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Learning as formation of low-dimensional representation spaces

Shimon Edelman
Center for Biological and Computational Learning
MIT E25-201. Cambridge, MA 02142, USA
edelman@ai.mit.edu

Abstract

Psychophysical findings accumulated over the past several
decades indicate that perceptual tasks such as similanty judg-
ment tend to be performed on a low-dimensional representation
of the sensorydata. Low dimensionality is especially important
for learning, as the number of examples required for attaining
a given level of performance grows exponentially with the di-
mensionality of the underlying representation space. Because
of this curse of dimensionality, in shape categorization the high
initial dimensionality of the sensory data must be reduced by
anontrivial computational process, which, ideally, should cap-
ture the intrinsic low-dimensional nature of families of visual
shapes. We show how to make a connectionist systemuse class
labels to learn a representation that fulfills this requirement,
thereby facilitating shape categorization. Our results indicate
that low-dimensional representations are best extracted in a
learning task that combines discrimination and generalization
constraints.

Introduction

The sophisticated behavior of biological cognitive systems
is widely assumed to stem from their ability to learn from
the environment, which leads to the formation of an internal
representation of information pertinent to the task. Because
learned representations can be employed in shaping the be-
havior in similar, and thus potentially related situations in the
future (Shepard, 1987), similarity (Nosofsky, 1992; Medin
et al., 1993) and its representation (Edelman, 1997) are cen-
tral concerns in cognitive science.

In this note, we consider a core property of any representa-
tion of similarities among objects whose goal is efficient learn-
ing and generalization: low dimensionality. Because the link
between the issues of similarity and of low-dimensional repre-
sentation (LDR) is readily apparent in visual psychophysics,
we concentrate on this area, rather than on other potential ap-
plications in cognition, ranging from vision to language and
reasoning. Psychophysics, by definition, involves a relation-
ship between the physical characteristics of a stimulus and the
perceptual event it evokes. Now, for specific discrimination
tasks, a natural framework for a physical description of vari-
ous relationships — among them similarities — between the
different possible stimuli is a low-dimensional metric space.
In those cases, it is reasonable to expect that the representa-
tional system reflect the dimensional structure, the topology,
and maybe even the metrics, of the stimulus space. We start,
therefore, by examining the extent to which this expectation
is fulfilled in a typical perceptual task: color perception.

Nathan Intrator
School of Mathematical Sciences
Tel Aviv University, Tel Aviv 69978, Israel
nin@ math.tau.ac.il

A case study: color space

The central feature of the problem of computing the re-
flectance of a surface patch from measurements performed
on its retinal image is that the expected solution (i.e., the re-
flectance function of the surface) resides, in principle, in an
infinite-dimensional space: a potentially different value of
reflectance may have to be specified for each of the infinite
number of wavelengths of the incident light (D’Zmura and
Iverson, 1997). Computationally, the recovery of surface re-
flectance in the face of possible variations in the illumination
(itself a nominally infinite-dimensional quantity) is difficult
enough because of the need to pry apart two multiplicatively
combined functions, reflectance and illumination. The infinite
dimensionality of these functions seems to suggest, further,
that no finite set of measurements would suffice to support
the recovery of surface reflectance. Nevertheless, human
vision exhibits color constancy under a wide range of con-
ditions (Beck, 1972), despite the small dimensionality of the
neural color coding space (De Valois and De Valois, 1978);
moreover, the dimensionality of the psychological (perceived)
color space is also small (Boynton, 1978). In fact, both these
color spaces are two-dimensional.'

Low-dimensional physiological color space. In human vi-
sion, there are only three kinds of different retinal cone types
(R, G, B, in addition to the rods, whose spectral selectivity
resembles that of the R cones). The question arises, there-
fore, how is it possible to recover the potentially infinite-
dimensional spectral quantities using this measurement mech-
anism.

The solution to this paradox lies in the low dimensionality
of the space of the actual surface reflectances and daylight
illumination spectra.® This finding (Cohen, 1964; Judd et al.,
1964) helps one understand why a small number of indepen-
dent color-selective channels suffice to represent internally the
rich world of color. The reason is simple: the internal rep-
resentation space can be low-dimensional, because the distal
space happens to be low-dimensional.

