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RESEARCH ARTICLE | BIOPHYSICS AND COMPUTATIONAL BIOLOGY

Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of 
millions of people worldwide. Although records of drug-resistant mutations (DRMs) 
have been extensively tabulated within public repositories, our understanding of the 
evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, 
the interaction between a DRM and other residues in HIV-1 protein sequences, is 
key to the temporal evolution of drug resistance. We use a Potts sequence-covariation 
statistical-energy model of HIV-1 protein fitness under drug selection pressure, which 
captures epistatic interactions between all positions, combined with kinetic Monte-Carlo 
simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs 
as they arise in an ensemble of drug-naive patient protein sequences. We follow the 
time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary tar-
gets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated 
with their observed acquisition rates reported in the literature when drug pressure is 
applied. This result highlights the central role of epistasis in determining the kinetics 
governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as 
soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory 
mutations that appear only after prolonged drug pressure. We provide a foundation for 
using computational methods to determine the temporal evolution of drug resistance 
using Potts statistical potentials, which can be used to gain mechanistic insights into 
drug resistance pathways in HIV-1 and other infectious agents.

HIV | epistasis | drug-resistance mutation (DRM) | kinetic Monte-Carlo (KMC) |  
timeline of resistance

The HIV type 1 (HIV-1) currently infects ∼40 million people worldwide. In the absence 
of a cure, antiretroviral therapy (ART) presents the primary treatment option (1). However, 
all antiretroviral drugs, including those from newer drug classes, are at risk of becoming 
partially or fully inactive due to the emergence of drug-resistant mutations (DRMs) (2–5). 
The rapid mutation rate of HIV-1 plays a major role in the failure of ARTs among infected 
patients, leading to DRMs occurring in response to drug selection pressure (6, 7).

The viral enzymes protease (PR), RT, and Integrase (IN), which are encoded by the Pol 
gene of HIV-1, have been the major focus of ART over the past several decades (8–14). 
The fitness landscape of these enzymes is determined by the combined effects of the host 
immune response and selection pressure from ART, and how these interplay with the 
proteins’ structure, function, thermodynamics, and kinetics (15–20). As a result, complex 
mutation profiles often arise in these proteins located both near and distal from the active 
site (17, 21, 22). These profiles can be observed in HIV-1 patient protein sequences that 
are available on large public databases such as the Stanford HIV-1 drug resistance database 
(HIVDB) (23) and the Los Alamos HIVDB (24, 25), from which we can derive specific 
patterns and relationships.

Primary DRMs generally occur with a fitness penalty in viral sequences found in 
drug-naive patients. The effect of a mutation, however, is dependent on the entire genetic 
background in which it occurs, a phenomenon known as “epistasis”. Due to epistatic 
interactions with the sequence background, primary DRMs can become favorable (26, 
27) in sequence backgrounds in which accessory mutations accumulate, such that there 
is a fitness penalty for reversion to the wild-type (WT) residue that leads to evolutionary 
trapping or “entrenchment” of the primary mutation (28–32). There is also feedback 
between the appearance of primary and background mutations, with the accumulation 
of accessory mutations increasing the likelihood that the primary mutation also arises 
(“contingency”), and vice versa. In the presence of drug pressure, this leads to a complex 
interplay between the functions of the primary and accessory mutations (33, 34). 
Theoretical considerations suggest that epistasis can slow the rate of evolution by creating 
a rugged fitness landscape with low-fitness intermediate states forming barriers between 
local fitness optima (35, 36). Here, we study such phenomena using empirical data.
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Studies have illustrated the effects of epistasis on the fitness 
landscape of HIV-1 proteins (29, 34, 37–42), but it is unclear 
why some DRMs are acquired rapidly while others are acquired 
much more slowly, and how this is influenced by the epistatic 
network. Recently, we introduced a kinetic model that describes 
the evolution of HIV-1 sequences on a fitness landscape con-
structed using a Potts sequence-covariation statistical energy 
model (43) inferred from drug-experienced patient protein 
sequences in the Stanford HIVDB (7, 23). This kinetic evolution 
model has the key feature that it models epistasis between all 
positions in the sequences. We have previously shown that this 
feature is critical for making the model numerically consistent 
with the observed between-host sequence mutation covariation 
statistics obtained from public repositories, such as the Stanford 
HIVDB. When simulating many long evolutionary trajectories 
in parallel by our method, starting from a drug-naive sequence 
ensemble and collecting the final sequences, the mutational sta-
tistics (frequencies of single point and higher-order combinations 
of mutations) of the generated sequences match those of the 
drug-experienced dataset that was used to train the fitness model. 
To establish a baseline for understanding how epistasis affects 
kinetics associated with the development of drug resistance, we 
previously used this model to follow the kinetics of a DRM within 
the drug-experienced ensemble of patient protein sequences and 
concluded that epistasis has a strong effect on evolutionary dynam-
ics (37). However, the emergence of drug resistance is best under-
stood in the context of a changing environment as the virus is 
newly exposed to drug treatment. In the current work, we focus 
on the kinetics of the emergence of drug-resistance mutations 
(DRMs) in an ensemble of drug-naive HIV-1 patient sequences 
evolving under the influence of newly applied drug pressure.

Our goal is to use the kinetic model to probe the relative times 
at which DRMs arise in HIV-1 under drug selection pressure. We 
focus on 52 DRMs in the three HIV-1 drug-target enzymes 
encoded by the Pol gene (23). These 52 DRMs are chosen based 
on two primary criteria: They are classified in the Stanford HIVDB 
as “primary” mutations that generally affect drug susceptibility ≥5 
to 10 fold on their own (23), and they are observed in drug- 
experienced patients with frequencies ≥1%. The principal result 
of our study is that the rates at which DRMs are acquired in 
initially drug-naive strains predicted using our model are highly 
correlated with the corresponding observed acquisition rates that 
are reported in the literature. This suggests that the rates at which 
DRMs are acquired depend strongly on epistatic interactions 
between the focal mutation and the other residues in the sequence 
background. The acquisition rates cannot be explained by the 
equilibrium frequency of a DRM, which is a proxy for its fitness 
in the drug-experienced patient population after averaging over 
sequence backgrounds or by features of the genetic code such as 
nucleotide changes (Δnuc) at the codon level, or transitions (Ti) 
vs. transversions (Tv). We propose that some DRMs are acquired 
more slowly because they face an “epistatic barrier”, and outline 
how this arises. The Potts model parameterized on drug-experienced 
HIV-1 patients, combined with kinetic Monte-Carlo (KMC) 
techniques, is a powerful predictor of the relative DRM acquisi-
tion times leading to drug resistance.

