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Abstract

TOPIC—Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease in premature
infants, and is a major cause of childhood blindness worldwide. In addition to known clinical risk
factors such as low birth weight and gestational age, there is a growing body of evidence
supporting a genetic basis for ROP.

CLINICAL RELEVANCE—While comorbidities and environmental factors have been identified
as contributing to ROP outcomes in premature infants, most notably gestational age and oxygen,
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some infants progress to severe disease despite absence of these clinical risk factors. The
contribution of genetic factors may explain these differences and allow better detection and
treatment of infants at risk for severe ROP.

METHODS—To comprehensively review genetic factors that potentially contribute to the
development and severity of ROP, we conducted a literature search focusing on the genetic basis
for ROP. Terms related to other heritable retinal vascular diseases like “familial exudative
vitreoretinopathy”, as well as to genes implicated in animal models of ROP, were also used to
capture research in diseases with similar pathogenesis to ROP in humans with known genetic
components.

RESULTS—Contributions across several genetic domains are described including vascular
endothelial growth factor, the Wnt signaling pathway, insulin-like growth factor 1, inflammatory
mediators, and brain-derived neurotrophic factor.

CONCLUSIONS—Most candidate gene studies of ROP have limitations such as inability to
replicate results, conflicting results from various studies, small sample size, and differences in
clinical characterization. Additional difficulty arises in separating the contribution of genetic
factors like Wnt signaling to ROP and prematurity. Although studies have implicated involvement
of multiple signaling pathways in ROP, the genetics of ROP have not been clearly elucidated.
Next-generation sequencing and genome-wide association studies have potential to expand future
understanding of underlying genetic risk factors and pathophysiology of ROP.

INTRODUCTION

Retinopathy of prematurity (ROP) is a retinal vascular disorder affecting premature low birth
weight infants, and is a major cause of childhood blindness in the United States and
internationally. Beyond the clinical impact, infancy-acquired visual loss from ROP
represents an enormous social and economic burden.1=# Furthermore, as the incidence of
premature births worldwide increases and as medical technology becomes better able to treat
the complications of premature birth, the number of infants at risk for ROP is increasing
rapidly.>8

Oxygen plays a central role in ROP.9-13 Oxygen environment and a key transcription factor
that oxygen regulates (e.g. Hypoxia inducible factor [HIF]) are thought to modulate ROP. In
terms of ROP pathogenesis, a two-phase hypothesis has been proposed and has become
widely accepted.1415 In phase 1, there is delayed physiologic retinal vascular development
and vasoattenuation, which is aggravated by hyperoxia and loss of nutrients and growth
factors. In phase 2, vasoproliferation occurs at the junction of vascularized and avascular
retina. Mouse oxygen-induced retinopathy (OIR) model (exposure to 75% oxygen for 5 days
followed by room air), a widely used animal model of ROP, best represents the two-phase
hypothesis.16-17 During the vasoproliferative phase, the avascular retina releases pro-
angiogenic growth factors such as vascular endothelial growth factor (VEGF), which are
induced by hypoxia and may cause aberrant vessel growth and neovascularization. Oxygen
fluctuations with intermittent hypoxia is also implicated in development of ROP in clinical
studies18-20 and OIR animal model studies especially in rats (e.g. cycling between 50 and
10% oxygen).2122 Growing neovascular vessels lead to fibrovascular membranes that may
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pull on the retina, causing tractional retinal detachment and eventual blindness. The
phenotype of ROP is classified based on location, extent, and severity of these pathologic
changes.?% Some infants show a rapidly progressing, severe form of ROP, known as
aggressive posterior ROP (AP-ROP).23-27