' An additional dimension in both cases is luminance. Color con-
stancy requires simultaneous processing of several spatial locations,
making the effective dimensionality for this task somewhat higher.

*Over 99% of the variance of Munsell chip reflectance func-
tions can be accounted for using three basis functions, correspond-
ing roughly to variations in intensity and in color-opponent £ — G
and B — Y channels (Cohen, 1964). Likewise, over 99% of the
variance of daylight spectra can be accounted for by three principal
components (Judd et al.,, 1964),
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Low-dimensional psychological color space. As the di-
mensionality of the physiological coding space for color
matches that of the universe of stimuli it is geared to re-
spond to, it should not be surprising that the representation
space ted by the color pathway is equally low-dimensional. A
data processing tool that has proved to be exceptionally use-
tul in the characterization of internal representation spaces is
multidimensional scaling, or MDS. This technique is derived
from the observation that the knowledge of distances among
several points constrains the possible locations of the points
(relative to each other) to a sufficient degree as to allow the
recovery of the locations (i.e., the coordinates of the points) by
a numerical procedure (see Shepard, 1980, for a review). In
the processing of color perception data, the configuration de-
rived by MDS is invariably found to be approximately circular
(placing violet close to red), and to reside in two dimensions,
one of which corresponds to the hue, and the other - to the
saturation of the color (Boynton, 1978).

The exploration of the metric and the dimensional struc-
ture of psychological spaces has been boosted by the im-
provement of the metric scaling techniques and by the de-
velopment of non-metric multidimensional scaling (Shepard,
1966; Kruskal, 1964). By 1980, a general pattern was emerg-
ing from alarge variety of perceptual scaling experiments: the
subject’s performance in tasks involving similarity judgment
or perception can be accounted for to a substantial degree
by postulating that the perceived similarity reflects the met-
ric structure of an underlying perceptual space, in which the
various stimuli are represented as points (Shepard, 1980).%

Low-dimensional shape representation space

A series of psychophysical studies, originating with (Shepard
and Cermak, 1973), suggest that the low-dimensional similar-
ity space framework can be extended from the representation
of basic perceptual qualities (such as colors) to that of complex
shapes. In these studies, low-dimensional similarity patterns
were imposed on families of stimuli, by exerting parametric
control over the shape of each object. The low-dimensional
similarity space has been recovered in each experiment by
applying MDS to the response data of human subjects (Shep-
ard and Cermak, 1973; Cortese and Dyre, 1996; Edelman,
1995; Cutzu and Edelman, 1996). Moreover, the locations of
the stimuli in the MDS-derived space closely reflected their
arrangement in the parametrically defined pattern imposed in
each experiment. These two properties of the internal shape
representation space — low dimensionality and preservation
of distal similarity relationships — indicate that the human
visual system routinely solves a formidable computational
problem: massive dimensionality reduction.

Constraints on dimensionality reduction

Although empirical evidence for the low dimensionality of
the psychological representation spaces has been accumulat-
ing steadily for decades, there is still a widespread tendency in
psychology to overlook the computational problem presented

ISome qualifications to this view are discussed in (Gregson,
1975). In particular, the metric model must be modified (Krumhansl,
1978; Edelman et al., 1996) to account for asymmetry and lack of
transitivity of similarity judgments in some tasks (Tversky, 1977,
Tversky and Gati, 1982).
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by the derivation of low-dimensional representations from
perceptual data. The main reason behind this is the mistaken
assumption that the raw data available to the cognitive system
reside in an immediately accessible low-dimensional space.
For example, textbooks typically describe visual perception
as the extraction of information from the two-dimensional
retinal image, completely ignoring the fact that the immedi-
ate successor of the retinal space in the processing hierarchy
1s, in primates, a million-dimensional space spanned by the
activities of the individual axons in the optic nerve.

Assuming that the information required by the system is
present in this raw measurement space, one may wonder why
the human visual system bothers to reduce dimensionality at
all. A crucial theoretical consideration here has to do with
learning. Specifically, learning from examples is computa-
tionally infeasible if it has to rely on high-dimensional rep-
resentations. The reason for this is known as the curse of
dimensionality: the number of examples necessary for reli-
able generalization grows exponentially with the number of
dimensions (Bellman, 1961; Stone, 1982). Learnability thus
necessitates dimensionality reduction.

