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RESEARCH

Comparative pangenomics: analysis of 12 
microbial pathogen pangenomes reveals 
conserved global structures of genetic 
and functional diversity
Jason C. Hyun1, Jonathan M. Monk2* and Bernhard O. Palsson2* 

Abstract 

Background: With the exponential growth of publicly available genome sequences, pangenome analyses have pro-
vided increasingly complete pictures of genetic diversity for many microbial species. However, relatively few studies 
have scaled beyond single pangenomes to compare global genetic diversity both within and across different species. 
We present here several methods for “comparative pangenomics” that can be used to contextualize multi-pangenome 
scale genetic diversity with gene function for multiple species at multiple resolutions: pangenome shape, genes, 
sequence variants, and positions within variants.

Results: Applied to 12,676 genomes across 12 microbial pathogenic species, we observed several shared resolution-
specific patterns of genetic diversity: First, pangenome openness is associated with species’ phylogenetic placement. 
Second, relationships between gene function and frequency are conserved across species, with core genomes 
enriched for metabolic and ribosomal genes and accessory genomes for trafficking, secretion, and defense-associated 
genes. Third, genes in core genomes with the highest sequence diversity are functionally diverse. Finally, certain 
protein domains are consistently mutation enriched across multiple species, especially among aminoacyl-tRNA syn-
thetases where the extent of a domain’s mutation enrichment is strongly function-dependent.

Conclusions: These results illustrate the value of each resolution at uncovering distinct aspects in the relation-
ship between genetic and functional diversity across multiple species. With the continued growth of the number of 
sequenced genomes, these methods will reveal additional universal patterns of genetic diversity at the pangenome 
scale.

Keywords: Pangenome, Core genome, Comparative genomics, Multispecies, Heaps’ law, Functional diversity, 
Sequence diversity, Protein domains, Aminoacyl-tRNA synthetases
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Background
With the falling cost of sequencing spurring exponen-
tial growth in publicly available genome sequences, 
genetic analyses have similarly increased in scale 

over the past three decades, from the first complete 
microbial genome assemblies in 1995, to comparisons 
between reference strains of model organisms, and 
now to simultaneous analyses of thousands of genomes 
from samples isolated worldwide for multiple spe-
cies [1, 2]. These pangenome analyses have provided 
increasingly complete pictures of genetic diversity for 
most major microbial pathogens, revealing species-
level properties invisible at smaller scales, such as the 
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nature of species-wide conserved core genomes com-
pared to their more variable accessory genomes [3, 4], 
or the tendency for newly sequenced strains of a spe-
cies to harbor previously unobserved genes, commonly 
referred to as pangenome openness [5, 6]. Furthermore, 
pangenomes have formed the basis of many multi-
strain characterizations of clinically relevant pheno-
types such antimicrobial resistance [7], virulence [8], or 
metabolic capabilities [9].

However, while the variety of species studied and 
increasing automation of pangenome workflows [10] 
attest to the versatility of the pangenome for large-
scale genome analysis, pangenome studies are currently 
dominated by those that focus on one species at a time 
or combine multiple related species into a single pange-
nome. Relatively few studies describe methods for com-
paring distinct pangenomes beyond the sizes of core or 
accessory genomes: Since Tettelin et.al. introduced the 
bacterial pangenome and Heaps’ Law as a model for 
quantifying and comparing openness [6], other multi-
pangenome works have compared pangenome openness 
estimates using alternate models beyond Heaps’ Law 
[11], level of conservation within core genomes [12, 13], 
extent of functional characterization in core and pange-
nomes [14], and functional distributions between core 
and accessory genomes of different species or environ-
mental isolates [11, 12, 15, 16]. These methods focus 
primarily on pangenome scaling or the distribution of 
gene-level functions and are limited in their analysis of 
finer genetic variation such as individual sequence vari-
ants often examined in single pangenome studies. Con-
sequently, existing pangenome studies often present a 
tradeoff between “scale” (number of species, genomes, or 
pangenomes analyzed) and “resolution” (smallest unit of 
genetic diversity analyzed).

To address this gap in pangenome analysis, we pre-
sent generalizable “comparative pangenomics” methods 
to examine genetic and functional diversity within and 
between 12 pangenomes of pathogenic organisms total-
ling 12,676 genomes. These analyses span several levels 
of resolution: pangenome shape, individual genes, indi-
vidual sequence variants, and specific positions within 
variants. Contextualizing genes against the other three 
resolutions provides distinct perspectives of diversity at 
the pangenome scale: 1) gene conservation within the 
species (core vs. accessory genes), 2) conservation of the 
gene sequence overall (number and frequency of individ-
ual variants), and 3) conservation of specific regions or 
domains within the gene sequence (positions with high 
or low diversity within aligned variants). In addition to 
standard pangenome analyses, we compare functional 
annotations against these forms of genetic diversity to 
identify which gene functions are consistently stable 

against or subjects of major variation across a variety of 
pathogens.

Results
Pangenome construction for reference genome‑free 
enumeration of genetic variation
A total of 12,676 genomes across 12 different species 
were downloaded from the PATRIC database [17] after 
filtering for assembly quality (see Methods), ranging 
from 104 to 3183 genomes per species (Fig. 1a, Fig. S1a, 
Table S1, Dataset S1). Each genome was classified in sil-
ico by multilocus sequence type (MLST) (Fig. S1b, Data-
set S2) using the mlst tool (https:// github. com/ tseem ann/ 
mlst) based on PubMLST [18]. For each species, a pange-
nome was constructed by clustering open reading frames 
by protein coding sequence into putative genes clusters, 
using CD-HIT [19]. These cluster-derived genes were 
used to define three other genetic feature types within 
each pangenome, namely “coding variants” (individual 
protein sequence variants of the genes, based on mem-
bers of gene sequence clusters), “5’ IG variants” (DNA 
variants of the 300nts directly upstream of all observed 
instances of a given gene), and “3′ IG variants (DNA vari-
ants of the 300nts directly downstream of a gene).

A subtype‑based estimate of pangenome size 
and openness using Heaps’ law is more accurate 
than genome‑based estimates
At the broadest resolution of genetic diversity, pange-
nome openness, or the tendency for new genomes of a 
given species to introduce new genes, can be used quan-
tify overall gene-level diversity within a species at the 
pangenome level as well as project pangenome size as 
additional genomes are sequenced. Openness is most 
commonly estimated as the power law exponent when 
fitting Heaps’ law to pangenome size versus number 
of genomes, across many iterations of randomly shuf-
fling genome order [6]. This application of Heaps’ Law is 
based on its original discovery in linguistics as an empiri-
cal relationship between the number of unique words 
encountered and the number of documents reviewed, for 
which an analogous relationship between genes encoun-
tered and genomes sequenced has been observed for 
multiple bacterial pangenomes [6, 11]. However, MLST 
classification revealed that the genomes available for 
some species were highly biased for one or a few sub-
types (i.e. 75% of E. faecium genomes are from MLST 
80), while others were more diverse (Fig.  1b, Fig.  S1b). 
Consequently, estimating pangenome openness based 
on new genes discovered per genome may in some cases 
be more characteristic of a single subtype and underes-
timate overall species-wide openness and/or extrapolate 
pangenome size poorly.

https://github.com/tseemann/mlst
https://github.com/tseemann/mlst
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To address this, we estimated openness with 
Heaps’ law using two methods to generate 100 ran-
dom genome orderings per species: 1) the standard 
approach of randomly shuffling all genomes, and 
2) randomly selecting one genome per MLST sub-
type and shuffling the selected genomes (Fig.  1c). 

