UC Berkeley
SEMM Reports Series

Title
DRAIN-2DX, DRAIN-3DX and DRAIN-building: base program design documentation

Permalink

bttgs:ggescholarshiQ.orgéucgitem423c4n8gZI

Authors
Prakash, Vipul
Powell, Graham

Publication Date
1993-12-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/23c4n8p7
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
UCB/SEMM-93/16

STRUCTURAL ENGINEERING
MECHANICS AND MATERIALS

DRAIN-2DX, DRAIN-3DX and
DRAIN-BUILDING:

Base Program

Design Documentation

BY

V. PRAKASH
AND
G. H. POWELL

DECEMBER 1993

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA

DRAIN-2DX, DRAIN-3DX and DRAIN-BUILDING:

Base Program Design Documentation
by
V. Prakash

and
G. H. Powell

NOVEMBER 1993

DRAIN-2DX, DRAIN-3DX AND DRAIN-BUILDING

Copyright (c) 1993 Regents of the University of California. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met.

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the above disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the above disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the
following acknowledgement. '

This product includes software developed by the University of California at
Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

ACKNOWLEDGMENTS

This report is largely based on the doctoral dissertation titled, "Dynamic Response
Analysis of Inelastic Building Structures: The DRAIN Series of Computer Programs," by
V. Prakash. The dissertation was completed in December 1992 under the direction of
Professor G. H. Powell of the Department of Civil Engineering. The dissertation
documents the design of the DRAIN programs current at that time. This report takes care
of the modifications that have been made in the DRAIN programs up to the present time.

Development of the DRAIN programs has been supported by the following sponsors.
1. Kajima Corporation of Japan under a CUREE-KAJIMA grant.

2. The National Science Foundation under the Precast Seismic Structural Systems

(PRESSS) grant.
3. The California Department of Transportation.

The support of the sponsors is gratefully acknowledged.

TABLE OF CONTENTS

ACKNOWLEDGEMENTScccoeuiiimimiiiiirinetiiesisssstsssescssssesssssssssessssssssesssssassanns iii
TABLE OF CONTENTSoooriiiiiiniinteniniieinieseesietssensssetessessssnsssssesssassassessassasssensen v
1. INTRODUCTION 1
1.1 THE DRAIN PROGRAMS.......cuiiiiitinieniirnnensecnisssssisstsscestsnsssassessssssssessassans 1
1.2. GENERAL FEATURES OF THE DRAIN PROGRAMS...........coccecurrureurcuenreranne 2
1.3. SPECIAL FEATURES FOR DRAIN-BUILDING.........ccccceccertmremenenrenscaaesaenes 5
1.4. NONLINEAR ELEMENTS........coriiitintninuinnianicennentenesaesneensassassassessessassasssesnes 6
1.5. OBJECTIVES AND SCOPEootiiiiiiiirtietceitsrtnntestsseessesssestanssssessessasssesnes 7
1.6. REPORT LAYOUTcuouuiiiinniiinitintcniiitceesiietsssesaessesnseseessessessassassssssensen 8

2. DATA MANAGEMENT -- DRAIN-2DX AND -3DX 10
2.1. INTRODUCTIONcccouirierumrursriseresinseessensescesssssesessessaessesssssassesssesesssesssssesenns 10
2.2. LABELED COMMONScoooniiintintiniantesiesiesesneessessessessassssssesassasssensessans 10
2.2.1. INtrOQUCHION.....c.ccuvinrierircnininittcrentre e tssesaeseesasenessestassasssessessasaessesnannns 10
222 . File PARAH ..ottt st stsste st ssassasnse st sresnesnesnsenas 10
2.2.3. ASDFRC COIMNIMOM........coersimirirreeressisssseeseeseesuesssssessessessassssssessessassessesssenns 11
2.2.4. ADFREC COMIMON........coerimrirmnreerseruisnssescssessessessesssessessasassssossssssssassessassns 13
2.2.5. AUTO COMMONccorurmsurnerriruenereentrraressassssssesaessaasssossessaesssessessasssssssseses 14
2.2.6. CLINE COIMIMONccoutrvuiiiriiernsneisieresseensecsesssssansssessasssassssessensassssenssenses 16
2.2.7. COLPSE COMINOMc.coouenirirmireessissiscsssssesessessossessessessasasessessessassassesssenns 16
2.2.8. CONTR COMMON........c.ccreeruirirmeseerservessessssseseessentensesesssessessassassssseessessessassns 17
2.2.9. CURRNT COIMIMONceceuuenrinrerencssersressesssrsnsessesasssnesnsassessassssensessassssenssesses 18
2.2.10. DAMPG COMMONooeerrirurriranesreruesuessaseesessessassasssassssaassesssessessessessessessns 18
2.2.11. DIMENS COMMON......ccoverririnreenrcsuisacsoseessossessssanssesaessasasssssssensessessessasans 19
2.2.12. DISVEL COMIMONccorunuirtirtecerersosaessasaessssessessasaassessessassaessesnessessssssesees 19
2.2.13. ELMPAR COMIMONccuuterirtirarieersnsenssnssseossassasansssesssessassssessessassssesssssees 20
2.2.14. ENRGY COMIMONccocverurruireresenerucessssessnsesasssssasssesssessessseesessassssesssssssoss 21

2.2.15. ENVELM Common............. vreeeeeesesesnnsassssnnns cevveeeesrreaeeeaaaeas cereeesrneeasesnens 22
2.2.16. EQNS COMUIIONveeerueeerierencseeesersssescssesssseossssasssssssssssssossasssssssassssess 22
2.2.17. EVENT Common....... teretereererteeeesaserntasessnraresasrsann teaveeerereeereeeeesansaeasnns 23
2.2.18. GENINF COMINONovveerrrrerrereecrrneeesssseassssessssasassasesssssessnsssssessssasessasesses 2
2.2.19. INDIC COIIMON.......ccoceierreerreeecssssessesaassesasssssasassasessssassssssssssasssasssnsasssas 20
2.2.20. INFEL Common eerneeesasessrneessasessanesssnsasees 21
2.2.21. INFGR COMIMON.......ccceerrerrererreeeeessseesersssssssaessssasessasesssssessssssssssssssssnsees 28
2.2.22. INTCOF COMITIONccceeerreerreresenneecassnsessnsesssansssssssesssesssssssssssesssassssssssnes 28

2.2.23. LOADP Common............... vevveenes retteeeesesesteeesstaeeeasatateensrrasenraeeenssrasennnn 29
2.2.24. NUMS COMINON ...c.ccvveeernrecernccnsessesssescsssessnsossssasas veveseneesesneessesesssasssnses 30
2.2.25. OUTD Common............... tertessssseeeeteeesssataeessssataesaanastaeassaneaensaeeessarasssnnns 30
2.2.26. OUTS COIIIMONcuvvieenricrerareeeesesssessssesesssssesssssessssassseessssssssssessasssssses 31
2.2.27. OUTP Common........... teerrrereeesesesessnsnnaraaans eeeteeesesnntesesrateeaasnaaaessaaas veeeene 32
2.2.28. PREC Common.......ccccoeeeeereuecrecenenne eeneereas ceeetereeernnnteresrnanens eeereeeeeerareeaans 33
2.2.29. PTOP Common.......ccccocueeeeeee ceeereereneeeaeseesasssnnrananan teeeesreeeeeeesennnrraasesesnnns 33
2.2.30. RHIST CommoOncccceeeeierrreraeereecaececaceanas ceeserssnnnnnntessanesnnnnns teeeeserracnnns 34
2.2.31. SECTON Common.ccceecereecenneee veerennees creteeeeesnnnntesnstaaeeansnaas S e 35
2.2.32. SETREL COMMONcccceeremrreaceeesisesscsnssanssaasasssnannnns ceeenranees ceeennne ceveeeeeee 35
2.2.33. STAT Common....... teeeeeerestessessesesasansesees cesrereresesssnneeessanans eeevenren cevereeeenes 35
2.2.34. STOR Common etesseeeeeesesnteesssnnntaasssseaaasannn terereeseeesateessanesnnes 36
2.2.35. TAPES Commoncccceeuee.. eeeteeeeeeessnsrnttaneteeteeasesssssaeesesessnrresenenns cerenee 43
2.2.36. THELM COMIMONcceteereeerersseeeceesssseneeasssessesassssasessssssssssssesssssseecssnnes 44
2.2.37. TIME COmmMON........cccceeeeruereesccaeersaaences cereeesarensreness 44
2.2.38. TITADF Common......f... cevoresseessreressnracsnassanaesnns 4D
2.2.39. TITLE Common eeereeseneessasnesnesssstessanessssessasasnaes 3D

2.2.40. USROUT COMMON.......ccormreruerrirsrnsssinsscsssesssesssssnssesssssssssassassassssosacssses 40

2.2.41. WORK Common............ USRS - Y |

2.4. PERMANENT FILES........ccccooctntirunrucaitinearenassensessesssssessasssssessessessesssssensonss 49
2.5. TEMPORARY FILESccoteoiiiiiieiniiintentnenteerestessesessessassssssssessessessessessones 51
2.5.1. INtTOQUCHION.......coerurreniniriiinsesinsesteceesssneseseseeressassssassessssssssssssesseseasesenns 51
2.5.2. INPUL PTOCESSINEovcurerirnirecnniriirisacririaenssaneseenaesesnessesesssssssssesessesessesenes 51
2.5.3. OUtDUL PTOCESSINGeovrurereisuereeserssensinsessaseesseseeresassessesssssessesesessssseesssnes 51
2.5.4. Storage of Element Data BIOCKSccccevrueeruerrrerreecrrecruecreeneeeressseesseesnes 52

2.5.5. Storage of Backup Element Data, Tangent Stiffness and Unbalanced Load . 53
3. BASE PROGRAM ORGANIZATION -- DRAIN-2DX AND 3DX ..ccuuermennreeenss 55

3.1. INTRODUCTIONcortmierurruraiineesriescoseessnessessassssserssssssssssesssssesssssssssssnsonsones 55
3.2. BEGIN SESSION.....cuornuiriereiuirinsisaessesiseescsssecsessssessssessesssssssesaesessessessasesssns 56
3.3. DEFINE MODEL.........ocoreniiiinteicnnrusencanscnesenssassesssessessassessessessessessessesseosenses 57
3.3.1. MaiD TaSKS....cccoviruiininenririeecinstintesiuseseeaeseessesessessessessessasssssenseessensensenses 57
3.3.2. S0me DEtailscccovveeiiiniiieiiniiienieteeeteneestesersre e eree e e eesareseesee s eseenne s 62

a) Element Location Matrix (LM aITay)ccccceceecvenveeeneereeeseeesseesseesseessneenne 62

b) Setting up LSTTIEcocoiiiiiiiiiiiiiciecenneceenteseereeeteesee e esnessesssesseessensens 62

C) Element ProCessing........cc.ccveecireeerercreesteniennreseesneessessenessecsseesessssesssessasenses 63

3.4. PROCESS OUTPUT SPECIFICATION......cccccecvrtermrnrrrnrrreeneresreeesenessesessenes 63
3.5. PROCESS LOAD PATTERNS AND LOAD RECORDSc..coomeeeeerrereerenenes 64
3.5.1. MAin TaSKSccoueeuirunnineienernnssieseeanaserntessessessesesessessessessensensossessessensonsns 64
3.5.2. SOmME DELALSocovimuiricriinieeieerencenientinaeraee e e sressesssessesssesssesessseessenes 65

a) Processing Element Loads - Subroutine INGPAT teceveseseeseresanssnaenns 65

b) Processing Load Records - Subroutine INAXL.............ccocevveeeveecerecreereeeneenn 66

3.6. ALLOCATE MEMORY FOR ANALYSIS PHASE............coveeererererereererennes 66
3.7. FORM BETA-K DAMPING AND INITIAL TANGENT STIFFNESS.............. 69
3.8. PROCESS ANALYSIS PARAMETERScouvmmrrenrerneeneneresessescsessenes 70
3.9. IDENTIFY ANALYSIS TYPE......ococcosoeeesreesrsesrss s R 7

3.10. SET UP LOADS FOR ANALYSIS SEGMENTS.......ccccocovimvtmnuenenininnensunnens 71

3.10.1. Main TaSKS......covuvieiiniiniiiniisinsineseerisieeestesescseesisesesseessssssssssseessesasse 71
3.10.2. Loads for *GRAYV Analysis - Subroutine INGRAVcccceeverevecrrcuennne. 72
3.10.3. Loads for *STAT Analysis - Subroutine INSTATcccccecveeenveenrvecnennns 73
3.10.4. Loads for *VELN or *VELR Analysis - Subroutine INVELN.................. 74
3.10.5. Loads for *ACCN or *ACCR Analysis - Subroutine INACCN................. 74
3.10.6. Loads for *DISN or *DISR Analysis - Subroutine INDISN...................... 75
3.10.7. Loads for *FORN or *FORR Analysis - Subroutine INFORN 76
3.11. PERFORM ANALYSIScouititiiinnnnceecnisetenieateneesnesenseeseseessesssssesssssseaans 76
3.11.1. Main TasKS.....cceveeneiiiirieieninniietetnecsssesiesaescessssessesssessessessesnsssssnsenes 76
3.11.2. *GRAYV Analysis - Subroutine GRSOLccccoceeueeuereererneereerucececraeanes 80
3.11.3. *STAT Analysis - Subroutine STATICccccoervemievinnnninrccerceseeneenenne 84
3.11.4. *REST Analysis - Subroutine REST........ccccccceervimmninruennreeneecseennesieeanns 86
3.11.5. Dynamic Analysis - Subroutine DYNMICccooceeriimrerncreeccnennreenieennns 88
3.11.6. *MODE Analysis - Subroutine MODCONccceeeveererrereercneecsseecnseenens 97

a) Theory ... 97

b) IMPIEMENLAtIONccceeeeeerreeerrnrcatriieesctenneerenrenaeeesenaesnsesssessassassesessnessesssaens 98
3.11.7. *SPEC Analysis - Subroutine SPECON.........ccccceeeveerrernrerececsneeseecsenanne 99
3.12. END SESSIONcoiisiirinniiinintnncrensessssstsstsssssasssesssssnensessassssssassassassessssnsas 101
4. STRUCTURE OF PERMANENT FILES -- DRAIN-2DX AND 3DX....ccccoe0e00000 102
4.1. INTRODUCTION.......occctrinurnrinrireressinrisisiesscssessassssessessosasssassesassssessessssssssssnes 102
4.2. FILES FOR LOAD PATTERNS AND LOAD RECORDS............occovvrrumncnnnes 102
4.2.1. ELD File - Element Load Pattemns...........coocceeceecuirneenensuenseeeseecneeseesnernnnas 102
4.2.2. .STA File - Static Load Patterns...........c.coucoecreesuiccnseneescesenenssessassassuennes 103
4.2.3. .ACC, .DIS and .FRC Files - Dynamic Load Records............cccceeeueennnen. 103
4.2.4. SPCFile - ReSPONSE SPECHIAccocuereverecraiierercnaerrnesseneesseesasesaasssesssenes 104
4.2.5. .VEL File - Initial Velocity Pattemns.........c.ccccceveeeriirseeensceccrneeseeereseenencn. 105

4.3. FILES FOR POST-PROCESSINGccvriviericrirenninrereeenesieessessssnsscsescenes 106

4.3.1. .GEO File - Structure GEOMELTYcccceeerrereerrrereerrrerereessuescnseesareesssanans 106
4.3.2. EXXFile - Result ENVElopesccccvveeieruiereennrcnenireciniesinscnniesvennenns 108
4.3.3. RXX File - Result HIStOIIESccccouiuveruinririirsaneruesessenseissesssesseeseessansnene 110
4.4. MODAL ANALYSIS FILESccuooiiiirininnininnnsncestesesseesiesessssssessssssssessones 113
4.4.1. MXX File - Mode Shapes.......c..ccieerrumnuienrensseniennerseneisseessneseesuesssasaenns 113
4.4.2. UXX File - Modal RESPONSESccceecueeeruirerrreeecrerersserasasessseessssassnenes 114

5. DRAIN-BUILDING -- SPECIAL FEATURES 116
5.1. DRAIN-BUILDING MODEL -- FLOORS AND INTERFLOORS................... 116
5.2. FLOOR AND INTERFLOOR TYPES AND INSTANCES.........cccccecerveenuennnne 117
5.3. ADVANTAGES OF USING FLOORS AND INTERFLOORS............ccccevceuuu. 119
5.4. HYPERMATRIX STRUCTURE OF THE STIFFNESS MATRIX 120
5.5. ORDERING OF BLOCKS IN THE HYPERMATRIXcccceocemurnierrereennannnns 121
5.6. HYPERMATRIX STORAGE SCHEMEccoe s e oo sesses e 125
5.6.1. Storage of Stiffness BIOCKSccoouiicciirnuiiiincireittiercetecteeesnnreesareesneenee 125
5.6.2. Storage of a Diagonal BIOCKccoovueieeeriiiieriicniieeecccereee e cteeececene e 127
5.6.3. Storage of an Off-diagonal BIOCK.......cccccceerrereenreenierenreenreesecseeceesevennnens 129
5.6.4. Hypermatrices in DRAIN-BUILDING...........cccccecceertrnrentrnrnenueneenressensennns 131
5.7. ASSEMBLY OF ELEMENT STIFFNESSES.ccccecceisrnerrntrnrieeererseenanne 132
5.8. HYPERMATRIX EQUATION SOLVER -- HYPSOLcccceevenerreruenuennne 136
5.8.1. INtTOQUCHIONucuvinrenrcninniinicniiectienesetesneeeneessenesressessassnsessessasssansasnns 136
5.8.2. FaCtOTIZAtIONcoueeuniereerrenrirecieniasrseesassssassssessassssessesssensassassssensessanns 137
5.8.3. Forward and Backward Substitution of Load Vector..............ccc.u........ 141

5.9. HYPERMATRIX-VECTOR PRODUCT -- HYPMULcccceeuvrrerrervernennnne 143
5.10. TIMES WHEN HYPERMATRICES ARE NOT USED...........ccccoveververuennns 145
6. DATA MANAGEMENT -- DRAIN-BUILDING 147
6.1. INTRODUCTIONccoceruiruisunrinsrinreresseseesscssssassasesassnsassassassassessessassassessassanses 147

6.2. LABHaED COMMONS ... 147

6.2.1. Fle PARA H........couiiiiieirneeentrnnenereneesteeseesasesessasessessessssssessessnensessssns 147
6.2.2. CNTFIF COIMUMONcuceuteeueuenreeeereeserseesessessassaessessessasssessessessensessasesessens 149
6.2.3. CONTR COIMIMONc.ccecviruieurueeniesasssssueersassasssessessassssssarsessessassessasssssaessen 152
6.2.4. CURRNT COIIMOMN........corcerueeeueereererssonsoseaaanesssessassasssassssssssessessssasssessens 154
6.2.5. DIMENS COIMON w..c.ooeeveeseeee e ensersssesssnsessssnesessseesssseressseesseseesesn 155
6.2.6. DISVEL COINIMNIONcccueiueruienceernnernossnsessessessessessaessassassassassessssssesasssensons 156
6.2.7. ENRGY COINIMONccccutererarrareeneeseessesseessessassssasnassssessessssssesssesssessesseenes 156
6.2.8. EQNS COMINONueeeueieurenrecrerenneeneeisreersaesssesersessssessssessaessnscsssessesssneesss L 98
6.2.9. EVENT COIIMONcucoeuirreeneeareernraseesresseessessasessessessssessessssssesssosssessossese 158
6.2.10. FLRIFR COINIMONccocurrursureruersrmeraneeeseesnsssasessessassssesssesssssasssessaessesssenss 160
6.2.11. GENINF COIMIMONccouereeneeruienvesursueneeseessassessessesssassessessessessessessessessesse 160
6.2.12. RHIST COMINOMccereuiereenerenreruersansrasasssasssesssessessssessessessesssssssesssssssonce 162
6.2.13. SECTON COIMIMONccoetrrerenreemearresneereeseesssessaesesessessesssessessessesssesseen 164
6.2.14. SETREL COMIMNONccocureeirreerntrrrenaereeceesssessesseessesseesessesssessssssesseoe 164
6.2.15. STFBLK COIIIMONccoeueeereueeneraareeesereesssassuessssessesseessesseesseesessessesns 164
6.2.16. STOR COMINIONccceereermcenrenceraurensesneessessesssassasessessesssessersessssssserssessenses 165
6.2.17. STOR1 COMIMONcoeeuirueeneererraeeesrensesserssesseesssessessssesesssessesssessusssessesses 165
6.2.18 STOR2 COIMMOLcoovtruearrarearreerenrseeseersesssessaeessesssssssessessessssssesssssssenses 167
6.2.19. STOR3 COIINONccecureuerieceeenneeserraessesssesseesasessesssesssessessesssssssossessasenes 168
6.2.20. STOR4 COMUNONcocueuvirirnsenseencesueseeseaseasssssessassessesssessessessessessessessessesss 173
6.2.21. STORS COMUINONcoocueerirrereeerereessrnessersassessasssesesssessessessossossesseossoseeseens 174
6.2.22. STORG COIMIMONcccouerurirrceiaraneraraasssaessassaessaessessnsessessesssosasssesssssseonee 175
6.2.23. STORT7 COMIMONcooueeuieierurenaeeneerannsacsssessessasessesssesssessessessesons ...176
6.2.24. STORS8 COMUINONcoccoverereererencancsrensensesressessaessessanseessessesssssones RR—— 177
6.2.25. TAPES COIIINONucoueuiierenucaccneusassessessesserassassassassessessssssessossssssenens 178
6.2.26. USROUT COIMIMON.......cccorrueereemcereriescssesessessessessesessassessesessonsessssssasessens 179

6.2.27. USRITM COIMIMONcovurrnrirriirrenseiirnisressacssserssssssesssnessnessnsssessessesssosesne 180

6.3. BLANK COMMON........o.omruierincrremssssssanssasssssrassessassssnsssssasssssssssssssssssssssanees 181
6.4. PERMANENT FILES...........cocevvurtemsuresessseesersssesssessasssessasssasssssssssssssssassassses 182
6.5. TEMPORARY FILESoovvuerrnruerrinsnssensssssnssessesssssssssssssassassssssssssansenssans 183
7. BASE PROGRAM ORGANIZATION -- DRAIN-BUILDING 184
7.1. INTRODUCTION ..cosereeeeererersereeeos et seeeees e nee st 184
7.2. BEGIN SESSION.......cooureueeresserssaeessaessesssssssssasssessssssssssssssssssasssssssssssasssannes 186
7.3. DEFINE COMPOUND NODE TYPESceocevvruerrenssesnsasssssassesssnssnssassns 187
7.4. DEFINE FLOOR TYPESooevvuevuemeueerianssesssasssesssessssssessssasssesssssssssssansssseses 188
7.5. DEFINE INTERFLOOR TYPES........cooouevtemrrueereereesressaessessessasssaesssessssessaneses 192
7.6. DEFINE FLOOR AND INTERFLOOR INSTANCES..........coccovoueitemrurenrennnen. 196
7.7. PROCESS OUTPUT SPECIFICATIONcoocevurremererenreressnsessessessssnsssseesiones 198
7.8. PROCESS LOAD PATTERNS AND LOAD RECORDS..........coovvvvmrrenrrnes 199
7.9. ALLOCATE MEMORY FOR ANALYSIS PHASE...........cccocvsvuerteerensresennns 200
7.10. FORM BETA-K DAMPING AND INITIAL TANGENT STIFFNESS.......... 205
7.11. PROCESS ANALYSIS PARAMETERScc.oovmvrnrrereressesssnsenssasssssssneses 207
7.12. IDENTIFY ANALYSIS TYPEooocevurrenreeersessessesssessaessssssssessssssssssaesss 208
7.13. SET UP LOADS FOR ANALYSIS SEGMENTSooveerumreecrreneariacsaenens 209
7.14. PERFORM ANALYSIS.........ovvuerreeererseersasessenssessssssasssnsssessesssssssesssssssnsesneess 210
7.14.1. MAID TASKSvovveeevereereesserssesseessessassssssessassesassnssesssssnssasssessmssssessessanses 210
7.14.2. *GRAV Analysis - Subroutine GRSOL............cc.cee.evverueemeeesnesssssinessenns 215
7.14.3. *STAT Analysis - Subroutine STATIC..........cceoeevvreversemmermsemneenessnessensens 216
7.14.4. *REST Analysis - Subroutine RESTc.c..ccereirnuircreennniniceeccnseecrnneene 217
7.14.5. Dynamic Analysis - Subroutine DYNMIC..........cccccecvianneiennecnncnnecenens 218
7.14.6. *MODE Analysis - Subroutine MODCON..............cooveummemcmnrenncssnrans. 220
7.14.7. *SPEC Analysis - Subroutine SPECON..........cc..ceoouvueemnreneesensssnssssann. 221
7.15. END ANALYSIS SESSION.........ccovrurrurrmneeresassssssnrenssssssssssssssssassssossanns 221

8. STRUCTURE OF PERMANENT FILES -- DRAIN-BUILDING 222

8.1. INTRODUCTION.........otetietiniuireeseisiniesesseseesnsassteseseeasssessessassssssssnsessssssnsen 222
8.2. FILES FOR LOAD PATTERNS AND LOAD RECORDS.........c.ccceenreeuenncnnee 222
8.2.1. .ELD File - Element Load Patterns...........ccccceeceeurernurenecreesansocnssseescesecsnne 222
8.2.2. .STA File - Static Load Patterns..........c.cocoveecrvccnrersenssnneenveecnerscssscseeeenness 223
8.2.3. .ACC, .DIS and .FRC Files - Dynamic Load Recordsccccccceeeuteeucneee. 224
8.2.4. .SPC File - Response SPECLIa........ccceeueveruinsneseeiseeneneseessaresseessnesaseseessnnns 224
8.2.5. .VEL File - Initial Velocity Patterns.........cccceeeeeeeerreeerrieerrnneccsseeeesscenecnnn 224
8.3. FILES FOR POST-PROCESSING......ccccccciriruimiuiriiririnscnntenicneassesesseseeseeneas 225
8.3.1. .GEO File - Structure GEOMELTYc..cccerveriererurriruerursecseessneeeessessesacesseans 225
8.3.2. EXX File - Result ENVElOpes........cccccciriiiiirrneerrensnnrecnrneeeeccneecsnneeesannenns 229
8.3.3. RXX File - Result HiStOres........cccceevuiriinmmsenuisinenseieuissecscnessessenssessneenne 233
8.4. MODAL ANALYSIS FILES........c.ctotnimirninrinienenieiearesessesssesssesssssassssessnses 239
8.4.1. MXX File - MOAE SHAPES..........c.cvmreenreemnrremeremesesmseesssesesenseseesesesssnaseren: 239
8.4.2. UXX File - Modal ReSPONSES.....ccccooourreneirereiniuerseeenneecsaeeseessssessnnsessnseens 240

9. ELEMENT INTERFACE AND SUBROUTINES 241
9.1. ELEMENT SUBROUTINESc.coviniiiinitrieceneineeneeaeeseesseessasseosseseesaenes 241
9.2. KEY VARIABLES.........cutttiiiitienetentistceniestenssassnsasasesssssnsssasssssssesssassnns 242
0.2.1. GENEIALuueunnreireinniiiiinnicitcerersateesassssstesessseresssenssssesssasessesssessassssansenn 242
9.2.2. Overall Structure Variablescoceoievinievcniincniininnrenenenreceseeeeseeaeneennn. 243
9.2.3. Element Group Variablescocceeeiinierciineieriesienneeneessaeeessneesssessssesnnens 243
9.2.4. Individual Element Variablescc.ccoccooveeevurnuinoonnnresirnnreneceeeraneseennnen. 245
9.3. LABELED COMMON BLOCKS.........covtiiiiiiinenniseiireniencsesnsesnsssssssssessessens 246
9.3.1. Group Information Block, /INFGRY.........cccceceeveninurrsrenricseensererrecrenssuecseenns 246
9.3.2. Element Information Block, /INFEL/..............cccccceocvrurerierurraureruesncaeesnns 247
9.3.3. Element Results Block, /THELMY/ccccceeeiriernrernecseeeseecseesasensessanes 248
9.3.4. Element Envelope Block, /ENVELMY/c..ccveninniiecneesreecsneecseessseeennees 248

xii

9.3.5. WOIK BIOCK, /WORKY ...cooivteeeeiiiieieeeeieeieiseeeeeeesssesesessesssssssssesssessessssesssssans 249

9.3.6. Element Parameters Block, /ELMPAR/cccccovrevenvmvnrnvecneeerrrcrenne. 249
9.3.7. Tapes Block, /TAPES/.......ccocouuviiimrieenecietneeneeneesstennesresesaesseseesessnnsens 250
9.3.8. Input Line Block, /CLINE/cccovvviernrirsinnirrcineecsseeeeenseneessessesessennes 250
9.3.9. Page Layout Block, /PTOP/cucuoierrnsiiecrteereeiseeeeeeecneeereeesneesssessens 252
9.4. ARGUMENT TYPES IN ARGUMENT LISTS........cccecerreveeiaerenenreneaeanannas 252
9.5. SUBROUTINE INELH#cociviminriiirirnineesecteieenecteseesseseesesessssassassassssensens 253
9.6. SUBROUTINE ELODH.....couuouieiriiriiintenieceeesecsenssessessasssessssssssassassssssessans 256
9.7. SUBROUTINE STIFH......coovirririeintiinnieeectesieeessssestesessssssssassessssessansesessans 258
9.8. SUBROUTINE GLODHHcotriiiiiiniicieteseneasstecssesnssnsssesessasessssessessnns 260
9.9. SUBROUTINE FACTHH#ucouiuierinnerinrinireniniesieneasecestessessesessessessassasenssasessns 262
9.10. SUBROUTINE RESPHH.......cccorirerseinirinsierenereeseeserssesssssssssessssssssssssssensenes 264
9.11. SUBROUTINE ENPR#Hcutiriiiiiriniiiiieeeeceeneesstsnesesssesssesssssesesssessens 267
9.12. SUBROUTINE THPR#Hcuooiiiriiriicieenieeariesenstesessasesessesessessssensens 268
9.13. SUBROUTINE FLINFHE......coveruiriiieriireeriecntseeenenceseeseeseensnsessessssessasessessens 269
9.14. SUBROUTINE PLINFH......coceruiiirieinneunneiteenssassnessssessasssssessessasessassssesanns 271
10. CONCLUSIONS 272
10.1. GENERALuoiiriiininnictintieeatecenececetescesecnssssnsastssessassessensesensessseneans 272
10.2. POST-PROCESSING.......ccceseriirirricaesenissestineatenieseesessessessessrssssassassassesessesens 273
10.2.1. General Purpose Post-Processors........cocceeuiecuierneeaeesrnecnreesseeesseesueeseees 273
10.2.2. Frame Definition in DRAIN-BUILDING............cccceetereerrerrerrerrernessernenees 273
10.3. NEW ELEMENTEScccouiiirtiiiintitceteristieencsestssssnsssessasssssessesessassesssenses 273
10.4. ELEMENT INTERFACEcoiiiiieieinceninenineenreneesseesessesessesesessnns 274
10.4.1. WEAKIDIESSccrveeeneerirenerenniisiesnestesesscssasssasssssssseasssensessessssesessesessesenes 274
10.4.2. Storage of Element Location Matrix (LM array)ceeceevernvenerneenenns 274

10.4.3. Element End Displacements and FOICescccceeueeerererrveenueereeeseeseenne 275

10.5. EFFICIENCY AND PORTABILITYccoceeiueiinrrnrinieniinsensscssessssssesssecsaeess 275

10.5.1. MS DOS and MS WINDOWS VEISIONccccertecurcriireessveneessuecsncseesenens 275
10.5.2. Large Capacity Equation Solver for DRAIN-3DX.........cccccecevevvenerucncene. 276
10.5.3. Large Capacity EigensolVer..........ccceivimsumnuinsresnnininineccsecsseossensseesscssenne 276
10.5.4. Detection of Data EITOTSccccecteruiruesunsucsiisinsnssensinseessesseeseessessessesaesens 276
10.5.5. EXECULON SPEEA vevvvvrvveveereeeeessmmmssseessssssssessssssssssssssesssssesssssssesssssssssesseene 276
10.6. NEW FEATURES..........ccceiiiieietnnnceniiisiescsncsnsssssasssessasssssassessssenssssenasnses 277
10.6.1. Coupled MaSSccevuiereincuirnersnerininsesesseessecseesssnssssssssasssssssssssssesessssne 277
10.6.2. Free-Form, Spreadsheet and/or Graphical Input...........cccccceevuveecvuercurnnnenes 277
10.6.3. Iteration on Unbalancecceeeeeerecrneesrenniseneiecnseeccseecssessssacessessseen 278
10.6.4. Improved Response Spectrum ANAlYSisccoeceeeerreernnereenseeseneseeseanenns 278
10.6.5. Improved Options for Damping LOSSES........cccccervureererieirrsererneesecacceersnenns 278
10.6.6. Integration of ANalyses........ccccceeruirenuirirensrunesiiruinsseecssesssaressnsessasesssessneenns 278
10.6.7. Simpler Structure Section Definition........cccccevverueeceeeeruirrsnescessseecseeenennne 279
10.6.8. Extension to Bridge Analysis........ccccuceuierneinruineccreensuecnucncsucesncecserennennne 279
10.6.9. Nonlinear Dynamic Analysis by using Ritz VECtorS........c....oooovovrssooo 279
10.7. DOCUMENTATIONccciriiuininrineisruicseseesississessessessesssossssssssssnsssssnssne 280
REFERENCES 281

Xiv

1. INTRODUCTION

1.1 THE DRAIN PROGRAMS

The computer program DRAIN-2D (Dynamic Response Analysis of INelastic 2-
Dimensional Structures) was first released in 1973 [10], and has been a useful analysis
tool for many years. The main advantage of the program is that it is both simple and
effective. Its capabilities, however, are very limited. Two extended versions of the
program have been developed over the years, namely DRAIN-2D2 by Golafshani in 1983
[7] and DRAIN-2DX by Allahabadi in 1987 [1, 2]. These versions added more powerful
capabilities to the program, while fetaining its essential simplicity. They were not released
because time and resources were not available to debug them and make them robust

enough for general use.

Using DRAIN-2DX as a starting point, a family of three new computer programs has been
developed in the present phase of the work. These programs are identified as DRAIN-
2DX [12], DRAIN-3DX [13] and DRAIN-BUILDING [14]. DRAIN-2DX and DRAIN-
3DX are for general two dimensional (2D) and three dimensional (3D) structures,
respectively. DRAIN-BUILDING is specifically for 3D building structures. The programs
are based on the same technology and have similar features, so that they are clearly
members of a family. Although they are more complex than DRAIN-2D, they are simpler
than other general purpose nonlinear analysis programs. They also provide a number of
features that are important for nonlinear seismic analysis, yet are not provided by other
programs.

As in DRAIN-2D, each of the programs consists of a "base” program which manages the
data and controls the analysis, plus a set of subroutines for each element type which
control the element details. Information is transferred between the base program and the
elements through an interface that is the same for all element types. The base program

knows nothing about the elements except what is transferred through the interface. This is
1

an essential design requirement for a general purpose structural analysis program. Among
other things, it allows new elements to be added to the element library without changing
the base program. Because the new programs have more capabilities than DRAIN-2D, it is
more difficult to develop new elements. However, the process is well defined, and is still

relatively simple.

The programs are written in FORTRAN-77. They have been compiled and executed on
PCs by using the Microsoft FORTRAN PowerStation Version 1.0 compiler, and on a
UNIX DECstation 5000/200 by using the f77 compiler. A major concern is that the
programs when compiled by the MS FORTRAN PowerStation under release option
(which optimizes for speed) do not run properly. It is not clear whether this is due to

coding errors or problems in the operating system and/or compiler.
1.2. GENERAL FEATURES OF THE DRAIN PROGRAMS

DRAIN-2D permitted only linear static analysis followed by nonlinear dynamic analysis,
and considered only dynamic loads due to in-phase ground accelerations. The new
programs perform nonlinear static and dynamic analyses, and for dynamic analysis
consider ground accelerations (all supports moving in phase), ground displacements
(supports may move out of phase), imposed dynamic loads (e.g., wind), and specified
initial velocities (e.g., impulse loading). Static and dynamic loads can be applied in any
sequence. For example, a dynamic analysis can be performed to damage the structure, and
static loads can then be applied to investigate its behavior in the damaged state. If a static
load follows a dynamic load, a special "restore to static state" (REST) analysis is
performed to bring the structure to rest before the static load is applied.

The structure state can be saved at the end of any analysis, and the analysis can be

restarted from any saved state. For example, the state at the end of a static analysis can be

saved. Analyses for several different ground motions can then be restarted from this state,

to study thé effects of different eaﬁhquakes. The unstressed state is automatically saved.
2

Hence, the input data defining the structure can be processed in one computer run, and the

input data files for subsequeﬁt runs need only define the loading details.

The step-by-step integration scheme for dynamic analysis varies the time step during the
analysis, on the basis of input error tolerances. This option is particularly useful if
pounding or gap closing occurs, since a small time step is needed to obtain accurate
results for a short period of time after a gap closes, but a longer step can usually be used

for most of the analysis.

Energy balance computations are performed, identifying the static work (mainly hysteretic
losses), the energy absorbed by viscous damping, the kinetic energy, and the input energy.
The energy breakdown can be valuable for studying structural response. Also a substantial
energy unbalance indicates that the analysis has not been performed correctly.

Mode shapes and periods can be calculated for any state. Linear response spectrum

analyses can be performed for the unstressed state.

Static nonlinear analysis is performed by an event-to-event scheme, where each event
corresponds to a significant change in stiffness. There is currently no provision for
iteration (although this could be added), mainly because iteration schemes tend to be
unreliable and difficult to specify. The event-to-event scheme is simpler and more reliable,
and also permits a detailed energy balance to be calculated. However, it can require more
computer time, and it may be difficult to define events for elements which have curvilinear
action-deformation relationships. To reduce execution time, provision is made for event
overshoot tolerances to be specified, so that the structure stiffness is not modified at each
exact event but at a somewhat larger load. This allows more than one element to change
its stiffness at each event, and reduces the number of times the stiffness matrix must be
modified. However, overshoot also causes equilibrium unbalances, and the larger the
overshoot tolerance the larger the unbalance. Provision is made for the overshoot
tolerances to be changed without reprocessing the input data. Hence, rough static analyses
3

can be performed by specifying large tolerances in the early stages of an investigation,

followed by more accurate analyses later with small tolerances.

Static element loads, as well as nodal loads, can be specified, but the present versions of
the programs have serious limitations. In particular, nonlinear behavior is not permitted if
there are element loads. The reason for this is that element loads can, in principle, take any
form. Element loads, unlike nodal loads, can not be generalized, and hence can not be
processed at the base program level. Instead, they must be processed at the element level,
with a generalized interface between the base program and the element. If an element load
causes nonlinear behavior, this behavior must be recognized and accounted for at the
element level, and information must be sent to the base program so that it can control the
nonlinear solution strategy. In the present versions of the programs, the interface between
the base program and the elements is not flexible enough to allow for nonlinear behavior

under element loads.

Rigid link slaving can be specified. In DRAIN-3DX and DRAIN-BUILDING this allows
rigid floor diaphragms to be defined.

Envelope results (maximum effects) and/or time history results can be output to a print
file. Time history results are ordered node-by-node and element-by-element (i.c., a time
history for one node followed by the history for the next node, etc.). Time histories can be
bulky, however, and can lead to very large output files. Results can also be written to a
(binary) post-processing file. A preliminary version of a post-processor, with a windows-
type graphic interface, is being developed.

A structure geometry file is written, from which plots of structure geometry can be made.

A preliminary geometry plotting program is also being developed. The lack of geometry

plotting is a particular weakness, making it difficult to check the input data. It should be

noted that geometry plotting is not a simple task, because of the many different element

types that are possible. If an analysis model consists only of line and/or solid elements, as
4

is the éase in most programs, geometry plotting is relatively easy. A DRAIN model can
consist of a wider variety of element types, particularly point (zero length) elements for
modeling connections. Also, to model complex nonlinear behavior it may be necessary to
place elements in parallel, so that there may be several elements connecting any given pair
of nodes. It is necessary, therefore, to plot point elements as well as line and solid
elements, and to indicate when elements are placed in parallel. Procedures for
programmers to follow when adding new element types must also be devised and

documented.

Cross sections can be specified through the structure, and the resultant normal, shear and
overturning effects on these sections can be output. Relative displacements (e.g., story-to-

story drifts) can also be output.

The programs all require formatted input, which is read from an input file. This is
admittedly antiquated. The input format is, however, much more flexible than the DRAIN-
2D format. Different sections of the data are now separated by key words; it is no longer
necessary to specify the numbers of nodes, elements, etc.; comments can be added to the
data; and the nodes need not be numbered sequentially. This last feature simplifies data
preparation by allowing nodes to be laid out on a grid, and numbered according to the grid

intersections.
1.3. SPECIAL FEATURES FOR DRAIN-BUILDING

In DRAIN-BUILDING the structure is modeled as a series of floors separated by
"interfloors" consisting of columns, walls and braces. To define a structure, floor and
interfloor types are first defined. Actual floors (floor instances) are then located in space,
by specifying the floor type and location for each instance. Finally, interfloor instances are
specified between the floors. The building geometry is not limited to simple towers.
Mezzanines and atriums can be specified if desired, and multiple towers can be connected
by floors which bridge between them.

This procedure simplifies the task of defining a building. In addition, the floor-interfloor
description is reflected in the way the analysis data is organized within the program. For
each floor and each interfloor a separate data structure is set up, preserving them as
distinct entities. Also, the structure stiffness matrix is partitioned into floor and interfloor
stiffnesses, in "hypermatrix" form, and a hypermatrix equation solver is used [5]. This
provides an efficient blocking scheme for the structure stiffness matrix, and allows large

structures to be analyzed with modest storage requirements.
1.4. NONLINEAR ELEMENTS

DRAIN-2D had a variety of elements for modeling beams, columns, panels and
connections. All of these were based on very simple models. Some of these elements have
been modified, and in some cases extended, for DRAIN-2DX. The present library of
elements for this program includes (1) a truss bar, (2) a plastic hinge beam-column, (3) a
zero-length connection with options for translational or rotational connection and a choice
of three different hysteresis loops, (4) a bar which can act as an inelastic gap element or an
inelastic cable which goes slack, and (5) an elastic rectangular panel. The beam-column
element has a particular weakness, since it does not account correctly for P-M interaction.

An improved beam-column element based on fiber concepts is being developed.

DRAIN-3DX and DRAIN-BUILDING share the same elements. However, 3D elements
are inherently much more complex than 2D elements, and this complicates the task of
providing a useful library of 3D elements. Three 3D elements have been developed. These
are lumped plasticity fiber-hinge beam-column element, distributed plasticity fiber-section
beam-column element and a bridge expansion joint element. However, the procedures for
adding new elements to the programs are logical and well defined. It is expected that as
time progresses other researchers will also add new elements to the programs. It must be
recognized, however, that programming an error-free element is vastly more complex for

a nonlinear element than for a linear one.

1.5. OBJECTIVES AND SCOPE

The primary objective of the work described herein has been to develop reliable and robust
versions of all three DRAIN programs.

The objective of the first phase of the work was to improve DRAIN-2DX, by allowing the
input data to be separated by key words; providing extensive data checking and
diagnostics; improving memory management; and implementing ground displacement,
dynamic force, and initial velocity analyses. Although Allahabadi's 1987 version was the

starting point, the program was almost completely rewritten.

The objective of the second phase was to develop DRAIN-3DX, based on the improved
DRAIN-2DX. This objective was achieved, although the program is currently limited to

small structures.

The objective of the final phase was to develop DRAIN-BUILDING, based on DRAIN-
3DX, for practical analysis of 3D building structures. DRAIN-BUILDING uses data
structures based on floors and interfloors, and an out-of-core hypermatrix equation solver.
This objective was achieved, although several needed improvements in the program have
been identified.

The author has had primary responsibility for developing the base programs for DRAIN-
2DX, DRAIN-3DX and DRAIN-BUILDING. Full details of the programs are contained
in several reports. The scope of the present report is limited to documenting the program
design. Other reports include (a) user guides for the three programs, (b) examples to guide
users in developing nonlinear models and pérforming analyses, (c) programming
instructions for developers of new elements, (d) static and dynamic analysis theory, and (¢)

modeling guidelines for developers of new elements.

1.6. REPORT LAYOUT

Chapter 2 describes in detail the data structures and data management schemes used in

DRAIN-2DX and 3DX. It also gives an overview of the disk files created by these
programs.

Chapter 3 describes the base program phases, gives flow charts and lists the tasks done in
each phase for DRAIN-2DX and 3DX.

Chapter 4 describes in detail the structures of the permanent disk files that are created by
DRAIN-2DX and 3DX. Some of these files may be used by other programs, particularly

for post-processing.

Chapter S describes how a DRAIN-BUILDING model is constructed by using floors and
interfloors, the resulting hypermatrix structure of the stiffness matrix, the hypermatrix

storage scheme used, and the hypermatrix algorithms that have been developed.

The data structures and data management schemes for DRAIN-BUILDING are similar to
those for DRAIN-2DX and 3DX. Chapter 6 describes the changes for DRAIN-
BUILDING.

The base program phases, flow charts and lists of tasks done for DRAIN-BUILDING are
also similar to those for DRAIN-2DX and 3DX. Chapter 7 describes the base program
phases and flow charts for each phase, with emphasis on the phases that are different for
DRAIN-BUILDING.

Chapter 8 describes in detail the structures of the permanent disk files that are created by
DRAIN-BUILDING.

Chapter 9 describes the interface between the base programs and the element subroutines.
This chapter also lists the tasks performed in each element subroutine and describes the

procedures to be followed for adding new elements.

Chapter 10 identifies several improvements and extensions that are possible in future

versions of the programs, and concludes this report.

2. DATA MANAGEMENT -- DRAIN-2DX AND -3DX

2.1. INTRODUCTION

The DRAIN programs store data in memory and on a number of permanent and
temporary (scratch) files. In memory, data that can be assigned fixed dimensions is stored
in labeled common blocks, and data with dimensions which must be assigned based on the
problem size is stored in blank common. This chapter describes the memory management
in detail, and gives an overview of the disk files. Details of the disk files are presented in
Chapter 4.

2.2. LABELED COMMONS
2.2.1. Introduction

The labeled common blocks are organized so that each block contains related information.
In this section the contents and use of each labeled common block are described in

alphabetical order.

Some labeled common blocks are used to transfer information between the base program
and element subroutines. These blocks are part of the element interface, and are used by
both the base program and the element subroutines. Other blocks are used by the base

program only, and are not available in the element subroutines.
2.2.2.File PARA.H

The length of arrays in /DISVEL/, /ENRGY/ and /GENINF/ blocks is controlled by
FORTRAN parameters contained in file PARA.H. This file is included in subroutines that

use these common blocks.

The parameters in PARA.H are as follows.

PARAMETER (MAXGRP=20)
PARAMETER (MXDOFP=30)

10

These parameters are described as follows.

Parameter | Description
MAXGRP | Maximum number of element groups.
The actual number of element groups is NELGR in /CONTR/.

MXDOFP | Maximum number of element DOFs for any element.
The actual maximum number of element DOFs for any element is
MAXDOF in /JEQNS/.

The default values in PARA H should be adequate for most problems. If any of these
values is exceeded, then the base program writes error messages to the .ECH file before
quitting execution. The values in PARA.H must be suitably changed and program

recompiled to run the problem.
2.23. ASDFRC Common

For dynamic analysis, ground acceleration records, ground displacement records and
dynamic force records must be set up in memory. These will be termed dynamic load
records. These records can be very long, and it may be necessary to consider several
records in a single analysis. In DRAIN, provision is made for specification of up to 36
records for ground displacement or dynamic force analysis. Thus, it is impractical to store
the complete records in memory. The /ASDFRC/ block provides a fixed length buffer,
TASDF, which is used to store those parts of each record which are currently being
applied to the structure. This buffer is also used to store response spectra for response
spectrum analysis.

In the input phase, the dynamic load records are read from the input file, divided into fixed
length blocks, and written to permanent files with extensions .ACC, .DIS and .FRC. On
these files, each block contains MPAIRS time-value pairs, where MPAIRS is in /[LOADP/
and is currently.set to 121. The last pair in any block is the same as the first pair in the
next block, so that each block contains 120 new pairs. There is no limit on the number of

blocks for any dynamic load record.

11

At the beginning of a dynamic analysis, blocks of those dynamic load records that are to
be used in the analysis are read from the permanent file (using unit NFLOAD in /TAPES/)
and re-blocked to a scratch file (using unit NFASDF in /TAPES/). A block from
NFLOAD (with 121 time-value pairs) may be re-blocked into smaller size blocks before
being written to NFASDF, as explained below. The number of NFASDF blocks can be
different for each applied dynamic load, and the length of time covered by a block can vary
from load to load and from block to block.

The number of time-value pairs in each NFASDF block is chosen so that one block for
each applied dynamic load can be held in the buffer TASDF in /ASDFRC/. The length
currently assigned to TASDF is 1512 words. The block size depends on the number of
applied dynamic loads, as shown in following table.

No. of Dynamic Loads No. of Data-Pairs per Block
(NDFREC in /ADFREC/) (NPAIRS in /ADFREC)

1-6 121
7-12 61
13-18 41
19-24 31
25-30 25
31-36 21

At any time, only one block for each dynamic load is held in TASDF. Each dynamic load
record is monitored as the analysis proceeds, and when the current time exceeds the
maximum time for any block, the next block for that load is read from NFASDF, replacing

the existing block.

/ASDFR(/ is declared as follows.

| COMMON /ASDFRC/ tasdf(1512), inbl(36), Inbl(36), nbl(36), nt(36), icnbl |

12

The variables are as follows.

Variable | Description

TASDF | Buffer for time-value pairs.

INBL Block number on NFASDF of the first block for each dynamic load.

LNBL | Block number on NFASDF of the last block for each dynamic load.

NBL ‘Block number on NFASDF of the block currently in TASDF for each
dynamic load.

NT Interval containing current time for each block in TASDF. The
current time lies between the times for pairs NT and NT+1.

ICNBL | Last block number read from NFASDF.

When the current time exceeds the maximum time for any block in TASDF, the next block

(block NBL(i)+1 for dynamic load i) is read from NFASDF to replace the existing block.

ICNBL is use to determine whether NFASDF(a sequential file) must be rewound before

skipping to the required block.

2.2.4. ADFREC Common

/ADFREC/ stores information on how each dynaimc load record is applied to the

structure. For ground acceleration loading, accelerations are applied at all restrained and

spring-supported DOFs. For a ground displacement analysis, displacements are applied at

all spring-supported DOFs. For a dynamic force analysis, forces can be applied at any

unrestrained DOF. The maximum number of DOFs at which any dynamic load record can

be applied is the parameter NDSFRP, which can be changed if desired.

/ADFREC/ is declared as follows.

