
c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Symbolic execution based test-patterns

generation algorithm for hardware Trojan detection

Lixiang Shen

a , b , ∗, Dejun Mu

a , Guo Cao

c , d , Maoyuan Qin

a ,
Jeremy Blackstone

e , Ryan Kastner

e

a School of Automation, Northwestern Polytechnical University, Xian 710072, PR China
b School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, Jiangsu,
PR China
c School of Management, Northwestern Polytechnical University, Xian 710072, PR China
d School of Economics and Management, Changzhou Institute of Technology, Changzhou 213032, Jiangsu, PR China
e Department of Computer Science and Engineering at the University of California, San Diego, CA 92093-0404,
United States

a r t i c l e i n f o

Article history:

Received 10 January 2018

Revised 1 June 2018

Accepted 9 July 2018

Available online 17 July 2018

Keywords:

Hardware Trojan

Symbolic execution

Satisfiability modulo theory

Metamorphic testing

Control flow graph

a b s t r a c t

Hardware Trojan detection is a very difficult challenge. However, the combination of sym-

bolic execution and metamorphic testing is useful for detecting hardware Trojans in Verilog

code. In this paper, symbolic execution and metamorphic testing were combined to detect

internal conditionally triggered hardware Trojans in the register-transfer level design. First,

control flow graphs of Verilog code were generated. Next, parallel symbolic execution and

satisfiability modulo theories solver generated test patterns. Finally, metamorphic testing

detected the hardware Trojans. The work used Trust-Hub benchmarks in experiments.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As modern embedded system design becomes more complex,
malicious insiders have more opportunities to modify the
hardware with hardware Trojans. Hardware Trojans are a type
of malicious code that cause insertions, deletions and modi-
fications to the original hardware design. They can threaten
integrity, confidentiality and availability by altering the origi-
nal function of the design, leaking sensitive information (Jin
and Makris, 2010) and reducing the reliability of the hardware.
∗ Corresponding author at: School of Automation, Northwestern Poly
E-mail addresses: 2016100110@mail.nwpu.edu.cn , shenlx@czu.cn (L

qinmaoyuan@mail.nwpu.edu.cn (M. Qin), jblackst@ucsd.edu (J. Blackst

https://doi.org/10.1016/j.cose.2018.07.006
0167-4048/© 2018 Elsevier Ltd. All rights reserved.
Hardware Trojans can cause very serious security problems
(Li et al., 2016) in many industries. Nissim et al. (2017) de-
scribed several USB hardware Trojans which installed back-
doors, emulated a keyboard or mouse and exfiltrated data.

A hardware Trojan is usually composed of two parts: a
trigger and payload. Triggers can activate payloads when a
special condition is satisfied. The condition of a trigger is
usually satisfied with very low-probability, so a payload can
be activated with rare probability. When payload circuits are
activated, malicious activities will occur. The aim of hardware
Trojan detection is finding triggers and payloads. In different
technical University, Xian 710072, PR China.
. Shen), mudejun@nwpu.edu.cn (D. Mu), caog@czu.cn (G. Cao),

one), kastner@ucsd.edu (R. Kastner).

https://doi.org/10.1016/j.cose.2018.07.006
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.07.006&domain=pdf
mailto:2016100110@mail.nwpu.edu.cn
mailto:shenlx@czu.cn
mailto:mudejun@nwpu.edu.cn
mailto:caog@czu.cn
mailto:qinmaoyuan@mail.nwpu.edu.cn
mailto:jblackst@ucsd.edu
mailto:kastner@ucsd.edu
https://doi.org/10.1016/j.cose.2018.07.006

268 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0

d
m
t
o
v
b

H

T
a
c
w
i
d
t
t
p
S
a
f
i

t
n
a
d
b
l
i
C

t
R
T
a
a
m
p
g

(

(

(

(

S
n
f
t

p
m
b
p
a

2

2

T
h
d
a
y
e
t
t
c
j
s
a
c
s
m
m
i

c
m

2

T
e

C
i
G
t
t
g
D
t
t
m
p

T
s
d
t

S
w
s
m
t
w
t

g
e

esign objects, Trojans have different characteristics. A trigger
ay be classified as either an external trigger or an internal

rigger. An internal-trigger uses an activation condition based

n a particular input pattern, an internal logic state or counter
alue (Tehranipoor and Koushanfar, 2010). Time and data can

e used as activation conditions of an internal-trigger.
ardware Trojans triggered with time are called time-bombs.
ime-bombs cause serious threats to many high security
reas because they are only affected by the internal system

lock. System clocks do not need to be controlled by attackers
ho have to access to a hardware system. If a time-bomb

s activated after a very long time, it will be very difficult to
etect it because the testers may not have enough time to
est all the code for time-bombs. Although formal validation

echniques can verify all possible input values, it cannot
rove that a time-bomb will never go off (Waksman and

ethumadhavan, 2011). Hardware Trojans triggered with data
re called cheat codes. Cheat codes are the keys to identi-
ying the payload of hardware Trojans. This work detects
nternal-trigger hardware Trojans.

Up to now, most literature focuses on post-fabrication de-
ection which analyses IC chips, such as side channel tech-
ology. However, designers usually implement the functions
t register-transfer level (RTL) code. Trojans inserted in the
esign at the register-transfer abstraction level or higher can

e detected in RTL design. If Trojans are inserted in the gate-
evel netlist or later design stages, they can be detected by us-
ng equivalence checking tools for original RTL code (Fern and

heng, 2016).
The aim of this study was to generate efficient test pat-

erns for detecting internally triggered hardware Trojans in

TL code. We proposed a test generation method for hardware
rojans in RTL code. First, the synthesizable Verilog code was
nalyzed to generate the control flow graphs (CFGs). Next, par-
llel symbolic execution was implemented and a satisfiability
odulo theories (SMT) solver was used to generate the test

attern. Finally, metamorphic testing detected internal trig-
ered hardware Trojans by using the test pattern.

The contributions of our method include:

1) We generated more precise and effective CFGs by repre-
senting a Verilog statement as a node of a CFG.

2) We implemented a parallel symbolic execution algorithm

for the synthesizable Verilog code. The algorithm gener-
ated test patterns which could detect hardware Trojans.

3) Verilog expressions were converted to SMT-LIBv2 expres-
sions. SMT-LIBv2 is supported by many popular SMT

solvers, making it very flexible to choose an SMT solver to
implement our method.

4) Metamorphic testing was used to detect hardware Trojans.
There is no need to use a golden circuit to compare the
outputs of a Design Under Test (DUT) because metamor-
phic testing just verifies one or some metamorphic rela-
tionships among inputs and outputs.

The rest of the paper has the following structure: in

ection 2 we discuss the hardware Trojan detection tech-
ologies in post-fabrication stage, physical design stage and

unctional design stage. In Section 3 we describe the de-
ails of our method which include the implementation of two
hases: parallel symbolic execution based test generation and

etamorphic testing. In Section 4 we analyze the Trust-Hub
enchmarks by our method. In Section 5 we discuss the ex-
erimental results and conclude the features of our method

s well as future work.

. Background

.1. Detecting hardware Trojans in IC chips

he detection difficulty is highest at this stage because of pro-
ibitive time and cost requirements (Jacob et al., 2014). Current
etection techniques mostly focus on post-fabrication stages
nd use a golden chip as a reference model. Side channel anal-
sis and logic tests are two approaches in this stage (Bhunia
t al., 2014). The side channel analysis can passively detect
he hardware Trojan’s side channel signal. Logic tests activate
he hardware Trojans by using appropriate test patterns. Side
hannel analysis has been widely used to detect hardware Tro-
ans because the inserted Trojans would affect the power con-
umption (Shende and Ambawade, 2016), current, signal delay
nd electromagnetic emanation (Ngo et al., 2015) of infected

ircuits. Unfortunately, side channel analysis requires long
imulation time and relies on a golden model to compare the
easured parameters for identifying a Trojan-inserted one. In

any situations, it is difficult to obtain a golden model. Even

f a golden model can be used, a small Trojan in a large cir-
uit is very difficult to detect by side channel analysis because
odern IC chips are becoming more and more complex.

