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ABSTRACT Very few causal genes have been identified by quantitative trait loci (QTL) mapping because of
the large size of QTL, and most of them were identified thanks to functional links already known with the
targeted phenotype. Here, we propose to combine selection signature detection, coding SNP annotation,
and cis-expression QTL analyses to identify potential causal genes underlying QTL identified in divergent
line designs. As a model, we chose experimental chicken lines divergently selected for only one trait, the
abdominal fat weight, in which several QTL were previously mapped. Using new haplotype-based statistics
exploiting the very high SNP density generated through whole-genome resequencing, we found 129
significant selective sweeps. Most of the QTL colocalized with at least one sweep, which markedly narrowed
candidate region size. Some of those sweeps contained only one gene, therefore making them strong
positional causal candidates with no presupposed function. We then focused on two of these QTL/sweeps.
The absence of nonsynonymous SNPs in their coding regions strongly suggests the existence of causal
mutations acting in cis on their expression, confirmed by cis-eQTL identification using either allele-specific
expression or genetic mapping analyses. Additional expression analyses of those two genes in the chicken
and mice contrasted for adiposity reinforces their link with this phenotype. This study shows for the first time
the interest of combining selective sweeps mapping, coding SNP annotation and cis-eQTL analyses for
identifying causative genes for a complex trait, in the context of divergent lines selected for this specific
trait. Moreover, it highlights two genes, JAG2 and PARK2, as new potential negative and positive key
regulators of adiposity in chicken and mice.
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The ultimate goal of quantitative trait loci (QTL) mapping approaches
is to gain a better understanding of biological mechanisms involved in
these phenotypes to offer molecular tools for medical diagnosis or
animal selection. Over the past three decades, several thousand QTL

have been mapped for different traits in many species. In this context,
whereas genome-wide association study is developing as the reference
QTL mapping method for human populations (Visscher et al. 2012; Li
et al. 2012), most of the QTL referenced today in experimental or

Volume 5 | April 2015 | 517

http://orcid.org/0000-0002-0695-4206


livestock species were mapped by linkage analysis approaches through
F2 genetic crosses. This is especially the case for species such as
chicken, for which the individual production is inexpensive; in this
case, for each phenotype of interest, divergent lines are usually created
to maximize QTL heterozygosity after crossing parental lines. To date,
4714 QTL have been referenced in the Mouse Genome Database
(Eppig et al. 2012; Bult et al. 2013) and 8006, 8935, and 3923 QTL
for cattle, pigs, and chickens, respectively, in the animal QTLdb
database (Hu et al. 2013). The major weakness of QTL mapped with
linkage analysis is their large size, usually in the range of several
megabases (Mbs). These intervals may contain up to hundreds of
genes, which impedes the identification of causal underlying genes
(Georges 2007). When dealing with these large genomic regions and
the numerous positional candidate genes they contain, it is tempting
to focus narrowly on functional candidates. Hence, many of the causal
genes identified to date were already known as being functionally
related to the complex trait, limiting the research scope (Grisart
et al. 2004; Clop et al. 2006; Le Bihan-Duval et al. 2011).

We attempted to combine selection signatures in divergent lines
for one complex trait, cis-eQTL analysis and single nucleotide poly-
morphisms (SNPs) annotation in coding regions by using DNA-seq,
to improve identification of causal genes underlying QTL regions with
no presupposed function. The model we used is based on two chicken
lines divergently selected for abdominal fat weight (AF), for which six
QTL responsible for AF were previously mapped with an average size
of 12 Mbs, and containing tens to hundreds of genes.

With the development of high-density marker genotyping, several
studies aiming at detecting selection signatures have been conducted
during the past decade. These studies generally focus on natural
populations (Lao et al. 2007; Barreiro et al. 2008) or on livestock
populations subjected to artificial selection performed on several traits
of agronomical interest (Hayes et al. 2009; Rubin et al. 2010; Kijas
et al. 2012), or characterize the impact of domestication on genetics of
livestock species (Qanbari et al. 2014). To date, in the animal selection
field, only two studies have explored selection signatures within two
lines divergently selected for a unique trait. Both were based on
chicken and adopted classical FST approaches underpinned by 60,000
SNP markers (Johansson et al. 2010; Zhang et al. 2012). In this study,
we also propose detecting molecular selection signatures in two
chicken lines divergently selected for one trait (i.e., the abdominal
fat weight), but we use millions of SNPs. Several approaches exist to
detect selective sweeps at the population level. They are based on
allelic frequency patterns within populations (Kim and Stephan
2002; Kim and Nielsen 2004; Nielsen et al. 2005; Boitard et al.
2009), on the structure of haplotypes segregating in populations
measured by extended haplotype homozygosity (EHH) or on related
statistics (Sabeti et al. 2002; Voight et al. 2006), or on genetic differ-
entiation between populations measured by single marker statistics
such as FST (Lewontin and Krakauer 1973; Beaumont and Balding
2004; Riebler et al. 2008; Foll and Gaggiotti 2008; Gautier et al. 2009;

Bonhomme et al. 2010). This last approach is particularly well-suited
to our application, where whole SNP data from divergently selected
lines are available. To take advantage of this high density of markers,
we used the recently developed statistical test hapFLK (Fariello et al.
2013), which measures genetic differentiation between samples based
on haplotype rather than single marker allele frequencies and, thus,
naturally accounts for the correlation structure between SNPs. The
authors showed that hapFLK increases the power to detect selection
compared with classical FST-based or EHH-based approaches. It is
also well-adapted to the analysis of small effective size populations,
like the chicken lines considered in the study. The level of genetic drift
resulting from population neutral history is first evaluated using
genome-wide data, and genomic regions are detected under selection
only if they exhibit haplotype frequency patterns that are very unlikely
to arise from the drift process. Previous studies have shown that this
strategy allows efficient control of the false-positive rate (Fariello et al.
2013, 2014) even in the case of bottlenecked populations.