1
2

PARAMETER (NDSFRP=100)
COMMON /ADFREC!/ tfac(36), recfac(36), dtime(36), axi(36), axe(36),

corot(2), dffac(NDSFRP), jdfrec(2,NDSFRP),
npadf(36), ndsfr, ndfrec, npairs

13

The variables are as follows.

Variable | Description

NDSFRP | Maximum number of DOFs at which a ground displacement or

| dynamic force record can be applied.

TFAC Time scale factor for each dynamic load record.

RECFAC | Acceleration, displacement or force scale factor for each record.

DTIME | Time delay for each record (for ground displacement or dynamic
force analysis only).

AXI Acceleration, displacement or force for each record at beginning of
current time step.

AXE Acceleration, displacement or force for each record at end of current
time step.

COROT | Coordinates for center of rotation for rotational ground acceleration.

{ This array is COROT(3) in DRAIN-3DX.

DFFAC | Scale factor for displacement or force for each loaded DOF. This
factor is applied after the displacement or force value has been scaled
by RECFAC.

JDFREC | DOFs at which ground displacement or dynamic force records are
applied.

1: Equation number for the DOF.

2: Dynamic load record number or direction (see note).
Note : For ground displacement or dynamic force analysis, this is the
order in which the load record was input. For ground acceleration
analysis, 1 = global X direction, 2 = Y direction, etc.

NPADF | First-word-address in TASDF buffer for each load record block (see
/ASDFRC/).

NDSFR | Number of DOFs subjected to ground displacement or dynamic force
records. Must be less than NDSFRP.

NDFREC | Number of displacement or force records. Must be less than 36.

NPAIRS | Number of time-value pairs per NFASDF block (see /ASDFRCY/).

2.2.5. AUTO Common

/AUTO/ stores time step data for dynamic analysis.

/AUTO!/ is declared as follows.

COMMON /AUTO/ dtauto, dtcons, dtmax, dtmin, dtnew, dtold, dtred, dtinc,
1 erri, errs, tolhii, tolhis, tolloi, tollos, tolmx,
2 v nsinc, insinc, modify, issav

14

The variables are as follows.

Variable | Description
DTAUTO | Default initial time step for variable time step scheme.
DTCONS | Default time step for constant time step scheme.
DTMAX | Maximum allowable time step size.
DTMIN Minimum allowable time step size.
DTNEW | New time step size.
DTOLD | Old time step size.
DTRED Time step reduction factor.
DTINC Time step increase factor.
ERRI Inertia force (equivalent impulse) error for current time-step.
ERRS Static force (midstep equilibrium) error for current time-step.
TOLHII | Upper inertia force (equivalent impulse) error tolerance.
TOLHIS | Upper static force (midstep equilibrium) error tolerance.
TOLLOI | Lower inertia force (equivalent impulse) error tolerance.
TOLLOS | Lower static force (midstep equilibrium) error tolerance.
TOLMX | Maximum static/inertia force error tolerance. Analysis quits if
exceeded.
NSINC Number of consecutive steps below TOLLOS and TOLLOI, after
: which time step size is increased.
INSINC Counter for the number of consecutive steps below TOLLOS and
TOLLOL
MODIFY | Code for change in time-step size in the current analysis step (set
during the dynamic analysis), as follows.
-1 : The step must be repeated with a reduced time step size.
0 : No change in time step size. A
1 Time step size to be increased in next step.
2 : Use initial value for time step size.
If MODIFY # 0, the effective stiffness is reformed before the next
step.
ISSAV Code for backing up structure state, in case time step must be

repeated. The element /INFGR/ and /INFEL/ blocks, the static
tangent stiffness and the unbalanced load at the beginning of the
current step are saved. To avoid unnecessary saving if there are no
events, the state is saved at the end of the first substep, just before
the state is updated.

0 : State not yet backed up.
1 : State has been backed up.

15

2.2.6. CLINE Common

/CLINE/ is used to hold the current line from the input data file. Each input line is read
into the character variable XXLINE, using one of the utility subroutines GETLIN, GTLIN
or GTLINE. XXLINE is then used as a FORTRAN internal file.

/CLINE/ is declared as follows.

COMMON /CLINE lecho, linpx, xxline
CHARACTER lecho*1, linpx*1, xxline*161

The variables are as follows.

Variable | Description
LECHO | Code for echoing input line on the monitor, as follows.

"n" : No.
"y" : Yes.
LINPX Code for reading input line, as follows.

"i" :Read input line from input data file, DRAIN.INP.

"x" : Read input line from scratch file INPX. INPX is used when it is
necessary to count the number of input items before allocating
memory. The input is read from DRAIN.INP, written to INPX,
then re-read from INPX after memory has been allocated.

XXLINE | For reading from DRAIN.INP:

columns 1-80 : Input buffer.
column 81 : Set to "/" to terminate record.

For reading from a data file containing ground acceleration, ground
displacement or dynamic force records:

columns 1-160 : Input buffer.
column 161 : Set to "/" to terminate record.

2.2.7. COLPSE Common

/COLPSE! stores the nodal displacements for which collapse of the structure is assumed.
/COLPSE/ is declared as follows.

| COMMON /COLPSE/ dismax(2), rtnmax(2) |

16

The variables are as follows.

1 Variable

Description

DISMAX

Nodal displacement at which collapse is indicated (analysis quits if
exceeded).

1 : use for static analysis.
2 : use for dynamic analysis.

RTNMAX

Nodal rotation at which collapse is indicated (analysis quits if
exceeded).

1 : use for static analysis.
2 : use for dynamic analysis.

2.2.8. CONTR Common

JCONTR!/ stores overall control information.

/CONTR!/ is declared as follows.

1

COMMON /CONTR/ incor, nchar, ndsp, ndtp, nelg, nelgr, neltot, nnods,

nseg, nsnds, ntnds

The variables are as follows.

Variable | Description
INCOR Code for storage of backup copies of /INFEL/ and /INFGR/ blocks,
tangent stiffness and unbalanced load. When the variable time step
scheme is used, a backup copy of the structure state is stored in case
the current time step must be repeated.
0: NBLOK > 1 (see /STOR/ block). State is always backed up on a
scratch file in this case.
1 : Back up on file.
2 : Back up /INFEL/ and /INFGR/ blocks on file. Back up tangent
stiffness and unbalanced load in memory.
3 : Back up entirely in memory.
NCHAR | Number of characters in FNAME (see /TITLE/). Used for opening
permanent files.
NDSP Number of support springs.
NDTP . Number of compound node types + 1.
NELG Number of element groups with nonzero /INFGR/ blocks.
NELGR Number of element groups.
NELTOT | Total number of elements.
NNODS | Total number of nodes.

17

NSEG Current analysis segment number.
NSNDS Total number of subnodes in all compound node types.
NTNDS Total number of nodes and subnodes.

2.2.9. CURRNT Common

For any element task (e.g., during model definition, event factor calculation, stiffness
formation, state determination, etc.), an element. subroutine is called for each element.

/CURRNT/ stores information on the current element.

/CURRNT/ is declared as follows.

| COMMON /CURRNT/ igrc, ielc, idfc, inodc |

The variables are as follows.

Variable | Description

IGRC '| Current element group number.

IELC Current element number in current group.

IDFC Current element DOF number in current element. Used only in the
model definition phase (see Section 3.3c).

INODC Current element node number in current element. Used only in the
model definition phase (see Section 3.3c).

2.2.10. DAMPG Common

/DAMPG! stores factors for alpha-M and beta-K damping.

/DAMPG/ is declared as follows.

[COMMON /DAMPG! alpha, beta, kalpm, kbeta ' |

The variables are as follows.
Variable | Description
ALPHA Scale factor for alpha-M damping.
BETA Scale factor for beta-K damping.
KALPM | Code for existence of alpha-M damping (0:No ; 1:Yes).
KBETA | Code for existence of beta-K dampinﬂ:No ; 1:Yes).

18

2.2.11. DIMENS Common

Array dimensions may be passed through argument lists or common blocks. If a dimension
is 0, the FORTRAN compiler may treat it as a fatal error even though the array is never
used (e.g., the Lahey F77L compiler). /DIMENS/ stores dummy values for dimensions

that may be zero.

/DIMENS/ is declared as follows.

| COMMON /DIMENS/ mxcutd, mxtdfd, ndspd, nrdsd, nssecd, ntrnsd

The variables are as follows.

Variable Description
MXCUTD | MAX(1,MAXCUT), where MAXCUT is maximum number of
- elements cut by any section (see /SECTONY/).

MXTDFD | MAX(1,MAXTDF), where MAXTDF is maximum number of
DOFs for any cut element (see /SECTONY/).

NDSPD MAX(1,NDSP), where NDSP is the number of support springs
(see /CONTR/).

NRDSD MAX(1,NRDS); where NRDS is the number of generalized
displacements (see /SETRELY).

NSSECD MAX(1,NSSEC), where NSSEC is the number of structure

. sections (see /SECTONY/). _
NTRNSD | MAX(1,NTRNS), where NTRNS is the number of force
: transformations for structure sections (see /SECTONY/).
2.2.12. DISVEL Common

Element end displacements and velocities are sent to the element subroutines for certain
element tasks (e.g., event factor calculation, state determination), and element end forces
are returned. /DISVEL/ provides memory for these values. Currently these values are
transferred through argument lists. In future programs, /DISVEL/ may be used to transfer
these values, in which case /DISVEL/ will become a part of the interface between the base

program and the element subroutines.

19

/DISVEL/ is declared as follows.

COMMON /DISVEL/ ddise(MXDOFP), vele(MXDOFP), dise(MXDOFP),
1 relas(MXDOFP), rdamp(MXDOFP), rinitt MXDOFP)

The variables are as follows.

Variable | Description

DDISE Increment in element end displacements.
VELE Element end velocities.
DISE Element end displacements.

RELAS Element end static forces.

RDAMP | Element end damping forces.

RINIT Element end initial forces, due to element loads applied in static
gravity analysis.

2.2.13. ELMPAR Common

Up to 2 integer and 2 real analysis control parameters can be input for each element
group, and can be changed before any analysis segment. These parameters might be used,
for example, to set flags for printing debugging information. The use of these parameters
depends on the element type. /ELMPAR/ stores the parameters for the element group that

is currently being processed.

/ELMPAR/ is declared as follows.

| COMMON /ELMPAR! relpar(2), iclpar(2) |

The variables are as follows.

Variable | Description
RELPAR | Integer element parameters for current element group.
IELPAR | Real element parameters for current element group.

2.2.14. ENRGY Common

/ENRGY/ stores the work quantities for checking energy balance. In addition to the
current values, the values at the beginning of the current time step are also stored. These

are backup values in case the time step must be repeated.

/ENRGY/ is declared as follows.

COMMON /ENRGY/ tek, tei, ted, tes, tew, tep, teso, ten, tee, tead,

1 teki, teii, tedi, tesi, tewi, tepi, tesoi, teni, teei, teadi,

2 : eneg(MAXGRP), enrd(MAXGRP), eext(MAXGRP),
3 enegi(MAXGRP), enrdiMAXGRP), eextitMAXGRP)

The variables are as follows.

Variable | Description

TEK Total kinetic energy (from nodal masses and velocities).

TEI Total inertia work (work done by inertia forces).

TED. . | Total damping work (TEAD+TEBD).

TES | Total element static work.

TEW Total work done by dynamic nodal loads (consists of work done by

effective loads in ground acceleration analysis and by support
reactions in ground displacement analysis).

TEP Total work done by static nodal loads.
TESO Total second order work (i.e., work done by P-A shears).
TEN Energy error (= TES+TEI+TED-TEE).
TEE Total external work (=TEP+TEW+TESO).
TEAD Total alpha-M damping work.

TEKI TEK at start of time step.

TEII TEI at start of time step.

TEDI TED at start of time step.

TESI TES at start of time step.

TEWI "TEW at start of time step.

TEPI TEP at start of time step.

TESOI TESO at start of time step.

TENI TEN at start of time step.

TEEI TEEI at start of time step.

TEADI TEAD at start of time step.

ENEG Static work done in each element group.

ENRD Beta-K damping work done in each element group.
EEXT Second-order work done in each element group.

21

ENEGI ENEG at start of time step.

ENRDI ENRD at start of time step.

EEXTI EEXT at start of time step.
.2.2.15. ENVELM Common

Element envelopes are transferred to envelope files ((EXX) by means of /ENVELM/. The
envelope values are stored in single precision. The data and length of /ENVELM/ depends

on the element type.

/ENVELM/ is declared in base program subroutines as follows.

COMMON /ENVELM/ envout(1)
REAL envout

/ENVELM/ is declared fully in the element subroutines.

2.2.16. EQNS Common

/EQNS/ stores variables used in the solution of equations. The stiffness matrix is stored in

compacted column form [9].

/EQNS/ is declared as follows.

| COMMON /EQNS/ neq, neqq, lenk, jcol, maxdof

The variables are as follows.
Variable | Description
NEQ Total number of equations.
NEQQ NEQ+1. All vectors are of length NEQQ (see /STOR/). DOF

number NEQQ is assigned to all restrained displacements (see KID
in /STOR/).

LENK _Length of compacted stiffness matrix.

JCOL First column in stiffness matrix that has changed due to element
events in the most recent state determination. All columns from this
point must be refactorized, but columns up to this point do not
change.

MAXDOF | Maximum number of DOFs for any element in the current structure.

Must be less than 30 (see /DISVELY).

22

2.2.17. EVENT Common

/EVENT/ stores variables used in the event-to-event solution scheme.

/EVENT/ is declared as follows.

1
2

COMMON /EVENT/ afac, facc, unbl(3), unbf, unbm,

irdof, irelm, irend, irevnt, irgrp, irnod,
iquit, maxev, neven

The variables are as follows.

Variable | Description

AFAC Accumulated event factor for current load or time step (proportion
of step "used up").

FACC Event factor for current substep.

UNBL Maximum equilibrium unbalance in each displacement direction. This
array is UNBL(6) in DRAIN-3DX.

'UNBF Maximum force unbalance.

UNBM Maximum moment unbalance.

IRDOF Governing displacement direction if collapse displacement is
exceeded.

IRELM | Element number with the smallest event factor.

IREND Event type code for element with the smallest event factor. The
meaning of this code depends on the element type. See element User
Guides.

23

IREVNT

Code for event type.

: No event.

: Element event.

: Load factor increment reached for load or time step.

: Controlled displacement increment reached for load step.

: Load removed to satisfy displacement control.

: Load factor increment or time increment reached for analysis
segment.

: Controlled displacement increment reached for segment.

: Maximum number of steps reached for segment.

: Maximum number of events reached for load or time step.

: Maximum number of successive direction changes (flip-flops)
exceeded for the step.

10 : Collapse translation exceeded.

11 : Collapse rotation exceeded.

12 : Structure unstable (detected by negative or zero term on the

diagonal during factorization of the stiffness matrix).
13 : Displacement control failed to prevent flip-flop.

WV HhWN=O

O 00O\

IRGRP

Group number of element with smallest event factor.

IRNOD

Node number at which collapse displacement exceeded.

IQUIT

Termination code at end of current load or time step.

0 : Proceed to the next step as current analysis segment has not
been completed (0 < IREVNT < 4).
1 : Proceed to next segment as current segment has been
successfully completed (5 < IREVNT < 6).
-1 : Quit analysis without completing current segment as analysis
_ cannot proceed further (7 < IREVNT < 13).

MAXEV

Maximum number of events allowed in a load or time step.

NEVEN

Number of events in current step.

2.2.18. GENINF Common

/GENINF/ stores data for each element group.

/GENINF/ is declared as follows.

COMMON /GENINF/ betao(MAXGRP), ovfac(MAXGRP,2),
relpr(2, MAXGRP),

1 ielpr(2, MAXGRP), kelem(MAXGRP),
kevnt(MAXGRP),
2 kgeom(MAXGRP), nedof(MAXGRP),
nelem(MAXGRP),

3 nenod(MAXGRP), ninfe(MAXGRP), ninfel(MAXGRP),
3 ninfg(MAXGRP), ninf(MAXGRP), ninft(MAXGRP),
4 ‘nlinf(MAXGRP), nlenvp(MAXGRP)

The variables are as follows.

Variable | Description
BETAO Stiffness proportional damping factor for each group.
OVFAC | Event overshoot scale factor for each group.
1 : for static analyses.
2 . for dynamic analyses.
RELPR | Real element parameters for each group.
IELPR Integer element parameters for each group.
KELEM | Element type number for each group.
KEVNT | Event calculation code for each group.
0 : Suppress element event factor calculation.
1 : Calculate element event factors.
KGEOM | P- A analysis code for each group.
0 : Ignore P — Aeffects.
1: Consider P— A effects and allow geometric stiffness to change
for static analyses only.
2 : Consider P— A effects and allow geometric stiffness to change
for both static and dynamic analyses.
NEDOF | Number of element DOFs for each group.
NELEM | Number of elements in each group.
NENOD | Number of nodes per element for each group.
NINFE Length (in 4-byte units) of /INFEL/ block for each group.
NINFEL | Location of integrity violation variable in /INFEL/ for each group.
Certain element data is stored at the end of /INFEL/ by the base
program. If an element subroutine writes more than the specified
/INFEL/ length, this data is destroyed. To warn against this during
element development, this variable is checked after each call to an
element subroutine. If the variable has been over-written, the
rogram writes an error message.

25

NINFG = | Length (in 4-byte units) of /INFGR/ block for each group.
NINFL Length (in 4-byte units) of one element load set for each group.
NINFT Length (in 4-byte units) of /THELM/ data for each group. If all

| variables in /THELM/ are of 4-bytes, then NINFT is equal to the
number of output items per element for static or dynamic analyses.
NLINF Number of output items per element for response spectrum analysis
for each group. All output items for response spectrum analysis must
be REAL*4 variables.
NLENVP | Length (in 4-byte units) of /ENVELM/ data for each group. If all
variables in /ENVELM/ are of 4-bytes, then NLENVP is equal to the
number of envelope items per element for static or dynamic analyses.

2.2.19. INDIC Common

/INDIC/ stores a number of indicators that are used to control the overall solution

process.

/INDIC/ is declared as follows.

COMMON /INDIC/ kdata, kexe, kecho, kresis, kenr, kpdel, kauto,
1 keven, kenrc, kegbc, maxevd, ktit, kstat

The variables are as follows.

Variable Description
KDATA Data error counter.
KEXE Execution code.

0 : Execute.

1 : Data checking only.

2 : Execute if all element /INFEL/ and /INFGR/ blocks can be held
in memory, otherwise data checking only.

KECHO Input echo code.

0 : Do not echo input lines, nor show analysis progress.

1 : Echo each input line to screen as it is read and show analysis
progress.

2 : Do not echo input lines, but show analysis progress.

KRESIS Code for calculating resisting forces.

1 : Static only.
2 : Static and dynamic.

Energy calculation code.
0 : Omit calculations.

1 : Static only.

2 : Static and dynamic.

KPDEL

P— A analysis code.

0 : Ignore P— A effects.
1 : Consider P— A effects.

KAUTO

Code for dynamic analysis scheme.

1 : Constant time step.
2 : Variable time step.

KEVEN

Code for event calculation.

0 : Ignore events.
1 : Consider events.

KENRC

Code for velocity correction to satisfy energy balance.

0 : Omit correction.
1 : Perform correction.

KEQBC

Code for acceleration modification to improve equilibrium.

0 : Omit modification.
1 : Perform modification.

MAXEVD

Maximum number of events allowed in a time step.

KTIT

Code for printing title in results printout (0:No ; 1:Yes). KTIT is set
to 1 at start of first load or time step, and reset to O after title has
been printed.

KSTAT

Code for type of analysis.
1 : Static.

2 : Dynamic.

2.2.20. INFEL Common

Data is stored for each element to monitor its nonlinear behavior. Data unique to each

element is transferred to and from the element subroutines by means of this block. The

length of the block and the data it contains depend on the element type.

/INFEL/ is declared in base program subroutines as follows.

| COMMON /INFEL/ ielm(1)

/INFEL/ is declared fully in the element subroutines.

27

2.2.21. INFGR Common

/INFGR/ stores data common to all elements of an element group (as distinct from
/INFEL/, which stores data specific to each element). Element group data is transferred to
and from the element subroutines by means of this block. The length of the block and the

data it contains depend on the element type.

/INFGR!/ is declared in base program subroutines as follows.

| COMMON /INFGR/ igrin(1)

/INFGR/ is declared fully in the element subroutines.
'22.22. INTCOF Common

/INTCOF/ stores coefficients for the constant average acceleration integration scheme.
The integration scheme could be changed by changing these variables, but this is not

recommended.

/INTCOF/ is declared as follows.

COMMON /INTCOF/ cofl, cof2, cof3, cofd, cof5, cof6,
1 cof2a, cof2b, cof5a, cof5b

The variables are as follows.

Variable | Description

COF1 4 / Atz

COFR2 2/At

COF3 4/At

COF4 At/12

COF5 2

COF2A COF2 x ALPHA (see /DAMPG/ for ALPHA).

COF2B COF2 x BETA (see /DAMPG/ for BETA).
 COF5A COF5 x ALPHA (see /DAMPG/ for ALPHA).

COF5B COF5 x BETA (see /DAMPG/ for BETA).

2.2.23. LOADP Common

/LOADP/ defines the storage block size for ground acceleration, ground displacement and

dynamic force records on permanent files with extensions .ACC, .DIS and .FRC,

respectively (see /ASDFRC/ and /ADFREC)/).

/LOADP/ also stores maximum length information for response spectra. The maximum

allowed size of a response spectrum block is MPSPEC (=141) time-value pairs, and each

spectrum must fit in one block.

/LOADP/ is declared as follows.

| COMMON /LOADP/ mpairs, mpspec

The variables are as follows.

Variable

Description

MPAIRS

Number of time-value pairs per block in .ACC, .DIS and .FRC files.

MPSPEC

' Number of time-value pairs per response spectrum in .SPC file.

29

2.2.24. NUMS Common

/NUMS/ stores commonly used constants. The values of these constants are set in

BLOCK DATA (file BLOCK.FOR).

/NUMS/ is declared as follows.

[COMMON /NUMSY vlarg, vsmal, spstif(2) 1

The variables are as follows.

| Variable | Description

VLARG | Large number (1.0e+6).

VSMAL | Small number (1.0e-6).

SPSTIF Support-spring stiffnesses for translational and rotational DOFs,
respectively.

2.2.25. OUTD Common
/OUTDY/ stores the result output intervals for dynamic analysis.

/OUTDY/ is declared as follows.

COMMON /OUTD/ tsaved, tppsvd, tpoutd, tenvsd, tenvpd,
1 isaved, ippsvd, ipoutd, ienvsd, ienvpd

The variables are as follows.

Variable | Description
TSAVED | Time interval for saving structure state.

0.0 : Ignored. Do not save if ISAVED also = 0.

>0.0 : Save at this interval, unless ISAVED governs, and at end of
analysis segment

TPPSVD | Time interval for saving results for post-processing.

1 0.0 : Ignored. Do not save if IPPSVD also = 0.

>0.0 : Save at this interval, unless IPPSVD governs, and at end of
analysis segment.

TPOUTD | Time interval for results printout.

0.0 : Ignored. Do not print if IPOUTD also = 0.
>0.0 : Print at this interval, unless IPOUTD govemns, and at end of
analysis segment.

30

TENVSD

Time interval for saving envelopes for post-processing.

0.0 : Ignored. Do not save if IENVSD also = 0.
>0.0 : Save at this interval, unless IENVSD governs, and at end of
analysis segment.

TENVPD

Time interval for envelope printout.

0.0 : Ignored. Do not print if IENVPD also = 0.
>0.0 : Print at this interval, unless IENVPD governs, and at end of
analysis segment.

ISAVED

Step interval for saving structure state.

0: Ignored. Do not save if TSAVED also = 0.0.
n : Save state every 'n’ steps, unless TSAVED governs, and at end of
analysis segment :

IPPSVD

Step interval for saving results for post-processing.

0 : Ignored. Do not save if TPPSVD also = 0.0.
n : Save every 'n' steps, unless TPPSVD governs, and at end of
analysis segment.

IPOUTD

Step interval for results printout.

0 : Ignored. Do not print if TPOUTD also = 0.0.
n : Print every 'n’ steps, unless TPOUTD governs, and at end of
analysis segment.

IENVSD

Step interval for saving envelopes for post-processing.

0 : Ignored. Do not save if TENVSD also = 0.0.
n : Save every ‘n’ steps, unless TENVSD governs, and at end of
analysis segment.

IENVPD

Step interval for envelope printout.

0 : Ignored. Do not print if TENVPD also = 0.0.
n : Print every 'n’ steps, unless TENVPD governs, and at end of
analysis segment.

2.2.26. OUTS Common

/OUTS/ stores the result output intervals for static analysis.

/OUTS!/ is declared as follows.

| COMMON /OUTS! isaves, ippsvs, ipouts, ienvss, ienvps

31

The variables are as follows.

Variable | Description

ISAVES | Step interval for saving structure state.

0 : Do not save.
n : Save every 'n’ steps and at end of analysis segment

IPPSVS Step interval for saving results for post-processing.

-1 : Save every event.
0 : Do not save.
n : Save every 'n' steps and at end of analysis segment.

IPOUTS | Step interval for results printout.

-1 : Print every event.
0 : Do not print.
n : Print every 'n' steps and at end of analysis segment.

IENVSS | Step interval for saving envelopes for post-processing.

0 : Do not save.
n : Save every 'n' steps and at end of analysis segment.

IENVPS | Step interval for envelope printout.

0 : Do not print.
n : Print every 'n' steps and at end of analysis segment.

2.2.27. OUTP Common
/OUTP/ stores the step and time intervals since the last results and/or envelope output.

/OUTP/ is declared as follows.

COMMON /OUTP!/ ttsave, ttppsv, ttpout, ttenvs, ttenvp,
1 iisave, iippsv, iipout, iienvs, iienvp,
2 ksave, kppsv, kpout, kenvs, kenvp

The variables are as follows.

Variable | Description

TTSAVE | Time interval since last structure state save.

TTPPSV | Time interval since last results post-processing save.

TTPOUT | Time interval since last results printout.

TTENVS | Time interval since last envelope post-processing save.

TTENVP | Time interval since last envelope printout.

IISAVE | Step interval since last structure state save.

IIPPSV Step interval since last results post-processing save.

32

IIPOUT Step interval since last results printout.

IIENVS Step interval since last envelope post-processing save.

IIENVP | Step interval since last envelope printout.

KSAVE Code for 'Savingstructure state in the current step (0:No ; 1:Yes).
KPPSV Code for saving results for post-processing in the current step (0:No
; 1:Yes).

KPOUT Code for results printout in the current step (0:No ; 1:Yes).

KENVS Code for saving envelopes for post-processing in the current step

' (0:No ; 1:Yes).

1 KENVP Code for envelope printout in the current step (0:No ; 1:Yes).

2.2.28. PREC Common

/PREC!/ stores a precision code for real variables. The default for real variables is double
precision. If single precision is desired, change IPREC to 1 in BLOCK DATA, and change
DOUBLE.H to set the default precision to single.

/PREC/ is declared as follows.

| COMMON /PREC/ iprec |

The variable is as follows.

Variable | Description

IPREC Precision for real variables.
1 : Single precision.

2 : Double precision.

2.2.29. PTOP Common

/PTOP!/ is for page layout during printing.This feature has not yet been implemented.

/PTOP/ is declared as follows.

[COMMON /PTOP/ npage, nlin, maxlin, madum]

33

The variables are as follows.

Variable | Description
NPAGE | Current page number.
NLIN | Current line number.
MAXLIN | Number of writable lines per page.
MADUM | Number of skip lines per page. Used to skip the perforations for
continuous paper.
2.2.30. RHIST Common

/RHIST/ stores counts of numbers of items for results printout and post-processing.

/RHIST/ is declared as follows.

1
2

COMMON /RHIST/ Irec, ntime, nddis, ndvel, ndacc, nelth, npsec, ngdis,

ngvel, ngacc, nptime, nddisp, ndvelp, ndaccp, nelthp,
npsecp, ngdisp, ngvelp, ngaccp

The variables are as follows.

Variable | Description
LREC Length of buffer REC (fwa = KREC in /STOR/) for output of time-
history and/or envelope results.
NTIME | Number of printout sets in current analysis segment.
NDDIS Number of node displacements in a printout set.
| NDVEL | Number of node velocities in a printout set.
NDACC | Number of node accelerations in a printout set.
NELTH | Number of elements in a printout set.
NPSEC | Number of structure sections in a printout set.
NGDIS Number of generalized displacements in a printout set.
NGVEL | Number of generalized velocities in a printout set.
NGACC | Number of generalized accelerations in a printout set.
| NPTIME | Number of post-processing sets in current analysis segment.
'NDDISP | Number of node or subnode displacements in a post-processing set.
NDVELP | Number of node or subnode velocities in a post-processing set.
NDACCP | Number of node or subnode accelerations in a post-processing set.
NELTHP | Number of elements in' a post-processing set.
NPSECP | Number of structure sections in a post-processing set.
NGDISP | Number of generalized displacements in a post-processing set.
'NGVELP | Number of generalized velocities in a post-processing set.
NGACCP | Number of generalized accelerations in a post-processing set.

34

2.2.31. SECTON Common
/SECTON!/ stores structure section information.

/SECTONY/ is declared as follows.

| COMMON /SECTON/ nssec, maxcut, ntrns, maxtdf

The variables are as follows.

Variable Description
NSSEC Number of structure sections.
MAXCUT | Largest number of elements cut by any section.
| NTRNS Number of force transformations.
MAXTDF | Largest number of DOFs for any transformation.

2.232. SETREL Common
/SETREL/ stores generalized displacement information.

/SETREL/ is declared as follows.

| COMMON /SETREL/ nrds

The variable is as follows.

Variable | Description

NRDS Number of generalized displacements.

2.2.33. STAT Common
ISTAT]/ stores control information for static analysis.

ISTAT/ is declared as follows.

COMMON /STAT/ disa, disma, fdis, flod, slfac, tload,
1 iflip, ipsign, isign, jdof, 1dof, kdc, kic, maxfp

35

The variables are as follows.

Variable | Description

DISA | Controlled displacement increment per step.

DISMA Controlled displacement increment for analysis segment.

FDIS Current value of controlled displacement increment for analysis
segment.

FLOD . | Current value of load factor for analysis segment.

SLFAC Load factor increment per load step.

TLOAD | Load factor increment for analysis segment.

IFLIP Current number of successive load direction changes (i.e., flip-flops).
IPSIGN ISIGN in preceding substep. Used to detect flip-flops.

ISIGN Sign of load factor increment for satisfying controlled displacement
condition.

JDOF Equation number for the 1st node displacement defining the
controlled displacement.

LDOF Equation number for the 2nd node displacement defining the

.| controlled displacement.

KDC Displacement control code (0:No ; 1:Yes).

KLC Load control code (0:No ; 1:Yes).

MAXFP | Maximum number of successive flip-flops allowed.

2.2.34. STOR Common

/STOR!/ stores the first word addresses of the arrays in blank common, plus some variables
used frequently with the storage scheme (see Section 2.3. for details). The variables
defining the array dimensions are in /CONTR/, /EQNS/, /RHIST/, /SECTON/, /SETREL/
and /STOR/.

/STOR!/ is declared as follows.

COMMON /STOR/ ntst, knsb, kndfsb, kcosb, kndid, kcoord, kid,
kidsp, kspdsp, kistif, kfmnod, kfmdof, kalpha,
knecut, ksang, kdist, kidcut, kstrns, knodir,
krdfac, kjnod, kjelm, kjsec, kjrds, kwkspc, krds,

~ ksefor, krec, kenp, kenn, kistp, kistn, ksecen,
kisece, krdsen, kirdse, kxlod, kexts, kext,
kdext, krints, krint, kru, kdisi, kveli, kacci,
kdds, kevel, kcacc, kdis, kvel, kacc, kenri,
kdru, kdtan, kbetak, kdinfb, kiad, kinfb, keffk,
ktank, nblok, niad, ninfb, ksofar

OO0 W H WK -

36

The variables are as follows.

Variable | Description

NTST Length of blank common in 4-byte units.

NBLOK Number of disk blocks used to store /INFGR/ and /INFEL/ for all
elements.

|NIAD Length of IAD array, = NELTOT + NELG (see /CONTR/).

NINFB - | Length of INFB array = size of each disk block used to store
/INFGR/ and /INFEL/.

'} KSOFAR | Next unallocated address in blank common.

The arrays stored in blank common are as follows.

FWA Array ’ Description

KNSB NSB(ndtp) Location of first subnode for each
compound node type in arrays NDFSB
and COSB. The number of subnodes
in compound node type, NT, is equal
to NSB(nt+1) - NSB(nt).

KNDFSB | NDFSB(3,nsnds) in 2DX DOF codes for all subnodes of each
NDFSB(6,nsnds) in 3DX | compound node type, as follows.

0 : Absolute displacement.

1 : Restrained (not a DOF).

2 : Relative displacement w.r.t. main
node. This type of DOF has not yet
been implemented.

3 : Special degree of freedom (i.e., not
a conventional translation or
rotation).

KCOSB COSB(2,nsnds) in 2DX Coordinate offsets from main node for:
COSB(3,nsnds) in 3DX subnodes of each compound node

type.

37

NDID(3,nnods)

KNDID Node identification array.

1 : Node number.

2 : Compound node type number (0 =
not a compound node). The
compound node types are
numbered in the order of input.

3 : Location of nodal DOFs in ID
array. For compound nodes, the
subnode DOFs immediately follow
the main node DOFs in the ID
array.

KCOORD | COORD(2,nnods) in 2DX | Nodal coordinates, in ascending node
COORD(3,nnods) in 3DX | number order.

KID ID(3,ntnds) in 2DX Equation numbers for displacements at
ID(6,ntnds) in 3DX each node and subnode, coded as

follows.

NEQQ : Restrained displacement.

(See /EQNS/ for NEQQ).
+n : Displacement is unrestrained and
unslaved. 'n' = equation number.

-n : Displacement is slaved. 'n' =

sequence number of master node.

KIDSP IDSP(ndsp) Equation number for each spring
supported displacement.

KSPDSP SPDSP(ndsp,2) Imposed displacements at spring
supports (1: total ; 2: increment for
current step).

KLSTIF LSTIF(neqq) Location of diagonal elements in
compacted stiffness matrix.

KFMNOD | FMNOD(3,nnods) in 2DX | Nodal masses.

FMNOD(6,nnods) in 3DX

KFMDOF | FMDOF(neqq) Mass matrix (diagonal).

KALPHA | ALPHAM(neqq) Alpha-M damping matrix (diagonal).

KNECUT | NECUT(nssec) Number of elements cut by each
structure section. ,

KSANG SANG(2,nssec) in 2DX Cosine and sine of section inclination
SANG(3,3,nssec) in 3DX | angles in 2DX. Direction cosines of

section axes in 3DX.

KDIST DIST(2,maxcut,nssec) in Coordinate offsets from structure
2DX section centers to element cuts (X and
DIST(3,maxcut,nssec) in Y offsets in 2DX; X, Y and Z offsets
3DX in 3DX).

38

KIDCUT | IDCUT(3,maxcut,nssec)

Identification array for cut elements in
structure sections, as follows.

1 : Group number.
2 : Element number.
3 : Force transformation number.

KSTRNS | STRNS(3,maxtdf,ntrns) in
2DX
STRNS(6,maxtdf,ntrns) in

3DX

Force transformation matrices for
structure sections.

KNODIR | NODIR(8,nrds)

Displacements forming each
generalized displacement, coded as
follows.

+n : Equation number.

-n : Slaved displacement.
'n' = NDISP + NLOCx4 for
2DX.
'n' = NDISP + NLOCX7 for
3DX.

Where,

NLOC = sequence number of the
slaved node = n/4 for 2DX and n/7
for 3DX.

NDISP = direction of DOF =
MOD(n,4) for 2DX and MOD(n,7)
for 3DX.

KRDFAC | RDFAC(8,nrds)

Participation factors for displacements
forming each generalized
displacement.

39

KINOD

JNOD(nnods)

Output codes for nodes. Each code is
an integer between O (binary
000000000) and 511 (binary
111111111). In binary, each bit from
the left, is an output code (0:No ;
1:Yes) as follows.

1st bit = User output accelerations.
2nd bit = Post-process accelerations.
3rd bit = Printout accelerations.

4th bit = User output velocities.

5th bit = Post-process velocities.

6th bit = Printout velocities.

7th bit = User output displacements.
8th bit = Post-process displacements.
9th bit = Printout displacements.

KJELM

JELM(neltot)

Output codes for elements. Each code
is an integer between O (binary 000)
and 7 (binary 111). In binary, each bit
from the left, is an output code (0:No ;
1:Yes) as follows.

Ist bit = User output element results.
2nd bit = Post-process element results.
3rd bit = Printout element results.

KJSEC

JSEC(nssec)

Output codes for structure sections.
Each code is an integer between 0
(binary 000) and 7 (binary 111). In
binary, each bit from the left, is an
output code (0:No ; 1:Yes) as follows.

1st bit = User output section forces.
2nd bit = Post-process section forces.
3rd bit = Printout section forces.

40

KIJRDS JRDS(nrds) Output codes for generalized
displacements. Each code is an integer
between 0 (binary 000000000) and
511 (binary 111111111). In binary,
each bit from the left, is an output
code (0:No ; 1:Yes) as follows.
1st bit = User output accelerations.
2nd bit = Post-process accelerations.
3rd bit = Printout accelerations.
4th bit = User output velocities.

Sth bit = Post-process velocities.

6th bit = Printout velocities.

7th bit = User output displacements.
8th bit = Post-process displacements.
9th bit = Printout displacements.

KWKSPC | WKSPC(nwksp) Work space for use by base program
subroutines.

KRDS RDS(nrds) Current generalized displacement
magnitudes.

KSEFOR | SEFOR(6,nssec) in 2DX Current structure section forces (3 or

SEFOR(12,nssec) in 3DX | 6 static values followed by 3 or 6
damping values for each section).

KREC REC(lrec) Buffer for output of time-history
and/or envelope results for post-
processing and/or printout.

KENP DENP(3,ntnds) in 2DX Positive nodal displacement envelopes.

DENP(6,ntnds) in 3DX
KENN DENN(3,ntnds) in 2DX Negative nodal displacement
DENN(6,ntnds) in 3DX envelopes.
KISTP ISTP(3,ntnds) in 2DX Step numbers for DENP.
| ISTP(6,ntnds) in 3DX
KISTN ISTN(3,ntnds) in 2DX Step numbers for DENN.
ISTN(6,ntnds) in 3DX
KSECEN | SECENV(3,6,nssec) in Section force envelopes. 2nd index
2DX indicates type of envelope as follows.
gg;ENV(&&nssec) n 1 : Total positive.
2 : Total negative.
3 : Static positive.
4 : Static negative.
5 : Damping positive.
6 : Damping negative.

41

KISECE ISECEN(3,6,nssec) in Step numbers for SECENV.
2DX
ISECEN(6,6,nssec) in
3DX
KRDSEN | RDSENV(2,nrds) Positive and negative generalized
displacement envelopes.
KIRDSE IRDSEN(2,nrds) Step numbers for RDSENV.
KXIL.OD XL.OD(neqq) Effective nodal load increment for the
current load or time step.
KEXTS EXTS(neqq) Total static load.
KEXT EXT(neqq) Total static + dynamic load.
KDEXT DEXT(neqq) Dynamic load increment for the
current time step.
For *ACCN or *ACCR analysis
DEXT is the load increment due to
ground acceleration increments.
For *DISN or *DISR analysis DEXT
is the load increment required to
impose the specified ground
displacement increments.
KRINTS RINTS(neqq) Static resisting force.
KRINT RINT(neqq) Total (static + damping + inertia)
resisting force.
KRU RU(neqq) Unbalanced load (EXT - RINT).
KDISI DISI(neqq) Displacements at start of current time
step.
KVELI VELI(neqq) Velocities at start of current time step.
KACCI ACCI(neqq) Accelerations at start of time step.
KDDS DDIS(neqq) Displacement increment in current
substep.
KCVEL CVEL(neqq) Velocity increment in current substep.
KCACC CACC(neqq) Acceleration increment in current
substep.
KDIS DIS(neqq) Total displacements.
KVEL VEL(neqq) Total velocities.
KACC ACC(neqq) Total accelerations.
KENRI ENRI(neqq) Work done by inertia forces in current
time step.
KDRU DRU(neqq) Backed up RU (if KDRU # 1). Used
if time step is repeated. See INCOR in
/CONTRY/.
KDTAN DTAN(lenk) Backed up TANK (if KDTAN # 1).

Used if time step is repeated. See
INCOR in /CONTR/.

42

KBETAK | BETAK(lenk) Beta-K damping matrix, compacted

column.

KDINFB IINFB (ninfb) Backed up INFB (if KDINFB # 1).

Used if time step is repeated. See

INCOR in /CONTR/.

KIAD IAD(niad) First word addresses in INFB of

/INFGR/ and /INFEL/ blocks.

If IAD=1 for any /INFGR/ or /INFEL/

block, that block does not lie in

current INFB, and a new INFB block

must be read from the file storing the

element data blocks.

KINFB INFB(ninfb) Buffer for /INFGR/ and /INFEL/

blocks.

KEFFK EFFK(lenk) - Current effective tangent stiffness

matrix (compacted column,

factorized).

KTANK TANK(lenk) Current static tangent stiffness matrix
- | (compacted column, unfactorized).

2.2.35. TAPES Common

/TAPES/ stores the unit numbers for disk files. The unit numbers are assigned in BLOCK
DATA (file BLOCK.FOR).

[TAPES/ is declared as follows.

COMMON /TAPES/ inp, iou, inpx, nfbeg, nfcur, nfupd, nfscrt, nfres,
1 nfperm, nfload, nflis, nfoutp, nflog, nfgeo, nfpmt,
2 nfmode, nfmrsl, nfasdf, nfenvp, nfbeta

The variables are as follows.

Unit No. | Associated File(s)

INP Input file, DRAIN.INP.
iou Echo file, ECH.
INPX Input scratch file. Used for counting input items before data is
actually read.

NFBEG Scratch file storing /INFGR/ and /INFEL/ blocks at start of current
step. Each disk block may contain one or more /INFGR/ and
/INFEL/ blocks. The size of each disk block is NINFB (in /STOR/).
NFCUR Scratch file storing /INFGR/ and /INFEL/ blocks at start of current
substep.

43

NFUPD Scratch file storing updated /INFGR/ and /INFEL/ blocks at end of
current substep.

NFSCRT | Scratch file storing individual /INFGR/ and /INFEL/ blocks during
data input.

NFRES Results post-processing file, RXX, where XX is analysis segment
number.

NFPERM | Structure state file, .SXX, where XX is analysis segment number.

NFLOAD | Files containeng load patterns and dynamic load records (i.e., .ELD,
STA, .SPC, .ACC, .VEL, .DIS, .FRC).

NFLIS Analysis list file, .LST.

NFOUTP | Printout file, .OUT.

NFLOG | Solution log file, .SLO.

NFGEO Geometry file, .GEO.

NFPRNT | Scratch file for saving results for printout. Results are saved step-by-

| step, then reorganized and written to .OUT file item-by-item.

NFMODE | Mode shape file, MXX, where XX is analysis segment number.

| NFMRSL | Modal response file, UXX, where XX is analysis segment number.
NFASDF _ | Scratch file for dynamic load records. Used during dynamic analysis.
NFENVP | Envelope file, EXX, where XX is analysis segment number, for
_ -envelope post-processing.
NFBETA | Element damping matrices file, .DPG.
2.2.36. THELM Common

Element results are transferred to results files ((RXX) by means of /THELM/. The results
are stored in single precision. The data and length of /THELM/ depends on the element

type.
- [THELM/ is declared in base program subroutines as follows.

COMMON /THELM/ thout(1)
REAL thout

/THELM/ is declared fully in the element subroutines.
2.2.37. TIME Common
[TIME/ stores time data for dynamic analysis.

[/TIME!/ is declared as follows.

| COMMON /TIME/ dt, timax, tim, kstep, nsteps

4

The variables are as follows.

Variable | Description

DT Current time step, At.
TIMAX | Time increment for current analysis segment.
TIM Total time in the current dynamic load record.

KSTEP Step number for the current analysis segment.
NSTEPS | Maximum number of steps for current segment (analysis quits if
exceeded).

2.2.38. TITADF Common

[TITADF/ stores the record names for the dynamic load records that are applied in the

current analysis.

[TITADF/ is declared as follows.

COMMON /TITADF/ tadf(36)
CHARACTER tadf*4

The variable is as follows.

Variable | Description
'TADF Record names for dynamic load records. See /ASDFRC/.

2.2.39. TITLE Common
[TITLE/ stores the problem titles.

[TITLE/ is declared as follows.

COMMON /TITLE/ fname, ihed, anal, iheda
CHARACTER fname*8, ihed*40, anal*4, iheda*40

45

The variables are as follows.

Variable | Description

| FNAME | Problem name. The number of characters in FNAME is NCHAR (in
/CONTR/). All permanent files opened for the problem have names
of the form PROBNAME .EXT, where PROBNAME is FNAME and
EXT is a three character extension indicating the contents of the file.

IHED Problem title.

ANAL Analysis type (GRAV', 'STAT', REST', MODE, 'SPEC', 'ACCN,,
'‘ACCR', 'VELN!, 'VELR', 'DISN', 'DISR', FORN' or FORR").

IHEDA Analysis title.

2.2.40. USROUT Common
/USROUTY/ stores the intervals and items for user output to the .USR file.

/USROUT/ is declared as follows.

COMMON /USROUTY/ tuoutd, ttuout, kusrf, nfusrf, iuouts, iuoutd, iiuout,
1 kuout, nutime, nddisu, ndvelu, ndaccu, nelthu, npsecu,
2 ngdisu, ngvelu, ngaccu

The variables are as follows.

Variable | Description
TUOUTD | Time interval for user output for dynamic analyses.

0.0 : Ignored. Do not output if IUOUTD also = 0.
>0.0 : Output at this interval, unless IUOUTD governs, and at end
of analysis segment.

TTUOUT | Time interval since last user output.

KUSRF Code for form of user output file.

0 : Unformatted FORTRAN file.
1 : Formatted FORTRAN file.

2 : Binary FORTRAN file.

-1 : No user output file.

NFUSRF | Unit number for the user output file, .USR.

TUOUTS | Load step interval for user output for static analyses.

-1 : Output every event.
0 : Do not output.
n : Output every 'n' steps and at end of analysis segment.

46

IUOUTD | Time step interval for user output for dynamic analyses.
0 : Ignored. Do not output if TUOUTD also = 0.0.
n : Output every 'n' steps, unless TUOUTD governs, and at end of
analysis segment.
IIUOUT | Step interval since last user output.
KUOUT | Code for user output in the current step (0:No ; 1:Yes).
NUTIME | Number of user output sets in the current analysis segment.
NDDISU | Number of node displacements in a user output set.
NDVELU | Number of node velocities in a user output set.
NDACCU | Number of node accelerations in a user output set.
'NELTHU | Number of elements in a user output set.
NPSECU | Number of structure sections in a user output set.
NGDISU | Number of generalized displacements in a user output set.
NGVELU | Number of generalized velocities in a user output set.
NGACCU | Number of generalized accelerations in a user output set.
2.2.41. WORK Common

/WORK!/ provides a temporary work area for exclusive use by element subroutines.

/WORKY! is declared in main program (file MAIN.FOR) as follows.

["COMMON /WORK/ w(1) 1

/WORK! is declared fully in any element subroutines where it is used.
2.3. BLANK COMMON

Blank common is declared as follows in all except the main program.

- [comMoN L(1) |

The length is defined by the parameter NTSTP in the main program (file MAIN.FOR) as

follows.

PARAMETER (NTSTP=65000)
COMMON L(NTSTP)

ntst = NTSTP

For DRAIN-2DX, the 65000 value is about the maximum for PCs under DOS with a
640K memory limit. For workstations and PCs with larger memory limits or virtual

47

memory systems it is probably most efficient to specify sufficient length to store all data in

memory.

Arrays in L are located by their first-word-addresses (FWA). The arrays and their
addresses have been listed in /STOR/. If an array is not allocated space, because it is not
required for the current problem or because it is not kept in memory, its FWA is set to 1.
Therefore L(1) is not used and first allocated address is L(2).

Most real variables are currently in double precision (REAL*8). It is possible that some of

these variables will be made single precision in future versions.

The variable KSOFAR stores the first unallocated address in L at any stage of execution
of the program. To allocate, say, an integer array NDID of dimensions (3, NTNDS), the

code is as follows.

kndid = ksofar
ksofar = kndid + 3 X ntnds

Each real array is made to start on a 8-byte boundary by assigning an odd FWA. For
example, to allocate real array COORD of dimensions (2, NNODS), the code is as

follows.

kcoord = NXTODD (ksofar)
ksofar = kcoord + 2 X nnods X iprec

In the above, NXTODD is the simple statement function:

| NXTODD(k) = k + MOD(k+1,2) |

After each allocation in L, KSOFAR is checked to ensure that it is less than NTST. If
KSOFAR > NTST, the blank common length is insufficient to run the problem, and the
program writes an error message in the .ECH file. The parameter NTSTP in the main

program (file MAIN.FOR) must be increased to run the problem.

48

The utility subroutines, IZERO, RZERO and DZERO are used to zero integer, real and
double precision array, respectively. The utility subroutines ISHIFT and DSHIFT are used
to copy integer and real arrays, respectively. The utility subroutine RDSHFT is used to
copy a double precision array to a single precision array. The utility subroutines IREAD,
RREAD and DREAD are used to read integer, single and double precision arrays,
respectively, from an unformatted sequential file. The utility subroutines IWRITE,
RWRITE and DWRITE are used to write integer, single and double precision arrays,
respectively, to an unformatted sequential file.

2.4. PERMANENT FILES

The base program creates several permanent files. All permanent files have names of the
form PROBNAME.EXT, where PROBNAME is the problem name (up to 8 characters),
FNAME in /TITLE/, and EXT is a three character extension indicating the contents of the
file.

Static load patterns and dynamic load records are stored on FORTRAN unformatted files
as follows. Unit NFLOAD is used for all these files, as only one of them needs to be open

at any time.
UNFORMATTED FILES FOR LOAD PATTERNS AND RECORDS
Extension | Unit No. Contents
ELD NFLOAD | Static element load patterns.
STA | NFLOAD | Static nodal load patterns.
.VEL NFLOAD | Initial velocity patterns.
ACC NFLOAD | Ground acceleration records.
.DIS NFLOAD | Ground displacement records.
FRC NFLOAD | Dynamic force records.
.SPC NFLOAD | Earthquake response spectra.

49

The following output files are all FORTRAN formatted (text) files.

OUTPUT TEXT FILES
Extension | Unit No. | Contents
ECH IOU Echo of input data and analysis log consisting of event
log and unbalanced load information..
LST NFLIS Log of analysis segments and list of segments for
which the EXX, MXX, .RXX, .SXX, .MXX and
JUXX files have been set up.
.OUT NFOUTP | Time history and envelope results, mode shapes and
periods, and response spectrum results.
SLO NFLOG Solution log consisting of energy balance and
“unbalanced load information.

The output files for post-processing are all FORTRAN unformatted files, as follows.