.2. Detecting hardware Trojans in gate-level netlists

he detection difficulty at the gate-level is medium (Jacob
t al., 2014) because the netlist is used to produce IC chips.
ompared with chips, gate-level netlists provide more design

nformation. While many ATPG (Automatic Test Pattern

eneration) tools are used at the gate-level, traditional ATPG

ools are not useful for detecting hardware Trojans because
heir activation probability is very low. Random pattern test
eneration was proposed by Xue et al. (2014) dividing the
UT into regions based on heuristic partitions to reduce

he analysis complexity. After this, a sequence of test vec-
ors generated the ordering test vectors which introduced

aximum switching activities in the regions. Finally, power
orts were placed for localized transient current analysis.
he generation of the test patterns was based on the circuit’s
tructure and the power dissipation should be monitored

uring scan test. Some random algorithms have been used

o generate the test patterns, such as the Genetic Algorithm.
aha et al. (2015) proposed a Genetic Algorithm based ATPG

hich was improved to detect small combinational and

equential hardware Trojans. The Genetic Algorithm detected

any trigger conditions which were hard to be excited and

he remaining unresolved trigger conditions were handled

ith a SAT(Boolean satisfiability) tool. The SAT tool returned

he input vectors when trigger conditions were satisfiable.
Random methods are very time-consuming and cannot

uarantee finding Trojans in limited amounts of time. Wang
t al. (2016) proved this conclusion by some experiments and

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0 269

evaluated the signal probability to judge rare events which
triggered small combinational Trojans. Test patterns were
generated by comparing the probability with a threshold. The
challenge of this method was how to find a compact set of
patterns that cover all rare events.

Besides test pattern generation, some other methods have
been proposed to detect hardware Trojans in netlists, such as
information flow technology and pattern matching. Gate-level
information flow tracking (Hu et al., 2014) realized the infor-
mation flow technology in a gate-level circuit. By adding secu-
rity labels to input signals, Gate-level information flow track-
ing generated a new gate-level circuit with security lattices. By
tracking the information flow, new gate-level circuits are able
to detect hardware Trojans. Although this approach is effec-
tive, adding labels to the original circuit increasing the com-
plexity of the original netlist by 2 ̂ n . Here, “n ” was the number
of input signals.

2.3. Detecting hardware Trojan in RTL design

RTL code is synthesized by the tools to output the gate-level
netlist. The gate-level circuit becomes very complex even with
simple RTL code. Compared to the netlist, RTL code is more
concise and easier to analyze. Jacob et al. (2014) thought that
Trojan insertion in the RTL code was relatively easier than
netlists and IC chips, and had a lower cost. The cost for Trojan
detection in RTL code was lower than netlists and IC chips . It
is very easy to insert hardware Trojans in RTL code, and it can
be predicted that more and more RTL hardware Trojans will be
designed in RTL code (Zhang and Xu, 2013). Our work focuses
on Trojans in RTL code.

Traditional tools, such as ATPG, are not useful for RTL code
because they are based on gate-level techniques (Mirzaei et al.,
2013). To solve this, Banga and Hsiao (2010) proposed a Tro-
jan detection technique in third party RTL using ATPG tools
and equivalence checking. Mutation testing was used to de-
tect hardware Trojans in Unspecified Functionality (Fern and
Cheng, 2016). Mutation testing inserts artificial errors into the
design code. If a mutation is detected, the test vector is useful.
Otherwise, a new test vector should be generated. One draw-
back of mutation analysis is it’s long run-time and the large
manual effort required to analyze undetected mutants.

Unspecified hardware Trojans never violate the design
specification because they do not alter the logic functions
specified (Fern et al., 2017). To handle this issue, Fern used
PyVerilog to directly analyze Verilog/VHDL code to detect
unspecified hardware Trojans. SMT or boolean formulas for
primary outputs were built from traversing the data-flow
graph by PySMT. The formulas for “dangerous” functionality
were transformed to satisfiability problems. If a formula
was satisfied, the signal was flagged as dangerous. A mutual
approach was used to identify (signal, condition) pairs which
were the key to detecting unspecified hardware Trojans.
PyVerilog (Takamaeda-Yamazaki, 2015) is a Hardware Design
Processing Toolkit, which is written in Python for Verilog.
This open-source toolkit consists of four libraries includ-
ing a parser, data-flow analyzer, control-flow analyzer and
Verilog code generator. Unlike PyVerilog, we implemented a
control-flow analyzer by using Antlr4 and the outputs of our
control-flow graph are different from PyVerilog. A node in our
control-flow graph represents a statement instead of an
operator or operand.

Some other methods which don’t use test vectors have
been proposed. Based on the principle of GLIFT, RTLIFT
(Ardeshiricham et al., 2017) precisely measured all digital
flows through RTL designs by adding Information Flow Track-
ing to the original Verilog code. The approach formally proved
security properties related to integrity, confidentiality and
logic side channels. For each operation, the number of output
signals became twice of original input signals. The increas-
ing number of input signals may increase the complexity and
scale of original design circuit.

3. The symbolic execution based test pattern

generation

As illustrated in Fig. 1 , our method is composed of two phases.

Phase 1. The parse-tree of synthesizable Verilog code was
generated by Antlr4 (Parr, 2013). Next, the CFGs of Verilog code
were generated by our work. Based on the CFGs, parallel sym-
bolic execution technology was implemented to get Path Con-
ditions(PCs). PCs were solved with an SMT solver and the sat-
isfiable test vectors were generated.

Phase 2. The satisfiable test vectors were analyzed with meta-
morphic testing to detect hardware Trojans.

In Phase 1, symbolic execution was used to discover the re-
lationship between input variables and output variables. Ob-
taining the relationship is key to generating the test vectors
which can discover Trojans. King (1976) proposed symbolic
execution for program testing. Symbolic execution is a very
useful program analysis technique. High-coverage test suites
can be generated by symbolic execution and deep errors can
be found too. It becomes practical because of the advances
of constraint satisfiability. The basic idea is to represent the
values of variables with the symbolic values of input vari-
ables. Symbolic execution can be implemented by the control
flow of a program. Each execution path has a path condition
which is a symbolic path constraint. During the process of
symbolic execution, symbolic variables are mapped to sym-
bolic expressions and Path Conditions(PCs). With the help of
an SMT solver, PCs are solved. If a PC is satisfiable, an SMT
solver can discover the values of input variables. A test vector
set is generated according to the execution paths of the pro-
gram. A symbolic execution path is composed of a sequence of
conditional statements which are obtained from control flow
graphs.

SMT can solve constraint-satisfaction problems. SMT is the
core theory to solve the problems in many application areas,
such as program analysis, test generation, verification. Mod-
ern SMT solvers decide the satisfiability of conjunctions of
literals (De Moura and Bjørner, 2011). SMT provides a much
richer modeling language than SAT. SMT-LIB calls an SMT
solver that implements a procedure for satisfiability modulo
theory (Barrett et al., 2017). SMT-LIB provides standard rigor-
ous descriptions of background theories used in SMT systems,
and it also develops and promotes common input and output
languages for many different SMT solvers. Now SMT-LIBv2 is

270 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0

Fig. 1 – RTL test generation and Metamorphic testing hardware Trojan detection.

s

S

i
a
f
o
u
a
p
r
r
m
g
t
o

t
s

s

g
s

3

T
f
t
s

3

D

C

E

i

(
(
(

(
(

3

D

r
e

(
(

(

(

(

3
I
a
t
a
i
c
f
i

f

upported by many SMT solvers, such as Z3, Alt-Ergo, raSAT,
MTInterpol, SMT-RAT, Yices.

