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Evolution underlies the entirety of Earth’s biodiversity, as all species diverged 

from the last universal common ancestor billions of years ago. Although able to effect 

incredible changes over long periods, the need for multiple generations of mutation and 

competition renders evolution nearly imperceptible, at the timescale of human 

observation, for all but the most quickly reproducing organisms. Thus microbial 

adaptation, given microbes’ rapid generation time and enormous population sizes, is 

perhaps most pressing to understand. This unavoidable evolutionary process facilitates 

the rise and spread of antibiotic resistance, and frequently countervails attempts to 

genetically engineer organisms for human purposes. 

The bacterium Escherichia coli, easily the most highly studied microbe to date, is 

an ideal model by which to investigate evolution. With both clinical and biotechnological 

relevance, a thorough understanding of the adaptive principles governing E. coli 
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evolution is of great importance. In this dissertation I seek to probe the adaptive 

capabilities of E. coli using custom robotics systems that function as ‘evolution 

machines.’ Enabled by this automation, adaptive walks along the fitness landscape can be 

tracked in real-time with experimental throughput, data quality, and environmental 

control impossible to replicate manually. 

I subject E. coli to stressful perturbations and analyze the mechanisms by which it 

evolves to restore robust growth, using data types such as phenotypic characterization, 

whole genome sequencing, and transcriptomics. I demonstrate the remarkable adaptive 

flexibility of E. coli as it readily evolves to tolerate elevated temperatures, altered 

isotopic composition, rapidly fluctuating growth environments, and even replacement of 

important native genes with foreign DNA. Overall, these studies establish condition-

specific evolutionary responses, general mechanisms for growth rate improvement, and 

guiding principles for the successful use of laboratory evolution experiments as a tool for 

biological discovery and engineering.  
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Chapter 1 

 

Introduction 

 

 The bacterium Escherichia coli is likely the most highly studied and well-

characterized model organism to date. While an essential component of the human 

microbiome (and occasional pathogen), E. coli’s rapid growth and ease of culturability 

established it as a laboratory workhorse more than half a century ago.  Technology 

advancements since then have witnessed the development of powerful techniques for 

genetic manipulation of E. coli, making it not just biologically and scientifically 

important but also commercially – strains are frequently engineered to produce valuable 

proteins and chemicals [1]. Inherent to its short duplication time, E. coli is also quick to 

evolve, which can be problematic biologically (pathogenic strain evolution), scientifically 

(unwanted mutation development over time), and commercially (mutations that decrease 

product titer). Understanding the E. coli adaptation process is therefore of great 

importance. 

 

1.1  Adaptive Laboratory Evolution 

 Adaptive laboratory evolution, or ALE, is increasingly being used as a powerful 

tool for both biological discovery and engineering [2]. In their simplest form, ALE 

experiments consist of prolonged culturing of cells in a chosen environment to select for 
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spontaneous mutants able to outcompete the ancestor (Figure 1.1). ALE works robustly in 

microbes due to the ease with which large populations of rapidly dividing cells can be 

maintained; typical mutation rates and genome sizes ensure extensive sampling of the 

adaptive space, providing ample genetic diversity from which beneficial mutants will be 

naturally enriched [3]. Furthermore, the rise in the use of ALE has been fueled 

significantly by low cost, high throughput DNA sequencing, which when paired with 

appropriate bioinformatics tools allows facile identification of causal mutations. By 

relying on natural selection to enrich for mutants with increased fitness, phenotypic 

improvements are realized without requiring a priori knowledge of the genetic alterations 

necessary to effect such changes. In this way ALE can both optimize strain properties and 

provide insight into selective features governing the adaptation process. 

 Over the course of my graduate career I have been deeply involved in the 

development and optimization of “ALE machine” technology – custom robotics systems 

that allow for high throughput ALE experiments to be run in an automated manner. With 

this technology we are able to maintain upwards of 30 independent cultures in continuous 

exponential phase batch propagation, with real-time tracking of each culture’s growth 

rate and precise environmental control. Compared to what can be accomplished with 

manually performed ALEs, we have seen equivalent fitness increases on a time scale that 

is nearly ten times faster [4, 5]. The ALE machines thus serve as a potent tool with which 

to explore the adaptive response of microbes to a wide variety of conditions. 
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Figure 1.1 Adaptive Laboratory Evolution A) Microbes are cultured in a desired 
growth environment for an extended period of time, allowing natural selection to enrich 
for mutant strains (altered coloration) with improved fitness B) Evolved strains are 
characterized for phenotypic improvements relative to the ancestral strain, using 
whatever “fitness” metric is appropriate given the evolutionary environment C) Evolved 
strains have their DNA sequenced to reveal the adaptive mutations enabling phenotypic 
improvement. This example case depicts the fixation of two successive mutations 
targeting the same genetic region 
 