Another important advantage in using DNA-seq data is the
availability of almost all the polymorphisms, as indels and SNPs,
characterizing individuals of interest. Also, access to this type of data
allows the exhaustive analysis of polymorphisms within both coding
and regulatory regions of positional causal candidate genes underlying
QTL. Among those positional candidates, the availability of DNA-seq
data allow discrimination of two kinds of genes: genes with SNPs or
indels impacting mature protein—which directly reinforce their causal
status—from genes for which polymorphisms may act in cis on their
expression, which requires investigation of their expression in tissues
in which they are expressed to emphasize their causal status. For
revealing cis-eQTL, different approaches can be used (Babak et al.
2010; Montgomery and Dermitzakis 2011; Lagarrigue et al. 2013). It
could consist of analyzing segregation in families (linkage analysis) or
association in populations (GWAS) between markers and the expres-
sion of the gene considered. However, it is also conceivable to analyze
if the gene considered exhibits allele-specific expression (ASE). ASE
can be quantified using technology allowing estimation of the tran-
script level depending on a SNP specific of each chromosomal copy. It
is important to notice that such an approach needs to focus on tissues
in which we expect, for the gene considered, a significant expression
and a key role in the complex trait of interest.

In our experimental design, the analysis of colocalization of QTL
and selective sweeps markedly shortened the list of candidate genes in
each region, sometimes even down to one, making the latter a strong
causative positional candidate. We therefore focused on two genes,
each located in two distinct QTL colocalizing with different selective
sweep patterns. The absence of missense and nonsense SNP on those
genes strongly suggested that their expression should be regulated in
cis. We thus confirmed cis regulation in chicken or mice models,
contrasted for adiposity by analyzing ASE (chicken) or GWAS (mice).
These observations therefore strengthen positional and also functional
status of those genes. By combining these complementary approaches,
summarized in Figure 1, we identified two strong positional and
functional candidate genes underlying AF QTL, including one pre-
viously unknown to be involved in the genetic control of adiposity.

MATERIALS AND METHODS

Chicken experimental design and ethics statement
The two experimental meat-type chicken lines were divergently
selected for seven generations using the abdominal fat weight-to-
animal weight ratio at 9 wk as an index of fattening, maintaining
approximately similar live body weight (Leclercq et al. 1980). The two
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divergent lines were termed fat lines (FL) and lean lines (LL). After
this selection, the two lines were maintained by just limiting inbreed-
ing. Twenty animals from the 35th generation were sequenced: seven
LL, four FL, and nine F1 (FL · LL, unrelated animals) including the
five F1 sires used for previous QTL study. Blood was collected from all
the animals for DNA analyses. All procedures were conducted under
License No. 37-123 from the Veterinary Services, Indre-et-Loire,
France, and in accordance with guidelines for Care and Use of Ani-
mals in Agricultural Research and Teaching (French Agricultural
Agency and Scientific Research Agency).

Whole-genome DNA resequencing on chicken samples
DNA-seq paired-end libraries with a 250-bp insert were prepared
using the TruSeq DNA Sample Preparation Kit (Illumina) according
to the manufacturer’s instructions. The libraries were quantified using
QPCR Library Quantification Kit (Agilent), checked on a High-
Sensitivity DNA Chip (Agilent), and sequenced in pair end 2 · 101 bp
on a HiSequation 2000 (Illumina) using a TruSeq v3 Kit. Sequencing
produced, on average, 92% of raw reads correctly aligned against the
reference genome per animal, i.e., 20.4 Gb, corresponding to a se-
quencing depth of 19.7 X.

The read sets obtained by sequencing 20 animals were aligned
against the Gallus gallus WASHUC2.1 genome reference obtained
from Ensembl 58 using BWA v0.7.0 (Li and Durbin 2009). BAM files
corresponding to samples sequenced on several lanes were then
merged. All alignment BAM files were indexed and filtered. Only
reads with a unique mapping hit and a minimal quality score of 30
were kept. PCR duplicates were filtered out using SAMtools rmdup.
All these steps were performed using SAMtools v0.1.19 (Li et al. 2009).
After all these filters, the mean sequencing depth decreased between

8· and 14·, depending on the chromosome. The reads cover approx-
imately 86% of the genome, reaching 91% when unknown regions
(stretches of Ns) are filtered out from the reference. The Genome
Analysis Toolkit v2.4.9 software (GATK) (McKenna et al. 2010)
was then used for realignment, recalibration, and variant calling.
To minimize the number of mismatched bases across the reads, a local
realignment was first performed around indel regions. A covariation
analysis followed by a recalibration of base qualities was then con-
ducted with GATK BaseQualityScoreRecalibrator. Finally, GATK
UnifiedGenotyper was used for SNP and indel calling.

SNP validations were performed for the 16 SNPs in JAG2 intronic
regions. First, targeted sequences were amplified by PCR on 50 ng
DNA using a Taq Uptitherm kit (Interchim) with the following pri-
mers: F 59-ACCAGCAGATTCCAGTGCC-39 – R 59-GCCCCACTA
AAACATGAGGG-39. Amplicons (1817 bp) were then purified using
a NucleoFast 96 PCR kit (Macherey Nagel) following the manufac-
turer’s protocol, and they were finally diluted at 50 ng/mL; 5 mL of
each sample was then mixed with 5 mL of specific resequencing pri-
mers (Supporting Information, Table S1) and sent to GATC-Biotech
(Konstanz, Germany) for Sanger resequencing. Sanger traces were
analyzed using Mixed Sequence Reader (Chang et al. 2012).

WGS-based selective sweep detection with hapFLK
We looked for genomic regions showing outstanding haplotypic
differentiation between LL and FL using hapFLK statistics (Fariello
et al. 2013), with a small modification to exploit the F1 data. The
computation of hapFLK proceeds in three steps. First, a kinship ma-
trix is estimated from pairwise genome-wide allele frequency differ-
ences between populations, which allows modeling of the extent of
allele frequency differences that may result from genetic drift, and are
thus compatible with a neutral evolution model. Second, genotypes
from all sampled individuals are merged, and a pair of haplotype
clusters is inferred for each individual at each SNP position using
the algorithm developed by Scheet (Scheet and Stephens 2006) and
used in the fastPHASE software. Haplotype clusters at one SNP po-
sition will be seen as ancestral haplotypes that summarize the genetic
diversity in the neighborhood of the SNP. Third, sampled individuals
are sorted again according to their population of origin, and cluster
frequencies are computed at each SNP for all populations. The differ-
entiation between populations at a given SNP position is then evalu-
ated from the estimated cluster frequencies at this position using
statistics related to a multi-allelic FST, but it accounts for population
structure through the previously estimated kinship matrix.

Here, we estimated the kinship matrix using SNP genotype data
from the seven LL and the four FL samples; however, to infer
haplotype clusters, we also included the nine F1 samples. F1 animals
inherit their haplotypes from the LL and FL animals; therefore, in-
cluding them allows an increase in sample size up to 20, and thus
a more accurate inference of haplotype diversity.