In Phase 2, the test generation was used to discover Trojans
n RTL code. Usually, the outputs of test vectors are observed

nd used to compare the expectation results. In this study, we
ocused on metamorphic relationships rather than the value
f output variables. Metamorphic testing (Chen et al., 1998) is
sed to check the correctness in software and alleviate the or-
cle problem. This method checks the relationships among in-
uts and outputs to discover abnormal code in programs. The
elationships are called metamorphic relations. Metamorphic
elations are the intrinsic properties of a program. A meta-

orphic relation violation refers to a checked error in a pro-
ram (Yi et al., 2013). For example, let us consider a program

hat implements the cosine function. One of the properties
f a cosine function is: cos(x) = cos(− x). If there is the rela-
ion between inputs: x 1 = x 2 , the relation of outputs should

atisfy cos(x 1) = cos(− x 2). If the relation of outputs does not
atisfy cos(x 1) = cos(− x 2), some faults must exist in the pro-
ram. Metamorphic relations should be built according to the
pecifications of design.

.1. Test generation for Verilog code

he control flow graph generated in this study was different
rom PyVerilog. Usually a node in a CFG represents an opera-
or or a variable. In our work, a node in a CFG represented a
tatement in Verilog code.

.1.1. The node of a CFG

efinition 1. a control flow graph is a directed graph,
FG = < V, E > . Where V is the set of vertices of the CFG and
 is the set of edges of the CFG. A vertex v,v ∈ V , has the follow-

ng characteristics: C
1) v is a quadruple(S, T, PRE, NEXT).
2) S is a statement in Verilog code.
3) T is the type of S. We define the types of synthesizable Ver-

ilog statements, such as ALWAYS and ALWAYS_END. An

ENTER node is added to start the CFG, and an EXIT node
is added to end the CFG.

4) PRE is the set of previous nodes of S.
5) NEXT is the set of next nodes of S.

.1.2. The edge of a CFG

efinition 2. An edge e = < v, u > , e ∈ E, v ∈ V, u ∈ V is the control
elation between two nodes when Verilog code execute s . An

dge e has the following characteristics:

1) The edge between two control nodes is a control relation.
2) The edge between a control node and an assign node is a

control relation.
3) The edge between two assign nodes is an execution se-

quence, not a control relation.
4) There is parallel execution among the statements of “al-

ways”, “instantiation” and “assign”.
5) Nodes in PRE and NEXT can be found by control region of

nodes and execution sequence.

.1.3. Control flow graph(CFG) generation for Verilog code
n Algorithm 1 , function CFGGeneration() read a Verilog file
nd extracted the basic grammar information from a parse
ree. The most important grammar information for a node in

 CFG includes node.index,node.controlIndex,node.type. Node.index
s the index of a statement. Node.controlIndex is the index of
ontrol statement of the current node. The main grammar in-
ormation of the lines 94–101 in the Appendix B was listed

n Table 1 . The control relationship is described in Fig 2 . The
unction connectControlFlowListVariable() created the edge of
FG.

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0 271

Fig. 2 – The CFG of uart.v (drawn by Graphviz).

3.1.4. Parallel symbolic execution

The symbolic execution of Verilog code is described in
Algorithm 2 . Algorithm 2 is a recursive function. The func-
tion fileControlFlowList() is the start of the entire analy-
sis. The input of the algorithm is a synthesizable Verilog
file(VC.v). The CFGs of VC.v were generated by Algorithm
1 . Next, the filename of instantiation statements were ob-
tained and the instantiation nodes were analyzed by call-
ing fileControlFlowList(). After the code of instantiation
files(subModuleVC.v) were analyzed, the PCs(subPCs) of non-
input variables were returned. When all the subPCs were re-
turned, the parallel symbolic execution thread symbolExecu-
tionThread() started to analyze the always statements and
continuous assign statements. The threads returned the PCs
of variables at the left of statements.

A flag variable, nonInput_variable.isDone , would be set
“true” if the PCs of a non-input variable were obtained.
Input_variable.isDone would be set “true” in the stage of
Table 1 – The main grammar information of Verilog code.

Node Node.index

94 always @(posedge sys_clk or negedge
sys_rst_l) begin

3

95 if (∼sys_rst_l) begin 4
96 rec_dataH = 0; 5
97 end
98 else begin 6
99 rec_dataH = rec_dataH_temp; 7
100 end 8
101 end 9
initialization. When nonInput_variable.isDone was set “true”,
the sub-threads which were halted because the nonIn-
put_variable.isDone was equal to “false” would continue to run.

An optimization during the progress of parallel symbolic
execution is possible. If PCs are not satisfiable, they may be
deleted during symbolic execution, reducing the number of
PCs and consequently the execution time and memory re-
quired.

3.1.5. Loop dependency problem and randomizing internal
variables
Loop dependencies are a complex situation in RTL code. For
example, the code in Listing 1 has loop dependencies because
the variable “count_in” exists at both sides of “ < = ” at the
same time. “count_in” is a non-input variable.

During symbolic execution, we replaced the variable on
the left side of an assignment with the variable on the
right side. If a variable is on both sides of an assignment,
Node.controlIndex Node.type

0(ENTER) ALWAYS

3 IF
4 ASSIGN_BLOCK

4 ELSE
6 ASSIGN_BLOCK

4 IF_END

3 ALWAYS_END

272 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0

Algorithm 1 – CFG generation.

Input: synthesizable verilog code(filename.v)
Output: CFG

CFG CFGGeneration(filename.v)
{

ENTER → CFG; // add ENTER node into CFG

Walk parse tree of filename.v and create v, v → CFG;
EXIT → CFG; // add EXIT node into CFG

Get v from CFG;
while (! (all nodes are handled))
{

u ← CFG; //get u from CFG ;
//Adjust the PRE and NEXT of v and u
connectControlFlowListVariable();
v ← u ; // the value of u overwrites the value of v

}
Breadth-first traverses CFG to generate the DOT files of CFG;
Draw CFG with DOT files;
return CFG;

}

i
n
a
t

T
a
c
a
t
“
“
e
a
“

b
a
i
g
c
w
“
M
s
f
0
fi
v
d
w
a

o
i
a
c
u
c

Algorithm 2 – parallel symbolic execution.

Input: synthesizable verilog code(VC.v)
Output: the set of PC

PC fileControlFlowList(VC.v)
{

CFG ← CFGGeneration(VC.v);
for (each INSTANTIATION node)
{

subPC = fileControlFlowList(subModuleVC.v);
noninput_variables.PC ← subPC ;

}
return noninput_variables.PC ← symbolExecution(CFG);

}
PC symbolExecution(CFG)
{

initialize noninput_variables.PC ;
input_variable.isDone = true;
nonInput_variable.isDone = false;
for (each ALWAYS or ASSIGN_CONTINUOUS node)

//Parallel execute sub-thread
noninput_variables.PC ← symbolExecutionThread(node_index ,
CFG); return noninput_variables.PC ;

}
PC symbolExecutionThread(node_index , CFG)
{

root ← node_index ;
Depth-first traverses CFG, start from root ;
while (Depth-first traverse not end)
{

get a node from CFG; // assign statement will be handled
if (node is an assign statement)
{

for (each variable in the right of statement)
{

while (variable.isDone = = false)
hang-up current symbol execution thread;

}
}
PC ← replace noninput_variables at the right of statement with

input_variables ;
if (PC is satisfiable) update left_variables.PC ;

}
left_variables.isDone = true;
return left_variables.PC ;

}

Listing 1 – A loop dependency in Verilog code.

if (count_in = = 32 ′ hffffffff) begin
DataSend_ena < = 1 ′ b1;
count_in < = 32 ′ b0;

end
else

count_in < = count_in + 1 ′ b1;

a
s
f
n
b
b

t means the variable is replaced by itself. The result can-
ot be solved by symbolic execution which uses input vari-
bles and constants to express an output variable. As an in-
ernal counter, “count_in” is only affected by the system clock.
he system clock is a special signal which cannot be directly
dded to the expression of “count_in” because the system

lock variable “sys_clk” never appears in the right side of
n assignment. In our experimental Verilog code there are
wo assignments about “count_in”: “count_in < = 32 ′ h0” and

count_in < = count_in + 1 ′ b1”. If “count_in” is replaced with

0”, the symbolic expression can be solved during symbolic
xecution. Replacing “count_in” with “count_in + 1” leads to
n endless loop and symbolic execution cannot go on because
count_in” isn’t an input variable or constant.