MLST-based estimates of openness were greater than 
genome-based estimates in 10/12 species without 
any notable increase in the standard deviation of the 
estimates, with larger differences observed in more 
strongly subtype biased cases; the openness estimate 
for the strongly subtype-biased E. faecium case is 

Fig. 1 Subtype-balanced Heaps’ Law estimates of pangenome openness for 12 microbial pathogens. a Total number of genomes analyzed per 
species. b MLST subtype diversity per species’ genome collection, as quantified by unique MLSTs per genome and Shannon diversity of MLST 
distributions. Low diversity outlier E. faecium is labeled. c Example fit of Heaps’ Law between the number of genomes or MLSTs versus running 
pangenome size. d Comparison of openness values estimated per species, with or without controlling for MLST (error bars are standard deviations 
from 100 estimates). e Means and standard deviations of openness estimates after controlling for MLST, versus phylogenetic class
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nearly doubled when using the MLST-based estimate 
(Fig. 1d, Table S2).

To compare accuracy at extrapolating pangenome 
size, Heaps’ Law fits were computed on the first half of 
genomes and evaluated on the second half for all random 
genome orderings (i.e. for a species of 200 genomes and 
20 MLST types, the genome-based approach would be 
fit to the first 100 genomes and evaluated on the last 100 
genomes, while the MLST-based approach would be fit 
to the first 10 and evaluated on the last 10) (Fig. S2a). The 
median mean absolute error (MAE) for the MLST-based 
approach was lower in 11/12 species in the fit region and 
9/12 species in the extrapolation region, despite having 
fewer points to fit (Fig.  S2b-c, Table  S3). The two cases 
where the MLST-based approach underperformed the 
genome-based approach were P. aeruginosa (2.0 times 
larger MAE) and S. enterica (1.5 times larger MAE). As 
the estimated openness and MLST distribution diversity 
for these species are not particularly different from that 
of other species, one possible explanation may be due to 
these cases resulting in relatively poor fits to Heaps’ Law 
in general, being the 1st and 2nd largest MAE cases by 
the MLST-based approach and the 3rd and 5th largest 
MAE cases by the genome-based approach, respectively.

Overall, the MLST-based Heaps’ Law approach appears 
to extrapolate pangenome size more consistently than a 
full genome-by-genome approach, and may offer a more 
accurate depiction of the genetic diversity of a given spe-
cies even when using subtype-biased datasets. The cal-
culated openness values appear to cluster roughly by 
species’ phylogenetic classification (Fig.  1e). The top 6 
most open pangenomes cluster closely (λ = 0.42-0.47) 
and consist of the six Gammaproteobacteria class species 
examined (E. cloacae, S. enterica, A. baumannii, P. aerug-
inosa, K. pneumoniae, E. coli), followed by a group with 
intermediate openness (λ = 0.29-0.36) of two Bacilli class 
species (S. aureus, S. pneumoniae) and the two Campylo-
bacter species (C. coli, C. jejuni), and finally the two most 
closed species (λ = 0.20-0.22) consisting of E. faecium 
(Bacilli) and N. gonorrhoeae (Betaproteobacteria).

Frequency‑based division of the pangenome using power 
functions
Moving from the resolution of overall pangenome shape 
to individual genes, the distribution of gene frequencies 
(number of genomes each gene is observed in) was com-
puted for each pangenome to begin exploring sources 
of genetic diversity in greater detail. Regardless of the 
number of genomes available or the estimated pange-
nome openness, all such distributions demonstrate a 
peak for very rare genes and a smaller peak for highly 
conserved or core genes (Fig.  2a, Fig.  S3). Correspond-
ingly, the cumulative gene frequency distribution takes 

on an asymmetric, inverse sigmoidal shape, which sug-
gests three intuitive frequency categories by which genes 
may be classified: the initial asymptotic region consist-
ing of rare, poorly characterized genes representing 
the “unique” genome, the opposite asymptotic region 
consisting of highly conserved genes representing the 
“core” genome, and the middle linear region consisting of 
uncommon genes representing the “accessory” genome 
which captures most of the gene-level diversity in the 
pangenome (Fig. 2a).

Three-part frequency divisions of the pangenome have 
been previously described, and often achieved through 
either static thresholds such as having core genes being 
those in all genomes and unique genes being those in 
exactly one genome [3], or more scalably through fitting 
frequency distributions to multiple exponential functions 
to identify analogous “core-shell-cloud” divisions of the 
pangenome [20, 21]. Here, we developed an approach 
based on fitting the distribution to the sum of two power 
functions and defining the accessory genome relative to 
the inflection point in the cumulative distribution. This 
functional form is derived from the observation that gene 
frequency distributions tend to resemble power laws for 
very small and very large frequencies (Fig.  2b-c), and 
achieves accurate fits to cumulative frequency distribu-
tions with MAE ranging from 25 to 116 genes, less than 
0.5% of the total pangenome size for 11/12 species. The 
fits also achieve  R2  > 0.99 for 10 of 12 pangenomes and 
a minimum of 0.964 (Fig. S4, Dataset S3). The frequency 
thresholds for core-accessory-unique divisions defined 
from these fits ranged from 95.8 to 98.6% of all genomes 
for core genes, and 5.8 to 8.6% for unique genes, high-
lighting the asymmetry present in the original frequency 
distributions (Table S4).

This pangenome division approach yielded core 
genomes ranging from 4.3 to 34.2% of their correspond-
ing pangenomes with a minimum of 1237 core genes in 
C. jejuni to a maximum of 4585 in P. aeruginosa, while 
accessory genomes ranged from 5.0 to 38.1% of their cor-
responding pangenomes with a minimum of 1046 acces-
sory genes in C. coli to 5046 in E. coli (Fig. 3a, Table S4). 
Core genomes were similar in size to corresponding 
accessory genomes and larger genomes were associated 
with more open pangenomes, though there was no rela-
tionship between the ratio of core to accessory genome 
size and openness (Fig.  3b). Overall, by creating three 
frequency categories, this method allows subsequent 
analyses to focus on a smaller number of genes (relative 
to full pangenomes) such as highly conserved core genes 
or accessory genes that constitute most of the gene-
level diversity in an species, rather than the more abun-
dant but often under-characterized or erroneous unique 
genes.
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Consistent enrichment of specific gene functions in core 
and accessory genomes
To identify associations between gene frequency and 

function, all genes were annotated for Clusters of Orthol-
ogous Groups (COG) functional categories and GO 
terms using eggNOG-mapper [22], and Fisher’s exact 

