-�A curve is also shown (c, d and e). In-homogeneous
effects such as a weak temperature gradient across the walls of the chamber is likely affecting the
experiment. Nonetheless, for all �' the numerical solution captures the behavior of the process,
as noted from how the trend is recovered for convection driven and diffusion driven regimes.
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4.2.2 Convective flow dynamics in non-isothermal free evaporation from

open tubes

In order to emphasize a more general process of free evaporation from open tubes,

conditions particular to the experiment such as temperature heterogeneity in the balance were

removed. Instead, a homogeneous temperature equal to )4 was considered. The discussion below

thus refer to the aforementioned general free evaporation process.

Isothermal evaporation from open tubes occur under two mass transport regimes [30, 32]:

the diffusion driven and the convection driven regime. The diffusion regime is characterized by

a negligible dependence of the (ℎ number on the �A number, and where little or virtually no

entraiment of surrounding air into the tube results in essentially straight lines of net water vapor

mass transport from the air-water interface to the open-end. In the convection driven regime,

the now strong entraiment of air into the tube induces a flow structure composed by a single

convective cell in the gas, forcing the lines of net mass transport to follow the convective cell

pattern. Moreover, the transition from the diffusion to the convection driven regime for isothermal

evaporation occurs at a so called critical�A number [32]. The stable convective cell once observed

in the convection driven regime dissipates under the diffusion driven regime, as it is replaced by a

flow structure no longer affecting the masslines of water vapor.

Contrary to the isothermal case, when free evaporation from open tubes occur under

non-isothermal conditions, a smoother transition from the convection driven to the diffusion driven

regime takes place. The single convective cell in the gas forces an uneven mass flux distribution

at the interface. High interfacial mass fluxes are located at the side where the surrounding air

enters the tube and descends from the open-end. Uneven interfacial mass fluxes thus result in

asymmetrical thermal gradients across the air-water interface for non-isothermal processes. Since

here the bottom temperature of the water body is at )4, which is in general higher than the average

)B, buoyancy consequently develops in the liquid.
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For a shallow water body where convection is mostly suppressed, the temperature gradient

across the interface has a circular shape with the lowest temperature point localized between the

interface’s edge and centre, as show in Fig. 4.3. If instead the liquid body is tall enough as to

allow for the onset of convection in the liquid, the resulting lowest interfacial temperature moves

to the edge or rim of the air-water interface, specifically to the side where the entrainment of

surrounding air is established. Under such a distinct interfacial temperature, the cold liquid sinks

down along the adjacent container’s wall to the container’s bottom. As a result, a single convective

cell originates in the liquid, oriented according to the described liquid buoyant flow motion.

The rotation of the convective cell emerging in the liquid has an opposite direction relative

to the gas-side convective cell rotation. Moreover, the liquid-sided convection dominates the

motion prevailing at the air-water interface. A consequence from the opposite convective-rotation

of the water side in respect to the air side is the appearance of a dual convective cell structure
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Figure 4.3: Normalized temperature gradient developing in free evaporation from open tubes.
The uneven interfacial mass flux distribution induces temperature gradients across the interface.
In a system where the bottom of the liquid body is kept at )4, the evaporative cooling of the
interface can result in a weak or strong buoyant motion of the liquid, depending on liquid-side
aspect ratio and interfacial temperature drop.
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in the gas. While the primary cell results from the strong entrainment of air inside the tube, the

secondary cell emerges from the buoyant motion induced in the liquid by the uneven interfacial

mass flux distribution. The strong entraiment of surrounding air in the convection driven regime

causes the secondary cell to be initially confined into a small region (see Fig. 4.4). As the driving

potential decreases and the evaporation process transitions to the diffusion driven regime, the

secondary cell grows in size and occupies a larger portion of the gas domain.

When the onset of convection occurs in the liquid, the equilibrium state achieved by

the overall flow results in stable cells in both liquid and gas, under either convection driven or

diffusion driven regimes. The flow structure that develops under the convection driven regime

with an "apparent" single convective cell progressively evolves into the dual cell structure in the

diffusion-dominated phase, ultimately resulting in a smooth transition between regimes. If, on

the other hand, convection in the liquid side is weak due to, for example, a shallow water body,

then a stable cell is only observed for the gas-sided convection driven regime. The once stable

cell dissipates in the diffusion driven regime, giving room to a flow structure with virtually no

influence on the net transport of water vapor, similarly to the isothermal case. The development of

the flow structure is shown in Fig. 4.4 according to five stages of the evaporation process: starting

from a flow structure under a dry environment (stage A), followed by a condition in the pre-critical

regime and near the critical point (stage B), at approximately the critical (ℎ-�A number (stage