The choice of the computational approach to dimensionality
reduction is guided by two considerations. The first is the
scale of the problem: shape representation in human vision
requires reduction from tens and hundreds of thousands to just
a few dimensions. The second consideration is preservation
of a certain order of points corresponding to different objects,
as they are mapped from the high-dimensional measurement
space into the low-dimensional representation space: objects
that are geometrically similar should be mapped to nearby
locations (Edelman, 1997). Intuitively, then, the process of
dimensionality reduction must preserve the topology of the set
of stimuli (measurement-space points) pertinent to the task at
hand.

Topology-preserving methods are especially useful for
representing data known to reside in an intrinsically low-
dimensional space (embedded in a high-dimensional mea-
surement space). For instance, for color stimuli, there is a
natural low-dimensional pattern of similarities that must be
preserved (pink should be represented as closer to red than
to green); furthermore, the objective (distal) reflectance and
illuminant spaces are low-dimensional, as we have seen in the
introduction. Likewise, in shape representation, the relevant
distal spaces are low-dimensional (in any smooth measure-
ment space, views of an object undergoing a transformation
such as rotation, or a deformation such as morphing into an-
other object, form low-dimensional manifolds).

In all these cases, objects to be represented may be visu-
alized as points drawn on a sheet of rubber, which is then
crumpled into a (high-dimensional) ball, as illustrated in Fig-
ure 1. The objective of a dimensionality-reducing mapping is
to unfold the sheet and to make its low-dimensional structure
explicit. If the sheet is not torn in the process, the mapping is
topology-preserving; if, moreover, the rubber is not stretched
or compressed, the mapping preserves the metric structure
of the original space, and, hence, the original configuration
(similarity pattern) of points.

The requirement that the mapping be an isometry is very
restrictive: if itis to hold globally, the mapping must be linear.
For local approximate isometry, any smooth and regular map-
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Figure 1: A schematic illustration of a problem space whose
efficient representation requires nonlinear dimensionality re-
duction, The instances of the two classes cling to a low-
dimensional manifold, embedded in a measurement space,
whose dimensionality may run in the tens of thousands. As in
discriminant analysis, some dimensions are crucial for distin-
guishing between the categories, while other dimensions must
be downplayed, or collapsed. In the context of object recog-
nition, the former may be the dimensions of object identity,
and the latter — of object orientation. Standard discriminant
analysis methods in multidimensional spaces are plagued by
the presence of irrelevant dimensions; in this paper, we show
that training with a combined objective of (1) discrimination
among labeled categories known to reside within the manifold,
and (2) explicit collapse of dimensions over which discrim-
ination is to be generalized, leads to a reliable recovery of
the target manifold, even when it is significantly curved (i.e.,
when the problem is highly nonlinear), and is embedded in a
measurement space of nearly a thousand dimensions.

ping is sufficient.! Moreover, near linearity and smoothness
are also necessary for topology preservation. This is good
news, as far as the learnability of the mapping is concerned:
a smooth mapping implies a small number of parameters to
be learned. This, in turn, reduces the likelihood of overfitting
and of poor generalization, which plague learning algorithms
in high-dimensional spaces.

The oldest nonlinear method for topology-preserving di-
mensionality reduction is multidimensional scaling (MDS),
originally developed in psychometrics as a method for the
recovery of the coordinates of a set of points from measure-
ments of the pairwise distances between those points, MDS
can serve to reduce dimensionality if the points are embedded
into a space of fewer dimensions than the original space in
which interpoint distances were measured. The main problem
with MDS, considered as a method for massive dimensional-
ity reduction rather than for exploration of experimental data
in applied sciences, is its poor scaling with dimensionality
(Intrator and Edelman, 1996). The same problem arises in
the various attempts to extend a popular tool for linear dimen-
sionality reduction, principal component analysis (PCA), to
handle nonlinear spaces.’