Fig. 2 Example division of the Campylobacter coli pangenome into unique, accessory, and core genomes. a Distribution of gene frequencies P(x), 
or the number of times a gene is observed in a genome, with peaks at very low (“unique”) and very high (“core”) frequencies. The corresponding 
cumulative distribution F(x) is shown below. b Log-log plots of the frequency distribution at very low and very high frequencies showing 
approximately linear trends, and the corresponding models of P(x) as the sum of two power functions and F(x) as the integral. N is the total number 
of genomes. c Division of the pangenome into unique, accessory, and core genomes based on the cumulative distribution fit. Frequency thresholds 
for unique and core genes are defined relative to the fitted inflection point
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tests were conducted between each frequency category 
and COG category within each pangenome (Dataset S4). 
This revealed consistent enrichment of several meta-
bolic COGs in the core genome, with COGs C (energy 
production and conversion), E (amino acid transport and 
metabolism), F (nucleotide transport and metabolism), 
and H (coenzyme transport and metabolism), as well as 
non-metabolic COGs J (translation, ribosomal structure 
and biogenesis) and O (post-translational modification, 
protein turnover, and chaperones), significantly enriched 

in the core genome for at least 11/12 species (p < 7*10− 5, 
FWER < 0.05 with Bonferroni correction) and mean log2 
odds ratios (LOR) ranging from 1.7 to 2.8 across the spe-
cies (Fig.  3c, Fig.  S5a). Accessory genomes also showed 
frequent, albeit weaker functional enrichments, with two 
COGs with mean LOR > 1 across the species: U (intracel-
lular trafficking, secretion, and vesicular transport) was 
enriched in 9/12 species with a mean LOR of 1.2, and 
V (defense mechanisms) enriched in 7/12 species also 
with a mean LOR of 1.2 (Fig. 3c, Fig. S5b). Finally, with 

Fig. 3 Genes and functional enrichments in the core and accessory genomes of 12 species. a Number of genes in the core and accessory 
genomes of each species. b Comparison of core genome size, accessory genome size, and pangenome openness. c Functional enrichments by 
COG functional category in the 12 core and accessory genomes. The distribution of log2 odds ratios (LORs), as well as the number of species with 
significant enrichment by COG are shown (Fisher’s exact test, FWER < 0.05 under Bonferroni correction or p < 7*10− 5, 720 tests). Only COGs showing 
positive enrichment in over half the species and with mean LOR > 1 are shown. COG “S: Function unknown” is not shown
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the exception of COG S (function unknown), no COGs 
were found with either frequent significant enrichment 
or mean LOR > 1 in the unique genomes, owing to their 
relatively poor characterization (Fig. S5c).

A similar analysis of GO terms revealed that 9 of the 
top 10 enriched GO terms in core genomes by mean 
LOR were associated with ribosomes or RNA processing 
(LOR = 3.8-6.9). All but one of those terms was also sig-
nificantly enriched in at least 11/12 species (p  < 3*10− 6, 
FWER < 0.05 with Bonferroni correction), consist-
ent with the J COG previously found enriched in core 
genomes (Fig. S6a). In contrast, no GO terms were found 
to be significantly enriched in a majority of accessory or 
unique genomes, with the exception of very broad terms 
such as “cellular process” (Fig. S6b-c). Overall, this func-
tional analysis suggests that the core genomes of micro-
bial pathogens are likely enriched for metabolic and 
translational functions, while non-core genes may draw 
from a wider variety of relatively niche functions.

Finally, an examination of individual ortholog groups 
(OGs) as annotated by eggNOG-mapper reveals spe-
cific biosynthetic pathways consistently present in core 
genomes. 168 OGs were found in all 12 core genomes 
(Fig. 4a), while the most common OG among accessory 
genomes was found in 11 accessory genomes (Fig.  4b). 
A majority of these conserved core OGs were found to 
be essential for growth for E. coli in LB media (101/168, 
60%) [23] (Dataset S5). Functionally, core OGs were 
again dominated by translation/ribosomal genes (60/168, 
36%) and also included a significant number of meta-
bolic genes (54/168, 32%), many of which share meta-
bolic pathways (Fig. 4c). Purine metabolism was strongly 
represented with 15 OGs conserved in all core genomes: 
purD, purE, purF, purH, purM, purN in IMP biosynthesis; 
carA, carB, pyrB, pyrF in UMP biosynthesis; guaA, guaB 
in GMP biosynthesis; purA in AMP biosynthesis; and 
adk, gmk, upp in salvage pathways. Other conserved OGs 
sharing biosynthetic pathways include aroA, aroB, aroC, 
aroE in chorismate biosynthesis; coaBC, coaD, coaE, in 
coenzyme A biosynthesis, and accB, accD, fabZ in fatty 
acid biosynthesis.

Genes conserved at the sequence level are enriched 
for translation‑associated genes, while sources of core 
genome sequence diversity are functionally diverse
Moving to the resolution of individual variants to assess 
sequence-level genetic diversity, the frequency of each 
unique protein sequence associated with each core gene 
within each species’ pangenome was computed. The entro-
pies of these variant frequency distributions were com-
puted as a measure of coding sequence diversity for each 
gene. Similarly, the entropies of analogous frequency dis-
tributions for gene-specific 5’IG and 3’IG variants were 

also computed, resulting in three “allelic entropy” meas-
ures for each gene (Fig.  5a, see Methods for entropy cal-
culations). These measures allow for the quantification of 
a gene’s overall sequence-level diversity, without requiring 
reference genomes or computationally expensive multiple 
sequence alignments for each sequence cluster that would 
be infeasible at the multi-pangenome scale. For each spe-
cies’ core genome, only limited correlation was observed 
between the level of sequence variability in a gene’s cod-
ing sequence compared to flanking intergenic sequences; 
median Spearman correlation across the 12 species was 
0.286 between coding and 5′ upstream allelic entropy, 
and 0.237 between the coding and 3′ downstream allelic 
entropy (Table S5).

To identify the most and least sequence diverse core 
genes by each feature type (coding, 5’IG, or 3’IG), the top 
and bottom 5% of core genes were identified after sorting 
by the corresponding allelic entropy measure and classified 
as “diverse” or “conserved”, respectively. In the case of cod-
ing sequence diversity, since the metric is sensitive to gene 
length, the top and bottom 5% of genes were instead iden-
tified using quantile regression [24] to estimate the 5 and 
95% allelic entropy percentiles as a function of gene length 
(Fig.  S7, Fig.  S8). Functional enrichment tests between 
COG functional groups and either the most or least con-
served core genes per species revealed generally little asso-
ciation between any of the types of sequence diversity and 
gene function (Fig. 5b). Only COG J (translation, ribosomal 
structure and biogenesis) exhibited consistent enrichment 
among the least sequence-diverse core genes, with mean 
LORs across the 12 species of 1.7, 2.4, and 2.4 among genes 
conserved by coding, 5’IG, and 3’IG allelic entropy, respec-
tively, and statistically significant enrichment in 7/12 spe-
cies for all three measures (p < 7*10− 5, FWER < 0.05 with 
Bonferroni correction). Additional weak biases towards 
other COGs were also observed for conserved or diverse 
genes by one or more feature types, though none were sta-
tistically significant in more than single species (Fig.  5b, 
Dataset S4).