Early investigations into ROP risk factors focused primarily on prematurity itself, as well as
environmental factors including oxygen exposure after birth.10:11 Various studies focusing
on oxygen exposure have proven its importance as a primary predictor of ROP outcomes.
9-11 However, some high-risk infants with extremely low birth weight (BW) and gestational
age (GA) do not develop ROP, whereas some low-risk infants do develop severe ROP. In
these infants at phenotypic extremes, a study showed that known clinical risk factors were
not significantly associated with development of ROP.28 In addition, it is not understood
why certain infants are predisposed to AP-ROP with very high likelihood of blindness. This
heterogeneity of ROP risk suggests that other factors, such as genetics may be involved in
creating a predisposition to ROP. Before specific genetic variations were investigated in
ROP, epidemiologic studies suggested racial and ethnic differences in ROP incidence.2%-31
The Cryotherapy for ROP (CRYO-ROP) study of 4,099 premature infants found 7.4% of
white infants reached threshold disease, while only 3.2% of black infants achieved a similar
level of disease.3! Also, twin and sibling studies have supported the involvement of a genetic
component of disease. Two studies of monozygotic and dizygotic twins found that the
heritability of ROP was 0.70 and 0.73, respectively.32:33 Evidence of genetic effects is also
supported by data from the oxygen-induced retinopathy (OIR) phenotype in rodent models,
in which studies of different rat strains have found differences in the retinal avascular area
and VEGF expression between strains.34-36 Investigations into this genetic component in
humans and animal models have implicated the involvement of multiple genes, but have not
discovered a genetic component of large effect. It is likely that knowledge of such a genetic
component could be used to identify possible targets to improve outcomes of screening and
treatment.

Many signaling molecules and related pathways have been suspected in the pathogenesis of
ROP due to known biochemical and clinical associations: VEGF, insulin-like growth
factor-1 (IGF-1), erythropoietin (EPO), and inflammatory mediators. In addition to ROP, the
growth of abnormal, leaky blood vessels is a common pathologic component of other
blinding neovascular eye diseases, such as diabetic retinopathy (DR) and neovascular age-
related macular degeneration (AMD), both of which have strong evidence of a genetic
predisposition to disease.37-39 Moreover, because ROP progresses more rapidly and presents
with relatively homogeneous clinical characteristics, the correlation of genotype and
phenotype is easier than with a chronic disease such as DR or AMD.15 Thus, the study of
ROP genetics may give us important insights into the pathophysiology of other more
prevalent adult and pediatric neovascular retinal diseases.

This review summarizes current research into genetic factors contributing to ROP risk in
both human and animal models and recommends future directions for research into the
underlying genetics of pathways that contribute to disease.
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METHODS

Pubmed was queried from January 1980 to June 2017. The following search terms were
used: retinopathy of prematurity AND genetics, retinopathy of prematurity AND gene,
retinopathy of prematurity AND single nucleotide polymorphism (SNP), retinopathy of
prematurity AND variant, and retinopathy of prematurity AND polymorphism. Criteria for
inclusion included the relevance, clinical importance, level of statistical evidence provided,
and scientific importance of articles to the subject of this paper. Articles cited in the
reference lists of other articles were reviewed and included when considered appropriate. All
articles with English abstracts were reviewed.

CANDIDATE GENES IN ROP

VEGF and associated receptors

VEGEF plays a crucial role in ROP. Increased VEGF in avascular retina stimulates
pathological retinal neovascularization, which may result in blinding complications like
tractional retinal detachment. Moreover, VEGF is a proven therapeutic target, as intravitreal
anti-VEGF therapy has shown efficacy in promoting regression of severe ROP.40 There have
been many genetic studies on associations between the VEGF gene and incidence or severity
of ROP.

Table 1 summarizes results of SNP studies in human VEGF gene (VEGFA). rs2010963 (also
known as —634G>C and +405 G>C) is the most extensively studied SNP. In a British study
of 188 preterm infants on rs2010963 in 2004, the G allele was found to have higher
frequency among infants with ROP.41 This result was supported by a 2015 study in 102
preterm infants from Egyptian hospitals showing that G allele was significantly higher in
infants with ROP.2 However, one study in Hungary reported the opposite results — higher
frequency of C allele in severe ROP — and 5 other studies found no significant association
between rs2010963 and ROP.

In addition, rs833061 (—460C>T) and VEGFA +13553C>T have been reported to be
associated with ROP. However, replication has not been attempted for +13553C>T and the
association of rs833061 and ROP has not been replicated in 3 other studies. VEGFA
haplotypes have also been reported to be associated with ROP. A study performed in an
Italian population of 342 infants focused on the distribution of polymorphisms in a handful
of genes implicated in ROP showed evidence that VEGFA haplotype (TCCT) decreases risk
of ROP.#3

VEGF promotes angiogenesis and hyper-permeability by binding to the VEGF receptor 2
(VEGFR-2) on vascular endothelium, whereas VEGFR-1 acts as a decoy receptor.44
However, studies on VEGFR-1 (FLT7I) and -2 (KDR) genes found no associations with ROP
(Table 2).