A number of learning methods for topology-preserving di-

‘A discussion of such quasiconformal mappings in the context of
shape representation can be found in (Edelman and Duvdevani-Bar,
1997),

*An example of such an approach is clustering followed by (local)
PCA (Leen and Kambhatla, 1994).

mensionality reduction have been derived from the idea of a
self-supervised auto-associative network (Elman and Zipser,
1988; DeMers and Cottrell, 1993; Demartines and Hérault,
1996). Because these methods are unsupervised, they extract
representations that are not orthogonal to the irrelevant dimen-
sions of the input space. As a result, these methods are less
likely to find the target manifold (Intratorand Edelman, 1997),
which is defined, to a large extent, by the measurement-space
directions to which it is orthogonal; see Figure 1. Supervised
approaches, based on joint optimization of discriminability
and of topology preservation, are described in (Koontz and
Fukunaga, 1972; Webb, 1995); these methods, which resem-
ble MDS, suffer from the same poor scaling with the dimen-
sionality.

A scheme for the extraction of low-dimensional
representations

We now proceed to show that training with a combined ob-
jective of (1) discrimination among labeled objects known to
reside within the target manifold, and (2) explicit collapse of
dimensions, orthogonal to the manifold, over which discrim-
ination is to be generalized, leads to a reliable recovery of the
target manifold.

Solving the problem we chose to address — learning to
recognize visual objects from examples — requires the abil-
ity to find meaningful patterns in series of images, or, in other
words, in spaces of very high dimensionality. As mentioned
above, dimensionality reduction in this task is greatly assisted
by the realization that a low-dimensional solution, in fact,
exists. The mere knowledge of its existence does not, how-
ever, automatically provide a method for computing a low-
dimensional solution. To do that, the learning system must be
biased towards solutions that possess the desirable properties
— atask that is highly nontrivial in a high-dimensional space,
because of the curse of dimensionality. Our method for di-
mensionality reduction effectively biases the learning system
by combining multiple constraints via the use of an extensive
set of class labels, The use of multiple class labels steers the
low-dimensional repiesentation to become invariant to those
directions of variation in the input space that are irrelevant
to classification; this is done merely by making class labels
independent of these directions.

The extraction of a low-dimensional representation

As in the “bottleneck” approaches to dimensionality reduction
(Cottrellet al., 1987; Leen and Kambhatla, 1994), we forced a
classifier® to learn a set of class labels for input objects, while
constraining the dimensionality of the representation — e.g.,
the number of hidden units in a 3-layer network — used by
the classifier. Unlike in the standard methods, however, the
classifier had to produce only the labels, rather than recon-
struct the input patterns. This approach, therefore, constitutes
a compromise between completely unsupervised and totally
supervised methods in that it uses a label that individuates
a given data item, but does not require information regard-
ing the relationship between the different items, let alone the

SExperimentation with various architectures, including multi-
layer perceptrons and radial basis function networks, yielded sim-
ilarly encouraging results; see (Intrator and Edelman, 1997) for
details.
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Figure 2: Some of the images from the FACES data set. Top:
the 18 heads obtained by placing a 3 x 6 grid in the space
of the two leading principal components of the original nine
heads. Bortom: the 7 views of the rightmost head in the top
row above; the views differ by 3° steps of rotation in depth,
summing up to a total difference of 18°. Priorto classification,
the images, originally of size 400 x 400, were reduced to 784
dimensions by cropping the background and by correlation
with a 49 x 16 bank of filters (the exact spatial profile of these
filters turned out to be unimportant; Gaussian filters did just
as well as opponent center-surround ones).

complete reconstruction of the data as in the bottleneck au-
toencoder systems.

The ability of this method to discover simple structure em-
bedded in a high-dimensional measurement space was demon-
strated on a face data set, in which the extraction of the LDR
(low-dimensional representation) requires a highly nonlinear
transformation on the measurement space.” At the basis of
this data set lies a two-dimensional parametric representation
space, in which 18 classes of faces are placed on a regular
3 x 6 grid, an additional parametric dimension, orthogonal to
the first two, models the within-class variation (see Figure 2).
To impose a distinctive low-dimensional structure on the set
of faces, we followed the simple approach of common pa-
rameterization by principal component analysis (PCA). This
was done by starting with a set of nine 3D laser scans of hu-
man heads, and by embedding the 3 x 6 grid in the 2D space
spanned by the two leading “eigenheads” obtained from the
data by PCA. Each of the 18 heads derived by PCA from
the original scanned head data was piped through a graphics
program, which rendered the head from seven viewpoints, ob-
tained by stepping the (simulated) camera in 3° rotation steps
around the midsagittal axis.