To solve the problem of loop dependencies, during sym-
olic execution we converted “count_in” into a random vari-
ble which was regarded as an input variable causing some
nternal variables to become global random variables. The
lobal random variables revealed some important internal
onditions. For the code in Listing 1 , “count_in” was replaced

ith “RANDOM_filename_M_count_in”. The path condition

count_in = = 32 ′ hffffffff” equalled “RANDOM_filename_
_count_in = = 32 ′ hffffffff”. The solver got a satisfiable re-

ult: “RANDOM_filename_M_count_in = #xffffffff ”. One PC

or “count_in” was “RANDOM_filename_M_count_in = =

xffffffff” and the other PC for “count_in” was “RANDOM_
lename_M_count_in! = 0xffffffff”. “count_in” is an internal
ariable, the trigger of a hardware Trojan, and a counter which

etermines the value of the system clock. When “count_in”
as equal to “0xffffffff”, a hardware Trojan payload was

ctivated.
Converting internal variables into random variables can

verapproximate the set of values that the variable takes dur-
ng the course of execution, which will lead to spurious states
nd false positives . To solve this problem, we used constraint
onditions to represent the internal variables’ special val-
es range. For example, we represented “count_in > = 5 and

ount_in < = 0xfffffffe” with a constraint condition and we
V
dded the constraint condition to the path conditions after
ymbolic execution. A new path condition has the SMT-LIBv2
ormat: (and (constraint conditions) (a path condition)). If a
ew path condition is not solved, a satisfiable result cannot
e achieved. As a result, the overapproximation problem can

e avoided. To prove the function of constraint conditions, the
erilog code in Listing 1 was modified in Listing 2 .

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0 273

Listing 2 – Verilog code with infeasible trigger.

if (∼sys_rst_l) begin
DataSend_ena < = 1 ′ b0;
count_in < = 32 ′ h5; // count_in’s values from 5 to 0xfffffffe

end
else if (count_in = = 32 ′ hfffffffe) begin

DataSend_ena < = 1 ′ b1;
count_in < = 32 ′ h5; // count_in’s values from 5 to 0xfffffffe

end
else if (count_in < 5) // infeasible condition

count_in < = 32 ′ hfffffffe;
else count_in < = count_in + 1 ′ b1;

Listing 3 – The SMT-LIBv2 statements include the infeasi-
ble condition. They can be tested in Z3 (https://rise4fun.
com/ Z3/ tutorial/ guide). The result is “unsat” (unsatisfi-
able).

(declare-const RANDOM_u_xmit_M_count_in (_ BitVec 32))
(assert (and (and (bvule RANDOM_u_xmit_M_count_in #xfffffffe)
(bvuge RANDOM_u_xmit_M_count_in #x00000005)) (bvult
RANDOM_u_xmit_M_count_in #x00000005)))
(check-sat)

Algorithm 3 – Convert infix expression of Verilog to prefix

expression of SMT-LIBv2.

Input: infix expression(middle) of Verilog
Output: prefix expression(prefix) of SMT-LIBv2
prefix middleToPrefix(middle)
{

tmp ← middle ;
for (each element1 in tmp)
{

tmpPrefix ← element1 ;
if (element1 .type = = OPERATOR)

operatorStack ← element1 ;
}
for (each element2 in tmpPrefix)
{

if (element2 .type = = CONST)
dataStack ← convertToBitVector(element2);

if (element2 .type = = VARIABLE)
dataStack ← element2 ;

if (element2 .type = = OPERATOR)
{

operatorStack ← convertToSMTOperator(element2);
tmpPrefix ← operatorHandle(dataStack,operatorStack);

}
}
return tmpPrefix ;

}

In Listing 2 the constraint condition of “count_in” is “(and
(bvule count_in #xfffffffe) (bvuge count_in 5))”. The path
condition of “count_in < 5” is “(bvult count_in 5)”. The total
path condition is

“(and (and (bvule count_in #xfffffffe)
(bvuge count_in 5))

(bvult count_in 5))”.
During symbolic execution, we replaced “count_in” with

“RANDOM_filename_M_count_in ”, the condition was trans-
formed to:
“(and (and (bvule RANDOM_filename_M_count_in #xfffffffe)

(bvuge RANDOM_filename_M_count_in 5))
(bvult RANDOM_filename_M_count_in 5))”

Listing 3 consists of the SMT-LIBv2 statements used to test
the infeasible condition. The result is unsatisfiable, so no ac-
cording test vector is generated and metamorphic testing does
not handle the infeasible condition.

3.1.6. SMT solver and test generation

PCs which had the Verilog grammar format were converted to
SMT-LIBv2 format in our method. Afterwards, Z3 (Microsoft,
2017) which was a SMT solver from Microsoft Research was
used to solve the PCs.

Convert Verilog statement to SMT-LIBv2 format : A Verilog state-
ment is an infix expression while a SMT-LIBv2 statement is
prefix expression. Z3 cannot solve a PC which is an infix ex-
pression. An infix expression should be converted to a prefix
expression. To solve this problem, Algorithm 3 was proposed.
During the conversion, Verilog operators were replaced with
SMT-LIBv2 operators. The operator conversion between Ver-
ilog and SMT-LIBv2 are listed in Appendix A .

The function convertToBitVector(element) changed the for-

mat of “element ” to SMT-LIBv2. The function convertToSMT-
Operator(operator) converted the “operator ” of Verilog to SMT-
LIBv2 operator. The function operatorHandle() dealt with the
priority of operators.

For example, an infix expression of Verilog,
(rec_dataH_rec = = xmit_dataH) && (rec_dataH_rec = =

{x_START,x_WAIT,x_SHIFT[1:0]}), was converted to prefix
expression SMT-LIBv2 :

(add (= rec_dataH_rec xmit_dataH)
(= rec_dataH_rec

(concat x_START (concat x_WAIT

((_ extract 1 0) x_SHIFT))))).
Test generation : If a PC was satisfiable, the values of in-

put variables were obtained. For example, after Z3 solved the
statement:

(rec_dataH_rec = = xmit_dataH) && (rec_dataH_rec = = 76),
the result from the Z3 was “rec_dataH_rec = xmit_dataH
and rec_dataH_rec = 76”. We got an input vector which in-
cluded “xmit_dataH = 76”(“rec_dataH_rec” is not an input
variable).

3.2. Metamorphic testing

To verify the test generation generated in Section 3.1 , meta-
morphic testing was used to detect the hardware Trojan. In
our research, Trust-Hub RS-232 benchmarks were used, so we
defined the metamorphic relation of RS-232 as following:

(X i = X j) ⇒ (Y i � Y j = 0) (1)

where X is an 8-bits data input which should be sent out by
a sender. Y is an 8-bit data output which is acquired by the
receiver. The function of RS-232 is that a sender transmits X

https://rise4fun.com/Z3/tutorial/guide

274 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0

Table 2 – The Trojan description of T300, T400, T500 (Shakya et al., 2017 ; Salmani et al., 2013).

