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INTRODUCTION

Recent advances in science and engineering have demanded more satis-
factory methods of analysis of continuous systems. Problems with irregular
configurations and boundary conditions have always been of particular
interest. Solutions in the form of complex integral or differential
equations are no longer acceptable to engineers. The designers of space
vehicle components or very high dams need realistic numbers on which to
make their decisions.

The last ten years have brought the rapid development of the auto-~
matic digital computers resulting in machines that have an increasingly
effective capacity to handle large problems.

It is difficult to solve the partial differential equations that
define two dimensional stress problems. When restriction is made to the
linear elastic case, certain problems of a simple nature may be explicitly
solved and others formulated in such a way that it is possible to inter-~
pret the form of solution. The vast mass of general problems with arbi-
trary boundary conditions and loading remain unsolved by exact methods.

By its very nature, the digital computer is not well suited to
solving partial differential equations; it is, however, very effective
in solution of simultaneous linear equations. Solution techniques that
adapt the two dimensional stress equations to this form have aroused
much attention recently.

The well-known finite difference method is applicable to the

solution of such problems and has, in fact, been used on several linear



elastic problems by Zienkiewicz,l* These cases were previously considered
insoluble. The analyses concerned, however, were treated as special cases,
and no general solution was attempted. The finite difference method has
several inherent problems. Real boundary conditions are hard to satisfy

if a rectangular net is used, and are impossibly complex if any other net
is developed. The biharmonic equation requires points outside of the
boundary if central differences are used, and other difference methods
yield unreliable answers: because of the varying order of the error term.
The matrix relating the external forces and displacements does not have any
guarantee of being positive definite nor, indeed, does it always have
symmetry. The Gauss-Seidel interative procedure does not guarantee conver-
gence, and direct solution methods are more likely to be sensitive. Then
solution for very large problems may be very difficult to achieve without
sophisticated error-~correcting techniques. Finally, for problems involv-
ing non-uniform media, it is difficult to specify the linking equations.

It is principally because of the problems in boundary conditions and
solution that no general linear elastic two dimensional stress computer
programs..are available,

A separate method of attack is commonly called the "Finite Element
Method." 1In this procedure, which is in principle applicable to all
classes of continuum problems, the system is physically approximated by
an assemblage of elements connected at only a finite number of points.

For the two-dimensional stress problem, the elements chosen have been
either one or two dimensional.

*Superscripts refer to Bibliogréphy at the end of the text.



Hrennikoff2 and McHenry3 have used one dimensional elements. They
assumed an assemblage of bars capable of taking axial forces combined
in a rectangular element. The properties of the bars were selected to
give load deflection characteristics for the element which corresponded
to the plate section represented. The procedure was,however, limited
to a Poisson's ratio of one-third. A later development by McCormick4
has used a more complex form of bars where bending was allowed. This
removed the restriction on Poisson’s ratio. The nature of the rectan-
gular elements leads to the same restriction on accuracy at the boundary
as for the finite difference procedure,

A more recent approach has been to use a two dimensional element as
the basic form. Clough5 developed a procedure for both the rectangular
and triangular elements, connected only at the corners. The triangular
elements provide a good fit of boundaries and realization of the boundary
conditions.

Because the finite element procedure for the two-dimensional ele-
ment uses the stress-strain relationship ag part of its direct formu-
lation, it is applicable to certain non-linear problems. Techniques
that use step by step methods or successive approximations have been
described by Wilson6 who also reformulated the triangular element with
a physical interpretation of its mechanism,

It has long been known that many materials have properties that
are dependent on time, and that any analysis which neglects this effect
will have some degree of error. Concrete is an example of such a

material, it exhibits a very strong dependence upon time. There have



been very few successful attempts to predict the behavior of such
materials. Most experimental results have only been obtained
from one dimensional tests. There has been no completely satis-
factory physical explanation of creep in concrete; indeed, the
results show that creep in concrete may be different from

similar deformations in metals.

SCOPE

This dissertation will be concerned with the solution of
generalized plane stress or plane strain problems which have
time-dependent material properties. The finite element method
will be used in this analysis. It will be assumed that materials
have an initial elastic response followed by a creep strain
which is dependent upon stress level and time.

In the derivation of the effect of creep, it will be
assumed that the directions of the principal stresses are approx-
imately invariant over an interval, and that the creep model for
one direction can be expanded into two dimension along these
directions. A second approach, which will not be pursued, would
be to derive the creep effects from time dependent shear and
bulk modulus.

In order to make a sample analysis, recently proposed creep
equations for concrete will be discussed, and a final equation
will be selected for use.

The derivation of elastic influence coefficients for an

infinite half plate will be presented. These make possible



analysis of problems that are assumed to be supported on
elastic foundations.

The computer program developed for the complete analysis
will be briefly described, and the procedures for automating
input and output for the computer will be outlined. These
methods involve the use of subsiduary plotting equipment with
programs used on the main computer to generate magnetic tapes
for these plotters.

Finally, the analysis of two examples will be described.
A concrete gravity dam will illustrate the application to
problems meaningful to the engineering profession. In this
analysis, the construction sequence is traced. The effect of
thermal stresses and the changing geometry of the system are
incorporated. A second example will be used to demonstrate the
use of automatic plotting techniques for evaluation of results.
It will demonstrate that creep effects at an early age can be

significant in the reduction of stress level.



II

THE FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL STRESS SYSTEMS

This chapter will outline the finite element approach to two-
dimensional stress andlysis, and will point out salient factors that
will be relevant in later discussion of the time-~dependent problem.

Fig. la shows a typical two-dimensional stress problem, a plate
subjected to in-plane loading. Fig. 1b shows a finite element repre-
gentation of the plate and its load. The continuous area of the
plate has been cut into a series of triangular elements. These ele~
ments are assumed to be joined by pins at their vertices. The
continuous stress problem is thus reduced to one of finite size,
because a force displacement relationship can be written for each
triangle. This problem is directly soluble by structural analysis
techniques. The equations are linear in form. There will be only
two unknowng at each joint, and one element will thus be associated
with six displacement degrees of freedom.

In order to maintain displacement compatibility for the com-
plete system, the force displacement relationship for each triangular
element must be so constrained that the deflected shape of each side
remains a straight line. This restriction is satisfied when the
horizontal, vertical and shear stresses are forced to be constant
over the whole area of the element. This may be demonstrated to be
correct by consideration of what a straight line deflected shape
implies. The derivative of a straight line is a constant, therefore,

the strains over an element will be constant in any given direction.
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Fig- Ib TYPICAL PLATE WITH FINITE ELEMENT
REPRESENTATION AND LOADING



The linear isotropic stress-strain relationship results in constant
stress if constant strain exists.
Well established methods of matrix analysis may be used to
derive the force deflection relationship. The procedurs described
. . . 6
below is more fully described by Wilson,
The displacement transformation matrix [A} relating corner or

nodal displacements to strains may be written as
[é} = [AHVJ 11-1

where [V‘] is the column vector of the six corner displacements and
{E] is the column vector of the three strain components.

The linear isotropic stress strain relationship [S] for the
two-dimensional stress problem may be applied to derive the three
components of stress {6} .

i.e., [(5] [S}[Eﬂ 11-2

where -

pl- —=— [ 2
| (1+3)(1-2> | > 1> ©
o o E2

o

The forces at the corners can be considered as the stress
resultants of the triangle and so by simple statics it is possible
to write the force transformation matrix [E%] from stresses to

forces. VHKHI[R] represents the column vector of nodal forces

[r] = [e][-]

Then combining eguations II-1, 1I-2, and II-3 to eliminate [E}] and PT]



[Rl - EB][_ (4] [~] 11-4
or [R] = [j I1-5
where [k] is the triangular element stiffness matrix which relates
external or stress resultant forces to external or nodal displace-
ments. By virtual work principles it may be shown that

T

(5] - [4]

The complete stiffness of the system may then be obtained by the
use of the 'direct stiffness procedure." 1In this method, the element
stiffness matrices are superposed into the total stiffness matrix.

The internal coordinate system is matched to the external system to
locate individual elements.