1.2  Introducing the Thesis 

To extensively probe the adaptive flexibility of E. coli, evolution to a broad range 

of environments is necessary. Any environment differing from the typical habitat of an 

enterobacterium perforce serves as a ‘perturbation’ towards which natural selection will 

begin to enrich for novel adaptive mutants. This dissertation revolves around using ALE 

machine technology to explore the adaptive response of E. coli to distinct categories of 

perturbation – alterations to the cell’s physical environment, its chemical environment, 

and to its very own DNA. 
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A purely physical perturbation, in contrast to one of a chemical nature, inherently 

precludes the alteration of the chemical structure or composition of molecules in the 

cells’ environment, or indeed the cell itself. Although at macroscopic scales there is a 

clear distinction between the physical and chemical environment of an organism, this 

division becomes blurrier at the scale of microbes – for example, although pressure is a 

physical attribute, to change the osmotic pressure experienced by a cell would require 

changing salt concentration in the culture medium, which could have unanticipated 

effects of a chemical nature. Perhaps the “purest” physical change a microbe naturally 

experiences is that of altered temperature. Temperature, i.e. the average kinetic energy of 

all the molecules composing and surrounding an organism, unsurprisingly has a drastic 

effect on survivability. Most organisms have an “optimal” growth temperature that falls 

within a permissive temperature range, outside of which cell death occurs. For E. coli, 

given its status as an enterobacterium, this optimal temperature coincides with human 

body temperature: 37 °C. Chapter 2 presents an investigation of E. coli adaptation to the 

stressful elevated temperature of 42 °C. 

 For laboratory E. coli, the “typical” chemical environment could probably be 

considered to be LB media, given its widespread use. However, LB is not a well-defined 

medium – it provides the necessary vitamins, minerals, and nutrients for robust bacterial 

growth, but its actual chemical composition in terms of concentrations is not quantified or 

consistent between batches. For this reason minimal media types are often preferred, 

which are produced so as to have precisely known concentrations of a minimal set of 

growth-permitting nutrients. There are various minimal media recipes (M9, MOPS, etc.), 

but the main factor distinguishing a minimal medium is the carbon source it contains. 
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Although there are many chemical elements necessary for survival and proliferation, 

catabolism of carbon compounds is the key mechanism through which energy is 

generated by organisms. The simple sugar glucose can be rapidly metabolized and 

typically allows for the fastest microbial growth, thus it is viewed as the default carbon 

source. Given all of this, a change of E. coli’s carbon source away from glucose was 

chosen as an ideal chemical perturbation with which to probe the adaptive evolution 

process. Chapter 3 presents an investigation of E. coli adaptation to growth on uniformly 

labeled Carbon-13 glucose. Chapter 4 presents an investigation of E. coli adaptation to 

growth in an environment rapidly alternating between the carbon sources glucose, xylose, 

glycerol, or acetate. 

In contrast to physical and chemical perturbations, a significant alteration to the 

very DNA of an organism is not a selective pressure that existed, at least to the current 

extent, before humans began genetic engineering. Although changes to DNA are the 

reason evolution happens, the large scale changes enabled by genetic manipulation (e.g. 

gene knock-outs and knock-ins) are not something organisms are generally used to, and 

thus cell viability and robustness can be heavily compromised after such engineering, 

though evolving to better tolerate the newfound biological state can ameliorate things [6]. 

Such biological perturbations have become extensive and both commercially and 

academically valuable thanks to current genetic engineering techniques. A key question 

one might ask of genetically engineered cells is how they differentiate “self” from “non-

self” when it comes to their heterologous genes. Chapter 5 presents an investigation of E. 

coli adaptation following genetic engineering to replace two important metabolic genes 

with foreign copies, from donor species spanning all domains of life. 
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Chapter 1 borrows in part from a manuscript in preparation for submission: 

Sandberg TE, Weng LL, Salazar MJ, Palsson BO, Feist AM. “Adaptive Laboratory 

Evolution: A Valuable Technique for Discovery and Industrial Biotechnology” The 

dissertation author is one of the authors of the review.  
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Chapter 2  

 

Evolution of Escherichia coli to 42 °C and 

Subsequent Genetic Engineering Reveals 

Adaptive Mechanisms and Novel 

Mutations 

2.1   Introduction 

Adaptive laboratory evolution, or ALE, has developed over the years into a potent 

tool for biological discovery and engineering [2]. By exploiting the inherent competition 

at play between organisms and the natural accumulation of mutations within a microbial 

population, desired phenotypic traits can be selected for without requiring a priori 

knowledge on how the traits might arise. These adaptively evolved organisms can then be 

subjected to whole genome resequencing, uncovering the genetic changes that enabled 

their phenotypic alteration. Additional data types, such as transcriptomics or metabolic 

uptake and secretion rates, serve to characterize the evolved strains and how they 

diverged from their ancestor, a divergence which must be enabled by their altered 

genotype. This analysis shines light on the functionality of particular genes [7] and the 

dynamics of the evolution process [8], increasing the biological knowledge base. While 



 
 

8 

serving as a method to perform basic scientific inquiry such as this, ALE can be an 

equally useful tool for applied research, pairing with synthetic and systems biology to aid 

in the engineering of strains [9]. 