T300 T400 T500

Trojan trigger Trigger is a 32-bit
counter(“count_in”). When
“count_in” reaches 32 ′ hFFFFFFFF,
the payload becomes activated.

Trigger compares transmitted and
received data(“xmit_dataH”,
“rec_dataH_rec”). If both equal
8 ′ h4C the payload becomes
activated.

Trigger is a 32-bit
counter(“count_in”). When
“count_in” reaches 32 ′ hFFFFFFFF
the payload becomes activated.

Trojan payload Payload replaces the 7th bit of all
transmitted data after the
payload was activated.

4 bits of received data are replaced
by the payload.

“xmit_doneH” is stuck at ‘0 ′ .

Insertion phase design design design
Abstraction level Register-transfer level (RTL) Register-transfer level (RTL) Register-transfer level (RTL)
Activation mechanism Internally time-based triggered Internally

conditionally(data-based)
triggered

Internally time-based triggered

t

b

i

“
n
a
“
a
s
s

“

“
d

t

4

T
d
t
(
T
e
t
c

T
t
d

T

T
h

4

4
T
fi

Table 3 – The number of test vectors of each output vari-
able.

Output variable The number of test vectors

uart_M_rec_dataH 3
uart_M_uart_XMIT_dataH 6
uart_M_xmit_doneH 4
uart_M_rec_readyH 4

n
“
fi

g
s

t
n
i
v
l

n

4
T
w

s
t

r
f
t
t
t
a
s
n
D
“
e
i
s

o a receiver who gets X as Y . If X is received correctly, Y should
e equal to X . According to formula (1), let X i = X j , then

if (Y i �Y j = 0), Y i and Y j may be normal,

f (Y i �Y j 	 = 0), Y i and Y j are abnormal.
Because “0 �1 = 1” and “0 �0 = 0”, “0” can detect abnormal

1” by XOR. Because “1 �0 = 1” and “1 �1 = 0”, “1” can detect ab-
ormal “0” by XOR. So when 8-bits of “0”(00000000) are sent to
 receiver, “00000000” should be received. If Y is not equal to
00000000”, abnormal “1”s and their locations can be detected

ccording to the result of (Y i �Y j). If 8-bits of “1”(11111111) are
ent, abnormal “0”s and their locations can be detected in the
ame way.

For example, “X = (0000,0000) 2 ” was sent twice, then

Y i = (0000,0000) 2 ” and “Y j = (0100,0111) 2 ” were received.
Y i �Y j = (0100,0111) 2 ” meant that four abnormal “1”s were
etected at 6th,2th,1th,0th bit.

In-fact, it is very important to test the metamorphic rela-
ion in many network protocols.

. Experiments and results

he time-bomb and cheat codes in RTL codes are difficult to
etect. To detect them, symbolic execution and metamorphic
esting were used in this study. The Trust-Hub benchmark
 Salmani et al., 2013; Shakya et al., 2017) RS-232-T300, T400 and

500 were analyzed. Compared with PyVerilog, our work gen-
rated more precise CFGs and disclosed the relationships be-
ween statements. By using an SMT solver, test patterns were
ompacted effectively which increased the speed of analysis.
he Trojans in the three benchmarks were detected by the

est vectors and the abnormal bits of output variables were
etected.

Three Verilog files were analyzed: uart.v, u_xmit.v, u_rec.v.
he source code of uart.v in T300 was attached in Appendix B.
able 2 describes the details of three Trojans. T300 and T500
ad time triggers. T400 had a data trigger.

.1. Test generation for Verilog code

.1.1. Control flow graph generation for Verilog code
o identify the variables in all Verilog files, we added a pre-
x before each variable. The prefix has the format: “file-
ame_M_”. So the variables in uart.v would add a prefix
uart_M_”. If a variable is changed to a random variable, a pre-
x “RANDOM_” will be added.

Before symbolic execution, the CFGs of RTL code were
enerated. The CFG of “uart.v” in Trust-Hub RS-232 T300 is
hown in Fig. 2 . The name of node has the format: “node-
ype_lineNo”. So “INSTANTIATION_79” in Fig. 2 means the
ode type is INSTANTIATION and the instantiation statement

s at line 79 in uart.v. “[uart_M_rec_dataH]” meant that the
ariable “rec_dataH” was changed between always statements
ine 94 and 101. ENTER is the first node and EXIT is the last
ode.

.1.2. Symbolic execution and test generation

he test vectors were generated for each output variable. It
as convenient to test one output signals or all output signals.

Trust-Hub RS-232 T300 : Table 3 shows the results of
ymbolic execution. In fact, some of the test vectors are
he same for different output variables. For instance,
eset signal “sys_rst_l” resets the whole circuit and af-
ects all outputs. Table 4 shows the detail of test vec-
ors of “uart_M_uart_XMIT_dataH ”. The first test vec-
or means that the reset signal “uart_M_sys_rst_l” (in

op file) is enabled. The second test vector means that
n input signal “xmitH” in uart.v was “0” and the re-
et signal “uart_M_sys_rst_l” is disabled. But two inter-
al signals “RANDOM_u_xmit_M_count_in” and “RAN-
OM_u_xmit_M_bitCell_cntrH” must satisfy conditions

0xFFFFFFFF” and “15”, respectively. When “count_in” was
qual to “0xFFFFFFFF”, it activated a Trojan payload by setting
nternal signal “DataSend_ena = 1”. Detection detail was de-
cribed in Section 4.2 . “uart_M_xmit_dataH(random)” means

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0 275

Table 4 – The test vectors for “uart_M_uart_XMIT_dataH”.

Input Vectors Explanation

1 uart_M_sys_rst_l = 0 Reset
2 uart_M_sys_rst_l = 1 Activate the hardware Trojan

uart_M_xmitH = 0
RANDOM_u_xmit_M_count_in = 0xFFFFFFFF
RANDOM_u_xmit_M_bitCell_cntrH = 15
uart_M_xmit_dataH(random)

3 uart_M_sys_rst_l = 1
uart_M_xmitH = 1
RANDOM_u_xmit_M_count_in = 0xFFFFFFFF
RANDOM_u_xmit_M_state = 0
uart_M_xmit_dataH(random)

4 uart_M_sys_rst_l = 1 Normal output
uart_M_xmitH = 0
RANDOM_u_xmit_M_bitCell_cntrH = 15
uart_M_xmit_dataH(random)

5 uart_M_sys_rst_l = 1
uart_M_xmitH = 1
RANDOM_u_xmit_M_bitCell_cntrH = 15
uart_M_xmit_dataH(random)

6 uart_M_sys_rst_l = 1
uart_M_xmitH = 1
RANDOM_u_xmit_M_bitCell_cntrH = 1
uart_M_xmit_dataH(random)

Listing 4 – Trigger circuit in T300 (Shakya et al.,
2017 ; Salmani et al., 2013).

always @ (negedge sys_rst_l or posedge xmitH) begin
if (∼sys_rst_l) begin

DataSend_ena < = 1 ′ b0;
count_in < = 32 ′ h0;

end else if (count_in = = 32 ′ hffffffff) begin
DataSend_ena < = 1 ′ b1;//trigger
count_in < = 32 ′ h0;

end else
count_in < = count_in + 1 ′ b1;

end

Listing 5 – Trigger circuit in T400 (Shakya et al., 2017 ;
Salmani et al., 2013).

always @(posedge xmit_doneH or negedge sys_rst_l) begin
if (∼sys_rst_l) begin

cntr < = 1 ′ b0;
end
else begin

if((rec_dataH_rec = = xmit_dataH) && (rec_dataH_rec = =

{x_START, x_WAIT, x_SHIFT[1:0]})) // trigger
cntr < = 1 ′ b1;

else
cntr < = 1 ′ b0;

end

Table 5 – The number of test vectors of each output vari-
able.