FEVR, Norrie disease and the Wnt pathway

Familial Exudative Vitreoretinopathy (FEVR) and Norrie disease are developmental diseases
of the retina with known genetic causes with similar pathology to ROP. Both are hereditary
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disorders occurring primarily in full-term infants, characterized by abnormal retinal
vascularization leading to retinal detachment.4>46 While patients with Norrie disease are
blind from or shortly after birth, and often have systemic pathologies such as deafness and
mental retardation, the clinical manifestations of FEVR are variable but restricted to
abnormalities in ocular development.#” FEVR is known to be caused by mutations in FZD4,
LRP5, TSPAN12, NDP, etc.,*8-51 and Norrie disease is caused by mutations in the NDP
gene.* These genes encode proteins which are components of the Wnt/beta-catenin
signaling pathway — a group of signal transduction pathways with roles in cell survival,
proliferation, and migration throughout the body.

The canonical (beta-catenin dependent) Wnt pathway has known roles in a variety of
diseases with angiogenic properties including DR and AMD.52:53 Frizzled-4 and low-
density-lipoprotein receptor related protein 5 (LRP-5) are receptors for Wnt ligands, and
tetraspanin-12 is an auxillary membrane protein. Norrin, a product of NDP gene, binds to
the Frizzled-4, LRP-5, and tetraspanin-12 receptor complex and activates signals on
endothelial cells. Mutations of these genes have been investigated in ROP (Table 2).

Mutations in the F.ZD4 gene were found in up to 7.5% of patients with severe ROP (Table
2).54-57 A 2015 study of 421 patients displaying various vitreoretinopathies found a
significant association between the FZD4 double missense mutation [P33S(;)P168S] and
both ROP and FEVR.®" A study of 53 Japanese patients with advanced ROP was performed
using direct sequencing of £ZD4, TSPAN12, NDP, and LRP5. Investigators identified six
nonsynonymous DNA variants in the coding regions of F.ZD4and LRP5, but detected no
changes in NDPor TSPANI2, demonstrating involvement of Wnt with ROP.56

Mutations in the NDP gene have also been found in ROP patients with variable frequencies
(Table 2).58-60 SNP studies in Kuwaiti populations have supported evidence of a link
between NDPand ROP,%0 while other studies have implied that mutations in the regulatory
region of NDPare also a contributor to the development of ROP.61 The relationship between
SNPs residing in the UTR of AVDPand progression of ROP to advanced disease has also
been investigated. The Kuwaiti study by Haider found that 83% of patients with severe
disease possessed NDP597C>A polymorphisms in their UTR, while none of those whose
disease resolved spontaneously possessed this polymorphism.60

Taken together, these findings intriguingly suggest involvement for the Wnt pathway and
associated genes in ROP development, and serve as strong candidates for further sequencing
research. It should be noted that it may be difficult or nearly impossible to differentiate ROP
from FEVR in premature infants. This has recently been proposed as a new classification,
ROPER (ROP vs. FEVR) due to the clinical similarity of the two conditions.2 In future
studies, in-depth analysis of clinical features, retinal imaging with fluorescein angiography,
genetic and phenotypic analysis of relatives, and functional analysis of genetic variants may
be helpful for better understanding of genetics in ROP as well as FEVR.

Insulin-like growth factor 1 (IGF-1), a growth hormone promoting somatic growth and
maturation, has also been proposed as a contributing factor to ROP progression.53 IGF-1-
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deficient mice showed a decrease in vascular development®® and lower birth weight®* than
those of controls. In human babies, low IGF-1 levels were also associated with low birth
weight,%° and persistent low serum IGF-1 levels were associated with severity of ROP.63.66
Based on these findings, IGF-1 replacement therapy has recently been investigated.6” A
phase 2 trial of administering a complex of recombinant human IGF-1 and IGFBP-3 to
prevent ROP was undertaken, but the study did not meet its primary endpoint of reducing
severity of ROP.58

Investigations of specific polymorphisms of /GF-1 gene have been unsuccessful finding a
significant association. A study linked a ¢.3174G>A polymorphism in the IGF-1 receptor
gene (/GF1R) to low levels of plasma IGF-1.59 A 2006 study of 392 infants in Hungary was
unable to detect a difference in the prevalence of the /GF1IR ¢.3174G>A among severe ROP,
mild ROP and full-term groups (Table 2).70 A 2007 study in an American population was
also unable to find a link between advanced ROP and /GF1R ¢.3174G>A polymorphism
(Table 2).71