Results

Relative Rates at Which HIV-1 DRMs Are Acquired with a KMC 
Evolution Model Match the Literature. We follow the temporal 
evolution of a set of primary DRMs in HIV-1 PR, RT, and 
IN using a KMC method to evolve, in parallel, an ensemble 

of initially drug-naive consensus sequences. Our KMC model 
employs a coarse-grained representation of the intrahost HIV-1 
evolutionary process, as described in more detail in Computational 
Methods. During HIV-1 infection, many viral variants are present 
in a host, but the sequences of these within-host variants are 
generally ~99% identical (44). This stands in contrast to the 
sequence identity between evolving viral populations in different 
hosts (between-hosts), which can be much lower (e.g. 90% for 
PR) (45). These observations suggest that a host’s viral population 
can be represented at coarse grain by its population consensus 
sequence. Indeed, in many HIV-1 sequence datasets, such as 
derived from the Stanford HIVDB, a population consensus 
sequence is effectively sampled from each host by averaging over 
the viral diversity within the host. We model the evolution of 
an ensemble of consensus sequences representing multiple host 
populations, approximating this process as a series of point-
mutation events occurring at a constant rate in each consensus 
sequence, consistent with observations (46), and the mutations are 
either fixed or lost according to the fitness landscape inferred based 
on between-host sequence data. Our KMC scheme models this as 
a series of point-mutation proposals for each sequence, which are 
either accepted or rejected according to the Metropolis Criterion, 
analogous to fixation or loss of the mutant strain in a host viral 
population. While this model coarse-grains several details of the 
intrahost HIV-1 evolutionary dynamics, for instance, clonal 
competition, recombination, immune-pathogen coevolution, 
spatial and temporal drug heterogeneity, and nucleotide-level 
biases, it faithfully reproduces the observed pairwise and higher-
order mutation patterns of the data.

We model the scenario in which the initially drug-naive 
sequences are first exposed to drugs upon starting ART. These 
drug-naive sequences have previously evolved in a drug-naive fit-
ness landscape, which we do not explicitly model here. Upon 
initiation of ART, the new environment imposes a drug-experienced 
fitness landscape. We model this by initializing the trajectories 
starting with the sequence ensemble taken from the drug-naive 
sequences collected in the Stanford HIVDB and follow their evo-
lution forward in time under the drug-experienced Potts fitness 
model, which was inferred using the drug-experienced sequence 
dataset collected in the Stanford HIVDB.

The drug-experienced Potts statistical energy model captures 
the sequence covariation due to selection pressure in the presence 
of drugs. The Potts “statistical” energy E(S) of a sequence S 
(Computational Methods) predicts how sequences will appear in 
the dataset with probability P(S) ∝ e−E (S) such that sequences 
with favorable statistical energies are more prevalent in the mul-
tiple sequence alignment (MSA), and thus more fit. This overall 
fitness predicted by the Potts model, which is inferred based on 
observed mutation prevalence, is the net result of many pheno-
typic contributions, including both the “replicative fitness” and 
“transmission fitness” commonly measured by virological assays 
(47–49). A key feature of the Potts model of fitness is that the 
effect of a mutation on E(S) is “background-dependent”. This 
means that a mutation at one position will affect the likelihood 
of mutations at all other positions, both directly and indirectly, 
through chains of epistatic interactions involving one or many 
intermediate residues.

Fig. 1 illustrates how drug exposure drives the appearance of 
DRMs in general, as demonstrated with the enzyme RT. The 
distribution of the total number of mutations per sequence meas-
ured with respect to the WT HIV-1 subtype-B consensus sequence 
(hereafter referred to more simply as the WT) evolves from a 
narrow initial distribution in drug-naive sequences with a peak at 
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~six mutations and a maximum of ~20 mutations to a much 
broader distribution in drug-experienced sequences with a peak 
at ~12 mutations and a maximum of more than 30 mutations. 
Corresponding plots for PR and IN are shown in SI Appendix, 
Figs. S1 and S2. We note that IN is more conserved under drug 
pressure than either PR or RT.

We compute a characteristic acquisition time for each primary 
DRM in PR, RT, and IN from the KMC simulations using an 
exponential fit for the change in the frequency of the DRM start-
ing from the initial drug-naive ensemble and ending in the final 
drug-experienced state (SI Appendix, Fig. S3). We follow 52 pri-
mary DRMs with a wide range of acquisition times in the clinical 
literature: 13 protease inhibitor (PI) DRMs, 14 nucleoside-analog 
RT inhibitor (NRTI) DRMs, 11 nonnucleoside RT inhibitor 
(NNRTI) DRMs, and 14 integrase strand-transfer inhibitor 
(INSTI) DRMs. Fig. 2 shows the correspondence between the 
acquisition times to acquire these 52 major DRMs estimated from 
the KMC simulations, alongside the corresponding timelines 
reported in the literature (SI Appendix, Fig. S3 and Tables S1–S4). 

The Spearman correlation coefficients between the KMC simu-
lated and observed DRM acquisition times are listed in Table 1, 
and correlation plots are shown in Fig. 3. The average Spearman 
correlation coefficient for all 52 DRMs in the three HIV-1 viral 
enzymes is ρ = 0.85, P << 0.001 (for individual enzymes, ρ = 0.75, 
0.92, and 0.90 for PR, RT, and IN, respectively).

The very strong correlation between the predicted and observed 
acquisition times for primary DRMs is noteworthy. The acquisi-
tion times for each DRM in PR, RT (NRTI-selected), RT 
(NNRTI-selected), and IN are shown in SI Appendix, Tables S1–
S4). The time span to acquire DRMs is large, and the fastest 
DRMs are acquired ~20 times more rapidly than the slowest 
DRMs. To illustrate the temporal evolution of DRMs with a con-
trasting timeline of resistance, we divide the primary DRMs into 
three categories based on their acquisition times in the literature: 
fast, between 0 to 3 mo; intermediate, between 4 to 5 mo; and 
slow, more than 6 mo. The acquisition times (τ) from our simu-
lations are correspondingly classified for each category, between 
~1 to 10 for fast, ~10 to 24 for intermediate, and >24 for slow.

Fig. 1.   The distribution of the total number of mutations in HIV-1 RT in (A) the drug-naïve MSA, and (B) the drug-experienced MSA available from the Stanford 
HIVDB (22, 24).