Output variable The number of test vectors

uart_M_rec_dataH 3
uart_M_uart_XMIT_dataH 6
uart_M_xmit_doneH 5
uart_M_rec_readyH 5

Table 6 – The test vectors for “uart_M_rec_dataH”.

Input vectors Explanation

1 uart_M_sys_rst_l = 0 Reset
2 uart_M_sys_rst_l = 1 Activate the hardware Trojan

uart_M_xmit_dataH = 76
uart_M_uart_REC_dataH = 0

Others Normal output
that the input variable “uart_M_xmit_dataH” could be any
value in its value ranges. “RANDOM_u_xmit_M_state = 0”
means the start state of a finite-state machine in u_xmit.v.
Listing 4 shows the source code of trigger. We detected
this internal trigger condition by randomizing internal vari-
able “count_in” in u_xmit.v during the process of symbolic
execution.

Trust-Hub RS-232 T400 : Listing 5 shows the
code of the trigger in T400. The trigger’s con-
dition is “(rec_dataH_rec = = xmit_dataH) &&
(rec_dataH_rec = = {x_START, x_WAIT, x_SHIFT[1:0]})”. The
condition means that input 8-bits “xmit_dataH” was equal
to output 8-bits “rec_dataH” and both of them were equal to
“76”({x_START, x_WAIT, x_SHIFT[1:0]} = 010 011 00). Table 5
lists the number of test vectors of each output variable. The
second test vector in Table 6 activates the payload. Detection
detail was described in Section 4.2 .

Trust-Hub RS-232 T500 : Listing 6 shows the trigger circuit in
T500. Table 7 lists the number of test vectors of each output
variable. Table 8 lists the test vectors of “uart_XMIT_dataH”

276 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0

Listing 6 – Trigger circuit in T500 (Shakya et al., 2017 ;
Salmani et al., 2013).

always @ (negedge sys_rst_l or posedge sys_clk) begin
if (∼sys_rst_l) begin

DataSend_ena < = 1 ′ b0;
count_in < = 32 ′ h0;

end else if (count_in = = 32 ′ hffffffff) // trigger
DataSend_ena < = 1 ′ b1;

else
count_in < = count_in + 1 ′ b1;

end

Table 7 – The number of test vectors of each output vari-
able.

Output variable The number of test vectors

uart_M_rec_dataH 3
uart_M_uart_XMIT_dataH 5
uart_M_xmit_doneH 3
uart_M_rec_readyH 3

i
t
i

4

A

Y
X

T
a
a
w

H
m

4
I

v

t

i

o
(

t
“
w

X

t

i

9
w

T
d
a

4
T

n

1

a

d

g
l

t
c
l
a

r

4
T
“
t
w

d

e
8
m
s

j
n
t
a

r

n uart.v. The Trojan was activated when the second and

hird test vectors were used. Detection detail was described

n Section 4.2 .

.2. Metamorphic testing

ccording to Section 3.2 , let X = uart_M_xmit_dataH,
 = uart_M_rec_dataH. Input X was used twice. The first
 was X i, and the second X was X j, making X i equal to X j .
he test vectors in Section 4.1 were used after X i was set
nd before X j was set. The abnormal outputs were detected

fter a test vector was used. The object of the experiments
as to test the metamorphic relationship between Y i and Y j .
ardware Trojans were detected according to the results of
etamorphic testing.

.2.1. Trust-Hub RS-232 T300
n Table 9 , Y i is the output of X i before the second and third test
ectors in Table 4 were used and Y j is the output of X j after the
wo test vectors were used. According to the results of (Y i �Y j)
n Table 9 and 8 abnormal outputs were detected. By using “0”,
Table 8 – The test vectors for “uart_M_uart_XMIT_dataH”.

Input vectors

1 uart_M_sys_rst_l = 0
2 uart_M_sys_rst_l = 1

uart_M_xmitH = 0
RANDOM_u_xmit_M_count_in = 0xF
uart_M_xmit_dataH(random)

3 uart_M_sys_rst_l = 1
uart_M_xmitH = 1
RANDOM_u_xmit_M_count_in = 0xF
uart_M_xmit_dataH(random)

Others
ne abnormal “1” was detected at the 7th bit in the result of
 Y i �Y j). Figs. 3 and 4 show the result affected by the Trojan af-
er the test vectors were used. In Fig. 3 the internal variable
count_in” in u_xmit.v reaches “0xFFFFFFFF” at the location

here X was equal to “0 x00” again. Before X j was set “0 x00”,
 i = Y i . After X j was set “0 x00”, some abnormal Y j were de-

ected in Fig. 3 . In Fig. 4 , X was set “0xff” and one abnormal bit
s detected. The data in Fig. 3 is shown in the left part of Table
 and the data in Fig. 4 is shown in the right part. The hard-
are Trojan was detected by the randomized internal variable.
he location of abnormal bits was consistent with the Trojan

escription in Table 2 . The branch coverage of uart.v, u_xmit
nd u_rec.v were 100%, 100% and 93.8%, respectively.

.2.2. Trust-Hub RS-232 T400
here is a data trigger in T400. After X j was set “0 x4c”, two ab-
ormal outputs are detected in the result of (Y i �Y j) in Table
0 . By using “0”, two abnormal “1”s are detected at the 0th
nd 6th bits in (Y i �Y j). By using “1”, two abnormal “0”s are
etected at the 5th and 7th bit. Figs. 5 and 6 were the results
enerated by simulating in QuestaSim 10. The data in Fig. 5 is
isted in the left part of Table 10 and data in Fig. 6 is listed in
he right part. The hardware Trojan was detected by the spe-
ial input value “0 x4c”. The locations of abnormal bits were in

ine with the Trojan description in Table 2 . The branch cover-
ge of uart.v, u_xmit and u_rec.v were 100%, 100% and 93.8%,
espectively.

.2.3. Trust-Hub RS-232 T500
he value of internal variable “count_in” in u_xmit.v reaches
0xFFFFFFFF” before the X was set “0 x00” or “0xff” again. Af-
er “count_in” reached “0xFFFFFFFF” some abnormal outputs
ere detected in Figs. 7 and 8 . By using “0”, eight “1”s are
etected in (Y i �Y j), so all bits are abnormal. By using “1”,
ight “1”s are detected, so all bits are abnormal. Figs. 7 and

 are the results by simulating in QuestaSim 10. The abnor-
al “xmit_done” is found in Figs. 7 and 8 when abnormal re-

ults were detected in (Y i �Y j) in Table 11 . The hardware Tro-
an was detected by the randomized internal variable. The ab-
ormal outputs(“rec_dataH” and “xmit_doneH”) were consis-
ent with the Trojan description in Table 2 . The branch cover-
ge of uart.v, u_xmit and u_rec.v were 100%, 97.6% and 93.8%,
espectively.
Explanation

Reset
Activate the hardware Trojan

FFFFFFF

FFFFFFF

Normal

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0 277

Table 9 – The results generated by QuestaSim 10.1b. Y i are the output of Trust-Hub RS232-T300 before Input vector was
set the value in the second and third test vectors in Table 4. Y j is the output after the two test vectors were set.