Endothelial nitric oxide synthase (eNOS) is one of the constitutive enzymes that synthesize
NO, which is known to play a regulatory role in retinal and choroidal blood flow.”2:73 In an
eNOS-deficient mouse OIR model, neovascularization and vaso-obliteration were both
reduced.’* Moreover, eNOS gene polymorphisms have shown reduced NO levels.” Thus,
the association between ROP and eNOS gene (NOS3) polymorphisms have been
investigated. A literature search showed that 3 SNPs (rs2070744, rs1799983 and
rs61722009) and one variable number tandem repeat (VNTR), 27-bp VNTR in intron 4, had
been observed in ROP patients (Table 2). Although some studies reported positive
associations between rs2070744, rs1799983, or the 27-bp VNTR and ROP, others found
contradictory results (Table 2).

Inflammatory Mediators

Growing evidence suggests that perinatal inflammation and infection may increase the risk
for ROP by direct proangiogenic effects and/or modifying known risk factors.”® Studies have
reported higher plasma levels of inflammatory cytokines including IL-6, 11-8, and TNF’7 and
higher vitreous levels of inflammatory cytokines including IL-6, IL-7, IL-10, IL-15, etc. in
eyes with advanced ROP.”8

Dammann et al investigated 4 SNPs of inflammation-associated genes (IL1B, TNF, IL10,
TLR4) in preterm patients, but none showed significant association, although there were
trends towards higher stage of ROP with the presence of 7AFand /L 1B SNPs (Table 2).76
TIVF-308G>A polymorphism also showed no significant associations with ROP (Table 2).

A recent study has also shown an angiogenic role for mast cells and associated factors
including mast cell tryptase and monocyte chemotactic protein-1, making them a potential
target for ROP research.”®
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Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF), a neuronal trophic factor in brain and retina, may
promote survival of several types of retinal neurons.89-83 Although the exact role of BDNF
in retinal angiogenesis is unknown, reduced BDNF levels have been demonstrated in
patients with severe ROP, suggesting a possible role of BDNF in development of severe
ROP.84-86 |n an animal model study, the retinal level of BDNF was lower in the OIR mouse
model compared to that in normal controls.86

In a large-scale candidate gene study, which analyzed 1614 Tag SNPs of the 145 candidate
genes in 817 infants in the discovery cohort and 543 in the US replication cohort, it was
found that two SNPs (rs7934165 and rs2049046) in the intronic region of BDNF were
associated with severe ROP. Although these results were not independently confirmed in the
replication cohort, the association with rs7934165 did increase in significance with severe
ROP in their meta-analysis of the combined data. Interestingly, reduced serum BDNF in the
severe ROP group was also found in the same discovery cohort.8” Further studies on the
functional effects of intronic variants of BONFand replication studies in different
populations are warranted.

Renin-Angiotensin System

The Renin Angiotensin system (RAS) has been linked to retinal vascular development and
pathological angiogenesis. Blockade of RAS with inhibitors of angiotensin-converting
enzyme (ACE) and angiotensin receptor blockers ameliorated OIR, suggesting that
inhibiting RAS may be beneficial in ROP.88 A SNP study of ACE gene showed association
with DR.87

However, results from genetic studies on RAS component genes in ROP are inconclusive
(Table 2). A study in Italy showed no associations between ROP and SNPs of ACE gene
(ACE), angiotensinogen gene (AGT7) and angiotensinogen type 1 receptor gene (AGTRI). In
a study of 181 premature Kuwaiti infants on 287-bp insertion(l)/deletion(D) in intron 16, the
frequency of 1l genotype was higher in ROP patients compared to normal controls, but the
frequency of DD genotype was higher in advanced ROP patients compared to regressed
ROP.20 A candidate gene study of 228 infants with ROP and 102 controls found a SNP in
the AGTR1 gene to be associated with ROP, though this association was not significant after
Bonferroni correction.?1