UNFORMATTED OUTPUT FILES FOR POST-PROCESSING
Extension | Unit No. Contents
.GEO NFGEO Geometry data for the structure for plotting.
EXX NFENVP | Envelope results for analysis segment XX.
RXX NFRES Time-history results for analysis segment XX.

The following are all FORTRAN unformatted files.

OTHER PERMANENT FILES

Extension

Unit No.

Contents

.DBG

NFBETA

Element beta-K damping matrices.

MXX

NFMODE

Mode shapes and periods for analysis segment XX.

JUXX

NFMRSL

Individual modal results for unit spectral amplitude for
modes in the MXX file. This file is created the first
time a response spectrum analysis is performed using
these modes. The unit modal results are not
recalculated if later analyses are performed with
different response spectra.

SXX

NFPERM

Structure state at end of analysis segment XX, for
restart in subsequent analysis sessions.

Detailed descriptions of the structures of all FORTRAN unformatted files, except .SXX,
are given in Chapter 4. See subroutines SSTATE and RSTATE for the structure of the
SXX file.

2.5. TEMPORARY FILES
2.5.1. Introduction

Temporary files (i.e., FORTAN scratch or internal files) are used for the following.

(a) Input processing.

(b) Output processing.

(c) Storage of element /INFGR/ and /INFEL/ blocks.

(d) Storage of backup /INFGR/ and /INFEL/ blocks; tangent stiffness, DTAN; and
unbalanced load vector, DRU. These are used to restore the state if the time step must
be repeated in the variable time-step scheme.

These files are described in the following sections.
2.5.2. Input Processing

In the DRAIN.INP file, separator lines signal the start of each new task. If item counts are
needed before memory can be assigned for any input task, the input data is read twice. In
the first reading, the items are counted and the input lines are written to the scratch file

INPX. The program then allocates memory and re-reads the input lines from INPX.

Each input line is read into the character variable XXLINE (see /CLINE/). XXLINE is
then used as a FORTRAN internal file. The data in XXLINE can be read several times if
desired.

2.5.3. Output Processing

The results for all items (see /RHIST/) are obtained step-by-step during the analysis and
are written to the scratch file, NFPRNT. At end of analysis segment, results for all steps
are read from NFPRNT, reorganized item-by-item instead of step-by-step, and written to
the .OUT file.

51

2.54. Storage of Element Data Blocks

Data is stored for each element in /INFGR/ and /INFEL/ blocks. There is one /INFGR/
block for each element group (containing data common to all elements in the group) plus

one /INFEL/ block for each element (containing data unique to each element).

The base program stores these blocks in array INFB (see KINFB in /STOR/). For any
element task (e.g., event factor calculation, state determination, etc.), before an element
subroutine is called, the /INFGR/ and /INFEL/ data for the current element is copied from
INFB to the /INFGR/ and /INFEL/ blocks, If the updates made by the element subroutine
to its /INFEL/ block are to be accepted (e.g., following state determination), then the
/INFEL/ data is copied back to INFB. If the updates made by the element subroutine to its
/INFEL/ block are to be ignored (e.g., following event factor calculation), then the
/INFEL/ data is not copied back.

For a small problem, or if the blank common is large, INFB can accomodate all /INFGR/
and /INFEL/ blocks. For a large problem, however, INFB may accomodate only a few
/INFGR/ and /INFEL/ blocks. For such problems, the element data is blocked. Each block
has length NINFB (in 4-byte units), and the number of blocks is NBLOK (see /STOR/).
The value of NINFB depends on the remaining blank common after all arrays except
DTAN, DRU and DINFB have been allocated.

If the element data can not be held in memory, the base program uses three temporary

files, with unit numbers NFBEG, NFCUR, and NFUPD (see /TAPES/). NFBEG holds the

element data at the beginning of the current load or time step, NFCUR holds the data at

the start of the current analysis substep, and NFUPD holds the updated data at the end of

the current substep. The unit numbers are cycled as follows.

(a) Before the first substep, NFBEG and NFCUR are switched (i.e., the unit numbers are
interchanged) so that NFCUR holds the current data.

.52

(b) At the start of any substep, NFCUR holds the current data. As the elements are
processed the base program fills INFB by reading the next block from NFCUR
whenever it is required to process the current element. If the data is to be updated
(e.g., following state determination), then INFB is written to NFUPD before it is
refilled from NFCUR. After such an element task, NFCUR and NFUPD are switched
so that NFCUR holds the current data for the next element task or substep.

(c) In the first substep after the end of the first data update, NFBEG and NFUPD are
switched so that NFBEG again holds the data corresponding to the start of the step.

(d) After the end of the last substep, NFBEG and NFCUR are switched so that NFBEG

holds the current data at the start of the next step.
2.5.5. Storage of Backup Element Data, Tangent Stiffness and Unbalanced Load

A duplicate set of element data, DINFB; a duplicate tangent stiffness, DTAN; and, a
duplicate unbalanced load vector, DRU, are required to provide a back-up in case a time-
step must be repeated in the variable time-step scheme. DINFB, DTAN and DRU are

stored in blank common if possible. If not, they are stored on unit NFBEG.

If all /INFGR/ and /INFEL/ blocks can be accomodated in INFB in a single block

(NBLOK-=1), the available blank common is checked to see whether it can accomodate

DTAN, DRU, and DINFB. The variable INCOR (in /CONTR/) is set to mean the

following.

(a) INCOR=0 : NBLOK > 1; so that DINFB is already on NFBEG (see Section 2.5.4).
DTAN and DRU are stored following DINFB.

(b) INCOR=1 : DINFB, DTAN and DRU are stored on NFBEG.

(c) INCOR=2 : DTAN and DRU are stored in blank common, and DINFB is stored on
NFBEG.

(d) INCOR=3 : DINFB, DTAN and DRU are stored in blank common.

53

Because repetition of a time step is likely to occur relatively rarely, in most time steps the
time required to write the backup copy to file is wasted. To save some of this time, the
backup is made not at the beginning of the step but at the end of the first substep, just
before the state is updated. Hence, if there are no events (and hence no substeps), a

backup copy is not made.

54

3. BASE PROGRAM ORGANIZATION -- DRAIN-2DX AND 3DX

3.1. INTRODUCTION

The base program phases and the corresponding separator lines in the DRAIN.INP file are

as follows.
No. | Base Program Phase Separator Lines Comment
1. Begin Session *START/ *STARTXX/ For *RESTART,
*RESTART phases (2), (5), and
(6) are skipped
2. Define Model *COMPOUND,
*NODECOORDS,
*NODETYPES,
*RESTRAINTS,
*SLAVING, *MASSES,
*ELEMENTGROUP,
*SECTION and
*GENDISP
3. Process Output *RESULTS
Specification
4. Process Load Patterns and
Load Records
a) Static Element Load *ELEMLOAD
Patterns
b) Static Nodal Load *NODALOAD
Patterns
c) Initial Velocity Paterns *NODALVEL
d) Ground Acceleration *ACCNREC
Records
e) Ground Displacement *DISPREC
Records
f) Dynamic Force Records | *FORCREC
g) Response Spectrum *SPECTRUM
5. Allocate Memory for Preparation for
Analysis Phase analysis phase.
6. Form Beta-K Damping and Preparation for
Initial Tangent Stiffness analysis phase.
7. Process Analysis *PARAMETERS
Parameters

55

8. Identify Analysis Type *GRAYV, *STAT, *REST,
*MODE, *SPEC, *ACCN,
*ACCR, *VELN, *VELR,
*DISN, *DISR, *FORN,
or *FORR
9. Set up Loads for Next
Analysis Segment:
a) Static Gravity *GRAV
b) Static *STAT
c) Restore to Static State *REST
d) Ground Acceleration *ACCN or *ACCR
e) Initial Velocity *VELN or *VELR
f) Dynamic Ground *DISN or *DISR
Displacement
) Dynamic Force *FORN or *FORR
10. | Perform Analysis
a) Static Gravity *GRAV
b) Static *STAT
c) Restore to Static State *REST
d) Ground Acceleration *ACCN or *ACCR
e) Initial Velocity *VELN or *VELR
f) Dynamic Ground *DISN or *DISR
Displacement
g) Dynamic Force *FORN or *FORR
h) Mode Shapes and *MODE
Periods
i) Response Spectrum *SPEC
11. | End Session *STOP

The phases are described briefly in the following sections. Details can be obtained from the

actual code, which is well commented.
3.2. BEGIN SESSION

The flow chart for this phase is as follows.

MAIN 7L conTRL

The following main tasks are performed.

56

1. In MAIN, open the input data file, DRAIN.INP (unit INP in /TAPES/).

2. In INITL, read the *START/*STARTXX/*RESTART data. Set the variables LECHO
in /CLINE/; NCHAR in /CONTR/; KDATA, KEXE, KECHO, KENR and KPDEL in
/INDIC/; and FNAME in /TITLE/.

3. In INITL, open the files .ECH (unit IOU), .OUT (unit NFOUTP), .LST (unit nflis),
.SLO (unit NFLOG) and .USR (unit NFUSRF).

4. For *RESTART
a) In INITL, open the .SXX file (unit NFPERM), where XX is the restart state

number.
b) In RSTATE, restore the state from the .SXX file (blank common, all labeled
common blocks and INFB blocks). |

3.3. DEFINE MODEL
3.3.1. Main Tasks

The flow chart for this phase is as follows.

57

|[CONTRL

— INGEOM—_

The following main tasks are performed.
1. *COMPOUND data:
a) In INDTPI1, read the *COMPOUND data; count NDTP and NSNDS (see
/CONTR/); and write input lines to INPX.
b) In INCNDS, allocate arrays NSB, NDFSB and COSB (see KNSB, KNDFSB and
KCOSB in /STOR/) in blank common.
¢) In INDTP2, re-read the *COMPOUND data from INPX and set up NSB, NDFSB
and COSB.

58

. *NODECOORDS data:

a) In INDCOI, read the *NODECOORDS data; count NNODS (see /CONTR/); and
write input lines to INPX.

b) In INGEOM, allocate arrays NDID and COORD (see KNDID and KCOORD in
/STOR/) in blank common.

c¢) In INDCO2, re-read the *NODECOORDS data from INPX and set up node
numbers in first row of NDID and corresponding nodal coordinates in COORD.
INDCO?2 calls NDGENC for control nodes, NDGENL for straight line generation,
NDGENEF for frontal extrapolation, and NDGENG for grid interpolation.

d) In INGEOM, sort COORD and first row of NDID in increasing order of node
numbers.

. In INNDTP, read the *NODETYPES data and set up second row of NDID.

. In NDIDST, set up third row of NDID and count NTNDS (see /CONTR/).

. In INGEOM, allocate arrays ID and IDSP (see KID and KIDSP in /STOR/) in blank

common. The actual length NDSP of IDSP is unknown at this stage, and is

provisionally set to 3XNNODS for 2DX and 6XNNODS for 3DX.

. In INNDRT, read the *RESTRAINTS data, and code ID as follows.

a) 0: for a free (i.e., unrestrained) displacement,

b) 1 :for afixed (i.e., restrained) displacement, and

c) 2: for a spring supported displacement.

. In INNDSL, read the *SLAVING data, and additionally code ID as follows.

a) -MNOD for a slaved nodal displacement, where MNOD is sequerice number of the
master node in NDID.

. In EQNGEN, set up ID and IDSP; set the variables NDSP (in /CONTR/); and NEQ

and NEQQ (in /EQNS)/).

59

9. In INGEOM, reduce the allocated space for IDSP to NDSP, and allocate arrays
SPDSP, LSTIF, FMNOD, FMDOF and ALPHAM (see KSPDSP, KLSTIF,
KFMNOD, KFMDOF and KALPHA in /STOR/) in blank common.
10. In INMASS, read the *MASSES data and set up FMNOD, FMDOF and ALPHAM.
11. Temporarily allocate an array, IELNOD, in blank common. IELNOD stores the
element nodes for elements of an element group. This array is set up in ELNODE and
written to the .GEO file in INELEM.
12. In INELEM
a) Initialize LSTIF so that LSTIF(J) = J for each column J of the stiffness matrix (see
Section 3.3.2b).

b) Write geometry data to the .GEO file (See Chapter 4).

¢) Read the Group Information line of the *ELEMENTGROUP data; set the arrays
BETAO, OVFAC, KELEM, KEVNT, KGEOM and NELEM in /GENINF/; and
set the variables NELGR, NELG and NELTOT in /CONTR/.

d) Call the element subroutine INEL##, where ## is the element type number, to read
rest of the *YELEMENTGROUP data.

13. In INEL##

a) Call the base program subroutine ECONTR.
b) Read the Element Data lines of the *ELEMENTGROUP data.
c¢) Call the base program subroutine COORDS to get the coordinates of any node.
d) Set up the /INFGR/ block for the group.
e) For each element in the group
i) Call the base program subroutine ELNODE for each element node.
ii) Call the base program subroutine LOCMAT for each element DOF.
iii) Set up the /INFEL/ block.
iv) Call the base program subroutine FINISH.

14. In ECONTR, set the variables NEDOF, NENOD, NINFE, NINFEL, NINFG, NINFL,

NINFT, NLINF and NLENVP in /GENINF/ for the element group.

15. In ELNODE, set the element nodes in IELNOD.
16. In LOCMAT, set the equation numbers in the element location matrix for the element

DOFs (See Section 3.3.2a).

17. In FINISH:
a) For the first element store the /INFGR/ block on scratch file NFSCRT.
b) For each element store the /INFEL/ block on NFSCRT.

18. In BAND, update LSTIF (see Section 3.3.2b).

19. In COLCOM, set up LSTIF (see Section 3.3.2b).

20. For *SECTION data:

a) In INSECI1, read the *SECTION data; count NSSEC and NTRNS; update
MAXCUT and MAXTDF (see /SECTONY/); and write the input lines to INPX.

b) In STRSEC, allocate arrays NECUT, SANG, DIST, IDCUT and STRNS (see
KNECUT, KSANG, KDIST, KIDCUT and KSTRNS in /STOR/) in blank
common.

c) In INSEC2, re-read the *SECTION data from INPX and set up NECUT, SANG,
DIST, IDCUT and STRNS.

21. For *GENDISP data:

a) In INRDSI, read the *GENDISP data; count NRDS (see /SETREL/); and write
the input lines to INPX.

b) In GENDIS, allocate arrays NODIR and RDFAC (see KNODIR and KRDFAC in
/STOR/) in blank common.

c¢) In INRDS2, re-read the *GENDISP data from INPX and set up NODIR and
RDFAC.

61

3.3.2. Some Details
a) Element Location Matrix (LM array)

The LM array is used by the base program to assemble element stiffnesses, resisting
forces, etc. For any element DOF the corresponding term has the following meaning.
a) +n: Unrestrained DOF. ‘n' = global equation number.
b) -n: Slaved DOF.
'‘n'=NDISP+NLOCx4 for DRAIN-2DX
'n'=NDISP+NLOCX 7 for DRAIN-3DX
where,
NLOC=sequence number of the slaved node = n/4 for 2DX and n/7 for 3DX.
and NDISP=direction of DOF= MOD(n,4) for 2DX and MOD(n,7) for 3DX.

The LM array for each element is stored following the /INFEL/ data in the /INFEL/ block.
Between the /INFEL/ data and the LM array, a 4-byte integrity code is stored . After each
return from an element subroutine the base program checks the integrity code to ensure
that the integrity of the LM array has not been violated in the element subroutine (see
NINFEL in /GENINF/).

This feature of the program has caused problems and may be changed in future versions.
b) Setting up LSTIF

To set up LSTIF (see KLSTIF in /STOR/):

1. For each column, J, of the stiffness matrix, TANK (see KTANK in /STOR/), LSTIF(J)
is set equal to the row number of the first nonzero entry in that column. For this
purpose:

a) LSTIF(J) is initialized to J (i.e., the diagonal entry) in INELEM (main task 12a).
b) BAND updates LSTIF by using the element LM array, assuming that all element

DOFs are coupled to each other (main task 18).

62

2. After the data for all elements has been input, COLCOM finally sets up LSTIF and
calculates the compacted column length, LENK, of the stiffness matrix (main task 19).

c) Element Processing
The variables in /CURRNT/ keep track of the current stage of element processing.

INELEM initializes IGRC to 0O before reading the first *ELEMENTGROUP separator,
and increments IGRC for each *ELEMENTGROUP separator.

INELEM initializes IELC to 1 after each *ELEMENTGROUP separator. FINISH

increments IELC for each element.

INELEM initializes IDFC and INODC to 0 after each *ELEMENTGROUP separator.
LOCMAT increments IDFC for each element DOF. ELNODE increments INODC for
each element node. IDFC and INODC are reset to 0 in FINISH for the next element.

3.4. PROCESS OUTPUT SPECIFICATION

The flow chart for this phase is as follows.

CONTRL

The following main tasks are performed.
1. For *START or *STARTXX, in OUPUT
a) Set the variable LREC in /RHIST/.
b) Allocate arrays JNOD, JELM, JSEC and JRDS (see KJINOD, KJELM, KJSEC and
KJRDS in /STOR/) in blank common.
¢) Initialize JNOD, JELM, JSEC and JRDS with the default output codes.

d) Initialize the variables NDDIS, NDVEL, NDACC, NELTH, NPSEC, NGDIS,
NGVEL, NGACC, NDDISP, NDVELP, NDACCP, NELTHP, NPSECP,
NGDISP, NGVELP and NGACCP in /RHIST/; and NDDISU, NDVELU,
NDACCU, NELTHU, NPSECU, NGDISU, NGVELU and NGACCU in
/USROUTY/ corresponding to the default output codes.

2. In OUTPUT, read the *RESULTS data and call:

a) OUTNDS to update JNOD, NDDIS, NDVEL, NDACC, NDDISP, NDVELP,
NDACCP, NDDISU, NDVELU and NDACCU for nodes.

b) OUTELM to update JELM, NELTH, NELTHP and NELTHU for element results.

¢) OUTSEC to update JSEC, NPSEC, NPSECP and NPSECU for structure sections.

d) OUTRDS to update JRDS, NGDIS, NGVEL, NGACC, NGDISP, NGVELP,
NGACCP, NGDISU, NGVELU and NGACCU for generalized displacements.

3.5. PROCESS LOAD PATTERNS AND LOAD RECORDS
3.5.1. Main Tasks

The flow chart for this phase is as follows.

[CONTRL
— INLOAD —

The following main tasks are performed.

1. In INLOAD, allocate work space for reading load patterns and dynamic load records.
For *RESTART, use the array WKSPC in blank common (see KWKSPC in /STOR/).
For *START or *STARTXX, use all remaining blank common.

64

2. In INLOAD, read the separator line and for:

a)

b)

*ELEMLOAD - call INGPAT to read the *ELEMLOAD data and write the
element load pattern to the .ELD file (see .ELD file in Chapter 4).

*NODALOAD - call INSPAT to read the *NODALOAD data and write the static
nodal load pattern to the .STA file (see .STA file in Chapter 4).

*NODALVEL - call INVPAT to read the *NODALVEL data and write the initial
velocity pattern to the .VEL file (see .VEL file in Chapter 4).

* ACCNREC, *DISPREC or *FORCREC - call INAXL to read the *ACCNREC,
*DISPREC or *FORCREC data and write the dynamic load record to the .ACC,
.DIS or .FRC file (see these files in Chapter 4).

*SPECTRUM - call INSPEC to read the *SPECTRUM data and write the
response spectrum to the .SPC file (see .SPC file in Chapter 4).

3.5.2. Some Details

a) Processing Element Loads - Subroutine INGPAT

The flow chart for processing element loads is as follows.

[INLOAD

The element loads for a loaded element group are stored in SETLOD and ELFACT

arrays, as follows.

Array Description

SETLOD(ninl,nlod) Element load sets. Each column of SETLOD contains
a load set. NINL is the length of a load set, from array
NINFL in /GENINF/. NLOD is the number of element
load sets.

65

ELFACT(nlod,nmem)

Load set scale factors for elements of the group. Each
column of ELFACT contains the load set scale factors
for one element. NMEM is the number of elements,
from arrray NELEM in /GENINF/.

The following main tasks are performed.

1. In INGPAT, read pattern name and loaded element groups.

2. In ELODXX, call element subroutine ELOD#4# where ## is the element type number.

3. In element subroutine ELOD##, read the element load data for the loaded element

group, and set up the SETLOD and ELFACT arrays.

4. In INGPAT, append the element load pattern at the end of the .ELD file.

b) Processing Load Records - Subroutine INAXL

The flow chart for processing dynamic load records is as follows. |

INLOAD

The load records are stored in blocks (see /ASDFRC/, /ADFREC/ and /LOADP/) each

containing MPAIRS (in /LOADP/) time-value pairs.

The following main tasks are performed.

1. In INAXL, read the record name and control information for the load record; and

calculate the number of blocks that are required.

2. In RDWTAF, read the load record; form the time-value blocks; and write the blocks

to the load record file ((ACC, .DIS or .FRC).

3.6. ALLOCATE MEMORY FOR ANALYSIS PHASE

The flow-chart for this phase is as follows.

MAIN'

CONTRL
[~ 9T weweea

The following main tasks are performed.
1. In CONTRL, allocate array WKSPC in blank common (see KWKSPC in /STOR/).

WKSPC is used for storing the following.

a)
b)
)
d)

g)

Load pattern and dynamic load record input for *\RESTART.

Applied load patterns when setting up loads for analysis.

Element stiffness matrix during tangent stiffness update.

Temporary vector of length NEQQ for calculation of midstep equilibrium errror
or equivalent impulse error.

Nodal displacements DISP(3,ntnds) in 2DX and DISP(6,ntnds) in 3DX for
output during analysis, and for updating nodal displacement envelopes (see
KENP, KENN in /STOR/).

Section forces SEFOR (see KSEFOR in /STOR/) for output during analysis and
for updating section envelopes (see KSECEN in /STOR/).

Generalized displacements RDS (see KRDS in /STOR/) for output during
analysis and for updating generalized displacement envelopes (see KRDSEN in
/STOR)). ‘

2. In CONTRL, set KSEFOR and KRDS (see /STOR/) so that SEFOR and RDS may

safely use parts of the WKSPC array.

3. In CONTRL, allocate the following arrays in blank common (see KREC to KENRI in
/STOR/).
a) output buffer REC.
b) arrays DENP, DENN, ISTP and ISTN for nodal displacement envelopes.

c¢) arrays SECENV and ISECEN for structure section envelopes.

d) arrays RDSENV and IRDSEN for generalized displacement envelopes.

67

e) vectors XLOD, EXTS, EXT, DEXT, RINTS, RINT, RU, DISI, VELI, ACCI,
DDIS, CVEL, CACC, DIS, VEL, ACC and ENRI.

. In CONTRL, calculate blank common available for storing /INFGR/ and /INFEL/

data.

. In MEMREQ, set variables INCOR in /CONTR/; and NBLOK and NINFB in

/ISTOR/.

. In CONTRL, allocate the following arrays in blank common (see KDRU to KTANK

in /STOR/):

a) DRUIif INCOR 2 2.

b) DTANif INCOR 2 2.

¢) BETAK.

d) IINFB if INCOR =3.

e) IAD, INFB, EFFK and TANK.

. In CONTRL, open the following scratch files:

a) NFBEG if INCOR # 3. NFBEG stores DINFB if INCOR = 2; and DINFB,
DTAN and DRU if INCOR < 2 (see Sections 2.5.4 and 2.5.5).

b) NFCUR and NFUPD if NBLOK # 1 for storing /INFGR/ and /INFEL/ blocks (see
Section 2.5.4).

. In CONSOL, fill the INFB buffer by reading the /INFGR/ and /INFEL/ blocks from

scratch file NFSCRT and set up the IAD array.

If INFB cannot accomodate all /INFGR/ and /INFEL/ blocks (i.e., NBLOK > 1), then

CONSOL performs the following steps until all INFGR/ and /INFEL/ blocks are read

from NFSCRT and all INFB blocks are written to NFBEG.

a) Fill INFB with as many consecutive /INFGR/ or /INFEL/ blocks as will fit in
INFB, setting IAD for each block.

b) Write INFB to NFBEG.

c) Set IAD for the next /INFGR/ or /INFEL/ block to 1.

68

3.7. FORM BETA-K DAMPING AND INITIAL TANGENT STIFFNESS

The flow chart for this phase is as follows.

CONTRL

— SSTATE
— STIFFT

1 I ADR"SS (form/INFELo for each element
|~ ASSEM (for BETAK)

ADRESS (for /INFEL/) for each element

ASSEM (for TANK)

A

The following main tasks are performed.
1. In SSTATE, write blank common, all labeled commons and INFB to the .SXX file.
This saves the unstressed structure state.
2. In CONTRL, call STIFFT after detecting the first analysis separator (*GRAV,
*STAT, *REST, *ACCN, *DISN, *FORN, *MODE or *SPEC).
3. To form BETAK (see KBETAK in /STOR/).
a) In ADRESS, restore /INFGR/ or /INFEL/ block from INFB. If the required block
is not in INFB, refill INFB from NFBEG.
b) In STIFXX call the element subroutine STIF##, where ## is the element type
number for the current group (see KELEM in /GENINF/).
¢) In STIF##, form the element damping matrix.
d) In STIFFT, write element LM array and the element damping matrix to the . DPG
file (unit NFBETA).
e) In STIFFT, scale the element damping matrix by BETAO (in /GENINF/) for the

current element group to obtain the element beta-K damping matrix.

69

f) In ASSEM, assemble the element beta-K damping into BETAK.
4. To form TANK (see KTANK in /STOR/).
a) In ADRESS, restore /INFGR/ or /INFEL/ block from INFB. If the required block
is not in INFB, write INFB to NFCUR and refill INFB from NFBEG.
b) In STIFXX call the element subroutine STIF##, where ## is the element type
number for the current group (see KELEM in /GENINF/).
c) In STIF##, form the element stiffness matrix.
d) In ASSEM, assemble the element stiffness into TANK.
5. In STIFFT assemble the stiffness contributions of the support springs.
6. In STIFFT, verify that TANK is not singular.

3.8. PROCESS ANALYSIS PARAMETERS

The flow chart for this phase is as follows.

[CONTRL

]

ANAPAR reads the *PARAMETERS data, and modifies variables and arrays in labeled

common blocks, as follows.

Type of Analysis Parameter Modified Variables and Arrays
Structure Viscous Damping Scale Factors | ALPHA and BETA in /DAMPG/
Element Viscous Damping Scale Factors BETAO in /GENINF/ and BETAK (see

KBETAK in /STOR/)
Collapse Displacements DISMAX and RTNMAX in /COLPSE/
Event Overshoot Scale Factors : OVFAC in /GENINF/
Element Parameters IELPR and RELPR in /GENINF/
Output Intervals for Static Analysis all variables in /OUTS/

70

Output Intervals for Dynamic Analysis

all variables in /OUTD/

Intervals for User Output

TUOUTS, IUOUTD and TUOUTD in
/USROUT/

Control Parameters for Dynamic Analysis

KEVEN, KENRC, KEQBC and
MAXEVD in /INDIC/

Time Step Parameters for Dynamic Analysis

DTAUTO, DTCONS, DTMAX and
DTMIN in /AUTO/

Parameters for Variable Time Step Scheme

DTRED, DTINC, TOLHII, TOLHIS,
TOLLOIL TOLLOS, TOLMX and
NSINC in /AUTO/

3.9. IDENTIFY ANALYSIS TYPE

The flow chart for this phase is as follows.

IMAlN
- CONTRL

The following main tasks are performed in CONTRL.

1. Check that the separator is valid (i.e., one of *GRAV, *STAT, *REST, *MODE,

*SPEC, *ACCN, *ACCR, *VELN, *VELR, *DISN, *DISR, *FORN, *FORR).

analysis was also *GRAV.

For *GRAYV, check that the structure is in the unstressed state or the preceding

For *STAT, *ACCN, *VELN, *DISN and *FORN, check that the structure is in a

static state (i.e., preceding analysis was *GRAV, *STAT or *REST).

4. For *ACCR check that the preceding analysis was * ACCN or *ACCR.
5. For *VELR check that the preceding analysis was *VELN or *VELR.

6.

7. For *FORR check that the preceding analysis was *FORN or *FORR.

For *DISR check that the preceding analysis was *DISN or *DISR.

3.10. SET UP LOADS FOR ANALYSIS SEGMENTS

3

.10.1. Main Tasks

The flow chart for this phase is as follows.

71

[CONTRL

3.10.2. Loads for *GRAYV Analysis - Subroutine INGRAV

The flow chart for setting up *GRAYV loads is as follows.

CONTRL

ADRESS for /INFGR/ for each group

GLODXX —|_ for each loaded eleméht v

The following main tasks are performed.

1. In INGRAYV, read the *GRAYV data; initialize XLLOD (see KXL.OD in /STOR/) to
zero; call INELOD to update XLOD for applied static element load patterns; call
INNLOD to update XL.OD for applied static nodal load patterns; and update XL.OD
for inertial loads.

2. In INELOD, read applied static element load patterns from .ELD file.

72

. In INELOD, for each applied element load pattern and each loaded element group
read SETLOD and ELFACT arrays from .ELD file.

. In ADRESS, copy /INFGR/ and/or /INFEL/ block for current element from INFB. If
required block is not in INFB, write INFB to NFUPD and refill INFB from NFCUR.

. In INELOD, for each loaded element extract factors for the loaded element from
ELFACT and call GLODXX.

. In GLODXX, call element subroutine GLOD## where ## is the element type number
for the loaded element group (see KELEM in /GENINF/).

. In GLOD##, set up the element end clamping forces in array ELFINT(ndof); and call
the base program subroutine SFORCE. NDOF is the number of element DOFs (see
NEDOF in /GENINF/) for the loaded element.

. In SFORCE, use the element LM array to assemble the contribution of ELFINT to
XLOD.

. In INNLOD, read applied static nodal load patterns from .STA file and assemble their

contribution in XLOD.

3.10.3. Loads for *STAT Analysis - Subroutine INSTAT

The flow chart for setting up *STAT loads is as follows.

CONTRL

The following main tasks are performed.
1. In INSTAT, read the *STAT data and set the variables DISA, DISMA, SLFAC,

TLOAD, JDOF, LDOF, KDC, KLC and MAXFP in /STAT/; NSTEPS in /TIME/; and
MAXEYV in /EVENT/.

73

2.

In INSTAT, initialize XI.OD (see KXLLOD in /STOR/); call INNLOD to update
XLOD due to applied static nodal load patterns; and update XI.OD due to inertial

loads.

In INNLOD, read applied static nodal load patterns from .STA file and assemble their

contribution in XLOD.

3.10.4. Loads for *VELN or *VELR Analysis - Subroutine INVELN

The flow chart for setting up *VELN or *VELR loads is as follows.

The following main tasks are performed.

1.

In INVELN, read the *VELN or *VELR data and set the variables DT, TIMAX, TIM

and NSTEPS in /TIME/; and KAUTO in /INDIC/.

For *VELN in INVELN:

a) Call INNVEL to set up VEL (see KVEL in /STOR/) due to applied initial velocity
pattemns.

b) Scale VEL to match the specified initial kinetic energy.

In INNVEL, read applied initial velocity patterns from .VEL file and assemble their

contribution in VEL.

3.10.5. Loads for *ACCN or *ACCR Analysis - Subroutine INACCN

The flow chart for setting up *ACCN or *ACCR loads is as follows.

ONTRL

74

The following main tasks are performed.

1.

5.

In INACCN, read the *ACCN or *ACCR data and set the variables DT, TIMAX,
TIM and NSTEPS in /TIME/; and KAUTO in /INDIC/.

For *ACCN in INACCN, set the variables TFAC, RECFAC, COROT, NDFREC and
NPAIRS in /ADFREC/; and TADF in /TITADF/.

In ADFRB, read time-acceleration blocks (see /ASDFRC/, /ADFREC, and /LOADP/)
for the applied records from .ACC file, and write blocks containing data for times
between TIM and TIM+TIMAX on the scratch file, NFASDF.

In INACCN, set the variables INBL and LNBL in /ASDFRC/; and NPADF in
/ADFREC/.

In INACCN, initialize the array NBL (in /ASDFRCY/) to zero.

3.10.6. Loads for *DISN or *DISR Analysis - Subroutine INDISN

The flow chart for setting up *DISN or *DISR loads is as follows.

CONTRL

The following main tasks are performed.

1.

In INDISN, read the *DISN or *DISR data and set the variables DT, TIMAX, TIM
and NSTEPS in /TIME/; and KAUTO in /INDIC/.

For *DISN in INDISN, set the variables TFAC, RECFAC, DTIME, NDFREC and
NPAIRS in /ADFREC/; and TADF in /TITADF/.

In ADFRB, read time-displacement blocks (see /ASDFRC/, /ADFREC, and /LOADP/)
for the applied records from .DIS file, and write blocks containing data for times
between TIM and TIM+TIMAX on the scratch file, NFASDF. If number of applied
records exceeds 6, the block size on NFASDF is different from that on .DIS file.

75

4.

S.

In INDISN, set the variables INBL and LNBL in /ASDFRC/; and DFFAC, JDFREC,
NPADF and NDSFR in /ADFREC/.
In INDISN, initialize the array NBL (in /ASDFRC/) to zero.

3.10.7. Loads for *FORN or *FORR Analysis - Subroutine INFORN

The flow chart for setting up *FORN or *FORR loads is as follows.

CONTRL

The following main tasks are performed.

1.

S.

In INFORN, read the *FORN or *FORR data and set the variables DT, TIMAX, TIM
and NSTEPS in /TIME/; and KAUTO in /INDIC/.

For *FORN in INFORN, set the variables TFAC, RECFAC, DTIME, NDFREC and
NPAIRS in /ADFREC/; and TADF in /TITADF/.

In ADFRB, read time-force blocks (see /ASDFRC/, /ADFREC, and /[LOADP/) for the
applied records from .FRC file, and write blocks containing data for times between
TIM and TIM+TIMAX on the scratch file, NFASDF. If number of applied records
exceeds 6, the block size on NFASDF is different from that on .FRC file.

In INFORN, set the variables INBL and LNBL in /ASDFRC/; and DFFAC, JDFREC,
NPADF and NDSFR in /ADFREC/.

In INFORN, initialize the array NBL (in /ASDFRC/) to zero.

3.11. PERFORM ANALYSIS

3.11.1. Main Tasks

The flow chart for this phase is as follows.

76

ICONTRL

for *STA

R R s O S s
for "\REST

R A PR

e

The following main tasks are performed.
1. In CONTRL, to perform a *GRAYV, *STAT, *REST, *ACCN, *ACCR, *VELN,

*VELR, *DISN, *DISR, *FORN or *FORR analysis:

a) Call EXINIT.

b) Call GRSOL for *GRAV.

¢) Call STATIC for *STAT.

d) Call REST for *REST.

e) Call DYNMIC for *ACCN, *ACCR, *VELN, *VELR, *DISN, *DISR, *FORN
or *FORR.

f) Call SEGEND.

2. In CONTRL, to perform a *MODE analysis:

a) Save blank common from L(KWKSPC) to L(KEFFK-1) on scratch file NFRES.
This makes space available for storing mode shapes, a flexibility matrix, and other
data. EFFK, TANK and some arrays before WKSPC in blank common are used in
the analysis.

b) Call MODCON to perform the analysis.

77

¢) On completion of the analysis, restore blank common from NFRES.

. In CONTRL, to perform *SPEC analysis:

a) Save blank common from L(KWKSPC) to L(KIAD-1) on scratch file NFRES.
This makes space available for storing response results, and other data. IAD, INFB
and some arrays before WKSPC in blank common are used in the analysis.

b) Call SPECON to perform the analysis.

¢) On completion of the analysis, restore blank common from NFRES.

. In EXINIT:

a) Initialize variables KENR, KRESIS and KTIT in /INDIC/; all variables in /OUTP/;
NTIME and NPTIME in /RHIST/; and IQUIT and NEVEN in /EVENT/.

b) Increment analysis segment number, NSEG (in /CONTR/).

c) Write heading for the segment on the .OUT file (unit NFOUTP in /TAPES/).

d) Call PRLOG to write heading and starting energy log for the segment on the .SLO
file (unit NFLOG). The heading and starting energy log for *REST is not written
here, but later in REST.

e) Update the .LST file.

f) Open and write initial data to .RXX file (unit NFRES), where XX is the analysis
segment number (see.Chapter 4).

g) Open and write initial data to .EXX file (unit NFENVP), where XX is the analysis
segment number (see Chapter 4).

h) Open scratch file, unit NFPRNT, to save time-history results for printout.

i) Write analysis title on the .ECH file.

j) Call user output subroutine USRHED to write the analysis heading to .USR file.

. In GRSOL, STATIC and REST perform *GRAV, *STAT and *REST analysis,

respectively, and write solution log for each substep to .ECH file (unit IOU); write

energy log for each substep to .SLO file (unit NFLOG); write load-history results for
printout to unit NFPRNT; write load-history results for post-processing to .RXX file
78

(unit NFRES); write envelope results for printout to .OUT file (unit NFOUTP); write
static and P-A work done for each element group (see ENEG and EEXT in
/ENRGYY/) to .OUT file (unit NFOUTP); write envelope results for post-processing to
.EXX file (unit NFENVP); write structure state data to .SXX file (unit NFPERM);
and user output to .USR file.

. In DYNMIC perform the dynamic analysis, and write solution log for each substep to
.ECH file (unit IOU); write energy log for each time step to .SLO file (unit NFLOG);
write time-history results for printout to unit NFPRNT; write time-history results for
post-processing to .RXX file (unit NFRES); write envelope results for printout to
.OUT file (unit NFOUTP); write static, damping and P-A work done for each element
group (see ENEG, ENRD and EEXT in /ENRGYY/) to .OUT file (unit NFOUTP),
write envelope results for post-processing to .EXX file (unit NFENVP); write
structure state data to .SXX file (unit NFPERM); and user output to .USR file.

. In SEGEND, close .RXX and .EXX files.

. In REHIST, read results for printdut from unit NFPRNT, and write the results for
each output item (see /RHIST/) to .OUT file (unit NFOUTP). For element results
output, REHIST copies element results to the /THELM/ block and calls THPRXX.

. In THPRXX, call the element subroutine THPR##, where ## is the element type
number for the element (see KELEM in /GENINF/).

10. In THPR##, write heading and element results from /THELM/ to the .OUT file.

11. In MODCON, read the *MODE data; perform *MODE analysis; and write periods,

mass participation factors, mode shapes and modal damping ratios to .OUT file (unit
NFOUTP) and .MXX file (unit NFMODE), where XX is the analysis segment number.

12.In SPECON, read the *SPEC data; read specified response spectra from .SPC file;

read periods and mass participation factors from .MXX file (unit NFMODE) and write

to .UXX file (unit NFMRSL); read mode shapes from .MXX file; for each mode shape

calculate nodal displacements, element results, section forces and generalized
79

displacements and write to .UXX file; calculate modal amplitudes; write response for
each mode to .OUT file; forrn SRSS combination and write to .OUT file.
13. On completion of the analysis return to CONTRL and read the next separator line.
a) For *PARAMETERS proceed to Process Analysis Parameters.
b) For *STOP proceed to End Analysis Session.
c¢) For an analysis separator proceed to Identify Analysis Type.

More detailed flow charts and task descriptions for GRSOL, STAT, REST, DYNMIC,
MODCON and SPECON are given in the following sections.

3.11.2. *GRAY Analysis - Subroutine GRSOL

The flow chart for this subroutine is as follows.

CONTRL

OPTSOL
COLCHK

ADRESS (for INFGR/) for each'grb'up
=

— PRSTAT
— ENERS
— PRLOG
— SSTATE

The following main tasks are performed.

1.

nvos W

In PRLOD, write the gravity load vector, XLOD (see KXLOD in /STOR/), to .ECH
file (unit IOU).

In UPDATS, form EFFK and factorize (see KEFFK in /STOR/).

In OPTSOL, solve for DDIS (see KDDS in /STOR/).

In GRSOL, update DIS (see KDIS in /STOR/).

In COLCHK, check if collapse displacements (see /COLPSE/) have been exceeded. If
so, set IRDOF, IREVNT, IRNOD and IQUIT (see /EVENTY/). ‘
In GRSOL, set KSAVE, KPPSV, KPOUT, KENVS and KENVP in /OUTP/); and
KUOUT in /USROUT/.

In NDDSAYV, form nodal displacements corresponding to DIS (see KDIS in /STOR/);
update nodal displacement envelopes (see KENP, KENN, KISTP, KISTN in /STOR/);
if KENVS=1, write nodal displacement envelopes for post-processing to .EXX file
(unit NFENVP); if KENVP=1, write nodal displacement envelopes for printout to
.OUT file (unit NFOUTP); if KPPSV=1, write nodal displacements for post-
processing to .RXX file (unit NFRES); if KPOUT=1, write nodal displacements for
printout to unit NFPRNT; if KUOUT=1, call USRNOD for user output of nodal
displacements to .USR file (unit NFUSRF).

In RESPON, initialize SEFOR, RINTS and RINT to zero (see KSEFOR, KRINTS
and KRINT in /STOR/); and set KSAV=MAX(KPPSV,KPOUT).

In ADRESS, copy /INFGR/ and/or /INFEL/ from INFB for current element group and

element.

10. In RESPXX, call element subroutine RESP##, where ## is the element type number

(see KELEM in /GENINF/).

81

11. In RESP##, update element state (i.e, /INFEL/ block); calculate static and P-A work
done in the element; calculate element resisting force vectors RELAS and RINIT; if
KSAV=] put element results in /THELM/.

12. In SEFORC, assemble RELAS and RINIT into structure section forces, SEFOR.

13. In RESPON, assemble RELAS and RINIT into RINTS and RINT.

14. In RESPON, update ENER and EEXT (see /ENRGYY/) for work done in the element.

15. In STIFXX, call element subroutine STIF##, where ## is the element type number
(see KELEM in /GENINF/).

16. In STIF##, calculate change in element stiffness, FK.

17. In ASSEM, assemble FK into TANK (see KTANK in /STOR/).

18. In RESPON, if KENVP=1, call ENPRXX for each element.

19. In ENPRXX, call element subroutine ENPR##, where ## is the element type number
(see KELEM in /GENINF/).

20. In ENPR##:

a) for first element, write heading for element envelopes to .OUT file.
b) write element envelopes to .OUT file.

21. In RESPON:

a) If KPPSV=1, write element results (from /THELM/) for post-processing to .RXX
file (unit NFRES).

b) If KPOUT=1, write element results (from /THELM/) for printout to unit
NFPRNT.

c¢) If KUOUT=1, call USRELM to call subroutine USER## (where ## is the element
type number, see KELEM in /GENINF/ for the current element) for user output of
element results to .USR file.

d) If KENVP=1, call PREWRK to write energy log for each element group (see
ENER, ENED and EEXT in /ENRGY/) to .OUT file.

22.In SECSAV:
82

a) Transform section forces, SEFOR, from global axes to section axes.
b) Update section envelopes (see KSECEN, KISECE in /STOR/).
c) If KENVS=1, write section envelopes for post-processing to .EXX file (unit
NFENVP).
d) If KENVP=1, write section envelopes for printout to .OUT file (unit NFOUTP).
e) If KPPSV=1, write section forces for post-processing to .RXX file (unit NFRES).
f) If KPOUT=1, write section forces for printout to unit NFPRNT.
g) If KUOUT=1, call subroutine USRSEC to write section user output to the .USR
file.

23. In RESPON, assemble support spring forces into RINTS and RINT.

24.In GDSSAYV, form generalized displacements, RDS, corresponding to DIS (see KDIS
in /STOR/); update generalized displacement envelopes (see KRDSEN and KIRDSE
in /STOR/); if KENVS=1, write generalized displacement envelopes for post-
processing to .EXX file (unit NFENVP); if KENVP=1, write generalized displacement
envelopes for printout to .OUT file (unit NFOUTP); if KPPSV=1, write generalized
displacements for post-processing to .RXX file (unit NFRES); if KPOUT=1, write
generalized displacements for printout to unit NFPRNT; if KUOUT=1, call subroutine
USRGDS for user output of generalized displacements to .USR file.

25. In UPDATS, update effective stiffness, EFFK.

26. In EQBM, compute unbalanced load, RU (see KRU in /STOR/); determine UNBL,
UNBF and UNBM (in /EVENTY).

27. In PRSTAT, write solution log to .ECH file (unit IOU).

28. If KENR#0 (in /INDIC), then
a) In ENERS, perform energy balance computations.
b) In PRLOG, write energy log to .SLO file (unit NFLOG).

29. If KSAVE=1 (in /OUTP/), then

83

a) In GRSOL, open .SXX file (unit NFPERM), where XX is the analysis segment
number.

b) In SSTATE, write structure state to .SXX file.
3.11.3. *STAT Analysis - Subroutine STATIC

The flow chart for this subroutine is as follows.

|[CONTRL

— OPTSOL (for XLOD)
— OPTSOL (for RU)

— COLCHK

EQBM
PRSTAT
ENERS
PRLOG
— SSTATE

STATIC is very similar to GRSOL. The new subroutines in STATIC are shown in bold
characters in the flow chart.

The loading for a *STAT analysis is applied in one or more steps, controlled by load
factor and/or displacement increments. Within each step an event-to-event solution

strategy is used, dividing each step into substeps at each event.

84

The following main tasks are performed in each substep.

1.

9.

In OPTSOL, solve for displacement increment, DDIS, due to XLOD, the load

corresponding to a unit load factor.

In OPTSOL, solve for the displacement increment, RU, due to unbalanced load at the

end of the preceding substep.

In .DISCON:

a) Calculate the proportions FF and FU of DDIS and RU, respectively, that must be
applied to satisfy the load control and displacement control conditions.

b) Update IFLIP, IPSIGN, ISIGN and MAXFP in /STAT/; and IREVNT in
/EVENT/.

In STATIC, combine displacment increments as follows.
DDIS =FF x DDIS + FU x RU

In EVNFAC, calculate the smallest event factor for any element, FACMIN; and set
variables IRELM, IREVNT and IRGRP in /EVENT/.

In FACTXX, call element subroutine FACT##, where ## is the element type number
(see KELEM in /GENINF/).

In FACT##, calculate the smallest event factor for the element.

In STATIC, scale DDIS to event.
DDIS = FACMIN x DDIS

In STATIC, update AFAC and FACC in /EVENTY/; and FDIS and FLOD in /STAT/.

10. In CONFAC:

a) Set IEVEN=0 if step is complete because SLFAC or DISA (see /STAT/) has been
reached.
b) Set IQUIT=1 if segment is complete because TLOAD or DISMA (see /STAT/)
has been reached.
¢) Set IQUIT=-1 if NSTEPS, MAXFP or MAXEV have been reached (see
/EVENT/, /STAT/ and /TIMEJ).
85

11. In COLCHK, check if collapse displacements (see /COLPSE/) have been exceeded. If
so, set IRDOF, IREVNT, IRNOD and IQUIT (see /EVENTY/).

12. In STATIC, set KSAVE, KPPSV, KPOUT, KENVS and KENVP in /OUTP/; and
KUOUT in /USROUT/.

13. Perform state determination; update EFFK; perform unbalanced load computations
and write solution log to .ECH file; perform energy balance computations and write
energy log to .SLO file; update envelopes; write outputs; and write structure state as
for *GRAYV analysis.

14. In STATIC:

a) If IQUIT=0, proceed to next substep (if [EVEN=1) or step (if IEVEN=0).
b) If IQUIT=1, segment has been completed successfully. Return to CONTRL.
c) IfIQUIT=-1, segment could not be completed. Return to CONTRL.

3.11.4. *REST Analysis - Subroutine REST

The flow chart for this subroutine is as follows.
ICQNTRL

— REST 71— pRrLOG

— OPTSOL (for XLOD)
— OPTSOL (for RU)

— PRSTAT
— ENERS
— PRLOG
— SSTATE

REST is very similar to STATIC, and there are no new subroutines.

86

The following initial tasks are performed.
1. InREST:
a) Compute XLOD as follows (see KXLLOD, KEXTS, KRINTS and KRU in

/STOR/).
XLOD = EXTS - RINTS - RU

b) Modify external loads as follows.
EXTS=RINTS
EXT=RINTS

¢) Set VEL and ACC to zero (see KVEL, KACC in /STOR)).

d) Modify energy variables as follows (see /ENRGYY/).
TEP = TEP + TEW - TEI - TED
TEE = TEP + TESO

TEK =0.0
TEI=0.0

TEW =0.0

TEAD =0.0

ENRD =0.0

e) Set second column of SPDSP (see KSPDSP in /STOR/) to zero.
2. In PRLOG, write starting energy log to .SLO file (unit NFLOG).
3. In UPDATS, form EFFK (see KEFFK in /STOR/).

In *REST analysis XL.OD corresponds to a load factor of unity, and is applied in a single
step. Within the step, an event-to-event solution strategy is used, dividing the step into

substeps at each event.

The following main tasks are performed within each substep.

1. In OPTSOL, solve for displacement increment, DDIS, due to XL.OD.

2. In OPTSOL, solve for displacement increment, RU, due to unbalanced load at end of
preceding substep.

87

4. In REST, combine displacment increments, as follows.
DDIS =FF x DDIS + RU

where FF is the remaining load factor.

5. In EVNFAC, calculate smallest event factor for any element, FACMIN; and set
variables IRELM, IREVNT and IRGRP in /EVENT/.

6. In REST, if FACMIN < 1.0 set IEVEN = 1, otherwise set IEVEN = 0 and IQUIT=1.

7. In REST, scale DDIS to event.
DDIS =FACMIN x DDIS

8. In REST, update FACC in /EVENT/; and FLOD in /STAT/; and the remaining load
factor, FF.

9. In REST, set IREVNT=8 and IQUIT=-1, if MAXEV has been exceeded (see
/EVENT)).

10. In COLCHK, check if collapse displacements (see /COLPSE/) have been exceeded. If
so, set IRDOF, IREVNT, IRNOD and IQUIT (see /EVENTY).

11.In REST, set KSAVE, KPPSV, KPOUT, KENVS and KENVP in /OUTP/; and
KUOUT in /USROUT/.

12. Perform state determination; update EFFK; perform unbalanced load computations
and write solution log to .ECH file; perform energy balance computations and write
energy log to .SLO file; update envelopes; write outputs; and write structure state; as
for *GRAYV analysis.

13. In REST:

a) If IQUIT=0 and IEVEN=1, proceed to next substep.
b) If IQUIT=1, segment has been completed successfully. Return to CONTRL.
c) IfIQUIT=-1, segment could not be completed. Return to CONTRL.

3.11.5. Dynamic Analysis - Subroutine DYNMIC

The flow chart for this subroutine is as follows.

88

[CONTRL
—DYNMIC

SSTATE

The following initial tasks are performed.

1. In DYNMIC, set MODIFY=2 (see /AUTOY/) so that EFFK is formed at the start of the
analysis.

2. In DYNMIC, set ISSAV=0 to indicate that a back-up of INFB, TANK and RU has
not been made (see KINFB, KTANK, KRU, KDINFB, KDTAN and KDRU in
/STOR/ and Section 2.5.5).

For each time step the following tasks are performed.