Finally, genes involved in PubMLST typing schemes for 
these species ranged from strongly conserved to highly 
diverse based on coding allelic entropy (Fig. S9): all MLST 
genes were classified as core genes, and the most coding 
diverse gene in each scheme ranged from the 72nd to 99th 
percentile in the coding allelic entropy distribution of the 
corresponding species’ core genome, while the least coding 
diverse gene ranged from the 4th to 36th percentile.

Position of variation in conserved core genes 
is domain‑dependent, especially among aminoacyl‑tRNA 
synthetases
Finally, for the highest resolution of pangenomic diver-
sity, the position of sequence-level diversity in the 
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pangenome was examined for 76 of the 168 OGs (here 
on referred to as just “genes”) previously found to be in 
all 12 core genomes after filtering for those that could 
be richly annotated for domains (see Methods for gene 
selection process). For each species-specific set of protein 
sequence variants of a given gene, a multiple sequence 
alignment (MSA) was computed using MAFFT [25], 
from which the consensus sequence was annotated for 
domains using InterProScan [26]. The entropy at each 
position of the MSA was computed, and to evaluate 

a domain’s variability relative to its parent gene, the 
mean MSA entropy across all positions spanned by the 
domain was computed and compared against the mean 
MSA entropies of all windows with the same length as 
the domain in the MSA, yielding the domain’s entropy 
percentile with respect to the given gene and species 
(Fig. 6a).

Across the 443 gene-domain pairs analyzed, 27 
domains were identified to be mutation enriched with 
significantly elevated entropy consistently across the 12 

Fig. 4 Distribution of shared genes in core and accessory genomes. Number of shared genes versus frequency of observation across the a core 
genomes and b accessory genomes of 12 species. c Functional breakdown of the 168 genes observed in all 12 core genomes. Colors correspond 
to individual COG functional categories, which are labeled by the number of shared core genes annotated with the COG and COG definition. For 
metabolic COGs, individual genes and associated pathways are listed
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species analyzed, and 61 domains were identified to be 
mutation depleted with significantly reduced entropy 
(Bootstrap test, FDR < 0.05, Benjamini-Hochberg correc-
tion) (Fig.  6b, Dataset S6). Both the mutation enriched 
and mutation depleted domains are functionally diverse 
and are found in a wide range of genes (Fig.  6c, Fig. 
S10), though with a bias towards domains related to 
aminoacyl-tRNA synthetases (AARSs); 26% of mutation 

enriched domains were related to AARS compared to 
14% of the full set of domains analyzed (Fig. 7a). A sur-
vey of AARS-related domains finds that the extent of a 
domain’s multispecies mutation enrichment is associ-
ated with function (Fig. 7b-c). Among the 9 AARSs ana-
lyzed (alaS, aspS, cysS, ilesS, metG, pheS, serS, thrS, valS), 
domains related to editing, anticodon binding, or tRNA 
binding were either mutation enriched or mutation 

Fig. 5 Functional enrichment in core genes versus sequence diversity in coding or flanking intergenic sequences. a Workflow for identifying genes 
with high or low sequence diversity. For a given gene and species, frequencies of individual coding, 3′ intergenic (3’IG), and 5′ intergenic (5’IG) 
variants were computed, and entropies of the three variant type-specific frequency distributions were computed as measures of sequence diversity. 
For a given entropy measure, genes in the top and bottom 5% were classified as “diverse” or “conserved”; in the case of coding sequence entropy, 
5 and 95% percentiles as a function of gene length were used instead, estimated through quantile regression. b Functional enrichment in genes 
classified as most diverse or conserved by either coding, 5’IG, or, 3’IG sequence entropy. Only COGs with positive mean log2 odds ratio (LOR) across 
the 12 species for at least one entropy measure are shown
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neutral on average across the 12 species, while all but two 
non-editing catalytic domains were mutation depleted. 
Other domains (structural and/or of unknown function) 
were distributed over the full range from mutation deple-
tion to enrichment.

Within individual AARS domain functional categories, 
variability in mutation enrichment was due primarily 
to gene differences (i.e. differences in catalytic domains 
between metG vs. ileS) and lesser so to annotation speci-
ficity (i.e. domain vs. superfamily annotation of a similar 

Fig. 6 Mutation enrichment in protein domains from 76 genes present in all 12 species’ core genomes. a Workflow for computing the extent of 
mutation enrichment in a domain relative to the full protein from a set of coding variants. Briefly, the entropy at each position of the gene’s multiple 
sequence alignment is computed, and the mean entropy across the length of the domain is compared to that of all same length subsequences 
of the protein to compute a domain entropy percentile. b Species-specific mutation enrichment for 443 gene-domain pairs, sorted by domain 
entropy percentile averaged across 12 species. Domains with statistically significant multispecies enrichment or depletion are boxed (Bootstrap 
test, FDR < 0.05, Benjamini-Hochberg correction). E. faecium is not shown, due to low variability attributable to initial subtype imbalances in the 
genome set. c Species-specific mutation enrichment for gene-domain pairs with significant multispecies mutation enrichment. Domains related 
to aminoacyl-tRNA synthetases are labeled purple. White cells correspond to domains that could not be annotated within the species’ consensus 
sequence for the parent protein
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region) (Fig. 7c). Outliers due to gene include the FPG/
IleRS-type Zinc finger domain and Rossman-like alpha/
beta/alpha sandwich fold domain in ileS, the only cata-
lytic domains to be mildly mutation enriched (compared 
to the catalytic domains of serS, cysS, thrS, and metG 
which are strongly mutation depleted); and the puta-
tive editing domain of alaS, which is mildly mutation 
depleted compared to the strongly mutation enriched 
editing domains of thrS, ileS, and valS.

Discussion
Advances in sequencing technologies have rapidly 
expanded the scale of public genome collections, allowing 
the scope of analyses to grow from full genomes, to mul-
tiple genomes, and now towards multiple pangenomes 
for global comparisons of genetic diversity between spe-
cies. However, though numerous studies have examined 
genetic and functional diversity present in individual 
pangenomes, relatively few have offered comparisons 
between multiple distinct pangenomes, especially at the 
resolution that single pangenome studies often explore. 
In this study, we present generalizable “comparative 
pangenomics” methods for contextualizing genetic diver-
sity with function across multiple species and at multiple 
resolutions, from the shape of the pangenome overall to 
specific positions within individual genes.