The total stiffness equation may be written as

[Rt] = LK][}}J I1-6
where [Rt] and [rt} are the column vectors of all external forces
and displacements and [KJ is the total stiffness matrix of the
system,

Conventional sclution of simultanecus equations leads directly

to the solution for the nodal displacements of the system, and then
= §
(-] - (][]
The displacement transformation matrix [A} from II-1 may now be used
to determine element strains. This matrix acts on the submatrices [TJ
formed from [rtl for each element. This latter process is the
reverse procedure to the formation of the total stiffness matrix.

The stress strain relationship I1I-2 then gives the element stresses

from these strains, i.e.
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] - (5] (A0
L L L
A value for the coordinate stresses may be obtained by this transforma-
tion.,

The finite element method thus discretizes the continuous form
into an approximate but finite system. It then solves this approximate
system exactly. The satisfactory application of this procedure is
dependent upon the maintenance of compatibility of displacements along
the element boundary. It is possible to show that the solution ob~
tained is a lower bound to the exact scolution in an energy sense.

Forces between elements are transmitted by the stress resultants
at each nodal point. Although equilibrium in the continuum is not
fully satisfied, these forces are in equilibrium with each other when
the system is analyzed. The stresses over the element are, of course,
in equilibrium with the nodal forces. The equilibrium conditions

within each element are exactly satisfied.
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THE APPLICATION OF THE FINITE ELEMENT PROCEDURE TO PROBLEMS IN

LINEAR VISCO-ELASTICITY

The use of time dependent material properties adds a third
dimension -time- to the conventional elastic solution for a two-
dimensional system. In this dimension, coupling is from past into
present time only. If the total stress and strain history is known
at an instant of time t, then it is possible to proceed by an infin-~
itesimal increment gt to a new state. The strains are held constant
for this interval, and then an instantaneous relaxation of the
accumulated stress occurs. The system then returns to an equilibrium
configuration at a time t + éto

A numerical solution to this type of problem demands a finite
time interval l&t which can be made small enough for the solution
obtained to converge on the exact solution.

The stresses of the system are time dependent, they will change
during the interval of time Aﬁn The new stress system will not give
complete equilibrium of forces at a joint. These unbalanced forces
may be relaxed out by a complete elastic solution applied at the end
of the time interval. This is the relaxation referred to when
describing the infinitesimal increment.

In the application of the finite element procedure to this
problem, the structure is assumed to be maintained in its displaced
position during the time interval ZXt. The nodal points are, there-

fore, also in a fixed position. The stresses are assumed to change
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in each element according to the prescribed creep equation. In
general, these changes will be dependent on the whole stress
history of the element. All the changes of stress that occur will
be subjected to the same restraints as the original element
stresses that were developed by the finite element method for
elastic analysis. That is, each element must have a constant
stress distribution over its entire area.

The calculation of the stress changes of the restrained
triangular element is equivalent +to finding the reduction of stress
due to relaxation of the one dimensional element, |

To use the finite element procedure, the stress changes must
be converted to nodal point resultant forces. The summation of
these forces for each nodal point, taking all the elements connected
to it, will form the pseudo-external loads.

Let the total stress distribution at the end of a time interval
of relaxation by given by 61 and SEf 61 and <ré are the principal
stresses acting at an angle © with the horizontal axis, as shown

in Fig. 2., The element dimensions are also shown.
4
A e Tn

A
@

Fig, 2. Triangular Element Dimensions



The transformation of principal stresses to coordinate stresses

for each element may be represented by the matrix equation.

o'," ] cos” © sn2@ || g
e = sn © cos © %
) Cin
’C\/ ZS\“ 26 "'E kY 26
[O"J = t] [G;] IT1-1

As previously stated, the corner forces [R] resulting from
the elements are, in fact, the stress resultants.

Fig. 3 shows an element in a state of uniform stress Oy
The external forces act at the nodes i, j, k, and are in a state
of static equilibrium. These forces may then be obtained by

examination of the system and by the use of statics.

1

T ATHT

U
L e

I 3

A

Fig. 3. Horizontal Stress Resultants
Thus at k there will be horizontal forces of 1/2 !)ch and ~1/2 (L“- ,J) O,
at j there will be horizontal forces of -1/2 %6‘,‘ and ~1/2 (b,‘-hﬂ Gy

and at i there will be horizontal forces of 1/2 ﬁkd; and -1/2 .b_j &
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The resultant forces are then equal and opposite in sign to these
forces. Similar processes may be used for 69 and ?;ya In the case
of &y only vertical forces are generated and in the equations for ?3%
both vertical and horizontal forces are created. A matrix form may

be given to these equations.

[ x L‘ r b; —bu O Oy ,
Y: O o= & b~ &y
X | EK O —Gx , T»!__
\/3 G @) —ay by
X, " o N
1A O a; - b;

This is, in fact, the force transformation relationship previously

written as

2] - (L]

Equations III-1 and II-3 may be combined to eliminate [CT] , and the
corner forces [:R] may be obtained directly in terms of the principal

stresses [O}] by

] - G0



Equation III-2 may be written in full as

r _
XL, (LJ‘“‘LK) {ﬁg"@ -‘r-”’é" (&\n‘dj) T 28 (\;J...EK) Si»\le — é:(ak.ﬁa)gm?g
YL (&K«aﬂ) PIPCT-Y +%~(L{5~LM 28 06 (ax=0y) cos'@ '%‘ (BA"LK)Q( o
> ,
S ot ka\ . CQ:Q‘—"%_ Chpg 8n O L"k g:hLQ +—‘_;_ Cu‘sm29
Y) Qe . %v\:e ""“"'?; l:’K Sim 26 ~Gly¢ 50.519“‘%‘; ‘DK sin 26
% L

Xl( ..tﬁ Cas‘g'—f"l % 5\"*’2‘@ ‘_% sm‘“@w‘é_%slr\ZQ
Lyk o 3%1@ — 'é‘ lb_; &WZQ % Ce&ke "i-jé; h‘j Sim 25

If the external loading is itself time dependent, the change
in the loads that occur over the interval ,Aﬁ must be added to the
pseudo-external loads. This complete load system will then be
applied at the end of this interval to the entire structure. The
material properties taken are those at the instant at which the
analysis is to be made. The analysis is purely elastic; the
resulting stresses are superimposed upon the residual distribution
that existed at the time of this relaxation. A new stress state
may then be used to repeat the process for a succeeding interval
of time At.

The system is in equilibrium with the external loads as the
result of this addition of stiresses. Let the total unbalanced
forces on the complete system at the end of a time interval be
given.by a vector JFT , and the change in the external loading by
a vector JRG The applied load will be the sum of these two

vectors, dF + dR.

A

S
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The residual stress state will be in equilibrium with R~dF.
The stresses obtained from an elastic solution for the load of
dF + dR plus the residual stresses in the system will then be in
equilibrium with an external lcoad system given by

(R - dF) + (dF + dR) = R + dR
which is, in fact, the external load at the end of the time
interval,

Most experimental results haVe led tc models for the visco~
elastic response which are essentially one-dimensional in form.
It will be assumed that direct expansion into the two-dimensional
form is possible when the models are allowed to act along the
principal directions.

In order to make a sample analysis, a definite form must be
given to the relaxation function., It is also necessary to make
restrictions upon the form of these functions so as to make
possible a complete analysis within a reasonable time on the
digital computer. The same restriction will allow a satisfactory
number of elements to be used in the solution. The restriction
will be to say that the model used must allow expression of all
ite previous history in the time derivatives at the time of
interest. It is preferable that they be carried in the first few
derivatives. This may be called a restriction of the Markov type.

In chapters V, VI, VIII, and IX of this dissertation, it is
assumed that the strain is a linear function of stress level. This

is not a necessary condition, and Appendix I will demonstrate a
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derivation of a non-linear case.

Concrete will be taken as the material for which the creep
effects will be studied. The next chapter will be devoted to the
selection of an appropriate model. The derivation of the relaxa-

tion function for the selected model will follow.
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SELECTION AND APPLICATION OF A MODEL FOR CREEP IN CONCRETE

For greater simplicity in application to the finite element
procedure, the desired viscoelastic function should be a relaxation
model. Experimental data on relaxation in concrete are rarely
obtained as most data are based upon one dimensional creep tests
where the material is strained under a constant stress. Therefore,
a model will be selected which fits this form of data. Many models
have been proposed for the creep function of concrete. Most have
no rational basis, but are aimed at fitting the experimental data
empirically.