Fig. 2.   The literature correspondence with the KMC acquisition time of the major (A) PR DRMs in response to PIs, (B) RT DRMs in response to NRTI, (C) RT DRMs 
in response to NNRTI, and (D) IN DRMs in response to INSTIs. The height of each bar represents the time constant (τ) calculated from KMC simulations. The 
color bar represents the time required for each DRM to emerge in the patient’s population under drug selection pressure, which is collected from the literature.

http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
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Among the NRTI selected primary DRMs, 3 are acquired rap-
idly, while 10 are acquired slowly. The DRMs K65R, M184V, and 
M184I are acquired within ~1.5 to 3 mo after initiation of therapy 
with KMC time constants ranging between ~4 to 8 KMC time 
units, whereas T215F/Y, L74V/I, K70R, K219E/Q, D67N, and 
L210W are acquired between 9 to 20 mo after initiation of therapy 

with KMC time constants between 30 to 50 KMC time units 
(SI Appendix, Tables S2 and S3). The relative times required for 
acquisition of the major drug resistance mutations in PR and IN, 
(SI Appendix, Tables S1 and S4) are also recapitulated by the KMC 
simulations. We conclude from the results summarized in 
SI Appendix, Fig. S3 and Tables S1–S4 that the KMC model of 
evolution of drug resistance mutations in RT captures fundamen-
tal kinetic features of the mutational landscape for this enzyme 
evolving under drug pressure, which distinguishes DRMs that are 
acquired slowly from those acquired rapidly, as reported in the 
literature. The KMC simulations correspond to a fitness-based 
coarse-grained epistatic model of the HIV-1 evolutionary process 
under drug selection pressure. We have found that despite this 
coarse-graining, the model is an excellent predictor of DRM 
acquisition times.

Slowly Acquired DRMs Have an Epistatic Barrier to Resistance. 
We next investigate the reasons why some DRMs arise fast 
whereas others arise slow under our model. We find that the 
acquisition time is best explained by an epistatic barrier effect. 
Specifically, DRMs that are acquired slowly are contingent on 
the acquisition of accessory mutations that must arise first as the 
drug-naive ensemble evolves under newly applied drug selection 
pressure, while DRMs that are acquired rapidly have higher fitness 
after drug pressure is applied even before accessory mutations 
accumulate. Regardless of whether the DRMs are acquired rapidly 
or slowly, accessory mutations are eventually acquired, and they 
function to trap or entrench the DRMs (SI Appendix, Fig. S5) in 

Table 1.   Spearman’s rank correlation coefficient (ρ) test
Models Targets ρ P-value

KMC-predicted time constant (τ) All DRMs 0.85 1 × 10−22

PR 0.75 1 × 10−05

RT 0.92 1 × 10−16

IN 0.90 1 × 10−08

Mutant prevalence (drug 
experienced frequency)

All DRMs 0.26 0.05
PR 0.30 0.29
RT 0.47 0.02
IN 0.02 0.93

Genetic code (Ti vs. Tv) All DRMs 0.13 0.33
PR 0.18 0.54
RT 0.23 0.25
IN 0.15 0.50

Genetic code (Δnuc) All DRMs 0.14 0.34
PR 0.23 0.45
RT 0.11 0.57
IN 0.29 0.15

Fig. 3.   Spearman rank-order correlations between acquisition times reported in the literature and our KMC simulations for DRMs. (A) All mutations, (B) PR  
(C) RT (RT/NRTI+NNRTI) and (D) IN. The gray dashed lines along the abscissa axis indicate the ranges in acquisition times reported the literature when multiple 
literature reports are available; along the ordinate axis represent the errors in the obtained computational time constants from the best fit curves in SI Appendix, 
Fig. S3. Sampling alternate sets of acquisition times uniformly from within the ranges gives largely similar correlation coefficients (mean Spearman’s rank-order 
correlation coefficient = 0.83, 0.72, 0.95, 0.93 for panels A–D, respectively from 1,000 samples).

http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
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a subset of the drug-experienced sequence ensemble wherein they 
appear with high probability (34).

In Table 1, we first show that acquisition time is not explained 
by various simpler hypotheses. We carried out tests to determine 
whether acquisition times are affected by other features that have 
been suggested to affect these times but are not explicitly accounted 
for in our model, including the drug-experienced frequency of 
the DRM, biases due to kinetic effects associated with nucleotide 
transition vs. transversion rates, or differences in the rates of codon 
changes due to single vs. double-nucleotide mutations. From the 
low correlation between these properties and the times to acquire 
corresponding DRMs reported in the literature (Table 1), we con-
clude that these are not major determinants of the rates at which 
drug resistance is acquired, in contrast to the KMC-predicted time 
constant, which is highly correlated. Notably, even if a DRM has 
high fitness in the sense that it ultimately rises to high frequency 
after drug exposure, this does not imply it is a fast DRM, because 
the drug-experienced “mutation prevalence” is poorly correlated 
with reported acquisition time. This suggests that more complex 
epistatic effects control DRM acquisition times.

To measure how epistatic constraints change as the sequences 
evolve, we define the “adaptive-frequency”, �i

�
(S)   , which reflects 

the likelihood of a DRM α to occur at position i in a specific 
sequence S, and differs for each sequence due to epistasis. In other 
words, if residue positions other than i were to be held fixed in 
sequence S, the adaptive-frequency �i

�
(S) measures the equilib-

rium frequency at which position i will have mutated to residue 
α in the drug-experienced fitness environment. It can be thought 
of as a proxy for the viral fitness of the DRM in that sequence 
background due to a combination of selection pressures including 
drug-pressure and epistatic constraint. We define it as:

	 [1]

where Si
�
   is the sequence S with position i mutated to character 

α, E(S) is the Potts statistical energy of sequence S parameterized 
on the drug-experienced patient sequence data, which includes 
both position-dependent “field” and epistatic “coupling” terms 
between the focal position and all other positions; the lower sum 
runs over all possible residues at position i.

Eq. 1 gives �i
�
(S)   for a specific background S, and we also 

compute the mean adaptive-frequency F i
�
(t ) = ⟨�i

�
⟩t   over all 

sequences in the ensemble at time t. The mean adaptive-frequency 
of a DRM only changes over time due to changing epistatic con-
straints caused by other mutations arising in the sequence back-
grounds. As a limiting case at long times after all the residue 
positions equilibrate, the mean adaptive-frequency must equal the 
equilibrium frequency of the mutation observed in the Stanford 
HIVDB of drug-experienced patient sequences, that is: 
F i
�
(∞) = f i

�
(∞)   where f i

�
(t )   is the frequency of residue α at posi-

tion i in the ensemble at time t, i.e. the average over the indicator 
function f i

�
(t ) =

⟨
�i
�

⟩
t
 , which at t = 0 equals the frequency in 

the drug-naive dataset and at t =∞ that in the drug-experienced 
dataset. Note that at t = 0 , F i

�
(0) ≠ f i

�
(0).

In Fig. 4, we track how the adaptive-frequency of various 
DRMs changes over time due to changing epistatic constraints, 
averaged over an ensemble of trajectories evolving under the 
drug-experienced Potts statistical potential from the drug-naive 
initial state. We simultaneously track each DRM’s frequency over 
the same ensemble, computed by averaging an indicator function 

that is 1 when the DRM is present and 0 otherwise. We empiri-
cally observe that the DRM frequency initially quickly changes 
to track its adaptive-frequency, which itself changes more slowly 
as mutations accumulate in the sequence background, such that 
at long times F i

�
(∞) = f i

�
(∞) , as expected. The fact that the DRM 

frequency depends on the slowly changing epistatic constraint 
indicates the latter a major controlling factor of DRM 
acquisition.