C), post-critical regime right after the critical point (stage D) and finally in a wet environment

condition (stage E). The masslines representing the net transfer of water vapor nearly follows the

pattern of the single convective cell in the gas for evaporation processes under the convection

driven regime, having either a strong or weak convection in the liquid (stages A and B). When

the process transitions to the diffusion drive regime however, the masslines become essentially

straight paths of water vapor moving from the interface to the open-end for a weak convection in

the liquid (stage C — weak convection in the liquid), similarly to isothermal evaporation from

open tubes [32]. This massline pattern remains practically unchanged when further reducing
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Figure 4.4: Streamlines and massline patterns depicting the flow structure net transport of water
vapor at different stages during free evaporation from open tubes. For a weak or strong convection
in the liquid, the masslines follow the streamline pattern during the gas-side convection driven
regime (stages A and B) as a strong entraiment of surrounding air occurs. When the convection
is weak in the liquid, the masslines become essentially straight paths from the air-water interface
to the open-end with little entraiment. The masslines are still affected by the convective flow if
the onset of liquid convection is induced, resulting in a curved pattern (stage E).
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the mass driving potential (stages D and E — weak convection in the liquid). If instead strong

convection occurs in the liquid, the masslines originally following the shape of the convective cell

in the pre-critical regime (stages A and B — strong convection in the liquid), continue to follow

the cell pattern in the critical and post-critical regimes (stages C and D, respectively — strong

convection in the liquid) to subsequently change to a skewed pattern when under a wet condition

(stage E — strong convection in the liquid).

As mentioned previously, the stable flow structure in non-isothermal evaporation from

open tubes causes a smoother transition from the diffusion driven to the convection driven regime

when compared to the isothermal case. In Fig. 4.5, where both curves are plotted for comparison,

one can observe the sudden switch between regimes for the isothermal curve, while a gradual

transition occurs for the non-isothermal condition. Moreover, the (ℎ number limit in the diffusion

driven regime decreases for the non-isothermal case, as also observed in Fig. 4.5. Lower (ℎ
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Figure 4.5: Sherwood number as a function of the Grashof number for isothermal and non-
isothermal free evaporation from open tubes. The transition from the diffusion driven to the
convection driven regime is in general smoother for the non-isothermal case, due to the convective
flow structure that remains stable under both regime if the onset of convection occurs in the
liquid (�'6 = 2, for example). When convection in the liquid is inhibited (�'6 = 4), the single
convective cell once stable in the convection driven regime dissipates in the diffusion driven
regime, resulting in a sharper transition. Moreover, the limit of the Sherwood number in the
diffusion driven regime tends to decrease for a strong-convection in the liquid, a consequence of
the double convective cell structure, that in general weakens the mass concentration gradient in
the gas.
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numbers in the diffusion driven regime is likely to be a result from the double convective cell

flow structure, that in general reduces the mass concentration gradient inside the tube. When

the secondary convective cell grows in size and significantly reduces the kinetic energy of the

gas domain (pushing the process to the diffusion driven regime), the continued presence of the

primary convective cell induces a higher outflow of water vapor. In terms of the �A number, the

overall temperature reduction of the systems shifts the (ℎ-�A curve to lower �A numbers. When

convection in the liquid is strong, the shift is more pronounced (Fig. 4.5, �' = 2) then when

liquid convection is suppressed (Fig. 4.5, �' = 4).

4.3 Concluding remarks

The non-isothermal evaporation from open tubes is studied using numerical simulations

in agreement with experimental results for aspect ratios equal to 2, 3 and 4. A detailed analysis of

the flow structure shows that, compared to the isothermal case, non-isothermal evaporation is in

general characterized by a smoother transition between the diffusion-driven and convection-driven

regimes, as convective cells in both liquid and gas is stable for both regimes. This stability is the

equilibrium condition achieved by the process when the uneven interfacial mass flux induces the

onset of convection in the liquid. When liquid convection is suppressed, on the other hand, the

overall flow structure resambles that found in isothermal open tube evaporation processes.

Chapter 4, in full, is currently being prepared for submission for publication of the material.

Medrado, J. P. T.; Inman, R. H.; Coimbra, C. F. M. The dissertation author was the primary

investigator and author of this paper.
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Chapter 5

Conclusions

Free water evaporation processes from small scale circular pools and open tubes are

investigated for normal conditions of temperature and pressure. The governing equations are solved

numerically and validated against experimental results obtained under a controlled environment, as

well as against experimental data available in the literature. The agreement between experiments

and theory reinforce the choice of radiative-convective boundary conditions at the air-water

interfaces. When present, evaporative cooling effects in these flows result in thermal gradients

having opposite direction to mass concentration gradients. These weak gradients on the gas side

generate reasonably stable complex patterns at very low Grashof number flows. The gas-sided

overall stability allows for a consistent analysis of the evaporation process across a wide range of

Grashof numbers. The mass transport is thus systematically analysed, and Sherwood number

correlations are obtained for various geometrical configurations.