1. In DYNMIC, initialize ERRS, ERRI (in /AUTO)/) to zero.

2. If MODIFY=-1 (i.e., preceding time step was aborted and a new step has to be taken
with a smaller step size), do the following.

a) If ISSAV=1, in RESTOR, restore INFB, TANK and RU from the back-up to the
values at the start of the step. If ISSAV=0, no restoration is necessary as the time
step was aborted in the first substep.

b) In SETVEQC, restore TTSAVE, TTPPSV, TTPOUT and TTENVP in /OUTP/; and
TTUOUT in /USROUTY/ to the values at the start of the step.

89

| c) In SETVEC, do the following (see /STOR/) so that EXT, DIS, VEL and ACC

3)

4)

have values corresponding to the start of the step.
EXT = EXT - DEXT
DIS =DISI
VEL = VELI
ACC =ACCI
c) In SETVEQC, restore work quantities in /ENRGY/ to the values corresponding to
the start of the step.
d) In DYNMIC, for ground displacement analysis, set total displacement in SPDSP to
the values corresponding to the start of the step.
In SETVAL update variables in /OUTP/ and ITUOUT and TTUOUT in /USROUT/;

and set the following for a new step.
DISI = DIS
VELI = VEL
ACCI=ACC
ENRI=0

If MODIFY # O (see /AUTO/):

a) In DAMPER, update integration coefficients in /INTCOF/.

b) In UPDATE, form effective stiffness, EFFK (see KEFFK in /STOR/).

¢) In DYNMIC, set MODIFY=0.

To form DEXT (see KDEXT in /STOR/) do the following.

a) In INTPOL, compute increments of ground accelerations (for *ACCN or
*ACCR), ground displacements (for *DISN or *DISR) or dynamic forces (for
*FORN or *FORR) from the dynamic force records in TASDF in /ASDFRC/.

b) In DYNMIC, initialize DEXT to zero.

¢) In GADEXT, assemble contributions due to ground acceleration increments in

DEXT for *ACCN or *ACCR.

d) In GDDEXT, assemble contributions due to ground displacement increments in
DEXT for *DISN or *DISR.

e) In DFDEXT, assemble contributions due to dynamic force increments in DEXT
for *FORN or *FORR.

6. In EFLOAD, form effective load, XL.OD (see KXLOD in /STOR/), for current step.
7. In STEP, do either of the following.

a) Advance the solution by a step and set MODIFY=1 if the time step size is to be
increased for the next step.

b) Abort the step; set MODIFY=-1; and set ISSAV=1 if the step was aborted after
the first substep. If ISSAV=1, a back-up copy of INFB, TANK and RU has been
made in memory or on file.

8. In DYNMIC, if MODIFY =-1, repeat the step with a reduced time step size (i.e., go

to step 1).

9. In DYNMIC, set ISSAV=0 for the next step.
10. In PRLOG, write energy log to .SLO file (unit NFLOG).
11. If KSAVE=1 (in /OUTP/), then

a) In DYNMIC, open .SXX file (unit NFPERM), where XX is the analysis segment

number.

b) In SSTATE, write structure state to .SXX file.

The flow chart in subroutine STEP is as follows.

91

[PYNMIC
— STEP "1— opTsoL

— COLCHK

— ADRESS (for INFGR/) for each group

— EQBM
— PRDYN
— ENERD
— CORECT
— INCDT

STEP is similar to STATIC. The new subroutines in STEP are shown in bold characters in
the flow chart.

If KEVEN=1 (in /INDIC/), an event-to-event solution strategy is used, dividing each step

into substeps at each event. If KEVEN=0, the step consists of a single substep.

The following main tasks are performed in each substep.

92

1. In OPTSOL, solve for displacement increment, DDIS, due to XIL.OD, where XLOD is
the remaining effective load.

2. Iin EVNFAC, if KEVEN=1, calculate the smallest event factor for any element,
FACMIN; and set variables IRELM, IREVNT and IRGRP in /EVENT/. Otherwise set
FACMIN=1.0.

3. In STEP, if FACMIN < 1.0, set IEVEN = 1, otherwise set IEVEN = 0.

4. In STEP, scale DDIS to event:
DDIS = FACMIN x DDIS

5. In STEP, set XLOD to the remaining effective load:
XLOD = (1.0 - FACMIN) x XILLOD

6. In STEP, calculate CVEL and CACC for substep (see KCVEL and KCACC in
/STOR/).
7. If KAUTO=2, then
a) In STEROR, calculate static force (i.e., midstep equilibrium) and inertia force (i.e.,
equivalent impulse) errors and update ERRS and ERRI in /AUTO/.
b) If ERRS < TOLHIS, ERRI < TOLHIS, IEVEN=1, and ISSAV=0, then in SAVE,
backup INFB, TANK and RU, and in STEP, set ISSAV=1.

¢) IfERRS > TOLHIS or ERRI > TOLHII, then in STEP, set
DTNEW =DT x DTRED
DTOLD =DT
DT =DTNEW
MODIFY =-1

(see /AUTOY/); in PRDYN, write solution log to .ECH file; and return to DYNMIC
to repeat the step with a reduced step size.
8. In STEP, update DIS, VEL and ACC.
9. In STEP, if IEVEN=1 (i.e., not last substep), set KSAVE, KPPSV, KPOUT, KENVS
and KENVP in /OUTP/; and KUOUT in /USROUT/ to 0.

93

10. If IEVEN=0 (i.e., last substep), then:

a) In COLCHK, check if collapse displacements (see /COLPSE/) have been
exceeded. If so, set IRDOF, IREVNT, IRNOD and IQUIT (see /EVENTY/).

b) In STEP, set KSAVE, KPPSV, KPOUT, KENVS, KENVP in /OUTP/; and
KUOUT in /USROUT/.

11.In NDDSAYV, update nodal displacement envelopes (see KENP, KENN, KISTP,
KISTN in /STOR/); if KENVS:I, write nodal displacement envelopes for post-
processing to .EXX file (unit NFENVP); if KENVP=1, write nodal displacement
envelopes for printout to .OUT file (unit NFOUTP); if KPPSV=1, write nodal
displacements for post-processing to .RXX file (unit NFRES); if KPOUT=1, write
nodal displacements for printout to unit NFPRNT; and if KUOUT=1, call USRNOD
for user output of nodal displacements to .USR file.

12.In NDVSAY, if KPPSV=1, write nodal velocities for post-processing to .RXX file
(unit NFRES); and if KUOUT=1, call USRNOD for user output of nodal velocities to
.USR file.

13. In NDASAYV, if KPPSV=1, write nodal accelerations for post-processing to .RXX file
(unit NFRES); and if KUOUT=1, call USRNOD for user output of nodal accelerations
to .USR file.

14. In RESPON, initialize SEFOR, RINTS and RINT to zero (see KSEFOR, KRINTS
and KRINT in /STOR/); and set KSAV=MAX(KPPSV,KPOUT).

15. In ADRESS, copy /INFGR/ and/or /INFEL/ blocks for current element from INFB.

16. In RESPXX, call element subroutine RESP##, where ## is the element type number.

17. In RESP##, update element state (i.e., /INFEL/ block); calculate static, damping and
P-A work done in element; calculate element end resisting forces, RELAS, RDAMP
and RINIT; if KSAV=1, put element results in /THELM/.

18.In SEFORC, assemble RELAS, RDAMP and RINIT into structure section forces,
SEFOR.

94

19. In RESPON, assemble RELAS, RDAMP and RINIT into RINTS and RINT.
20. In RESPON, update ENER, ENED and EEXT (see /ENRGYY/) for work done in the
element.
21. In STIFXX, call element subroutine STIF##, where ## is the element type number.
22. In STIF##, calculate change in element stiffness, FK.
23. In ASSEM, assemble FK into TANK (see KTANK in /STOR/).
24. In RESPON, if KENVP=1 call ENPRXX for each element.
25. In ENPRXX, call element subroutine ENPR##, where ## is the element type number.
26. In ENPR## write element envelopes to .OUT file.
27. In RESPON:
a) If KPPSV=1, write element results (from /THELM/) for post-processing to .RXX
file (unit NFRES).
b) If KPOUT=1, write element results (from /THELM/) for printout to unit
NFPRNT.
c¢) If KUOUT=1, call USRELM to call USER## (where ## is the element type
number) for user output of element results to .USR file.
28. In RESPON, if KENVP=1 call PREWRK.
29. In PREWRK, write energy log for each element group (see ENER, ENED and EEXT
in /ENRGYY/) to .OUT file.
30.In SECSAYV, transform section forces, SEFOR, from global axes to section axes;
update section envelopes (see KSECEN, KISECE in /STOR/); if KENVS=1 write
section envelopes for post-processing to .EXX file (unit NFENVP); if KENVP=1
write section envelopes for printout to .OUT file (unit NFOUTP); if KPPSV=1 write
section forces for post-processing to .RXX file (unit NFRES); if KPOUT=1 write
section forces for printout to unit NFPRNT; and if KUOUT=1 call USRSEC for user
output of section forces to .USR file.
31. In RESPON, update RINTS and RINT for support spring forces.
95

32.

33.

In GDSSAYV, form generalized displacements, RDS, corresponding to DIS (see KDIS
in /STOR/); update generalized displacement envelopes (see KRDSEN and KIRDSE
in /STOR/); if KENVS=1 write generalized displacement envelopes for post-
processing to .EXX file (unit NFENVP); if KENVP=1 write generalized displacement
envelopes for printout to .OUT file (unit NFOUTP); if KPPSV=1 write generalized
displacements for post-processing to .RXX file (unit NFRES); if KPOUT=1 write
generalized displacements for printout to unit NFPRNT; and if KUOUT=1 call
USRGDS for user output of generalized displacements to .USR file.

In GVLSAYV, form generalized velocities, RDS, corresponding to VEL (see KVEL in
/STOR/); if KPPSV=1 write generalized velocities for post-processing to .RXX file
(unit NFRES); if KPOUT=1 write generalized velocities for printout to unit NFPRNT;
and if KUOUT=1 call USRGDS for user output of generalized velocities to .USR file.

34.In GACSAYV, form generalized accelerations, RDS, corresponding to ACC (see

35.

KACC in /STOR/); if KPPSV=1 write generalized accelerations for post-processing
to .RXX file (unit NFRES); if KPOUT=1 write generalized accelerations for printout
to unit NFPRNT; and if KUOUT=1 call USRGDS for user output of generalized
accelerations to .USR file.

In UPDATE, update effective stiffness, EFFK due to changed TANK.

36. In STEP, assemble inertia forces and alpha-M damping forces in RINT.

37. In STEP, update EXT due to applied DEXT in the substep.

38.

In EQBM, compute unbalance load, RU (see KRU in /STOR/); determine UNBL,
UNBF and UNBM (in /EVENTY)).

39. In PRDYN, write solution log to .ECH file (unit IOU).

40. If KENR 0 (in /INDIC), in ENERD, perform energy balance computations.

41.

If IEVEN=1, in STEP, go to next substep.

42. If IEVEN=0, then

a) In CORECT, if KENRC=1 (in /INDIC/) perform velocity correction.
' 9

b) In CORECT, if KEQBC=1 (in /INDIC/), perform acceleration modification to
improve equilibrium.

¢) In STEP, compute kinetic energy for energy log.

d) If KAUTO=2 (in /AUTOY/), in INCDT , increase time step size for next step and
set MODIFY=1.

3.11.6. *MODE Analysis - Subroutine MODCON
a) Theory
The eigenproblem to be solved is
K¢=0’M9 3.1

where K is the stiffness matrix, M is the diagonal mass matrix with possible zero terms on

the diagonal, ¢ is a mode shape, and ® is the circular frequency corresponding to ¢. The

massless DOFs must be eliminated from Equation 3.1, which can be written in partitioned

K. Ky .4_’4__ ZM-d 0 94
[g:o K]{«b}“’ [0 9]{90 o2

and ¢ are the mode shape components at the mass and massless DOFs,

form as follows.

where _424

respectively, and M , is a diagonal mass matrix. Using static condensation, one can obtain,

the reduced eigenproblem.
(Ku-KnoKaKl)d, =K,0, =0’M,0, (3.3)

In DRAIN, instead of calculating K, the flexibility matrix F, =K' is obtained by in

K. Kuo|E,; |1
[KZo Ky]l:fo]_[g] (3.4

97

effect solving

where I is a unit matrix. Although the DOFs are partitioned in Equation 3.4, there is no
need for this in the implementation. In DRAIN, F, is obtained a column at a time, by
successively applying unit loads at each mass DOF, and extracting the .displacements

produced at mass DOFs.

Equation 3.3 is converted to standard form

E.§,==3, (3.5)
where
F, =M}F,M} (3.6)
and
o, =M%5o (3.7

Equation 3.5 is solved by Hessenberg's QR iteration in subroutine HQRWT, and self-

orthonormal eigenvectors, ® 4 » are obtained. That is

~T

0,8, =P MIM;iD,=0IM,D, =1 (3.8)
Each eigen vector _Ef_)d is premultiplied by M”% to obtain M, 9, and the full mode shape is

obtained by in effect solving

K, K,l[¢ M
Ll Salisel L (Ml (3.9)
0| K Ky Qo 0
In DRAIN, the loading terms are placed in rows corresponding to mass DOFs and the
solution vector is 612— 9.
b) Implementation

The flow chart for MODCON is as follows.

98

[CONTRL
— MODCON -

The following main tasks are performed.
1. In MODCON, read *MODE data.
. In DYNDOF, identify the mass DOFs.
. InFLEX, form flexibility matrix, F, .

. In HQRWT, solve for the eigenvectors, &, .

. In DYNPR, write mode periods to .OUT file (unit NFOUTP).

2

3

4. InDYNPR, form F,.
5

6

7. InDYNPR, form unit modal loads, M, ¢ .

8. In DYNPR, compute mass participation factors in translational directions and write to

.OUT file.
9. In MODE, calculate expanded mode shapes, ¢/w?.

10. In MODE, write unit mode shapes and modal damping ratios to .OUT file.
11.In MODE, write periods, mass participation factors and mode shapes to .MXX file
(unit NFMODE).

3.11.7. *SPEC Analysis - Subroutine SPECON

The flow chart for this subroutine is as follows.

99

[CONTRL
— SPECON 71— specE
— MODFOR

{:\BE)EOS(S (for /INFEL/)
Tl

-
.
S

S S

— INSACC
— MODAMP
— SRSSCO

 PRSSEC
PRSRDS

The following initial tasks are performed.
1. In SPECON, read the *SPEC data.
2. In SPECEF, read applied response spectra into array TASDF in /ASDFRC/.

The following tasks are performed only if a .UXX file has not already been written.
1. In SPECON, read periods and mass participation factors from .MXX file (unit
NFMODE) and write to .UXX file (unit NFMRSL).
2. For each mode shape on .MXX file:
a) In SPECON, read mode shape from .MXX file.
b) In MODFOR, calculate nodal displacements and write to .UXX file.
¢) In MODFOR, initialize section forces, SEFOR, to zero.
d) In element subroutine FLIN##, calculate element results for each element.
e) In SEFORM, assemble element contribution to section forces, SEFOR.
f) In MODFOR, write element results for each element group to .UXX file.
g) In MODFOR, transform section forces, SEFOR, from global axes to section axes.
h) In MODFOR, write section forces, SEFOR, to .UXX file.
i) In MODFOR, calculate generalized displacements and write to .UXX file.

100

The following tasks are performed to complete the analysis.

1.
2
3.
4. In SRSSCO, calculate response (i.e., nodal displacements, nodal velocities, nodal

In SPECON, read periods and mass participation factors from .UXX file.

. In INSACC, calculate spectral acceleration for each mode.

In MODAMP, calculate modal amplitudes.

accelerations, element results, section forces, generalized displacements, generalized
velocities and generalized accelerations) for each mode, and for SRSS combination;
and write to .OUT file (unit NFOUTP). SRSSCO reads individual modal results from
JUXX file. PLIN## prints the response for each element.

3.12. END SESSION

The analysis session ends with one of the following conditions.

1.
2.
3.

IQUIT=-1 : last analysis segment could not be completed.
*STOP separator is read from input file.

Program stops because of errors in the input file or insufficient memory.

The flow chart for this phase is as follows.

MAIN
| L CONTRL

The following tasks are performed.

1.
2.

In CONTRL, write farewell message to the .ECH file (unit IOU).
In MAIN, close files and stop program execution.

101

4. STRUCTURE OF PERMANENT FILES -- DRAIN-2DX AND 3DX

4.1. INTRODUCTION

In section 2.4, the permanent files created by DRAIN-2DX and 3DX were listed. Some of
these files are binary files that may be used by other programs, particularly for post-

processing. In this chapter, the structures of these files are described in detail.
4.2. FILES FOR LOAD PATTERNS AND LOAD RECORDS
4.2.1. .ELD File - Element Load Patterns

The .ELD file contains static element load patterns, each specified by *ELEMILOAD data.
Each new pattern is appended to the .ELD file, in subroutine INGPAT. The applied

patterns are retrieved for *GRAYV analyses in subroutine INELOD.

Each pattern consists of a number of FORTRAN records as follows.

1. First record.

Variable | Type Description

PATID character*4 | Pattern name.

PATIT character*40 | Pattern title.

NGRPL integer Number of element groups loaded by the pattern.

2. For each loaded element group, two records as follows.

a) First record.

| Variable | Type Description
IGRC integer | Element group number.
NLOD integer | Number of element load sets for this group.

102

b) Second record.

Array Description

SETLOD(ninl,nlod) Element load sets. Each column of SETLOD contains
a load set. NINL is the length of a load set from array
NINFL in /GENINF/. NLOD is the number of element
load sets.

ELFACT(nlod,nmem) Load set scale factors for elements of the group. Each
column of ELFACT contains the load set scale factors
for one element. NMEM is the number of elements
from array NELEM in /GENINF/.

4.2.2. .STA File - Static Load Patterns

The .STA file contains static nodal load patterns, each specified by *NODALOAD data.
Each new pattern is appended to the .STA file, in subroutine INSPAT. The applied
patterns are retrieved for *GRAV or *STAT analysis in suBrou_tine INNLOD.

Each pattern consists of two FORTRAN records as follows.

1. First record.

Variable | Type Description
PATID character*4 Pattern name.
PATIT character*40 | Pattern title.

2. Second record.

Array Type | Description
XPAT(3,nnods) in 2DX | real | Nodal loads for the pattern. NNODS is total
XPAT(6,nnods) in 3DX number of nodes (in /CONTR/).

4.2.3. .ACC, .DIS and .FRC Files - Dynamic Load Records

The .ACC, .DIS and .FRC files contain ground acceleration, ground displacement and
dynamic force records, respectively. Each record is specified by * ACCNREC, *DISPREC
or *FORCREC data. Each new record is appended to the corresponding file in subroutine
INAXL. The records are later retrieved in subroutine ADFRB for application in dynamic
(*ACCN, *ACCR, *DISN, *DISR, *FORN, or *FORR) analysis.

103

The data for each record consists of a large number of time-value pairs. This data is
divided into blocks, each containing 121 time-value pairs. The first pair in any block is the
same as the last pair in the preceding block (see /ASDFRC/, /ADFREC/ and /[LOADP).

Each record consists of a number of FORTRAN records as follows:

1. First record.

Variable | Type Description

PATID character*4 | Record name.

PATIT | character*40 | Record title.

NREC integer Number of (121 time-value pair) blocks for the
record.

2. NREC records, each consisting of 121 time-value pairs.

Array . Type | Description
ACCP(2 MPAIRS) real | Time-value pairs (MPAIRS is in /[LOADP/).

4.2.4. .SPC File - Response Spectra

The .SPC file contains response spectra, each specified by *SPECTRUM data. Each new
spectrum is appended to the .SPC file in subroutine INSPEC. The applied spectra are
retrieved for *SPEC analysis in subroutine SPECF.

104

Each spectrum consists of two FORTRAN records as follows.

1. First record.

Variable | Type Description
PATID character*4 | Spectrum name.
PATIT character*40 | Spectrum title.
KODS integer Spectrum type code.

0 : Acceleration.

1: Velocity.

2 : Displacement.

KODE integer Form of response spectrum data.

: Response values at constant period intervals.

: Period-response pairs.

: Response-period pairs.

: Response values at constant frequency intervals.
: Frequency-response pairs.

: Response-frequency pairs.

N H W=D

2. Second record.

Array Type | Description
PRESP(2,MPSPEC) | real Period-response pairs if KODE < 2.
' Frequency-response pairs if KODE > 3.

MPSPEC is in /[LOADP/ and equal to 141.

4.2.5. .VEL File - Initial Velocity Patterns

The .VEL file contains initial velocity patterns, each specified by *NODALVEL data.
Each new pattern is appended to the .VEL file in subroutine INVPAT. The applied
patterns are retrieved for *VELN or *VELR analysis in subroutine INNVEL.

Each pattern consists of two FORTRAN records as follows.

1. First record.

Variable | Type Description
PATID character*4 Pattern name.
PATIT character*40 | Pattern title.

105

2. Second record.

Array Type | Description
XPAT(3,nnods) in 2DX | real | Nodal velocities for the pattern. NNODS is
XPAT(6,nnods) in 3DX | total number of nodes (in /CONTR/).

4.3. FILES FOR POST-PROCESSING
4.3.1. .GEO File - Structure Geometry

The .GEO file contains structure geometry data. The .GEO file is set up in subroutine

INELEM.

The data consists of FORTRAN records as follows.

1. First record.

Variable | Type Description

NDTP integer - Number of compound node types +1.

NSNDS | integer Total number of subnodes in all compound node
types.

NNODS | integer Total number of nodes.

NTNDS | integer Total number of nodes and subnodes.

NEQQ integer Total number of equations + 1.

FNAME | character*8 | Problem name.

IHED character*40 | Problem title.

2. If NDTP > 1, one record as follows.

Array Description

NSB(ndtp) Location of first subnode for each compound node
type in arrays NDFSB and COSB. The number of
subnodes in compound node type NT is equal to
NSB(nt+1)-NSB(nt).

NDFSB(3,nsnds) in 2DX | DOF codes for all subnodes of each compound node
NDFSB(6,nsnds) in 3DX | type, as follows.

0 : Absolute displacement.

1 : Restrained (not a DOF).

2 : Relative displacement w.r.t. main node.

3 : Special degree of freedom (i.e., not a conventional
translation or rotation).

COSB(2,nsnds) in 2DX Coordinate offsets from main node for subnodes of

COSB(3,nsnds) in 3DX each compound node type.

106

3. One record.

Array Description
NDID(3,nnods) | Node identification array.
1 : Node number.

2 : Compound node type (0 = not a compound node).
3 : Location of nodal DOFs in ID array.

For compound nodes, the subnode DOFs immediately follow
the main node DOFs in the ID array.

4. One record.

Array Description
COORD(2,nnods) in 2DX | Nodal coordinates, in ascending node number
COORD(3,nnods) in 3DX | order.

5. One record.
Array Description
ID(3,ntnds) in 2DX | Equation numbers for displacements at each node and
ID(6,ntnds) in 3DX | subnode, coded as follows.

NEQQ : Restrained displacement.

+n : Displacement is unrestrained and unslaved. 'n'=
equation number.

-n : Displacement is slaved. 'n' = sequence number of
master node.

6. Two records for each element group.

a) First record.

Variable | Type Description
IGRC integer Element group number.
KEL integer Element type number.
NMEM integer. Number of elements.
NELNOD | integer Number of nodes per element.
IEHD character*40 | Group title.
b) Second record.
Array Type | Description
IELNOD(nelnod,nmem) | real Sequence number of nodes for each element.

107

4.3.2. . EXX File - Result Envelopes

The .EXX files contain result envelopes for post-processing, organized in FORTRAN

records as follows.
1. First record written in subroutine EXINIT.

Variable | Type - Description

IHED character*40 | Problem title (in /TITLE/).

FNAME | character*8 | Problem name (in /TITLE)).

ANAL character*4 | Analysis segment type (in /TITLE/).
IHEDA character*40 | Analysis title (in /TITLE/).

NSEG integer Analysis segment number (in /CONTR/).

2. Second record written in EXINIT.

Variable | Type Description

NDTP integer | Number of compound node types +1 (in /CONTR/).
NNODS | integer | Total number of nodes (in /CONTR/).

NINDS | integer | Total number of nodes and subnodes (in /CONTRY/).
NELGR | integer | Number of element groups (in /CONTR/).
NELTOT | integer | Total number of elements (in /CONTR/).

NSSEC integer | Number of structure sections.

NRDS integer | Number of generalized displacements.

3. Third record written in EXINIT.

Array Description

NSB(ndtp) Location of first subnode for each compound node type in
: arrays NDFSB and COSB. The number of subnodes in

compound node type NT is equal to NSB(nt+1)-NSB(nt).

NDID(3,nnods) | Node identification array.

1 : Node number.

2 : Compound node type number (0 = not a compound node).

3 : Location of nodal DOFs in ID array. For compound nodes,
the subnode DOFs immediately follow the main node DOFs
in the ID array.

108

. Fourth record written in EXINIT.

Array Description

NELEM(nelgr) | Number of elements in each group.

KELEM(nelgr) | Element type number for each group.

NLENVP(nelgr) | Number of envelope items (length of /ENVELM/ in 4-byte
units) per element for static or dynamic analyses for each
group.

. The subsequent records consist of result envelope sets. Data for each envelope set

consists of the following records.

a) The following records are written in NDDSAV.

Array Type Description

DENP(3,ntnds) in 2DX real*4 | Positive nodal displacement envelopes.
DENP(6,ntnds) in 3DX
ISTP(3,ntnds) in 2DX integer | Step numbers for DENP.
ISTP(6,ntnds) in 3DX
DENN(3,ntnds) in 2DX real*4 | Negative nodal displacement envelopes.
DENN(6,ntnds) in 3DX
ISTN(3,ntnds) in 2DX integer | Step numbers for DENN
ISTN(6,ntnds) in 3DX

b) For each element group,

If NLENVP > 0, NELEM records are written in RESPON.

Array Type Description
ENVOUT(nlenvp) 3 real*4 | Element envelopes.
¢) If NSSEC > 0, the following records are written in SECSAYV.
Array Type Description
SECENV(3,6,nssec) in 2DX | real*4 | Section force envelopes. 2nd index
SECENV(6,6,nssec) in 3DX indicates the envelope type as follows.
1: Total positive.
2 : Total negative.
3 : Static positive.
4 : Static negative.
5 : Damping positive.
6 : Damping negative.
ISECEN(3,6,nssec) in 2DX | integer | Step numbers for SECENV.
ISECEN(6,6,nssec) in 3DX

109

d) If NRDS > 0, the following records are written in GDSSAV.

Array | Type | Description

RDSENV(2,nrds) real*4 | Positive and negative generalized
v displacement envelopes.

IRDSEN(2,nrds) integer | Step numbers for RDSENV.

4.3.3. .RXX File - Result Histories

The .RXX files contain time or load history results for post-processing. The .RXX file is
opened in subroutine EXINIT for each analysis segment and closed in subroutine
SEGEND. The data consists of a number of FORTRAN records, as follows.

1. First record written in EXINIT.

Variable | Type Description

IHED character*40 | Problem title (in /TITLE/).

FNAME | character*8 Problem name (in /TITLE/).

ANAL character*4 | Analysis segment type (in /TITLE/).
IHEDA character*40 | Analysis title (in /TITLE/).

NSEG integer Analysis segment number (in /CONTR/).

2. Second record written in EXINIT.

Variable | Type Description

NDDISP | integer | Number of node and/or subnode displacements in a post-
processing set.

NDVELP | integer | Number of node and/or subnode velocities in a post-
processing set.

NDACCP | integer | Number of node and/or subnode accelerations in a post-
rocessing set.

NELTHP | integer | Number of elements in a post-processing set.

NPSECP | integer | Number of structure sections in a post-processing set.
NGDISP |integer | Number of generalized displacements in a post-processing
set.

NGVELP | integer | Number of generalized velocities in a post-processing set.
NGACCP | integer | Number of generalized accelerations in a post-processing
set. -

110

3. If NDDISP > 0, one record, written in EXINIT.

Array

Description

INFNOD(3,nddisp)

Information for each node and/or subnode displacement
in post-processing set, as follows.

1: Node number.

2: Compound node type number (0 = not a compound
node).

3: Subnode number (0 = main node).

4. If NDVELP > 0, one record, written in EXINIT.

6.

Array

Description

INFNOD(3,ndvelp)

Information for each node and/or subnode velocity in
post-processing set, as follows.

1: Node number.

2: Compound node type number (0 = not a compound
node).

3: Subnode number (0 = main node).

. IfNDACCP > 0, one record, written in EXINIT.

Array

Description

INFNOD(3,ndaccp)

Information for each node and/or subnode acceleration in
post-processing set, as follows.

1: Node number.

2: Compound node type number (0 = not a compound
node).

3: Subnode number (0 = main node).

If NELTHP > 0, one record, written in EXINIT.

Array Description
INFELM(4,nelthp) Information for each element in post-processing set,
as follows.

1 : Element group number.

2 : Element type number.

3 : Element number.

4 : Number of output items per element (length of
element results).

111

7. If NPSECP > 0, one record, written in EXINIT.

Array Description
INFSEC(npsecp) Numbers of structure sections in a post-processing
set.

8. If NGDISP > 0, one record, written in EXINIT.

Array Description
INFRDS (ngdisp) Numbers of generalized displacements in a post-
processing set.

9. If NGVELP > 0, one record, written in EXINIT.

Array Description
INFRDS(ngvelp) Numbers of generalized velocities in a post-processing
set.

10. If NGACCP > 0, one record, written in EXINIT.

Array Description
INFRDS(ngaccp) Numbers of generalized accelerations in a post-
processing set.

11. The subsequent records consist of post-processing sets. Each set consists of the

following records.

a) One record is written in subroutine GRSOL, STATIC, REST or STEP.

‘Variable | Type | Description

KSTEP integer | Step number.

TIME real*4 | Current time for dynamic analysis segment.
Current load factor for static analysis segment.

b) If NDDISP > 0, one record is written in NDDSAV.

Array Type Description
DISP(6,nddisp) real*4 | Node and subnode displacements.

c¢) For a dynamic analysis segment, if NDVELP > 0, one record is written in

NDVSAV.
Array Type Description
DISP(6,ndvelp) real*4 | Node and subnode velocities.

112

d) For a dynamic analysis segment, if NDACCP > 0, one record is written in

NDASAV.
Array Type Description
DISP(6,ndaccp) real*4 | Node and subnode accelerations.

e) NELTHP records are written in subroutine RESPON.

Array Type | Description
THOUT(*) real*4 | Element results.
The length of element results depends on the element.

f) If NPSECP > 0, one record is written in subroutine SECSAYV.

Array Type Description

SECFRC(6,npsecp) in 2DX real*4 | Static and damping section forces.
SECFRC(12,npsecp) in 3DX ' Static followed by damping for each
section.

g) If NGDISP > 0, one record is written in subroutine GDSSAV.

Array Type | Description
GEDISP(ngdisp) ' real*4 | Generalized displacements.

h) For a dynamic analysis segment, if NGVELP > 0, one record is written in

GVLSAV.
Array Type | Description
GEDISP(ngvelp) real*4 | Generalized velocities.

i) For a dynamic analysis segment, if NGACCP > 0, one record is written in

GACSAV.

Array Type | Description

GEDISP(ngaccp) real*4 | Generalized accelerations.
4.4. MODAL ANALYSIS FILES

4.4.1. MXX File - Mode Shapes

The .MXX files contain results from mode shapes and periods analysis. The results consist

of the following FORTRAN records, written in subroutine MODE.

113

1; First record.

Variable | Type Description
FNAME | character*8 Problem name (in /TITLE/).
IHED character*40 | Problem title (in /TITLE/).
ANAL character*4 | Analysis segment type (in /TITLE/).
IHEDA character*40 | Analysis title (in /TITLE/).
2. Second record.
Variable | Type Description
NEQ integer | Length of each mode shape (in /EQNS/).
NVEC integer | Number of mode shapes.
3. Third record.
Array Description
EVAL(nvec) Mode periods.
4. Fourth record.
Array Description
XLM(2,nvec) in 2DX Mass participation factors in translational directions
XL.M(3,nvec) in 3DX for each mode.

5. NVEC records, one for each mode shape.

Array

Description

EVEC(neq)

Mode shape = ¢/w”. Where, ¢ is mass normalized
mode shape; @ =27/T'; and T= mode period.

4.4.2, .UXX File - Modal Responses

The .UXX files contain responses for unit modal amplitudes. The results consist of the

following FORTRAN records, written in subroutine SPECON.

1. First record.

Variable | Type Description

NVEC integer | Number of mode shapes.

LENGTH | integer | Minimum length of record buffer required to read the
response results.

114

2. Second record.

Array Description
EVAL(nvec) Mode periods.
3. Third record.
Array Description
XLM(2,nvec) in 2DX Mass participation factors in translational directions
XILLM(3,nvec) in 3DX for each mode.

4. NVEC sets of records, one set per mode shape as follows.

a) One record.
Array Type Description
RESNDS(3,ntnds) in 2DX real*4 | Response node and subnode
RESNDS(6,ntnds) in 3DX displacements.

b) NELGR records, one for each element group.

Array : Type

Description

'RESELM(nlin,nmem) | real*4

Element response results. NLIN is the number
of result items per element for the group
(NLINF in /GENINF/). NMEM is the number
of elements for the group (NELEM in

/GENINF/).
c) If NSSEC > 0, one record.
Array Type Description
RESSEC(3,nssec) in 2DX real*4 | Response static section forces.
RESSEC(6,nssec) in 3DX
d) If NRDS > 0, one record.
Array Type Description
RESRDS(nrds) real*4 | Response generalized displacements.

115

5. DRAIN-BUILDING -- SPECIAL FEATURES
5.1. DRAIN-BUILDING MODEL -- FLOORS AND INTERFLOORS

In all DRAIN programs the structure is modeled as an assemblage of nonlinear elements
connected at nodes. In DRAIN-BUILDING there is also a higher level of organization,
according to which the structure is modeled as an assemblage of floors connected by
interfloors. The floors and interfloors are then assemblages of elements connected at

nodes. Figure 5.1 shows a simple floor and interfloor.

1st FLOOR NODE
COLUMN

INTERFLOOR NODE
< /an FLOOR NODE

BRACE

AFLOOR AN INTERFLOOR
AND FLOOR ELEMENTS AND INTERFLOOR ELEMENTS

FIG. 5.1. FLOORS AND INTERFLOORS

A floor consists of elements such as slabs and beams, usually but not necessarily lying in a
horizontal plane. An interfloor consists of elements such as columns, walls and braces,
which connect two floors. In general both floors and interfloors are 3D structures made up

of 3D elements. However, a floor could be a 2D structure.

In most cases an interfloor will connect a floor to the floor immediately above or below, as
shown in Figure 5.2a. However, an interfloor can connect any two floors, as shown in
Figures 5.2b through 5.2d. Note that an interfloor can connect floors at the same level
(e.g., an interfloor could be a bridge connecting floors in adjacent towers), as shown in
Figure 5.2c. An interfloor can also connect only one floor. For example, in a building on
sloping ground the ground nodes can be regarded as belonging to the interfloor rather than

116

a ground "floor". The interfloor is then connected only to the floor above, as shown in

Figure 5.2d.

interfloors

floors

ATRIUME

FIG. 5.2. FLOOR AND INTERFLOOR EXAMPLES

Formally, a floor is an assemblage of elements connected only to the nodes of that floor.
An interfloor is an assemblage of elements connected to nodes, which belong to (a) floor 1
of the interfloor (the floor above or below), (b) floor 2 of the interfloor (the second of the

two connected floors), and/or (c) the interfloor itself.
5.2. FLOOR AND INTERFLOOR TYPES AND INSTANCES

A multistory building may have many identical floors and interfloors, which differ only in

their spatial locations. Floors that differ from each other only in their locations can be

assigned the same floor type. Similarly, interfloors that differ from each other only in their

spatial locations can be assigned the same interfloor type. In the input data, floor and
117

interfloor types are defined first. Floor and interfloor instances are then positioned in

space to define the analysis model.

The following main tasks are performed in defining the analysis model.
1. Define Floor Types: For each floor type define the following.
a) Coordinates of floor nodes, relative to a floor origin. These coordinates are used
to calculate the dimensions and orientations of the floor elements.
b) Nodal masses.
¢) Whether the nodal displacements are unrestrained, restrained, spring supported or
slaved. A rigid floor diaphragm can be defined by slaving the nodes to a master
node for the floor.
d) Element properties and connectivity.
2. Define Interfloor Types: For each interfloor type define the following.
a) Location of the origin of floor 2 relative to the origin of floor 1. This defines the
interfloor height and the horizontal locations of the floors relative to each other.
This information is needed to determine the dimensions and orientations of the
interfloor elements.
b) Coordinates of interfloor nodes (if any) relative to the origin of floor 1.
¢) Nodal masses.
d) Whether the nodal displacements are unrestrained, restrained or spring supported.
e) Element properties and connectivity.
3. Specify Floor Instances: For each floor instance define the following.
a) Its floor type.
b) The coordinates of its origin. This locates the floor in 3D space.
4. Specify Interfloor Instances: For each interfloor instance define the following.
a) Its interfloor type.

118

b) Its floor 1 and floor 2 instances. This locates the interfloor in 3D space. It also
provides redundant information, since floors 1 and 2 are also defined for the

interfloor type. This information is checked for consistency.
5.3. ADVANTAGES OF USING FLOORS AND INTERFLOORS

There are two major advantages of using floor and interfloor types and instances. First, it
is easier to prepare the input data. Second, floors and interfloors are convenient modules

for setting up the data structures in the program.

The input data is easier to prepare mainly because the nodes, elements, load patterns and
results output specifications are input for floor and interfloor types, and the data does not
have to be repeated for each instance. It is also simpler to define nodes and elements for a
floor or interfloor type, since the coordinates and node numbering system are local to the
type rather than global for the building as a whole. A useful feature of the program is that
if two floor types have the same node locations but different member sizes, one type can

be derived from the other without repeating all of the input data.

The program data structures are simplified for two main reasons. First, much of the data
can be stored with the floor and interfloor types, so that the volume of data is reduced.
The data storage for a type is very similar to that used for a complete structure in DRAIN-
3DX. Second, each floor and interfloor instance can be treated as a subassembly,
contributing a subassembly stiffness to the complete structure stiffness. This leads to a
hypermatrix form for the structure stiffness [5], which is convenient logically and also
allows very large structures to be analyzed with modest memory requirements. This aspect

of the program is described in detail in the following sections.

A disadvantage of using floors and interfloors is that there is no direct concept of a frame.
For the design of a building it can be convenient to regard the structure as a series of

multistory frames connected by floor diaphragms. A DRAIN-BUILDING model does not

119

have this form. It is possible, however, to define a frame, by specifying that it consists of
certain elements from the floor and interfloor instances. The results could then be
organized frame-by-frame as a post-processing operation. This has not been done in the

current version of the program, but is planned as a future extension.
5.4. HYPERMATRIX STRUCTURE OF THE STIFFNESS MATRIX

The stiffness matrix of a DRAIN-BUILDING model consists of symmetric row and
column partitions, each corresponding to a floor or interfloor instance. Figure 5.3 shows a

simple example.

floors interfloors F1 11 I2 F3 13 F4

MODEL STIFFNESS HYPERMATRIX

. Diagonal Floor Blocks
| Diagonal Interfloor Blocks
|| Off-diagonal Blocks Coupling Two Floors

Off-diagonal Blocks Coupling a Floor and an Interfloo

FIG. 5.3. STRUCTURE OF THE STIFFNESS HYPERMATRIX

Since the matrix is symmetric, only the off-diagonal blocks above the diagonal plus the
upper triangular portions of the diagonal blocks need to be stored.

The elements of a floor instance contribute stiffness coefficients to the corresponding

diagonal floor block only. The elements of an interfloor instance can contribute stiffness

120

coefficients to three diagonal and three off-diagonal blocks. The diagonal blocks
correspond to the nodes in floor 1, floor 2 and the interfloor itself. The off-diagonal blocks
couple the diagonal blocks. If there are no interfloor nodes the interfloor elements

contribute stiffness coefficients to only two diagonal blocks and one off-diagonal block.

The blocks of the stiffness hypermatrix are stored on a direct-access file. Memory buffers
are provided to store up to three diagonal and three off-diagonal blocks (less if there are

no interfloor nodes). The buffer sizes are based on the largest block sizes.

During assembly of the element stiffnesses into the stiffness hypermatrix (TANK), there
must generally be three diagonal blocks and three off-diagc;nal blocks in memory at any
time. However, if the current interfloor has no interfloor nodes, only two diagonal blocks
and one off-diagonal block are needed. Section 5.7 describes the assembly procedure in
detail.

The base program subroutine HYPSOL has been developed to solve the hypermatrix
equations. HYPSOL requires three blocks in memory at any time. The algorithm is

described in Section 5.8.

The base program subroutine HYPMUL is used for forming hypermatrix-vector products.
HYPMUL requires one block in memory at any time. The algorithm is described in

Section 5.9.
§.5. ORDERING OF BLOCKS IN THE HYPERMATRIX

In all DRAIN programs, Crout's factorization is used to solve the equations. In DRAIN-
2DX and 3DX the stiffness matrix is stored in compacted column form, omitting the terms
above the first nonzero term in each column, and storing all terms below, up to and
including the diagonal term. This type of storage can be termed compacted column,
envelope, or skyline storage [6, 9]. In DRAIN-BUILDING, essentially the same storage

scheme is used for storing the blocks of the stiffness hypermatrix. The term compacted

121

—column is used in this report for the conventional storage scheme used in DRAIN-2DX
and 3DX. In this chapter, the terms envelope storage, block envelope and envélope
structure are used for describing the hypermatrix storage scheme of DRAIN-
BUILDING.

The initially zero terms above the first nonzero term in any column remain zero during
factorization, and hence never need to be stored. Initially zero terms below the first
nonzero term may or may not "fill in" (i.e., become nonzero) during factorization,
depending on the structure of the analysis model and the way in which the nodes are
numbered. In DRAIN-2DX and 3DX it is assumed that all such terms will fill in, since the
computational cost of keeping track of individual terms is not warranted. This is not the
case with DRAIN-BUILDING, however, since hypermatrix blocks, not single scalars, are

involved.

In DRAIN-BUILDING, the amount of block fill-in depends on the ordering of the floor
and interfloor instances. Figure 5.4 shows a simple example with two different orderings
and the corresponding fill-in blocks. Note that in ordering 2 some blocks within the block
envelope do not suffer fill-in. Such blocks do not have to be stored or operated upon.
However, initially zero blocks must be created for the filled in blocks. Ordering 1 would
normally be used (possibly numbered upwards rather than downwards), and would be
computationally more efficient than ordering 2 in most cases. However, DRAIN-

BUILDING permits the floor instances to be input in any order.

122

SEOR s

FAmm -

FlI1 22 F31I3 F4 Fl F211I2 F313 F4

ﬂ;: - thlzaI 8|<()snot
' F2 fill-in

F2 § I o blocks
2 R |_that

IF3 3 e fill-in

I3 I3

F4 F4 o|F

ORDERING 1 ' ORDERINGh2u
FIG. 5.4. BLOCK FILL-IN IN TWO ORDERINGS

The order of the stiffness blocks in the hypermatrix is determined by the input order of the

floor instances, as follows.

1. The floor blocks are in the floor input sequence.

2. If an interfloor connects two floors, its block is placed immediately before the block
for the second of the two floors. If more than two interfloors are to be placed before
any floor, their blocks are placed in the input sequence of their first floors.

3. If an interfloor connects only one floor, its block is placed immediately before the
block for that floor.

For a simple multistory building, if the order of input of the floor instances follows the
natural top-down or bottom-up sequence, then a penta-diagonal hypermatrix results (i.c.,
Ordering 1 in Figure 5.4). If there are no interfloor nodes, a tri-diagonal hypermatrix

results. In these cases there is no block fill-in.

123

Figure 5.5. shows two additional examples.

F1 F4
Il
) 9 s I4
I3 F5
F4 B REE IS
I5

Fom mm sm mF5 Flm mm == mmF6

FIN F2I12F3I13F414 IS F5 FII1 F212 F3I3 F4 14 F5 IS F6

F1
11
F2
12
F3
I3
F4
14
15
FS

(@) (b)
FIG. 5.5. BLOCK FILL-IN IN TWO CASES

In Figure 5.5a, the ordering is from the top down and leads to a lot of block fill-in. In
Figure 5.5b, the ground nodes are divided between floors F1 and F6, and the floor
instances are specified clockwise around the frame. This results in a pénta—diagonal
hypermatrix.

In general the program will execute faster if (a) there is less fill-in and (b) the nonlinear
elements are located at the end of the hypermatrix. The reason for (b) is that each time the
stiffness changes, only the block columns starting from the first modified block coiumn are
refactorized (block columns before the first modified block column do not change). If it is
known that only certain floors or interfloors become nonlinear, the program will probably
execute most efficiently if these floors and interfloors are placed at the end of the

hypermatrix. For example, if a simple building has base isolation but is otherwise linear, it

124

is most efficient to order the floors top down. Conversely, if a nonlinear passive control
system is placed in the top story, the most efficient ordering will be bottom up. If a
yielding story or isolation system is near midheight, it may be most efficient to specify the

middle floors last.

In the program, only stiffness blocks that are initially nonzero or suffer fill-in are stored
and operated upon. Blocks are not stored if they are initially zero and do not suffer fill-in.
Such blocks can be determined as follows.

1. Set array IND(N,N) to store "1" for each initially filled block, and "0" for each initially
zero block, where N = number of diagonal blocks. All diagonal blocks and all coupling
blocks are assumed to be filled.

2. ForJ=2toNandI=1toJ-1,if INDIJ) =0, then
a) ForK=1toI-1if IND(K,]) =1 and IND(K,J) = 1, then reset IND(I,J) to 1.

3. If for any instance, there are no DOFs (because the instance does not have any nodes
or all its nodes are restrained), then set the corresponding diagonal entry, IND(J,J),
and off-diagonal entries, IND(LJ) and IND(J,I), for I # J to O.

The program follows essentially this procedure before setting up array IENV, which is

described in Section 5.6.
5.6. HYPERMATRIX STORAGE SCHEME
5.6.1. Storage of Stiffness Blocks

The stiffness blocks of the hypermatrix are stored on a direct-access file. Two arrays,

IEXNYV and IENV, are used for addressing, as follows.

125

Array

Description

IEXNV(nfif+1)

Location of the first nonzero block in IENV for each block
column (i.e., pointer to the start of each block column in
IENV). NFIF is the number of block rows (and block
columns), which is equal to the number of floor and interfloor
instances. For uniformity in indexing, [EXNV(nfif+1) is set
equal to NZERO+1.

IENV(nzero)

Addresses (i.e., record number offsets on the direct access file
- see Section 5.6.4) of blocks within the block envelope. For
blocks that are initially zero and do not suffer fill-in, IENV is
set to 0. NZERO is the number of blocks within the block
envelope.

Figure 5.6 illustrates the scheme for ordering 2 shown in Figure 5.4.

Al A13 A15
A2 A24 A25 A26 A27
A33 A35

Ad44 A4S Ad6 A47

AS5 A56 A57
SYMMETRIC
A66 A67
A7T7
ON DISK 11#22 F13A33f\24 Ad441A15 5}&34‘451\55&6 A46lA56lA66F27iﬁ47l§57 AB7 | AT7
IENV |1{2|3|0]4|5]0]|6|7]|8]9]|10|11p2|0 |13]|14]15|16|0| 17| 18| 19] 20
IEXNV |1 |2 |3 |6 |9 |14]19|25

FIG. 5.6. ADDRESSING SCHEME FOR STIFFNESS BLOCKS OF HYPERMATRIX

126

With this scheme, some of the address computations are as follows.

1. The number of block rows, JLEN, within the block envelope, in block column J is

given by

JLEN =IEXNV(J+1) - IEXNV(J)

2. The block row number, IFST, of the first nonzero block in block column J is given by
IFST=J+1-JLEN
3. The address of (I,J) block, WLOC, in IENYV is given by
DLOC =IEXNV(J+1) - (J-I) -1
provided IFST<I < J.
4. The address of the diagonal (J,J) block, JJLOC, in IENV is given by

JJLOC =IEXNV(J+1) - 1

5.6.2. Storage of a Diagonal Block

Envelope storage is used for each diagonal block. Two arrays, ISTIF and STIF are used

for each block, as follows.
Array Description
ISTIF(neq+1) | Location of first nonzero term in STIF for each column (i.e.,

pointer to the start of each column in STIF). NEQ is the
number of columns (and rows) in the stiffness block. For
uniformity in indexing, ISTIF(neq+1) is set equal to NSTF+1.

STIF(nstf)

Values within the envelope, from the first nonzero term to the
diagonal term for each column. NSTF is the total number of
terms within the envelope.

127

Figure 5.7 illustrates the scheme.

alt a12 ai3
a2 a3 a2s
a33 a34 a35
ad4 ads a4q7
SYMMETRIC as5 a57
aéé ab7
ar7
STIF|at11ja12 a22|a13|a23 a44]a25la35 a45]a$5 |a66 ad7|a57|a67]|a77

j——

FIG. 5.7. STORAGE SCHEME FOR A DIAGONAL BLOCK

ISTIF| 1 |2

The matrix ISTIF is set as follows.

1. An array MSTIF of length NEQT, equal to the total number of structure DOFs, stores
the row number of the first nonzero term for each column of the stiffness hypermatrix.
This is the global row number.

2. For a diagonal stiffness block, let:

a) NEQ be the number of rows (and columns) in the block.
b) NFST+1 be thé global number of the first row (and first column) of the block.

3. SetISTIF(1)=1.

4. For column J (for 1 < J £ NEQ) of the stiffness block:

a) The column starts at global row number, JSTRT, given by
JSTRT = MAX (MSTIF(NFST+J),NFST+1).

128

b) The column ends at global row number, JEND, given by
JEND = NFST +J.

¢) The number of terms in the column, JLEN, is given by
JLEN = JEND - JSTRT + 1.

d) Set ISTIF(J+1) = ISTIF(J) + JLEN.

With this scheme, some of the address computations for a block are as follows.
1. The number of rows, JLEN, in column J is given by
JLEN = ISTIF(J+1) - ISTIF(J)
2. The row number, IFST, of the first nonzero term in column J is given by
IFST=J+1-JLEN
3. The address of term (1,J), JLOC, in STIF is given by
DDLOC = ISTIF(J+1) - (J-I) -1
provided IFST<I<J
4. The address of the diagonal term (J,J), JJLOC, in STIF is given by
JILOC =ISTIF(J+1) - 1

The row or column numbers I, J and IFST referred to above are local to the block. The

global row or column numbers are obtained by adding NFST to these numbers.
5.6.3. Storage of an Off-diagonal Block

Envelope storage is used for each off-diagonal block. Two arrays, ISTIF and STIF are

used for each block, as follows.

Array Description

ISTIF(neqc+1) | Location of first nonzero term in STIF for each column (i.e.,
pointer to start of each column in STIF). NEQC is the number
of columns in the stiffness block. For uniformity in indexing,

| ISTIF(neqc+1) is set equal to NSTF+1.