To illustrate this, we contrast a “slow” DRM and a “fast” DRM 
for each target protein. These include D30N (fast) and V32I (slow) 
in HIV-1 PR in response to PIs, M184V (fast) and D67N (slow) 
in RT in response to NRTIs, K103N (fast) and Y181C (slow) in 
RT in response to NNRTIs, and N155H (fast) and Q148H (slow) 
in IN in response to INSTIs. The fast/slow pairs were selected such 
that their equilibrium frequencies in the initial (drug-naive) and 
final (drug-experienced) states observed in the Stanford HIVDB 
are approximately the same. We refer the reader to SI Appendix, 
Tables S1–S4 for a list of the 52 DRMs that we modeled, together 
with their drug-naive and drug-experienced frequencies, and their 
adaptive-frequency following the application of drugs but before 
any additional mutations can accumulate.

We observe that the fast DRMs have high initial adaptive- 
frequency, close to their final equilibrium frequency, in contrast 
to slow DRMs whose adaptive-frequency is initially relatively low 
but gradually rises as the epistatic constraint is relaxed and the 
sequence backgrounds evolve. We refer to this phenomenon as an 
epistatic barrier which we find is a central feature of all the DRMs 
that are acquired slowly. For instance, the fast PR D30N mutation 
is initially present at less than 1% frequency in the drug-naive 
ensemble at t = 0 but has a high initial mean adaptive-frequency 
of F 30

N
(0) = 6% , close to its final equilibrium drug-experienced 

frequency of 8% (Fig. 4A). Its frequency, i.e., its indicator function 
average, quickly increases to match its adaptive-frequency, and 
both subsequently increase by a small amount to their final value 
of F 30

N
(∞) = f 30

N
(∞) = ∼ 8% as additional mutations arise in 

the sequence backgrounds. In contrast, the slow PR V32I muta-
tion initially has a low mean adaptive-frequency of F 32

I
(0) < 1% 

after drug pressure is applied, relative to its final equilibrium fre-
quency of ~5%, and both its frequency and adaptive-frequency 
slowly rise to this much larger final value. This suggests the slow 
DRMs are contingent on the appearance of other mutations in 
the sequence background following the application of drug pres-
sure. The same behavior is observed for other protein targets in 
Fig. 4 B–D.

In SI Appendix, we show that the ensemble average behavior of 
the adaptive-frequency can also be understood in terms of Potts 
energy values E(S), by examining how the distribution of DRM 
fitness effects ΔE (SI Appendix, Fig. S4) of the sequence ensemble 
changes over time. Here ΔE is the Potts energy difference between 
a sequence with the DRM and the same sequence with the WT 
residue at the DRM position. A concise summary of the change 
in ΔE distributions under the drug experienced Hamiltonian for 
the fast DRM M184V is tabulated in SI Appendix, Table S5, cor-
responding to adaptive-frequency values shown in Fig. 4B.

The analysis above leads us to define a “constraint ratio”, which 
measures the fraction of the total change in frequency of a DRM 
that is explained by the relaxation of epistatic constraint. We expect 
DRMs with a high constraint ratio will be slow to acquire. The 
results in Fig. 4 show how each DRM’s overall change in frequency 
upon drug exposure can be understood as a sum of two effects:  
1) The new selective pressures of the drug exposed environment 
cause an immediate initial increase in DRM adaptive-frequency 

�i
�
(S) =

e−E (S
i
�
)

∑q

�
e
−E (Si

�
)
,

http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
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compared to its frequency in the drug-naïve environment. This is 
represented by the dashed green/blue arrows in Fig. 4, equal to 
F i
�
(0) − f i

�
(0)   . This indicates how, before any other mutations occur 

in the sequence background, many DRMs would increase in fre-
quency upon exposure to drugs, for instance by providing resistance 
to the drug directly, even if the stability of the target protein is 
adversely affected. 2) Subsequently, there is a further increase in 
adaptive-frequency or fitness caused by the relaxation of epistatic 
constraint through mutations evolving in the sequence background. 
This is represented by the solid black/orange arrows in Fig. 4, equal 
to f i

�
(∞) − F i

�
(0) . A key distinguishing feature of the fast vs. slow 

DRMs is that for slow DRMs a large fraction of the overall change 
in frequency (dashed arrow + solid arrow) at long times is accounted 
for by the relaxation of epistatic constraint (solid arrow). Indeed, 
we find this constraint ratio, (f i

�
(∞) − F i

�
(0))∕(f i

�
(∞) − f i

�
(0) ), 

strongly correlates (SI Appendix, Fig. S6) with the time constant τ 
computed from the kinetic simulations. The fact that this ratio, 
which measures the effect of epistatic constraints induced through 
the coupling terms of the Potts model, correlates well with 
literature-reported DRM acquisition time supports our hypothesis 
that an epistatic barrier is the major determinant of DRM acqui-
sition times.

We also tested whether simpler measures of DRM fitness are 
correlated with DRM acquisition time, which are presented in 
SI Appendix, Table S6. However, we did not find strong correlations 
between any other measures and the DRM acquisition time. These 
include the final mutation prevalence of the DRM, f i

�
(∞) , or equiv-

alently its final adaptive-frequency F i
�
(∞) , with correlation 0.26, 

the overall increase in frequency of the DRM reflecting its net 
change in fitness, f i

�
(∞) − f i

�
(0) , with correlation 0.24, or its initial 

adaptive-frequency F i
�
(0) with correlation 0.36. Unlike the 

constraint ratio, these values do not measure how much of the 
DRM’s increase in frequency is due to relaxation of epistatic con-
straint, which appears to be the major determinant of whether a 
DRM is fast or slow. Fig. 4 suggests why this is the case. The DRM 
frequency evolves to quickly track the adaptive-frequency, and we 
find the adaptive-frequency only changes gradually as mutations in 
the sequence background reduce the epistatic constraint, so DRMs 
where this subsequent gradual change is most important will be 
slower to acquire.