Results

The application of the label-based method led to a good recov-
ery of the relevant low-dimensional description of the FACES
data set (see Figure 3). The performance of this method
in recovering the row/column parametric structure of the 18

"We tested this method also on another data set, consisting of
parameterized fractal images (Intrator and Edelman, 1996).

classes seems 10 be especially amazing.® Moreover, the same
structure was apparent in the LDR produced by a network
that was trained on every second face class (faces 1, 3,
5, B, D, F, a, c, e),thentested on the full data set
(see Figure 3, right).

The difficulty of LDR extraction in the present case is
demonstrated by a comparison to the results obtained by
more conventional neural network methods. First, we asked
whether a self-supervised 3-layer autoencoder, which aims at
the best reconstruction of the inputs, can reveal the correct
low-dimensional structure in the present case. Although in
the linear case such networks do quite well, essentially by
extracting the principal components of the data (Elman and
Zipser, 1988), the performance on the FACES data was poor
(the network consistently converged to the mean of the data),
presumably due to the nonlinearity introduced by the imag-
ing step. Second, we experimented with a 5-layer nonlinear
bottleneck autoencoder (Leen and Kambhatla, 1994), which,
likewise, performed poorly. The outcome of this experiment
showed that self-supervised dimensionality reduction cannot
recover a good LDR in the present case, illustrating the im-
portance of guidance provided by the class labels. Third, we
tested a modified version of our method, in which the classifier
was not trained to ignore the direction orthogonal to the target
manifold (cf. Figure 1; this was done by training on the 72
face view labels, instead of the 18 face identity labels). Here,
too, the LDR was poor, underscoring the importance of guid-
ance provided by an explicit specification of the dimension to
be collapsed.

Discussion

The research program which led to the results outlined above
is motivated by the notion that a good representation of the
visual world is, first and foremost, a low-dimensional repre-
sentation. We described a family of methods that can map
a high-dimensional data set into a low-dimensional space,
which is topologically a good approximation of a nonlinear
manifold present in the original measurements. The prop-
erty of topology preservation, shared by all the methods we
considered, appears to be due to the smooth nature of the
mapping they realize (Intrator and Edelman, 1997; Edelman
and Duvdevani-Bar, 1997). This property alone, however, is
insufficient to ensure the extraction of the correct manifold:
control experiments indicate the importance both of the use of
class labels (which help define the tangent space to the man-
ifold, as it is illustrated in Figure 1), and of the stipulation of
the generalization set for the stimuli (which defines the nor-
mal to the manifold). Moreover, the separate definition of the
normal for each class (i.e., the specification of the viewpoint-
induced variation for each of the 18 faces) is important for
the recovery of nonlinear (curving) manifolds, in which the
direction of the normal changes from point to point.

*To assess the quality of the LDR, we defined a dichotomy task.
in which nine of the 18 faces (labeled in Figure 2 as 2, 1, A,
a, b, ¢, 4, D, E)were attributed to one class, and the other
nine faces — to another class. In this task, the LDRs recovered by
our method consistently supported better performance than the raw
IITIZ]gCh.
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Figure 3: FACES data set, dimensionality reduction by a bottleneck multilayer perceptron (MLP); the plots show the locations
of the 18 x 3 test stimuli in the space spanned by the activities of the units residing in a hidden layer (18 faces times 3
test orientations per face). Left: results obtained with a 3-layer MLP with 13 units in the middle hidden layer, trained for
20, 000 epochs on the 18-way classification task. The low-dimensional representation proved to be a good substrate for solving
classification tasks on which the system has not been trained: the error rate on a nonlinear dichotomy involving the 18 classes
was 0.02, compared to 0.07 obtained by a system trained specifically on that dichotomy, but using the raw multidimensional
representation; see (Intrator and Edelman, 1997) for details. Middle: results for a 5-layer bottleneck MLP with 2 hidden units
in the middle hidden layer, trained on the 18-way classification task. The test dichotomy error rate was 0.1, compared 10 0.29
on the raw data. Righr: results obtained with a 3-layer MLP network with nine hidden units, trained on every second of the 18
classes that comprise the problem space (the nine classes used for training and the nine omitted classes formed a checkerboard
pattern). Note that all 18 classes — both familiar ones and those not seen by the system — are in a topology-preserving formation.
For this representation, the error rate on a nonlinear dichotomy involving the 18 classes was 0.14, compared to 0.28 obtained
by a system trained specifically on that dichotomy, but using the raw multidimensional representation. Remark: in the left
and the right plots, multidimensional scaling was used to visualize the representation spaces (which were, nominally, 13- and
9-dimensional, respectively); in the middle plot, the 2-dimensional hidden-unit space of the 5-layer network is plotted directly.

