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Topological Aspects of Material Interface
Reconstruction: Challenges and Perspectives

L. Hüttenberger1, H. Obermaier2, C. Garth1, K. Joy2, and H. Hagen1

1 University of Kaiserslautern, Germany
2 University of California, Davis, USA

Abstract. Multi-fluid simulations, especially volume of fluid datasets,
confront visualization experts with the challenge of reconstructing ap-
propriate material interfaces that accurately delimit fluid boundaries. In
general this reconstruction problem does not have an unique solution,
leading to possible spatial and temporal inconsistencies in the recon-
structed interfaces. In this paper we present and discuss challenges and
directions for topology based analysis of volume of fluid data and its
interfaces. We investigate the suitability of established topological meth-
ods for solving these challenges, analyze their potential and drawbacks,
and propose future research directions.

1 Introduction

Topological methods have long served the visualization community as funda-
mental tools to generate insightful methods for visual data analysis. These type
of approaches have enabled the interpretation of ambiguous data in a robust
fashion, and allowed the characterization of salient features in data through a
notion of connectivity. Many applications have benefited in this respect, rang-
ing from the reconstruction of molecular surfaces over the structural analysis of
vector fields to the identification of biological structures.

Material Interface Reconstruction (MIR) – the reconstruction of boundary
surfaces from volume averages or volume fractions– has so far received little
attention from the research community with respect to a rigorous topological
treatment. Corresponding simulation techniques that generate volume fraction
data, have risen in popularity for some years. For example, the volume-of-fluid
method (VOF) for multi-phase flows is often employed to model the flow of mul-
tiple fluids around moving boundaries. Through the implicit representation of
fluid distribution in terms of volume fractions in the cells of a computational
mesh, this method has proven strongly advantageous in comparison to other
simulation techniques that involve re-meshing or explicit interface propagation
through level sets, while achieving similar simulation accuracy [1]. Volume frac-
tion data is not only limited to flow analysis, however, but is also found in
modern medical applications, received through MRI or EM scans, and a variety
of other domains. Thus, robust and reliable visualization and analysis methods
are needed to accommodate this class of problems.



In general, as there is an infinite number of possible interfaces fitting given
volume fraction, MIR is a vastly under-constrained problem. In order to arrive
at practical approaches, previous approaches to MIR have mostly focused on
adding constraints aimed at high-quality visualization, such as interface conti-
nuity and smoothness and accurate reproduction of volume fractions. While the
resulting methods have proven sufficient for some application areas the topo-
logical configuration of the resulting interface has thus far not been studied in
depth, nor incorporated as a primary factor in the reconstruction process.

In this paper, it is our intent to document the need for, and stimulate fur-
ther research into the topological aspects of MIR. For this purpose, we briefly
introduce the MIR problem and provide a short survey on state-of-the-art MIR
algorithms. We focus on highlighting topological aspects of the discussed meth-
ods, and point out individual shortcomings. We conclude with a short discussion
of possible avenues towards incorporating topological considerations into MIR
techniques.

2 Topology and Material Interface Reconstruction

To understand the motivation behind integrating topological aspects into ma-
terial interface reconstruction, we first briefly highlight the application of topo-
logical methods in a variety of research areas. This establishes a conceptual
framework for the analysis of reconstruction methods as presented in the second
half of this section.

2.1 Topology in Visualization

In scientific visualization the concept of topology allows for the analysis of an
intuitive notion of connectivity of objects, providing an important tool to enrich
classic analysis that is purely based on object geometry. Although the mathe-
matical idea of topology came into focus of the visualization community around
twenty years ago (cf. for example the work by Helman and Hesselink [2]), the va-
riety of topological representations, methods, and analysis techniques has grown
steadily. A complete survey is clearly beyond the scope of this paper; instead
we highlight important work in computational topology that is closely related
to the challenges presented in this paper.