Position-Specific Contributions to the DRM Fitness. We next 
demonstrate how the Potts kinetic model can be analyzed to 
determine which patterns of mutations cause the epistatic barrier. 
Taking advantage of its simple and interpretable form, we define 
a score to estimate the contribution of each background position 
to the epistatic barrier for a focal DRM. For a given sequence, 
we compare the adaptive-frequency for the DRM at position i in 
that sequence to the expected adaptive-frequency if background 
position j were mutated to other residues in proportion to which 
they appear in the equilibrated (drug-experienced) sequence 
ensemble. This score is defined as

	 [2]

where i is the DRM position, α the DRM mutation, j the 
background position, and f j

�
 is the frequency of residue β at 

position j in the drug-experienced ensemble.
This measures the average change in the sequence-specific 

adaptive-frequency at position i from its initial value caused by 
letting only position j evolve to the drug-experienced ensemble 

Δ�
ij
�(S) =

[
∑

�

f
j

�
(∞)�i

�

(
S
j

�

)]
− �i

�
(S),

Fig. 4.   Temporal evolution of the mean adaptive-frequency F�
i
(t) and frequency f a

i
(t) of a mutation as a function of the number of attempted mutations per 

position for two differently evolving DRMs. The panels refer to (A) D30N (fast) and V32I (slow) DRMs in PR, (B) M184V (fast) and D67N (slow) DRMs in RT in 
response to NRTIs, (C) K103N (fast) and Y181C (slow) DRMs in RT in response to NNRTIs, and (D) N155H (fast) and Q148H (slow) DRMs in IN in response to INSTIs. 
The arrows in the Right side panel of each plot illustrate schematically the initial adaptive-frequency (Initial increase) relative to initial drug-naïve frequency f a

i
(0) 

immediately after exposure to drugs at time 0 (dashed green/blue arrow for fast/slow) and the subsequent increase (black/orange solid arrow for fast/slow) 
from this value to the final value (  f a

i
(∞) ) after the background has had time to equilibrate. The initial adaptive-frequency F�

i
(0) for the faster-evolving DRMs is 

much closer to the final drug-experienced frequency (dashed green arrows are larger than the dashed blue arrows). The darker orange arrow at the tip of the 
orange line shows the additional increase in frequency for the slow DRMs after 100 attempted mutations per position. Further discussion about the position-
specific contributions of the additional mutations necessary for a focal DRM to occur are discussed in Fig. 5.

http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
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frequencies, keeping all other residues in the sequence fixed. In 
this way, only positions j, which are both epistatically coupled to 
position i and have mutations β that arise during evolution to the 
drug experienced ensemble, will have significant Δθ(S) values. 
Further, we average Δ�ij�(S)   over the drug-naive sequence ensem-
ble to give a “change in fitness” score ⟨Δ�ij�⟩naive   . The sum of this 
score over all positions j, 

∑
j ⟨Δ�

ij
�⟩naive will approximate the net 

change in adaptive-frequency of the DRMs at position i due to 
its direct coupling to all positions j as the ensemble evolves under 
drug pressure to its drug-experienced values (solid arrows).

The coupled mutations identified with Eq. 2 are shown in Fig. 5 
for pairs of fast and slow DRMs from each protein target. The 
additional coupled mutations are largely consistent with the lit-
erature, in that numerous studies identify them as being associated 
with each focal DRM. This observation shows that the Potts pre-
dicted epistatic barrier can be rationally decomposed and addi-
tionally implies that such analyses can be used to quantitatively 
identify and study novel couplings that were previously missed. 
SI Appendix, section S1 contains a detailed discussion about the 
literature survey pertaining to every pair of fast and slow mutations 

featured in Fig. 5, along with an additional discussion on the RT/
NRTI Q151M complex (SI Appendix, Fig. S7). This decomposi-
tion is not only broadly consistent with the literature but also 
quantifies the relative strength of the coupled interactions for each 
DRM and specifically identifies “directly” coupled positions as 
opposed to mutations indirectly coupled through an epistatic 
network.

Structural Underpinnings for the Rate of Emergence of DRMs. 
Our study highlights the central role epistasis plays in kinetics 
leading to major DRMs in HIV, which can span a large time 
range. However, these predictions do not explain the mechanistic 
origins for different rates of emergence of DRMs. Here we explore 
a structural rationale for the differential fitness of resistance 
mutations in a drug-naive background under drug selection 
pressure. We include examples of fast and slow mutations from 
each of the four drug classes. The analyses suggest a general 
principle whereby faster mutations induce changes that are less 
disruptive and can be more readily compensated, whereas slower 
mutations typically induce more disruptive changes and/or lead 
to drug excision through indirect mechanisms.

Fig. 5.   Comparison of the additional mutations necessary for a focal DRM to occur when comparing DRMs with fast and slow acquisition times. The DRMs 
shown are (A) PI DRMs in PR, for D30N (fast) and V32I (slow), (B) NRTI DRMs in RT for M184V (fast) and D67N (slow), (C) NNRTI DRMs in RT for K103N (fast) and 
Y181C (slow), and (D) INSTI DRMs in IN for N155H (fast) and Q148H (slow). In each plot, the focal DRM is listed in the Upper Right. The dotted gray line reflects the 
DRM’s frequency in the drug-naïve ensemble, the solid black line reflects the DRM’s average fitness under the drug-experienced Hamiltonian in the drug-naïve 
ensemble, and the dashed gray line reflects the DRM’s frequency in the drug-experienced ensemble. The dashed green/blue arrow then represents the initial 
increase in the DRM’s frequency upon exposure to drugs starting from the drug-naïve state if the background were held fixed, identical to the dashed green/
blue arrows in Fig. 4, and the solid black/orange arrow represents the additional increase in DRM frequency once the sequence backgrounds are allowed to 
vary and accumulate coupled mutations, identical to the solid black/orange arrow in Fig. 4. The gray bars represent the fitness measured using Eq. 2, averaged 
over the drug-naïve ensemble, giving the first-order contribution to the increase in the fitness of the DRM at i due to the evolution of j to the drug-experienced 
state. The sum of the gray bar magnitudes approximates the length of the solid black/orange arrow. For the fast DRMs, the effect of the initial increase in fitness 
(dashed green arrow) is larger than the additional increase in fitness due to coupled mutations (dashed blue arrow).

http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2316662121#supplementary-materials
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Fig. 6A shows the changes in the PR active site evolving in 
response to PIs. The fast-arising mutation D30N leads to the loss 
of a crucial hydrogen bond formed between the inhibitor and PR, 
which immediately reduces binding affinity and engenders drug 
resistance. Although the removal of negative charge also results in 
altered electrostatic interaction with the native substrate, and 
reduced proteolytic activity, this is easily overcome by the com-
pensatory charge swap mutation N88D, which also arises quickly 
(50). D30N, in conjunction with N88D, rapidly emerge and 
mutually entrench each other. In contrast to the fast-arising D30N 
(and N88D), the slow-arising mutation V32I works through an 
indirect mechanism. V32 resides at the periphery of the PR active 
site and makes an important network of hydrophobic interactions 
with residues I47 and V82 that frequently arise in concert with 
V32I, all of which are required for PR catalytic activity (51). The 
mutation V32I causes an extensive pattern of rearrangements that 
ultimately results in repositioning of the inhibitor. PR variants 
containing V32I mutations frequently display comparatively larger 
dynamic fluctuations, which propagate throughout the enzyme, 
in comparison to other PR variants. For example, as many as 12 
hydrogen bonds can change significantly in comparison to the 
WT enzyme (52). Thus, the fast-arising mutation D30N directly 
affects ligand binding, whereas V32I works through an indirect 
mechanism.