Alleles that are rare in all populations are not informative for the
detection of selection signatures; in the case of next-generation
sequencing data, they may arise from sequencing errors. Conse-
quently, we removed low-frequency SNPs (minor allele frequency
below 10%) from hapFLK analyses. To speed-up the computations, we
calculated the kinship matrix using only 1% of the high-frequency
SNPs (estimating this matrix does not require a large number of
SNPs) and computed hapFLK (with the modification mentioned
above) using 30% of the high-frequency SNPs. When estimating
haplotype clusters, we assumed six clusters, because this corresponds
to the number of ancestral lines in the founder population, and
estimated them using 10 expectation maximization iterations. We

Figure 1 Overview of the strategy used in this study. QTL: quantita-
tive trait locus; cis-eQTL: QTL for gene expression and acting in cis;
ASE: allele-specific expression; VeP: Variant Effect Predictor tool from
the Ensembl API; NGS-SNP: variant annotation tool developed by
Grant et al. 2011; GWAS: genome-wide association study; HMDP:
Hybrid Mouse Diversity Panel.
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computed the p-value and the q-value associated with each hapFLK
value following the procedure described by Fariello et al. (2013). In this
procedure, the neutral distribution of hapFLK is first estimated from the
hapFLK values observed genome-wide. Most loci in the genome are
neutral. Besides, the few selected loci tend to produce outlier hapFLK
values, which are automatically down-weighted by the statistical esti-
mation procedure. The p-value at each SNP is then computed from the
estimated neutral distribution so it does account for the effect of drift in
the specific populations under study. Finally, SNPs with a q-value below
0.1 were considered under selection, which implies that 10% of these
detected SNPs are expected to be false positives.

Mice studies
To explore implications of highlighted candidate genes in adiposity,
we focused on two mouse models, including strains highly variable for
obesity-related phenotypes. The first, developed by Bennett et al.
(2010) (Ghazalpour et al. 2012), named Hybrid Mouse Diversity Panel
(HMDP), consists of a population of more than 96 inbred mouse
strains selected for usage in systems genetics (QTL and eQTL) anal-
yses related to complex traits (Farber et al. 2011; Calabrese et al. 2012;
Ghazalpour et al. 2012). More details regarding the population can be
found in Bennett et al. (2010) and Farber et al. (2011). The second
includes B6.V-Lepob/J mice (n = 8), null for the gene encoding leptin,
and mice from the same genetic background C57BL6/J (n = 8).
B6.V-Lepob/J and HMDP mice were fed a standard chow diet and
slaughtered at 14 and 16 wk old, respectively. The mice from the high-
fat HMDP panel were fed high-fat diet during the last 8 wk.

QTL and expression QTL analysis in HMDP
Population structure is a major confounder for genome-wide association
analyses in the HMDP. This is due to the fact that many phenotypes
correlate with the phylogeny of HMDP strains (i.e., genetically similar
strains have similar phenotypes), and any SNP that correlates with these
strain relationships will be falsely associated with the phenotype. The
Factored Spectrally Transformed Linear Mixed Models (FaST-LMM)
algorithm has been shown to effectively reduce this confounding (Lippert
et al. 2011). We applied this algorithm for mapping loci controlling
either body adiposity mass (QTL) or transcript levels (eQTL) in mouse
white adipose tissue (WAT). eQTLs are defined as cis if the peak SNP
mapped within 1 Mb of the gene position (p-value threshold ,1023).
The cis regulation indicates a potential functional genomic variation
within or near a gene that significantly influences its expression.

Differential expression analyses and tissue
expression profiling
Total RNA from chicken (12 LL and 12 FL 9-wk-old individuals) and
mouse liver and WAT were extracted using TRIzol reagent. RNA
quality was assessed for each sample on an Agilent 2100 Bioanalyzer
(Agilent Tech.). Reverse transcription was performed using the high-
capacity cDNA archive kit (Applied Biosystems) according to the
manufacturer’s protocol. Specific reverse and forward RT-qPCR pri-
mers are described in Table S2. Reaction mixtures were incubated in
CFX96 Real-Time PCR Detector (Bio-Rad). The gene expression level
was normalized relative to GAPDH expression level for chicken sam-
ples and relative to HPRT expression level for mouse samples using
a DCt approach. Reference and target genes had similar PCR efficien-
cies. The difference in expression for a gene was assessed using a Stu-
dent t-test to compare 22DCt means between genotypes.

Procedures described for differential analysis were also used for tissue
expression profiles in chicken, normalizing the target gene expression by

using 18S rRNA expression level. Pancreatic total RNA was prepared by
the guanidinium thiocyanate extraction procedure developed by Chirgwin
et al. (1979); for other tissues, total RNA was extracted with TRIzol
reagent. Tissues with a Ct value above 30 were excluded from subsequent
expression analysis, and related genes were considered as not expressed.
Results are given as the gene expression fold change in each tissue relative
to the tissue in which this gene was less expressed.

Allele-specific expression characterization for PARK2
To investigate the allele-specific expression of PARK2, two marker
SNPs, located on chromosome 3 at 46,581,638 bp and 46,581,695
bp on the reference genome WASHUC2.1, were tested on a Qiagen
PyroMark Q24 sequencer in 8 F1 LL · FL chickens. Primers were
designed using PyroMark Assay Design software (Table S3). gDNA
and cDNA runs were analyzed by PyroMark Q24 1.0.10 software with
default analysis parameters.

Only five F1 samples were further considered because the remain-
ing three individuals were homozygous at both marker SNPs. For each
sample, analyzed in duplicates, we standardized cDNA ratios accord-
ing to the gDNA ratios for which a perfect balance is theoretically
expected. We then divided frequency of the reference allele by the
frequency of the alternative allele for each SNP and each individual to
obtain the allelic ratio. The significance of the allelic imbalance was
assessed using a Mann-Whitney nonparametric test to compare the
observed allelic ratio with the expected one (equal to 1).

Functional characterization of SNPs
SNP annotations were performed using Ensembl Variant Effect
Predictor. With this application, the location of a SNP within a gene
can be defined as outside of the gene, in the coding sequence, or in
untranslated regions (UTR). For the SNP that is localized in the
coding sequence, the functional impact can be determined (intro-
duction of a stop codon, splicing modification, etc.). For further
analyses on coding SNPs of special interest, the tool NGS-SNP was
used, which enabled us to add meta-information about conservation
between orthologous sequences (Grant et al. 2011).