A large body of work has been published about the notion of vector field
topology in flow simulations. One goal of such topological approaches is to go
beyond the geometrical representation of flows and find regions where stream-
lines behave similarly in their limit, i.e. share common sources and sinks. Two
examples of work in this field are given by Reich et al. [3] and Scheuermann et
al. [4]. Note that while a large portion of MIR data stems from flow simulations,
volume fractions itself lack in general the information about flow direction and
velocity hence methods from vector field topology are often not applicable.

Scalar field topology constitutes a second major area in the fields of topologi-
cal analysis and visualization, where topology is used to identify critical features



like minima, maxima, and their corresponding plateaus and basins. Topology
was integrated into visual analysis tools to provide abstract views onto the fields,
especially benefitting large and high dimensional data sets [5,6]. Moreover, topo-
logical field abstraction and simplification can also be used to intuitively compare
different scalar fields [7]. For two-material cases, the input data for material in-
terface reconstruction techniques corresponds to a scalar field representing the
local density of one of the two materials, i.e. volume fractions.

The capability of topological abstractions to facilitate high-level comparisons
of features has spawned a third focus of topology analysis that is driven by
the desire to track and compare identified (topological) features in vector or
scalar fields over time. For example, Weber et al. [8], Edelsbrunner et al. [9], or
Szymczak [10], make use of Reeb graphs and contour trees data representations
to achieve tracking and efficient comparisons.

In all these publications it becomes clear that topological methods are a
valuable extension to the classic geometrical visualization and analysis. As we
demonstrate in the following, the challenges present in material interface recon-
struction resemble classic problems studied in topological analysis, leading us
to expect that strong potential improvements can be obtained from combining
these two areas of research.

2.2 Material Interface Reconstruction

Although MIR and topological analysis have common application areas like flow
simulation and medical visualization, they are relatively new approaches in vi-
sualization. Interaction between both research directions has so far been limited.
Hence, the impact, influence, and challenges of topological methods in MIR have
not yet been studied in a concise fashion. To encourage such studies, we first
summarize the MIR problem definition and existing work in the field before
discussing challenges and perspectives of topological analysis in MIR.

Reconstruction Problem MIR problems can be found in research fields like
computational fluid dynamics or medicine, where multi-fluid simulations or med-
ical scans are a typical source of data. The technical and computational limits
of those simulation and measurement techniques lead to discretized and approx-
imated data. Inaccurate scans,the need of fast algorithms and impracticality of
continuous representations therefore force a discretization of the original domain
D, usually D ⊆ R2 or D ⊆ R3 into finite number of cells.

Instead of the providing pointwise material properties, the result of the scans
and simulations is approximated over those cell. One example of such an approx-
imation is the volume-of-fluid (VOF) method [11], in which for each cell only
the volumes of the different fluids or materials as a fraction of the cell’s total
volume are given. Although there are other methods that approximate the origi-
nal data, e.g. through mass conserving density fields [12], we focus on VOF-type
data throughout this work.

Formally, for a set of n materials, each cell in the domain corresponds to an
n-dimensional vector over the interval [0, 1] which indicates the fraction of each



material present in that cell. Note that in some representation only a (n − 1)-
dimensional vector is used since the last fraction is given implicitly. For two
materials this results in a scalar-field representation of the data.

As an example, consider a section of a flow simulation in a finite tank T ⊂ R3

with two materials as illustrated in Figure 1. The left images shows the original
simulation and the segmentation of the domain into four cells, while the right
image only shows the volume fractions for each of these cells.

Fig. 1. Volume fractions in a two-material example.

Each cell c is either pure, i.e. it is completely filled with one material, or contains
multiple materials and hence a boundary (interface) between the two materials.
Note however that the geometric information of the interfaces is not contained
in this approximation.

Hence, a series of methods were introduced to reconstruct those boundaries
with the ultimate goal of obtaining the material interfaces. However, Figure 2
illustrates that this is a strongly under-determined problem if only the volume
fractions are given since all of the shown material surfaces produce the volume
fractions as given by the data (Figure 1 (right)) exactly. Furthermore note the
significant difference in interface properties such as smoothness and topology
among these examples.