The creep function will be defined as the kernel f£(t,T) of

the integral equation defining strain in terms of stress, i.e.,

£ = f ‘?(’C)T\) 3 dT 1v-1

where t is the time at present and T is a dummy variable from t;
to t.
For a creep test conducted at constant stress g the total
strain & 1is given by
¢~ e+ e
In this case UVE@) represents the total instantaneous elastic
strain at time t and Gc the creep strain. Fig. 4 shows the

typical results of such a test.

18
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Fig-4 TYPICAL CREEP TEST RESULTS
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It is the quantity'éqb— that most investigators define as creep
although some do include the !4;&)term as ‘/E@Q . This leads to
difficulties when the principle of superposition is used to define
the strain state upon unloading.

It is usually assumed that below one~third of the ultimate stress,
the creep strain is linearly dependent upon stress level. Three
forms of such linear stress dependent relationships for creep will be
discussed in this chapter.

Hanson8 in 1953 showed good numerical agreement with an equation

of the form

€ = 0. o Laﬁ& (t+|-T) IV-3
where T is the time at loading, t is the present time, and a(T) is a
function of T determined from empirical curve fittings of creep data.
Zero time 1is considered to be the time at which the concrete was
deposi ted.

9
In 1943, McHenry proposed

o (s
S PN )

=4
where he suggested that N be made sufficiently large to be certain of

good agreement. ay aﬁ are again empirical functions of T and w™M{ are
constants.
10 . ;
Hansen recently proposed that a comprehensive equation of the
form

¢ = G(Ofr){l _e:-m(b-ﬂs -+ bm.‘eﬁt (k/—ﬁ) IV-5

In this case a(T) and b(T) were not obtained from curve fitting,
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but from an appraisal of the influence of the constituents and
structural form of the particular mixture of concrete.

All three equations have their particular advantages and
disadvantages. The Hanson equation (IV-3) and Hansen equation
(IV-5) imply that creep continues indefinitely under a constant
load, although both equations reach infinity infinitely slowly. The
McHenry equation (IV-4) implies a fixed maximum creep strain
for a given load. It is difficult to give a definitive answer
as to which is correct as there is very little test data for
very long-term tests (30-50 years). The data that are available
show a very definite drop from a straight line when plotted
against the logarithm. . of time. However, for the purposes of
most analyses, time beyond one year is not needed, and at this
time, the difference between the curves can be made fairly
small. Many more tests will be needed before a well-defined
answer can be given, particularly so because the effect of
drying shrinkage must be carefully investigated at the same time.

There has also been some discussion as to the validity of
many of these equations when very early age (0-2 days) loadings
are considered. At this time, the concrete is undergoing a
rapid change of structure, and these equations may be very
erroneous. This difficulty will be neglected since most
practical problems do not involve loading before the concrete is
two days old, indeed, it may well be necessary to include dynamic

effects if such a problem were considered.
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Hansen's equation was compared for the most part with results
obtained from plain structural concrete with rich mixtures. It
proved very difficult to get a satisfactory fit to the data for
the weak mixtures typical of mass concrete. These latter mixtures,
in fact, seemed to have a characteristically different form for
the creep strain.

In the one degree of freedom system described by equation
IvV-1, a numerical solution would involve the whole stress history
being traced as a succession of increments Z&cr . It would be
necessary to keep track of each increment when evaluating the
total strain. Clearly for the multi-degree of freedom system
represented by the finite element analysis of a two-dimensional
body, this would lead to a prohibitive amount of bookkeeping.

Simplification is possible for both McHenry's equation IV-4
and Hansen's equation IV-5, because they can be expressed at any
given time as rheological models. The total stress history can
then be carried in the strains and rates of strains of the ele-
ments of these models. This is a Markov process. The Hanson
equation IV-3 does not have a comparable representation, and
it is, in fact, not possible to represent past history by the
strains and rates of strain at a given time. Eguation IV-3 will
not be discarded in favor of the equations IV-4 and IV-5.
Relaxation curves will be derived for these equations in the

context of the triangular element.
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It has been stated earlier that it is necessary to determine the
stress as a function of time for the restrained triangular element. At
the same time, the one-dimensional effect will be considered as being
expandible into two dimensions by the use of the creep model along the
lines of action of the principal stresses.

The stress strain relationship may be written as

& '—'-J (e, T) y dT IV-1 bis
or tc(
e = J £(57) dog 1V-6

This second form IV 6 is amenable to a finite difference solution,
for the integral may be written, when the simple rectangular summation

is used as

Z—_ F(tm,5) Ag 1V-7

I~
where ZXQ} represents the change in ¢~ over an interval of time At
where
For stress relaxation under a fixed initial strain, the strain

remains constant for a further time interval [&to
Therefore

[ 28 4} e

Z g(tﬁﬂ) h) L\GA = Z__ 'C ('rm b) [__ 1v-9

J':-[ 3=

ety

or Z F(*’Mu"s) Doy = 'F(bi)t‘-3l§6; 1V-10
J=

The right hand side of this equation represents the initial elastic

strain.
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The quantity [Xak*! may be obtained by separating the summation and

writing as

4N
f (o, bt ) A\ 4y = F(»—, &e)ho — ; -Q(n»g;t;) Do IV-11
or A\ rh;‘H - F‘a’n.t’;)AG]“ AZ-\ $<h’“'“) %\ Aa:&' Iv-12

'g: Chﬂ\ , L‘mﬂ)
In this equation all the [&6{ for i=1 to m are known, therefore, the

stress change in the m+1 interval [Xt;is determinate. The equation
IV~12 illustrates the need to carry out the m summations of the 5103 for
a gingle time interval and clearly all the [ﬁql would have to be saved

for their use in the next time interval.

APPLICATION OF McHENRY'S EQUATION

The creep function f(t,T) may be defined from the equation of

McHenry as

N —wv(bﬂﬁ !

& — .
«F(QT) = {Z o U)(l—e )"' Egy 1v-13

L=}
Then it is possible to consider this equation to have the rheological
form shown in Fig. 5. However the parameters of the constituent
elements are time dependent and any approach to direct solution by
inversion is impossible.

For this equation the term
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Fig- 5 SERIES KELVIN MODELS FOR
Mc HENRY'S EQUATION
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or rewriting with the summations reversed
[

. N Lg
Z:‘ ¢(¥m.,t:;) A«r‘—:; Z{ o) O — gy e mibt) } A Ea) IV-15

= = -}

N —th h'wi- m m T
. {Za(g A — Z % (k) e Jﬁojk“—r Eoey 1V-16

=

Note that at the time there will be no need to do a complete sum,

For if
I N
{ii —>—:~ %ty Aoy = Z,: B 1V-17
=) a=i L=
then k... = &.M" —+ a; (b)) Do 1V~-18
Similarly, if
N ¢ o ~
M Dy r m, b.i —vay f‘wﬂ
Z_ e L o) e Lo “—'?__;e_ Cim 1v-19
L=y A= =4
th . : i b IV-20
en Cim = Cimy +%Ugne Ao -

IV-18 and IV~20 are direct consequences of the representation by a model
and, in fact, represent parameters of the element states at a given time.

Also

‘C( .;b\ O*f* L - initial elastic strain

E)

Then equation IV~12 may be written

L:
A6m+| = G E—( ) Ehﬂliz Em -—vmtmﬂcmj__o.w\ 1v-21

L=y
or
N

U’m—u —&“‘"“) b ?i &;m -, tmﬂc jl
E(}_\ i ; (SN

[ l
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Thus, it is possible to avoid the repeated summation in obtaining the
value of the stress after a given relation interval. There is no
need to carry the stress history; all that is necessary is to know the
values Lw“ and C,, for the N sets of elements.

An identical result may be obtained by physical considerations
where the modification of stress is made to adjust the creep strain
back to its initial value after it has been allowed tc move for an

interval /\t under the creep law,

APPLICATION OF HANSEN'S EQUATION

The derivation of the relaxation function for this equation will
follow the physical approach.