RESULTS

Study design
The first goal of this study was to identify selective sweeps using high-
density SNP data generated by whole-genome resequencing in two
meat-type chicken lines divergently selected for abdominal fat (AF)
weight. The F0 foundation stock was a mix of six different meat lines
used by breeders during the 1970s (Leclercq et al. 1980). The size of
the mix population was limited, comprising 23 sires and 68 dams. The
selection was then conducted on AF with similar body weight at 63
days of age over seven successive generations and produced the two
divergent lines: the FL and the LL. We observed a plateau for the
selection criteria in the FL from the fourth generation, and we ob-
served a progressive decrease in adiposity during the seventh genera-
tion in the LL. Both lines were then maintained with 20 sires at each
generation, without any decrease in the abdominal fat content diver-
gence, which remained close to a factor of three at generation 35. For
further selective sweep analyses, we collected blood from 11 F0 ani-
mals from FL and LL and from nine F1 (FL · LL) animals for genome
resequencing.

Genome-wide SNP identification in two divergent lines
Reads were aligned to the reference genome WASHUC2.1. In all, 92%
of the total raw reads were correctly aligned and the raw coverage was,
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on average, 19.7 X 6 3.6 X. After the removal of PCR duplicates, and
to limit the number of false positives due to sequencing errors or read
multi-mapping, we retained only SNPs detected from reads that could
be uniquely mapped with mapping quality scores higher than 30.
After these filtering steps, 86% of the genome was covered, and the
sequencing depth was 12.6 X 6 4.6 X. Subsequently, the SNP calling
was performed using the GATK software, which includes modules for
sequence realignment and recalibration reducing biases due to se-
quencing or sample preparation. A total of 11,847,150 SNPs were
identified, of which 9,422,311 (79.5%) had genotype information for
all the 20 animals (i.e., call rate of 100%). Sanger resequencing was
used to validate a set of 17 SNPs. The insertions and deletions (indels)
were also detected: a total of 1,090,316 indels were identified, of which
810,754 (74.4%) had genotype information for all the animals.

Among the 9,422,311 SNPs observed in the whole population (i.e.,
20 birds), an average of 2,729,525 SNPs were identified within a single
bird, corresponding to a density of 2.6 6 0.5 SNP/kb. These results are
in agreement with previous studies (International Chicken Genome
Sequencing Consortium 2004; Wong et al. 2004). As expected, SNPs
were mainly found in intergenic (48.7%) and intronic (41.8%) regions,
rather than in regulatory regions (8.4%) and coding regions (1.2%) (File
S1). In coding regions, SNPs associated with a synonymous annotation
(59.45%), SNPs leading to amino acid changes (25.24%), SNPs leading
to a gain or a loss of a start or stop codon (0.45%), and SNPs corre-
sponding to a splicing site (14.83%) (Figure S1) were set apart.

Identification of selective sweeps using hapFLK with
9.4 M SNPs in two divergent lines
The 9.4 million SNPs generated by whole-genome resequencing were
used to detect genomic regions showing outstanding haplotypic
differentiation between LL and FL. To do so, we used the hapFLK
statistical test recently developed by Fariello et al. (2013) that is well-
adapted to deal with millions of SNPs and to analyze populations with
small effective size, like the chicken lines considered in our study. The
genome scan performed with hapFLK revealed 129 significant selec-
tive sweeps (Table 1). These regions were rather evenly distributed
across the genome, had an average size of 97.54 kb, and contained, on

average, 838 SNPs and 2.11 genes each (Table 1). Given that sweep
regions were not only shaped by the first 7 generations of selection but
also by the next 28 generations of neutral evolution, this average sweep
size of 100 kb is consistent with the approximate expectation of
1 / (n · r · T) = 95 kb, where n = 10 is the haploid sample size,
r = 3 · 1028 is the bp per generation recombination rate in chicken
(Wong et al. 2004; Groenen et al. 2011), and T = 35 is the total number
of generations. Focusing on the 52 sweeps containing only one gene,
we performed a gene set enrichment analysis based on functional
annotations. Among those 52 genes, this analysis revealed a significant
enrichment for genes related to lipid metabolism (P , 10214, x2 test).

This approach, based on outstanding haplotypic differentiation
between FL and LL, revealed the genomic regions being most
impacted by the selection pressure applied on the common ancestral
line. Because it is possible that some false-positive signals remain due
to genetic drift among these 129 selective sweeps, we proposed to
overlap those selective sweeps with AF QTL previously detected by
linkage analysis to focus on the most compelling genomic regions.

Overlapping QTL with selective sweep regions
In previous genetic studies of the LL and FL lines, we reported two
QTL (P , 0.05) and four suggestive QTL (P , 0.1) for AF weight on
chromosomes 1, 3, 5, and 7 using a F0-F1-F2 design generated by
crossing the FL and LL lines (Lagarrigue et al. 2006). The design
was composed of 5 F1 sire families with a total of 585 F2 offspring.
The five F1 sires were included in the 20 animals we sequenced in this
study at the whole-genome scale. Because it usually happens when
using linkage analysis methods, QTL were resolved to a rather large
genomic region, with a size ranging from 7.5 Mb to 18.1 Mb (Table 2).
Four out of these six QTL colocalized with at least one selective sweep
(Table 2). We also showed two-fold highly significant enrichment in
selective sweeps within QTL compared with the genome level: 1.36%
of the whole-genome against 2.48% of the total QTL intervals were
covered by selective sweeps (P , 10216, x2 test). This clearly indicates
that the relatively large number of sweeps detected genome-wide are
not due to an excess of false positives, but rather to other factors
related to trait architecture. As shown in Figure 2, sweep analysis

n Table 1 Genome-wide description of selective sweeps identified using hapFLK

Selective Sweeps Size SNPs/Sweep Genes/Sweep

Chr
Chr Size
(Mb)

Selective
Sweeps (n)

Mean
(kb)

Min
(kb)

Max
(kb)

Coverage
(%)

Mean
(n)

Min
(n)

Max
(n) Mean (n)

Min
(n)

Max
(n)

Total
(n)