STIF(nstf) Values within the envelope, from the first nonzero term to the
last term for each column. NSTF is the total number of terms
within the envelope.

129

Figure 5.8 illustrates the scheme.

a21 a23

a3t a33| a34

a41 a43 | ad4 a47

ST lFIaZ1 a31 a41]azs la@ a34 a44|a47
4 9 19|10

774

4 |7

ISTIF | 1

[FIG. 5.8. STORAGE SCHEME FOR AN OFF-DIAGONAL BLOCK

The matrix ISTIF is set as follows.
1. An array MSTIF of length NEQT, equal to the total number of structure DOFs, stores
the row number of the first nonzero term for each column of the stiffness hypermatrix.
2. For an off-diagonal stiffness block, let:
a) NEQC be the number of columns in the block.
b) NEQR be the number of rows in the block.
¢) NCFST+1 be the global number of the first column of the block.
d) NRFST+1 be the global number of the first row of the block.
3. Set ISTIF(1)=1.
4. For column J (for 1 £ J < NEQC) of the stiffness block:
a) The column starts at global row number, JSTRT, given by
JSTRT = MAX (MSTIF(NRFST+J),NRFST+1)
provided JSTRT < NRFST + NEQR. Otherwise there are no terms in the column.
b) The column ends at global row number, JEND, given by
JEND = NRFST + NEQR.

130

¢) The number of terms in the column, JLEN, is given by
JLEN = MAX (0, JEND - JSTRT + 1)
d) Set ISTIF(J+1) = ISTIF(J) + JLEN

With this scheme, some of the address computations are as follows.
1. The number of rows, JLEN, within the envelope, in column J is given by
JLEN = ISTIF(J+1) - ISTIF(J)
JLEN can be zero for some columns.
2. The row number, IFST, of the first nonzero term in column J is given by
IFST =NEQR + 1 - JLEN
Note that if JLEN=0, then IFST > NEQR, and there are no nonzero terms in the
column.
3. The address of term (1J), JLOC, in STIF is given by
IJLOC = ISTIF(J) + I - IFST = ISTIF(J+1) - (NEQR-I) -1
provided IFST<I<J

The row or column numbers I, J and IFST referred to above are local to the block. The
global row number is obtained by adding NRFST to the local row number. The global
column number is obtained by adding NCFST to the local column number.

5.6.4. Hypermatrices in DRAIN-BUILDING

In DRAIN-BUILDING there are four hypermatrices, as follows.

1. TANK - unfactorized static tangent stiffness. TANK is updated whenever there is a
stiffness change in any element.

2. EFFK - factorized effective stiffness. EFFK is updated whenever TANK is updated, or
when there is change in the time step size.

3. BETAK - beta-K damping matrix (not factorized).

4. DTAN - backup of TANK, used for restoring TANK when the time step must be
repeated in the variable time step scheme.

131

These four hypermatrices all have the same envelope structure, both at the global level
(arrays IENV and IEXNV) and the local level (array ISTIF for each stiffness block).

All data blocks (STIF blocks for EFFK, TANK, BETAK and DTAN) are stored on a
FORTRAN direct access file, unit NFSTFB. All index blocks (array ISTIF for each
stiffness block) are stored on a second FORTRAN direct access file, NFSTFA. The array
IENV directly gives the record numbers of the index blocks on NFSTFA. The record
numbers of the data blocks on NFSTFB, for EFFK, TANK, BETAK and DTAN are
obtained by adding the offsets NOFEK, NOFTK, NOFBK and NOFDK, respectively, to
the values in IENV. These offsets are set as follows.

NOFEK =0

NOFTK = NOFEK + NNZERO

NOFBK = NOFTK + NNZERO

NOFDK = NOFBK + NNZERO

where NNZERO is the number of nonzero blocks within the block envelope of the

hypermatrix.
5.7. ASSEMBLY OF ELEMENT STIFFNESSES

For forming or updating the tangent stiffness hypermatrix (TANK), the elements are
i)rocessed one floor or interfloor instance at a time. Before any instance is processed,
subroutine GTBLKA writes any existing memory blocks to the direct-access file and
computes the addresses of the blocks that may need to be updated while processing the
current instance. If there is a stiffness change in an element, the affected stiffness blocks
are copied into the memory buffers in subroutine GTBLKS and updated in subroutine
ASSEMO. These blocks remain in memory until all the elements in the current instance
have been processed. The blocks are then written to the direct-access file, in subroutine

GTBLKA.

132

/ISTFBLK/ stores the record numbers of memory blocks.

The variables in /STFBLK/ are as follows.

Variable Description
INMEM Code for existence of blocks in memory, as follows.

0 : Blocks are not in memory. Bring them into memory if and
when the stiffness of an element changes in the current
instance, and reset the code to 1.

1 : Blocks are in memory. Write them to the NFSTFB file after
processing elements of the current instance.

Before processing the elements of any instance, the record
numbers of the blocks required for the current instance are
computed and INMEM is set to 0.

LSTBLK(6) | Record numbers of stiffness blocks that may change due to
changes in element stiffnesses for elements of the current
instance. The blocks are in the following order.

For a floor:

5 : Diagonal block for the floor.
1-4and 6 : 0.

For an interfloor with interfloor nodes:

1 : Diagonal floor 1 block.

2 : Off-diagonal block coupling floor 1 and floor 2.

3 : Diagonal floor 2 block.

4 : Off-diagonal block coupling floor 1 and interfloor.
5 : Diagonal block for the interfloor.

6 : Off-diagonal block coupling floor 2 and interfloor.

For an interfloor with no interfloor nodes:

1 : Diagonal floor 1 block.

2 : Off-diagonal block coupling floor 1 and floor 2.
3 : Diagonal floor 2 block.

4-6:0.

The stiffness blocks are stored in memory buffers STIF1 through STIF6 and ISTIF1
through ISTIF6 (see KSTIF and KISTIF in /STOR7/ in Chapter 6).

133

The following tasks are done in GTBLKA.

1.

2.
3.

If INMEM=1, write the memory blocks STIF1-STIF6 to the direct access file,
NFSTFB. The record numbers of the memory blocks are obtained form LSTBLK in
/STFBLK/.

Initialize array LSTBLK to 0.

Set LSTBLK for the current instance.

The following tasks are done in ASSEMO.

1.
2.

If INMEM=0, call GTBLKS to read the stiffness blocks into memory.
Assemble the stiffness coefficients into the affected memory blocks.

The following task are done in GTBLKS.

1.

2.

Copy the required blocks STIF1-STIF6 and ISTIF1-ISTIF6 (see KSTIF and KISTIF
in /STOR7/) from units NFSTFB and NFSTFA, respectively. The record numbers are
obtained from LSTBLK in /STFBLK/.

Set INMEM=1.

The element "location matrix" (LM array) determines the terms to be modified. The value

in LM for any DOF is as follows.

a) n:For an independent (unslaved) DOF , n=IFIF + LEQ*3

~ where,

IFIF = 0 if the DOF belongs to the current floor or interfloor instance,
1 if the DOF belongs to the floor 1 of the interfloor, and
2 if the DOF belongs to the floor 2 of the interfloor.
LEQ = local equation number for the DOF
Given n, IFIF and LEQ can be recovered as follows:
IFIF = MOD(n,3).
LEQ =n/3.

134

b) n:For a Z rotation slaved to the floor master node, n=IFIF + LEQ*3
where,
IFIF = 0 if the DOF belongs to the current floor instance,
1 if the DOF belongs to the floor 1 of the interfloor, and
2 if the DOF belongs to the floor 2 of the interfloor.
LEQ =local equation number for the Z rotation of the floor master node.
Given n, IFIF and LEQ can be recovered as for (a).
¢) -n:ForaXorY translation slaved to the floor master node,
n = IFIF + NDISP*3 + NLOC*9
where,
IFIF = 0, 1 or 2 as for (b).
NDISP = 1 for X translation, 2 for Y translation.
al X or 2 for translational Y DOF = MOD(n,9)/3.
NLOC = sequence number of the slaved node.
Given n, IFIF, NDISP and NLOC can be recovered as follows:
IFIF = MOD(n,3).
NDISP = MOD(n,9)/3.
NLOC =n/9.

Let for (I,J) term of the element stiffness:

1. If IFIF(I)=0 and IFIF(J)=0, then STIFS is updated.

If IFIF(1)=0 and IFIF(J)=1 or vice versa, then STIF4 is updated.
If IFIF(I)=0 and IFIF(J)=2 or vice versa, then STIF6 is updated.
If IFIF(I)=1 and IFIF(J)=1, then STIF1 is updated.

If IFIF(I)=1 and IFIF(J)=2 or vice versa, then STIF2 is updated.
If IFIF(I)=2 and IFIF(J)=2 or vice versa, then STIF3 is updated.

AN G R

135

The terms in STIF1-STIF6 which are updated depend on:

a) LEQ()) if element DOF, I, is independent or slaved Z rotation.

b) NDISP(I) and NLOC(]) if element DOF, I, is slaved X or Y translation.
c) LEQQ) if element DOF, J, is independent or slaved Z rotation.

d) NDISP(J) and NLOC(J) if element DOF, J, is slaved X or Y translation.

For cases (b) and (d) the aray FMASTC in /CNTFIF/ gives the coordinates of the master
node; the array COORD (see KCOORD in /STOR3/) for the floor gives the coordinates of
the slaved node; and the array ID (see KID in /STOR3/) for the floor gives the equation

numbers of the master node. See subroutine ASSEMO for implementation details.
5.8. HYPERMATRIX EQUATION SOLVER -- HYPSOL
5.8.1. Introduction

The set of equations to be solved is

Ax=b (5.1a)
in which A is the stiffness hypermatrix, b is the load vector increment and x is the
displacement increment to be determined. Equation 5.1 can be expanded to show the row

and column partitions, as follows.

Ay, Ap A, || X b,
A, A e A, | x b
D (5.1b)
Anl Anz o énn En Qn

Hypermatrix A is symmetric and 4; = A,T,. » Where A; is the (i, j) block of A.

To solve these equations, A is factored as follows.
A=U'DU (5.2
in which U is a unit upper triangular matrix and D is a diagonal matrix.

136

The hypermatrices A and U have the same envelope structure. The stiffness blocks of A

are replaced by those of U as the factorization proceeds. The diagonal terms in diagonal

blocks, U ;, are known to be unity, and are used to store the diagonal terms of D ;..

Given the factorization (Equation 5.2), the equations are solved in three steps as follows.

Solve UTz=b for 2 (5.3)
Solve Dy=z for y 54
Solve Ux=y for x (5.5)

Equation 5.3, is a lower triangular system of equations. This is the forward substitution

step.

Equation 5.4, is a diagonal system of equations. This step involves the division of each

term in z by the corresponding diagonal term in D.

Equation 5.5, is an upper triangular system of equations. This is the backward substitution

step.
5.8.2. Factorization
In Equation 5.2,
D;=0 if i#j (5.6)
U;=0 if i#L orifi>j 6.7

where, L; is the block row number of the first nonzero block in block column j.

The block A; is, thus given by

min(i,j)
A= Y (uip.U,) (5.8)

k=max(L,.L;)

137

The factorization of A proceeds block column by block column. At the time of
factorization of block column j, all blocks A, for i < j and k < i have been replaced by
U,;. Also, all diagonal blocks _4,, for i <j have been replaced by U, and D,.

Equation 5.8, fori <j is as follows.

i-1

4,= ¥ (UID,U,)+UID,Y,

k=max(L;,L;)
or y_Z (_D.ii Q.y) =4A; -) %{gi (.l_).u U,)} (5.9
=A

In Equation 5.9, U,; and U, have already been formed and are stored in place of A; and
Ay, respectively. The block A, actually stores the product D, U, that occurs on the

R.H.S. in Equation 5.9. Each step, k, in the formation of A; constitutes a non-symmetric

2y

update of the off-diagonal block A;. Once A;. is formed, then Equation 5.9 is a lower

triangular system of equations that is solved to replace A; by the product D,U,.

Equation 5.9 is used to modify blocks A;

=i

to store the product DU fori=L; to j—1.
Equation 5.8, for i = is as follows.

Jj=1

4; =Y (U1 D.U,)+ULD,U

J

k=Lj
o U3(D,0,)=4,- S{ui(2ar,)} 10
=Ly
=A"

In Equation 5.10, the product D, U, is actually stored in A,. Each step, k, in the

formation of _4;. , constitutes a symmetric update of the diagonal block A;; and as A,, is

138

updated the block A,; is modified to store U,; instead of the product D, U,;. Once A,, is

formed, then by Crout's factorization of the block, it is replaced by U ; and D ;.

Equations 5.9 and 5.10 are thus used for factorization of each block column j forj =1 to

n of hypermatrix A.

In HYPSOL, the diagonal of hypermatrix A, is stored in an array, DIAG, which is always

in memory. This reduces the amount of disk input-output in Equation 5.10, for the steps in
which blocks A,; are modified to store U,; instead of the product D, U,;.

The flow chart for the factorization phase is as follows.

HYPSOL

fori=Lj to j-1

CROUT2

CROUT4

In this chart JCOL is the number of the first block column that has changed. The block
columns from j =1 to JCOL-1, are already factorized and do not change.
The following main tasks are performed for each block column j
1. Fori=L; toj-1
a) In HYPSOL, bring block A; into memory.
b) Fork=max(L,L;) toi-1
(i) In HYPSOL, bring blocks A,; and A;; into memory.
(ii) In CROUTS3, perform a non-symmetric update of A; as follows.

AP = Ay -UL(D,U,)

139

c)
d)

e)

In CROUTS, on entry the blocks A;, A, and A, store AY™, U, and D, U,,,
respectively. On exit the block A, stores A.
In HYPSOL, bring block A; into memory.
In CROUTY2, solve the lower triangular system of equations as follows.
Ul(p,U,)=4;
In CROUT?2, on entry the blocks A, and A; store U, and A;, respectively. On
exit the block A; stores the solution D, U,.

In HYPSOL, write block 4; to disk file.

. In HYPSOL, bring block A ; into memory.

. Fork=L; toj-1

a)
b)

d)

e)

In HYPSOL, bring block A,; into memory.
In CROUT4, perform a symmetric update of A ; as follows.

AP = A4 -Ur(D,U,)
In CROUT4, the input consists of blocks A; and A,; and vectors D; and D,, .
On entry, A; and D; store the off-diagonal and diagonal values, respectively, of
A%V, and A, stores the product D, U,. On exit, A; and D; store the off-
diagonal and diagonal values, respectively, of A, and A,; stores U, .
In HYPSOL, write block A,; to disk file.

In CROUT1, perform the Crout's factorization of A 538 follows.

u;(p,0,)=4;
In CROUT], input consists of block A ; and vector D;. On entry these store the
off-diagonal and diagonal values, respectively, of A}. On exit A; stores U; and
D; stores D;.

In HYPSOL, write block A; to disk file.

140

58.3. AForward and Backward Substitution of Load Vector

The j th block equation in Equation 5.3, is as follows.

j
2. U5z =b,
o (5.11)
il ‘
or Ujz;=b;- X Usz

k=Lj

The flow chart for the forward substitution phase is as follows.

HYPSOL

- =L] to]-.‘i.
FORED2 ,

The following main tasks are performed.
1. In HYPSOL, bring block U,; into memory; and in FORED2, update the load vector as
follows.

by «<b;-Ugz,
2. In FORED], solve the following lower triangular system of equations.

Ujz;=b;
Equation 5.4, is trivial to solve as both z and D are in memory, and D is diagonal. Each
term of z is divided by the corresponding diagonal term of D to get Y.

141

The j th block equation in Equation 5.5, is as follows.

Z.ijlk =2;

k=j

or Usx;=y — Zg_ﬂglk

= S

(5.12)

Equation 5.12, can be used to solve for x; for j = n down to 1. However, a straight
forward implementation of Equation 5.12 results in accessing the blocks U, in row order.
In HYPSOL, x, is eliminated from the previous block equations, immediately after it is

calculated. This results in a group of U, blocks to be accessed in column order.

'The main steps in back-substitution are as follows.

1. Forj=ndownto1

a) Solve the upper triangular system, U ; x; = Y for x;.

b) Fork=L; toj-1,update y <y, ~U,x;

The flow chart for the back-substitution phase is as follows.

HYPSOL

for k=Lj to j-1
BAKSB2

The following main tasks are performed.

1. In HYPSOL, bring block U; into memory and solve the following upper triangular
system of equations.

U;x;=y,, for x;.

142

2. InHYPSOL, bring block U K in memory; and in BAKSB2, update the load vector, Ve
as follows.
%< _ng‘ x;
5.9. HYPERMATRIX-VECTOR PRODUCT -- HYPMUL

The system is represented as follows.
x=Ab (5.13)
in which A is the hypermatrix, b is a given vector and x is a vector to be determined.
The term x; is as follows.
x;=2,A,b, (5.14)
k=1
For a symmetric hypermatrix Equation 5.14 can be written as follows.
Jj n
2, =2 Agb+ Y Axh, (5.15)
k=1 k=j+1
Equation 5.15, shows that an off-diagonal block A; contributes to x; and x;, as follows.
X, <=x,+A;b; (5.16)

Xj <=£j+é.§ki (5.17)

143

Figure 5.9 shows the contributions graphically.

IFIG. 5.9. CONTRIBUTIONS OF AN OFF-DIAGONAL BLOCK

Each diagonal block A; contributes to x;, as follows.

X, <=x;+A;b; (5.18)

Figure 5.10 shows the contributions graphically.

i
X

FIG. 5.10. CONTRIBUTIONS OF A DIAGONAL BLOCK

14

The following are the main steps in HYPMUL.
1. Forj=1ton
a) Fori=1L;toj-1
(i) Bring A; in memory.
(i) Update x; <= x;+ A;b;
(iii) Update x; <= x; + A7 b,
b) Bring A; in memory.

c) Update x; <=x;+A;b;
5.10. TIMES WHEN HYPERMATRICES ARE NOT USED

DRAIN-BUILDING does not always store the stiffness matrix in hypermatrix form. If the
problem is small, or if blank common is large, the stiffness and beta-K damping matrices
are stored in conventional compacted column form, as in DRAIN-2DX and 3DX (see
INCOR, NOFEK, NOFBK and NOFDK in /CONTR/ and /STORS/).

Memory buffers are needed for at least two compacted column matrices (i.e., INCOR=1
or 2). The first buffer always stores TANK. The second buffer usually stores EFFK but
may also store BETAK if velocities are corrected to improve energy balance (see KEQBC
in /INDIC/ and subroutine CORECT). A direct access file, unit NFSTFB, has three
records for EFFK, BETAK and DTAN. In the state determination phase, TANK is
updated if any element stiffness has changed. To form EFFK for dynamic analysis,
BETAK is first read into the second buffer and then EFFK is formed in this buffer.

Usually, EFFK has to be refactorized starting from the ﬁrst modified column, JCOL (see
/EQNS)/), unless the time step changes, in which case it has to be refactorized completely
(i.e., JCOL=1). However, with only two memory buffers, BETAK is read into the buffer
storing EFFK, and the factorized EFFK is overwritten. Therefore, with only two memory
buffers, EFFK has to be refactorized completely at each time step that has a stiffness

145

change. This is a disadvantage of having only two memory buffers, but in most cases the

execution would still be faster than if hypermatrices are used.

If there is enough memory for three compacted column matrices (i.e., INCOR=3), then
TANK, EFFK and BETAK are stored in memory, and file NFSTFB has only one record
for DTAN. If the variable time step scheme is used, then TANK is backed up on NFSTFB
just before the first substep is taken, and recovered from NFSTFB if the step must be

repeated.

If there is enough memory (i.e., INCOR=4 or 5), then TANK, EFFK, BETAK and DTAN

are all stored in memory.

Subroutine ASSEMI (identical to subroutine ASSEM of DRAIN-2DX and 3DX) is used
for assembly of element stiffnesses into TANK. Subroutine UPDTSI (similar to subroutine
UPDATS of DRAIN-2DX and 3DX) is used for updating EFFK for static analysis.
Subroutine UPDTDI (similar to subroutine UPDATE of DRAIN-2DX and 3DX) is used
for updating EFFK for dynamic analysis.

146

6. DATA MANAGEMENT -- DRAIN-BUILDING

6.1. INTRODUCTION

Like DRAIN-2DX and 3DX, DRAIN-BUILDING also stores data in memory and on a

number of permanent and temporary (scratch) files.

Section 6.2 describes the labeled common blocks that are new or different from those in
program DRAIN-3DX. Section 6.3 describes the scheme for storing arrays in blank
common. Sections 6.4 and 6.5 give an overview of disk files. The details of the permanent

files are presented in Chapter 8.
6.2. LABELED COMMONS
6.2.1. File PARA.H

The length of arrays in /CNTFIF/, /DISVEL/, /ENRGY/, /GENINF/, /RHIST/, /STOR3/,
/STORS5/ and /TITFIF/ blocks is controlled by FORTRAN parameters contained in file
PARA H. The file, PARA.H, is included in subroutines that use these common blocks.

The parameters in PARA.H are as follows.

PARAMETER (MFLRTP=20)
PARAMETER (MIFRTP=20)
PARAMETER (MFIFTP=40)
PARAMETER (MFLRP=20)
PARAMETER (MIFRP=20)
PARAMETER (MFIFP=40)
PARAMETER (MAXGRP=20)
PARAMETER (MXDOFP=30)

147

These parameters are described as follows.

Parameter

Description

MFLRTP

Maximum number of floor types.
The actual number of floor types is NFLRT in /FLRIFR/.

MIERTP

Maximum number of interfloor types.
The actual number of interfloor types is NIFRT in /FLRIFR/

MFIFTP

Maximum number of floor and interfloor types.
The actual number of floor and interfoor types is NFIFT in
/FLRIFR/.

Maximum number of floor instances.
The actual number of floor instances is NFLR in /FLRIFR/.

Maximum number of interfloor instances.
The actual number of interfloor instances is NIFR in /FLRIFR/.

Maximum number of floor and interfloor instances.
The actual number of floor and interfloor instances is NFIF in
/FLRIFR/.

MAXGRP

Maximum number of element groups in any floor or interfloor type.
The actual number of element groups are in array NELGREF in
/CNTFIF/.

MXDOFP

Maximum number of DOFs for any element.
The actual number of element DOFs are in array NEDOF in
/GENINF/.

The default values in PARA.H should be adequate for most problems. If any of these

values is exceeded, then the base program writes error messages in .ECH file before

quitting execution. The values in PARA.H must be suitably changed and the program

recompiled to run the problem.

In DRAIN-BUILDING, floors and interfloors are numbered in the order of input as

follows.

1. Floor types are numbered from 1 to NFLRT, in arrays having data for floor types only.

2. Interfloor types are numbered from 1 to NIFRT, in arrays having data for interfloor

types only.

3. Floor and interfloor types are numbered from 1 to NFIFT (=NFLRT+NIFRT), in

arrays having data for both floor and interfloor types. The floor types have numbers

148

from 1 to NFLRT and the interfloor types have numbers from NFLRT+1 to NFIFT in

these arrays.

4. Floor instances are numbered from 1 to NFLR, in arrays having data for floor
instances only.

5. Interfloor instances are numbered from 1 to NIFR, in arrays having data for interfloor
instances only.

6. Floor and interfloor instances are numbered from 1 to NFIF (=NFLR+NIFR), in arrays
having data for both floor and interfloor instances. The floor instances have numbers
from 1 to NFLR and the interfloor instances have numbers from NFLR+1 to NFIF in

these arrays.
6.2.2. CNTFIF Common
/CNTFIF/ stores control information for floors and interfloors.

/CNTFIF/ is declared as follows.

COMMON /CNTFIF/ alphaf(4,MFIFP), flrtdc(6, MFLRTP), fmastc(2, MFLRP),
fmastm(2,MFLRP), xyzifr(3,MIFRTP), xyzfif(3,MFIFP),
jirfd(MFLRTP), jifrgt(2, MIFRTP), jfir(MFLRP),
jifr(2, MIFRP), jfift(MFIFP), jfif(2, MFIFP),

- nnodsf(MFIFTP), ntndsf(MFIFTP), ndspf(MFIFTP),
nelgf(MFIFTP), nelgrf(MFIFTP), nelttf(MFIFTP),
‘nssecf(MIFRTP), mxcutf(MIFRTP), ntrnsf(MIFRTP),
mxtdff(MIFRTP), nrdsf(MFIFTP), neqf(MFIFTP),
neqof(MFIFP), niadf(MFIFTP), nblokf(MFIFP)

O WNDh WN -

149

The variables are as follows.

Variable

Description

ALPHAF

Mass scale factors for each floor and interfloor instance.

1 : Dead load mass scale factor.

2 : Live load mass scale factor.

3 : Alpha-M damping factor.

4 : Scale factor for translational Z masses.

Translational dead load and live load masses are specified at
nodes of each floor and interfloor type. These masses are scaled
and combined to obtain the nodal masses for an instance.

The translational Z (vertical) mass for an instance is obtained by
scaling the nodal masses by the corresponding scale factor. The
scale factors for Z masses may be set equal to 0.0 to neglect the
effect of vertical inertia forces (see *\PARAMETERS data).

The alpha-M damping is obtained by assembling the masses
scaled by alpha-M damping factors, for each instance .

FLRTDC

Diaphragm center data for each floor type.

: X coordinate of diaphragm center relative to the floor origin.
: Y coordinate of diaphragm center relative to the floor origin.
: Translational dead load mass at diaphragm center.

: Translational live load mass at diaphragm center.

: Rotational Z dead load mass at diaphragm center.

: Rotational Z live load mass at diaphragm center.

[« WLV T - N UL I S

FMASTC

Master node coordinates for each floor instance.

1 : X coordinate relative to floor origin.

2 : Y coordinate relative to floor origin.

The master node is located at the center of mass of the slaved
nodes. Interfloor elements can contribute masses to the floor
nodes, and so the location of the master node can be different for
floor instances having the same type.

FMASTM

Master node masses for each floor instance.

1 : Translational X and Y masses.
2 : Rotational Z mass.

The masses specified at the diaphragm center and on slaved nodes
are transferred to the floor master node.

XYZIFR

X, Y and Z coordinates of the origin of floor 2 relative to the
origin of floor 1 for each interfloor type.

150

XYZFIF

X, Y and Z coordinates of the origin of each floor and interfloor
instance.

The interfloor origin is the same as its floor 1 origin.

Rigid floor diaphragm code for each floor type, as follows.

0 : No rigid floor diaphragm.

1 : Rigid floor diaphragm, having all displacement DOFs (X and
Y translations and Z rotation).

2 : Rigid floor diaphragm, free only to translate in X direction.

3 : Rigid floor diaphragm, free only to translate in Y direction.

4 : Rigid floor diaphragm, fixed in all displacement DOFs (X and
Y translations and Z rotation).

JIFRGT

Floors connected by each interfloor type.

1 : Floor 1 (geometry) type number.
2 : Floor 2 (geometry) type number (O = no floor 2).

Only the floor geometry information is used in defining an
interfloor type (for calculating dimensions of interfloor elements).
Thus, two interfloor instances having the same type, may connect
floor instances of different types, provided these floors have the
same geometry.

Output code for the diaphragm center (X and Y translations and
Z rotation) of each floor instance. Each code is an integer
between 0 (binary 000000000) and 511 (binary 111111111). In
binary, each bit from the left, is an output code (0:No ; 1:Yes) as
follows.

1st bit = User output accelerations.
2nd bit = Post-process accelerations.
3rd bit = Printout accelerations.

4th bit = User output velocities.

5th bit = Post-process velocities.

6th bit = Printout velocities.

7th bit = User output displacements.
8th bit = Post-process displacements.
9th bit = Printout displacements.

JIFR

Floors connected by each interfloor instance.

1 : Floor 1 number.
2 : Floor 2 number (0 = no floor 2).

Type number for each floor and interfloor instance.

151

JFIF Order of floors and interfloors in stiffness hypermatrix.
1 : Instance number for each block row (or column).
2 : Block row (or column) number for each instance.
The first row maps the block rows (or columns) of the
hypermatrix to the floor and interfloor instances. The second row
has the reverse mapping.

NNODSF Number of nodes in each floor and interfloor type.

NTNDSF Number of nodes and subnodes in each floor and interfloor type.

NDSPF Number of support springs in each floor and interfloor type.

NELGF Number of element groups with nonzero /INFGR/ blocks in each
floor and interfloor type.

NELGRF Number of element groups in each floor and interfloor type.

NELTTF Total number of elements in each floor and interfloor type.

NSSECF Number of structure sections in each interfloor type.
Note: Structure sections are not defined for floors.

MXCUTF | Largest number of elements cut by any section in each interfloor
type.

NTRNSF Number of force transformations for sections of each interfloor
type.

MXTDFF | Largest number of DOFs in any force transformation for sections
of each interfloor type.

NRDSF Number of generalized displacements for each floor and interfloor
type.

NEQF Number of equations (i.e., DOFs) contributed by each floor and
interfloor type.

NEQOF Equation number offset for each floor and interfloor instance.
The equations numbers for instance I of type IT start from
NEQOF(I)+1 and end at NEQOF(I)+NEQF(IT).

NIADF Length of IAD array (=NELTTF + NELGF) for each floor and

- | interfloor type. See KIAD in /STOR3/.

NBLOKF Number of disk blocks storing /INFGR/ and /INFEL/ blocks for

each floor and interfloor instance. See KINFB in /STOR6/.
6.2.3. CONTR Common

/CONTR!/ stores overall control information.

/CONTR!/ is declared as follows.

COMMON /CONTR/ incor, nchar, ndspt, ndtp, nseg, nsnds,
1 nofek, noftk, nofbk, nofdk

152

The variables are as follows.

Variable

Description _

' INCOR

| Code for storage of /INFEL/ and /INFGR/ data, INFB; tangent

stiffness, TANK; effective stiffness, EFFK; beta-K damping,
BETAK; duplicate tangent stiffness, DTAN; and duplicate /INFEL/
and /INFGR/ data, DINFB.

-1: INFB and DINFB are blocked and stored on files NFBEG,
NFCUR and NFUPD; and TANK, EFFK, BETAK and DTAN
are hypermatrices and stored on file NFSTFB.

0 : INFB is stored in memory; TANK, EFFK, BETAK and DTAN
are hypermatrices and stored on file NFSTFB; and DINFB is
stored on file NFBEG.

1 : INFB and DINFB ‘are blocked and stored on files NFBEG,
NFCUR and NFUPD; TANK and EFFK are stored in memory;
and BETAK and DTAN are stored on file NFSTFB.

2 : INFB is stored in memory; TANK and EFFK are stored in
memory; BETAK and DTAN are stored on file NFSTFB; and
DINFB is stored on file NFBEG.

| 3:INFB is stored in memory; TANK, EFFK and BETAK are

stored in memory; DTAN is stored on file NFSTFB; and DINFB
is stored on file NFBEG.

4 : INFB is stored in memory; TANK, EFFK, BETAK and DTAN
are stored in memory; and DINFB is stored on file NFBEG.

5 : INFB, TANK, EFFK, BETAK, DTAN and DINFB are stored in
memory.

Notes:

a) If INCOR < 0, then hypermatrix storage scheme is used for
TANK, EFFK, BETAK and DTAN. The address blocks are
stored on file NFSTFA.

b) If INCOR > 0, then compacted column storage scheme is used
for TANK, EFFK, BETAK and DTAN. This is identical to the
scheme used in DRAIN-2DX and 3DX.

NCHAR

Number of characters in FNAME (see /TITLE/). Used for opening
rmanent files.

NDSPT

Total number of support springs.

NDTP

Number of compound node types + 1.

NSEG

Current analysis segment number.

NSNDS

Total number of subnodes in all compound node types.

153

NOFEK | Record number offset for EFFK blocks in file NFSTFB if INCOR <
0.
Record number for EFFK in file NFSTFB if INCOR =1 or 2.

The space in memory for EFFK may be used temporarily for
BETAK, in which case EFFK is backed up on NFSTFB.

NOFTK | Record number offset for TANK blocks in file NFSTFB if INCOR
<0.

NOFBK Record number offset for BETAK blocks in file NFSTFB if INCOR
<0.

Record number for BETAK in file NFSTFB if INCOR = 1 or 2.
NOFDK Record number offset for DTAN blocks in file NFSTFB if INCOR
<0.

Record number of DTAN in file NFSTFB if INCOR =1, 2 or 3.

6.2.4. CURRNT Common

For any element task (e.g., event factor calculation, stiffness formation, state
determination, etc.), an element subroutine is called for each element. During model
definition, an element subroutine is called for each element group. /CURRNTY/ stores

information on the current element.

/CURRNT/ is declared as follows.

| COMMON /CURRNT! ififc, igrc, ielc, idfc, inodc I

The variables are as follows.

Variable | Description
IFIFC Current floor or interfloor instance number during analysis.
Current floor or interfloor type number during model definition.

Notes:

a) In model definition phase, IFIFC = NFLRT when a floor type is
processed, and IFIFC > NFLRT when an interfloor type is
processed.

b) During analysis, IFIFC < NFLR when a floor instance is
processed, and IFIFC > NFLR when an interfloor instance is
processed (see NFLRT and NFLR in /FLRIFR/).

IGRC Current element group number.

IELC Current element number.

IDFC Current element DOF number. Used only in model definition phase.

INODC Current element node number. Used only in model definition phase.

154

6.2.5. DIMENS Common

Array dimensions may be passed through argument lists or common blocks. If a dimension
is 0, the FORTRAN compiler may treat it as a fatal error (e.g., the Lahey compiler).
/DIMENS/ mainly stores dummy values for dimensions which may be zero.

/DIMENS!/ is declared as follows.

COMMON /DIMENS/ mxsecd, mxrdsd, ndspd, nssecd, mxcutd,

1
2

mxtdfd, ntrnsd, nrdsd, nnodsd, ntndsd,
nelttd, nnod1d, ntnd1d, nnod2d, ntnd2d

The variables are as follows.

Variable Description
MXSECD | MAX(1,MAXSEC), where MAXSEC is maximum number of
structure sections for any instance.
MXRDSD | MAX(1,MAXRDS), where MAXRDS is maximum number of
generalized displacements for any instance.
NDSPD MAX(1,NDSPT), where NDSPT (in /CONTR/) is the total
number of support-springs.
NSSECD MAX(1,NSSEC), where NSSEC is the number of structure
sections in the current instance (see NSSECF in /CNTFIF/).
MXCUTD | MAX(1,MAXCUT), where MAXCUT is maximum number of
elements cut by any structure section in the current instance (see
MXCUTF in /CNTFIF/).
MXTDFD | MAX(1,MAXTDF), where MAXTDF is maximum number of
DOFs for any cut-element in the current instance (see MXTDFF in
/CNTFIF/).
NTRNSD MAX(1,NTRNS), where NTRNS is the number of force
transformations for structure sections in the current instance (see
NTRNSF in /CNTFIF/).
NRDSD MAX(1,NRDS), where NRDS is the number of generalized
: displacements in the current instance (see NRDSF in /CNTFIF/).
NNODSD | MAX(1,NNODS), where NNODS is the number of nodes in the
current instance (see NNODSF in /CNTFIF)/).
| NINDSD MAX(1,NTNDS), where NTNDS is the number of nodes and
subnodes in the current instance (see NTNDSF in /CNTFIF)/).
NELTTD MAX(1,NELTOT), where NELTOT is the total number of
elements in the current instance (see NELTTF in /CNTFIF)).
NNODID | MAX(1,NNODS1), where NNODS]1 is the number of nodes in
floor 1 of the current interfloor instance.

155

NTNDI1D MAX(1,NTNDS1), where NTNDSI1 is the number of nodes and
' ' subnodes in floor 1 of the current interfloor instance.
NNOD2D MAX(1,NNODS2), where NNODS2 is the number of nodes in
floor 1 of the current interfloor instance.
NTND2D MAX(1,NTNDS2), where NTNDS2 is the number of nodes and
subnodes in floor 2 of the current interfloor instance.
6.2.6. DISVEL Common

Element end displacements and velocities are sent to the element subroutines for certain
element tasks (e.g., event factor calculation, state determination), and element end forces
are returned. /DISVEL/ provides memory for these values. Currently these values are
transferred through argument lists. In future programs, /DISVEL/ may be used to transfer
these values, in which case /DISVEL/ will become a part of the interface between the base

program and the element subroutines.

/DISVEL/ is declared as follows.

1

COMMON /DISVEL/ ddise(MXDOFP), vele(MXDOFP), diss(MXDOFP),

relas(MXDOFP), rdamp(MXDOFP), rinitt MXDOFP)

The variables are as follows.

Variable | Description
DDISE Increment in element end displacements.
VELE Element end velocities.
DISE Element end displacements.
RELAS Element end static forces.
RDAMP | Element end damping forces.
RINIT Element end initial forces due to element loads applied in static
gravity analysis.
6.2.7. ENRGY Common

/ENRGY/ stores the work quantities for checking energy balance. In addition to the

current values, the values at the beginning of the current time step are also stored. These

are backup values in case the time step must be repeated.

156

/ENRGY/ is declared as follows.

DWW N -

COMMON /ENRGY/ tek, tei, ted, tes, tew, tep, teso, ten, tee, tead,

teki, teii, tedi, tesi, tewi, tepi, tesoi, teni, teei, teadi,

* eneg(MXGRP,MFIFP), enrd MXGRP ,MFIFP),
‘eext(MXGRP,MFIFP), enegi(MXGRP ,MFIFP),
enrdiMXGRP ,MFIFP), eexti(MXGRP,MFIFP)

The variables are as follows.

Variable | Description

TEK Total kinetic energy (from nodal masses and velocities).

TEI Total inertia work (work done by inertia forces).

TED | Total damping work (TEAD+TEBD).

TES Total element static work.

TEW Total work done by dynamic nodal loads (consists of work done by
effective loads in ground acceleration analysis and by support
reactions in ground displacement analysis).

TEP Total work done by static nodal loads.

TESO Total second-order work (i.e., work done by P-A shears).

TEN Energy error (= TES+TEI+TED-TEE).

TEE Total external work (=TEP+TEW+TESO).

TEAD Total alpha-M damping work.

TEKI TEK at start of time step.

TEII TEI at start of time step.

TEDI TED at start of time step.

TESI TES at start of time step.

TEWI TEW at start of time step.

TEPI TEP at start of time step.

TESOI TESO at start of time step.

TENI TEN at start of time step.

TEEI TEEI at start of time step.

TEADI TEAD at start of time step.

ENEG Static work done in each element group.

ENRD Beta-K damping work done in each element group.

EEXT Second-order work done in each element group.

ENEGI ENEG at start of time step.

ENRDI ENRD at start of time step.

EEXTI EEXT at start of time step.

157

6.2.8. EQNS Common
/EQNS/ stores variables used in the solution of equations.

[EQNS/ is declared as follows.

COMMON /EQNS/ neqt, neqqt, neqgmx, neqfmx, negimx,

1 nstfd, nstfo, lenk, jcol, maxdof
The variables are as follows.

Variable Description

NEQT Total number of equations.

NEQQT NEQT+1.

NEQQMX 1+MAX(neqfmx,negimx).

NEQFMX Maximum number of DOFs in any floor instance. See NEQF in

/CNTFIF/.

NEQIMX Maximum number of DOFs in any interfloor instance. See NEQF
in /CNTFIF/.

NSTFD Length of a diagonal memory block (see KSTIF in /STOR7/).
=NEQQMX X(NEQQMX-1)/2

NSTFO Length of an off-diagonal memory block (see KSTIF in
/ISTOR7/).
=(NEQQMX-1) x(NEQQMX-1)

LENK Length of compacted column stiffness matrix.

JCOL First (block) column in stiffness (hyper) matrix that has changed

due to element events in the most recent state determination. All
(block) columns from this point must be refactorized, but (block)
columns up to this point do not change.

MAXDOF Maximum number of DOFs for any element in the current
structure. Must be less than MXDOFP (see /DISVEL)).

6.2.9. EVENT Common

J/EVENTY/ stores variables used in the event-to-event scheme.

/EVENT/ is declared as follows.

COMMON /EVENTY/ afac, facc, unbl(6), unbf, unbm,
1 irdof, irelm, irend, irevnt, irfif, irfifc,
2 irgrp, irnod, iquit, maxev, neven

158

The variables are as follows.

Variable

Description

' AFAC

Accumulated event factor for current load or time step (proportion
of step "used up").

FACC

Event factor for current substep.

UNBL

' Maximum equilibrium unbalance in each displacement direction.

UNBF

Maximum force unbalance.-

UNBM

Maximum moment unbalance.

IRDOF

‘Governing displacement direction if collapse displacement exceeded.

IRELM

Element number with the smallest event factor.

IREND

Event type code for the element with the smallest event factor. The
meaning of this code depends on the element type. See element User
Guides.

IREVNT

Code for the event type.

: No event.

: Element event.

: Load factor increment reached for load or time step.

: Controlled displacement increment reached for load step.

: Load removed to satisfy displacement control.

: Load factor increment or time increment reached for analysis
segment.

: Controlled displacement increment reached for segment.

: Maximum number of steps reached for segment.

: Maximum number of events reached for load or time step.

: Maximum number of successive direction changes (flip-flops)
exceeded for the step.

10 : Collapse translation exceeded.

11 : Collapse rotation exceeded.

12 : Structure unstable (detected by negative or zero term on the

diagonal during factorization of the effective stiffness matrix).
13 : Displacement control failed to prevent flip-flop.

W hHh W =O

O 00 3 AN

Instance number of element with smallest event factor.

IRFIFC

Instance number for which collapse displacement exceeded.

IRGRP _

Group number of element with smallest event factor.

IRNOD

Node number at which collapse displacement exceeded.

159

IQUIT Termination code at end of current load or time step.

0 : Proceed to the next step as current analysis segment has not
been completed (0 < IREVNT < 4).
1 : Proceed to next segment as current segment has been
successfully completed (5 < IREVNT < 6).
-1 : Quit analysis without completing current segment as analysis
cannot proceed further (7 £ IREVNT < 13).

| MAXEV | Maximum number of events allowed in a load or time step.

NEVEN | Number of events in current step.

6.2.10. FLRIFR Common
/FLRIFR/ mainly stores the number of floors and interfloors.

/FLRIFR/ is declared as follows.

COMMON /FLRIFR/ nflt, nifrt, nfift, nflr, nifr, nfif, nfifp,
1 nzero, NNZero

The variables are as follows.

Variable Description

NFLRT Number of floor types.

NIFRT Number of interfloor types.

NFIFT Number of floor and interfloor types (=NFLRT+NIFRT).

NFLR Number of floor instances.

NIFR Number of interfloor instances.

NFIF Number of floor and interfloor instances (=NFLR+NIFR).

NFIFP NFIF+1.

NZERO Number of stiffness blocks within the block envelope of the
stiffness hypermatrix.

NNZERO | Number of nonzero stiffness blocks within the block envelope of
the stiffness hypermatrix.

6.2.11. GENINF Common

/GENINF/ stores data for each element group.

160

/GENINF/ is declared as follows.

COMMON /GENINF/ betao(MAXGRP,MFIFTP), ovfac(MAXGRP,2, MFIFP),

1 relpr(2, MAXGRP,MFIFP), ielpr(2, MAXGRP,MFIFP),
2 kelem(MAXGRP,MFIFTP), kevit(MAXGRP MFIFTP),
3 - kgeom(MAXGRP,MFIFTP), nedof(MAXGRP,MFIFTP),
4 nelem(MAXGRP MFIFTP), nenod(MAXGRP MFIFTP),
5 ninfeMMAXGRP ,MFIFTP), ninfel(MAXGRP,MFIFTP),
6 ninfg(MAXGRP,MFIFTP), ninfIMAXGRP,MFIFTP),
7 " ninft(MAXGRP,MFIFTP), nlinf(MAXGRP,MFIFTP)
8 nlenvp(MAXGRP ,MFIFTP)
The variables are as follows.
Variable | Description
BETAO Stiffness proportional damping factor for each group of each floor
and interfloor type.
OVFAC | Event overshoot scale factor for each group of each floor and
interfloor instance.
1 : for static analyses.
2 : for dynamic analyses.
RELPR Real element parameters for each group of each floor and interfloor
instance.
IELPR Integer element parameters for each group or each floor and
interfloor instance.
KELEM | Element type number for each group of each floor and interfloor
type.
KEVNT | Event calculation code for each group of each floor and interfloor
type.
0 : Suppress event factor calculation.
1 : Calculate event factor.
KGEOM | P - A analysis code for each group of each floor and interfloor type.
0 : Ignore P— Aeffects.
1: Consider P— A effects and allow geometric stiffness to change
for static analyses only.
2 : Consider P— A effects and allow geometric stiffness to change
for both static and dynamic analyses.
NEDOF | Number of element DOFs for each group of each floor and interfloor
type.
NELEM | Number of elements in each group of each floor and interfloor type.
NENOD | Number of nodes per element for each group of each floor and
interfloor type.

161

NINFE

Length (in 4-byte units) of /INFEL/ block for each group of each
floor and interfloor type.

Location of integrity violation variable in /INFEL/ for each group of
each floor and interfloor type.

Certain element data is stored at the end of /INFEL/ by the base
program. If an element subroutine writes more than the specified
/INFEL/ length, this data is destroyed. To warn against this during
element development, this variable is checked after each call to an
element subroutine. If the variable has been over-written, the
program writes an error message.

NINFG

Length (in 4-byte units) of /INFGR/ block for each group of each
floor and interfloor type.

Length (in 4-byte units) of one element load set for each group of
each floor and interfloor type.

'| Length (in 4-byte units) of /THELM/ data for each group of each

floor and interfloor type. If all variables in /THELM/ are of 4-bytes,
then NINFT is equal to the number of output items per element for
static or dynamic analyses.

NLINF

Number of output items per element for response spectrum analysis
for each group of each floor and interfloor type. All output items for
response spectrum analysis must be REAL *4 variables.

NLENVP

Length (in 4-byte units) of /ENVELM/ data for each group of each
floor and interfloor type. If all variables in [ENVELM/ are of 4-bytes,
then NLENVP is equal to the number of envelope items per element
for static or dynamic analyses.

6.2.12. RHIST Common

/RHIST/ stores counts of numbers of items for results printout and post-processing.

/RHIST/ is declared as follows.
COMMON /RHIST/ Irec, ntime, nptime, ncdis(MFLRP), ncvel(MFLRP),
1 ncacc(MFLRP), nddis(MFIFP), ndvel(MFIFP),
2 ndacc(MFIFP), nelth(MFIFP), npsec(MIFRP),
3 ngdis(MFIFP), ngvel(MFIFP), ngacc(MFIFP),
4 ncdisp(MFLRP), ncvelp(MFLRP), ncaccp(MFLRP),
5 'nddisp(MFIFP), ndvelp(MFIFP), ndaccp(MFIFP),
6 nelthp(MFIFP), npsecp(MIFRP), ngdisp(MFIFP),
7 ngvelp(MFIFP), ngaccp(MFIFP)
The variables are as follows.

162

| Variable | Description

LREC Length of buffer REC (fwa = KREC in /STORG6/) for output of time-
history and/or envelope results.

NTIME Number of printout sets in the current analysis segment.

NPTIME | Number of post-processing sets in the current analysis segment.

NCDIS Code for printout of diaphragm center displacements for each floor
instance (0:No ; 1:Yes).

NCVEL | Code for printout of diaphragm center velocities for each floor
instance (0:No ; 1:Yes).

NCACC | Code for printout of diaphragm center accelerations for each floor
instance (0:No ; 1:Yes).

NDDIS Number of node displacements in a printout set for each instance.

NDVEL | Number of node velocities in a printout set for each instance.

NDACC ' | Number of node accelerations in a printout set for each instance.

'NELTH | Number of elements in a printout set for each instance.

NPSEC Number of structure sections in a printout set for each interfloor
instance.

NGDIS Number of generalized displacements in a printout set for each
instance.

NGVEL | Number of generalized velocities in a printout set for each instance.

NGACC | Number of generalized accelerations in a printout set for each
instance.

NCDISP | Code for post-processing of diaphragm center displacements for each
floor instance (0:No ; 1:Yes).

NCVELP | Code for post-processing of diaphragm center velocities for each
floor instance (0:No ; 1:Yes).

NCACCP | Code for post-processing of diaphragm center accelerations for each
floor instance (0:No ; 1:Yes).

NDDISP | Number of node or subnode displacements in a post-processing set
for each instance.

NDVELP | Number of node or subnode velocities in a post-processing set for
each instance.

NDACCP | Number of node or subnode accelerations in a post-processing set
for each instance.

NELTHP | Number of elements in a post-processing set for each instance.

NPSECP | Number of structure sections in a post-processing set for each
interfloor instance.

NGDISP | Number of generalized displacements in a post-processing set for
each instance.

NGVELP | Number of generalized velocities in a post-processing set for each
instance.

NGACCP | Number of generalized accelerations in a post-processing set for each

instance.

163

6.2.13. SECTON Common

/SECTON!/ is used in DRAIN-2DX and 3DX to store structure section information. In
DRAIN-BUILDING this information is stored in /CNTFIF/.

6.2.14. SETREL Common

/SETREL/ is used in DRAIN-2DX and 3DX to store generalized displacement
information. In DRAIN-BUILDING this information is stored in /CNTFIF/.

6.2.15. STFBLK Common

For the hypermatrix storage scheme, /STFBLK/ stores the record numbers of tangent
stiffness blocks that are currently in memory or that are required to be brought in memory

when a stiffness change occurs for an element of the current instance.

/STFBLK!/ is declared as follows.

| COMMON /STFBLK/ inmem, Istblk(6)

The variables are as follows.

Variable | Description
INMEM | Code for existence of blocks in memory, as follows.

0 : Blocks are not in memory. Bring them into memory if and when
the stiffness of an element changes in the current instance, and
reset the code to 1.

1 : Blocks are in memory. Write them to the NFSTFB file after
processing elements of the current instance.

Before processing the elements of any instance, the record numbers -
of the blocks required for the current instance are computed and
INMEM is set to 0.

164

LSTBLK | Record numbers of stiffness blocks that may change due to changes
in element stiffnesses for elements of the current instance. The
blocks are in the following order.

Forafloor:
5 : Diagonal block for the floor.
1-4and 6:0.

For an interfloor with interfloor nodes:
1 : Diagonal floor 1 block.
2 : Off-diagonal block coupling floor 1 and floor 2.
3 : Diagonal floor 2 block.
4 : Off-diagonal block coupling floor 1 and interfloor.
5 : Diagonal block for the interfloor.
6 : Off-diagonal block coupling floor 2 and interfloor.

For an interfloor with no interfloor nodes:
1 : Diagonal floor 1 block.
2 : Off-diagonal block coupling floor 1 and floor 2.
3 : Diagonal floor 2 block.
4-6:0.

6.2.16. STOR Common

/STOR!/ is used in DRAIN-2DX and 3DX to store first word addresses of arrays in blank
common, plus some variables used frequently with the storage scheme. In DRAIN-
BUILDING this information is now distributed in /STOR1/, /STOR2/, /STOR3/,
/STOR4/, /ISTORS/, /ISTORG6/, /ISTOR7/ and /STORS/.