Fig. 2. Several sketches of interfaces that accurately provide the same volume fraction
as in Figure 1. This illustration demonstrates the ambiguity of the MIR problem.

It is clear that interface reconstruction is an infeasible task without the avail-
ability of further prior knowledge of interface properties. However, since those



properties and of course the original data itself are usually unknown, this re-
quirement is usually dropped. Instead reconstructions focus on reproducing vol-
ume fractions accurately while fulfilling other more abstract requirements such
as continuity or smoothness. This additional, important family of requirements
rises from the needs in visualization to obtain meaningful surface structures with
appropriate normal approximations. While for fluids smooth surfaces with C1

or higher continuity are preferred, in object scans reconstruction results that
are able to model sharp edges and may therefore be C0 often come closer to
the original data. By adding and prioritizing different requirements including
computational efficiency and scalability, stability over time, etc., a wide range of
different reconstruction methods were developed. To give an adequate overview
the next section provides a compact survey of MIR methods.

(a) SLIC (b) PLIC (c) Meredith (d) Anderson

Fig. 3. Four sketches of the same cell showing the results of different reconstruction
methods. The partially seen cells are all pure while the center cell has an original
volume fraction of (0.28, 0.72).

Reconstruction Methods One of the first methods, by Noh and Wood-
ward [13], simply moves sequentially for each material an axis-parallel plane
through each cell until the volume fractions in the reconstruction match the
prescribed volume fractions. This method, called Simple Line Interface Calcula-
tion (SLIC), obviously does not produce continuous interfaces. See, for example
in Figure 3(a) the border between the center and the partial shown pure cell in
the middle-left.

Even an extension, namely Piecewise Linear Interface Calculation (PLIC) by
Youngs [14], which moves the plane along a gradient computed from the volume
fraction in the neighbor cells does not produce continuity. Figure 3(b) shows a
simple sketch of such a reconstruction with the arrow indicating the gradient of
respective material volume fractions. Hence for realistic visualization of fluids
new approaches were required which specially focus on smoothness.

The current approaches can be classified either as grid-based or as discrete
methods. Grid-based methods move from cells to dual meshes like Bonnell et
al. [15] or to grids like in Feng et al. [16] or Meredith [17] where information is
stored at the cell corners. The latter method by Meredith for example averages



the fractions of the adjacent cells at each corner. Sequentially for each material
an interpolation function over those average values places a plane in the cell.
Since the different grids cells share common corners with their neighbors the
resulting interfaces are generally continuous. Figure 3(c) shows the averages for
the first material at each corner while the second values follow implicitly.

Note however that in all those grid-based methods the original fraction in-
formation in the cells is lost, which results in errors in the volume reconstruction
for most cells. This is illustrated in Figure 3(c) in which the volume fraction is
changed from (0.28, 0.72) to (0.5, 0.5). In summary, accuracy within single cells
was traded off in favor of smoother interfaces over the whole domain.

Another class of approaches therefore focuses more on the accuracy require-
ment. First exemplified by the method of Anderson et al. [18] (termed DA in
the following), these approaches first discretize each cell into smaller subcells
or single particles, each randomly labeled with a material such that their label-
ing approximates the volume fraction of the cell. An energy function based on
the subcells models desirable interface properties. Using simulated annealing by
swapping random pairs of subcells, the subcells iteratively move to a minimal
configuration, see Figure 3(d).

Extensions, like the method by Anderson et al. [19] (SA) use the subcells
next to material borders in the final configuration as base for interpolating a
continuous interface. Or, as in Garimella et al. [20], use the centroids of the dif-
ferent material particles for a power diagram [21] to built a determine interfaces.
Especially for SA the question arises whether these extensions also change the
topology of the interfaces with respect to the DA method. Furthermore, with
regard to the discrete method, it is unclear whether the simulated annealing al-
gorithm also leads to different topologies when applied twice on the same data.