1 200.99 36 127.28 1.74 789.46 2.22 1348.37 18 10,096 1.69 0 8 61
2 154.87 25 89.55 0.08 505.77 1.45 787.00 5 5238 1.64 0 13 41
3 113.66 17 93.20 0.22 535.04 1.23 943.65 9 5336 1.47 0 6 25
4 94.23 21 124.44 0.75 754.56 2.91 1324.00 16 7583 2.71 0 32 57
5 62.24 1 1.29 1.29 1.29 0.002 16.00 16 16 1.00 1 1 1
6 37.40 5 41.12 17.31 74.93 0.55 409.00 201 961 2.00 0 5 10
7 38.38 3 272.65 206.99 393.85 2.13 2724.70 2530 3019 2.67 2 4 8
8 30.67 1 103.19 103.19 103.19 0.34 570.00 570 570 2.00 2 2 2
10 22.56 6 11.04 0.10 46.48 0.29 142.00 7 555 2.17 1 6 13
11 21.93 5 303.97 10.10 1018.14 6.93 1623.60 86 4532 3.00 0 5 15
12 20.54 1 15.86 15.86 15.86 0.08 94.00 94 94 0.00 0 0 0
13 18.91 1 0.01 0.01 0.01 0.00 2.00 2 2 1.00 1 1 1
14 15.82 4 112.17 22.41 166.90 2.84 762.75 186 1620 5.00 4 6 20
17 11.18 1 107.06 107.06 107.06 0.96 650.00 650 650 1.00 1 1 1
20 13.99 1 151.00 151.00 151.00 1.08 1895.00 1895 1895 6.00 6 6 6
24 6.40 1 6.81 6.81 6.81 0.11 114.00 114 114 1.00 1 1 1
Total 1050.9 129 — — — 1.36 — — — — — — 262
Mean — — 97.54 — — — 837.88 — — 2.11 — — —
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revealed the genetic complexity underlying some QTL. The two QTL,
AF3.I and AF3.II, on chromosome 3 colocalized with five and three
selective sweeps, respectively. Conversely, the two QTL, AF5 and AF7,
on chromosomes 5 and 7, respectively, had a simpler genetic profile
and contained only one sweep with one and two genes, respectively
(Figure 2 and Table 2). This approach combining selective sweep
analysis and QTL mapping allowed a reduction in the size of the four
QTL regions from, on average, 12 Mb to 100 kb, with some of these
regions now containing one gene, therefore standing as strong causal
positional candidate. Thus, this broad reduction of QTL size provided
a great advance for the identification of causal genes. Subsequently, we
set out to explore in greater depth two QTL to identify candidate
causal underlying genes. With this aim, different data and approaches
were combined.

Focus on a QTL colocalizing with one sweep containing
one gene revealed JAG2 as a strong causal candidate
for adiposity
The AF5 QTL was of great interest because it included a single sweep,
with hapFLK statistics values clearly exceeding those observed in the

rest of the QTL (Figure 2). This very short sweep, measuring 1.3 kb
and termed AF5, contained only a portion of the gene JAG2 (introns
17 to 19 and associated exons) (Figure S2). We did not find any indel
or nonsynonymous SNPs suggesting the existence of causal polymor-
phism acting on the expression of this gene. Because liver and adipose
tissue are major actors in lipid metabolism, we therefore focused on
those tissues. We did not observe any significant differential expres-
sion between FL and LL in liver and adipose tissue (Figure 3B). We
can hypothesize that JAG2 expression could be regulated in cis in
other tissues to influence obesity in chicken because JAG2 is expressed
in many tissues (Figure 3A), or that the age of birds we analyzed is
irrelevant if there is any impact of developmental state on JAG2
expression. Nevertheless, because JAG2 is the only gene located in
the sweep and colocalized with AF5 QTL, it is still a strong positional
candidate gene for adiposity regulation.

To further question the implication of JAG2 in adiposity, we stud-
ied its expression in liver and white adipose of two independent mice
models contrasted for adiposity: B6.V-Lepob/J mice (n = 8), which are
KO for the gene encoding leptin and have severe obesity compared
with mice from the same genetic background C57BL6/J (n = 8), and

n Table 2 Characterization of selective sweeps colocalizing with QTL for abdominal fat

QTL Selective Sweep

ID Chr (n) Start (Mb) End (Mb) Size (Mb) Genes (n) pa ID Start (Mb) End (Mb) Size (Mb) Genesb

AF3.I-a 22.00 22.50 0.50 6
AF3.I-b 24.03 24.16 0.13 2

AF3.I 3 18.61 32.15 13.54 171 $ AF3.I-c 24.30 24.64 0.34 3
AF3.I-d 26.05 26.10 0.04 0
AF3.I-e 30.52 30.59 0.07 2
AF3.II-a 40.28 40.30 0.02 0

AF3.II 3 39.74 48.52 8.78 107 $ AF3.II-b 44.03 44.04 0.01 MLLT4
AF3.II-c 46.57 46.60 0.03 PARK2

AF5 5 54.52 62.03 7.51 142 �� AF5 54.65 54.65 0.00 JAG2
AF7 7 4.21 17.63 13.42 229 $ AF7 5.31 5.52 0.21 2
Mean — — — 12.28 170 — — — — 0.14 1.64
a

Chromosome-wide significance: ��1%; �5%; $10% (suggestive QTL).
b

Number of genes contained in each sweep or gene name for sweep containing only one gene.