The equation IV-5 of Hansen may be represented as the Burgers
model shown in Fig. 6. In this case, the series dashpot has a stiff~-
ness that increases linearly with time, and depends upon the time of
loading. The series spring is an arbitrarily varying function of
time and the parameteyrs E; and )Z_vary with the time of application of
the load. Because of the irregularity of behavior, it is possible to
solve this system directly only when a constant stress ¢~ is assumed
to be applied.

Simple equilibrium conditions then show that

A '“E‘)'/ L(é""T
& = O‘{i‘oaq /1t TE, (l*e " )> -+ é—:& 1v-22
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This equation then agress with Hansen's when
; Lo € .
- = fT - = b < = = T
g oG ) " b ) ~ ~ constony

This is possible for any time of loading.
At constant @&~

de 6_§| Lo b -.{LE‘/%QC%“T>E\}

dr

IV-23

If there have been N sudden steps of stress at equal small but
finite time intervals [&t(the steps of stress being given by

0&51 for i=1 to N), there will be a strain in the next time interval
Ac of A€

where

- EKLI)L&!‘N E}-/)\zgi{
. e Iv-24

N -
\ L& am | CBAST L Bhuk
" Ae = ¢, Z — T e Do e Iv-25

i ket =1
and if
N
P S
= kek N 1V-26
i S
= e ~ 1V-27
“Q/?\z',‘tl\l

>

|
€ =, by *Te Cn 1V-28

Then a step of stress is required to keep the strain constant; this

step is

Ao, = «-E@S;Ae 1V-29
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The summation

E Doy =0 1V-30
[N

forms the third parameter which is needed to record the stress state at
the time bn+y, . The physical considerations thus lead to the same form
”bf'pframeters as the more rigorous mathematical derivation, and it is
possible to describe the stress state at the end wf a given interval in
terms of the conditions at the beginning of the interval. It is assumed
that this interval is small enough for the solution obtained to be
independent of the size of the interval within reasonable limits of
accuracy. Davis and Dukell suggested that the theory of elasticity
could be applied in expansion of one-dimensional test results to two-
dimensional application. They found from tests that Poisson's ratio
remained constant with time, and that superposition was a reasonable
assumption.

In the finite element elastic solution of the two-dimensional
problem, the principal stress directions are different for stresses due
toc solution of the pseudo-external load system from the direction of
the principal stresses in the element residual stresses. It is, there-
fore, necessary to modify the creep strain parameters that have been
accumulated. It will be assumed that these parameters may be treated
as vectors in the principal stress directions. Fig. 7 shows the form.

Then

h = \sw csd & - \Dz_N Sin 6\6 Iv-31

Lzu = by sindd + by, cocd® IV-32



Fig. 7 CHANGE OF STRAIN PARAMETERS AS
PRINCIPAL STRESS DIRECTIONS CHANGE
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The change in direction as the result of any one increment may be
expected to be small, therefore the correction applied to the para-
meters will also be small and the effects of any error by this assum-
ption should be negligible.

To get the most accurate solution, it would be necessary to do a
complete analysis at the end of each time interval of relaxation. In
the interests of practicable solution, it is necessary to allow a
longer time between complete analyses. The time between complete
analyses is discussed in Example I. A suitable interval for the stress

relaxation is shown in the next chapter and discussed in Example II.
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v

NUMERICAL COEFFICIENTS FOR THE CREEP EQUATION

Once the form of the creep equation has been decided, it is still
necessary to compute the numerical coefficients. In the caze of the
Hansen equation, these coefficients are predetermined by the structure
of the concrete. The coefficients for McHenry ‘s equation are, howsver,
purely empirical, and it 1is hecessary to use a numerical curve fitting
procedure,

The evaluation of coefficients for a creep equation of the form
—y E-T) o, (=T
GCQ_,\:O‘“EC\\(T\(\_Q \ ) + o, (M (1-c = )E Vel

will be examined. T is the age of the concrete at loading with a
constant stress ¢ and t is the age at the time to be considered,
Experimental data are available for deformations due to a series
of single step loads. The creep may be separated from the elastic
deformation by knowing the instantaneous elastic modulus at various
times. A series of equations may be written for test (loaded at Ti)

throughout a series of times ti.

e =o 1o (- v my (142 ‘*“’“)zg .
€y = & {Q‘(T‘) (l_gm.(t;:TQ) + 4, G)(%im&"ﬂ)% V-2b
-, &)

ein = Lom) (- ) +a, tn)(\-ém"(“‘:r‘”)))}

V-2¢
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Thus, a first step is to evaluate QW(TQ)QLGﬁI mij, ™, for a given set of
test data, for a loading at Ti.

The value of t when inserted, as in the above equations, gives an
over~determined set of M non-linear equations.
These equations may be‘simplified if the j th point of the i1 th test

is considered. The typical equation reduces to

A7
ae™ + ke = KO V-3
where = 5-T V-4
Ky = = G, o+, ) + & (To) V-5

and a, b, m, n, are the unknowns. The value

and is therefore known.
. 13 | qa .

A method attributed to Prony is applicable tc the solution of
the equation V-3. 1In this procedure which is restricted to data with
equal increments of t, the non-linearity with respect to m and n is
first eliminated and a set of linear equations for a and b obtained.

14 . . .

It may be proved that the quadratic equation

* =0

m e n At

u, the values e , € (where [t is the

will give as solutions Uy, U,

prescribed data interval). The coefficients ogl and <X2 are obtained
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as the solution of the n overdetermined linear equations
K@o\\ + Ky < = K(ga‘)
Ky, + Koo = KB y-7
K(tn)

i

Kty + K

Least squares procedures may be used to determine a 'best fit' to these
equations,

Then writing V-7 in matrix form

[<K]0«] = 1r]

where [P<] is non-square. The minimum square error for the coefficients
T

may be found by premultiplying V-8 by [P(} and solving the resulting

square set of linear equations,

That is

KT TK] 1] = [K) 1]
L] = [0<T)] 1<)

Hence the values of (S are obtained as

w= %/ “L‘/a_‘/{d\\l-a—lm,} V11

and m,n = ’A‘—é 'PO%Q_ ié__ {Ok\ T /{d\'l+ Lfd\;}} v-12

Then with m and n known, the equation V-3 may be rewritten as a
set of linear equations. These equations will again be over-determined,

and it 1s necessary to repesat the least squares operation on this set,
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The complete procedure must be repsated for each set of test data for
a given constant load. From all of the fitted test curves, the variation
of the functions al(T> aQ(T) ml(Tﬁ mz(T) will be determined.

The creep equation of McHenry assumes that ml and m2 are constants,
Therefore, it is necessary to make approximations to m1 and m2 from the
functions cobtained, and then with these constant values assumed, to make
a least squares analysis upon all the test data. In this case, of course,
the equations are directly linear in al(T) and aZQTﬁo

An example of the results of such an analysis is shown in Table I

where the results are compared with the input data. The agreement is

clearly satisfactory.

Time Creep obs. Creep comp., Exror Error percent
4. 0.3700 0.3784 0.0084 2.27
8. 0.4640 0.4723 0.0083 1.78
12, 0,5270 0.5245 -0.,0025 0.48
16. 0.5750 0.5664 -0,0086 1.49
20, 0.6150 0.6026 ~-0.0124 2,03
24, 0.6440 0.6340 =0,0100 1.55
28, 0.6700 0.6615 ~0,0085 1.27
32. 0.6880 0.6855 -0,0025 0.37
36. 0.7000 0.7064 0.0064 0.91
40. 0.7140 0.7247 0.0107 1.49
44, 0.7300 0.7406 0.0106 1.45

a; = -0 .,488 a, = ~-0.3628 m, = ~-0,034 m, = ~0.52

Table I. Theoretical and computed coefficients for
concrete loaded at age 7 days
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When Hildebrandl4 discussed the dangers of application of Prony's
method, he pointed out that the results may produce an oscillatory system
associated with an imaginary solution to the quadratic equation. None of
the analyses made for the examples discussed in this dissertation gave
this problem, but a careful watch should be kept.

Prony's method is equally applicable if N is taken to be greater
than 2 in McHenry's equation IV-6. In this case, the quadratic equation
becomes a polynomial egquation of order N,

A stress relaxation test was simulated on the computer to check
the validity of the creep function obtained using Prony's method and
McHenry ‘s equation with N equal to 2. The results were compared with
experimentally obtained results for the same concrete, see Fig. 8. The
agreement of the curves demonstrates the validity of the equation used
and the functions obtained for the coefficients.