6.2.17. STOR1 Common

ISTOR1/ stores the first word addresses of some arrays in blank common, plus some

variables used frequently with the storage scheme.

/STOR1/ is declared as follows.

COMMON /STOR1/ ntst, ninfb, ntblok, ksofar, kielnd,
1 kfmnd, kxlodd, kwksp, nwkspc, nwksp

165

The variables are as follows.

Variable | Description

NTST | Length of blank common in 4-byte units.

NINFB Length of INFB array = size of each disk block used to store
/INFGR/ and /INFEL/.

NTBLOK | Total number of disk blocks used to store /INFGR/ and /INFEL/ for
all elements of all instances.

KSOFAR | Next unallocated address in blank common.

' NWKSPC | Size of work space buffer in real (i.e., 8-byte) words.
| NWKSP | Size of work space buffer in integer (i.e., 4-byte) words.

The arrays stored in blank common are as follows.

FWA

Array

Description

KIELND

IELNOD(nenod,nmem)

Temporary array for storing element end
nodes for each element group of a floor
or interfloor type.

This array is written to .GEO file after
the input of the element group is
complete.

NENOD is the number of nodes per
element and NMEM is the number of
elements in the group.

IELLNOD is coded as follows.
n:'n'=IFIF+3 X NLOC
where,

IFIF = 0 if the node belongs to the
floor or interfloor.
1 if the node belongs to floor 1
of the interfloor.
2 if the node belongs to floor 2
of the interfloor.

NLOC = sequence number of the
node in its floor or interfloor.

The data can be recovered as follows.

IFIF = MOD (n,3)
NLOC =n/3

166

KFMND | FMND(2,nodtot)) Temporary array used for accumulating
nodal (dead load and live load) masses

for a floor or interfloor type during
model definition.

This array is written to .MAS file (unit
NFMASS) after the input of the floor or
interfloor type is complete.

For a floor type, NODTOT equals the
number of nodes in the floor.

For an interfloor type, NODTOT equals
the total number of nodes in the
interfloor, its floor 1 and its floor 2.

Note that in DRAIN-BUILDING, nodal
masses can be specified directly as well
as through elements.

KXLODD | XLOD (neqt) Effective nodal load increment for the
current load or time step.
KXLODD = KXLOD in /STOR6/.

KWKSP WKSPC(nwkspc) for Work space for use by base program

real work space. subroutines.
WKSPC(nwksp) for KWKSP = KWKSPC in /STOR6/
integer work space.

6.2.18 STOR2 Common

/STOR2/ stores the first word addresses of those arrays in blank common, which contain

data for the compound node types.

/STORZ2/ is declared as follows.

| COMMON /STOR?2/ knsb, kndfsb, kcosb |

167

The arrays stored in blank common are as follows.

FWA Array Description

KNSB NSB(ndtp) Location of first subnode for each compound
node type in arrays NDFSB and COSB. The
number of subnodes in compound node type,
NT, is equal to NSB(nt+1)-NSB(nt).
KNDFSB | NDFSB(6,nsnds) | DOF codes for all subnodes of each compound
node type, as follows.

0 : Absolute displacement.

1 : Restrained (not a DOF).
2 : Relative displacement w.r.t. main node.
3 : Special degree of freedom (i.e., nota

" conventional translation or rotation).
KCOSB COSB(3,nsnds) Coordinate offsets from main node for
subnodes of each compound node type.

6.2.19. STOR3 Common

/STOR3/ stores the first word addresses of those arrays in blank common, which contain

data for floor and interfloor types or output specification for floor and interfloor instances.

/STOR3/ is declared as follows.

COMMON /STOR3/ kndid(MFIFTP), kcoord MFIFTP), kid(MFIFTP),

~ kidsp(MFIFTP), knecut(MIFRTP), kdisttMIFRTP),
kidcut(MIFRTP), kstns(MIFRTP), knodir(MIFRTP),
krdfac(MFIFTP), kiad(MFIFTP), kfmnod(MFIFP),
kjnod(MFIFP), kjelm(MFIFP), kjsec(MFIFP),
kjrds(MFIFP)

WD WA -

168

The arrays stored in blank common are as follows.

FWA

Array

Description

KNDID

NDID(3,nnods)

Node identification array for each floor
and interfloor type. NNODS is the
number of nodes in the floor or interfloor
(see NNODSF in /CNTFIF/).

1 : Node number.

2 : Compound node type number (0 =
not a compound node). The
compound node types are numbered
in the order of input. ‘

3 : Location of nodal DOFs in ID array.

For compound nodes, the subnode DOFs
immediately follow the main node DOFs
in the ID array.

Note that for a repeated floor geometry
type, KNDID stores the fwa of NDID of
the parent floor type.

KCOORD

COORD(3,nnods)

Nodal coordinates, in ascending node
number order for each floor and
interfloor type.

The coordinates are relative to the origin
of the floor or interfloor type.

Note that for a repeated floor geometry
type, KCOORD stores the fwa of
COORD of the parent floor type.

169

ID(6,ntnds)

Equation numbers for displacements at
each node and subnode, for each floor
and interfloor type. NTNDS is the
number of nodes and subnodes in the
floor or interfloor (see NTNDSF in
J/CNTFIF/). ID is coded as follows.

0 : Restrained displacement.
+n : Displacement is unrestrained and
unslaved. 'n'= local equation number.
-n : Displacement is slaved to the floor
master node. 'n' = NTNDS.

For an interfloor there are no slaved
displacements. For a floor, the DOFs of
the floor master node are at location
NTNDS. The coordinates of the floor
master node are in FMASTC (in
/CNTFIF)).

KIDSP

IDSP(ndsp)

Local equation numbers for spring
supported displacements for each floor
and interfloor type. NDSP is the number
of support springs in the floor or
interfloor (see NDSPF in /CNTFIF/).

KNECUT

NECUT (nssec)

Number of elements cut by each
structure section for each interfloor type.
NSSEC is the number of sections in the
interfloor (see NSSECF in /CNTFIF/).

KDIST

DIST(3,maxcut,nssec)

X, Y and Z coordinate offsets from
structure section centers to element cuts
for each interfloor type. MAXCUT is the
maximum number of cut-elements in the
interfloor (see MXCUTF in /CNTFIF/).

KIDCUT

IDCUT(3,maxcut,nssec)

Identification array for cut-elements of
structure sections for each interfloor
type, as follows.

1 : Group number.
2 : Element number.
3 : Force transformation number.

KSTRNS

STRNS(6,maxtdf,ntrns)

Force transformation matrices for
structure sections for each interfloor
type. MAXTDEF is the largest number of
DOFs for any transformation and
NTRNS is the number of transformations
(see MXTDFF and NTRNSF in
/CNTFIF)) in the interfloor.

170

KNODIR

NODIR(8,nrds)

Displacements forming generalized
displacements for each floor and
interfloor type. NRDS is the number of
generalized displacements for the floor or
interfloor (see NRDSF in /CNTFIF/).
NODIR is coded as follows.

n:'n' =IFIF + IDIR*3 + NLOC*21

Where,

IFIF = 0O for the floor or interfloor.
1 for floor 1 of the interfloor.
2 for floor 2 of the interfloor.

IDIR = DOF direction (1 to 6).
NLOC = Sequence number of the node.

The data is recovered as follows.

IFIF = MOD (n,3)
IDIR =MOD (n,21)/3
NLOC =n/21

KRDFAC

RDFAC(8,nrds)

Participation factors for displacements
forming the generalized displacement for
each floor and interfloor type.

KFMNOD

FMNOD(nnods)

Nodal masses for each floor and
interfloor instance.

FMNOD stores the sum of dead load and
live load masses.

Note: In DRAIN-BUILDING only
translational masses are specified at
nodes.

TAD(niad)

Relative first word addresses in INFB for
each /INFGR/ and /INFEL/ block, for
each floor and interfloor type. NIAD is
obtained from NIADF in /CNTFIF/ for
the floor or interfloor.

The absolute first word addresses are
obtained by combination of IADOF (see
KIADOF in /STOR4/) and IAD.

171

'KINOD

JNOD(nnods)

Output codes for nodes for each floor
and interfloor instance. Each code is an
integer between 0 (binary 000000000)
and 511 (binary 111111111). In binary,
each bit from the left, is an output code
(0:No ; 1:Yes) as follows.

1st bit = User output accelerations.
2nd bit = Post-process accelerations.
3rd bit = Printout accelerations.

4th bit = User output velocities.

5th bit = Post-process velocities.

6th bit = Printout velocities.

7th bit = User output displacements.
8th bit = Post-process displacements.
9th bit = Printout displacements.

JELM(neltot)

Output codes for elements for each floor
and interfloor instance. Each code is an
integer between 0 (binary 000) and 7
(binary 111). In binary, each bit from the
left, is an output code (0:No ; 1:Yes) as
follows.

1st bit = User output element results.
2nd bit = Post-process element results.
3rd bit = Printout element results.

KIJSEC

JSEC(nssec)

Output codes for structure sections for
each interfloor instance. Each code is an
integer between 0 (binary 000) and 7
(binary 111). In binary, each bit from the
left, is an output code (0:No ; 1:Yes) as
follows.

1st bit = User output section forces.
2nd bit = Post-process section forces.
3rd bit = Printout section forces.

172

KIJRDS JRDS(nrds) Output codes for generalized
displacements for each floor and
interfloor instance. Each code is an
integer between 0 (binary 000000000)
and 511 (binary 111111111). In binary,
each bit from the left, is an output code
(0:No ; 1:Yes) as follows.

1st bit = User output accelerations.
2nd bit = Post-process accelerations.
3rd bit = Printout accelerations.

4th bit = User output velocities.

Sth bit = Post-process velocities.

6th bit = Printout velocities.

7th bit = User output displacements.
8th bit = Post-process displacements.
9th bit = Printout displacements.

6.2.20. STOR4 Common

/ISTORA4/ stores the first word addresses of some arrays in blank common.

I/STORA4/ is declared as follows.

| COMMON /STOR4/ kidspt, kspdsp, kiadof, kiexnv, kienv, kfmdof, kalpha 1

The arrays stored in blank common are as follows.

FWA Array Description
| KIDSPT IDSPT(ndspt) Global equation numbers for each spring
supported displacement. NDSPT is in
/CONTR/.

KSPDSP | SPDSP(ndspt,2) Imposed displacements at spring supports. (1:
Total ; 2: Increment for current step).

KIADOF IADOF(nfif) Offset in IAD for each instance. See KIAD in
/STOR3/.
KIEXNV | IEXNV(nfifp) Location of the first nonzero block in IENV

for each block column (i.e., pointer to the start
of each block column in IENV). NFIFP-1 is
the number of block rows (and block
columns), which is equal to the number of
floor and interfloor instances. For uniformity in
indexing, IEXNV (nfifp) is set equal to
NZERO+1.

173

KIENV IENV(nzero) | Addresses (i.e., record number offsets on the
direct access file - see Section 5.6) of blocks
within the block envelope. For blocks that are
initially zero and do not suffer fill-in, IENV is
set to 0. NZERO is the number of blocks
within the block envelope.

KFMDOF | FMDOF(neqt) Mass matrix (diagonal).

KALPHA | ALPHAM(neqt) 'Alpha-M damping matrix (diagonal).

6.2.21. STORS Common

ISTORS/ stores the first word addresses of arrays in blank common, which contain result

envelopes.

/STORY/ is declared as follows.

COMMON /STORS/ kenp(MFIFP), kenn(MFIFP),

1 kistp(MFIFP), kistn(MFIFP),

2 ksecen(MIFRP), kisece(MIFRP),
3 "~ krdsen(MFIFP), kirdse(MFIFP)

The arrays stored in blank common are as follows.

FWA Array Description

KENP DENP(6,ntnds) Positive nodal displacement envelopes for
each floor and interfloor instance.

KENN DENN(6,ntnds) Negative nodal displacement envelopes for
each floor and interfloor instance.

KISTP - ISTP(6,ntnds) Step numbers for DENP.

KISTN - | ISTN(6,ntnds) Step numbers for DENN.

KSECEN | SECENV(6,6,nssec) Section force envelopes for each interfloor
instance. 2nd index indicates:

: Total positive.

: Total negative.

: Static positive.

: Static negative.

: Damping positive.

: Damping negative.

KISECE ISECEN(6,6,nssec) Step numbers for SECENV.
KRDSEN | RDSENV(2,nrds) Positive and negative generalized
displacement envelopes for each floor and
interfloor instance.

KIRDSE IRDSEN(2,nrds) Step numbers for RDSENV.

AW bh W=

174

6.2.22. STOR6 Common

/STOR6/ mainly stores the first word addresses of vectors in blank common.

/STORG/ is declared as follows.

COMMON /STOR6/ kwkspc, ksefor, krds, krec, kxlod, kexts, kext, kdext,
1 krints, krint, kru, kdisi, kveli, kacci, kdds, kcvel,
2 kcacc, kdis, kvel, kacc, kenri, kdru, kinfb, kdinfb

The arrays stored in blank common are as follows.

FWA Array Description

KWKSPC | WKSPC(nwkspc) for | Work space for use by base program
real work space. subroutines.
WKSPC(nwksp) for
integer work space.

KSEFOR | SEFOR(12,mxsecd)

Current structure section forces (6 static
values followed by 6 damping values for
each section) for the current interfloor
instance. MXSECD is in /DIMENS/.

KRDS RDS(mxrdsd)

Current generalized displacement
magnitudes for the current floor or
interfloor instance. MXRDSD is in
/DIMENS/.

KREC REC(lrec)

Buffer for output of time-history and/or
envelope results for post-processing and/or
printout.

KXLOD XLOD(neqt)

Effective nodal load increment for the
current load or time step.

KEXTS EXTS(neqt)

Total static load.

KEXT EXT(neqt)

Total static + dynamic load.

KDEXT DEXT(neqt)

Dynamic load increment for the current
time step.

For *ACCN or *ACCR analysis DEXT is
the load increment due to ground
acceleration increments.

For *DISN or *DISR analysis DEXT is the
load increment required to impose the
specified ground displacement increments.

KRINTS RINTS(neqt)

Static resisting force.

175

KRINT RINT(neqt) Total (static + damping + inertia) resisting
force.

KRU RU(neqt) Unbalanced load (EXT-RINT).

KDISI DISI(neqt) , Displacements at start of current time step.

KVELI | VELI(neqt) Velocities at start of current time step.

KACCI ACCl(neqt) Accelerations at start of time step.

KDDS DDIS(neqqt) | Displacement increment in current substep.

KCVEL CVEL (neqt) Velocity increment in current substep.

| KCACC CACC(neqgt) . Acceleration increment in current substep.

KDIS DIS(neqt) Total displacements.

KVEL VEL(neqt) Total velocities.

KACC ACC(neqt) . Total accelerations.

KENRI ENRI(neqt) Work done by inertia forces in current time
step.

KDRU DRU(neqt) Backed up RU at start of a time step. Used
if time step is repeated.

KINFB INFB(ninfb) Buffer for /INFGR/ and /INFEL/ blocks.

KDINFB | IINFB(ninfb) Backed up INFB (if KDINFB # 1). Used if
time step is repeated. See INCOR in
/CONTRY/.

6.2.23. STOR7 Common

For the hypermatrix storage scheme (INCOR < 0, see /CONTR/), /STOR7/ stores the
first word addresses of buffers in blank common.

/STOR7/ is declared as follows.

| COMMON /STOR7/ kdiag, kstif(6), kistif(6) |

The arrays stored in blank common are as follows.

FWA Array | Description
KDIAG DIAG¢(neqt) Diagonal of effective stiffness hypermatrix.
NEQT is in /EQNS/.
KSTIF(1) | STIF1(nstfd) Buffer for a diagonal stiffness block. NSTFD
is in /EQNS/.
KSTIF(2) | STIF2(nstfo) or Buffer for an off-diagonal or diagonal stiffness
STIF2(nstfd) block. NSTFO is in /EQNS/.
KSTIF(3) | STIF3(nstfd) Buffer for a diagonal stiffness block.
KSTIF(4) | STIF4(nstfo) or Buffer for an off-diagonal or diagonal stiffness
STIF4(nstfd) block.
KSTIF(5) | STIF5(nstfd) Buffer for a diagonal stiffness block.

176

KSTIF(6) | STIF6(nstfo) or Buffer for an off-diagonal or diagonal stiffness
STIF6(nstfd) block.

KISTIF(1) | ISTIF1(neqgmx) Index array for STIF1. Locations of the first
nonzero terms in STIF1 for each column.
NEQQMX is in /JEQNS)/).

KISTIF(2) | ISTIF2(neqgmx) Index array for STIF2.

KISTIF(3) | ISTIF3(neqgmx) | Index array for STIF3.

KISTIF(4) | ISTIF4(neqgmx) | Index array for STIF4.

KISTIF(5) | ISTIF5(neqgmx) | Index array for STIFS.

KISTIF(6) | ISTIF6(neqqmx) Index array for STIF6.

In HYPSOL, DIAG and even numbered buffers are used to store the blocks of the

effective stiffness. In HYPMUL, STIF2 and ISTIF2 are used to store the blocks of

tangent stiffness or beta-K damping.

During state determination, for a floor instance, STIFS and ISTIFS are used to store the

floor diagonal block. For an interfloor instance all buffers STIF1-6 and ISTIF1-6 may be

used. See Section 5.6.

6.2.24. STORS Common

For the compacted column storage scheme (INCOR > 0, see /CONTR/), /STORS8/ stores

the first word addresses of compacted column matrices in blank common. See Section

5.10.

ISTORS/ is declared as follows.

| COMMON /STORS/ kdtan, kbetak, keffk, ktank, Klstif

The arrays stored in blank common are as follows.

FWA

Array

Description

KDTAN

DTAN(lenk)

Backed up TANK if INCOR 24 (see /CONTR/).
Otherwise DTAN is on file NFSTFB. Used if time
step is repeated.

KBETAK

BETAK(lenk)

Beta-K damping matrix if INCOR23 (see
/CONTR/). Otherwise BETAK is on file NFSTFB.
If INCOR=1 or 2, then KBETAK is set equal to
KEFFK

EFFK (lenk)

Current effective stiffness matrix (factorized).

177

KTANK TANK(lenk) Current tangent stiffness matrix (unfactorized).
| KLSTIF | LSTIF(neqqt) | Location of diagonal terms in compacted column
stiffness and beta-K damping matrices.

6.2.25. TAPES Common

[TAPES/ stores the unit numbers for disk files. The unit numbers are assigned in BLOCK
DATA (file BLOCK.FOR).

[TAPES/ is declared as follows.

COMMON /TAPES/ inp, iou, inpx, nfbeg, nfcur, nfupd, nfscrt, nfres,

1 nfperm, nfload, nflis, nfoutp, nflog, nfgeo, nfprnt,

2 nfmode, nfmrsl, nfasdf, nfenvp, nffift, nfmass, nfstfa,
3 nfstfb, nfbeta

The variables are as follows.

Unit No. | Associated File(s)

INP Input file, DRAIN.INP.

10U Echo file, ECH.

INPX Input scratch file. Used for counting input items before data is
actually read.

NFBEG Scratch file storing /INFGR/ and /INFEL/ blocks at start of current
step. Each disk block may contain one or more /INFGR/ and
/INFEL/ blocks. The size of each disk block is NINFB (in /STOR1/).
NFCUR Scratch file storing /INFGR/ and /INFEL/ blocks at start of current
substep.

NFUPD Scratch file storing updated /INFGR/ and /INFEL/ blocks, at end of
current substep.

NFSCRT | Not used.

NFRES Results post-processing file, .RXX, where XX is analysis segment
number.

NFPERM | Structure state file, .SXX, where XX is analysis segment number.
NFLOAD | Files containing load patterns and dynamic load records (i.e., .ELD,
STA, .SPC, .ACC, .VEL, .DIS, .FRO).

NFLIS Analysis list file, LST.

NFOUTP | Printout file, .OUT.

NFLOG Solution log file, .SLO.

NFGEO Geometry file, .GEO.

NFPRNT | Scratch file for saving results for printout. Results are saved step-by-
step, then reorganized and written to .OUT file item-by-item.
NFMODE | Mode shapes file, MXX, where XX is analysis segment number.

178

'NFMRSL | Modal response file(s), .UXX, for unit spectral acceleration
: amplitude. XX is the segment number.
- | NFASDF | Scratch file for dynamic load records. Used during dynamic analysis.
| NFENVP | Envelope files, EXX, where XX is analysis segment number, for
envelope post-processing.

NFFIFT | .TYP file, storing the individual /INFGR/ and /INFEL/ blocks for

each element group and element, respectively, for each floor and
, interfloor type.

NFMASS [.MAS file, storing nodal mass data for each floor and interfloor type.

NFSTFA. | Direct access scratch file, storing index blocks (ISTIF) for the
hypermatrix storage scheme.

NFSTFB | Direct access scratch file, storing data blocks (STIF) for the
hypermatrix storage scheme; or stiffness and damping matrices for
the compacted column storage scheme (see INCOR in /CONTR/).

NFBETA | Element damping matrices file, .DPG.

6.2.26. USROUT Common

/USROUT/ stores the intervals for user output to the .USR file.

/USROUTY/ is declared as follows.

COMMON /USROUT! tuoutd, ttuout, kusrf, nfusrf, iuouts, iuoutd, iinout,

1 kuout, nutime
The variables are as follows.
Variable | Description
TUOUTD | Time interval for user output for dynamic analyses.
0.0 : Ignored. Do not output if [IUOUTD also = 0.
>0.0 : Output at this interval, unless IUOUTD governs, and at end
of analysis segment.
TTUOUT | Time interval since last user output.
KUSRF | Code for form of user output file.
0 : Unformatted FORTRAN file.
1 : Formatted FORTRAN file.
2 : Binary FORTRAN file.
-1 : No user output file.
NFUSRF | Unit number for the user output file, .USR.
TUOUTS | Load step interval for user output for static analyses.
-1 : Output every event.
0 : Do not output.
n : Output every 'n’ steps and at end of analysis segment.

179

TUOUTD | Time step interval for user output for dynamic analyses.
0 : Ignored. Do not output if TUOUTD also = 0.0.
n : Output every 'n’' steps, unless TUOUTD governs, and at end of

analysis segment.
| IUOUT _ | Step interval since last user output.
KUOUT | Code for user output in the current step (0:No ; 1:Yes).
NUTIME | Number of user output sets in the current analysis segment.
6.2.27. USRITM Common

/USRITM/ stores the count of items for user output to the .USR file.

JUSRITM/ is declared as follows.

COMMON /USRITM/ ncdisu(MFLRP), ncvelu(MFLRP), ncaccu(MFLRP),

1 nddisuMFIFP), ndvelu(MFIFP), ndaccu(MFIFP),
2 nelthu(MFIFP), npsecu(MIFRP),
3 __ngdisu(MFIFP), ngvelu(MFIFP), ngaccu(MFIFP)

The variables are as follows.

Variable | Description

NCDIS Code for user output of diaphragm center displacements for each
floor instance (0:No ; 1:Yes).

NCVEL Code for user output of diaphragm center velocities for each floor
instance (0:No ; 1:Yes).

NCACC Code for user output of diaphragm center accelerations for each

‘ floor instance (0:No ; 1:Yes).

NDDISU | Number of node displacements in a user output set for each floor and
interfloor instance.

NDVELU | Number of node velocities in a user output set for each floor and

- interfloor instance.

NDACCU | Number of node accelerations in a user output set for each floor and
interfloor instance.

NELTHU | Number of elements in a user output set for each floor and interfloor
instance.

NPSECU | Number of structure sections in a user output set for each interfloor
instance.

NGDISU | Number of generalized displacements in a user output set for each
floor and interfloor instance.

NGVELU | Number of generalized velocities in a user output set for each floor

and interfloor instance.

180

NGACCU | Number of generalized accelerations in a user output set for each
floor and interfloor instance.

6.3. BLANK COMMON

All variable length arrays are stored sequentially in blank common. Blank common is
declared as follows.

| COMMON L(1) |

The total space occupied by all variable length arrays is limited only by the size of array L,
defined by the parameter NTSTP in the main program (file MAIN.FOR) as follows. |

PARAMETER (NTSTP=100000)
COMMON L(NTSTP)

ntst = NTSTP

Arrays in L are located by their first word addresses (FWA). The arrays and their
addresses have been listed in /STOR1-8/. If an array is not allocated space, because it is
not required for the current problem or because it is not kept in memory, its FWA is set to

0 or 1. Therefore L(1) is not used and first allocated address is L(2).

Most real variables are currently in double precision (REAL*8). It is possible that some of

these variables will be made single precision in future versions.

The variable KSOFAR stores the first unallocated address in L at any stage of execution
of the program. To allocate, say, an integer array NDID of dimensions (3, NTNDS) for

floor or interfloor type IFT, the code is as follows.

kndid(ift) = ksofar
ksofar = kndid(ift) + 3 X ntnds

Each real array is made to start on a 8-byte boundary by assigning an odd FWA. For
example, to allocate a real artray COORD of dimensions (3, NNODS) for floor or
interfloor type IFT, the code is as follows.

181

kcoord(ift) = NXTODD (ksofar)
ksofar = kcoord(ift) + 3 X nnods X iprec

In the above, NXTODD is the simple statement function:

| NXTODD(k) = k + MOD(k+1,2) |

After each allocation in L, KSOFAR is checked to ensure that it is less than NTST. If
KSOFAR > NTST, then blank common length is insufficient to run the problem, and the
program writes an ERROR message in the .ECH file. The parameter NTSTP in the main
program (file MAIN.FOR) must be increased to run the problem.

6.4. PERMANENT FILES

The base program creates several permanent files. All permanent files have names of the
form PROBNAME.EXT, where PROBNAME is the problem name (up to 8 characters),
FNAME in /TITLE/, and EXT is a three character extension indicating the contents of the
file.

All permanent files created in DRAIN-2DX or 3DX are also created in DRAIN-
BUILDING. In DRAIN-BUILDING, two additional files with extensions .TYP and .MAS

are created. The description of these files follows.

FILES STORING DATA FOR FLOOR AND INTERFLOOR TYPES
- Extension | Unit No. | Contents

.TYP NFFIFT Individual /INFGR/ and /INFEL/ blocks for each
element group and element, respectively, for each
floor and interfloor type.

.MAS NFMASS | Dead and live load nodal masses for each floor and

interfloor type (se¢ KFMND in /STOR1/).

In the current version of DRAIN-BUILDING these files could as well be scratch files. In a
customized version (involving relatively minor changes in the program), however, these
files could function as a library of standard floor and interfloor types, from which the
model for analysis could be assembled.

182

6.5. TEMPORARY FILES

Temporary files (i.e., FORTAN scratch or internal files) are used for the following.

(a) Input processing.

(b) Output processing.

(c) Storage of element /INFGR/ and /INFEL/ blocks.

(d) Storage of duplicate element /INFGR/ and /INFEL/ blocks.

(e) Storage of index and data blocks for the hypermatrix storage scheme (if INCOR < 0).

(f) Storage of EFFK, BETAK and DTAN for the compacted column storage scheme (if
0< INCOR <3). |

The details for (a), (b) and (c) are as for DRAIN-2DX and 3DX.

Duplicate /INFGR/ and /INFEL/ blocks are stored in DINFB if INCOR=5. Otherwise,
they are stored on NFBEG. NFBEG is not used for storage of DTAN and DRU as is the
case for DRAIN-2DX and 3DX. DRU is always stored in memory. DTAN is stored in
memory if INCOR 2 4, otherwise on file, NFSTFB.

The details for item (e) and (f) are described in Sections 5.6 and 5.10, respectively.

183

7. BASE PROGRAM ORGANIZATION -- DRAIN-BUILDING

7.1. INTRODUCTION

The base program phases and the corresponding separator lines in the DRAIN.INP file are

as follows.
No. | Base Program Phase Separator Lines Comment
1. Begin Session *START/ *STARTXX/ For *RESTART,
*RESTART phases (2), (9), and
(10) are skipped.
2. Define Compound Node *COMPOUND Part of Model
Types Definition.
3. Define Floor Types *FLOORTYPE, Part of Model
*NODECOORDS, Definition.
*NODETYPES,
*UNSLAVE,
*RESTRAINTS,
*MASSES,
*ELEMENTGROUP,
*GENDISP
4. Define Interfloor Types *INTERFLOORTYPE, Part of Model
*NODECOORDS, Definition.
*NODETYPES,
*RESTRAINTS,
*MASSES,
*ELEMENTGROUP,
*SECTION, *GENDISP
5. Define Floor and Interfloor | *FLOOR, *INTERFLOOR | Part of Model
Instances Definition.
6. Process Output *RESULTS
Specification

184

7. Process Load Patterns and
Load Records
a) Static Element Load *ELEMLOAD
Patterns
b) Static Nodal Load *NODALOAD
Patterns
¢) Initial Velocity Patterns | *NODALVEL
d) Ground Acceleration *ACCNREC
Records ‘
e) Ground Displacement *DISPREC
Records
f) Dynamic Force Records | *FORCREC
g) Response Spectrum *SPECTRUM
8. Allocate Memory for Preparation for
Analysis Phase analysis phase.
9. Form Beta-K Damping and Preparation for
Initial Tangent Stiffness analysis phase.
10. | Process Analysis *PARAMETERS
Parameters
11. | Identify Analysis Type *GRAYV, *STAT, *REST,
*MODE, *SPEC, *ACCN,
*ACCR, *VELN, *VELR,
*DISN, *DISR, *FORN,
or *FORR
12. | Set up Loads for Analysis
Segments:
a) Static Gravity *GRAV
b) Static *STAT
c) Restore to Static State *REST
d) Ground Acceleration *ACCN or *ACCR
e) Initial Velocity *VELN or *VELR
f) Ground Displacement *DISN or *DISR
g) Dynamic Force *FORN or *FORR

185

13. | Perform Analysis
a) Static Gravity *GRAV

b) Static *STAT

¢) Restore to Static State *REST

d) Ground Acceleration *ACCN or *ACCR

e) Initial Velocity *VELN or *VELR
f) Ground Displacement *DISN or *DISR
g) Dynamic Force *FORN or *FORR
h) Mode Shapes and *MODE
Periods '
i) Response Spectrum *SPEC
14. | End Session *STOP

The phases are described briefly in the following sections. Details can be obtained from the

actual code, which is well commented.
7.2. BEGIN SESSION

The flow chart for this phase is as follows.

MAIN —L_ coNTRL

The following main tasks are performed.

1. In MAIN, open the input data file, DRAIN.INP (unit INP in /TAPES/).

2. In INITL, read the *START/*STARTXX/*RESTART data. Set the variables LECHO
in /CLINE/; NCHAR in /CONTR/; KDATA, KEXE, KECHO, KENR and KPDEL in
/INDIC/; and FNAME in /TITLE/.

3. InINITL, open the files .ECH (unit IOU), .OUT (unit NFOUTP), .LST (unit NFLIS),
.SLO (unit NFLOG) and .USR (unit NFUSRF).

4. For *RESTART
a) In INITL, open the .SXX file (unit NFPERM), where XX is the restart state

number.

186

b) In RSTATE, restore the state from .SXX file (blank common, all labeled common
blocks, INFB blocks, ISTIF blocks and STIF blocks).

For *START or *STARTXX

a) In CONTRL, open the .GEO file (unit NFGEO), and write the problem name and
problem title to it.

b) In CONTRL, open the .MAS file (unit NFMASS) to store the nodal dead and live
load masses for each floor and interfloor type.

¢) In CONTRL, open the .TYP file (unit NFFIFT) to store the /INFGR/ and /INFEL/

blocks for each group and element, respectively, for each floor and interfloor type.

7.3. DEFINE COMPOUND NODE TYPES

The flow chart for this phase is as follows.

CONTRL

The following main tasks are performed.

1.

In INDTP1, read the *COMPOUND data ; count NDTP and NSNDS (see /CONTR/);
and write thé input lines to INPX.

In INCNDS, allocate arrays NSB, NDFSB and COSB (see KNSB, KNDFSB and
KCOSB in /STOR?2/) in blank common.

In INDTP2, re-read the *COMPOUND data from INPX and set up NSB, NDFSB and
COSB.

In INDTP2, write the data for the compound node types on the .GEO file (unit
NFGEO).

187

7.4. DEFINE FLOOR TYPES

The flow chart for this phase is as follows.

CONTRL

INDCO1 for "NODECOORDS data
INDCO2—1— NpGENC

NDGENG

R R PES rda

i

& R

,fa*Ff
—

%‘S data

Lo for *ELEMENTGROUP data
gy
INEL#¥—__ econTR

COORDS
ELNODE

LOCMAT
FINISH

for *&ENDISP data
RDS1

The following main tasks are performed.
1. In FLRTYP, initialize the variables NFLRT and NFIFT in /FLRIFR/ to zero.

2. For each *FLOORTYPE separator, in FLRTYP do the following.
a) Increment NFLRT and NFIFT.
b) Read the *FLLOORTYPE data; set variables IDFIFT(nfift) and IDFRGT(nflrt) in

/TITFIF/; and variable JIRFD(nflrt) and array FLRTDC(1:6,nflrt) in /CNTFIF/.
¢) Write a floor type output record to the .GEO file.

188

d)

Call INFLRT for reading the rest of the data for the floor type.

. InINFLRT, for a repeated floor geometry type do the following.

a)

b)

Set variables NNODSF(nfift) and NTNDSF(nfift) in /CNTFIF/ equal to the
corresponding values for the parent floor geometry type.

Set first word addresses KNDID(nfift) and KCOORD(nfift) in /STOR3/ equal to
the corresponding values for the parent floor geometry type.

. If not a repeated floor geometry type, then do the following.

a)

b)

d)

e)

f)
g)

In INDCO1, read the *NODECOORDS data; count NNODSF(nfift) (in
/CNTFIF/) and write input lines to INPX.

In INFLRT, allocate arrays NDID and COORD for the floor type (i.e., fwa
KNDID(nfift) and KCOORD(nfift) in /STOR3/) in blank common.

In INDCO2, re-read the *NODECOORDS data from INPX and set up node
numbers in first row of NDID and corresponding nodal coordinates in COORD.
INDCO2 calls NDGENC for control nodes, NDGENL for straight line generation,
NDGENF for frontal extrapolation, and NDGENG for grid interpolation.

In INFLRT, sort COORD and first row of NDID in increasing order of node
numbers.

In INNDTP, read the *NODETYPES data and set up the second row of NDID;.
and count the number of subnodes in the floor type, NSBT.

In NDIDST, set up the third row of NDID.

In INFLRT, set NTNDSF(nfift) (in /CNTFIF/) equal to NNODS(nfift) + NSBT +
1.

. In INFLRT, allocate arrays ID and IDSP (i.e., fwa KID(nfift) and KIDSP(nfift) in

/STOR3/) in blank common. The actual length NDSP of IDSP is unknown at this

stage, and is provisionally set to 6xX NNODSF(nfift).

. In INDUSL, read the *UNSLAVE data and code the ID array as follows.

a)

-NTNDS for slaved DOFs.
189

7.

9.

In INDRTF, read the *RESTRAINTS data and additionally code the ID array as
follows.

b) 0: for a free (i.e., unrestrained) displacement,

c) 1: for a fixed (i.e., restrained) displacement, and

d) 2: for a spring supported displacement.

. In EQNGNEF, set up the arrays ID and IDSP; and variables NDSPF(nfift) and

NEQF(nfift) in /CNTFIF/.
In INFLRT, reduce the allocated space for array IDSP to NDSPF(nfift).

10. In INFLRT, temporarily allocate and initialize to zero the arrays FMND and IELND

11.
12.

13.

(see KFMND and KIELND in /STOR1/) in blank common.

In INMASS, read the *MASSES data and update the array FMND.

In INELEM

a) Read Group Information data for the *ELEMENTGROUP separators; set the
arrays BETAO, KELEM, KEVNT, KGEOM and NELEM in /GENINF/ for the
floor type; and set the variables NELGRF(nfift), NELGF(nfift) and NELTTF(nfift)
in /CNTFIF/.

b) Call the element subroutine INEL##, where ## is the element type number, to read
the element data.

¢) Write the element group data and IELND array to the .GEO file (unit NFGEO).

In INEL##

a) Call the base program subroutine ECONTR.

b) Read the Element Data for the *ELEMENTGROUP separator.

c¢) Call the base program subroutine COORDS to get the coordinates of any node.

d) Set the /INFGR/ block for the group.

e) For each element of the group
i) Call the base program subroutine ELNODE for each element node.
ii) Call the base program subroutine LOCMAT for each element DOF.

190

i) Set the /INFEL/ block.
iv) Call the base program subroutine FINISH.
14. In ECONTR, set the variables NEDOF, NENOD, NINFE, NINFEL, NINFG, NINFL,
NINFT, NLINF and NLENVP in /GENINF/ for the element group.
15. In ELNODE, set the element nodes in IELNOD and update array FMND due to the

mass contribution from the elements.
16. In LOCMAT, code the element LM (Location Matrix) array for the element DOF, as
follows.
n = IFIF + NDISP*3 + NSUB*21 + NLOC*336
where,
'n' is the value in the LM array.
IFIF = O for the floor node.
NDISP = displacement direction (1, 2 or 3 for X, Y and Z translations,
respectively; and 4, 5 and 6 for X, Y and Z rotations, respectively).
NSUB = subnode number (0 = for the main node).
NLOC = sequence number of the node in NDID array.
The data is recovered as follows.
IFIF = MOD(n,3)
NDISP = MOD(n,21)/3
NSUB = MOD(n,336)/21
NLOC =n/336

17. In FINISH:
a) For the first element store the /INFGR/ block on the .TYP file (unit NFFIFT).

b) For each element store the /INFEL/ block on NFFIFT.
18. In INFLRT, write the array FMND to the .MAS file (unit NFMASS).
19. In INFLRT, set the variable NIADF(nfift) in /{CNTFIF/ and allocate array IAD for the
floor type (i.e., fwa KIADF(nfift) in /STOR3/) in blank common.
191

20. For *GENDISP data:
a) In INRDSI, read the *GENDISP data; count NRDSF(nfift) (in /CNTFIF/); and
write the input lines to INPX.
b) In GENDIS, allocate arrays NODIR and RDFAC (i.e., fwa KNODIR(nfift) and
KRDFAC(nfift) in /STOR3/) in blank common.
c) In INRDS2, re-read the *GENDISP data from INPX and set arrays NODIR and
RDFAC. |

7.5. DEFINE INTERFLOOR TYPES

The flow chart for this phase is as follows.

[CONTRL

INDCO1 for “NODECOORDS data
INDCO2 NDGENC

INNDTP
INDRTI for *RESTRAINTS data

INMASS

for "ELEMENTGROUP data |
INELEM —L_ |NEL##

FINISH

STRSE
INSEC1
Cbt INSEC2

192

The following main tasks are performed.
1. In IFRTYP, initialize the variable NIFRT in /FLRIFR/ to zero.
2. For each *INTERFLOORTYPE separator, in IFRTYP do the following.
a) Increment NIFRT and NFIFT.
b) Read the *INTERFLOORTYPE data; set variable IDFIFT (nfift) in /TITFIF/; and
arrays JIFRGT(1:2,nifrt) and XYZIFR(1:3,nifrt) in /CNTFIF/.
¢) Write an interfloor type output record to the .GEO file.
d) Call INIFRT for reading the rest of the data for the interfloor type.
3. *NODECOORDS data:
a) In INDCOI, read the *NODECOORDS data; count NNODSF(nfift) and write the
input lines to INPX.
b) In INIFRT, allocate arrays NDID and COORD for the interfloor type (i.e., fwa
KNDID(nfift) and KCOORD(nfift) in /STOR3/) in blank common.
¢) In INDCO2, re-read the *NODECOORDS data from INPX and set up node
numbers in first row of NDID and corresponding nodal coordinates in COORD.
INDCO2 calls NDGENC for control nodes, NDGENL for straight line generation,
NDGENF for frontal extrapolation, and NDGENG for grid interpolation.
d) In INIFRT, sort COORD and first row of NDID in increasing order of node
numbers.
4. In INNDTP, read the *NODETYPES data; set up the second row of NDID; and
count the number of subnodes in the interfloor type, NSBT.
5. In NDIDST, set up the third row of NDID.
6. In INFLRT, set NTNDSF(nfift) (in /{CNTFIF/) equal to NNODS(nfift) + NSBT.
7. In INFLRT, allocate arrays ID and IDSP (i.e., fwa KID(nfift) and KIDSP(nfift) in
/STOR3/) in blank common. The actual length NDSP of IDSP is unknown at this
stage, and is provisionally set to 6XNNODSF(nfift).

193

8. In INDRTI, read the *RESTRAINTS data and code the ID array as follows.
a) 0: for a free (i.e., unrestrained) displacement,
b) 1: for a fixed (i.e., restrained) displacement, and
¢) 2: for a spring supported displacement.
9. In EQNGNI, set the arrays ID and IDSP; and variables NDSPF(nfift) and NEQF(nfift)
in /CNTFIF/.
10. In INIFRT, reduce the allocated space for array IDSP to NDSPF(nfift).
11. In INIFRT, temporarily allocate and initialize to zero the arrays FMIND and IELND
(see KFMND and KIELND in /STOR1/) in blank common.
12. In INMASS, read the *MASSES data and update the array FMND.
13. In INELEM
a) Read Group Information data for the *ELEMENTGROUP separators; set the
arrays BETAO, KELEM, KEVNT, KGEOM and NELEM in /GENINF/ for the
interfloor type; and set the variables NELGRF(nfift), NELGF(nfift) and
NELTTF(nfift) in /CNTFIF/.
b) Call the element subroutine INEL##, where ## is the element type number, to read
the element data.
¢) Write the element group data and IELND array to the .GEO file (unit NFGEO).
14. In INEL##
a) Call the base program subroutine ECONTR.
b) Read the Element Data for the *ELEMENTGROUP separator.
c) Call the base program subroutine COORDS to get the coordinates of any node.
d) Set the /INFGR/ block for the group.
e) For each element of the group
i) Call the base program subroutine ELNODE for each element node.
ii) Call the base program subroutine LOCMAT for each element DOF.
iii) Set the /INFEL/ block.
194

iv) Call the base program subroutine FINISH.
15. In ECONTR, set the variables NEDOF, NENOD, NINFE, NINFEL, NINFG, NINFL,
NINFT, NLINF and NLENVP in /GENINF/ for the element group.
16. In ELNODE, set the element nodes in IELNOD and update array FMND due to the
mass contribution from the elements.
17. In LOCMAT, code the element LM (Location Matrix) array for the element DOF, as
follows.
a) n=IFIF + NDISP*3 + NSUB*21 + NLOC*336
where,
'n' is the value in the LM array.
IFIF = 0 for an interfloor node; 1 for a floor 1 node; and 2 for floor 2 node.
NDISP = displacement direction (1, 2 or 3 for X, Y and Z translations,
respectively; and 4, 5 and 6 for X, Y and Z rotations, respectively).
" NSUB = subnode number (0 = for the main node).
NLOC = sequence number of the node in NDID array.
The data can be recovered as follows.
IFIF = MOD(n,3)
NDISP = MOD(n,21)/3
NSUB = MOD(n,336)/21
NLOC =n/336
18. In FINISH:
a) For the first element store the /INFGR/ block on the .TYP file (unit NFFIFT).
b) For each element store the /INFEL/ block on NFFIFT.
19. In INIFRT, write the array FMND to the .MAS file (unit NFMASS).
20. In INIFRT, set the variable NIADF(nfift) in /CNTFIF/ and allocate array IAD for the
interfloor type (i.e., fwa KIADF(nfift) in /STOR3/) in blank common.
21. *SECTION data:
195

a) In INSECI, read the *SECTION data; count NSSECF(nifrt) and NTRNS(niftt);
update MXCUTF(nifrt) and MXTDFF(nifrt) (see /CNTFIF/); and write the input
lines to INPX.

b) In STRSEC, allocate arrays NECUT, SANG, DIST, IDCUT and STRNS (i.e., fwa
KNECUT (nifrt), KDIST(nifrt), KIDCUT(nifrt) and KSTRNS(nifrt) in /STOR3/)
for the interfloor type in blank common.

c) In INSEC2, re-read the *SECTION data from INPX and set arrays NECUT,
DIST, IDCUT and STRNS.

21. *GENDISP data:

a) In INRDSI, read the *GENDISP data; count NRDSF(nfift) (in /CNTFIF/); and
write the input lines to INPX.

b) In GENDIS, allocate arrays NODIR and RDFAC (i.e., fwa KNODIR(nfift) and
KRDFAC(nfift) in /STOR3/) in blank common.

c) In INRDS3, re-read the *GENDISP data from INPX and set arrays NODIR and
RDFAC.

22. In CONTRL, close the .TYP and .MAS files (units NFFIFT and NFMASS).

7.6. DEFINE FLOOR AND INTERFLOOR INSTANCES

The flow chart for this phase is as follows.

[CONTRL

MASGEN
MASSUM
=
The following main tasks are performed.

1. In FLRINS, initialize the variables NFLR and NFIF in /FLRIFR/ to zero.
2. For each *FLOOR separator, do the following in FLRINS.

196

a) Increment NFLR and NFIF.

b) Read the *FLOOR data, and set variables IDFIF(nfif) in /TITFIF/; JFIFT(nfift),
XYZFIF(1:3,nfif) and ALPHAF(1:4,nfif) in /CNTFIF/.

¢) Write the floor instance data to the .GEO file (unit NFGEO).

. In IFRINS, set the variable NIFR in /FLRIFR/ to zero.

. For each *INTERFLOOR separator, do theA following in IFRINS.

a) Increment NIFR and NFIF.

b) Read the *INTERFLOOR data, and set variables IDFIF(nfif) in /TITFIF/; and
JFIFT(nfift), JIFR(1:2,nifr), XYZFIF(1:3,nfiffy and ALPHAF(1:4,nfif) in
/CNTFIF/.

¢) Write the interfloor instance data to the .GEO file (unit NFGEO).

. In MASGEN, allocate arrays FMNOD (i.e., fwa KFMNOD(1:nfif) in /STOR3/) for

floor and interfloor instances in blank common.

. Do the following for each floor instance.

a) In MASGEN, initialize the FMNOD array for the floor instance to zero.

b) In MASGEN, read the dead and live load mass data for the floor type from the
.MAS file (unit NFMASS).

c¢) In MASSUM, assemble the dead and live load mass contributions in FMNOD.

d) For each interfloor instance connecting this floor instance do the following.

i) In MASGEN, read the dead and live load mass data for the corresponding
interfloor type.

i) In MASSUM, assemble the dead and live load mass contributions from the
interfloor to the floor nodes in FMNOD.

e) In XYMAST calculate the center of mass of the slaved floor nodes and set
FMASTC(1:2,nflr) for the floor instance.

. Do the following for each interfloor instance.

a) In MASGEN, initialize the FMNOD array for the interfloor instance to zero.

197

b) In MASGEN, read the dead and live load mass data for the interfloor type from

the .MAS file (unit NFMASS).
¢) In MASSUM, assemble the dead and live load mass contributions in FMNOD.

7.7. PROCESS OUTPUT SPECIFICATION

The flow chart for this phase is as follows.

[CONTRL

The following main tasks are performed.
1. For *START or *STARTXX, in OUPUT

a) Set the variable LREC in /RHIST/.

b) Allocate arrays JNOD, JELM, JSEC and JRDS (see KINOD, KJELM, KJSEC and
KIJRDS in /STOR3/) for each floor and interfloor instance in blank common.

c) Initialize arrays JNOD, JELM, JSEC and JRDS with the default output codes.

d) Initialize the arrays NCDIS, NCVEL, NCACC, NDDIS, NDVEL, NDACC,
NELTH, NPSEC, NGDIS, NGVEL, NGACC, NCDISP, NCVELP, NCACCP,
NDDISP, NDVELP, NDACCP, NELTHP, NPSECP, NGDISP, NGVELP and
NGACCP in /RHIST/; and NCDISU, NCVELU, NCACCU, NDDISU,
NDVELU, NDACCU, NELTHU, NPSECU, NGDISU, NGVELU and NGACCU
in /USRITM/ corresponding to the default output codes.

2. In OUTPUT, read the *RESULTS data and call

a) OUTDCD to update JFLR (in /CNTFIF/), NCDIS, NCVEL, NCACC, NCDISP,

NCVELP, NCACCP, NCDISU, NCVELU and NCACCU for each affected floor

instance.

198

b) OUTNDS to update JNOD, NDDIS, NDVEL, NDACC, NDDISP, NDVELP,
NDACCP, NDDISU, NDVELU and NDACCU for each affected floor or
interfloor instance.

¢) OUTELM to update JELM, NELTH, NELTHP and NELTHU for each affected
floor or interfloor instance.

d) OUTSEC to update JSEC, NPSEC, NPSECP and NPSECU for each affected
interfloor instance.

e) OUTRDS to update JRDS, NGDIS, NGVEL, NGACC, NGDISP, NGVELP,
NGACCP, NGDISU, NGVELU and NGACCU for each affected floor or

interfloor instance.
7.8. PROCESS LOAD PATTERNS AND LOAD RECORDS

The flow chart for this phase is as follows.

CONTRL
— INLOAD /¢

The following main tasks are performed.

1. In INLOAD, allocate work space for reading the load patterns and dynamic load
records. For *RESTART, use the array WKSPC (see KWKSP in /STOR1/) in blank
common. For *START or *STARTXX, use all remaining blank common.

2. InINLOAD, read the separator line and for:

199

d)

*ELEMLOAD - call INGPAT to read the *ELEMLOAD data and write the static
element load pattern to the .ELD file (see .ELD file in Chapter 8).

*NODALOAD - call INSPAT to read the *NODALOAD data and write the static
nodal load pattern to the .STA file (see .STA file in Chapter 8).

*NODALVEL - call INVPAT to read the *NODALVEL data and write the initial
velocity pattern to the .VEL file (see .VEL file in Chapter 8).

* ACCNREC, *DISPREC or *FORCREC - call INAXL to read the *ACCNREC,
*DISPREC or *FORCREC data and write the load record to the .ACC, .DIS or
JFRC file (see these files in Chapter 8).

*SPECTRUM - call INSPEC to read the *SPECTRUM data and write the
response spectrum to the .SPC file (see .SPC file in Chapter 8).

The processing of data for *ACCNREC, *DISPREC, *FORCREC and *SPECTRUM

separators is identical with that in DRAIN-2DX and 3DX.

In DRAIN-BUILDING, the *ELEMLOAD, *NODALOAD and *NODALVEL data is

specified for a floor or an interfloor type. The pattern name plus the ID of the floor or

interfloor type must be unique. The processing of the data is otherwise very similar to that

in DRAIN-2DX and 3DX.

7.9. ALLOCATE MEMORY FOR ANALYSIS PHASE

The flow-chart for this phase is as follows.

[MAIN

L— CONTRL —

The following main tasks are performed.

1.

¥ ®° N

In ORDER, order the floor and interfloor instances for the hypermatrix and set arrays
JFIF in /CNTFIF/ and IDORDR in /TITFIF/.

In ORDER, set the array NEQOF in /CNTFIF/; and variables NEQT, NEQQT,
NEQIMX, NEQFMX and NEQQMX in /EQNS/.