Figure 2 HapFLK statistics profile in-
side each AF QTL region. The associ-
ated name of each QTL region is given
at the top of each graph. Statistics are
written as the -log10 of the p-value of
the HapFLK test; for each sweep, the
number of genes it contained is indi-
cated in an orange box. Some QTL
(AF3.I and AF3.II) colocalized with sev-
eral selective sweeps, whereas others
(AF5, AF7, and BMWT1) colocalized
with a single selective sweep. The num-
ber of genes included in a sweep
ranges from 0 to 6.
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the Hybrid Mouse Diversity Panel (Bennett et al. 2010; Ghazalpour
et al. 2012), which includes a population of 96 inbred mouse strains
variable for obesity-related phenotypes, including total body fat mass.
JAG2 is lowly expressed in liver, contrarily to WAT in these two
models. In WAT, no differential expression was observed between
B6.V-Lepob/J mice and C57BL6/J mice, whereas we identified a signif-
icant negative correlation between body fat mass and JAG2 expression
in WAT (Figure 4A; r = 20.4, P = 3 · 1028, Pearson correlation test)
in HMDP fed a chow diet. In addition, the difference of JAG2 expres-
sion between chow and high-fat/high-sucrose diet was negatively cor-
related to the difference of fat mass between those diets (Figure 4B),
highlighting a negative correlation between JAG2 expression in
WAT and adiposity induced by diet. HMDP mice fed a high-fat/
high-sucrose diet are fatter than those maintained on a chow diet
(top of Figure 4B), whereas JAG2 expression in WAT is higher in chow
diet compared with the high-fat/high-sucrose diet (bottom of Figure
4B). These results strengthen that JAG2 is a negative regulator of adi-
posity. Therefore, because the JAG2 haplotype was fixed under selection
in the LL and not in the FL (Figure 4C), and because JAG2 appears as
a negative regulator of adiposity in mouse models, this selected haplo-
type should correspond to a “gain-of-function” mutation in JAG2. This
result is also consistent with the direction of allele effects in the QTL
mapping study reported by Lagarrigue et al. (2006), in which the micro-
satellite allele of the QTL associated with a decrease of adiposity came
from the F0 lean line. To further explore the causal link between JAG2
and adiposity, we performed a genetics association for JAG2 expression
and body fat mass in the HMDP design. As shown in Figure 4D, this
analysis revealed a cis-eQTL for JAG2 expression in adipose tissue that
colocalized with a QTL for body fat mass gain (during the first weeks of
high-fat diet). These results suggest that a mutation acting in cis on
JAG2 expression could be the causal mutation responsible for adiposity
variation in this mice panel.

Focus on a more complex QTL colocalizing with sweeps
with two genes, MLLT4 and PARK2
Having established that our approach had sufficient resolution to
target a unique sweep containing a unique gene, and to identify strong
candidate genes underlying QTL with a simple genetic pattern, we
then worked on deciphering the more complex QTL region AF3.II. As
suggested by the hapFLK profile (Figure 2), this QTL region includes
three selective sweeps, AF3.II-a, AF3.II-b, and AF3.II-c, one of them
presumably containing a causative mutation. Those three sweeps con-

tained, respectively, no gene, a fraction ofMLLT4 (from 1 kb upstream
of the gene to intron 6), and a fraction of PARK2 (the whole exon 3 and
the flanking intronic regions) (File S2). We first focused on the sweep
AF3.II-a containing no gene and established that there was no unan-
notated gene on this region that was expressed by visualizing, at the
sweep position, all tissues RNA-seq reads available in Ensembl. Also,
this sweep was located quite far from the closest annotated genes, i.e.,
80 kb upstream of SLC35F3 and 100 kb downstream of KCNK1. Taken
together, these results were strong enough to obviate a deeper explora-
tion of the AF3.II-a sweep, with no clear evidence that this sweep was
actually carrying a variant with an impact on AF. We then explored
both sweeps AF3.II-b and AF3.II-c containing, respectively, a fraction of
MLLT4 and a fraction of PARK2. Focusing on polymorphisms in cod-
ing regions, we observed no indels or nonsynonymous SNPs, suggesting
the existence of a causal polymorphism acting in cis on the expression of
these genes. Regarding JAG2, we therefore focused on the expression of
these two genes in hepatic and adipose tissues in both FL and LL lines.
First, we verified that these genes are expressed in these tissues (Figure
5A and Figure 6A). We then analyzed differential expression of these
two genes in those tissues between 12 FL and 12 LL. For MLLT4, this
analysis revealed no differential expression (Figure 5B). For PARK2,
which appeared as ubiquitously expressed with a high expression values
in liver (Figure 6A) as already reported in humans (Cesari et al. 2003),
we showed a suggested differential expression in WAT and a significant
differential expression in liver between FL and LL (Figure 6B). This gene
was significantly more expressed in liver in FL compared with LL (23.56
0.3 Ct in FL vs. 24.9 60.5 Ct in LL; P , 0.01). We then generated F1
birds by crossing FL and LL to investigate the ASE using pyro-sequenc-
ing focusing on two marker SNPs for which assignment of the line-of-
origin was possible. We found that PARK2 was a cis-eQTL; it exhibited
an ASE profile in liver at both marker SNPs (LL/FL allelic ratio of
0.6 6 0.1 for both marker SNPs; P , 0.01; n = 5) (Figure 6C),
suggesting that those markers are in linkage disequilibrium with a var-
iant acting in cis on PARK2 expression in this tissue. Based on gDNA
allelic frequencies at those two markers observed in F0 individuals, we
concluded that the underexpressed haplotype was characteristic of LL.
In summary, with differential RT-qPCR analysis and a pyro-sequenc-
ing-based ASE approach, we obtained consistent results. First, we
showed that PARK2 was significantly less expressed in liver in LL.
Second, we showed that an LL-specific haplotype was significantly less
expressed in F1 liver. These results are consistent with the direction of
allele effects in the QTL mapping study reported by Lagarrigue et al.

Figure 3 Expression characterizations of JAG2 in chicken. (A) Expression pattern of JAG2 in various tissues quantified using RT-qPCR. Results are
given as expression fold change relative to the liver, which exhibited the lowest level of expression. (B) Comparison of JAG2mRNA level in the fat
line (FL, n = 12) and the lean line (LL, n = 12) in the liver and the white adipose tissue (WAT). Results are expressed as the expression ratio relatively
to the LL 6 SEM.
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Figure 4 Expression of JAG2 in mice HMDP. (A) Correlation between JAG2 expression in white adipose tissue (WAT) and body fat mass (%) in HMDP of 86
mice fed a chow diet. (B) Body fat mass in % of body weight (top) andWAT expression (bottom) in HMDP panel of 86mice fed chow diet (in grey) and high-fat/
high-sucrose diet (in black). For each graph, values are centered on themean of the whole values. (C) Haplotype cluster frequencies for both chicken lines for the
PARK2 selective sweep. The difference in color along the Y-axis gives the frequencies of each haplotype cluster. The difference in color along the X-axis has no
meaning. The almost fixed haplotype is colored red in the lean line. (D) Genetic association (top) for body fatmass gain between the second and the fourth week
of high-fat diet in the HMDP and (bottom) for JAG2 expression in WAT. Gene positions as given in Ensembl 77 for GRCm38 mouse genome assembly .
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(2006), in which the microsatellite allele of the AF3.II QTL associated
with a decrease of adiposity came from the F0 lean line. Those results
point to a cis-acting variant impacting the expression of PARK2 in the
liver of divergent chicken lines, emphasizing the potential causal status
of this gene for adiposity.