Not only these internal changes of topology but also in general the varying
topologies between different reconstructions and between those and the original
data are known and pointed out in most of the mentioned publications. How-
ever, thus far this aspect of MIR has never been pursued in detail or analyzed
thoroughly, and tools to analyze those ambiguities and therefore also the differ-
ences in the reconstruction methods have not been discussed in the literature. In
the following we aim towards analyzing challenges, solutions, and perspectives
of (automatic) topological analysis of the MIR task.

3 Challenges and Directions

In the following we present a set of scenarios or problem settings and discussion
where topological methods could contribute to the design of new reconstruction
method or lead to improved reconstruction analysis.

As a remark, we do not claim that the presented methods are optimal for
these problems. They are only first ideas to show that topology can be a possible
approach in the scenarios. We even assume that many of the readers associated
with computational topology research come up with more and possible better



ideas. After all, this paper’s main purpose is to simply emphasis further research
in this direction.

3.1 Scenario 1: Intra-Method Inconsistency

Some of the presented reconstruction methods from Section 2.2 rely on parame-
ters. In the following, we will illustrate how parameter changes in PLIC can also
change the topology of the reconstructed interfaces. Here, the parameter is the
ordering of the materials.

In PLIC, material planes are aligned orthogonally to material gradient di-
rections and translated within the cell until the volume fraction for the current
material agrees with the original fraction. Figure 4 shows an example for a single
cell with three materials and eight pure neighbor cells (partially shown). Arrows
in the middle of the cell indicate the gradient vectors for the three materials and
numbers represent the order in which the materials are reconstructed. Note that
in Figure 4(b) the two dark gray areas are no longer connected while in 4(a)
they still share a common edge. If we assume cases with thousands to millions

(a) (b)

Fig. 4. Two interfaces for a three-material example. The numbers indicate the order
in which the materials are reconstructed.

of cells such a small detail is easily overlooked in a purely geometric visualiza-
tion, but can cause major problems in automatic post-processing steps. However,
a topology-oriented analysis based on connected components can immediately
find and highlight those discrepancies and provide a simple visual support and
analysis tool to evaluate the quality of a reconstruction.

Furthermore, in the PLIC method, changes in the parameters only change
the topology implicitly. The next method, DA, shows an example where the
topological changes are independent of any parameters, but depend in a more
complex fashion on the outcome of a probabilistic part of the algorithm. Defining
a parameter for DA that explicitly influences the topology of the result, e.g.
through explicit topology-based terms in the energy function, remains a challenge
for future work.

In order to go more into detail, the global energy function E in DA sums
up the energy of each subcell x with corresponding material label fx, namely



�
y∈N ωx,y δ(fx �= fy) with ωx,y a suitable weighting function, N the local

neighborhood of x even beyond the cell boundaries, and δ = {true : 1, false : 0}.
While DA optimally converges to a global minimum for this energy function E,
such a global minimum might not exist or DA may converge to a local minimum
in case the simulated annealing stops the movement within the single cells too
early.

With this in mind, consider the volume fraction for two materials in four cells
as illustrated in Figure 5. The adjacent partially shown cells are pure, i.e. they
are completely filled with one of the two materials. Next to this figure are two
possible reconstructions for those volume fractions, Figure 5(b) and 5(c). With
ωx,y = 1 for all subcells, both interfaces result in identical energy values, hence
are both possible outcomes of DA though they are topologically distinct.

(a) (b) (c)

Fig. 5. A volume fraction (a) and two interfaces (b,c) with exactly the same energy
function w.r.t. DA. However note that (b) and (c) have two different topologies since
different materials are connected or separated, respectively.

As mentioned above, a possible step to address this problem is to integrate
additional topological constraints into the energy function. A topological analysis
on the volume fractions can even provide good and case-specific parameters
before the actual reconstruction. An analysis based for example on a contour
tree [22] for one of the materials is possible, using its volume fractions to build
contours along the cell edges. Future applications could allow to choose a subtree
to deside if groups of pure cells, peaks and troughs in the contour map, are within
the same material boundaries in the final reconstruction. In this case the nodes in
the contour tree would represent groups of connected cell whose volume fraction
of the current material is above a given threshold.