Input X Output Y i Output Y j (Y i �Y j) Input X Output Y i Output Y j (Y i �Y j)

0x0 0x0 0 x80 1000,0000 0 xff 0 xff 0 xff 0000,0000
0 x1 0 x1 0 x81 1000,0000 0xfe 0 xfe 0xfe 0000,0000
0 x2 0 x2 0 x82 1000,0000 0xfd 0xfd 0xfd 0000,0000
0 x4 0 x4 0 x84 1000,0000 0xfb 0xfb 0xfb 0000,0000
0 x8 0 x8 0 x88 1000,0000 0xf7 0xf7 0xf7 0000,0000
0 x10 0 x10 0 x90 1000,0000 0xef 0xef 0xef 0000,0000
0 x20 0 x20 0xa0 1000,0000 0xdf 0xdf 0xdf 0000,0000
0 x40 0 x40 0xc0 1000,0000 0xbf 0xbf 0xbf 0000,0000
0 x80 0 x80 0 x80 0000,0000 0 x7f 0 x7f 0xff 1000,0000

Fig. 3 – T300-1.

Fig. 4 – T300-2.

Table 10 – The results generated by QuestaSim 10.1b. The second test vector in Table 6 was used.

Input X Output Y i Output Y j (Y i �Y j) Input X Output Y i Output Y j (Y i �Y j)

0 x 4c 0 x4c 0 x4c 0 0 x4c 0 x4c 0 x4c 0
0 x0 0 x0 0 x41 0100,0001 0xff 0xff 0 x5f 1010,0000
0 x1 0 x1 0 x1 0 0xfe 0xfe 0xfe 0
0 x2 0 x2 0 x2 0 0xfd 0xfd 0xfd 0
0 x4 0 x4 0 x4 0 0xfb 0xfb 0xfb 0
0 x8 0 x8 0 x8 0 0xf7 0xf7 0xf7 0
0 x10 0 x10 0 x10 0 0xef 0xef 0xef 0
0 x20 0 x20 0 x20 0 0xdf 0xdf 0xdf 0
0 x40 0 x40 0 x40 0 0xbf 0xbf 0xbf 0
0 x80 0 x80 0 x80 0 0 x7f 0 x7f 0 x7f 0

Fig. 5 – T400-1.

5. Discussions and conclusions

To generate test patterns for hardware Trojan detection, con-
trol flow analysis, symbolic execution, SMT and metamorphic
testing were used in our work. CFGs were generated by ana-
lyzing the grammar of the Verilog code. By walking the CFGs,
Symbolic execution executed the multi-threads to replace the
non-input variables with input variables and random vari-

ables in PCs. Z3 was used to solve the PCs to discover the sat-
isfiable input vectors. The satisfiable input vectors were de-
tected by metamorphic testing to detect the abnormal outputs
which may be caused by hardware Trojan s .

In our work, the key was the randomizing of the internal
variables during symbolic execution. The randomizing found
out the internal variables which were affected by internal
conditions . Path Conditions including randomizing internal
variables were also constructed, which detected the internal

278 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0

Fig. 6 – T400-2.

Fig. 7 – T500-1.

Fig. 8 – T500-2.

Table 11 – The results generated by QuestaSim 10.1b. The second and third test vectors in Table 8 were used.

Input X Output Y i Output Y j (Y i �Y j) Input X Output Y i Output Y j (Y i �Y j)

0x0 0x0 0 0000,0000 0xff 0xff 0 1111,1111
0 x 1 0 x1 0 0000,0001 0xfe 0xfe 0 1111,1110
0 x2 0 x2 0 0000,0010 0xfd 0xfd 0 1111,1101
0 x4 0 x4 0 0000,0100 0xfb 0xfb 0 1111,1011
0 x8 0 x8 0 0000,1000 0xf7 0xf7 0 1111,0111
0 x10 0 x10 0 0001,0000 0xef 0xef 0 1110,1111
0 x20 0 x20 0 0010,0000 0xdf 0xdf 0 1101,1111
0 x40 0 x40 0 0100,0000 0xbf 0xbf 0 1011,1111
0 x80 0 x80 0 1000,0000 0 x7f 0 x7f 0 0111,1111

c
n
w

l
c
v

s

I
w
w
f
d

A

T
D
t
6
S
2
F

A
o

onditions triggered only by system clock or a special inter-
al constant. Unlike the random pattern test generation, our
ork detects the triggers with more accuracy and certainty,

ess randomness. Because the test vectors are generated ac-
ording to statements branch of RTL code, our method has
ery high branch coverage.

Our work can be used during the process of the RTL de-
ign to discover suspicious conditions and internal variables.
t also provides a more accurate and concise test generation

hich can also be used to detect the design errors in RTL code
ritten by Verilog DHL. This work is a very important base

or future effort to detect the more complex internal time and

ata triggers.

cknowledgments

his work was supported by the National Cryptography
evelopment Fund [grant number MMJJ20170210]; the Na-

ional Natural Science Foundation of China [grant number
1672433] and the Fundamental Research Fund of Shenzhen

cience and Technology Innovation Committee under Grants
01703063000511 and 201703063000517 , the Social Science
oundation of Jiangsu Province[grant number 16GLB014].
ppendix A: The correspondence between Verilog

perators and SMT-LIBv2 operators

Verilog operator SMT-LIBv2 operator

!, ∼ bvnot
∗ bvmul
/ bvudiv
% bvmod
+ bvadd
– bvsub
<< bvshl
>> bvlshr, bvashr
> bvugt, bvsgt
> = bvuge, bvsge
< bvult, bvslt
< = bvule, bvsle
== =

&& and
& bvand
| bvor
^ bvxor
^ ∼ bvxnor
||,or or
,(in {}) concat

c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0 279

Appendix B: The source code of uart.v in

RS-232-T300

79 u_xmit iXMIT(.sys_clk(sys_clk),
80 .sys_rst_l(sys_rst_l),
81 .uart_xmitH(uart_XMIT_dataH),
82 .xmitH(xmitH),
83 .xmit_dataH(xmit_dataH),
84 .xmit_doneH(xmit_doneH)
85);

87 u_rec iRECEIVER (.sys_rst_l(sys_rst_l),
88 .sys_clk(sys_clk),
89 .uart_dataH(uart_REC_dataH),
90 .rec_dataH(rec_dataH_rec),
91 .rec_readyH(rec_readyH)
92);

94 always @(posedge sys_clk or negedge sys_rst_l) begin
95 if (∼sys_rst_l) begin
96 rec_dataH = 0;
97 end
98 else begin
99 rec_dataH = rec_dataH_temp;
100 end
101 end

103 always @(posedge rec_readyH or negedge sys_rst_l) begin
104 if (∼sys_rst_l) begin
105 rec_dataH_temp < = 0;
106 end
107 else begin
108 rec_dataH_temp < = rec_dataH_rec;
109 end
110 end
111 endmodule

R E F E R E N C E S

Ardeshiricham A , Hu W , Marxen J , Kastner R . Register transfer
level information flow tracking for provably secure hardware
design. Proceedings of conference on design, automation &

test in Europe conference & exhibition (DATE); 2017.
p. 1695–700 .

Banga M , Hsiao M . Trusted RTL_ Trojan detection methodology in

pre-silicon designs. Proceedings of IEEE international
symposium on hardware-oriented security & trust; 2010.
p. 56–9 .

Barrett C, Fontaine P, Tinell C. The SMT-LIB standard v2.6. 2017.
Bhunia S , Hsiao MS , Banga M , Narasimhan S . Hardware Trojan

attacks: threat analysis and countermeasures. Proc IEEE
2014;102(8):1229–47 .

Chen TY , Cheung S , Yiu SM . Metamorphic testing: a new

approach for generating next test cases, Technical Report
HKUST-CS98-01. Department of Computer Science, Hong Kong
University of Science and Technology, Hong Kong; 1998 .