At the overall pangenome level, we find that by balanc-
ing representation of MLST subtypes through undersam-
pling, Heaps’ Law more accurately predicts pangenome 
size as new genomes are introduced while yielding 
pangenome openness estimates with variances similar 
to that of estimates derived without balancing. The bal-
anced openness estimates were frequently higher than 
those derived without balancing (9/12 cases), possibly 
due to the estimates being less biased towards any indi-
vidual subtype which typically draws from a more lim-
ited gene pool than the species overall. Such a trend was 
observed in clade-specific analyses of the E. coli ST131 
pangenome, where all but one clade was more closed 
than the combined population [27]. Furthermore, the 
estimates suggest that openness roughly follows phylo-
genetic placement, especially with all six Gammapro-
teobacteria species analyzed here having very similar 
openness values that are all higher than that of the other 
bacterial classes examined. This is mostly corroborated in 
previous comparative works, though the exact openness 

values differ from those calculated here. Park et.al. found 
four Gammaproteobacteria, A. baumannii, E. coli, S. 
enterica, and P. aeruginosa, to have similar openness 
values compared to three other species analyzed from 
different phylogenetic classes [11], and Tettelin et.al. clas-
sified E. coli and S. pneumoniae as open and S. aureus as 
relatively closed [6]. It is possible that subtype balanc-
ing is responsible for the differences in exact openness 
values, and ultimately the results suggest that integrat-
ing subtype information into models of pangenome size 
may more accurately reflect the level of genetic diversity 
within the species at this scale.

Moving from overall pangenome shape to individual 
genes, an examination of gene frequency distributions 
reveals that a double power function can closely model 
such distributions (R2  > 99% in 11/12 species) and pro-
vides a scalable method for dividing the pangenome into 
frequency categories core, accessory, and unique. This 
approach is similar to the core-shell-cloud division based 
on a triple exponential function described by Koonin 
and Wolf [20] and implemented in the GET_HOMO-
LOGUES pangenome pipeline [21], which was simi-
larly derived based on examining functional forms that 
closely fit empirical distributions, albeit originally for 
smaller genome collections. Future analyses may exam-
ine which functional form offers closer and more stable 
fits at scales of thousands of genomes, and how they 
compare to more sophisticated approaches generalizable 
to more than three partitions, such as PPanGGOLiN’s 
integration of both gene frequency and synteny conser-
vation information [28], or micropan’s use of binomial 
mixture models [29].

An analysis of gene function distributions across these 
frequency categories finds several functional categories 
to be consistently associated with frequency across most 
of the examined species. Translation/ribosomal genes, as 
well as a number of genes from specific metabolic catego-
ries were significantly enriched in nearly all core genomes 
examined, while those concerning more niche functions 
such as trafficking/secretion or defense mechanisms were 
significantly enriched in a majority of accessory genomes. 
These results are also partially corroborated in Park et.al., 
where translation genes were among the top 5 overrep-
resented functional categories in 3/7 core genomes, traf-
ficking/secretion in 2/7 accessory genomes, and various 
metabolic categories also overrepresented in some core 

(See figure on next page.)
Fig. 7 Species-specific mutation enrichment among aminoacyl-tRNA synthetase domains relative to corresponding full proteins. a Enrichment of 
aminoacyl-tRNA synthetase (AARS) related features among all domains with significant mutation enrichment or depletion. b Extent of mutation 
enrichment in AARS domains compared to function across 12 species. Each point corresponds to a single gene-domain pair, categorized by 
function based on InterPro descriptions. c Species-specific mutation enrichment for all AARS-associated gene-domain pairs, sorted by domain 
entropy percentile averaged across the 12 species. White cells correspond to domains that could not be annotated within the species’ consensus 
sequence of the parent protein
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Fig. 7 (See legend on previous page.)
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genomes [11]; differences may be attributed to a more 
restrictive reporting (only top 5 categories are shown 
rather than all statistically significant cases), as well as 
a different statistical setup resulting in the reporting of 
some categories (such as transcription- or replication-
associated) as overrepresented in both the core and 
accessory genomes. Additionally, the enrichments found 
here, especially that of translation genes in core genomes, 
were recovered in more focused studies examining 1-3 
species or genuses at a time, such as for A. baumannii 
[30], Campylobacter [31], E. coli [32], E. faecium [33], N. 
gonorrhoeae [34], P. aeruginosa [35, 36], and S. aureus 
[37]. Finally, an analysis of individual genes identified 168 
genes in the core genome of all 12 species, which were 
predominantly genes essential in E. coli (60%) and follow 
a functional distribution similar to that of core genomes 
overall, composed primarily of translation (36%) and 
metabolic (32%) genes (especially in nucleotide metabo-
lism). This functional breakdown strongly resembles that 
of the “minimal gene set” identified in 1996 by Mush-
egian and Koonin for three species in one of the earli-
est characterizations of a bacteria-wide conserved gene 
set [38]. The repeated observation of specific functional 
enrichments in both this work and others suggest that 
core and accessory genomes from a wide array of bacte-
rial species may share a consistent structure regarding 
functional distribution.

At the level of individual variants, we find less consist-
ency within and between species regarding sequence-
level genetic diversity. Using entropy of variant 
distributions to quantify sequence-level diversity without 
reference genomes or computationally expensive multi-
ple sequence alignments, we find that the level of varia-
bility within a core gene’s coding sequence is only weakly 
correlated with that of its immediate 5′ or 3′ flanking 
intergenic region in all 12 species examined (Spearman 
correlation between 0.2-0.3). Pangenome-wide disparities 
in variation between the coding and flanking intergenic 
regions of a gene have been previously observed at the 
gene level: at least 11% of E. coli core genes were found 
to exhibit “regulatory switching” between nonhomolo-
gous flanking intergenic regions [39], and 7% of S. aureus 
core genes were found adjacent to non-core intergenic 
sequences [40]. Furthermore, while translation/riboso-
mal genes were consistently overrepresented among the 
genes most strongly conserved at the sequence-level, the 
functional distribution of core genes responsible for the 
most sequence-level variability differs significantly by 
species. Whereas the functional distribution of overall 
gene content may be relatively stable between species, 
this finer-grained, shorter-term genetic diversity appears 
to impact a much broader range of functions within and 
across different species.

At the highest resolution assessment of genetic diver-
sity, applying multiple sequence alignment and domain 
annotation to shared core genes revealed that specific 
structural features are disproportionately more con-
served or diverse than the remainder of their parent 
gene, consistently across multiple species. Domains 
from AARS genes especially tended to exhibit this ten-
dency for multispecies mutation depletion or enrich-
ment, and an AARS-specific analysis revealed that the 
level of mutation enrichment strongly followed domain 
function, with non-editing catalytic domains being 
consistently mutation depleted, while tRNA-binding, 
anticodon-binding, and editing domains tending to be 
mutation enriched. This finding of short-term, intraspe-
cies divergence of AARSs being localized away from 
catalytic domains for multiple species is consistent with 
previous analyses examining longer-term, interspecies 
differences in AARSs. Comparisons between repre-
sentative AARSs of different species have shown signifi-
cant diversity in overall domain architecture between 
different species and AARS classes in general [41], but 
catalytic domains are observed to be most frequently 
conserved at this level [42].