Hence, due to their capability to measure the influence of the method pa-
rameter or to design new ones to control those influences, topological approaches
provide striving perspectives for the inclusion of topological methods into the
MIR method design process. This might provide new reconstruction methods
that can fit to different applications like fluids (large connected components, with
occasional drops), aerosols (high topological complexity) or objects that obvi-
ously have different topological constraints (like scans in material engineering)
by changing a single parameter describing topological complexity. Additionally,



a visual representation of the topology of the volume fraction data could take
a supporting role in choosing suitable method parameters prior to the actual
reconstruction.

3.2 Scenario 2: Inter-Method Inconsistency

The previous scenario illustrated how the same method can result in topologi-
cally different interface reconstructions. Obviously, these differences can also be
present when comparing different methods, leading to the next challenge, namely
to find suitable topological representations to qualitatively analyze and compare
MIR methods.

First, we refer to Anderson et al. [19] where it is nicely illustrated that the
grid-based methods, here that by Meredith, lose small features like bubbles or
thin layers. Hence, a scenario as it is presented in Figure 6 is possible. The
left figure shows the original interface and the separation of the domain into
cells. Figure 6(b) and Figure 6(c) show possible results as they might be pro-
duced by DA and by Meredith’s method, respectively. An obvious topological

(a) (b) (c) (d)

Fig. 6. The original interface (a) and possible reconstructions using DA (b) and Mered-
ith (c). The last image (d) shows the Reeb graphs for those three interfaces using height
as the Morse-function. Note how (d) nicely illustrates the topological differences of
(a),(b), and (c).

tool to compare those two reconstructions is the so-called Reeb graph [23, 24].
Figure 6(d) shows such graphs for the two results and the original data using
height as the Morse-function. Especially for large data such an abstract view
on the reconstructions allows easy comparison and evaluations of the different
MIR methods. Next to the choice of the right topological representation there
are however still many open challenges, like in case of higher dimensional or
extremely diverse, complex, and large data. Higher dimensionality complicates
the definition of a suitable Morse-function, while for large scale data one needs
to find a good transition between local and global approaches. Local variations
of genus computation or connected component analysis may enable effective de-
tail comparisons of different reconstruction techniques. Global techniques, on
the other hand, can provide an intuitive summary of the comparisons however
generally suffer from computational complexity due to non-local operations.



3.3 Scenario 3: Inconsistency over Time

Another usage of the Reeb graph representation is to track topological features
over time. Some approaches are already incorporated in existing work, namely
in the work by Chen et al. [25] and Bremer et al. [26]. Both show the usage of
the Reeb graph to intuitively follow splits and merges of a material in a fluid
simulation, or, respectively, flame propagation over time. Chen et al. further-
more emphasized that topological changes between time step can occur due to
inaccuracy in the interpolation methods. This leads to two questions: First, do
topological changes within the interface reconstruction happen over time? And
second, are these changes based on equivalent changes in the underlying inter-
faces or caused by inconsistent reconstruction?

As an example, consider an atomized fluid, e.g. from a hair sprayer that floats
almost motionless in the air over time. Figure 7 shows a sketch of two time steps
of this case, separated into five cells where each cell has roughly the same fluid
density. Figure 7(b) and 7(c) show reconstruction of the fluid interfaces using
SLIC and DA, respectively, for both time steps. Note that the interface in the
second time step in Figure 7(c) is just a reflection of the first one. Therefore both
have the same energy function and therefore are both equiprobable in the DA
approach. While the topology for SLIC obviously stays the same, the last image,

(a) (b)

(c) (d)

Fig. 7. An atomized fluid (a) and possible reconstructions from SLIC (b) and discrete
Anderson (c), as well as the Reeb graph (d) for the latter reconstruction using time as
the Morse-function.