Fig. 6B shows the changes in the RT active site evolving in 
response to NRTIs. The fast-arising M184V DRM in RT results 
in fewer disruptive changes to the enzyme and acts directly to 

displace bound ligand. All approved NRTIs lack a 3-OH and, 
when incorporated into the nascent DNA primer strand by RT, 
act as chain terminators. The M184V mutation replaces a flexible 
side chain near the polymerase active site with a branched amino 
acid that selectively discriminates against NRTIs, while still allow-
ing for the incorporation of dNTPs with normal deoxyribose rings. 
Thus, M184V directly displaces the NRTI, but has minimal effect 
on normal enzyme activity. The slow-arising D67N mutation, 
however, resides in a different location—at the tip of the flexible 
3 to 4 loop with its side chain facing the adenosine triphosphate 
(ATP)—and typically arises in combination with other mutations. 
D67N retains a similar size but eliminates the negatively charged 
environment imparted by the original Asp67. To compensate for 
this change in the electronic environment, RT must acquire addi-
tional subtle and interconnected background mutations that would 
remain conducive to ATP binding while allowing the mutant 
enzyme to excise a broad array of NRTIs (54). Thus, D67N arises 
more slowly, due to the requirement of developing compensatory 
background mutations that increases the fitness substantially above 
the drug-naive value with the D67N mutation.

Fig. 6C shows the changes in the RT active site evolving in 
response to NNRTIs. The fast-arising K103N DRM leads to a 
novel hydrogen bond between N103 and Y188, which is otherwise 
absent in WT RT. The protein interaction network surrounding 
the newly formed hydrogen bond stabilizes the closed-pocket 
conformation of the enzyme, thus impeding NNRTI access to the 
binding pocket (55, 56). Notably, K103N induces minor changes 

Fig. 6.   The structural underpinnings for the rate of emergence of DRMs are shown for all four classes of drugs. Fast (green) and slow (blue) mutations are shown 
for (A) HIV-1 PR against PIs (PDB: 7DPQ, 4Q1X), (B) RT against NRTIs in (PDB: 6UJY), (C) RT against NNRTIs (PDB: 3BGR), and (D) IN against INSTIs (PDB: 8FNP). 
The extent of the known molecular envelope for different bound drugs is shown as a red mesh (more details in the Computational Method section). The slow 
and fast mutations being followed are indicated in bold and orange asterisks (*). The other mutations involved in pathways with the slow or fast mutations are 
shown in the same color code (green and blue). Where mutant structures are not available, mutations are introduced through the UCSF Chimera (53) Structure 
Editing module and the highest probable rotameric configurations of the mutation side chains, based on previously determined atomic structures, are shown.
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to the pocket residues compared to WT RT. However, resistance 
due to the slow-arising Y181C is more disruptive to the binding 
pocket. Y181C abrogates the π–π stacking interactions between 
two aromatic rings of residues on RT (Y181, Y188) and an aro-
matic ring of bound NNRTIs (55, 57, 58). Changes associated 
with the binding pocket in RT are more extensive in response to 
Y181C mutations, and thus the enzyme benefits from the addition 
of specific additional background mutations. Again, the slow 
development of Y181C can be explained by the requirement to 
develop additional compensatory changes.

Fig. 6D shows the changes in the IN active site evolving in 
response to INSTIs. The fast-arising mutation N155H leads to a 
salt-bridge interaction with the vDNA phosphate, which was 
hypothesized to affect the kinetics of INSTI binding (59). Enzyme 
activity is minimally affected by the N155H mutation. In contrast, 
the slow-arising mutation Q148H is well-known for its detrimen-
tal effect on enzyme activity. The mechanism of resistance for 
Q148H can be explained by the introduction of an electropositive 
moiety underneath the two Mg2+ metal ions, weakening metal 
chelation and leading to INSTI displacement (53, 60). Importantly, 
Q148H also significantly compromises enzyme activity, because 
the Mg2+ ions are also directly involved in catalysis. Since Q148H 
leads to a more extensive modulation to the structure by itself, 
this DRM also leads to a more substantial fitness cost in the 
drug-naive viral population than N155H. To account for the 
greater drop-in fitness associated with Q148H, the key compen-
satory G140S mutation must evolve to restore replicative capacity, 
while other mutations frequently accumulate with this G140S/
Q148H pair. Despite the very different timescales for DRM emer-
gence, both N155H and Q148H are the two most frequently 
encountered IN mutations in the Stanford drug resistance data-
base (61), indicating that the rate of emergence of the DRM is 
not necessarily correlated to its final frequency in the population; 
the final frequencies depend heavily on the background.

To generalize the analyses from structural biology, there are two 
scenarios that discriminate fast vs. slow mutations in the context 
of drug binding, which may affect either [1] ligand binding or [2] 
enzymatic activity. In the first scenario, assuming enzymatic activ-
ity remains constant, fast mutations will affect the ligand binding 
directly, whereas slow mutations may work through indirect mech-
anisms and must accumulate in conjunction with other changes 
that eventually displace the ligand. In the second scenario, assum-
ing that their effect on ligand binding remains constant, fast muta-
tions will generally have a smaller effect on enzyme fitness, whereas 
slow mutations lead to more profound detrimental changes that 
affect the natural function of the enzyme and must therefore be 
compensated by additional background changes. We note that 
these scenarios are not mutually exclusive, and most cases are likely 
to be explained by a combination of these effects.

Conclusion

The evolution of HIV-1 under drug pressure and internal epistatic 
constraints induces correlated mutations that change the frequen-
cies at which DRMs appear in the population over time. Literature 
surveys show that the timeline of emergence of DRMs from the 
drug-naive patient population varies from a few weeks to a year 
or more when these patients receive ART. In the present study, we 
modeled the kinetics of the emergence of DRMs using KMC 
simulations on a fitness-landscape described by an epistatic Potts 
statistical potential parameterized on drug-experienced sequence 
data. We propagate an initial sequence ensemble that matches the 
patterns observed in the drug-naive population as it evolves to a 

final ensemble that matches the patterns observed in the drug-
experienced ensemble.

We selected 52 DRMs from three different protein targets 
(PR, RT [NRTI and NNRTI], IN) to study their kinetics by 
calculating the acquisition times (τ) and compared them with 
the timeline of emergence reported in the literature. The times 
to acquire DRMs predicted by the KMC model are highly cor-
related with the acquisition times reported in the literature 
(ρ = ~0.85, P << 0.001). Qualitatively, for DRMs that are 
reported in the literature as acquired rapidly (emergence time 
range between 0.5 to 3 mo), the predicted KMC time constants 
are τ < 10; while for DRMs reported in the literature as acquired 
slowly (~8 to 20 mo), the KMC time constants are τ > 24. These 
results provide strong evidence in support of the role of epista-
sis—the couplings between DRMs—as the determining factor, 
which distinguishes DRMs that are acquired rapidly from those 
that are acquired slowly.