Finally a large set of experimental data for a series of creep
tests were investigated and values for al(T) and aZ(T) obtained. A
function was not easily fitted and linear interpolation had subsequently
to be used. m, and m, were gset at ~0.034 and -0,52 respectively.

These values are ussed in examples I and II.
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VI

INFLUENCE COEFFICIENTS FOR AN ELASTIC FOUNDATION

Many two-dimensional stress systems have boundary condi tions that
may not be satisfactorily represented by conditions of zero stress or
displacement in any given coordinate directions. A large class of pro-
bleme have elastic support conditions. An example of such support is
the concrete gravity dam which is usually constructed on a rock
foundation, as shown in Fig. 9a. For this problem, -ithe horizontal
stress at the intersection would be wrongly approximated by requiring
either zero horizontal stress {(i.e., no displacement restraint in the
horizontal direction) or complete lateral fixity. Vertical displace-
ments must also be allowed. Clearly, some form of flexible boundary
condition is required.

The finite element method can approximate the flexibility of the
foundation system by using elements constructed tc cover an area of
the foundation sufficiently large that simple boundary conditiong may
be applied to the foundation, as shown in Fig. 9b. The distance to
the boundaries must be such that the stress distribution in the dam
would not be varied by changing the position of the boundary a small
amount away from the dam. In this case, there will be many extra
elements which do not contribute significantly to the accuracy of
the solution in the dam itself. It is, however, difficult to predict
which, if any, elements could be removed. Solution time for the
problem will be much increased. This mesh which covers the founda-

tion does have the advantage that it is possible to handle the effects
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of non-uniform foundation media without the need to reprogram, only the
element properties have to be adapted. This is particularly useful for
layered rock foundations.

A different procedure is to consider the problem as that of a
structural system of finite elements resting on an elastic half-plane.
The nodal points of the triangular element system may then be considered
as points at which the load is transmitted from the elements to the half
plane, as shown in Fig. 10. Superficially, the nodal point forces may
appear to be concentrated loads, but the assumptions of the finite
element method imply that these forces are the stress resultants of the
element interfaces. Thus, the transfer of forces may be considered as
distributed over a length about equal to half the element spacing.

A method is, therefore, needed to obtain the stiffness influence
coefficients for points along the surface of an elastic half-plane
which has been subjected to a distributed loading in the vertical and
horizontal directions.

The solution of the problem of the infinite half-plate under a
distributed load is readily adapted to the solution for an infinite
half-plane under conditions of plane strain. The values of the

elastic meoduli E and V must be modified to become

¥ = VI-2
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Fig- 10 TRANSMITTAL OF STRESS TO
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The stress function for the problem is well known, and integration
. . . . 15 . .
of the equations is readily carried out, for both vertical and horizontal
loads.
The solution takes these forms for rectangular cartesian coordin-
ates (see Fig. 11)

(1) For vertical loads-;

w =9 x <Al VI-3
= (L“tf) XA
w = E* C\/( ) "_C\.gy_go\ Vi-4
2 (1=3)
w o= £ 1% e < =< V-5

TQ

o= Tr-l;:f<a~x3‘oa¢ca~x3"+wxs‘oﬂw&‘
‘”@\‘C‘) l AN (0*<D“~ Q\ﬂ-d) l OAQCQ*”O\)L vi-6

where
(kéﬁ = horizontal surface displacement at distance x from origin,
Ney = vertical surface displacement at distance x from origin,

q/ = load per unit length

o QE* = usual elastic moduli modified for plane strain case,
€.a = length of loaded line
(ﬂ = distance to point at left of origin where displacements

are arbitrarily set to zero.

The origin is the mid point of the load.
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{(2) For horizontal loads

woo= T% [CO ”)‘») lj( (Q—x)lq —+ (mh«) k01<_<0u+)()‘—
— (q-o\‘) { 033 (a-&)L e (Cd'd) (Oje (om’cml vVi-7

vV = O x K - VI-8
Vi = (‘i -*D*‘) C‘/ (x'l'&) - K2 QQ__ VIi-9
E“'ﬂ
£ Vi-10

v - 2&‘-—0’6 o\{Q_ o
-

For vertical loading, the solution apparently yields an infinite
vertical displacement in the direction of the load as the distance
from the loading tends toward infinity, similarly for the horizontal
loading, the horizontal displacement tends toward infinity. The actual
value of the displacements vary depending on the value selected for d.
The validity of these results will, therefore, be checked by compar-
ison with the solution in three-dimensional form for a half-space
subjected to a plane strain type loading.

The influence coefficients to be derived depend only on the
shape of the displacement function. Any rigid body effect that is
superimposed has no influence on the stress in the system under con-
sideration., Therefore, the solution will be satisfactory if the shape
is acceptable, without regard to its absolute size.

The vertical displacements due to a vertical uniformly distributed
load p over a rectangular area of surface of a half space have been

16
given by Schleicher



The dimensions of the rectangular loaded area are shown in Fig.

The:'vertical displacement is given by

P
V() = rrCl JS = (L3+?(33 ¥ O\i\:l') Vi-11
where C = 1:/(,_;, Vi-12

If p is assumed to be uniform, the integration yields

Vixy) = [(’D Q\JQ \e (fm -»(m)} /{J@@(L-ﬂ —-(cvv)t)}}
by oge (Ffom 4 (b} + (02 / <o) - )
+(a-%) lo‘\e ({J(A'%) (--y ( \}/ {/(w‘\ lhen) = (b /)D
<“““°%Qﬁ§:$:@;;+kﬂﬁ/M;::@;;“<bwﬁ>J

VI-13

The horizontal displacements may be obtained (see Appendix II) from

[=2> V(P gy
wioy) = 2 (-v) ¢ Jj C"”}Y;\;(D;y'ﬁ ‘)‘2"\') VI-14

A"cu\

For uniform p this yields

wma=O%®P[@ﬂmlﬁ) (o) oy iy
20N C |+ (arr) 4_&:‘( )*, (5 e Jorie o)

- (@) ! (@%ﬂiﬁ) ~ (by) lo%/(},w)r(wﬂ
* (o) T (520y + (o) Loy (oo Ty j

VIi-15
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Fig. 12 COORDINATE DIRECTIONS AND AREA OF LOAD
FOR INFINITE HALF SPACE SOLUTION
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The three~-dimensional problem with a long thin uniformly loaded strip
approximates a plane strain problem at the center of loading, and therefore
the result may be directly compared with the two-dimensional solution
already given. A case was chosen where

a = 36,000" b = 100" E =5,0 x 10° p.s.i. = 0.17 d = 0.

Fig. 13 shows a plot of displacement under the loaded strip against
position under the strip for the case above. The approximately constant
value under the center portion of the loaded strip confirms that the
loading at the center is close to one of plane strain., Fig. 14 is a
plot of vertical displacement along a line in the surface normal to the
strip at the center point. This is compared with a plot of the dis-
placements obtained for the thin plate solution. The coordinates on
the plot have been translated so that both solutions give the same
displacement under the load. The closeness of these two lines
indicates that the use of the thin plate solution is justified. The
horizontal displacements for both cases are shown plotted in Fig. 15,
the small difference between the results show that the agreement is
again good. Fig. 14 and Fig. 15 show that the solution does not
depend significantly on the location of the arbitrary zero point.
Consider the system shown in Fig. 16. A uniform load is shown
applied to the plate. Because of the stress conditions on the boundary,
it is necessary to provide two supports for the plate. Displacements
would be infinite if the supports were not provided, that is, the
flexibility matrix becomes singular. One of the supports iz pinned,
the other is on rollers. The supports also create reactive forces
F_ and FR as shown; these gupport forces are also assumed to be distrib-

L

uted. These forces can cause concentration effects and thus will be
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considered to be at a long distance from the dam.

The stiffness influence coefficient is defined as the force at an
arbitrary point j due to a unit displacement at i. However, because the
solution to the problem is formulated in terms of displacement due to
load, flexibility influence coefficients will be generated. It is the
inverse of the matrix defined by these terms which gives the stiffness
coefficients. Because of the support conditions, vertical and hori-
zontal loadings must be treated separately.