De Moura L , Bjørner N . Satisfiability modulo theories. Commun

ACM 2011;54(9):69 .
Fern N , San I , Cheng KTT . Detecting Hardware Trojans in

unspecified functionality through solving satisfiability
problems. Proceedings of Asia & South Pacific design

automation conference; 2017. p. 598–604 .
Fern N , Cheng K . Detecting hardware Trojans in unspecified

functionality using mutation testing. Proceedings of IEEE/ACM
international conference on computer-aided design; 2016.
p. 560–6 .

Hu W , Mu D , Oberg J , Mao B , Tiwari M , Sherwood T , et al .
Gate-level information flow tracking for security lattices. ACM

Trans Des Autom Electron Syst 2014;20(1):1–25 .
Jacob N , Heyszl J , Sigl G , Merli D . Hardware Trojans: current

challenges and approaches. IET Comput Digit Tech

2014;8(6):264–73 .
Jin Y , Makris Y . Hardware Trojans in wireless cryptographic ICs.

IEEE Des Test Comput 2010;27(1):26–35 .
King J . Symbolic execution and program testing. Commun ACM

1976;19(7):385–94 .
Li H , Liu Q , Zhang J . A survey of hardware Trojan threat and

defense. Integr: VLSI J 2016;55:426–37 .
Microsoft. Z3 – guide; 2017. Available from:

http://rise4fun.com/Z3/tutorial/guide
Mirzaei M , Tabandeh M , Alizadeh B , Navabi Z . A new approach for

automatic test pattern generation in register transfer level
circuits. IEEE Des Test 2013;30(4):49–59 .

Ngo XT , Exurville I , Bhasin S , Danger JL , Guilley S . Hardware
Trojan detection by delay and electromagnetic
measurements. Proceedings of design, automation & test in

Europe conference & exhibition, 2015 .
Nissim N , Yahalom R , Elovici Y . USB-based attacks. Comput Secur

2017;70:675–88 .
Parr T . The definitive ANTLR4 reference. Pragmatic Bookshelf;

2013. p. 328 .
Saha S , Chakraborty R , Nuthakki SS , Anshul , Mukhopadhyay D .

Improved test pattern generation for hardware Trojan

detection using genetic algorithm and boolean satisfiability.
Berlin, Heidelberg: Springer; 2015 .

Salmani H , Tehranipoor M , Karri R . On design vulnerability
analysis and trust benchmarks development. Proceedings of
IEEE international conference on computer design (ICCD),
2013 .

Shakya B , He T , Salmani H , Forte D , Bhunia S , Tehranipoor M .
Benchmarking of hardware trojans and maliciously affected

circuits. J Hardw Syst Secur 2017;1(1):85–102 .
Shende R , Ambawade D . A side channel based power analysis

technique for hardware trojan detection using statistical
learning approach. Proceedings of thirteenth international
conference on wireless & optical communications networks,
2016 .

Takamaeda-Yamazaki S . Pyverilog a python-based hardware
design processing toolkit for Verilog HDL. Proceedings of
international symposium on applied reconfigurable
computing; 2015. p. 451–60 .

Tehranipoor M , Koushanfar F . a survey of hardware trojan

taxonomy and detection. IEEE Des Test Comput
2010;27(1):10–25 .

Waksman A , Sethumadhavan S . Silencing hardware backdoors.
Secur Privacy 2011;9(1):49–63 .

Wang SJ , Wei J , Huang SH , Li SM . Test generation for
combinational hardware Trojans. In: 2016 IEEE Asian

Hardware-Oriented Security and Trust(AsianHOST); 2016.
p. 1–6 .

Xue M , Hu A , Li G . Detecting hardware Trojan through heuristic
partition and activity driven test pattern generation.
Proceedings of communications security conference; 2014.
p. 1–6 .

Yi Y , Song H , Yu H , Zhengping R . Study of metamorphic testing. J
Converg Inf Technol 2013;8(8):819–27 .

Zhang J , Xu Q . On hardware Trojan design and implementation at
register-transfer level. Proceedings of IEEE international
symposium on hardware-oriented security & trust; 2013.
p. 107–12 .

http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0011
http://rise4fun.com/Z3/tutorial/guide
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30535-2/sbref0009

280 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 6 7 – 2 8 0

L
S
i
E
r
a

D
e

S
o
c
t
s
t

G
o
r
a
s
c

M
t

d
i
t
r
v

J
e
c
f
i

R
p
D
t
E
w
c
t
o
P
ixiang Shen is currently pursuing the Ph.D. degree from the
chool of Automation, Northwestern Polytechnical University. She

s currently a lecturer with School of Computer Information and

ngineering, Changzhou Institute of Technology. And her current
esearch interests include the hardware security, cyber security
nd risk assessment.

ejun Mu received the Ph.D. degree in control theory and control
ngineering from Northwestern Polytechnical University, Xian,
haanxi, China, in 1994.He is currently a Professor with the School
f Automation, Northwestern Polytechnical University, China. His
urrent research interests include control theories and informa-
ion security, including network information security, application

pecific chips for information security, and network control sys-
ems.

uo Cao is currently pursuing the Ph.D. degree from the School
f Management, Northwestern Polytechnical University. He is cur-
ently an associate professor with school of Economics and Man-
gement, Changzhou Institute of Technology. And his current re-
earch interests focus on the logistics management, theory of de-
ision making.

aoyuan Qin is a Ph.D. student from the School of Automa-
ion, Northwestern Polytechnical University. He received a master
egree of automation control from Newcastle University in UK

n 2010. He is studying for a doctorate in computer science and

echnology at Northwestern Polytechnical University. His current
esearch interests include hardware security analysis and formal
erification.

eremy Blackstone is a Ph.D. student from the Computer Sci-
nce and Engineering, University of California, San Diego. He re-
eived his Bachelor’s and Master’s degree in computer science
rom Howard University in Washington, DC. His current research

nterests include hardware security and fault attacks.

yan Kastner is currently a professor in the Department of Com-
uter Science and Engineering at the University of California, San

iego. He received a Ph.D. in Computer Science at UCLA, a mas-
ers degree (M.S.) in engineering and bachelor degrees (B.S.) in both

lectrical Engineering and Computer Engineering, all from North-
estern University. He leads the Kastner Research Group whose

urrent research interests fall into three areas: hardware accelera-
ion, hardware security, and remote sensing. He is the co-director
f the Wireless Embedded Systems Master of Advanced Studies
rogram. He also co-directs the Engineers for Exploration Program.

	Symbolic execution based test-patterns generation algorithm for hardware Trojan detection
	1 Introduction
	2 Background
	2.1 Detecting hardware Trojans in IC chips
	2.2 Detecting hardware Trojans in gate-level netlists
	2.3 Detecting hardware Trojan in RTL design

	3 The symbolic execution based test pattern generation
	3.1 Test generation for Verilog code
	3.1.1 The node of a CFG
	3.1.2 The edge of a CFG
	3.1.3 Control flow graph(CFG) generation for Verilog code
	3.1.4 Parallel symbolic execution
	3.1.5 Loop dependency problem and randomizing internal variables
	3.1.6 SMT solver and test generation

	3.2 Metamorphic testing

	4 Experiments and results
	4.1 Test generation for Verilog code
	4.1.1 Control flow graph generation for Verilog code
	4.1.2 Symbolic execution and test generation

	4.2 Metamorphic testing
	4.2.1 Trust-Hub RS-232 T300
	4.2.2 Trust-Hub RS-232 T400
	4.2.3 Trust-Hub RS-232 T500

	5 Discussions and conclusions
	 Acknowledgments
	 Appendix A: The correspondence between Verilog operators and SMT-LIBv2 operators
	 Appendix B: The source code of uart.v in RS-232-T300

	Reference