Angiopoietins

Angiopoietin(Ang)-1 and -2 are growth factors that are essential for retinal vascular
development. Ang-1 binds tyrosine kinase receptor Tie2 and promotes vascular maturation
and stabilization.?2 In an OIR model, intravitreal Ang-1 promoted normal vascular
regeneration while inhibiting pathological angiogenesis and vascular leakage.?3 In contrast,
Ang-2, a competitive antagonist of Ang-1/Tie-2, promotes neovascularization in animal
models.?49° Vitreous levels of Ang-1 and Ang-2 in eyes of stage 4 ROP were higher than
those of control eyes.% However, in two studies of Ang-2 gene promoter polymorphism
(ANGPT2-35G>C), no association was found with ROP (Table 2).
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Erythropoietin
Erythropoietin (EPO), a hormone known to stimulate red blood cell formation in bone
marrow, and EPO receptors are expressed in retina, and their expression is regulated by
oxygen status.®”:98 Mouse models of ROP have shown that vascular stability is affected by
EPO levels, with exogenous restoration of EPO leading to a reduction in blood vessel
dropout during the first phase of ROP.%98 Conversely, elevated levels of EPO during the
second stage of ROP exacerbated vasoproliferation, and the vitreous level of EPO is elevated
in eyes with stage 4 ROP. Increased erythropoietin receptor signaling has also been shown to
influence severe OIR models of disease through VEGFR2-mediated angiogenesis, making it
an important target for clinical research in human patients.%:100 While a variant of EPO was
investigated in a candidate-gene study by Mohamed et. al., significance for this variant was
not reported in the study results.9

Hypoxia inducible factor

HIF-1 plays a central role in oxygen homeostasis.101 According to the oxygen environment,
HIF-1 regulates transcription of genes such as VEGF, VEGFR1, PDGF, SDF-1 and Ang2,
which have been suggested to play important roles in retinal angiogenesis.®* In a study of
Hifla knockout mice in an OIR model of disease, disruption of HIF-1 was shown to lead to
decreased VEGF abundance, indicating a possible role in neovascularization.192
Additionally, organ system pharmacology studies in mouse models have indicated that
stabilization of HIF-1 may be important for protection against oxygen toxicity in premature
infants. 103

Likewise, homologous recombination models in mice studying HIF-1a-like factor (HLG)
and HIF2a found decreasing expression of these genes led to decreased EPO expression and
resistance to hyperoxia treatments meant to induce ROP.1%4 HIF1a was also shown to
upregulate annexin A2 expression in OIR mice during hypoxia, supporting a role in OIR
models.10°

HIF2a’s closest human analogue, known as Endothelial PAS Domain Protein 1 (EPAS1),
serves as the main regulator of EPO induction and has also been shown to have a connection
to ROP.106 A candidate gene study of 153 genes in 347 infants under 32 weeks gestational
age found an association between EPAS1 with development of severe ROP.91

Heme oxygenase-1

Heme oxygenase-1 plays important roles in inflammatory responses, oxidative stress, iron-
metabolism, and vascular physiology. However, in a candidate gene study, rs3074372 in
HMOX1 showed no significant association with ROP (Table 2).

Other candidate factors—In addition to the above described factors and pathways, a
number of other potential targets and mechanisms have been identified that lack genetic
studies in patients with ROP. The “a’ disintegrin and metalloproteinase (ADAM) family of
proteases are involved in the degradation of extracellular matrix components as well as
interactions mediated by integrin.197 Several subtypes of ADAM family are implicated in
the pathogenesis of ROP. ADAM17 knockout mice showed less neovascularization in OIR
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models without affecting normal vascular development.1%8 Moreover, ADAM 8, 9, and 10
was found to play a role in development of plus disease in OIR mouse models. Adam8-/-
and Adam9-/- mice and mice lacking ADAM10 in endothelial cells showed less severe
tortuosity and dilation mimicking less plus disease in ROP.19° Further evaluations in humans
including genetic analysis are warranted.