Additionally, two exceptions were observed in the 
broader trends between AARS domain function and 
mutation enrichment. First, the catalytic domains in 
ileS were the only catalytic domains not to be mutation 
depleted. One potential explanation may be that muta-
tions near the catalytic Rossman fold of ileS have been 
associated with mupirocin resistance in S. aureus [43], 
and we find the Rossman fold domain of ileS to be more 
mutation enriched in S. pneumoniae and S. aureus com-
pared to naturally mupirocin-resistant P. aeruginosa [44]. 
Second, the editing domain of alaS is the only editing 
domain not to be mutation enriched, while the editing 
domains of thrS and ileS are among the most significantly 
mutation enriched across all domains examined. This 
result may be interpreted as possible instances of amino 
acid-specific misaminoacylation being tolerated or even 
improving fitness under certain stressful conditions, as 
previously observed for specific amino acids and envi-
ronments [45, 46]. For example, editing-deficient ileS 
increases the growth rate of E. coli under isoleucine 
starvation [47] and the loss of thrS editing may trigger 
responses against oxidative stress [48], while the loss of 
alaS fidelity is poorly tolerated in E. coli [49]. Altogether, 
this domain analysis offers a finer-grain contextualiza-
tion of pangenome-scale genetic diversity, revealing 
broadly conserved patterns of how mutations are local-
ized in conserved genes as well as exceptions that may be 
explained by specific environmental stresses.

Finally, we note that pangenome-scale analyses are 
always limited by the availability of high quality genome 
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assemblies and will continue to improve as more 
sequences are published. Future development and appli-
cation of these methods to larger genome collections will 
provide increasingly complete pictures regarding the full 
extent of genetic diversity within a species, as well as pre-
sent new challenges in evaluating the completeness and 
evenness of represented subtypes. Furthermore, similar 
analyses of additional species are necessary to determine 
whether the patterns of genetic diversity observed here 
are also present more broadly across the bacterial domain 
beyond major human pathogens.

Conclusions
Overall, in developing efficient and generalizable meth-
ods for pangenome analysis, we find that each resolution 
of the pangenome reveals distinct aspects of the rela-
tionship between genetic and functional diversity across 
multiple species located across the phylogenetic tree. In 
increasing resolution, we find across 12 pathogenic spe-
cies that pangenome openness is associated with phy-
logenetic placement, the distribution of gene functions 
in the core and accessory genome is conserved across 
species, short-term sequence variation in core genomes 
impacts a functionally diverse range of genes, and certain 
protein domains are enriched for mutations consistently 
across multiple species in a function-dependent man-
ner, especially among AARSs. Many of the conserved 
patterns of genetic diversity uncovered here are consist-
ent with previous studies focused on individual species, 
and continued development of multi-scale comparative 
pangenomic techniques may further elucidate similari-
ties in how different species adapt to their environmental 
niches and pressures.

Methods
Genome selection, pangenome construction, MLST 
classification, and feature identification
An initial set of genomes was taken from the PATRIC 
database RELEASE_NOTES (ftp. patri cbrc. org/ RELEA 
SE_ NOTES/, 2020-02-06), starting with ESKAPEE 
pathogens and WHO global priority pathogens and fil-
tered down to 12 species with at least 100 genomes by 
taxon ID (Table S1). For each species, genomes were fil-
tered to those meeting the following quality criteria: 1) 
genome status is “WGS” or “Complete”, 2) number of 
contigs is within 2.5 times the median number of con-
tigs across all assemblies for that species, 3) number of 
annotated CDSs is within 3 standard deviations of the 
mean, and 4) total genome length is within 3 stand-
ard deviations of the mean. PATRIC Genome IDs for 
the selected genomes are available in Dataset S1. Each 

genome was classified in silico by multilocus sequence 
type (MLST) using the mlst tool v2.18.0 (https:// github. 
com/ tseem ann/ mlst) based on PubMLST [18] (Data-
set S2). A phylogenetic tree was constructed based on 
reference genomes of each species available on PAT-
RIC, using PATRIC’s Phylogenetic Tree service with 
the Codon Trees method and a maximum of 100 genes 
(Fig. S1a) [50]. In the cases of C. coli and A. baumannii, 
no reference genome was available on PATRIC and rep-
resentative genomes were used.

For a given species, all CDSs across all genomes (as 
annotated by PATRIC) were reduced to a non-redun-
dant list and clustered by protein sequence using CD-
HIT v4.6 (word size “-n” 5, minimum identity “-T” 80%, 
minimum alignment length “-aL” 80%, all other set-
tings default) [19]. Each cluster was denoted a “gene” 
and each cluster member denoted a coding variant. 
For each gene, 5′ intergenic variants were identified by 
locating occurrences of all coding variants of the gene 
across all genome assemblies and extracting the DNA 
sequence from the start codon to 300 nt upstream. 3′ 
intergenic variants were similarly identified down-
stream of stop codons. Intergenic variants truncated by 
contig boundaries were ignored.

Pangenome openness estimation and size extrapolation 
with heaps’ law
To estimate pangenome openness for a given spe-
cies, 100 random genome orderings were generated 
using two approaches: 1) genome-based: all available 
genomes were randomly shuffled, and 2) MLST-based: 
all identified MLST types were randomly shuffled 
and one genome was randomly sampled per MLST 
in the resulting order (genomes that could not be 
typed were grouped as a single separate subtype). For 
each genome ordering, the total number of unique 
genes encountered (pangenome size) as genomes 
are introduced sequentially was computed and fit to 
Heaps’ Law using nonlinear least squares regression 
via SciPy’s scipy.optimize.curve_fit() [51]. The mean 
and standard deviation of fitted Heaps’ Law param-
eters across the 100 orderings for each method were 
computed.

To evaluate each method’s ability to extrapolate 
pangenome size, Heaps’ Law was fit to the first half 
of genomes in each genome ordering, and the mean 
absolute error (MAE) was computed for the fit against 
both the first half (fit region) and remaining second 
half (extrapolation region) of genomes. The median 
MAE across the 100 orderings was computed for both 
methods for each species, as well as the relative median 
MAE (median MAE from the MLST-based approach 

http://ftp.patricbrc.org/RELEASE_NOTES/
http://ftp.patricbrc.org/RELEASE_NOTES/
https://github.com/tseemann/mlst
https://github.com/tseemann/mlst


Page 15 of 18Hyun et al. BMC Genomics            (2022) 23:7  

divided by the median MAE from the genome-based 
approach).

Frequency‑based division of pangenomes into core, 
accessory and unique genes
For a given species with N genomes, two distributions 
were computed: P(x), the number of genes with fre-
quency x, and F(x), the cumulative genes with frequency 
less than or equal to x. To account for the observation 
that P(x) and P(N + 1-x) are approximately power laws 
for small values, the overall frequency distribution was 
modeled using the following function with parameters 
 (c1,c2,a1,a2):

Since observed P(x) values varied across multiple 
orders of magnitude, parameters of this function were fit-
ted using the cumulative distribution, based on the inte-
gral of the P(x) model and involving an extra constant 
parameter k:

This five parameter function was fit to observed cumu-
lative frequency distributions, using nonlinear least 
squares regression via SciPy’s scipy.optimize.curve_fit() 
[51], linearly scaling the domain and range to be within 
0-1 and with initial guess  (c1,c2,α1,α2,k) = (1,1,2,2,1). The 
inflection point of F(x), or x*, was computed by minimiz-
ing P(x) with the corresponding computed parameters 
in SciPy using scipy.optimize.minimize_scalar() [51]. 
Frequency thresholds for core, accessory, and unique 
genes were defined relative to this inflection point, where 
unique genes were defined as those present in less than 
0.1x* strains, core genes as those present in more than 
0.9 N + 0.1x* strains, and accessory genes as everything 
in between. Fitted parameters and derived frequency 
thresholds are available in Dataset S3.