We introduced a score, the sequence-dependent adaptive- 
frequency �i

�
(S)   as a proxy for fitness, which is a measure of the 

likelihood of a DRM in a fixed background S under the drug- 
experienced Potts statistical energy model, and the corresponding 
ensemble averaged adaptive-frequency F i

�
(t )   . The most important 

feature that distinguishes DRMs that are acquired slowly from 
those that are rapidly acquired is the initial fitness of the DRM in 
the sequence when drug pressure is applied before additional muta-
tions have time to accumulate. For DRMs acquired rapidly, the 
frequency begins to increase within the drug-naive ensemble as 
soon as drug pressure is applied, without the need to first accumu-
late additional mutations. In contrast, for DRMs acquired slowly, 
the frequency increases in tandem with the accumulation of addi-
tional mutations. We interpret this as the existence of an epistatic 
barrier for the slow DRMs, consistent with results suggesting 
epistasis reduces evolutionary rates (35, 36). In contrast, two other 
factors that have been suggested to have a large effect on the rates 
at which DRMs are acquired, including within host effects associ-
ated with the genetic code [transitions (Ti) vs. transversions (Tv), 
and the number of nucleotide changes (Δnuc) required per codon 
change] and the overall fitness of the DRM as estimated by its 
prevalence in the drug-experienced population, are not well cor-
related with the times to acquire drug resistance reported in the 
literature. Rather the distinction between fast DRMs and slow 
DRMs arises from the relative contributions of the two effects: a 
fast initial increase in the DRM frequency and a (observed) signif-
icantly slower relaxation of the sequence background. If a large 
fraction of the overall frequency change of the DRM is explained 
by the gradual change in the epistatic constraints as measured by 
the constraint ratio, then the DRM is slow. In contrast, if the 
gradual change in epistatic constraints only amounts to a small 
fraction of the total change in frequency of the DRM, then we 
expect the DRM will be fast to acquire, with a lack of epistatic 
barrier. Specifically, in the fast case, the sequence backgrounds are 
already more fit for acquisition of the DRM, but in the slow case 
the DRM cannot rise sufficiently to approach close to its final 
frequency until the sequence backgrounds change to relax the 
epistatic constraint.

This work provides a framework for the development and appli-
cation of computational methods to forecast the time course and 
the pathways over which drug resistance to antivirals develops in 
patients. We envision that a more informed picture could be devel-
oped using Potts models, to classify drugs in silico by how difficult 
it will be for HIV to evolve resistance, through the identification 
and analysis of specific pathways required for the acquisition of 
compensatory sets of mutations. Currently, the Potts model 
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cannot be used to predict frequencies of mutation(s) that have 
never been observed in any dataset under drug selection pressure, 
their acquisition times, or the corresponding mutational path-
ways. However, Potts models based on in silico computed muta-
tional effects can be utilized to address this shortcoming. 
Furthermore, signatures of novel (evolving) mutations may already 
be present in the form of the appearance of sets of accessory muta-
tions that aid in the evolution and entrenchment of a primary 
DRM, that can be used to predict the likelihood of evolving resist-
ance based on identifying pathway constraints. Such analysis may 
also be extensible to broadly neutralizing antibody design for an 
HIV vaccine. While the KMC simulations for each of the three 
HIV-1 target enzymes (PR, RT, and IN) consist of tens of thou-
sands of trajectories that propagate the initial drug-naive ensemble 
to the final drug-experienced ensemble, both of which are observed 
in the Stanford HIVDB, we expect that there are far fewer path-
ways that actually predominate and cause drug resistance in 
patients. Identifying discrete clusters of pathways and defining 
the constraints that distinguish them is the subject of ongoing 
research.

Computational Methods. In this section, we present the Potts 
Hamiltonian model and the motivation behind the model. We also 
describe the KMC methods which are used to study the temporal 
evolution of HIV-1 under drug selection pressure (34, 62). Here, 
we measure time in these kinetic simulations in the units of the 
number of mutations attempted per position, i.e., the number 
of attempted mutations throughout the sequence divided by the 
sequence length. The length of PR, RT, and IN are 99, 188 and 
263 respectively (33); and with this normalization scheme of the 
KMC algorithm ensures that, a time unit has the same meaning 
across the three HIV-1 enzymes, PR, RT, and IN, which have 
differential lengths. The details of the data processing, mutation 
classification, alphabet reduction, and length of amino acids are 
discussed in our previous paper (34).

The University of California, San Francisco (UCSF) Chimera 
(63) Structure Editing module is used to prepare Fig. 5. The extent 
of the known molecular envelope for different bound drugs is 
shown as a red mesh; The molecular envelope is created using 
UCSF Chimera (58) and using the PDBs: PIs: DRV (PDB: 
4Q1X) SQV (PDB: 3S56), NFV (PDB: 3EKX), DRV (PDB: 
3D20), LPV (PDB: 2QHC), TPV (PDB: 4NJU); NRTIs: FTC 
(PDB: 6UIR), AZT (PDB: 3KLG); NNRTIs: RPV (PDB: 
3BGR), DOR (PDB: 7Z2G), EFV (PDB: 1IKW), ETR (PDB: 
3MEC), NVP (PDB: 4PWD); INSTIs: DTG (8FNZ), BIC 
(6PUW).

Potts Hamiltonian Model. We use the Potts model which is a 
probabilistic model designed to describe the probabilities of observing 
specific states of a system that is constructed to be as unbiased as 
possible except to agree with the average first- and second-order 
observable (marginals) from the sequence data (64–70). The Potts 
model has a long history of use in statistical physics and analysis of 
protein sequence. In a set of protein sequences, the single and pair 
amino acid frequencies are average quantities that can be estimated 
from the finite samples using the data. The details of the models are 
described in our previous work (34, 37).

KMC Simulations. The KMC simulation is a Monte Carlo method 
which is intended to simulate the time evolution processes with 
known transition rates between states.

The Metropolis algorithm (71) is used to evaluate the metrop-
olis acceptance probability of a mutation such as W (WT)→M 

(Mutant) at a randomly chosen position i in a given sequence 
background at every simulation step given by f MFT

W→M
 

	 [3]

where ΔEW →M = EM – EW is the change in Potts energy in going 
from residue W to M in the given background.

At the beginning of the simulation process a set of seed 
sequences (drug-naive sequences) are taken and a random position 
i and random mutant residue α (Reduced alphabet of four letters 
are used) are chosen the amino acid character at the chosen posi-
tion i is either preserved or mutated based at the chosen position 
i is either preserved or mutated based on based on the Metropolis 
acceptance rate f MFT

W→M
 . For example, a mutation V32I from  

V (valine) → I(isoleucine) at position 32 in HIV-1 PR (99 residues 
long) has a probability 

(
1

99

)
e−ΔE

32
L→M associated with the mutation 

at each KMC step. The algorithm used here allowed self-mutations 
during the simulation.