Implications may be, is, therefore, a poor guide for behavior. In contrast, a
suitable (i.e., similarity-preserving) representation space can
help the system deal with objects for which no memory traces
are available (cf. Figure 3, right). In such a space, proximity
is a reliable guide for generalization.’

The second important trait of the representation space com-
mon to a range of stimuli in a given task — its low dimen-
sionality — became gradually clear only recently, with the
emergence of formal approaches to the quantification of com-
plexity of learning problems. Whereas in some perceptual
tasks (such as color vision) low dimensionality of the rep-
resentation stems naturally from the corresponding low di-
mensionality of the stimulus space, in other tasks (notably, in
: object shape recognition) a computationally convenient basis
more recent works on shape representation (Edelman, 1995; for low-dimensional shape representation is yet to be devel-
Cortese and Dyre, 1996; Cutzu and Edelman, 1996). oped. In the meanwhile, a useful common low-dimensional

The significance of having a similarity-preserving low-  parameterization of shapes belonging to certain categories can
dimensional space as a substrate for representation is twofold.  pe achieved via principal component analysis, as it was done

First, the introduction of the notion of a similarity space puts  here for the human heads: cf. (Atick et al., 1996),
novel stimuli on an equal footing with familiar ones: a point

corresponding to a novel stimulus is always located some- Summary
where in the representation space; all one has to do is charac-
terize its location with respect to the familiar points. The vi-
sual system literally never encounters the same stimulus twice:
there are always variations in the viewing conditions such
as illumination; objects look different from different view- ?Shepard’s (1987) work shows that the validity of proximity as
points; articulated and flexible objects change their shape. the basis for generalization is universal, and can be derived from first
Mere memory for past stimuli. faithful and extensive as it principles.

The computational feasibility of learning a representation that
is both low-dimensional and similarity-preserving may be
taken as further support for the attempts to make similarity a
central explanatory concept in psychology. One such attempt
is described in Shepard’s (1987) paper, which appeared on
the tri-centennial anniversary of the publication of Newton's
Principia. In that paper, Shepard proposed a law of gener-
alization that tied the likelihood of two stimuli evoking the
same response to the proximity of the stimuli in a psychologi-
cal representation space — the same space that so persistently
turned out to be low-dimensional in the dozens of experiments
surveyed in (Shepard, 1980; Shepard, 1987), as well as in the

To conclude, we propose that the development of systems ca-
pable of representing the world is governed by the following
unifying principle: various aspects of the world are repre-
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sented successfully insofar as they can be expressed in a low-
dimensional space. Specifically, we suggest that the possibil-
ity of effective representation stems from the low-dimensional
nature of the real-world classification tasks: an intelligentsys-
tem would do well merely by reflecting the low-dimensional
distal space internally. This undertaking, however, is not as
straightforward as it sounds. Because the relevant dimensions
of the distal stimulus variation are neither known in advance
nor immediately available internally, the perceptual front end
to any sophisticated representational system must start with
a high-dimensional measurement stage, whose task is mainly
to assure that none of the relevant dimensions of stimulus
variation are lost in the process of encoding. The ultimate
performance of the system depends, therefore, on its capa-
bility to reduce the dimensionality of the measurement space
back to an acceptable level, which would be on par with that
of the original, presumably low-dimensional, distal stimulus
space.
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