Consider a unit vertical load at point i of Fig. 16 and let the
point of zero displacement be the left support L, that is d:aio

There will be three vertical displacements to be summed as follows:

a) vertical displacement due to vertical load at { = |

b) vertical displacement due to vertical load at L = th‘“bL/L

¢) vertical displacement due to vertical load at R = Fe = —QVL
These are shown in Fig. 17, a, b, ¢. If u and v represent the appro-
priate displacements at j due to unit load at i (positive displacement

being toward and to the right) then

g v by Y oL v ]
% = Ve — T Ve T T Ve VI-16

There is, however, a displacement at R, which is not possible under the
support conditions. Therefore, a rigid body rotation must be applied
to the system to make

|:>‘
Initially % = v — = Ve — VI-17
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The required rotation is, therefore gk/L clockwise and

J by v al ¥ o, [ v bl v a Y )
S.SL = M. '[_—V&\;‘ T W Voo T Vey T T Ve vi-18

All the terms in the above equation may be determined from equation
VI-6.
For the horizontal displacements due to vertical load at i, the

same sum will apply (see Fig. 18). Again, let d = ay
The horizontal displacement at j is given by

S = oY — %\L:‘- VI-19
In this case, horizontal displacement at R is not restmined, and so no
rotation is required.

For the horizontal loads, the sum of only two terms are necessary,
the horizontal reaction being entirély at L and being equal and opposite

to the applied load. 1In the case of horizontal displacements, therefore,

the sum will be of the two terms shown in Fig. 19 a, b. Again d= ol

with no rotation required

3 Py
TR T AT VIi-20

Similarly, for vertical displacements, the terms to be summed are

shown in Fig. 20.

W h .

Th R VI-2
en S;b = V. %L 1

and S = viL — Ve VI-22
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Thus, a clockwise rotation of g@)ﬂ_ must be applied to make

W L ® N W
Then T A “/L.(Vm~vm_ VI-23

(181
The four terms thus given by equations VI-18, 19, 20, 23 may be gathered

together to form the flexibility influence coefficient submatrix for the

influence of forces at i on a point j.

[ g . — —_— — l—~—- et ereceneme e e R V'I _24
wv R Y v bV ay YV

in the equations VI-3 through VI-10; and examination of Figs. 17 and 19
show that all the apparently inconsistent terms cancel out. Assemblage
of the [-FJ;-] into a total flexibility matrix [F_] is done simply by
substitution of appropriate sub-matrices, The size of the [F] matrix
will be 2n+1 by 2n+l where n is the number of internal points considered.
The extra row and column are created by the effect of a vertical force
at R. This row is easily obtained by forming [F] as a 2n+2 by 2n+2
matrix and then striking out the last row and column.

The final stiffness influence coefficients are then obtained by

inverting [F] .
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Those stiffness coefficients, when removed as 2 by 2 sub-matrices,
are in exactly the same form as the coefficients generated from a
triangular element. The terms may be superposed directly into the
same stiffness matrix as the element stiffnesses to form the total
stiffness matrix of the structure. The support conditions consist
only of a pin at joint L and a roller at R. The point L may be
ignored in solution and R is treated as a point with horizontal
freedom only.

Fig. 21 shows the results of an example where the structure
above the half plane was made very weak compared to the half plane.
The solution predicted by the exact theory is also included, and
comparison shows that the agreement is quite good,

The measure of accuracy of the solution is dependent upon how
well compatibility is maintained across the interface. Since in
most dam problems the loading is not concentrated, the displaced
lines of the dam and those of the foundations will not be sharply

curved, and the solution will be acceptable.
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VII

COMPUTER PROGRAM

It is necessary to use a high speed digital computer to analyze
time-dependent two-dimensional stress systems by the finite element
method. For a practical analysis, the number of simultaneous equa-
tions soon becomes measured in hundreds rather than tens. The computer
program written to solve this problem consists in its original form of
the program used by Wilson,6 However, the methods used by Wilson have
had to be entirely revised so as to increase program capacity without
too much increase in unit computing time; or, in parallel, to make
possible storage of the many time-dependent functions involved with-
out decreasing capacity.

When it is necessary to analyze systems with large areas to be
covered, but only small areas where the stresses are of interest, the
need for greater capacity becomes apparent. In this case, it is
necessary to cover the whole outer area with progressively larger
elements, and the location of interest with a fine mesh of small
elements. The net result is a large number of elements with an
irregular layout. The computation of the necessary data arrays for
the input data then becomes a significant problem.

An early approach to the solution of this problem17 was to use
two passes in the analysis. In the first pass, the system was
analyzed with a coarse mesh covering the whole area. The resulting

displacements at a "reasonable distance' from the point of interest
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were then used as displacement boundary conditions in the second pass.
The second pass used a fine mesh over the entire area, the loading was
the original applied external forces for that part of the system. Linear
interpolation was used to obtain displacements for new points which lay
between the original nodal points. The procedure is illustrated in Fig.
22 where a section near a crack was removed and a fine mesh substituted
in this area.

The method has an inherent weakness because the resulting stresses
are only as good as the displacements on the boundary, and it is hard
to define a ''reasonible distance' for the effect of the mesh size to
be minimized.

The two-pass approach breaks down completely when areas exist with
different material properties and the coarse mesh then must be made to
cover these areas with a sufficiently good representation of this effect.

A program with very large capacity has an important simplifying
advantage of making uniform meshes possible with the fineness spreading
over a greater area. It is also necessary to make only one pass on the
computer and make no intermediate changes. The time that is 1lost by
the increased size of the single analysis is easily made up by these

simplifications.
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THE ITERATION PROCEDURE

The basic solution by iteration of the Gauss-Seidel type depends
upon repeated application of the equation.
\ ~
S+l - s
A = k““{ Ra — E \‘(r\LVL} SRS EN VII-1

L 1N
where Vv, and R, are two element vectors of displacements and forces

respectively, using rectangular cartesian coordinates, at the nodal
point i. kg, are the two by two stiffness influence coefficient
matrices of the whole structural stiffness matrix taken one nodal

point at a time. s 1is the superscript indicating the number of itera-
tions applied. This method may be improved by splitting the summation
term and using the values Vfﬂ for i = 1, n-1 which have already been
calculated in this cycle. This is the accelerated Gauss-Seidel
iteration procedure. The equation for iteration on the point is then

.2.:\ ~
iQﬁ -/ ket — Z L“Vii N VII-2

L=\ TEatt

| ~
Vo = ko

This method uses all terms in the total stiffness matrix, it is
possible to skip all the zero elements by simply labelling the terms
that are non-zero. Solution may also be speeded by the use of over-
relaxation where the computed change in displacement for any one cycle
is multiplied by a factor between one and two. The above procedures
were incorporated by Wilson6 into his program,

The modification described below is dependent on the symmetry of

the stiffness matrix. The terms kr@ for ( <n represent the submatrices
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which are below the leading diagonal of the array.

Since

T
=k,

e VII-3

the influence coefficients for the upper triangular part are all that are
required. The computer storage for the non-zero terms is approximately
halved, all that is needed is a reference table to give the symmetrical
elements, Physically, the terms ‘<Nﬁ& of the summation represent the
unbalanced forces at a point n due to a displacement V{ at i. A conven-
ient way to simplify calculation is to compute the values of the unbal-
anced forces, due to displacements at i, at the connected points which
have nodal point numbers greater than i. These points represent the
terms which appear on the upper off diagonal part of the rows connected
with i, This means that when the point n 1is reached in the iteration
-1

cycle, the term i:'kﬁif@ill have already been computed and no summation

L=
will be required for the lower diagonal terms. Equation VII-2 may then
be given the form

s \ - " S s
Va i YN Q,\ - Z l<vx‘; Ve VII-4

LT Ay

where “« noh T sy
‘ Qr\ = Q,\——Z__ l<in V. VII-5

(S

To compact storage further, it is convenient to compact this form
of stiffness matrix by omitting all zero terms in the symmetrical part.

These changes have enabled the capacity of the computer program to be
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increased from 350 to 600 points. The speed of operation is virtually
unchanged, the rate of convergence is identical.