When evaluating fitnesses using a Potts model, it is possible to 
use alternative “selection temperatures” other than the inferred 
value of T = 1, giving a modified sequence probability distribution 
P(S) ∝ e−E (S)∕T  . However, we use T = 1 in our simulations as 
this ensures a “generative” model that accurately replicates the 
observed mutation frequencies in the HIV sequence dataset 
affected by drugs. Modifying the temperature would alter the 
mutant frequencies and higher-order mutation patterns, resulting 
either an excess or dearth of mutations relative to the observed 
HIV sequence data, inaccurately mimicking drug pressure in the 
observed drug-experienced ensemble. Our kinetic Potts model is 
a coarse-grained representation of the within-host evolutionary 
process. Evolution within a host is driven by various selective 
forces due to host immune response or to maintain viral viability, 
nonselective forces such as genetic drift, and is affected by other 
well-known aspects of HIV-1 infection such as retroviral dor-
mancy, compartmentalization, and high recombination rates. In 
the chronic phase of HIV-1 infection, a large number of viral 
variants may be present at any point in time; however, this pop-
ulation is typically measured to have high sequence identity of 
close to 99% between pairs of viral genomes in a single host. This 
is much larger than the typical sequence identity of consensus 
sequences from different hosts of 90% for our datasets and justifies 
summarizing a host’s viral population by a single “consensus” 
sequence. Additionally, the host consensus sequence is observed 
to accumulate substitutions in a relatively clock-like manner, sug-
gestive of sequential selective sweeps. Therefore, instead of mod-
eling the detailed “microscopic” evolutionary forces, we use a 
coarse-graining which only tracks the consensus sequence of a 
host viral population over time as it accumulates substitutions due 
to these underlying forces.

In this way, one interpretation of our coarse-grained kinetics is 
that it models a series of point-mutation events in a viral popula-
tion which occur according to a Poissonian mutational process, 
and these mutations are either fixed or lost from the population 
according to a fitness landscape inferred based on between-host 
sequence data. We coarse-grain a number of aspects of evolution-
ary dynamics, for instance we model amino-acid sequences instead 
of nucleotide sequences, assuming all amino acids can mutate to 
all others as is commonly done in phylogenetic analyses, for 

f MET
W→M = min

{
1,

PM
PW

}

= min
{
1, e−ΔEW→M

}
,
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instance in the Whelan and Goldman (WAG) and Jones- 
Taylor-Thornton (JTT) models. While this coarse-grained model 
is necessarily a simplification of HIV-1 viral dynamics, there are 
key properties of its construction which support conclusions 
drawn from it. First, an inferred “Potts” model prevalence land-
scape will implicitly capture many of the averaged effects of various 
microscopic evolutionary forces because it is fitted to HIV-1 
sequence datasets which arose under the microscopic dynamics. 
For instance, it will capture mutational biases as these causes an 
increase in the inferred prevalence of the biased amino acids. 
Second, this model is numerically consistent with the observed 
between-host sequence variation data: If we use this kinetic model 
to simulate parallel trajectories (representing evolution in different 
hosts) and collect the final sequences, then by construction the 
mutational statistics of the generated sequences (frequencies of 
amino acids and k-mes of amino acids) match those of the 
between-host sequence datasets used to train the fitness model. 
We use a particular inference technique which we have confirmed 
gives a generative model which very closely reproduces the natural 
patterns of HIV-1 sequence variation for high order k-mes in 
generated sequences.

We assume an underlying Poisson mutational process, such that 
mutation arises at a rate µ. We implemented this by assigning each 
step in the Metropolis Algorithm a time drawn from an exponen-
tial distribution which is the waiting time for a Poisson process.

	 [4]

With this overall KMC scheme our simulations match empir-
ical data in two ways. First, the value of µ can be calibrated so that 
the simulated evolutionary trajectories accumulated substitutions 
at the same rate as observed experimentally. Second, when using 
this scheme to run many parallel trajectories until equilibrium, 
the bivariate residues of the resulting MSA match those observed 
in the HIV-1 sequence database used to train the Potts model.

Potential Coarse Graining Approximations. Here we discuss 
possible coarse-graining errors we have investigated. One aspect 
which our model has coarse-grained is drug-specific selection 
pressure and host-specific immune pressure. The ranges for 
literature acquisition times listed in Table 1 reflect, in part, the 
fact that some mutations arise in response to multiple drugs, but 
with some difference in acquisition time for each drug, this effect 
cannot be captured by our fitness model which reflects an averaged 
selection pressure of all drugs. But the overall correspondence 
of our model and literature suggests the major determinant of 
acquisition time is the epistatic interaction of the primary DRM 
with accessory mutations, which is captured by our fitness model 
and is independent of specific drug. It may be possible to explicitly 
model such drug-specific modulation of selection strengths 
through extensions of our fitness model, which we intend to 
investigate in the future.

Our model also coarse-grains the mutational process, and for 
instance does not explicitly distinguish between transition (Ti) 

and transversion (Tv) mutations, which occur at different rates, 
and does not explicitly distinguish between mutations in the 
amino-acid sequence which correspond to single-nucleotide and 
double-nucleotide mutations at the nucleotide level. Because our 
fitness landscape is inferred from HIV-1 sequences which evolved 
in vivo under the influence of these mutational biases, the model 
implicitly captures their effect to some degree. To further investi-
gate whether these mutational biases significantly affect DRM 
acquisition time, we investigated their effect for the mutants listed 
in Table 1.

The alterations in the genetic code corresponding to each DRMs 
are listed in the second column of Table 1 and SI Appendix, 
Tables S1–S4 to assess the impact of genetic codes on the timeline 
of drug resistance evolution. The majority of DRMs, regardless of 
the protein type (PR, RT, or IN), are linked to single nucleotide 
changes (approximately 90%). Consequently, for these mutants, 
the number of genetic code alterations does not directly affect the 
time required to develop drug resistance in HIV. The DNA substi-
tution mutations can be categorized as transition (Ti) or transversion 
(Tv). Transitions involve the exchange of two-ring purines (A → G) 
or one-ring pyrimidines (C → T), representing bases with similar 
sizes. On the other hand, transversions involve the interchange of 
purine for pyrimidine bases, which entails the exchange between 
one-ring and two-ring structures. We have included the nature of 
nucleotide changes (Δnuc) for each DRM of all proteins (PR, RT, 
and IN) in the third column of Table 1 and SI Appendix, Tables S1–
S4. Our model does not provide information about the DNA level 
of the sequences; therefore, silent substitutions due to wobble base 
pair effects are not considered when determining the nature of 
nucleotide changes. In summary, we conclude that mutational biases 
have a negligible or relatively minor influence on acquisition time, 
whereas the epistatic interactions captured by our fitness model have 
a much more significant effect.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix. The code to perform the KMC simulations is available 
on Github (72).
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