To question the correlation between PARK2 and adiposity in an-
other animal model, we compared its expression profile between the
two same mice models used for JAG2 study. No significant correlation
was observed between adiposity and PARK2 expression in liver and
WAT of the HMDP mice fed a chow diet. However, RT-qPCR anal-
ysis showed a two-fold increase in PARK2 expression in liver and
WAT of obese B6.V-Lepob/J mice compared with wild-type mice
(Figure 6D), revealing that its expression is positively correlated with
body fat mass in mouse, as already observed in chicken. Therefore,
because the PARK2 haplotype was fixed under selection in the FL and
not in the LL (Figure 6E), and because PARK2 is a positive regulator
of adiposity, this selected haplotype should correspond to a “gain-of-
function” mutation in PARK2.

Identification of causal variants in regulatory regions
remains difficult
When there are nonsynonymous mutations in a positional candidate
gene, it is often possible to target only a few candidate polymorphisms
to deeply study in silico their impact on the protein and thereby select
the best candidate for validation using, for example, site-directed mu-
tagenesis. Nevertheless, in our study, in sweeps colocalizing with AF
QTL, no gene had nonsynonymous mutations in coding regions. Our
results, in agreement with previously reported results (Edwards et al.
2013), suggest that causal mutations underlying QTL may occur more
often in regulatory regions than in coding regions. Yet, the identifi-
cation of causal variants in regulatory regions remains difficult. In our
case, subsequent analysis of DNA polymorphisms in related sweeps
revealed no indel but 16 SNPs and 286 SNPs for noncoding regions of
PARK2 and JAG2, respectively. To go further, we selected SNPs with
heterozygous genotypes consistent with the heterozygous genotypes of
F1 sires at each QTL, which led to the observation of seven SNPs and
106 in each gene, respectively. We finally performed the analysis of
cis-elements using Genomatix MatInspector tools with stringent cri-
teria to filter in SNPs susceptible to impact potential transcription
factor binding sites (PTFBS). This analysis revealed that 3 SNPs and
16 SNPs had an impact on 4 PTFBS and 22 PTFBS for PARK2 and

JAG2, respectively. This illustrates that, in regulatory regions, it
remains difficult to identify causative mutation among all candidates.

DISCUSSION
Although selective sweep analysis revealed genomic regions affected
by selection, QTL mapping approaches allow detection of genomic
regions impacting a specific complex trait. Thus, in the context of
single trait divergently selected lines, some selective sweeps should
overlap with QTL regions for this trait. Although the divergent
selection is performed on one specific trait, it could also occur on
other traits that are in balance with the trait on which the selection is
applied (e.g., breast muscle weight in our case), which explains why
some sweeps—and not all—should overlap with QTL mapped for the
first phenotype. This study is, to our knowledge, the first to investigate
the genetics of complex traits using a combined QTL mapping ap-
proach and high-throughput-based selective sweep mapping in diver-
gently selected lines. Whereas previous selective sweep studies in
chicken focused on the characterization of the genome-wide effects
of divergent selection on a specific phenotype (Johansson et al. 2010;
Zhang et al. 2012), here we integrate QTL mapping and whole-
genome-based selective sweep detection for the same phenotype,
and also SNPs and expression analyses. The sweep detection was
performed using the hapFLK method, which is adapted to analyze
whole-genome resequencing data by processing haplotypes instead of
single markers, able to efficiently distinguish drift from selection, and
efficient for population-related data as well as for divergent lines
(Fariello et al. 2013). The genome scan based on 9,422,311 SNPs
detected in both lines revealed 129 selective sweeps with a size of
97.54 kb, on average. Although the studies of Johansson et al.
(2010) and Zhang et al. (2012) cannot be strictly compared with ours
because of differences in the number of selection generations (50 and
11 vs. 7), marker density (60 k vs. 9.4 M SNPs), and methods used to
detect selective sweeps (line-specific alleles and EHH vs. hapFLK), the
number of sweeps was quite similar (163, 108, and 129, respectively).

Overlying results from the selective sweep scan and QTL pre-
viously described in our experimental design revealed that four out of
six QTL were colocalizing with sweeps. This approach markedly
narrowed candidate regions in those QTL and allowed us to highlight
three candidate genes underlying two QTL, AF5 and AF3.II.

Focusing on the QTL AF5, the only gene present in the sweep
was JAG2 that encodes the Notch ligand Jagged-2 involved in the

Figure 5 Expression of MLLT4 in chicken. (A) Expression pattern of MLLT4 in various tissues of chicken quantified using RT-qPCR. Results are
given as expression fold change relative to the pancreas, which exhibited the lowest level of expression. (B) Comparison of MLLT4 mRNA level in
the fat line (FL, n = 12) and the lean line (LL, n = 12) in the liver and the white adipose tissue (WAT). Results are expressed as the expression ratio
relative to the LL 6 SEM.
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ligand-induced cleavage and nuclear translocation of the Notch1 and
Notch2 receptors. The Notch signaling pathway is a central cellular
signaling pathway involved in many essential cellular functions, and
it is known to impact embryogenesis, central nervous development,
cardiovascular development, and also angiogenesis (Andersson et al.
2011; Guruharsha et al. 2012). As shown by the Jackson Laboratory,
JAG2 appears essential in development processes, as the homozygous
Jag2deltaDSL mutant mice from the B6.129S1-Jag2tm1Grid/J strain ex-
hibit syndactyly and craniofacial defects causing perinatal lethality
in a Notch-mediated manner (Jiang et al. 1998). Our study based
on selective sweep detection strongly suggests a role for JAG2 in
adiposity, which has never been highlighted in previous studies be-
cause this gene was the unique positional gene candidate in the QTL/
sweep region. After characterizing the SNPs on the corresponding
selective sweep AF5, we did not find any nonsynonymous mutations
within coding regions of the gene among the 20 resequenced birds,

strongly suggesting the presence of a causal mutation underlying the
QTL AF5 in regulatory regions and acting in cis in one of the tissues
where the gene is expressed. Unexpectedly, the differential expression
between the two prepubertal chicken FL and LL was not observed in
the two tissues sampled, suggesting that the role of JAG2 related to
adiposity occurs in another tissue or at another development stage. In
contrast to chicken, our results with the adult mouse HMDP panel
revealed a cis-eQTL for adipose JAG2 expression colocalizing with
a body fat gain QTL. In addition, this expression of JAG2 in WAT
was negatively correlated to adiposity trait in two models, one in
which adiposity variation is due to the genetic background (r = 20.4)
and another in which adiposity variation is due to the diet (high fat vs.
chow). These results observed in chicken and mouse HMDP and
based on genetic and expression approaches reveal that JAG2 is a
highly confident positional and functional candidate for regulating
adiposity as a negative regulator of this trait.