The computer program was then modified to include the effects of
time-dependent properties. The changes consisted of inserting a
section to calculate the stress relaxation and the resulting pseudo-~
loads, and causing the program to recycle in elastic solution.

The flow chart shown below is intended to indicate only the main

outline of the operations; for simplicity, detail has been deliberately

omitted.
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VIII

THE APPLICATION OF AUTOMATIC PLOTTING PROCEDURES

With the increase in the number of nodal points made available by the

program, there arises a purely mechanical problem in the generation of
triangular meshes, the checking of the meshes and the interpretation
of the results. The automatic plotter may be used to simplify some of
these tasks, It is both laborious and difficult to create and punch a
satisfactory system correctly at the first pass. Some concept of an

automatic generator which defines the elements is required then the

plotter may be used to check the resulting

The generation of a random mesh which
triangle as nearly equilateral as possible
impractical procedure.

A simpler approach

This recognizes that in most structures it

mesh.

can be optimized to make each
is a complicated but not
will, however, be described.

is possible to introduce a

series of parallel lines slicing the structure, and these lines need not

be a constant distance apart. More lines may surround any area of
particular interest. Strictly the lines need not be parallel, but
the generation of meshes is much simplified if they are.

Examination of the single layer shown in Fig. 23a indicates that a

regular numbering sequence may be used to define the elements

i.e., element i point J point k point
1 1 2 7
2 2 3 8
3 3 4 9
6 7 2 8
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Fig. 23 TYPICAL TRIANGULAR ELEMENT LAYOUTS
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All that is required of a generating program is that 1t set up the
correct coordinates for the nodal points and then construct the element
array to coincide with the form shown above. A restriction of this
method, i1s that the number of nodal points in a row may only change by
one between adjacent rows. Sharply changing sides of a system will
not be easily or well generated. A further problem arises from the
need to select between two possible forms of arrangement represented
either by connecting 1 2 7 or 1 2 8 in the mesh as shown in Fig.

23 a, b. In this case, there must be some decision made which gives the
better set of triangles. This leads to deciding upon which outer sides
have the greater slope and using this to decide the starting triangle.

An automatic mesh generating program has been written which takes
as input the coordinates defining the boundary and the number of points
that are wanted on any one line. Weighting factors may be read in
which cause the nodal point spacing on a line to be non-equal and
allow fine meshes to be created in a specific area. The program gen-
erates and punches all the coordinate points of the mesh as well as the
element arrays which locate the triangles. The final part of the pro-
gram draws the mesh that has been generated on an automatic plotter.
This makes possible swift checking of the arrays to make sure the
problem is satisfactorily defined. Fig. 24 shows a typical output
plot. Note that the parallel lines may be skewed in any direction by

a simple rotation transformation.



Fig. 24 TYPICAL MESH GENERATED BY
AUTOMATIC PLOTTER

Tl
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INTERPRETATION OF RESULTS

The interpretation of results from“the finite element program is a
problem of much repetive work. It involves transferring output inform-
ation onto some form of plot, either isotatic lines (otherwise called
stress contours), stress vectors, stress trajectories, or stresses
across a section. The automatic plotting machines which may be run
from magnetic tape through subsiduary equipment to the main computer,
make possible the automatic interpretation of the results. A schene
will be discussed which takes the output stresses of the program and
then generates the line of action of the isostatics. These isostatics
are superimposed upon an outline of the system. The formulation of
stress trajectories is then described.

Let Ox

. )G&L)ogg represent the values of a stress component at

the nodal points of an element. These values may be obtained from
element stresses by extrapolation or interpolation procedures, such

a procedure was proposed by Wilson,6 The distribution of these stresses
over the element will be assumed to be in the form of a plane passing
through the three values at the vertices. Comparison of the values at
the vertices enables an order to be established, for example. ¢, < Ux, <0k,
Then if a prescribed contour value lies between the largest and small-
est values, a contour of this value exists on the element. Linear
interpolation along the sides may now be used to get locations for the
ends of the contour in this element. A straight line constructed

between these ends then forms the contour of this element.
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The procedure may be repeated for different values of contours until
they fall out of the range of the stresses over the element. It should
be noted that stress contours over any element will be parallel. Then,
if the whole scheme is repeated for each element, a complete picture of
the isostatics for the entire structure will be formed. The contours
will match at the element boundaries but will not have the same slope.
The degree of smoothness of the curves produced will depend on the
fineness of the mesh used. An example of such a plot is shown in Fig.
25. Any component of stress may be plotted in this way.

Of frequent interest to the practicing engineer are the trajec~
tories of principal stress or shear. These are not lines of constant
value, but lines that have the same directions as the principal com-
ponents at any point.

The valiues of stress at any interior point of a triangle lie on
the plane formed by the values at the vertices, therefore, these values
may be simply obtained from matrix algebra. Let the triangle under con-
sideration have coordinates at the vertices i, j, k of (0,0), (=5, 4 ),

oy s Aw ) and coordinate stress values fi’fj’f (for &, stresses for

k

example). Then the value at (x,y) is given by

f =ax + by + ¢ VITI-1

where a, b, ¢ are constants. From the known values, a matrix equation

may be written

o O l [' @ (4?“ VIiii-2
x, 5 { Y - gﬁ
Tk e éJ C fe
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Solving this equation

£~ IR it N
_ L= )y — - b Y49 VIII-3
& = T ey,
5‘-5*3& \34
:_l) - (R-Cx — (CA' Q\) X Viii-4
I e
< = (o VIII-5

Thus the values for 6;) GE) C&a may be obtained for any interior
point (x,y). From these values, the direction of the component of
interest may be computed. For example, the direction of the maximum

stress is given by

@ _ .L 1» - aO‘sD
— 2 ' | oy —ox VIII-6

A given stress trajectory may thus be followed in its path
across a triangle by taking a given starting point and constructing a
line of some specified length with an angle appropriate to the mid-
point of the line. The length may be made sufficiently short that
when the new point is used as a starting point a true curve is
approached. The procedure is repeated from point to point until an
element boundary is crossed, at this time a new plane is used for the
component stresses and the process repeated across this element. The
complete process is repeated until the boundary of the structure is
reached. To create a complete set of trajectories, the method may be
repeated for a variety of starting points, these may be interior

points or boundary points.
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A simpler method than this is to take the element stresses and
use these to define a straight line to cross the whole element. With
a sufficiently fine mesh, this works very well, as may be seen in
Fig. 26 which represents the lines of maximum shear in an embankment
that has been cut down into a rock material.

The construction of section plots is a trivial extension of the

contour plotting routine and needs no further description.
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IX

EXAMPLES

Two examples will be analyzed and the resulting stress distributions
discussed.

Example I, a gravity dam, was selected as an example of practical
analysis of a real structure where the answers obtained have a real
significance in the design of cooling procedures for concrete. It is
also important in deciding the frequency or need for longitudinal joints.

Example II is a demonstration of the variation of stress that can
occur with creep. It also shows the use of automatic plotting programs

in the direct interpretation of results.

EXAMPLE I: THE ANALYSIS OF A STRAIGHT GRAVITY DAM

A gravity dam is built of a series of lifts of concrete placed at
fairly regular intervals. The dam is, therefore, made of a series of
discontinuous layers. The purely elastic analysis of such a dam does
not give a true indication of the state of stress. It is not entirely
satisfactory to assume that the stresses due to dead weight suddenly
appear in the completed structure. The stresses, in fact, build up
while the dam is under construction. Of more significance, however, is
the fact that the thermal stresses caused by the alternate heating and
cooling of the hydrating concrete cycle also act as the dam is built.
Much of the change of temperature occurs at an early age in each indivi-
dual 1ift, and at this time there will not be much material above the

area in question that can resist deformation. The thermal stresses are
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dissipated by creep so that after long enough  time they can be expected to
be much reduced.

A more realistic distribution of stress is thus given by an
analysis which takes into account the changing geometrical configuration
during construction and also the creep of the material. The change in
geometry is easily accommodated in the analytical procedure because the
step by step solution of the visco-elastic problem of creep requires a
series of time steps between analyses. All that is required is to
install an additional group of elements at the instant before analysis
and use the dead load of the added material as additional external loads
in the finite element analysis. Because the layer on the surface is
poured in fluid form, it causes no shear forces in the old surface. This
condition is approximately by giving the new material a very low modulus
of elasticity at the time of placement.