In ORDER, set variable NDSPT (in /CONTR/) and allocate arrays IDSPT and SPDSP
(see KIDSfT and KSPDSP in /STOR4/) in blank commbn.

In SETDSP, set the array IDSPT.

In ORDER, allocate arrays JADOF and IEXNV (see KIADOF and KIEXNV in
/STORA4/) in blank common. .

In SIEXNYV, set the array IEXNV and set variable NZERO (in /FLRIFR/).

In ORDER, allocate array IENV (see KIENV in /STOR4/) in blank common.

In SIENV, set the array IENV and variable NNZERO (in /FLRIFR/).

In ORDER, set variables NSTFD and NSTFO in /EQNS/.

10. In MASVEC, allocate and set the arrays FMDOF and ALPHAM (see KFMDOF and

KALPHA in /STOR4/) in blank common.

11.In BLCMN], allocate the envelope arrays DENP, ISTP, DENN, ISTN, SECENV,

ISECEN, RDSENV and IRDSEN for each floor and interfloor instance (see /STORS/)

in blank common.

12. In CONTRL, allocate array WKSPC (see KWKSPC in /STOR6/) in blank common.

WKSPC is used for storing the following.

a) Load pattern and dynamic load record input for *RESTART.

b) Applied load patterns when setting up loads for analysis.

¢) Armay MSTIF(neqqt) storing the row numbers of the first nonzero terms for
columns of the stiffness matrix in subroutines CONSOL and SETSTF.

- d) Element stiffness matrix during tangent stiffness update.

201

e) Temporary vector of length NEQQT for calculation of midstep equilibrium error
or equivalent impulse error. '

f) Nodal displacements DISP(6,ntndsf(ift)) for the current floor or interfloor
instance for output during analysis and for updating nodal displacement
envelopes.

g) Section forces SEFOR (see KSEFOR in /STOR6/) for the current floor or
interfloor instance for output during analysis and for updating section envelopes.

h) Generalized displacements, RDS (see KRDS in /STORGE/) for the current floor or
interfloor instance for output during analysis and for updating generalized
displacement envelopes.

13.In CONTRL, set KSEFOR and KRDS (see /STORG6/) so that SEFOR and RDS may
safely use parts of the WKSPC array.

14. In CONTRL, allocate the following arrays in blank common (see first word addresses
from KREC to KDRU in /STORG6/).

a) output buffer REC.

b) vectors XLOD, EXTS, EXT, DEXT, RINTS, RINT, RU, DISI, VELI, ACCI,

DDIS, CVEL, CACC, DIS, VEL, ACC, ENRI and DRU.
15.In CONTRL, calculate blank common available, NAVST, for storing /INFGR/ and
/INFEL/ data. NAVST is the provisional length of INFB (see KINFB in /STOR6/).
16. In CONSOL, initialize the temporary array MSTIF(neqqt) so that MSTIF(i) = I for

I=1,NEQQT. MSTTF is updated in subroutine BAND, so that it finally stores the row

numbers of the first nonzero terms for columns of the stiffness matrix (see Section 5.6

for use of MSTIF).

17. In CONSOL, open scratch file NFBEG; and call CONSL1 for each floor and interfloor
instance.
18. In CONSLI, for the instance read the /INFGR/ and /INFEL/ blocks from the .TYP file

(unit NFFFP) in to INFB; set the variable NBLOKF in /CNTFIF/; set the array IAD

202

for the floor or interfloor type; set the variable IADOF (see KIADOF in /STOR4/);

and call BAND for each element.
19. In BAND, update the MSTIF array, assuming that all element DOFs are coupled.

207 In BAND, re-code the element LM array for the element DOF, as follows (see Section
5.7).
a) For an independent DOF or rotational slaved DOF:
n = IFIF + LEQ*3
where,

‘n’ is the value in the LM array.

IFIF = 0 if the DOF belongs to the floor or interfloor instance,

IFIF = 1 if the DOF belongs to the floor 1 of the interfloor, and

IFIF = 2 if the DOF belongs to the floor 2 of the interfloor.

LEQ = local equaﬁo‘n number for the DOF or for the rotational DOF of the

master node.
The data is recovered as follows.
IFIF = MOD(n,3)
LEQ=n/3
b) For a translational slaved DOF:
-n = IFIF + NDISP*3 + NLOC*9
‘where,
"-n' is the value in the LM array.
IFIF =0, 1 or 2 as for (a).
NDISP = 1 for translational X or 2 for translational Y DOF.
NLOC = sequence number of the slaved node.
The data is recovered as follows.

IFIF = MOD(n,3)

NDISP = MOD(n,9)/3
203

NLOC =n/9
21. In CONSOL, set the variable NTBLOK in /STORY/.
22. In CONSOL, set the actual length, NINFB, of INFB as follows.
a) NINFB=NAVST if NTBLOK > 1.
b) NINFB=LTSING if NTBLOK = 1, where LTSING is the length required to
accommodate /INFGR/ and /INFEL/ blocks for all elements.
23. In CONSOL, calculate LENK (in /EQNSY/) using array MSTIF.
24.In CONSOL, set the variable INCOR in /CONTR/ depending on the remaining
memory in blank common and requirements for storing stiffnesses.
25.In CONSOL, if INCOR < 0 allocate arrays DIAG, STIF1-6 and ISTIF1-6 (see
/STOR7/) in blank common.
26. In CONSOL, if INCOR 2 1 allocate arrays TANK, EFFK and LSTIF (see /STORS/)
in blank common. A
27.In CONSOL, if INCOR 2 3 allocate array BETAK (see /STORS/) in blank common.
28. In CONSOL, if INCOR 2 4 allocate array DTAN (see /STOR8/) in blank common.
29.In CONSOL, if INCOR = 5 allocate array DINFB (see KDINFB in /STOR6/) and
close the scratch file NFBEG.
30. In CONSOL, set the variables NOFEK, NOFTK, NOFBK and NOFDK in /EQNS/
| depending on value of INCOR (see Section 5.6.4).
31.In CONTRL, open scratch files NFCUR and NFUPD if NTBLOK # 1 for storing
/INFGR/ and /INFEL/ blocks.
32.In SETSTF, if INCOR < 0
a) Open the scratch file NFSTFA with record length NEQQMX (in /JEQNS/) in 4-
byte units to store the address blocks, ISTIF, of the hypermatrix.
b) Open the scratch file NFSTFB with record length NSTFO (in /EQNS/) in 8-byte
units to store the data blocks, STIF, of the hypermatrix.

204

c) For each stiffness block in the hypermatrix, set the ISTIF array (by using the data
in MSTIF array) and write ISTIF to NFSTFA.

d) Initialize array STIF to zero, and write dummy records to NFSTFB corresponding
to each stiffness block.

33.In SETSTF, if INCOR 2 1

a) Open the scratch file NFSTFB if INCOR < 3 with a record length equal to LENK
(in /EQNS/) in 8-byte units to store the compacted column stiffnesses and/or
beta-k damping.

b) Set the LSTIF array (by using the data in MSTIF array).

7.10. FORM BETA-K DAMPING AND INITIAL TANGENT STIFFNESS

The flow chart for this phase is as follows.

CONTRL ¢

— SSTATE
— STIFFT

> form BETAK
for each instance

RESS

Sty RI)
ADRESS _(for /IN
STIPXX L sTiFuy

ASSEMI (for BETAK compacted column)
ASSEMO (for BETAK hypermatrix)

for each.group .
for each element

 form TANK

for eéch lnstance
DRESS GF each.group |
ADRESS (for /INFE for each element

STIFXX —1— gTiFss

ASSEMI (for TANK compacted column)
ASSEMO (for TANK hypermatrix)

for each instance |

205

The following main tasks are performed.

1. In SSTATE, save on the .SXX file the blank common block; labeled common blocks;
INFB blocks from NFBEG; and stiffness blocks from the NFSTFA and NFSTFB files.

2. In CONTRL, call STIFFT after detecting the first analysis separator (*GRAYV,
*STAT, *REST, *ACCN, *DISN, *FORN, *MODE or *SPEC).
3. In STIFFT, to form BETAK

a)

b)

©)

d)

g

h)

If INCOR < 0, call GTBLKA to get the addresses of the required stiffness blocks
of BETAK hypermatrix (see Section 5.7).

In ADRESS, restore the /INFGR/ or /INFEL/ block from INFB. If required block
is not in INFB, refill INFB from NFBEG.

In STIFXX call the element subroutine STIF##, where ## is the element type
number for the current group (s'e‘e KELEM in /GENINF/).

In STIF##, form the element damping matrix.

In STIFFT, write element LM array and the element damping matrix to the .DPG
file (unit NFBETA).

In STIFFT, scale the element damping matrix by BETAO (in /GENINF/) for the
current element group to obtain the element beta-K damping matrix.

If INCOR > 0, then in ASSEMI, assemble the element beta-K damping into
BETAK (see Section 5.10).

If INCbR < 0, then in AS SEI\-'IO, assemble the element beta-K damping into
BETAK hypermatrix (see KBETAK in /STORS/ and Section 5.7).

4. In STIFFT, to form TANK

a)

b)

If INCOR < 0, call GTBLKA to get the addresses of the required stiffness blocks
of TANK hypermatrix (see Section 5.7).

In ADRESS, restore the /INFGR/ or /INFEL/ block from INFB. If required block
is not in INFB, then write INFB to NFUPD and refill INFB from NFBEG.

206

¢) In STIFXX call the element subroutine STIF##, where ## is the element type
number for the current group (see KELEM in /GENINF/).
d) In STIF##, form the element stiffness matrix.
e) If INCOR > 0, then in ASSEMI, assemble the element stiffness into TANK (see
Section 5.10).
f) If INCOR £ 0, then in ASSEMO, assemble the element stiffness into TANK
hypermatrix (see KTANK in /STORS8/ and Section 5.7).
5. If INCOR > 0, then in STIFT3 assemble the stiffness contributions of the support
springs. o
6. If INCOR < 0, then in STIFFT call STIFT4 for each instance; and in STIFT4
assemble the stiffness contributions of the support spriﬁgs.

7. In STIFFT, verify that TANK is not singular.

1

7.11. PROCESS ANALYSIS PARAMETERS

The flow chart for this phase is as follows.

CONTRL

or *PARAMETERS dat

for mass and al, ha-M‘ dén?) ‘in éblale factors
MASGEN AAGSUM P ping
MASVEC XYMAST

for elemeni wEEous damplng factors

———re

ANPRM1—L_ ASSEMO

(for hypermatrix BETAK) | |

ANPRM2™1— ASSEMI (for compacted column BETAK)|

ANAPAR reads the *PARAMETERS data and modifies the variables and arrays in
labeled common blocks, as follows.

| Type of Analysis Parameters Modified Variables or Arrays
Mass and Alpha-M Damping Scale Factors | ALPHAF in /CNTFIF/; FMNOD,
FMDOF and ALPHAM in blank
common (see KFMNOD in /STOR3/;
KFMDOF and KALPHA in /STOR4/).

Structure Viscous Damping Scale Factors | ALPHA and BETA in /DAMPG/
Element Viscous Damping Scale Factors BETAO in /GENINF/ and BETAK (see

KBETAK in /STORS/)
Collapse Displacements ' DISMAX and RTNMAX in /COLPSE/
Event Overshoot Scale Factors ' OVFAC in /GENINF/
Element Parameters | IELPR and RELPR in /GENINF/
Output Intervals for Static Analysis all variables in /OUTS/
" | Output Intervals for Dynamic Analysis . all variables in /OUTD/
| Intervals for User Output : IUOUTS, IUOUTD and TUOUTD in
. /USROUT/ |
Control Parameters for Dynamic Analysis | KEVEN, KENRC, KEQBC and
MAXEVD in /INDIC/
Time Step Parameters for Dynamic Analysis { DTAUTO, DTCONS, DTMAX and
DTMIN in /AUTO/

Parameters for Variable Time Step Scheme | DTRED, DTINC, TOLHII, TOLHIS,
TOLLOI, TOLLOS, TOLMX and
NSINC in /AUTO/

'7.12. IDENTIFY ANALYSIS TYPE

The flow chart for this phase is as follows.

AIN
— CONTRL

The following main tasks are performed in 'CONTRL.

1. Check that the separator is valid (i.e., one of *GRAV, *STAT, *REST, *MODE,
*SPEC, *ACCN, *ACCR, *VELN, *VELR, *DISN, *DISR, *FORN, *FORR).

2. For *GRAYV, check that the structure is in the unstressed state or the preceding
analysis was also *GRAV.

208

3. For *STAT, *ACCN, *VELN, *DISN and *FORN, check that the structure is in
static state (i.e., preceding analysis was *GRAYV, *STAT or *REST).

4. For *ACCR check that the preceding analysis was *ACCN or *ACCR.

5. For *VELR check that the preceding analysis was *VELN or *VELR.

6. For *DISR check that the preceding analysis was *DISN or *DISR.

7. For *FORR check that the preceding analysis was *FORN or *FORR.

‘7.13. SET UP LOADS FOR ANALYSIS SEGMENTS

The flow chart for this phase is as follows.

CONTRL

The following main task are performed.

1.

. . .A .u CN

0 N O W

In CONTRL, call INGRAYV for *GRAV; INSTAT for *STAT; INREST for *REST;
INACCN for *ACCN or *ACCR; INVELN for *VELN or *VELR; INDISN for
*DISN or *DISR; or INFORN for *FORN or *FORR.

In INGRAYV, read the *GRAYV data.

In INSTAT, read the *STAT data.

In INREST, read the *REST data.

In INACCN, read the *ACCN or *ACCR data.

In INVELN, read the *VELN or *VELR data.

In INDISN, read the *DISN or *DISR data.

In INFORN, read the *FORN or *FORR data.

For DRAIN-BUILDING, the tasks: performed in subroutines INGRAV, INSTAT,

INREST, INVELN, INACCN, INDISN and INFORN are similar to those done in these

subroutines for DRAIN-2DX and 3DX.

7.14. PERFORM ANALYSIS

7.14.1. Main Tasks

The flow chart for this phase is as follows.

|CONTRL

The following main task are performed.
1. In CONTRL, to perform a *GRAYV, *STAT, *REST, *ACCN, *ACCR, *VELN,

*VELR, *DISN, *DISR, *FORN or *FORR analysis

a) Call EXINIT.

b) Call GRSOL for *GRAYV.

¢) Call STATIC for *STAT.

d) Call REST for *REST.

e) Call DYNMIC for *ACCN, *ACCR, *VELN, *VELR, *DISN, *DISR, *FORN
or *FORR. ;

f) call SEGEND.

2. In CONTRL, to perform *MODE analysis:

a) Store blank common from L(KENP(1)) to L(KDIAG-1) for hypermatrix storage
scheme and from L(KE:NP(I)) to L(KEFFK-1) for compacted column storage
scheme on scratch file, NFRES. This makes space available for storing mode
shapes, a flexibility matrix, and other data. EFFK, TANK and some arrays before
DENP in blank common are used in *MODE analysis.

b) Call MODCON to perform the analysis.

¢) On completion of the analysis restore blank common from NFRES.

3. In CONTRL, to perform *SPEC analysis:

a) !Store blank common from L(KENP(1)) to L(KINFB-1) on scratch file, NFRES.
This makes space available for *SPEC analysis for storing response results, and
other data. INFB and some arrays before DENP in blank common are used in the
analysis.

b) Call SPECON to perform the analysis.

¢) On completion of the analysis, restore blank common from NFRES.

4. In EXINIT:

211

a) Initialize variables KENR, KRESIS and KTIT in /INDIC/; all variables in /OUTP/;
NTIME and NPTIME in /RHIST/; and IQUIT and NEVEN in /EVENT/.

b) Increment the analysis segment number, NSEG (in /CONTR/).

c) Write the heading for the new segment on the .OUT file (unit NFOUTP in
[TAPES/).

d) Call PRLOG to write the heading and starting' energy log for the segment on the
.SLO file (unit NFLOG). The heading and starting energy log for *REST is not
written here, but later in REST.

e) Update the LST file.

f) Open and write initial data to .RXX file (unit NFRES), where XX is the analysis
segment number.

g) Open and write the initial datg to EXX file (unit NFENVP), where XX is the
analysis segment number. R

h) Open scratch ﬁle, unit NFPRNT, to save time-history results for printout.

i) Write analysis title on the .ECH file.

j) Call user output subroutine USRHED to write the analysis heading to .USR file.

. In GRSOL, STATIC and REST perform *GRAV, *STAT and *REST analysis,

respectively, and write solution log for each substep to .ECH file (unit IOU); write

energy log for each substep to .SLO file (unit NFLOG); write load-history results for
printout to:unit NFPRNT; write load-history results for post-processing to .RXX file

(unit NFRES); write envelope results for printout to .OUT file (unit NFOUTP); write

static and P-A work done for each element group (see ENEG and EEXT in

/ENRGY/) to .OUT file (unit NFOUTP); write envelope results for post-processing to

EXX file (unit NFENVP); write user output to .USR file; and write structure state

data to .SXX file (unit NFPERM).

. In DYNMIC perform the given dynamic analysis, and write solution log for each

substep to .ECH file (unit IOU); write energy log for each time step to .SLO file (unit

212

NFLOG); write time-history results for printout to unit NFPRNT; write time-history
results for post-processing to .RXX file (unit NFRES); write envelope results for
printout to .OUT file (unit NFOUTP); write static, damping and P-A work done for
each element group (see ENEG, ENRD and EEXT in /ENRGY/) to .OUT file (unit
NFOUTP); write envelope results for post-processing to .EXX file (unit NFENVP);
write user output to .USR file; and write structure state data to .SXX file (unit
NFPERM).

7. In SEGEND, close the .RXX and .EXX files.

8. In REHIST, read results for printout from unit NFPRNT, and write the results for
each output item (see /RHIST/) to .OUT file (unit NFOUTP). For element results
output, REHIST copies the element results to /THELM/ block and calls THPRXX.

9. In THPRXX, call the element subroutine THPR##, where ## is the element type
number for the element (see KELEM in /GENINF/).

10. In THPR##, write heading and element results from /THELM/ to the .OUT file.

11. In MODCON read the *MODE data; perform *MODE analysis; and write periods,
mass participation factors, mode shapes and modal damping ratios to .OUT file (unit
NFOUTP) and .MXX file (unit NFMODE), where XX is the analysis segment number.

12. In SPECON read the *SPEC data; read specified response spectra from .SPC file; read
periods and mass participation factors from .MXX file (unit NFMODE) and write to
JUXX file (unit NFMRSL); read mode shapes from .MXX file; for each mode shape,
calculate nodal displacements, element results, section forces and generalized
displacements and write to .UXX file; calculate modal amplitudes; write response for

each mode to .OUT file; form SRSS combination and write to .OUT file.

213

13. On completion of the analysis return to CONTRL and read the next separator line.
a) For *PARAMETERS proceed to Process Analysis Parameters.
b) For *STOP proceed to End Analysis Session.
¢) For an analysis separator proceed to Identify Analysis Type.

In DRAIN-BUILDING, the tasks done in GRSOL, STAT, REST, DYNMIC, MODCON
and SPECON are essentially identical to those done for programs DRAIN-2DX and 3DX.

More detailed flow charts for these subroutines are presented in the following sections.
Note the following differences in DRAIN-BUILDING as compared to DRAIN-2DX and
3DX.

1. For any element task (e.g., event factor calculation, state determination, stiffness
update etc.) the elements are processed one floor or interfloor instance at a time. Thus
subroutines EVNFAC and RESPON are called once for each instance.

2. In DRAIN-BUILDING, many nodal tasks are also carried out for one floor or
interfloor instance at a time. Thus subroutines COLCHK, NDDSAV, NDVSAV,
NDASAYV, GDSSAV, GVLSAV, GACSAV and EQBM are called once for each
instance.

3. For compacted column stiffnesses, subroutines UPDTSI, UPDTDI, OPTSOL,
ASSEMI and MULTCO are used. These are similar or identical to subroutines
UPDATS, UPDATE, OPTSOL, ASSEM and MULTCO.

4. For stiffnesses hypermatrices, subroutines UPDTSO, UPDTDO, HYPSOL, ASSEMO
and HYPMUL are used.

214

7.14.2. *GRAYV Analysis - Subroutine GRSOL

The flow chart for this subroutine is as follows.

[CONTRL
— GRSOLT— pRLOD

for each group

PRSTAT
ENERS
PRLOG
SSTATE

215

7.14.3. *STAT Analysis - Subroutine STATIC

The flow chart for this subroutine is as follows.

CONTRL

ECBM

— PRSTAT
— ENERS
— PRLOG
— SSTATE

216

7.14.4. *REST Analysis - Subroutine REST

The flow chart for this subroutine is as follows.

CONTRL
— REST A

— PRSTAT
— ENERS
— PRLOG
— SSTATE

217

7.14.5. Dynamic Analysis - Subroutine DYNMIC

The ﬂow chart for this subroutine is as follows.

CONTRL
— DYNMIC

- _
[~ YPPTDl 7 opTsoL for compacted column EFFK

[~ UPDTDO - yypsoL for hypermatrix EFFK |}

S SRR =

| [— ADEXTF (for floors) for *ACCN or *ACCR
— ADEXTI (for interfloors)

— GDDEXT ____ for 'DISNor "DISR |

SSTATE

Note that in DRAIN-BUILDING, subroutines ADEXF and ADEDTI repléce subroutine
GADEXT of DRAIN-2DX and 3DX.

218

The flow chart for subroutine STEP is as follows.

[pYNMIC
—STEP —

5

"~ (for INFGRY)

— PRDYN
— ENERD

— INCDT

219

7.14.6. *MODE Analysis - Subroutine MODCON

The flow chart for this subroutine is as follows.

[CONTRL

7.14.7. *SPEC Analysis - Subroutine SPECON

The flow chart for this subroutine is as follows.

[CONTRL
— SPECON
for each group
INSACC
MODAMP
PRSNDS : for each instance
P
PRSSEC
PRSGDS
7.15. END ANALYSIS SESSION

The analysis session ends with one of the following conditions.
1. IfIQUIT =-1 : last analysis segment could not be completed.
2. *STOP separator is read from input file.

3. Program stops because of errors in the input file or insufficient memory.

The flow chart for this phase is as follows.

MAIN 7 conTRL

The following tasks are performed.
1. In CONTRL, write the farewell message to the .ECH file (unit IOU).
2. In MAIN, close files and stop program execution.

221

8. STRUCTURE OF PERMANENT FILES -- DRAIN-BUILDING

8.1. INTRODUCTION

In section 6.4, the permanent files created by DRAIN-BUILDING were listed. Some of
these files are binary files that may be used by other programs, particularly for post-

processing. In this chapter, the structures of these files are described in detail.
8.2. FILES FOR LOAD PATTERNS AND LOAD RECORDS

8.2.1. .ELD File - Element Load Patterns

The .ELD file contains static element load patterns, each specified by *ELEMILOAD data.
Each new pattern is appended to the .ELD file in subroutine INGPAT. The applied

patterns are retrieved for *GRAYV analysis in subroutine INELOD.

Each pattern consists of a number of FORTRAN records as follows.

1. First record._

Variable | Type Description
' PATID character*4 | Pattern name.
FIFTYP | character*4 | ID of affected floor type or interfloor type.
PATIT character*4(0 | Pattern title.
NGRPL integer Number of element groups loaded by the pattern.

2. For each loaded element group, two records as follows.

a) First record.

Variable | Type Description
IGRC integer | Element group number.
NLOD integer | Number of element load sets for this group.

222

b) Second record.

Array Description

SETLOD(ninl,nlod) | Element load sets. Each column of SETLOD contains a
load set. NINL is the length of a load set from array
NINFL in /GENINF/. NLOD is the number of element
load sets.

ELFACT(nlod,nmem) | Load set scale factors for elements of the group. Each
column of ELFACT contains the load set scale factors
for one element. NMEM is the number of elements from
‘| array NELEM in /GENINF/.

8.2.2. .STA File - Static Load Patterns

The .STA file contains static nodal load patterns, each specified by *NODALOAD data.
Each new pattern is appended to the .STA file in subroutine INSPAT. The applied
patterns are retrieved for *GRAV or *STAT analysis in subroutine INLOD1 and

INLOD2.

Each pattern consists of two FORTRAN records as follows.

1. First record.

Variable | Type Description

PATID character*4 Pattern name.

FIFTYP | character*4 | ID of affected floor type or interfloor type.
PATIT character*40 | Pattern title.

2. Second record.

Array Type | Description

XPAT(6,nnods+1) fora | real | Nodal loads. NNODS is number of nodes from
floor type. NNODSF in /CNTFIF/.

,XP AT(6,nn0ds) for an For a floor type, the last column of XPAT
interfloor type.

contains loads on the diaphragm center, as
follows.

XPAT(1,nnods+1) = X force.
XPAT(2,nnods+1) = Y force.
XPAT(6,nnods+1) = Z moment.

223

8.2.3. .ACC, .DIS and .FRC Files - Dynamic Load Records

The .ACC, .DIS and .FRC files contain ground acceleration, ground displacement and
dynamic force records, respectively. The structure of these files is identical to that for

DRAIN-2DX and 3DX.
8.2.4. .SPC File - Response Spectra

The .SPC file contains response spectra, each specified by *SPECTRUM data. The
structure of this file is identical to that for DRAIN-2DX and 3DX.

8.2.5. .VEL File - Initial Velocity Patterns

The .VEL file contains initial velocity patterns, each specified by *NODALVEL data.
Each new pattern is appended to the .VEL file in subroutine INVPAT. The applied
patterns are retrieved for *VELN or *VELR analysis in subroutine INVEL1 and INVEL2.

Each pattern consists of two FORTRAN records as follows.

1. Firstrecord.

Variable | Type Description

PATID character*4 | Pattern name.

FIFTYP character*4 | ID of affected floor type or interfloor type.
PATIT character*40 | Pattern title.

2. Second record.

Array Type | Description

XPAT(6,nnods+1) fora | real | Nodal velocities. NNODS is number of nodes
floor type. from NNODSF in /CNTFIF/.
XPAT(6,nnods) for an

For a floor type, the last column of XPAT
contains velocities of the diaphragm center, as
follows.

XPAT(1,nnods+1) = translational X.
XPAT(2,nnods+1) = translational Y.
XPAT(6,nnods+1) = rotational Z.

interfloor type.

224

8.3. FILES FOR POST-PROCESSING
8.3.1. .GEO File - Structure Geometry

The .GEO file contains structure geometry data. The .GEO file is opened in subroutine
CONTRL before model definition and closed after it.

The data consists of FORTRAN records, as follows.
1. First record is written in CONTRL.

Variable | Type - Description
FNAME | character*8 | Problem name (in /TITLE/).
IHED character*40 | Problem title (in /TITLE/).

2. One record is written in subroutine INCNDS or INDTP2

h Variable | Type Description
NDTP integer Number of compound node types +1 (in /CONTR/).
NSNDS integer Total number of subnodes in all compound node
types (in /CONTR/).
3. If NDTP >1, one record is written in INDTP2, as follows.
Array Description
NSB(ndtp) Location of first subnode for each compound node type in

arrays NDFSB and COSB. The number of subnodes in
compound node type NT is equal to NSB(nt+1)-NSB(nt).
NDFSB(6,nsnds) DOF codes for all subnodes of each compound node type,
' as follows.

0 : Absolute displacement.

1 : Restrained (not a DOF).

2 : Relative displacement w.r.t. main node.

3 : Special degree of freedom (i.e., not a conventional
translation or rotation). '

COSB(3,nsnds) Coordinate offsets from main node for subnodes of each

compound node type.

4. The data for each floor type consists of the following records.

a) First record written in subroutine FLRTYP.

Variable | Type Description
IND character*2 | "FT" to indicate a floor type.
FTYP character*4 | Floor type ID (see IDFIFT in /TITFIF/).

225

b) One record written in subroutine FLRTYP.

Variable | Type Description

IRFD integer | Rigid floor diaphragm code (see JIRFD in /CNTFIF/).

FLRDC(2) | real X and Y coordinates of diaphragm center (see FLRTDC
in /CNTFIF/).

¢) One record written in subroutine INFLRT.

Variable | Type Description

NNODS | integer | Number of floor nodes from NNODSF in /CNTFIF/.
NTNDS |integer | Number of nodes and subnodes in the floor from
NTNDSF in /CNTFIF/.

d) If NNODS > 0, one record written in INFLRT.

Array Description
NDID(3,nnods) | Node identification array.
1 : Node number.

2 : Compound node type (0 = not a compound node).

3 : Location of nodal DOFs in ID array. For compound nodes,
the subnode DOF's immediately follow the main node DOFs
in the ID array.

e) If NNODS > 0, one record written in INFLRT.

Array | Description
COORD(3,nnods) | Nodal coordinates, in ascending node number order.

f) If NNODS > 0, one record written in INFLRT.

Array Description :
ID(6,ntnds) Equation numbers for displacements at each node and subnode,
coded as follows:

0 : Restrained displacement.
+n : Displacement is unrestrained and unslaved. 'n' = local
equation number.
-n : Displacement is slaved to the floor master node. 'n' =
NTNDS.

g) Two records for each element group are written in subroutine INELEM. The

sequence is terminated by a dummy first record.

226

i) First record.

Variable | Type Description

IGRC | integer Element group number.

KEL integer Element type number.
NMEM integer Number of elements.
NELNOD | integer Number of nodes per element.
IEHD character*40 | Group title.

ii) If IGRC > 0, one record as follows.

Array

Type Description

IELNOD(nelnod,nmem)

integer | Nodes for each element, coded as follows.
n:'n'=IFIF + 3 X NLOC
where,

IFIF = 0. _
NLOC = sequence number of the node.

5. The data for each interfloor type consists of the following records.

a) First record written in subroutine IFRTYP.

Variable | Type Description

IND character*2 | "IT" to indicate an interfloor type.

FTYP character*4 Interfloor type ID (see IDFIFT in /TITFIF/).

b) One record written in subroutine IFRTYP.

Variable Type Description

JIFRGT(2) integer | Number of floor 1 and floor 2 of the interfloor (see
/CNTFIF/).

XYZIFR(3) |real X, Y and Z coordinates of origin of floor 2 relative to
the origin of floor 1 (see /CNTFIF/).

Next record written in subroutine INIFRT.

Variable | Type Description

NNODS integer | Number of interfloor nodes (see NNODSF in /CNTFIF/).
NTNDS | integer | Number of nodes and subnodes in the interfloor (see

NTNDSF in /CNTFIF/).

227

d) If NNODS > 0, one record written in INIFRT.

Array Description
NDID(3,nnods) | Node identification array.
1 : Node number.

2 : Compound node type (0 = not a compound node).

3 : Location of nodal DOFs in ID array. For compound nodes,
the subnode DOF's immediately follow the main node DOFs
in the ID array.

e) If NNODS > 0, one record written in INFLRT.

Array Description
COORD(3,nnods) Nodal coordinates, in ascendingnode number order.

f) If NNODS > 0, one record written in INFLRT.

Array Description
ID(6,ntnds) Equation numbers for displacements at each node and subnode,
coded as follows.

0 : Restrained displacement.
n : Displacement is unrestrained and unslaved. 'n' = local equation
number.

g) Two records for each element group are written in subroutine INELEM. The

sequence is terminated by a dummy first record.

i) First record.

Variable | Type Description

IGRC integer | Element group number.

KEL integer Element type number.
NMEM integer Number of elements.
NELNOD | integer Number of nodes per element.
IEHD character*40 | Group title.

228

"ii) If IGRC > 0, one record as follows.

Array ~ | Type | Description

IELNOD(nelnod,nmem) | integer | Nodes for each element, coded as follows.
n:'n'=IFIF + 3 X NLOC

where,

IFIF = O for an interfloor node.

IFIF = 1 for floor 1 node.

IFIF = 2 for floor 2 node.

NLOC = sequence number of the node.

6. Two records for each floor instance, written in subroutine FLRINS.

a) First record.

Variable | Type Description
IND character*2 "FI" to indicate a floor instance.
FTYP character*4 | Floor instance ID (see IDFIF in /TITFIF/).

b) Second record.

Variable Type Description

JFIFT integer | Type number for the floor instance (see /CNTFIF/).

XYZFIF(3) |real X, Y and Z coordinates of the floor origin (see
/CNTFIF)/).

7. Two records for each interfloor instance, written in subroutine IFRINS.

a) First record.

Variable | Type Description
IND character*2 | "II" to indicate an interfloor instance.
FTYP character*4 | Interfloor instance ID (see IDFIF in /TITFIF/).

b) Second record.

Variable Type Description

JFIFT integer | Type number for the interfloor instance (see
/CNTFIF/).

JIFR(2) integer | Number of floor 1 and floor 2.

8.3.2. .EXX File - Result Envelopes
The .EXX files contain result envelopes for post-processing, organized in FORTRAN
records as follows.

229

. First record written in subroutine EXINIT.

. Second record written in EXINIT.

Variable | Type Description

IHED character*40 | Problem title (in /TITLE/).

FNAME | character*8 | Problem name (in /TITLE/).

ANAL | character*4 | Analysis segment type (in /TITLE/).
THEDA | character*40 | Analysis title (in /TITLE/).

NSEG integer Analysis segment number (in /CONTR/).

Variable | Type Description

NDTP integer Number of compound node types +1 (in /CONTR/).
NFLR integer | Number of floor instances (in /FLRIFR/).

NIFR integer | Number of interfloor instances (in /FLRIFR/).

. If NDTP > 1, one record written in EXINIT.

Array Description .

NSB(ndtp) Location of first subnode for each compound node type in
arrays NDFSB and COSB. The number of subnodes in
compound node type NT is equal to NSB(nt+1)-NSB(nt).

. One record written in EXINIT.
| Array Type Description
IDFIF(nflr) | character*4 ID's of floor instances (in /TITFIF/).
. One record written in EXINIT.
Array Type Description

IDFIF(nifr) | character*4 | ID's of interfloor instances (in /TITFIF/).

. One record containing control information for each floor instance is written in

EXINIT.

Variable | Type Description

IRFD integer | Rigid floor diaphragm code (see JIRFD in /CNTFIF/).
NNODS | integer | Number of nodes (see NNODS in /CNTFIF)).

NTNDS |integer | Number of nodes and subnodes (see NTNDSF in
/CNTFIF)/).

NELGR integer | Number of element groups (see NELGRF in /CNTFIF))..
NELTOT | integer | Number of elements (see NELTTF in /CNTFIF/).

NRDS integer | Number of generalized displacements (see NRDSF in
/CNTFIF/).

7. One record containing control information for each interfloor instance is written in

EXINIT.

Variable | Type Description

NNODS | integer | Number of nodes (see NNODS in /CNTFIF/).

'NTNDS | integer | Number of nodes and subnodes (see NTNDSF in
/CNTFIF/).

NELGR | integer | Number of element groups (see NELGRF in /CNTFIF/)..
NELTOT | integer. | Number of elements (see NELTTF in /CNTFIF/).
NSSEC integer | Number of sections (see NSSECF in /CNTFIF)/).

NRDS integer | Number of generalized displacements (see NRDSF in
/CNTFIF/).

8. The following records for each floor instance are written in EXINIT.

a) If NNODS > 0, one record.

Array Description
NDID(3,nnods) | Node identification array.
1 : Node number.

2 : Compound node type (0 = not a compound node).

3 : Location of nodal DOFs in ID array. For compound nodes,
the subnode DOFs immediately follow the main node DOFs
in the ID array.

b) If NELGR > 0, one record.

Array Description

NELEM(nelgr) | Number of elements in each group.

KELEM(nelgr) | Element type number for each group.

NLENVP(nelgr) | Number of envelope items (length of /ENVELM/ in 4-byte
units) per element for static or dynamic analyses for each

group.

9. The following records for each interfloor instance are written in EXINIT.

a) If NNODS > 0, one record.

Array Description
- | NDID(3,nnods) | Node identification array.
1 : Node number.

2 : Compound node type (0 = not a compound node).

3 : Location of nodal DOFs in ID array. For compound nodes,
the subnode DOFs immediately follow the main node DOFs
in the ID array.

231

b) If NELGR > 0, one record.

Array Description

NELEM(nelgr) | Number of elements in each group.

KELEM(nelgr) | Element type number for each group.

NLENVP(nelgr) | Number of envelope items (length of /ENVELM/ in 4-byte
units) per element for static or dynamic analyses for each
group.

10. The subsequent records consist of result envelope sets. Data for each envelope set

consists of the following records for each floor or interfloor intance.

a) If NNODS > O for the instance, the following records are written in NDDSAYV.

Array Type Description

DENP(6,ntnds) real*4 | Positive nodal displacement envelopes.
ISTP(6,ntnds) integer | Step numbers for DENP.
DENN(6,ntnds) | real*4 | Negative nodal displacement envelopes.
ISTN(6,ntnds) integer | Step numbers for DENN

b) For each element group,

If NLENVP > 0, NELEM records are written in RESPON.

Array Type | Description
ENVOUT(nlenvp) real*4 | Element envelopes.

¢) For an interfloor instance if NSSEC > 0, the following records are written in

SECSAV.

Array Type | Description
SECENV(6,6,nssec) real*4 | Section force envelopes. 2nd index
indicates the envelope type as follows.

: Total positive.

: Total negative.

: Static positive.

: Static negative.

: Damping positive.

: Damping negative.
ISECEN(6,6,nssec) integer | Step numbers for SECENV.

O\Ua-hwts)'-

232

d) If NRDS > 0, the following records are written in GDSSAV.

Array Type | Description
RDSENV(2,nrds) real*4 | Positive and negative generalized
displacement envelopes.
IRDSEN(2,nrds) integer | Step numbers for RDSENV.
8.3.3. .RXX File - Result Histories

The .RXX files contain time or load history results for post-processing. The .RXX file is
opened in subroutine EXINIT for each analysis segment and closed in subroutine
SEGEND. The data consists of a number of FORTRAN records, as follows.

1. First record written in EXINIT.

Variable | Type Description

IHED character*40 | Problem title (in /TITLE/).

FNAME | character*8 | Problem name (in /TITLE/).

ANAL character*4 | Analysis segment type (in /TITLE/).

IHEDA character*40 | Analysis title (in /TITLE/).

NSEG integer Analysis segment number (in /CONTR/).
2. Second record is written in EXINIT.

Variable | Type Description

NFLR integer | Number of floor instances (in /FLRIFR/).

NIFR integer | Number of interfloor instances (in /FLRIFR/).

3. Third record written in EXINIT.

Description

Array Type

 IDFIF(nflr)

character*4

ID's of floor instances (in /TITFIF/).

4. Fourth record written in EXINIT.

Array

Type

Description

IDFIF(nifr)

character*4

ID's of interfloor instances (in /TITFIF/).

233

5. One record containing control information for each floor instance is written in

EXINIT.

Variable | Type Description

JFLR integer | Output code for diaphragm center displacements (see
JFLR in /CNTFIF/) for the floor.

NDDISP | integer | Number of floor node and/or subnode displacements in a

: post-processing set (in /RHIST/).

NDVELP | integer | Number of floor node and/or subnode velocities in a post-

processing set (in /RHIST/).

NDACCP | integer | Number of floor node and/or subnode accelerations in a
post-processing set (in /RHIST/).

NELTHP | integer | Number of floor elements in a post-processing set (in
/RHIST/).

NGDISP | integer | Number of floor generalized displacements in a post-
processing set (in /RHIST/).

NGVELP | integer | Number of floor generalized velocities in a post-
processing set (in /RHIST/).

NGACCP | integer | Number of floor generalized accelerations in a post-
processing set (in /RHIST/).

6. One record containing control information for each interfloor ‘instance is written in

EXINIT.

| Variable | Type Description

NDDISP | integer | Number of interfloor node and/or subnode displacements
in a post-processing set (in /RHISTY/).
NDVELP | integer | Number of interfloor node and/or subnode velocities in a
post-processing set (in /RHIST/).
NDACCP | integer | Number of interfloor node and/or subnode accelerations
in a post-processing set (in /RHIST/).
NELTHP | integer | Number of interfloor elements in a post-processing set (in
/RHISTY/).
NPSECP | integer | Number of interfloor structure sections in a post-
processing set (in /RHIST/).
NGDISP | integer | Number of interfloor generalized displacements in a post-
_processing set (in /RHIST)).
NGVELP | integer | Number of interfloor generalized velocities in a post-
processing set (in /RHIST/).
NGACCP | integer | Number of interfloor generalized accelerations in a post-
processing set (in /RHIST/).

7. For each floor instance, the following records are written in EXINIT.

a) If NDDISP > 0, one record.

Array

Description

INFNOD(3,nddisp)

Information for each node and/or subnode
displacement in a post-processing set, as follows.

1 : Node number.

2 : Compound node type number (0 =not a
compound node).

3 : Subnode number (0 = main node).

b) If NDVELP > 0, one record.
Array Description
INFNOD(3,ndvelp) Information for each node and/or subnode velocity in
a post-processing set, as follows.
1 : Node number.
2 : Compound node type number (0 = not a
compound node).
3 : Subnode number (0 = main node).
c¢) If NDACCP > 0, one record.
Array Description
| INFNOD(3,ndaccp) Information for each node and/or subnode
acceleration in a post-processing set, as follows.
1 : Node number. ‘
2 : Compound node type number (0 = not a
compound node).
3 : Subnode number (0 = main node).
d) If NELTHP > 0, one record.
Array Description
INFELM(4,nelthp) Information for each element in a post-processing

set, as follows.

1 : Element group number.

2 : Element type number.

3 : Element number.

4 : Number of output items per element (length of
element results).

235

e) If NGDISP > 0, one record.

Array Description
INFRDS(ngdisp) | Numbers of generalized displacements in a post-processing
set.

f) If NGVELP > 0, one record.

Array Description

INFRDS(ngvelp) | Numbers of generalized velocities in a post-processing set.

g) IfNGACCP > 0, one record.

Array Description
INFRDS(ngaccp) | Numbers of generalized accelerations in a post-processing
set.

. For each interfloor instance, the following records are written in EXINIT.

a) If NDDISP > 0, one record.

Array Description

INFNOD(3,nddisp) Information for each node and/or subnode
displacement in a post-processing set, as follows.

1 : Node number.

2 : Compound node type number (0 = not a
compound node).

3 : Subnode number (0 = main node).

b) If NDVELP > 0, one record.

Array Description

INFNOD(3,ndvelp) Information for each node and/or subnode velocity in
a post-processing set, as follows.
1 : Node number.

2 : Compound node type number (0 = not a
compound node).

3 : Subnode number (0 = main node).

¢) IfNDACCP > 0, one record.

Array : Description
INFNOD(3,ndaccp) - | Information for each node and/or subnode
acceleration in a post-processing set, as follows.

1 : Node number.

2 : Compound node type number (0 = not a
compound node).

3 : Subnode number (0 = main node).

d) If NELTHP > 0, one record.

Array Description
INFELM(4,nelthp) Information for each element in a post-processing
set, as follows.

1 : Element group number.

2 : Element type number.

3 : Element number.

4 : Number of output items per element (length of

element results).
e) If NPSECP > 0, one record.
Array Description
INFSEC(npsecp) Numbers of structure sections in a post-processing
set.
f) If NGDISP > 0, one record.
Array Description
INFRDS(ngdisp) | Numbers of generalized displacements in a post-processing
set.
g) IfENGVELP > 0, one record.
Array ' Description .
INFRDS(ngvelp) | Numbers of generalized velocities in a post-processing set.

h) If NGACCP > 0, one record.

Array Description
INFRDS(ngaccp) | Numbers of generalized accelerations in a post-processing
set.

. The subsequent records consist of post-processing sets. Each set consists of the

following records.

237

a) One record is written in subroutine GRSOL, STATIC, REST or STEP.

Variable | Type | Description

KSTEP integer | Step number.

TIME real*4 | Current time for dynamic analysis segment.
Current load factor for static analysis segment.

b) Following records for each floor and interfloor instance.

i) If NDDISP > 0, one record is written in subroutine NDDSAV.

Array ' Type Description
DISP(6,nddisp) real*4 Node and subnode displacements.

ii) For a dynamic analysis segment, if NDVELP > 0, one record is written in

NDVSAV.
Array Type Description
DISP(6,ndvelp) real*4 | Node and subnode velocities.

iii) For a dynamic analysis segment, if NDACCP > 0, one record is written in

NDASAV.
Array Type Description
DISP(6,ndaccp) ‘ real*4 | Node and subnode accelerations.

iv) NELTHP records, written in subroutine RESPON.

Array Type Description
THOUT(¥*) real*4 | Element results. The length of element results depends
on the element.

v) If NPSECP > 0, one record, written in subroutine SECSAV.

Array Type Description
SECFRC(12,npsecp) |real*4 | Static and damping section forces. Static
followed by damping for each section.

vi) If NGDISP > 0, one record, written in subroutine GDSSAV.

Array Type Description
GEDISP(ngdisp) real*4 | Generalized displacements.
vii) If NGVELP > 0, one record, written in subroutine GVLSAV.
Array Type Description
GEDISP(ngvelp) real*4 | Generalized velocities.

238

viii) If NGACCP > 0, one record, written in subroutine GACSAV.

Array Type | Description
GEDISP(ngaccp) - | real*4 | Generalized accelerations.
8.4. MODAL ANALYSIS FILES

8.4.1. MXX File - Mode Shapes

The .MXX files contain results from mode shapes and periods analysis. The results consist
of the following FORTRAN records, written in subroutine MODE.

1. First record.

Variable | Type Description

FNAME | character*8 Problem name (in /TITLE/).

IHED character*40 | Problem title (in /TITLE/).

ANAL character*4 | Analysis segment type (in /TITLE/).
IHEDA | character*40 | Analysis title (in /TTTLE/).

2. Second record.

Variable | Type Description
NEQT integer | Length of each mode shape (in /EQNS/).
NVEC | integer | Number of mode shapes.

3. Third record.

Array Description
EVAL(nvec) Mode periods.

4. Fourth record.

Array Description
XLM(3,nvec) Mass participation factors in translational directions for each
mode.

5. NVEC records, one for each mode shape.

Array Description
EVEC(neqt) Mode shape = ¢ /w”. Where, ¢ is mass normalized
mode shape; ® =2x/T; and 7= mode period.

239

8.4.2. .UXX File - Modal Responses

The .UXX files contain response results for unit modal amplitudes. The results consist of
the following FORTRAN records, written in subroutine SPECON.

1. First record.

| Variable | Type | Description
NVEC integer | Number of mode shapes.
LENGTH | integer | Minimum length of record buffer required to read the

response results.
2. Second record.
Array Description

EVAL(nvec) Mode periods.

3. Third record.
Array Description
XI.M(3,nvec) | Mass participation factors in translational directions for each

mode.

4. NVEC sets of records, one set per mode shape. Each set consists of one record per

(floor or interfloor) instance. Each record contains the following arrays consecutively.

Array - | Type | Description

RESNDS(6,ntnds) real*4 | Response nodal displacements
RESELM(nlin,nmem) | real*4 | One array per element group, containing
element response results. NLIN is the number
of result items per element for the group
(NLINF in /GENINF/). NMEM is the number
of elements for the group (NELEM in

/GENINF/).
RESSEC(6,nssec) real*4 | Response static section forces.
RESRDS(nrds) real*4 | Response generalized displacements.

9. ELEMENT INTERFACE AND SUBROUTINES

9.1. ELEMENT SUBROUTINES

Each DRAIN program consists of a base program and a library of element subroutines.
The base program is responsible for memory and file management, the nonlinear solution

strategy, and the processing of nodal data. The element subroutines are responsible for

processing element data.

A principal goal in designing the programs has been to allow new elements of a wide

variety of types to be added without changing the base program.

To add a new element type it is necessary to develop ten element subroutines. Each
subroutine performs a well-defined series of tasks, as shown in the following table. The

"##" at the end of the subroutine name is a two digit number which identifies the element

type. For example, for element type 2, the subroutines are INEL02, ELODO02, etc.

Subroutine | Element Tasks

INEL## Input and initialize element data.

ELOD## Input element load patterns. If there is no provision for element
loads, this subroutine and subroutine GLOD## are dummy
subroutines.

GLOD## Set up actual element loads and initialize element forces, using
element load patterns.

STIF#H# Calculate element stiffness or change in stiffness. This is the
"linearization" phase.

FACT## Calculate element event factor for event-to-event analysis.

RESP## Update element state. This is the "state determination” phase.

ENPR#H# Print element envelope results.

THPR## Print element time history results.

FLIN## Calculate linear element actions and deformations for response
spectrum analysis. '

PLIN## Print element actions and deformations for response spectrum
analysis.

241

These subroutines may call other element subroutines and utility subroutines. As a matter
of good practice, the names of all element subroutines should end with the element type

number.

The base program and element subroutines communicate through the element interface,

which consists of the following.

1. Argument lists of the element subroutines.

2. Labeled common blocks /INFGR/, /INFEL/, /THELM/, /ENVELM/, /WORK/,
/ELMPAR/, I[TAPES/, /CLINE/ and /PTOP/.

3. Argument lists of the base program subroutines ECONTR, COORDS, ELNODE,
LOCMAT and FINISH, which are called by element subroutine INEL##.

4. Argument list of the base program subroutine SFORCE, which is called by element
subroutine GLOD##.

The element interface and the specific tasks performed in each element subroutine are

described in detail in the following sections.
9.2. KEY VARIABLES
9.2.1. General

A number of key variables control the computations in the element subroutines. These can
be grouped into three categories, as follows.

1. Overall structure variables.

2. Element group variables.

3. Individual element variables.

The variables are defined in this section. Specific procedures for using them are described

later. At present these variable are all passed through argument lists.

242

9.2.2. Overall Structure Variables

Structure variables are defined for the structure as a whole, and have the same value for all

element groups. The values of these variables are set by the base program.

The variables are as follows.

Variable Description
KENR Code for calculating element energies.

0 : Omit calculations.

1 : Calculate elastic-plastic (static) energy only.

2 : Calculate both elastic-plastic and damping (dynamic) energies.
KRESIS Code for calculating element resisting forces.

1 : Calculate elastic-plastic (static) resisting force only.

2 : Calculate elastic-plastic and damping (dynamic) resisting forces.
KSTAT Code for type of analysis.

1 : Static.

2 : Dynamic.
KSTEP Current analysis step number.
KSTT Code for forming element stiffness.

1 : Form total stiffness.
0 : Form change in stiffness.

-1 : Form element damping matrix, K. Note that K need not be

equal to the initial element stiffness.
KTYPE Code for type of element stiffness to be formed.

1 : Elastic-plastic stiffness only.

0 : Elastic-plastic plus geometric stiffness.
-1 : Geometric stiffness only.

TIM Current time for dynamic analyses.
Current load factor for static analyses.

9.2.3. Element Group Variables

Group variables are defined for each element group; and have the same value for all

elements in the group. Except as noted, the values of these variables are set by the base

program.

243

The variables ére as follows.

Variable

Description

BETO

Stiffness proportional damping factor. Each element has
a damping matrix equal to BETO* K, , where K =
element damping matrix.

ELFACT(nlod,nmém)

Load set scale factors for elements of the group. Set up
for each loaded element group of an element load
pattern. Each column contains the load set scale factors
(see array SETLOD) for one element. Term I,J stores the
scale factor by which load set I is to be multiplied for
element J, to define the load pattern. ELFACT is set in
subroutine ELOD##, and used only if element loads are
permitted for the element type.