Ortholog group identification and enrichment testing 
between gene function and frequency
For each gene in each pangenome, the most commonly 
observed coding variant was annotated using eggNOG-
mapper version 0.12.7 [22], as the representative for 
that gene. This annotation yielded for each gene its best 
ortholog group or “bestOG”, COG functional category, 
and associated GO terms. Genes that eggNOG-mapper 
failed to annotate were assigned the COG category “S: 
Function unknown”. For each species, Fisher’s exact tests 
were applied to determine enrichment between each 
gene frequency group (core, accessory, unique) and COG 
functional category. For example, to test enrichment for 

P(x) = c1x
−α1 + c2(N + 1− x)−α2 x = 1, 2, . . . ,N

F(x) = k +
c1

1− α1
x
1−α1 −

c2

1− α2
(N + 1− x)1−α2

COG J in the core genome, Fisher’s exact test was applied 
between core vs. non-core genes and COG J vs. non-
COG J genes. A total of 12 species × 3 frequency groups 
× 20 COGs = 720 tests were conducted, and significance 
was determined based on FWER < 0.05 under Bonferroni 
correction, or p-value < 7*10− 5. Log2 odds ratios (LOR) 
were also computed between each frequency group and 
COG.

Analogous enrichment tests and LOR calculations 
were conducted for 414 GO terms that were observed at 
least 10 times in each species. A total of 12 species × 3 
frequency groups × 414 GO terms = 14,904 total tests 
were conducted, and significance was determined based 
on FWER < 0.05 under Bonferroni correction, or p-value 
< 3*10− 6. The top 10 GO terms by mean LOR across all 
12 species were reported. All LORs and p-values for both 
COG and GO terms are available in Dataset S4.

To identify genes conserved across all species’ core 
genomes, genes from different species’ pangenomes 
were grouped by eggNOG-mapper’s bestOG assignment. 
Gene essentiality was assigned based on comparing egg-
NOG-mapper predicted gene names to essentiality pre-
dictions made in Goodall et.al [23]. and are available in 
Dataset S5.

Analysis of intraspecies sequence‑level diversity in core 
genomes
For each species and core gene, the frequency of each 
observed coding variant was counted and the Shannon 
entropy of this variant count distribution plus a dummy 
variant with frequency 1 (in order to distinguish genes 
with similar variant relative frequencies but different raw 
counts) was computed, referred to as the “coding allelic 
entropy” of the gene for that species. Analogous 5′ inter-
genic and 3′ intergenic allelic entropies were also com-
puted per gene based on distributions of their respective 
variant types. Core genome-wide Spearman correlations 
were computed between these three allelic entropies for 
each pair of variant types, for each species.

To control for the effect of gene length on the num-
ber of unique coding variants and thus on coding allelic 
entropy, quantile regression was used to determine the 
5 and 95% coding allelic entropy percentiles as a quad-
ratic function of gene length [24], using Python pack-
age statsmodels [52]; the quadratic functional form was 
chosen as it was the simplest form that closely tracked 
the rolling window 5 and 95% percentiles (Fig.  S8). 
Functional enrichment among the most conserved and 
diverse core genes (determined by the 5 and 95% quan-
tile regression percentiles) was computed similarly as 
for the frequency group enrichment tests, computing 
LORs and applying Fisher’s exact tests for each COG 
functional category. A total of 2 groups (top/bottom 5%) 
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× 20 COGs × 12 species = 480 tests were conducted, 
and significance was determined based on FWER < 0.5 
under Bonferroni correction, or p-value < 1*10− 4. Similar 
enrichment tests were conducted for the top/bottom 5% 
of core genes ranked by either intergenic allelic entropy 
measure, using regular 5%/95% quantiles not based on 
quantile regression since intergenic features were fixed-
length. All LORs and p-values are available in Dataset S4.

Analysis of sequence‑level diversity in MLST genes
DNA sequences for genes involved in PubMLST typing 
schemes were downloaded through the mlst tool v2.18.0 
(https:// github. com/ tseem ann/ mlst). Each sequence was 
translated to an amino acid sequence in the frame with 
the fewest number of intermediate stop codons. Within 
each species, pangenome coding variants were mapped 
to translated PubMLST variants if they contained the 
exact sequence of the translated PubMLST variant, to 
yield variant-variant mappings. Pangenome genes were 
then mapped to PubMLST genes based on which pange-
nome gene had the maximum number of variant-variant 
mappings to a given PubMLST gene. The coding allelic 
entropies of the pangenome genes mapped to PubMLST 
genes were reported, as percentiles relative to the coding 
allelic entropies of all core genes for the species.

Analysis of sequence variation positional distribution 
with respect to domains
The 168 genes previously identified to be in all 12 core 
genomes were filtered for those with rich domain anno-
tations. Starting with E. coli amino acid sequences, for 
each gene: 1) a multiple sequence alignment (MSA) 
was computed for all observed coding variants using 
MAFFT [25], 2) the consensus sequence was annotated 
for domains with InterProScan [26], 3) domains with 
the same InterPro accession ID were merged, 4) and 
domains longer than 80% of the full protein length were 
filtered out. This analysis yielded 76 genes with at least 
three domain annotations, and the amino acid sequences 
related to these genes for all 12 species were similarly 
analyzed for a total of 912 species-gene pairs annotated. 
Gene name annotations were assigned based on ear-
lier eggNOG-mapper annotations of the most common 
sequence variant.

To quantify domain sequence variation, the entropy at 
each position of each species-gene MSA was computed, 
weighted by the relative abundance of each sequence var-
iant. For each domain, the mean entropy across all MSA 
positions spanned by the domain was computed, and 
the entropy’s percentile was computed against the mean 
entropies of all subsequences of the same length within 
the MSA, yielding entropy percentiles for each species-
gene-domain combination. To determine domains 

consistently variable or conserved across multiple spe-
cies, the mean entropy percentile for each gene-domain 
pair was computed across the 12 species. P-values of 
mean entropy percentiles were determined against an 
empirically constructed distribution for the mean of 12 
independent, identically distributed uniform distribu-
tions using 1,000,000 random samples (Bates distribu-
tion, based on a null hypothesis of percentiles being 
uniformly distributed). Significance was determined 
based on Benjamini-Hochberg correction (FDR < 0.05, 
443 tests). All domain entropy percentiles, p-values, and 
significance calls are available in Dataset S6.

Domains related to aminoacyl-tRNA synthetases 
(AARSs) were identified based on gene name annota-
tions. Functional categories (editing, anticodon binding, 
tRNA binding, non-editing catalytic) were assigned based 
on InterPro text annotations of each domain. Between 
domains overlapping by more than 95%, only the domain 
with a functional annotation (rather than structural) and/
or more descriptive InterPro annotation was shown as 
representative. A summary of domain functional assign-
ments, evidence, and overlap filtering is available in Data-
set S6.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864- 021- 08223-8.