For free evaporation from a pool with dominant downward motion, the heat flux from the

liquid provides the most significant contribution to the total heat of vaporization, although the

relative contribution of each transport mechanism depends on the energy supplied to the interface

through the bottom of the pool. The vertical and horizontal components of the velocity near

the air-water interface are of same order of magnitude, which precludes the use of simplifying
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boundary layer approximations in the study of weakly convective flows at low Grashof numbers.

Thermal and mass concentration are spherically-symmetric isosurfaces sensitive to disturbances

caused by the surrounding buoyant convective forcing. Because of the drop in temperature near

the rim of the pool, the cold air sinks and induces a local acceleration of the flow near the rim.

Recirculations zones originating at the air-water interface are thus enveloped by the sinking air in

a toroidal ring-like jet structure. For wet environments with minimal disturbances, the evaporative

process results in a Sherwood number based on the radius of the pool only slightly higher than

2 for Grashof numbers less than 10. This Sh number value is the expected one for the pure

diffusion limit. For Grashof number values higher than 10 and up to 105, a (ℎ number correlation

is proposed: (ℎ' = 1.73+ 0.26(21/3�A1/4
'

for 10 ≤ �A' < 105. The proposed correlation

covers geometrical aspect ratios �/' from 0.3 to 5, while obeying the scaling law associated

with unbounded laminar buoyant flows.

The evaporation from open tubes under isothermal or near-isothermal conditions at NCPT

is also analysed for aspect ratios ranging from 2 to 11. The evaporation process occurs under two

distinct regimes, namely the diffusion driven and the convection driven regimes. In the diffusion

driven regime, the Sherwood number is nearly independent of the Grashof number, with the fluid

flow having little effect on the concentration of water vapor inside the tube or on the net transport

of water vapor away from the interface. In the convection driven regime, where the Sherwood

number depends more strongly on the Grashof number, the flow deforms the concentration gradient

and alters the conventional straight path of the masslines. A strong entrainment of surrouding air

is established at the open-end, while a mixing layer forms near the air-water interface where the

entrained air mixes with the newly released water vapor. The transition between regimes occurs

at a single point, here denominated as the critical Grashof and Sherwood numbers. The critical

Grashof and Sherwood numbers are dependent on the aspect ratio in a way that, increasing the

aspect ratio increases both critical values. Such is a consequence of the damping effect due to

the walls of the tube bounding the buoyant flow, a result that favors the overall predominance
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of viscous forces in the flow. The behavior of the (ℎ-�A curve is particular to each aspect ratio:

when the aspect ratio is small, (ℎ ∝ �A1/4; whereas for higher values of �', the (ℎ number

becomes proportional to �A1/2 and �A1/4. The slope of the (ℎ-�A curve is characterized by a

single oscillation in the convection driven regime. The derivative of the curve in the convection

driven regime revels that such an oscillation is in general associated with the wall-damping effect,

and is appropriately expressed according to an exponential term. A Sherwood number correlation

covering the diffusion and convection driven regimes is suggested for aspect ratios between 2 and

11, at near-ambient isothermal and quasi-isothermal conditions. The correlation is composed

by an asymptotic equation representing the (ℎ2 for �A ≤ �A2, a sigmoid equation for the �A2,

and an exponential equation to obtain the (ℎ in the convection driven regime, for �A > �A2. The

proposed model captures all features observed in free evaporation from open tubes, including the

weak oscillation found in the post-critical regime.

When free evaporation from open tubes occurs under non-isothermal conditions, convective

cells emerging in the gas and liquid can remain stable during both diffusion-driven and convection-

driven regimes. Such stability is the equilibrium condition achieved by the process when the

uneven mass flux distribution at the air-water interface excites strong convection in the liquid,

ultimately resulting in a smoother transition between regimes. An exception is encountered if

convection is suppressed, resulting in a isothermal-like evaporation process instead.
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Appendix A

Coefficient of volumetric expansion

The thermal and mass coefficients of volumetric expansion, V) and V<, are expressed for

a binary mixture as

V) = −1
d

md

m)

����
d1,?

≈ 1
)4
, (A.1)

V< = d

(
−1
d

md

md1

����
),?

)
≈ "2
"1
−1, (A.2)

with " being the molecular weight of the species in question. Note that equation A.2 implies

d2� d1 and G2� G1. The former is approximately true for water vapor (species 1) in air (species

2), while the latter is always true for the same mixture under tropospheric conditions.
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Appendix B

Saturation pressure of water vapor

The saturated vapor pressure in this work is estimated using the Tetens equation [46]

%sat = 0.61078 exp
(

17.27 )
) +237.3

)
, (B.1)

where ) is in degrees celsius and %sat is in kilopascals.
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Appendix C

Binary diffusion coefficient for water vapor

in air

The binary diffusion coefficient of water vapor in air used in this study follows the empirical

relation [34]

D12 = 1.97×10−5
(
%0
%

) (
)

)0

)1.685
, (C.1)

where %0 = 1 atm, )0 = 256 K and D12 given in m/s2.
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