In conjunction with ADAM17, studies have also considered the family of tissue inhibitor of
metalloproteinases (TIMP) family of proteins. The TIMP-3 protein specifically is a known
physiological ADAM17 inhibitor.119 Mouse model investigations into the application of this
protein as a potential treatment showed that TIMP-3 application was linked to decreased
neovascular tuft formation.109

In addition to these studies, large candidate gene studies of ROP have been successful
identifying targets with undiscovered connections to ROP. The previously mentioned study
by Mohamed et al. implicated genes with function in embryonic development (/HH),
transcription (78.X5), and protein localization (GPIBA, CETP) (Table 2).%1 The same study
also found an association between ROP and complement factor H (CFH), known to be
associated with development of AMD.38

DISCUSSION

Summary of previous studies

Most genetic studies in ROP have used the candidate gene approach and focused on genes
related to angiogenesis, inflammation, and retinal (neuro)development. Among them,
VEGFA polymorphisms and FEVR-related genes have been most extensively studied in
different populations. However, no VEGFA polymorphisms have been proven to be
associated with ROP, because most positive studies have not been replicated in other
populations (Table 1). Variants of Wnt pathway genes, which are known to cause FEVR or
Norrie disease, have been also found in ROP patients, suggesting possible associations of
these variants in at least a small proportion of severe ROP patients (Table 2). However, these
results also have limitations in that we may not confidently distinguish between premature
infants with severe ROP and FEVR-related genetic variants and prematurely-born infants
with FEVR, as Hartnett et al. pointed out.2” In addition the polygenic nature of many
diseases makes identification of causative variants difficult in small sample sizes focused on
a small number of variants.111 Recently, results of a large-scale candidate gene study using
Tag SNPs of the 145 candidate genes in a multiracial cohort were reported.8” Although no
SNPs were significantly associated with the presence versus absence of ROP in this study,
one SNP of BDNF gene was significantly associated with severe ROP in their meta-analysis
combining the discovery and replication cohorts, which warrants further genetic and
biological studies.

Limitations of previous studies

It is difficult to draw meaningful conclusions from most of the candidate gene studies
reviewed here due to the following limitations: (1) the sample sizes of most individual
studies were small; (2) no replication study has been performed for many variants; (3) there
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are conflicting results among studies of the same variants; (4) most studies were conducted
using only one or a few clinical sites; (5) ocular phenotype was not standardized; (6)
confounding variables were not reported or standardized; (7) meta-analysis is not possible
for most variants due to different study protocols between studies; (8) there are variabilities
in neonatal care such as oxygen treatment protocol®, incidence of (severe) ROP, and
diagnosis and management of ROP between physicians, study hospitals, study countries and
study periods.8112-115 Differences in neonatal care may affect survival rate, systemic
morbidities of prematurity, incidence of ROP and severity of ROP, making it difficult to find
exact roles of genetic variants. Moreover, there are unexplained differences in outcome of
premature birth such as mortality. Also, differences in diagnosis and management of ROP
may cause bias in phenotypic categorization of subjects, which is a huge problem in genetic
studies. It should be noted that genetic risk factors for stage 1-3 ROP and stage 4 or 5 ROP
could be different, as different biochemical processes may be involved and management
protocols and treatment outcomes of study centers are also important factors for stage 4 or 5
ROP.

Most importantly, candidate gene studies have inherent limitations of not being able to find
novel genetic factors. Other approaches to detect novel variants or genes associated with
ROP are necessary.

Future Directions of studying ROP genetics

It is very challenging to study the genetics of multifactorial diseases such as ROP. To
overcome the current limitations mentioned above and to study the contribution of genetics
efficiently, it is necessary to improve the methodology for studying the genetics of ROP. It is
essential that investigators leverage new methods that interrogate genetic factors agnostically
and at high sample sizes, in order to maximize study power and facilitate simultaneous
investigation of many, rather than single, genetic elements. Genome-wide Association
Studies (GWAS) test for association across hundreds of thousands of SNPs simultaneously
using array-based technology. GWAS can be helpful to find genes or pathways associated
with ROP. In other ophthalmological diseases such as AMD38116-118 HR119,120,
glaucomal?1-123 and myopial?4-126. GWAS has been successful in finding susceptibility
loci. However, a large-scale GWAS has not been conducted in ROP. Massively parallel
sequencing, also called next-generation sequencing (NGS), enables sequencing of specific
regions, whole exome, or whole genome in a short period of time at high depth and
affordable cost. Whole exome sequencing or targeted exome sequencing can be helpful for
finding novel variants with possible functional consequences. Exome genotyping arrays may
also provide a method of interrogating for SNPs involved in ROP.

In addition to these genetic evaluations, integration of sequence data with data regarding
post-transcriptional and post-translational modification, including transcriptomics,
metabolomics, and proteomics, will be important to identify biomarkers that may be useful
for early detection, diagnosis, and prediction of treatment response. Studies of epigenetics in
DR have also shown promise, with epigenetic changes associated with processes of
microvasculature complications'2?, mitochondrial dysfunction28, microRNA expression2®,
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and capillary cell apoptosis.130.131 These findings suggest that interrogation of epigenetic
factors may be an important method of discovering new treatments in ROP.