KEVE

Event calculation code.

1 : Event factors are to be calculated for elements in the
current group. '

0 : Event factors are not required.

KGEM

P-A analysis code. Note that P-A effects can add a great
deal of complexity.

0 : Ignore P-A effects.

1 : Consider P-A effects and allow geometric stiffness to
change for static analyses only.

2 : Consider P-A effects and allow geometric stiffness to
change for both static and dynamic analyses.

NDOF

Number of element DOFs (rows in element stiffness
matrix) for elements in current group. Set in subroutine
INEL##.

NELNOD

Number of element nodes for elements in current group.
Set in subroutine INEL##.

NFLIN

Number of output items (REAL*4) per element for
response spectrum analysis. Set in subroutine INEL##.

NINFL

Number of words required to store an element load set.
Set in subroutine INEL##.

Number of (4-byte) words in element output block
(/THELM)) for each element in current group. Set in
subroutine INEL##.

NLENV

Number of (4-byte) words in element evelope block
(/ENVELM)) for each element in current group. Set in
subroutine INEL##.

244

NLOD Number of element load sets for current group and
current element load pattern.

NMEM Number of elements in current group.
SETLOD(ninfl,nlod) | Element load sets. Each column defines one load set. Set
in subroutine ELOD##.

9.2.4. Individual Element Variables

Element variables are defined for each element individually and can have different values

for each element. Except as noted, the values of these variables are set by the base

program.
The variables are as follows.
Variable Description

DDISE(ndof) | Increments in element end displacements in current analysis
step. Used in subroutine FACT## to calculate element event
factor and in subroutine RESP## to update element state.
DISE(ndof) Total element end displacements at end of current step. Used in
subroutine RESP## for calculating P-A effects.

EFAC Element event factor, i.e., the proportion of DDISE required to
reach the next significant nonlinear event. If EFAC 2 1.0, no
event occurs within the current analysis step. If EFAC < 1.0, an
event occurs and the base program must subdivide the step.
EFAC is calculated only for those element groups for which
KEVE = 1. Set in subroutine FACT##.

ENED Increment in element beta-K damping work for current
displacement increment. Set in subroutine RESP## if KENR >
1.

ENER Increment in element elastic-plastic (static) work for current
displacement increment. Set in subroutine RESP## if KENR >
0.

ENSO Increment of element P-A work for current displacement
increment. Set in subroutine RESP## if KENR > 0 and KTYPE
< 0. Because of P-A effects, the effective work done on an
element is not equal to the simple elastic-plastic work. ENSO is
needed to correct for this.

FK(ndof,ndof) | Element stiffness matrix (depends on the structure variables
KSTT and KTYPE). Set in subroutine STIF##.

IMEM | Number of current element within its group. Set in subroutine
INEL##.

245

KDATA

Data error counter. Initialized to zero before calling subroutine
INEL## or ELOD##. Incremented by 1 for each input data
errTor.

KSAVE

Code to set up element results in /THELM/ and/or element
envelopes in /ENVELM/ for output.

0 : Do not set up.

1 : Set up /THELM/. The results are saved by the base program
for printout and/or post-processing (to .RXX file).

2 : Set up /ENVELM/. The envelopes are saved by the base
program for post-processing (to .EXX file).

3 : Set up both /THELM/ and /ENVELM/.

KST

Stiffness change code. Set in subroutine RESP## as follows.

1: Stiffness for current element has changed in the current step.
Subroutine STIF## will be called to update the stiffness for
this element.

0: No stiffness change has occurred. Subroutine STIF## will
not be called.

RDAMP(ndof)

Element end damping forces. Set in subroutine RESP##.

RELAS(ndof)

Element end elastic-plastic (static) forces. Set in subroutine
RESP##.

VELE(ndof)

Element end velocities at end of current step in dynamic
analysis. Used in subroutine RESP## to calculate element
damping forces.

9.3. LABELED COMMON BLOCKS

9.3.1. Group Information Block, INFGR/

Data must be stored for each element, to monitor its nonlinear behavior. This data is

transferred to and from the element subroutines by means of the labeled common blocks

/INFGR/ and /INFEL/. There is one /INFGR/ data block for each element group

(containing data common to all elements in the group) plus one /INFEL/ data block for

each element (containing data unique to each element). The length of /INFGR/ may be

Zero.

The data in /INFGR/ must be initialized in subroutine INEL##, and once initialized must

not be modified. The block may be divided in any way the programmer wishes, but care

246

must be taken to ensure that double precision variables start on 8-byte boundaries. The
length of /INFGR/ is conveyed to the base program in subroutine INEL##. The base

program stores the block and makes it available for the current element when needed.

9.3.2. Element Information Block, /INFEL/

The /INFEL/ block contains data unique to each element. It must be initialized in
subroutine INEL##, and then progressively updated in RESP##, GLOD## and STIF##.
All data to be retained for any element must be contained either in /INFEL/ or in /INFGR/.
The block may be divided in any way the programmer wishes, except that the first variable
must be IMEM (the element number in its group), and care must be taken to ensure that
double precision variables start on 8-byte boundaries. The length of /INFEL/ is conveyed
to the base program in subroutine INEL##. The base program stores the block and makes

it available for the current element when needed.

The block may be updated in subroutines GLOD##, RESP## and STIF##. After calls to
these subroutines the base program saves the updated block. The block is not saved after
calls to FACT##, ENPR##, or FLIN##. Hence, any changes made to the /INFEL/ block in
these subroutines will not be saved. As a matter of good practice, changes should not be

made to /INFEL/ in these subroutines.

During the execution of INEL##, first the /INFGR/ block for the element group (if it
exists) and then the /INFEL/ blocks for all elements are written to disk. At the end of the
input phase, the blocks are brought back into memory and stored compactly in the
available memory space. If memory becomes filled, the elements stofed constitute an
"element block". This block is written to disk and a new block is begun. During
subsequent calculations the element blocks are returned to memory as needed and if
updated are rewritten to disk. The blocking and I/O operations are all carried out by the
base program. If the data for all elements can be held in memory (i.e., only one element
block), then there is no I/O of element blocks to disk storage, and considerable execution

247

time may be saved. In order to reduce I/O cost, the analyst may specify that execution of
an analysis should not begin unless there is only one element block. This type of blocking
will normally be used only on fixed-memory computers. On virtual memory computers it is
probably more efficient to request sufficient memory to execute with a single element

block.
9.3.3. Element Results Block, THELM/

For any element, the results (consisting of anything that the programmer wishes) at the
current load or time step can be saved for printout or post-processing. These results are
made available to the base program by placing them in the labeled common block
/THELM/. The length of /THELM/ is conveyed to the base program in subroutine
INEL##, and is the same for all elements in a group.

If the results for any element are to be saved (i.e., KSAVE = 1 or 3), they must be placed
in /THELM/ during execution of subroutine RESP##. The base program keeps track of
whether element results are to be saved. The base program writes the /THELM/ data to
the results scratch file (unit NFPRNT) and/or the post processing file (RXX). At the end
of each analysis segment the results on the scratch file are recalled, rearranged and written
to the .OUT file using subroutine THPR##, if a printout has been requested. It is
recommended that double precision variables be converted to single precision before

placing them in /THELMY/, in order to reduce buffer lengths and disk storage.
9.3.4. Element Envelope Block, ENVELM/

Maximum and minimum envelope values for various element response quantities may be
stored in the /INFEL/ block, and progressively updated. These quantities can then be
printed at specified intervals (in subroutine ENPR##) or saved to the post-processing file,
EXX. Although it is acceptable to store only the envelope value, it is usual to store also

the load or time step number at which the value was reached. The step number begins with

248

zero in each analysis segment (a zero step number thus indicates that the envelope value
was reached in some earlier segment). Hence, at the beginning of each new segment, the

step number must be re-initialized to zero in subroutine RESP##.

Element envelopes for post-processing are made available to the base program by placing
them in the labeled common block /ENVELM/. The length of /ENVELM/ is conveyed to

the base program in subroutine INEL##, and is the same for all elements in a group.

If the envelope for any element is to be saved (i.e., KSAVE = 2 or 3), the envelope data
must be placed in [/ENVELM/ during execution of subroutine RESP##. The base program
keeps track of whether element envelopes are to be saved. The base program writes the
/ENVELM/ data to the post processing file ((EXX). It is recommended that double
precision variables be converted to single precision before placing them in /ENVELM/, in

order to reduce buffer lengths and disk storage.
9.3.5. Work Block, /WORK/

Labeled common block /WORK!/ provides a work area for use by the programmer. It
provides a means of grouping local variables, and with some compilers may save memory

by reducing the number of local variables.

The /WORK/ block should generally not be used to transfer data between element
subroutines, because it can be used differently for different elements, and the data may

therefore be continually changing.
9.3.6. Element Parameters Block, /ELMPAR/

Labeled common block /ELMPAR/ contains element control parameters which can be
changed by means of the *PARAMETERS input data. These parameters can be used to
vary the behavior of elements in a group without re-entering the element input data (i.e.,

without starting a complete new problem). For example, element parameters could be

249

used to turn on debug prints for a particular element. This feature has been added for

future use. None of the current elements uses these parameters.
9.3.7. Tapes Block, /TAPES/
Labeled common block /TAPES/ contains the I/O unit numbers.

In element subroutines /TAPES/ is declared as follows.

| COMMON /TAPES/ inp, iou, inpx |

The variables are as follows.

Unit No. | Associated File(s)

INP Input file, DRAIN.INP.

IOU Echo file, ECH.

INPX Input scratch file. Used for counting input items before data is
actually read.

The variables in this block must not be modified. Units INP (DRAIN.INP file) and IOU
(.ECH file) may be used in element subroutines for read and write statements. Unit IOU

may be used for temporary debugging output if desired.
9.3.8. Input Line Block, /CLINE/

Data from the input data file, DRAIN.INP, is not read directly, but through the labeled
common block /CLINE/.

/CLINE/ is declared as follows.

COMMON /CLINE/ lecho, linpx, xxline
CHARACTER lecho*1, linpx*1, xxline*161

The variables are as follows.

Variable | Description
LECHO | Code for echoing input line on the monitor, as follows.

"n" : No.
"y" : Yes.

250

LINPX Code for reading input line, as follows.

"i" : Read input line from input data file, DRAIN.INP.

"x" : Read input line from scratch file INPX. INPX is used when it is
necessary to count the number of input items before allocating
‘memory. The input is read from DRAIN.INP, written to INPX,
then re-read from INPX after memory has been allocated.

XXLINE | For reading from DRAIN.INP:

columns 1-80 : Input buffer.
column 81 : Set to "/" to terminate record.

For reading from a data file containing ground acceleration, ground
displacement or dynamic force records:

columns 1-160 : Input buffer.
column 161 : Set to "/" to terminate record.

To read data from an input line in subroutines INEL## and ELOD##, call the base
program subroutine GETLIN. GETLIN skips over comment lines in DRAIN.INP, reads
the next input line into the character variable XXLINE, and removes any comment from it.
Then in INEL## or ELOD## read data from XXILINE by using it as a FORTRAN internal
file.

If item counts are needed before memory can be assigned in /INFGR/ and/or /INFEL/
blocks, separator lines can be used in the element input data, and the data can be read
twice. In the first reading, the items can be counted and the input lines written to the
scratch file, INPX. Then, memory can be allocated, and the input lines re-read from INPX.
The following procedure is suggested.

1. Before the first reading open a formatted scratch file with unit number, INPX (see
[TAPES/).

2. In the first reading use the base program subroutine GTLIN (not GETLIN) to read
the input lines into XXLINE. GTLIN performs the same task as GETLIN, but in
addition writes the input lines to INPX.

3. At the end of the first reading (determined by a suitable separator line), set
LINPX='x', and rewind INPX.

251

4. Allocate the memory in /INFGR/ and/or /INFEL/ blocks.

5. In the second reading use GETLIN to re-read the input lines into XXLINE from
INPX.

6. At the end of the second reading set LINPX="', and close INPX.

It is suggested that the separators in the element data not begin with **', so that they can
be distinguished from those used by the base program. The logical function, CHKSEP, can

be used to check for the separator in the input line.
9.3.9. Page Layout Block, /PTOP/

The labeled common block /PTOP/ has been provided for page layout during printing.

This feature has not yet been implemented.

/PTOP/ is declared as follows.

[COMMON /PTOP/ npage, nlin, maxlin, madum]

The variables are as follows.

Variable | Description

NPAGE | Current page number.

NLIN Current line number.

MAXLIN | Number of writable lines per page.

MADUM | Number of skip lines per page. Used to skip the perforations for
continuous paper.

9.4. ARGUMENT TYPES IN ARGUMENT LISTS

The variables transferred through any argument list are of three types, as follows.

Input: These are set by the calling subroutine and must not be modified in the called
subroutine.

Output: These must be set in the called subroutine and returned for use by the calling

subroutine. They are not set before entry to the called subroutine.

252

Modify:These are set by the calling subroutine, and may either be left unchanged or

modified in the called subroutine, depending on circumstances.
9.5. SUBROUTINE INEL##
(a) Beginning Statements

The SUBROUTINE, COMMON, and DIMENSION statements for subroutine INEL##

are as follows.

SUBROUTINE INEL## (KDATA)
COMMON /INFGR/ . . .

COMMON /INFEL/ IMEM, . . .
COMMON /PTOP/ . ..

COMMON /WORK/ ...

COMMON /TAPES/ INP, 10U, INPX

(b) Argument types
The argument KDATA is of modify type.
(c) Purpose

INEL## is called once for each element group, in the input phase. Its purpose is to read
the input data for all elements in the group, to convey values of several control variables
to the base program, to initialize the /INFGR/ and /INFEL/ blocks, to send data enabling
the base program to construct the element "location matrices”, and to instruct the base

program to save the /INFGR/ and /INFEL/ blocks.
(d) Tasks Performed Before Entry

The base program reads and echo prints the Group Information line of the
*EL. EMENTGROUP data.. The line contains the following data.

i) Element type number.

ii) Event calculation code (KEVE).

iii) P-A analysis code (KGEM).

253

iv) Initial stiffness damping factor (BETO).
v) Group title.

The base program initializes KDATA to zero, then calls INEL## for the corresponding

element type.

(e) Tasks to be Performed in INEL#H#

Subroutine INEL## must read and echo-print the input data for elements in the group, and

initialize the /INFGR/ and /INFEL/ blocks. See the subroutines for existing elements, such

as INELO1 and INELO4, for examples. Note that the input data is not read directly, but is

obtained by calls to the subroutine GETLIN.

The following tasks must be performed.

1.
2.

Print appropriate headings for the element type.

Convey NDOF, NELNOD, NFLIN, NINFL, NINFT, NLENV and the lengths of
/INFGR/ and /INFEL/ blocks to the base program by calling subroutine ECONTR.
The call can also initiialize /INFGR/ and /INFEL/ to zero, if desired.

If desired, establish tables of stiffnesses, strengths, etc., for subsequent use in
specifying individual elements. The arrays for these tables may be defined in /WORK/
to avoid creating local variables. |

Store data common to all elements in /INFGR/. This block must be completed before
the call to subroutine FINISH (see below) for the first element in the group. This is
because /INFGR!/ is saved immediately preceding /INFEL/ for the first element.

Read the data for each element in the group, including node numbers, stiffnesses,
strengths, etc., typically using the tables established in Step 4. Generation options may
be included. The generation procedure used for the current elements is recommended.
For each element, carry out the following initialization operations.

a) Set IMEM to the element number within the group (in sequence starting with 1).

254

b) Establish, within /INFEL/, appropriate variables to permit the state of the element

c)

to be monitored. Initialize these variables to correspond to the unstressed state of
the structure. Among other things these will include variables defining current
element actions, which will be initialized to zero and then progressively updated as
the analysis proceeds.

If the element type has an option for element loads, define variables in /INFEL/ to
store initial element actions, in addition to the current values, and initialize to zero.
Separate initial and current values are needed for calculation of the element elastic-
plastic work (ENER) and resisting force vectors (RELAS and RINIT) in
subroutine RESP##. If a gravity load analysis is performed, and if the element has
element loads, both the initial and current actions are set, in subroutine GLOD##,
at the beginning of the analysis. The initial actions then remain constant, while the
current actions are progressively updated. This aspect of the elements is awkward,
and an improved procedure may be implemented in the future. Recognize,
however, that element loads on nonlinear elements cause major theoretical and

computational complications.

d) Save data on the element length, orientation in space, etc., so that subsequent

e)

linearization and state determination calculations can be carried out. One way is to
store a displacement transformation matrix relating nodal displacements to element
deformations. Alternatively, the (X, Y and Z) coordinates of the element nodes
may be stored, and the transformations recalculated as needed. The coordinates of
nodes are determined by calls to base program subroutine COORDS, one call per
node.
Initialize all other variables in /INFEL/ to appropriate values corresponding to the
unstressed state of the structure.
Tell the base program the numbers of the nodes to which the element is connected,
with a series of calls to base program subroutine ELNODE, one call per node.

255

g) Make a series of calls to base program subroutine LOCMAT, one call for each
element DOF, in element DOF order (i.e., the order in the element stiffness matrix
and resisting force vectors). This provides the data the base program needs to set
up the element "location matrix" (i.e., the global equation number for each element
DOF). The argument list contains the node number, subnode number (zero, since
subnodes are not yet fully implemented), the displacement direction (1 = X
translation; 2 = Y translation; ¢tc.), and an error code. For DRAIN-BUILDING it
also contains a floor/interfloor code (0 = node belongs to current floor or
interfloor; 1 = node belongs to the floor 1 of current interfloor; 2 = node belongs
to floor 2 of current interfloor). The base program places the location matrix for
any element at the end of the element /INFEL/ block, and adds the required length
to the block length NINFE.

h) Call subroutine FINISH with the statement

CALL FINISH
This call must be made after /INFEL/ for the element has been fully initialized, and
must be made once for each element. This instructs the base program to save the
/INFGR/ and /INFEL/ blocks.

i) Do appropriate input data checking. For each data error increment KDATA by 1
and echo print an appropriate error message. It will be usual to continue
processing the input data if errors are detected. However, if the error is fatal,
execution may be stopped by calling EXIT, as follows.

CALL EXIT

9.6. SUBROUTINE ELOD/#4#
(a) Beginning Statements

The SUBROUTINE, COMMON, and DIMENSION statements for subroutine ELOD##

are as follows.

256

SUBROUTINE ELOD## (NMEM, NINFL, NLOD, SETLOD, ELFACT,
1 KDATA)

COMMON /PTOP/ . ..

COMMON /TAPES/ INP, 10U, INPX

DIMENSION SETLOD(ninfl, nlod), ELFACT (nlod, nmem)

(b) Argument Types

The arguments are of following types.
Input: NMEM, NINFL, NLOD
Modify: SETLOD, ELFACT

(c) Purpose

Subroutine ELOD## is called once for each element group, each time an element load
pattern is input. Its purpose is to store element load sets (SETLOD array) and load set
scale factors (ELFACT array) for the load pattern. These arrays are used by subroutine

GLOD### to construct load vectors for gravity load analysis.
(d) Tasks Performed Before Entry

For each element group which is loaded by the load pattern, the base program reads one
line of input data. This line contains the number of element load sets (NLOD) for the
group. The base program then initializes SETLOD and ELFACT to zero, and calls
ELOD## for the corresponding element type.

(e) Tasks to be Performed in ELOD##

Each column of array SETLOD will store one load set (typically, but not necessarily, a set
of element fixed end forces). It is suggested that the first term of each column be a key to
identify the type of load set. For example this key could identify whether fixed end forces

are in local (element) or global (structure) coordinates.

257

Each column of array ELFACT corresponds to an element in the current group. Term I, J
in ELFACT is the scale factor by which load set I is to be multiplied for element J. If the

factor is zero, the load set does not affect the element.

The following tasks must be performed.

1. Print appropriate headings for the load sets.

2. Read NLOD load sets, store in SETLOD, and echo print.

3. Print appropriate headings for the load set scale factors.

4. Read in all nonzero scale factors, identifying both the element and the load set, and
using generation options as appropriate. Store in ELFACT and echo print.

5. If an element has no element loads (i.e. all scale factors are zero for that element), set
ELFACT(1) for the element to 999999. This will save some time in later computation.

6. Do appropriate input checking. If there are errors increment KDATA and echo print

an appropriate error message.
9.7. SUBROUTINE STIFi##
(a) Beginning Statements

The SUBROUTINE, COMMON, and DIMENSION statements for subroutine STIF##

are as follows.

SUBROUTINE STIF## (KSTT, KTYPE, NDOF, FK)
COMMON /INFGR/ . ..
| COMMON /INFEL/ IMEM, . ..
COMMON /ELMPAR/ RELPAR(2), IELPAR(2)
COMMON /WORK/ . ..
. DIMENSION FK(ndof, ndof)

(b) Argument Types

The arguments are of the following types.
Input: KSTT, KTYPE, NDOF
Output: FK
258

(c) Purpose

Subroutine STIF## is called to form the element damping, total stiffness, or change in
stiffness, and return it in array FK. Only those elements with stiffness changes are affected
(for formation of beta-K damping and initial stiffness this is all elements; for subsequent

stiffness changes typically only a few elements).
(d) Tasks Performed Before Entry

The base program sets up /INFGR/ for the current element group and /INFEL/ for the
current element before calling STIF##. The variables KSTT and KTYPE are also set, to
specify the required stiffness type.

(e) Tasks to be Performed in STIF##

STIF## must have the capability to form damping, total stiffness and the change in
stiffness since the last time the stiffness was formed, depending on the value of KSTT.
Depending on the value of KTYPE, it may be required to return the elastic-plastic stiffness

only, the elastic-plastic plus geometric stiffness or the geometric stiffness only.

The following tasks must be performed.
1. KSTT = -1: Form the element damping matrix. This will be done when the structure
beta-K damping is being formed. _
2. KSTT = 1: Form the total stiffness, in the current element state.
a) KTYPE = 1: Elastic-plastic stiffness only. This will be done when a complete
structure stiffness is being formed and P-A e_ffects are being ignored.
b) KTYPE = 0: Elastic-plastic plus geometric stiffness. This will be done when a
complete structure stiffness is being formed and P-A effects are being considered.
3. KSTT = 0: Form the change in stiffness since the last time subroutine STIF## was

called for the element.

259

a) KTYPE = 1: Elastic-plastic stiffness only. This will be done if P-A effects are
being ignored, or if they are being considered but the structure geometric stiffness
is assumed to be constant.

b) KTYPE = 0: Elastic-plastic plus geometric stiffness. This will be done if P-A
effects are being considered and the structure geometric stiffness progressively
changes.

¢) KTYPE =-1: Geometric stiffness only. This will be done if the structure geometric
stiffness progressively changes but there is no change in the structure elastic-plastic
stiffness.

4. KSTT =1 or 0: Update variables in the /INFEL/ block so that stiffness changes can be
computed when STIF## is next called. For simple elements it may be possible to store
indicators which identify the state when STIF## was last called, and to calculate
stiffness changes by comparing these "previous" indicators with the "current” values
(which must be progressively updated in subroutine RESP##). For more complex
elements it may be necessary to store the total stiffness, and to get the stiffness change

by subtraction.
9.8. SUBROUTINE GLOD##
(a) Beginning Statements

The SUBROUTINE, COMMON, and DIMENSION statements for subroutine GLOD##

are as follows.

SUBROUTINE GLOD## (NINFL, NLOD, SETLOD, ELFACT, PMULT)
COMMON /INFGR/ ...

COMMON /INFEL/ IMBY, . . .

COMMON /ELMPAR/ RELPAR(2), IELPAR(2)

COMMON /WORK/

DIMENSION SETLOD(ninfl,nlod), ELFACT(nlod)

DIMENSION ELFINT(ndof)

260

(b) Argument Types

The arguments are of the following types.
Input: NINFL, NLOD, SETLOD, ELFACT, PMULT

Array ELFINT(ndof) is a local array.

(c) Purpose

Subroutine GLOD## is called at the beginning of a gravity load analysis, once for each
element and each element load pattern which contribute to the gravity load. Its purpose is
to initialize the element forces for the gravity load analysis, and to set up equivalent nodal

loads for assembly into the gravity load vector.
(d) Tasks Performed Before Entry

The following tasks are performed by the base program before subroutine GLOD## is

called.

1. Scale factors for the element load patterns are read. The value for the current pattern
is PMULT in the argument list.

2. /INFGR/ and /INFEL/ are set up for the current group and element.

3. The element load sets (SETLOD) and load set scale factors (ELFACT) are set up for
the current load pattern and element group. The complete SETLOD array (all load set
data for the current load pattern) plus one column of ELFACT (load set scale factors

for the current element) are sent through the argument list.
(e) Tasks to be Performed in GLOD##

The following tasks must be performed.
1. If all load set scale factors for the element are zero (ELFACT(1) = 999999.), simply

return.

261

2. Using the SETLOD and ELFACT arrays, combine the element load data (considering
all load sets with nonzero ELFACT values), and set up equivalent element end forces
(forces in equilibrium with the element loads). These forces must be in the global
coordinate system acting on the element. For a beam-type element they will usually
be conventional fixed-end forces.

3. Multiply the element end forces by the load pattemAmultiplier (PMULT), and set up in
the local array ELFINT(ndof), where NDOF = number of element DOFs. Then call
subroutine SFORCE as follows.

CALL SFORCE (ELFINT)
Subroutine SFORCE changes the sign of ELFINT, to obtain nodal loads, then
assembles it into the gravity load vector.

4. The /INFEL/ block must contain variables storing, separately, the current and initial
element actions. The initial values define the state of the element in the clamped end
condition. These variables must have been initialized to zero in subroutine INEL##.
Update these element actions by adding to them the contributions from the current
load pattern. Addition, rather than replacement, is necessary because there may be
several load patterns contributing to the gravity load analysis. The current and initial
element actions will be equal at this stage. During subsequentlyses the initial actions
remain constant, while the current actions are progressively updated. The initial
actions are needed for calculating the element elastic-plastic energy (ENER) and
resisting force vectors (RELAS and RINIT) in RESP##.

9.9. SUBROUTINE FACT##
(a) Beginning Statements

The SUBROUTINE, COMMON, and DIMENSION statements for subroutine FACT##

are as follows.

262

SUBROUTINE FACT## (NDOF, EFAC, DDISE, KEVT)
COMMON /INFGR/ . . .

COMMON /INFELY/ IMEM, . . .

COMMON /ELMPAR/ RELPAR(2), IELPAR(2)
DIMENSION DDISE (ndof)

(b) Argument Types

The arguments are of the following types.
Input: NDOF, DDISE
Modify: EFAC
Output: KEVT

(c) Purpose

Subroutine FACT# is called once for each element in each static analysis substep, and for
each dynamic analysis substep if the event-to-event solution strategy is specified. The
purpose of the subroutine is to calculate the element event factor, EFAC, based on the
element displacement increment DDISE. A code (KEVT) indicating the type of event is

also returned. This code depends on the element type (e.g., 1 = yielding in tension). It is

printed as part of the solution log.
(d) Tasks Performed Before Entry

The following tasks are performed by the base program before subroutine FACT## is
called.

1. 'Nodal displacement increments for the current element are set up in array DDISE.

2. EFACissetto 1.0.

3. /INFGR/ and /INFEL/ are set up for for the current group and element.

(e) Task to be Performed in FACT##

Determine the proportion of DDISE required to reach the next significant nonlinear

"event". This is the element event factor. If it is less than EFAC, set EFAC = element

263

event factor and KEVT = a code indicating the event type. If there is no event, set KEVT

=0.

The coding for FACT## will usually be similar to that in RESP##, except that (a)
FACTi## can stop at the first event, and (b) whereas RESP## typically traces out the
behavior from exact event to exact event, FACT## has an event overshoot provision. In
INEL##, one or more overshoot tolerances are stored in /INFEL/. The event factor is then
calculated as the multiple of DDISE required to reach not, say, the exact yield value, but
this values plus the tolerance. The tolerance can be varied from the value input in INEL##
by setting the value of an "event overshoot scale factor" (in the *PARAMETERS section
of the input). The overshoot tolerance from INEL## is multiplied by the scale factor
(FACOV in the FACT## argument list) before the event factor is calculated.

9.10. SUBROUTINE RESP##
(a) Beginning Statements

The SUBROUTINE, COMMON, and DIMENSION statements for subroutine RESP##

are as follows.

SUBROUTINE RESP## (KRESIS, KSAVE, KGEM, KSTEP, NDOF, KST,
1 KENR, ENER, ENED, ENSO, BETO, RELAS,
2 RDAMP, RINIT, DDISE, DISE, VELE)
COMMON /ELMPAR/ RELPAR(2), IELPAR(2)
COMMON /INFGR/ . . .
COMMON /INFELY IMEM, . . .
COMMON /THELM/ . ..
COMMON /WORK/ . ..
DIMENSION RELA S(ndof), RDAMP(ndof), RINIT(ndof), DDISE(ndof),
1 DISE(ndof), VELE(ndof)

(b) Argument Types

The arguments are of the following types.
Input: KRESIS, KSAVE, KGEM, NDOF, KENR, BETO, DDISE, DISE, VELE

264

Output: ENER, ENED, ENSO, RELAS, RDAMP, RINIT
Modify: KSTEP, KST

(c) Purpose

Subroutine RESP## is called once for each element in each analysis substep. Its purpose is
to update the element state, form the static and damping resisting forces, perform energy
calculations, update response quantities, and put element results in /THELM/ for saving or

printing. This is the most complex of the element subroutines.

(d) Tasks Performed Before Entry

The following tasks are performed by the base program before subroutine RESP## is
called.
1. KRESIS is set to define the type of resisting force to be calculated. The options are as
follows.
a) KRESIS = 1: elastic-plastic only (static).
b) KRESIS = 2: elastic-plastic and damping (dynamic).
2. KST is set to zero.
3. KGEM is set to indicate whether P-A effects are to be considered.
4. KSAVE is set to indicate whether element results and/or envelopes are to be saved for
post-processing and/or printout.
5. Element end displacement increments, total displacements and velocities are set up in
arrays DDISE, DISE and VELE, respectively.
6. /INFGR/ and /INFEL/ are set up for the current group and element.

(e) Tasks to be Performed in RESP##

The following tasks must be performed.
1. If KSTEP = -1, this is the first entry to RESP## for the current analysis segment. Set

any envelope step numbers or times to 0, and reset KSTEP = 1.

265

2. Update the element state. Typically the following steps will be followed.

a)

b)
c)

d)

Using DDISE, determine increments of element deformations. Hence, by tracing
the nonlinear action-deformation relationship, determine increments of element
actions. For a complex element this can be a lengthy computation. Update the
element deformations, actions, etc., as appropriate.
If KENR = 1, calculate the increment of element elastic-plastic work, ENER.
If KENR > 0 and KGEM > 0, calculate the of element P-A (second order) work,
ENSO.
Compare the current state with the-state when the stiffness matrix was last formed
(i.e. when KST was last set to > 0). A commonly used procedure is to assign
values to some state indicators, storing previous and current values. If the current
value is different from the previous value the state of the element has changed, and
its stiffness must be modified for the next step. To signal this set KST to 1. If KST
is 1, subroutine STIF## will be called for the element. Do not replace previous
state indicators with the current ones in RESP## - this must be done in STIF##.
If KRESIS = 1, form elastic-plastic (static) resisting force vectors, in global
coordinates, in arrays RELAS and RINIT. These are the forces acting on the
element to satisfy element equilibrium. If there are no element loads, RELAS is the
total static resisting force in the current state, and RINIT is zero. However, if there
are element loads, RINIT is the resisting force in the initial state, and RELAS is
the difference between the total and initial resisting forces (i.e. the change in
resisting force since the initial state). RELAS must include P-A effects if they are
present. Since RINIT is for the element clamped end state it will usually include no
P-A effects.
If KRESIS = 2, form the element damping force vector, RDAMP. Like RELAS,
these are the forces, in global coordinates, which are in equilibrium with the
viscous damping force in the element. If KENR = 2, calculate the increment of
266

g
h)

i)

i)

element damping work (ENED), equal to the work done by the average damping
forces moving through the deformation increments.

Update the values of all response quantities for the element.

Update the envelope values as necessary and the step numbers or times at which
they occur. Note that the step number will be relative to the beginning of the
current analysis segment.

If KSAVE = 1 or 3, put the results for the element at the end of the current load or
time step in /THELM/.

If KSAVE = 2 or 3, put the envelopes for the element at the end of the current
load or time step in /ENVELM/.

9.11. SUBROUTINE ENPR##

(a) Beginning Statements

The SUBROUTINE and COMMUON statements for subroutine ENPR## are as follows.

SUBROUTINE ENPR## (NFOUTP)
COMMON /ELMPAR/ RELPAR(2), IELPAR(2)
COMMON /PTOP/ . ..

COMMON /INFGR/ . . .

COMMON /INFEL/ IMEM, . ..

(b) Argument Types

The argument NFOUTP is of input type.

(c) Purpose

Subroutine ENPR## prints, on unit NFOUTP, envelope values for the current element.

ENPR## is called from the base program for all elements at step intervals defined by the

input data. In addition, the subroutine is automatically called for all elements at the end of

each analysis segment.

267

(d) Tasks Performed Before Entry

The base program performs the following tasks.

1. Before calling ENPR## for the first element of any element group, the heading
containing analysis segment number and element group number is printed to
NFOUTP.

2. /INFGR/ and /INFEL/ are set up for the current group and element.

(e) Tasks to be Performed in ENPR##

The following tasks must be performed.
1. If IMEM = 1 print an appropriate heading.
2. Print the envelope values.

9.12. SUBROUTINE THPR##
(a) Beginning Statements

The SUBROUTINE and COMMON statements for the subroutine THPR## are as

follows.

SUBROUTINE THPR## (KSTAT, KHD, KSTEP, TIM, NFOUTP)
COMMON /ELMPAR/ RELPAR(2), IELPAR(2)

COMMON /PTOP/ . ..

COMMON /THELM/ ...

(b) Argument Types

The arguments are of following types.
Input: KSTAT, KHD, KSTEP, TIM, NFOUTP

(c) Purpose

Subroutine THPR## is called by the base program to print, on .OUT file (unit NFOUTP),

element results at the end of an analysis segment.

(d) Tasks Performed Before Entry

The base program performs the following tasks.

1. Before calling THPR## for the first step of any element, a heading containing the
-analysis segment number, element group number and element number is printed to
NFOUTP; and KHD is set to 1. After calling THPR## for the first step KHD is reset

to 0.

2. The results for the current element and analysis step are set up in the /THELM/ block.

The /INFGR/ and /INFEL/ blocks are not set up. Hence, all data to be printed must be in
the /THELM/ block (or in the argument list).

(e) Tasks to be Performed in THPR##

The following tasks must be performed.
1. IfKHD = 1, this is the first set of results for the element. Print appropriate heading.
a) KSTAT =1 : for static analysis
b) KSTAT =2 : for dynamic anlysis.
2. Print element results.
a) KSTAT =1 : for static analysis
b) KSTAT =2 : for dynamic anlysis.

9.13. SUBROUTINE FLINi###
(a) Beginning Statements

The SUBROUTINE, COMMON, and DIMENSION statements for subroutine FLIN##

are as follows.

269

SUBROUTINE FLIN## (NDOF, NFLIN, RELAS, EFLIN, DDISE)
COMMON /ELMPAR/ RELPAR(2), IELPAR(2)

COMMON /INFGR/ . . .

COMMON /INFELY IMBM,, . . .

COMMON /WORK/ . ..

DIMENSION RELAS(ndof), DDISE(ndof)

REAL EFLIN(nflin)

(b) Argument Types

The arguments are of following types. |
Input: NDOF, NFLIN, DDISE
Output: RELAS, EFLIN

(c) Purpose

Subroutine FLIN## is called once for each mode and each element during response
spectrum analysis. Its purpose is to form element results and static resisting forces,
assuming linear behavior. The element results are used to set up the SRSS results output

for the analysis. The resisting forces are used to calculate the forces on structure sections.
(d) Tasks Performed Before Entry

The following two tasks are performed by the base program before subroutine FLIN## is

called.

1. Displacements (corresponding to one mode shape) are set up in array DDISE for the
current element.

2. /INFGR/ and /INFEL/ are set up for the current group and element.
(e) Tasks to be Performed in FLIN##

The following tasks must be performed.
1. Determine element deformations using DDISE.
2. Calculate linear element actions corresponding to these deformations.

3. Set up the static resisting force vector, RELAS, in global coordinates.

270

4. Set up, in EFLIN, the element results which are to be combined (using SRSS

combination) and output. Note that EFLIN is a single precision array.
9.14. SUBROUTINE PLIN###
(a) Beginning Statements

The SUBROUTINE, and DIMENSION statements for subroutine PLIN## are as follows.

SUBROUTINE PLIN## (KHD, IMEM, NFLIN, EFLIN, NFOUTP)
COMMON /ELMPAR/ RELPAR(2), IELPAR(2)

COMMON /PTOP/ . ..

REAL EFLIN(nflin)

(b) Argument Types
The arguments are of the following types.
Input: KHD, IMEM, NFLIN, EFLIN, NFOUTP
(c) Purpose
Subroutine PLIN## is called to print, on unit NFOUTP, the element results for response
spectrum analyses. It is called once for each element.

(d) Tasks Performed Before Entry

The base program performs the following tasks.

1. Before calling PLIN## for the first element of any element group, a headind with the
element group number is written to NFOUTP; and KHD is set to 1. After calling
PLIN## for the first element KHD is reset to 0.

2. The response results for the current element are set up in array EFLIN.
(e) Tasks to be Performed in PLIN#H#

The following tasks must be performed.
1. If KHD =1 print a heading for the response results.

2. Print the response results.

27

10. CONCLUSIONS

10.1. GENERAL

It is now widely accepted that rational seismic-resistant design requires consideration of
inelastic effects, and may require nonlinear analysis. The DRAIN programs have proved to
be valuable tools not only for research but also for practical analysis.

Compared with the commercially available nonlinear analysis codes, which have been
developed mainly for finite element analysis, the DRAIN programs are relatively simple,
both to use and modify. They also have features that are specifically for nonlinear seismic

analysis of civil engineering structures.

DRAIN-2DX and DRAIN-3DX have received a great deal of use and seem to be reliable.
All the programs are very similar to one another and hence can be maintained with little
duplication of effort. Additional work is needed to complete the post-processing and
geometry plotting programs, and to add to the element library. It is hoped that other
researchers will find that the DRAIN programs are suitable platforms for developing new

elements.

There are many improvements that can be made to the DRAIN programs in the following

broad areas.

Post-processing.

New elements.

Element interface.
Efficiency and portability.
New features.

AN O T o A e

Documentation.

Some specific improvements are listed in the following sections.

272

10.2. POST-PROCESSING
10.2.1. General Purpose Post-Processors

The DRAIN programs produce files containing the model geometry (.GEO file), current
states (.SXX files), time-history results (RXX files) and result envelopes (.EXX files). At
present, however, there are no programs available to perform post-processing operations
on these files. Programs are needed (a) to plot the model geometry to help in checking the
input data, (b) to plot deformed shapes and element states, (c) to plot result time-histories,
and (d) to process result envelopes. Preliminary versions of programs for geometry and
time-history plotting have been developed, but additional work is needed before they can

be released for use.
10.2.2. Frame Definition in DRAIN-BUILDING

DRAIN-BUILDING does not currently include the concept of a frame. A feature to allow

frame results to be output is needed, presumably as a post-processing option.

10.3. NEW ELEMENTS

The element library for DRAIN-2DX currently consists mainly of simple elements that
have been adapted from the original DRAIN-2D program. A few elements have been
developed for DRAIN-3DX. These are lumped plasticity fiber-hinge beam-column
element, distributed plasticity fiber-section beam-column element and a bridge expansion
joint element. Some work is still needed to adapt these elements for DRAIN-2DX and
DRAIN-BUILDING. Additional elements must be developed. It should be noted,

however, that the development of a new element involves a great deal of effort.

273

10.4. ELEMENT INTERFACE
10.4.1. Weakness

In the development of a general purpose program for nonlinear analysis, the most
challenging task is the design of the element interface. The interface in the DRAIN
programs is basically sound, but it can be improved in a number of ways. The main

weaknesses in the current design are as follows.

1. In the static gravity (*GRAV) analysis, when element loads are applied the behavior
must remain linear. The element interface must be extended to account for nonlinear

behavior due to element loads.

2. In the state determination phase, the element resisting forces in the initial state must
be returned, plus the change in the resisting forces from the initial state to the current

state. This is an awkward procedure which should be improved.

3. Elements which have internal inertia can not be considered, because inertia forces
and stiffness contributions are not included in the current interface. Also elements
with internal viscous damping which is not of simple beta-K type can not be
considered. Changes in the interface are needed to accommodate more general

element types.
Some possible improvements are described in the following sections.
10.4.2. Storage of Element Location Matrix (LM array)

In earlier versions of DRAIN, the second variable in /INFEL/ had to be the "location
matrix," LM(ndof). This is no longer the case and the base program now sets up the LM
array through calls to LOCMAT in subroutine INEL##. Currently the LM array for each
element is stored following the /INFEL/ data in the /INFEL/ block, and is not visible to

274

the element subroutines. Since the LM array is actually present in the /INFEL/ block, it is

currently a part of the element interface. This storage scheme has caused difficulties.

A separate labeled common block, /[LOCELMY/, is proposed for storing the LM array. The
/LOCELM/ data will be stored following the /INFEL/ data in the base program buffer,
INFB (see KINFB in /STOR/ or /STOR®6/). This data will be restored to the /LOCELM/
block whenever it is required to process the current element. /LOCELM/ will not be a part

of the element interface, and will be used by the base program only.
10.4.3. Element End Displacements and Forces

Currently, arrays storing element end quantities (e.g., DDISE, DISE, VELE, RINIT,
RELAS and RDAMP) are in the argument lists of subroutines RESP##, FACT## and
FLIN##. These arrays are stored in the /DISVEL/ common block.

Additional arrays for element end accelerations (ACCE) and inertia forces (INER) could
be added to the /DISVEL/ block.

/DISVEL/ is currently not a part of the element interface, and the required arrays are -
passed through the argument lists of element subroutines. /DISVEL/ could be made a part
of the element interface to reduce the argument list lengths. Alternatively, subroutine calls

could be made from the element subroutines to fetch the required arrays.
10.5. EFFICIENCY AND PORTABILITY
10.5.1. MS DOS and MS WINDOWS Version

The Microsoft FORTRAN PowerStation, Version 1.0, is being used for compiling the
DRAIN programs for use on PCs. The programs compile without errors whether
compiled under debugging or release (which optimizes for speed and results in smaller
object code) options. The programs compiled under debugging option run perfectly, but
the programs compiled under the release option do not run properly. It is not clear

whether this is due to coding errors or problems in the operating system or compiler.

275

10.5.2. Large Capacity Equation Solver for DRAIN-3DX

In DRAIN-3DX the stiffness matrices are stored in memory. This limits the size of the

problems that can be solved. A large capacity out-of-core equation solver is needed.

10.5.3. Large Capacity Eigensolver

In DRAIN programs the eigenproblem is converted to flexibility form and solved using
Tridiagonal QR iteration. This is efficient for up to about 300 mass DOFs, but is inefficient
for large problems. Also the present eigensolver requires that the flexibility matrix be
entirely in memory.

It is proposed to use Lanczos or subspace iteration eigensolver in future versions. This
would allow very large problems to be solved, and would not require that the flexibility

matrix be formed.
10.5.4. Detection of Data Errors

The programs detect many errors in the input data. However, it is still possible for the

programs to "crash", and additional checks are needed.
10.5.5. Execution Speed

Currently the DRAIN programs when compiled by MS FORTRAN PowerStation Version
1.0 under release option (which optimizes for speed) do not run properly. It may be
possible to save significant time on PCs by using more efficient assembly language
routines for input-output to scratch files instead of FORTRAN READ and WRITE
statements. The argument lists for some element subroutines are long, and it may be more
efficient to use labeled common blocks. Some calls to element subroutines use IF-THEN
constructs rather than CASE-OF (computed GO TO) constructs, which is inefficient. It

may be possible to reduce the maximum number of file units that are open at any time. It is

276

possible to handle linear elements more efficiently. These and other efficiency

improvements could be made.
10.6. NEW FEATURES
10.6.1. Coupled Mass

In present programs the masses are lumped at the nodes, which results in a diagonal mass
and alpha-M damping matrices. The structural mass actually arises from the masses of the
structural members, and if a consistent mass theory is used at the element level, coupled
matrices result. Coupled matrices also result when masses at slaved nodes are transformed

to the master node (the programs currently ignore off-diagonal terms in this case).

A consistent mass matrix requires more memory and some mass related computations are
more lengthy, but otherwise there is no reason why consistent mass could not be
considered in nonlinear dynamic analysis. However, the current eigensolver requires a
diagonal mass matrix and would need to be changed. The element interface must also be

extended to allow element masses to be returned to the base program.

The advantages of having coupled mass and damping matrices are that inertia forces can
be modeled at the element level and a more accurate representation of the mass can be
obtained. This feature becomes more important if complex substructured elements are

developed, because such elements can have substantial internal inertia effects.
10.6.2. Free-Form, Spreadsheet and/or Graphical Input

The programs all require a formatted input. This is admittedly antiquated, although the
input format is much more flexible than the original DRAIN-2D format (sections of the
data are now separated by key words; it is no longer necessary to specify the number of
nodes, elements, etc.; comments can be added to the data; and the nodes need not be

numbered sequentially).

277

There is a need for a free-form input option for those users who prefer it. A spreadsheet

type input option and/or a graphical input option would be particularly convenient.
10.6.3. Iteration on Unbalance

By using the event-to-event strategy, the programs seek to prevent significant unbalanced
forces from developing. However, the strategy does not always achieve this goal,
especially when there are substantial P-delta effects. An option to iterate on the unbalance

would be useful in such cases.
10.6.4. Improved Response Spectrum Analysis

The complete quadratic combination (CQC) rule could be added as an option for

combining modal responses in response spectrum analysis.
10.6.5. Improved Options for Damping Losses

The beta-K damping provision is included to account for miscellaneous energy losses
which are not included in the nonlinear model. Unfortunately this is not a very rational
method, and it does not give the analyst much flexibility. Improvements should be
possible. One possibility is to provide for miscellaneous hysteretic, rather than viscous,

losses.
10.6.6. Integration of Analyses

Currently, three distinct static analyses (i.e., static gravity, static and rest) are supported
and there are separate driver subroutines to carry out these analyses. It is possible to

replace these subroutines by an integrated driver.

The four distinct dynamic analyses (i.e., ground acceleration, ground displacement, initial

velocity and dynamic force) are already supported by an integrated driver.

278

10.6.7.‘Simpler Structure Section Definition

When a structure section is defined it is currently necessary to input the location where
each cut-element intersects the section plane, and also to input a force transformation
matrix. Some or all of this input data could be calculated by the program. Note, however,
that this is not an easy task, since the program must include many element types, including

zero length elements.
10.6.8. Extension to Bridge Analysis

Program DRAIN-3DX has been used for nonlinear bridge analysis. However, it is not very
efficient, because linear elements are treated almost similar to nonlinear elements. A new
program, DRAIN-BRIDGE, with an option for linear substructuring and/or efficient
treatment of linear elements could be developed. In this program a bridge could be
modeled as an assemblage of support structures and decks to simplify the model
definition. This is similar to the modeling of a building by floors and interfloors in DRAIN-
BUILDING. Additional efficiency could be obtained if the spans are assumed to be linear
(as will often be the case), by treating each span as a linear substructure and condensing

out its internal DOFs.
10.6.9. Nonlinear Dynamic Analysis by using Ritz Vectors

It has been demonstrated that nonlinear dynamic analysis can be efficiently conducted by
using Ritz vectors. In such an analysis the deformed shape of the structure is constrained
to lie in the vector space spanned by the chosen Ritz vectors. The analysis can be

misleading if the structure behavior is not well-represented in the Ritz vector space.

Provision for nonlinear dynamic analysis by using Ritz vectors would be useful. Guidelines
for choosing Ritz vectors would also be required.

279

10.7. DOCUMENTATION

This report documents the program design. Other reports include (a) user guides for the
base programs, (b) examples to guide users in developing nonlinear models and
performing analyses, (c) programming instructions for developers of new elements, (d)
static and dynamic analysis theory, and (e) modeling guidelines for developers of new
elements. Some of these reports are not yet complete. There is also a need for additional

examples to guide users in the effective use of nonlinear analysis.

280

REFERENCES

. Allahabadi, R., "DRAIN-2DX -- Seismic Response and Damage Assessment for 2D
Structures," Ph.D. dissertation, University of California, Berkeley, 1987.

. Allahabadi, R., and G. H. Powell, "DRAIN-2DX User Guide," Report No. UCB /
EERC-88/06, March 1988.

. Bathe, K. J,, and E. L. Wilson, " Numerical Methods in Finite Element Analysis,"
Prentice Hall, Inc., NJ, 1976, |

. Clough, R. W., and J. Penzien, "Dynamics of Structures," McGraw-Hill, Inc., 1975.

. Fuchs, G. F, J. R. Roy and E. Schrem, "Hypermatrix Solution of Large Sets of
Symmetric Positive Definite Linear Equations,” Computer Methods in Applied
Mechanics and Engineering, pp. 197-206, 1972.

. George, A, and Liu, J. W-H, "Computer Solution of Large Sparse Positive Definite
Systems," Prentice Hall, Inc., Englewood Cliffs, NJ 07632, 1981.

. Golafshani, A., "A Computer Program for Inelastic Seismic Response of Structures,"
Ph.D. dissertation, University of California, Berkeley, 1982. |

. Golub, G. H,, and C. F. Van Loan, "Matrix Computations", Second Edition, Johns
Hopkins University Press, 1989.

. Jennings, A., "A Compact Storage Scheme for the Solution of Symmetric Linear
Simultaneous Equations,” Comput. Journal 9, pp. 281-285, 1966.

10. Powell, G. H., "DRAIN-2D User Guide," Report No. UCB / EERC 73-22,

Earthquake Engineering Research Center, University of California, Berkeley, CA,
April 1973.

11. Prakash, V., "Dynamic Response Analysis of Inelastic Building Structures: The

DRAIN Series of Computer Programs,” Ph.D. dissertation, University of California,
Berkeley, 1992.

12. Prakash, V., and G. H. Powell, "DRAIN-2DX: Base Program User Guide, Version

1.10," a Computer Program distributed by NISEE / Computer Applications,
281

Department of Civil Engineering, University of California, Berkeley, CA, November
1993.

13. Prakash, V., and G. H. Powell, "DRAIN-3DX: Base Program User Guide, Version
1.10," a Computer Program distributed by NISEE / Computer Applications,
Department of Civil Engineering, University of California, Berkeley, CA, November
1993.

14, Prakash, V., and G. H. Powell, "DRAIN-BUILDING: Base Program User Guide,
Version 1.10," a Computer Program distributed by NISEE / Computer Applications,
Department of Civil Engineering, University of California, Berkeley, CA, November
1993.

282

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