The example will analyze the first 18 layers of a straight gravity
dam of the dimensions shown in Fig. 27. The construction segquence is
defined in Fig. 28.

The dimensions of this problem lead to the need for many elements
in a layer if it is designed to keep the triangles approximately equi-
lateral. The ratio of height to length for a single layer is 1 to 134
and at least 100 elements would be needed for a single layer. However,

the expected nature of the results show that the stresses in the middle

of the section should be uniform with respect to horizontal position.
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Therefore, it is possible to select elements that are very long and flat,
and reduce the number of elements to about 20. The results of a comparison
analysis are shown in Fig. 29 and the close agreement at the center between
results obtained with equilateral and with elongated elements is apparent.

The procedure demonstrates a generally applicable approach tc the
problem of systems with large areas. It is feasible to take elements
that are elongated in shape and get acceptable answers if the stresses
in the real system over the area of each element are approximately con-
stant. The triangular mesh system used in a typical layer finally used
is shown in Fig. 30.

To investigate the length of time interval redquired between complete
analyses of the system, preliminary analyses were carried out with differ-
ent time intervals. The results are shown on Fig. 31, they indicate that
a 2~1/2 day interval has no significantly different result from a 1-1/4 day
interval. The interval required for numerically integrating the
relaxation function to generate the pseudo-loads is discussed in the
second example.

For purposes of this analysis, temperatures of each 1lift were assumed
to be constant over the whole area at any one time. The temperature
variations with time of typical lifts are shown in Fig. 32.

The concrete of the dam was assumed to have the creep properties
described in Chapter IV. The variation of instantaneous modulus of

elasticity was assumed to be
b
‘— - (l~0"f‘ (3'(967 lo%g t)%‘@ fsqx.

The Poisson ratio was assumed to be a constant at 0.17.
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Figs. 33 and 34 show the stress distributions resulting from this
33 is a plot of mid-section horizontal stress against
time for selected layers. Comparison with the temperature history shows
the expected rise in stress as the temperature falls., The effect of
creep is apparent in the tapering off of the rise despite the still
falling temperature. Similarly, the layers above and below have an
effect, either increasing or decreasing the stress as is apparent from
the figure. Fig. 34 shows the variation with position of horizontal
and vertical stresses in the first 1ift. The time is assumed to be 14
days after the first 1lift was placed. The figure indicates quite
clearly that the edge effects are quite local and most of the layer is
under a constant stress. The vertical stresses at this time are essen-
tially uniform and represent only the dead load stresses.

From this analysis, it is clear that with the cooling cycle applied,
the stresses reached in the concrete are tolerable. There is no need for
longitudinal construction joints. If such joints were used, they would
need to be less than 50 ft. apart since that is the limit of the end

effects.
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EXAMPLE II - THE ANALYSIS OF A THIN PLATE INCLUDING

THE EFFECT OF CREEP

The second example has been constructed to show the redistribution
of stresses that can occur in a given system when creep in concrete is
considered. The geometry of the system and the triangular element lay-
out are shown in Fig. 35. The problem is to evaluate the variation
with time of the stress resulting from an initial temperature change.
The material is assumed to be concrete with the same properties as
defined in Example I, and the temperature change is applied 7 days
after casting the concrete.

This example was used to investigate the effect on the results of
different relaxation intervals in which the pseudo-loads are computed.
Three different times were used, and the contours of the maximum
compressive stress at 11 days are shown for each case in Fig. 36,

The difference between 1/16 and 1/8 day computation interval appears
quite slight.

A complete analysis was run using 1/8 day relaxation intervals
with complete analyses every 2 days, for the period 7 to 21 days. The
contours of minimum and maximum stress for the concrete at age 7 days
and at 21 days are shown in Fig. 37, 38, 39 and 40. A comparison shows
the great reduction in stress that occurs in this time, the changes are
always smoothing and the areas of concentration almost relieved. Fig.
41 shows the principal stress trajectories for the time 7 days. The
steady directions of the principal stress are apparent. Fig. 42
presents a three-dimensional section plot which shows the change of

stress with time. This clearly shows that the most significant stress
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concentrations are quickly reduced and there is a tendency for a uniform
stress to develop.

The automatic plotter was used to obtain Figs. 35-41 according to
the procedures outlined in Chapter VIII. This example is a case where
interpretation Qf results 1s quickly realized using such methods. The
contours are of direct practical use to the engineer, and the trajectories

give a feel of how the structure takes the loads.
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X

CONCLUSIONS AND RECOMMENDATIONS

This dissertation has presented a feasible way of carrying out
time dependent analyses of two-dimensional stress systems where the
visco—~elastic effect can be expressed in a Markov form. It is possible
to express a wide range of creep data in this form by the use of Prony
exponential series with enough terms.

The procedures of the computer program have been described and the
results of two sample problems have shown that practical analyses can
be obtained. The computer has also been utilized to compute triangular
meshes automatically and plot the results, thus taking away much of the
arduous labor associated with the previous use of finite element pro-
grams,

The generation of influence coefficients for an elastic founda-
tion represents a first attempt to rationalize the problems of defini-
tion of boundary conditions for such structures as dams.

The direct: solution procedures recently described18 in connection
with frame analysis are applicable to the problems in finite elements.
In particular, for cases where the instantaneous elastic modulus can
be considered a constant with respect to time, the soclution time may
be considerably shortened. 1In this case, the problem would be reduced
to solving a repeated set of load conditions (pseudo-external loads)
with the original stiffness matrix reduced to an upper triangular

form. More than half of the computation would be eliminated.
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The assumption associated with the sxpression of the one-dimensional
test results into two dimensions is difficult to justify. However, if
the directions of principal stress are approximately invariant, it would
seem that this assumption is quite accurate.

The definition of creep in terms of the dilational and shear
deformation gives a much more satisfactory basis for defining the vari-
ation is stress of a two dimensional element, but there is too little
data available at this time to further investigate this approach,

There is considerable scope for the experimental worker in concrete
to carry out tests which will make possible a more realistic analysis of
two~dimensional systems. Such tests should be carried out on two and
three dimensiocnal systems where both creep and relaxation can occur.

With a more satisfactory definition of stresses over the complete
system (the presently used stress-averaging method suggested by WilsonG
does not give good results for stresses normal to a boundary line) the
stress plotting routines may well come into their own in the inter-

pretation of results.
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APPENDIX I

APPLICATION OF NON-~LINEAR CREEP EQUATION

The non-linear dependence of creep strain upon stress may be
incorporated, if it is possible to express the equation in a Markov
form and to assume that superposition of the individual increments
may occur,

As an example, a single term exponential series will be used

i.e., after m increments of stress

e, = i N &s@d){(——;mwﬂm} AI-1

Ve
The right hand side must be expressible without need to summation

each time. Then if

fan
< n
[ Dol e =5 AI-2
b = bro = Do, %6 AI-3
and if
e A ~ M’QL [N
e Z&.(m-’—\ﬁﬁ e Cm AI-4
[
b o
Con = Crnmy + GGy e Ae, AI-5

The system is then in Markov form.
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APPENDIX 11

INTEGRATION OF EQUATION FOR HORIZONTAL DISPLACEMENTS

OF INFINITE HALF PLATE

a b
B 7 @*""3\\ 1.4 \ ( 25) 7
“ey T A S e A= ey 7
-Jg ey B

p}l7>

QO?\‘- {Gw:&jxﬁ- (W“A)j{ 0\7

|
[

_é ’Qostgck*%j +(r)..“ i —_ Pucy?(@m—r) -&-Q) J)g Jr)

Consider I = f(og(al*%‘—) A x

e -

- xkoa (0\“"\ *Zc“+0‘“ N ”Z*

+%
Then

O D loqe (69 (y7) + 2 - o ( )20 ‘0/

Ueay) = =

—b
-+ term (&*3‘)

Thus N 9 - _\(\Do{
G RN ) FCEOR N G B

bic (e-36-)
2_<| -3)TC

C () ¢ (e )
- (oHAc) Ta:\ (Li:l\} + L?_:,&:/ O Lu%x) G}*{))

— (s 17! ( 1) by (T )
OA% bl J \ i)