Second, large-scale multi-center collaboration of the type offered by consortium studies can
help provide structure to such studies. Consortium approaches facilitate recruitment of larger
cohorts and make available more sophisticated computational approaches allowing
investigators to control for more complicated confounding effects. Previous large
international consortium attempts at examining the role of genetics in multifactorial disease
have met with success38:121.132-134 ‘and two consortium studies investigating the genetic
causes of ROP are currently ongoing at centers in North America. 135136

Third, standardization of ocular phenotypes and confounding factors is crucial. For this,
ocular and systemic factors should be acquired systematically, and known risk factors
including GA and BW should be assessed in a standardized fashion and strictly controlled
for. Additionally, the importance of environmental effects should be noted, as differences
between study populations and sites has the ability to have a profound effect on phenotype.
Heterogeneity of study subjects in race, ethnicity, and physical covariates, as well as
differences between treatment sites and attending clinicians can affect study outcomes. This
is especially important to distinguish genetic variants associated with ROP from those
associated with prematurity itself. Also, objective phenotyping such as image-based
diagnosis should be considered. Compared to clinical ophthalmoscopic diagnosis, consensus
image-based diagnosis may enable reduction of intra- and inter-grader discrepancy in ROP
diagnosis.

It is also important to note that additional basic research studies using representative animal
models such as mouse or rat OIR models are required to test hypotheses. While animal
models face many limitations including differences in biology, most notably their use of full-
term rather than premature animals, these models’ ability to control for phenotypic,
environmental, and genetic stratification factors distinguishes them as a valuable method of
testing hypotheses and adding insight to human observational studies.

Expected benefits of genetic studies of ROP

Finding genetic variants affecting ROP will be useful in at least three ways. First, genetic
risk factors may be incorporated into risk modelling to predict development and progression
of ROP. A refined risk analysis system with clinical and genetic risk factors may help
clinicians to identify both high- and low-risk patients. Second, identifying specific genes or
biological pathways that contribute the pathogenesis of ROP may be helpful for
development of new therapeutics. In AMD, genetic studies have revealed the importance of
complement pathway in the pathogenesis of AMD, which has led to development of new
investigational agents under clinical trials such as lampalizumab, an inhibitor of complement
factor D. Third, studying ROP genetics can also contribute to the understanding of
pathophysiologies of other ocular vascular diseases such as AMD or DR and other
angiogenesis-related diseases like cancer.1® Fourth, a better understanding of the genetics of
retinopathy of prematurity may lead to better understanding of the pathophysiologic
mechanisms of common neonatal diseases of prematurity such as chronic lung disease.
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Evidence suggests a genetic contribution to ROP, including epidemiologic studies, twin
studies and risk analysis studies. To date, a number of candidate gene studies have been
performed. However, it is still unclear which genes or variants are significantly and strongly
associated with development and progression of ROP. Large-scale studies using NGS and
GWAS with standardized phenotyping have potential to expand understanding of genetic
contributions and pathophysiology of ROP.
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Polymorphism

Study country

Subjects

Results

Reference

rs2010963
(-634G>C, +405G>C)

United Kingdom

91 treatment-requiring ROP (BW 779g [440—
1185g], GA 25 wk [23-32 wk]), 97 non-
treatment-requiring preterm infants (BW 920 g
[448-2302g], GA 26 wk = 2.9 wk)

Higher frequency G allele
among infants with threshold
ROP

il

115 treatment-requiring ROP (BW 1160g

Higher frequency C allele

ROP (BW 1253.0g + 212.2g, GA 29.7 Wk + 2.0
wk), 31 no ROP (BW 1345.6g + 225.9g)

Hungary + 2709, GA 28.5 wk + 2.0 wk), 86 mild or no p 137
ROP (BW 1200g +270g, GA 20.2 wk + 2.9 wk) | @mond treated infants
42 treatment-requiring ROP (BW 1097.5g

Turkey +264.39, GA 28.2 wk * 2.4 wk), 50 regressed No significant association 138