Figure 6 Expression characterizations
of PARK2. (A) Expression pattern in
various tissues of chickens quantified
using RT-qPCR. Results are given as
expression fold change relative to
the tight muscle, which exhibited the
lowest level of expression. (B) Com-
parison of PARK2 mRNA level in the
fat line (FL, n = 12) and the lean line
(LL, n = 12) in the liver and the white
adipose tissue (WAT). Results are ex-
pressed as the expression ratio rela-
tive to the LL 6 SEM.�p , 5% and
$p , 10% based on unpaired two-
tailed Student t-test. (C) cDNA allelic
ratio for two marker SNPs located on
PARK2 for F1 birds obtained by cross-
ing chicken FL and LL. SNP1 is located
on chromosome 3 at 46,581,638 bp
and SNP2 is on chromosome 3 at
46,581,695 bp. A total of five birds
heterozygous on gDNA at those positions
were considered for pyro-sequencing-
based cDNA imbalance analyses. Each
color and shape is associated with one
individual. Down arrows indicate the
average allelic ratio for each SNP. The
top line stands for the expected allelic
ratio in the case of a perfect cDNA
allelic balance. The line included in
the circle stands for the average value
of the imbalance for a given SNP for
five individuals. Significance of the
allelic imbalance was assessed using
a Mann-Whitney unpaired two-tailed
nonparametric test to compare the ob-
served allelic ratio with the expected
one equal to 1 (i.e., in the case of a per-
fect balance). ��p , 0.01. (D) Compar-
ison of perigonadal fat mass (g) and
PARK2 mRNA level in the liver and
the white adipose tissue (WAT) of B6.

V-Lepob/J mice (Ob, n = 8), KO for the gene encoding leptin, and their genetic background C57BL6/J (BL6, n = 8). For mRNA levels, results are
expressed as the expression ratio relatively to the C57BL6/J 6 SEM. �p , 0.05 and ���p , 0.001 based on unpaired two-tailed Student t-test. (E)
Haplotype cluster frequencies for both chicken lines for the PARK2 selective sweep. The difference in color along the Y-axis gives the frequencies of
each haplotype cluster. The difference in color along the X-axis has no meaning. The fixed haplotype is red here in the FL.
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Finally, for the QTL AF3.II, we revealed PARK2 as an outstanding
candidate gene. As stated in the literature, this gene belongs to the E3
ubiquitin-protein ligase family that promotes polyubiquitination with
subsequent proteosomal degradation and/or mono-ubiquitination and
multi-ubiquitination with post-translational regulation of protein
function and stability (Uhrig et al. 2008; O’Neill 2009; Yin et al.
2010). Whereas PARK2 was associated by a genetic approach with
an autosomal recessive juvenile form of Parkinson disease (Kitada
et al. 1998), its central role in this pathology is not obvious in mice
(Goldberg et al. 2003; Perez and Palmiter 2005), and its biological role
remains poorly understood. Here, we showed by different approaches
in different animal models that PARK2 could be responsible for ad-
iposity variation. Interestingly, other E3 ubiquitin ligase enzymes have
been identified as involved in the modulation of lipid biology (Molero
et al. 2004; Zelcer et al. 2009). As highlighted in this study, because
this gene is differentially expressed in liver, suggesting a functional
role in this tissue implied in lipid metabolism, it is both a positional
and a functional candidate. More recently, one study conducted by
Sack’s laboratory (Perez and Palmiter 2005) showed that PARK22/2

mice are extremely resistant to weight gain induced by a high-fat and
high-cholesterol diet (HFD). Otherwise, in response to HFD feeding,
the PARK2+/+ mice showed a robust increase in PARK2 mRNA level,
in parallel with elevated lipid transport protein levels, increased he-
patic insulin resistance, and steatohepatitis. In addition to this unique
study reporting a link between PARK2 and adiposity, our study shows
that PARK2 is: a strong positional candidate for adiposity in chicken,
because it alone was found in a sweep colocalizing with an AF QTL;
a functional candidate, because it is differentially expressed in liver
and WAT between the FL and the LL chicken lines as well as between
the obese B6.V-Lepob/J mice and wild-type mice from the same ge-
netic C57BL6/J background; and a probable positive regulator of ad-
iposity because it is systematically overexpressed in the fat animals. In
addition, we clearly showed by the ASE approach in F1 FL · LL
chickens that the hepatic overexpression in fat line is due to a poly-
morphism acting in cis on its expression. Taken together, these results
for mouse and chicken strengthen the hypothesis that PARK2 is a pos-
itive regulator of fat metabolism.

This study shows for the first time the interest to combine cis-
eQTL and selective sweep mappings in divergent lines selected for
a specific trait for identifying causative genes. As shown in Figure 1,
which summarizes the strategy used in our study, selective sweep
detection using DNA resequencing enabled us to markedly reduce
the size of some QTL for adiposity (from 12 Mb to 100 kb, on
average). Some of those QTL included only one sweep with one gene,
standing as strong causal candidates with no presupposed function.
Also, DNA resequencing provides access to nearly all polymorphisms
within these genes, enabling inference of the type of action of causal
polymorphisms within the candidate genes, i.e., affecting the protein
sequence if nonsynonymous SNPs/indels are identified in coding
regions vs. acting in cis on gene expression and thus located in reg-
ulatory regions when no nonsynonymous SNP was found in coding
regions. In this latter case, cis-eQTL analysis can help to reinforce the
causative status for adiposity of those genes, as shown for JAG2 in
mice and PARK2 in chicken. Analyses of expression variations in the
different fat and lean models clearly show that the two causative
candidates, JAG2 and PARK2, act on adiposity as negative and positive
regulators, respectively. However, it remains difficult to identify the
causal variant among all potential cis-acting SNPs of the two investi-
gated candidate genes. In conclusion, in a research field where the
identification of causal genes remains exceptional, our strategy led to
the identification of two highly confident causal candidates, one of

which was never related to the trait of interest (JAG2) and another one
(PARK2) that was linked to this trait in a single study.
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