Additional file 1: Figure S1. Phylogenetic tree of selected species and 
MLST subtype distributions. a) Phylogenetic tree constructed for repre-
sentative genomes of each species using PATRIC’s Codon Tree service. 
Genomes are labeled by their name and PATRIC Genome ID. b) Distribu-
tion of MLST subtypes for each species’ genome collection. The relative 
abundance of the top 5 MLST subtypes, all other subtypes, and untyped 
genomes are shown per species. Figure S2. Evaluation of accuracy of 
Heaps’ Law at predicting pangenome size, with or without controlling 
from MLST. a) Example fit of Heaps’ Law to first half of genomes (unbal-
anced) or MLSTs (MLST balanced) and extrapolation to second half to 
evaluate pangenome size projection. b-c) Median mean absolute error 
(MAE) across Heaps’ Law fits for 100 random genome orderings, with or 
without MLST balancing, for each species in the fitting and extrapola-
tion regions. Dotted lines indicate equal performance between the two 
methods. Figure S3. Gene frequency distributions by species. Figure S4. 
Fitted cumulative gene frequency distributions and corresponding core 
and unique gene frequency thresholds, by species. Observed distribu-
tions (solid blue), fitted functions (dashed orange), and the  R2 and mean 
absolute errors (MAE) of the fits are shown. Fitted inflection points (black 
dot, dashed gray) and frequency thresholds corresponding to core and 
unique genes (dashed black) are also shown. Figure S5. COG functional 
group enrichment in the core, accessory, and unique genomes of 12 
species. Heatmaps are colored by the log2 odds ratio (LOR) between 
each COG and the a) core, b) accessory, c) unique genome of each spe-
cies. COGs are sorted by mean LOR across all species. LOR color scales 
are symmetric and identical for all plots; four values are outside of the 
color range: F x E. cloacae (LOR = − 7.5), Q x C. coli (LOR = − 6.0), and K x 
C. coli (LOR = − 6.9) for accessory genomes; F x E. faecium (LOR = − 5.3) 
for unique genomes. Starred cells correspond to statistically significant 
enrichments under Fisher’s Exact test with FWER < 0.05 under Bonfer-
roni correction (p < 7*10− 5, 720 tests). Figure S6. Top 10 GO terms by 
enrichment in the core, accessory, and unique genomes of 12 species. 
Heatmaps are colored by the log2 odds ratio (LOR) between each GO 

https://github.com/tseemann/mlst
https://doi.org/10.1186/s12864-021-08223-8
https://doi.org/10.1186/s12864-021-08223-8


Page 17 of 18Hyun et al. BMC Genomics            (2022) 23:7  

term and the a) core, b) accessory, or c) unique genome of each species. 
GO terms are sorted by mean LOR across all species. LOR color scales are 
identical for all plots. Starred cells correspond to statistically significant 
enrichments under Fisher’s Exact test with FWER < 0.05 under Bonfer-
roni correction (p < 3*10− 6, 14,904 tests). Figure S7. Quantile regression 
between coding allelic entropy and gene length among core genes, by 
species. Dotted lines show quantile regressions for the 5 and 95% coding 
allelic entropy percentiles as a quadratic function of gene length. Red 
and blue dots are the most diverse and most conserved core genes, 
respectively, as defined by these regressions. Figure S8. Rolling window 
percentiles versus quantile regression between coding allelic entropy 
and gene length among core genes, by species. Dotted lines show 
quantile regressions for the 5 and 95% coding allelic entropy percentiles 
as a quadratic function of gene length. Orange lines show rolling 5 and 
95% percentiles using windows of 50 genes. Figure S9. Coding allelic 
entropies of genes used in MLST typing schemes, as percentiles among all 
core genes of the corresponding species. For A. baumannii, the MLST gene 
gpi was mapped to two pangenome gene clusters denoted gpi-1 and 
gpi-2, both of which include gpi variants defined in the A. baumannii MLST 
typing scheme. Figure S10. Domains with significant mutation depletion 
across multiple species. Species-specific mutation depletion for gene-
domain pairs with significant multispecies mutation depletion (Bootstrap 
test, FDR < 0.05, Benjamini-Hochberg correction). Domains related to 
aminoacyl-tRNA synthetases are labeled purple. White cells correspond 
to domains that could not be annotated within the species’ consensus 
sequence of the parent protein. Table S1. Genome counts, abbreviations, 
and taxon IDs for species examined. Table S2. Heaps’ Law parameter 
estimates, fitted by either randomly shuffling all genomes “by genome” or 
one genome per MLST “by MLST.” Means and standard deviations from 100 
iterations are shown for each species, parameter, and method. Species are 
sorted by Heaps’ Law alpha, estimated using the MLST method. Table S3. 
Evaluating accuracy of Heaps’ Law fits, based on either randomly shuffling 
all genomes “by genome” or one genome per MLST “by MLST.” Heaps’ Law 
was fit to the first half of genomes in pangenome size curves (“fitting 
region”) generated by either method and accuracy was evaluated against 
the second half (“extrapolation region”). The mean absolute error (MAE) for 
each region was computed, and the median MAE across 100 iterations is 
shown, as well as relative error between the MLST vs genome methods. 
Species are sorted by relative median MAE in the extrapolation region. 
Table S4. Gene frequency cutoffs and gene counts for the core, accessory, 
and unique genomes of 12 species. Table S5. Correlations between three 
types of intraspecies sequence diversity for core genes. Variant types are 
coding (protein sequences), 5′ intergenic (5′ IG, 300 nt upstream and 
adjacent to the start codon), and 3′ intergenic (3′ IG, 300 nt downstream 
and adjacent to the stop codon). Dataset S1. PATRIC genome IDs for all 
genomes used. Dataset S2. MLST annotations generated with https:// 
github. com/ tseem ann/ mlst for all genomes. Dataset S3. Summary of 
double power function fits to cumulative gene frequency distributions 
and derived thresholds for classifying genes as core, accessory, or unique. 
Includes for each species the minimum frequency to classify a gene as 
core, maximum frequency to classify a gene as unique, sizes of the core/
accessory/unique genomes,  R2 and MAE of the fit, and the five fitted 
parameters. Dataset S4. Log odd ratios and Fisher’s exact test p-values for 
enrichment between gene functional groups (COGs, GO terms) and vari-
ous gene categories (core, accessory, unique, highest sequence diversity, 
lowest sequence diversity) within each species. Contains raw data for 
heatmaps and boxplots in Fig. 3c, Fig. 5b, Fig. S5, and Fig. S6. Dataset S5. 
Predicted gene names, COG functional categories, and TraDIS E. coli essen-
tiality predictions from Goodall et.al. 2018 for the 168 genes observed 
in the core genome of all 12 species. Dataset S6. Domain mutation 
enrichment analysis. For each gene-domain pair, includes the estimated 
mutation enrichment as domain entropy percentile (species-specific and 
species-wide averages), Bootstrap test p-values, domain InterPro acces-
sion IDs, and domain descriptions. Also includes assignment of functional 
categories to AARS-related domains.
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