United States

61 stage 4/5 ROP (BW 882g [600-1300g], GA
26 wk [23-30 wk]), 61 normal controls (BW
2430-3960g, GA 34-40 wk)

No significant association

139

Japan

127 ROP (944g [3778-2168g], GA 27 wk [22—
33 wk]), 77 no ROP (BW 1596g [692-2400g],
GA 32 wk [22-33 wk])

No significant association

140

Egypt

62 ROP (BW 1400g [1000-2110g], GA 32 wk
[28-34 wk]), 40 no ROP (BW 1640g [1009-
2800g], GA 33 wk [29-35 wk])

High frequency of G allele in
ROP

42

Poland

60 treatment-requiring ROP (BW 900g + 225g,
GA 26.7 wk * 2.3 wk), 20 regressed ROP (BW
10299 +231g, GA 27.5 wk + 1.6 wk), 101 no
ROP (BW 1153g +225g, GA 29.2 wk + 2.05
wk)

No significant association

141

Iran

15 treatment-requiring ROP (BW 879g + 81g,
GA 27 wk + 13 wk), 30 regressed ROP (BW
8849 + 639, GA 27 wk * 12 wk), 66 no ROP
(BW 9809 + 81 g, GA 27 wk + 10 wk)

No significant association

142

rs1547651

Caucasian

43 ROP, 299 no ROP (all subjects GA < 28
weeks)

No significant association

43

rs3025039
(+936C>T)

Caucasian

43 ROP, 299 no ROP (all subjects GA < 28
weeks)

No significant association

43

Iran

15 treatment-requiring ROP (BW 879g + 81g,
GA 27 wk + 13 wk), 30 regressed ROP (BW
8849 + 63g, GA 27 wk * 12 wk), 66 no ROP
(BW 9809 + 81 g, GA 27 wk + 10 wk)

No significant association

142

United States

33 stage 4/5 ROP, 49 normal controls

No significant association

143

Egypt

62 ROP (BW 1400g [1000-2110g], GA 32 wk
[28-34 wkK]), 40 no ROP (BW 1640g [1009—
2800g], GA 33 wk [29-35 wk])

No significant association

42

rs833058

Italy

43 ROP, 299 no ROP (all subjects GA < 28
weeks)

No significant association

43

rs833061
(-460C>T)

Italy

43 ROP, 299 no ROP (all subjects GA < 28
weeks)

No significant association

43

Hungary

115 treatment-requiring ROP (BW 1160g
+270g, GA 28.5 wk * 2.0 wk), 86 mild or no
ROP (BW 1200g + 270g, GA 29.2 wk + 2.9
wk)

High frequency of 460TT/
405CC haplotype in
treatment-requiring ROP

137

Turkey

42 treatment-requiring ROP (BW 1097.5g

+ 2709, GA 28.2 wk + 2.4 wk), 50 regressed
ROP (BW 1253.0g + 212.2g, GA 29.7 wk + 2.0
wk), 31 no ROP (BW 1345.69 + 225.9g)

No significant association

138
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Polymorphism

Study country

Subjects

Results

Reference

United States

61 stage 4/5 ROP (BW 882g [600-1300g], GA
26 wk [23-30 wk]), 61 normal controls (BW
2430-3960g, GA 34-40 wk)

No significant association

139

127 ROP (BW 944g [378-2168g], GA 27 wk

A significant association
between the TT genotype and

of patients not reported)

+13553C>T Japanese 520—03;:;%?3;7 VJE[};ZOggBV}I/zﬁS%g [692— gg:t;?gﬁg aRégP for 140

+702C>T United States 33 stage 4/5 ROP, 49 normal controls No significant association 143

+1612G>A United States 33 stage 4/5 ROP, 49 normal controls No significant association 143
ROP (BW 2430-3960g, GA 34-40 wk), no

—-2578C>A United States ROP (BW 600-1300g, GA 23-30 wk) (number No significant association 144

Hungary

90 treatment-requiring ROP (BW 1160g

+ 3009, GA 28.5 wk + 2.4 wk), 110 mild (stage
1 or 2) or no ROP (BW 1200g + 280g, GA 28.5
wk + 2.4 wk)

No significant association

145

Table lists investigated polymorphism and presence of statistical significance. Where noted in the original study, information is provided in
parentheses regarding the birth weight (BW) and gestational age (GA) of patients. Brackets denote range of patient values and + denotes one

standard deviation of range of each variable.
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