Figure 7(d), shows a Reeb graph representing the movement of the singular
subcells in 7(c) over time. As one option on how to follow such movements in
mesh-based reconstructions we point out the work of Obermaier et al. [27].

Note how this graph differs from a graph based on the interfaces in Figure 7(a)
or 7(b). Especially if we consider the atomized drops in 7(a) as one connected
object or cloud, we observe the interesting result that from a topological point



of view SLIC fits better to the original interface than the DA method. However
note that this is only an extremely special case and not suited for a qualitative
analysis of the two methods.

We note that topological tracking over time can be used to build new re-
quirements for MIR methods, for example topological stability. Two approaches
of this type were described by Mueller-Fischer et al. [12] and by Garimella et
al. [28]. Both assumed a constant topology with regard to connected components.
However in the former work this resulted in all single offshoots of the same ma-
terial being connected to each other by very thin strings. The latter, despite
smoothing, still results in discontinuous interfaces similar to PLIC. Thus, topol-
ogy as a non-constant design parameter for a smooth reconstruction remains a
promising open challenge.

One step towards solving this challenge is first to efficiently recognize if and
where inconsistencies in the topology appear, e.g. using pattern recognition
techniques on the topological representation. Furthermore, one has to evaluate
whether these inconsistencies, especially topological oscillation like those that
probably appear when we add more time steps in Figures 7(c) and 7(d), ac-
tually indicate incorrect reconstructions. This leads to a set of challenges, for
example about scalability, efficiency or representation methods for time-varying
topological analysis, whose discussion however is beyond the scope of this paper.

3.4 Scenario 4: Multi-Material Reconstruction

Up to this point we mainly presented two-material examples to illustrate the ef-
fects on topology of MIR. The following figure shows a more challenging problem.
Figure 8 presents two subfigures each showing the interfaces for three materials.
This can be, for example, the results of a reconstruction method from two sepa-
rate time steps, cells, or two possible reconstructions of a single cell. Regardless
of the exact scenario, note that the topology of each single material stays the
same in both figures. However, all the introduced topological representations so
far are not suitable to emphasize that in 8(a) material M1 is split by material
M2 while in 8(b) this is caused by material M3. For each of the above ideas on

(a) (b)

Fig. 8. Two three-material interfaces in which material M1 is split in half by one of
the other two materials.



using topology as either an analysis tool or as design parameter, one also has
to consider multiple materials and their connectivities. Hence, for each analysis
method one has to examine whether the methods can be used on each material
separately or if inter-material factors exist and how to integrate those into the
topological analysis. In case of Reeb graph representation one may combine the
graphs for the single materials using a connectivity graph. This then leads to
the task to visualize the changes in local, single material topology and global
connectivity over time in a simple and intuitive way.

Hence, while MIR can greatly benefit from topological analysis, it at the
same time creates new challenges with respect to topological methodology and
visual representation.

4 Conclusions

In this paper, we provided an overview of topological considerations, or the lack
thereof, in Material Interface Reconstruction research, with the aim of iden-
tifying interesting research challenges in this area. Through four scenarios we
emphasized the potential utility of incorporating topological approaches

– in pre-reconstruction visualization, e.g. through material density based con-
tour trees,

– as a design parameter allowing MIR methods to incorporate different topo-
logical constrains, and

– as an analysis tool to perform intra-, inter-methods comparisons and evaluate
over time.

Especially for the scenarios which incorporate time as a relevant factor, Reeb
graphs seems immediately useful where time can serve as a suitable Morse-
function. For single time steps, however, other functions are needed to build
such a graph, for example, fluid density or coordinate functions. However, next
to finding a suitable function for Reeb graph construction, other approaches like
Morse-smale complexes [29] or Alpha complexes [24] can become focus of interest
in future work.

Another promising direction for future work is the use of topology either
as new requirement or as interactive support for new reconstruction methods.
For example by forcing the method to produce a stable topology over time or
as additional parameter for the MIR method. For the latter one can consider
the integration of topological constraints into the energy function in Anderson’s
discrete method, as an example.
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