ALE experiments often examine adaptation following a perturbation, either 

metabolic (e.g., growth on alternate carbon sources [10] or following knockout of 

metabolic genes [11]) or stressful (e.g., exposure to osmotic stress [12] or high ethanol 

concentrations [13]). However, the selective pressure guiding the adaptation can also be 

influenced in large part by the environment in which the strain is evolved. Evolutionary 

environments typically involve either batch culturing, wherein populations (often several 

in parallel) are serially propagated to new flasks with fresh growth medium at regular 

intervals, or chemostats, in which growth in a bioreactor allows for tight control of 

nutrient levels and other factors such as pH and oxygenation. In either case, ‘fitness’ 

ostensibly refers to a growth advantage, but this becomes more complicated by the 

existence of spatial or temporal inhomogeneities in the culturing environment that can 

lead to ecological niches. For example, in a chemostat bacteria can persist by adhering to 

the walls of the bioreactor [14], while batch cultures that reach stationary phase before 

passage can spawn subpopulations optimized for different phases of growth [15]. If the 

target of investigation is the method by which a cell will evolve to a particular 

perturbation, it can be desirable to confine ‘fitness’ to a single aspect, reducing the 

potentially confounding variables towards which a population might additionally be 

evolving. To this effect, batch culture serial propagation in mid-exponential phase 

ensures that selection occurs primarily for growth rate. 
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In this study we sought to examine the ALE process by adaptively evolving the 

wild-type mesophilic bacterium Escherichia coli K-12 MG1655, arguably the most 

highly studied and well-characterized microorganism, to constant exponential growth at a 

stressful elevated temperature in glucose minimal media. Ten parallel populations were 

evolved at 42°C using an automated system allowing for passage of batch cultures in 

mid-exponential phase multiple times a day, enabling many generations of growth in a 

relatively short time. While genes that mutate in parallel across independently evolved 

populations are often taken to be the likely causes for the fitness increase [16], true causal 

determination would require knocking-in each mutation to the starting strain in all 

possible combinations and comparing the resultant fitness, which would capture the 

individual effects of each mutation as well as their epistatic interactions. However, this 

quickly becomes prohibitively time consuming in strains with > 3 mutations, thus a 

different tool with which to probe mutational causality would be advantageous. For this 

reason we examined multiplex automated genome engineering (MAGE) [17] as a 

technique to supplement ALE experiments. After identifying the mutations occurring in 

the endpoints of this evolution study, MAGE was used to introduce these ALE-acquired 

alleles in a random fashion into the starting strain, allowing the combinatorial knock-in 

method to be somewhat mimicked. By competing the heterogeneous populations of 

genetically engineered strains against one another and determining the mutants that 

frequently emerged victorious, causal mutations were identified and compared with those 

inferred by mutational parallelism across the ALE populations.  

Elevated temperature was selected as the perturbation of interest for several 

reasons. Firstly, to aid in the analysis of mutational causality it would be beneficial to 
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have more than simply one or two frequent gene targets, and adaptation to a global stress 

provided a diverse set of genetic changes. Additionally, a previous study [18] 

investigated evolution of a large number of replicates in a very similar environment, 

differing only moderately in ancestral strain and method by which the batch cultures were 

serially propagated. Comparison with this work allowed examination of the extent to 

which mutational parallelism persists across studies. Furthermore, examining temperature 

stress was desirable because two other studies, both involving metabolic perturbations [6, 

19], have provided strong evidence that a large feature of evolutionary adaptation 

involves acclimatizing changes in gene expression back towards pre-perturbed levels. By 

evaluating the transcriptome of our temperature-evolved strains we sought to determine 

whether this trend extended to stress perturbations, which would indicate that it may be a 

general feature of evolution, irrespective of the nature of the perturbation. 

 

2.2   Results 

2.2.1  Evolution Process and the Endpoint Phenotypes 

Ten independent populations, started from wild-type E. coli K-12 MG1655, were 

adaptively evolved in M9 minimal media supplemented with 4 grams/liter glucose at 

42°C for approximately 45 days. Cultures were serially passed (~5 times per day) to 

flasks with fresh media once reaching a target optical density such that stationary phase 

was never reached and glucose concentrations were always in great excess (never 

dropping below 3 g/L). As mutations accrued and gained dominance within the separate 

populations, their fitness increased markedly relative to the ancestral strain. The 

populations followed different trajectories along the fitness landscape, arriving at final 
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growth rates on average 1.45 (± 0.06, standard deviation) fold higher than the starting 

point (fig. 2.1; raw fitness data shown in supplementary fig. S1). The populations 

underwent approximately 1500 generations of growth (supplementary fig. S2A), but 

because mutations occur predominantly due to DNA polymerase errors in genomic 

replication during cell division [20], the cumulative number of cell divisions (CCD) 

serves as a more meaningful scale for the time coordinate of an ALE than do generations 

[21]. This metric accounts for the population subsampling inherent to serial passage of 

cultures (supplementary fig. S2B). The CCD reached by the independent populations at 

the conclusion of the experiment ranged from 4.5 – 7.1 x 1012 with an average of 5.5 x 

1012.  With the exception of the outlier experiment #1, CCD and final population fitness 

were significantly correlated (Pearson’s r = 0.93 or 0.58 excluding or including 

experiment #1, respectively). This correlation is lost when using generations as the time 

coordinate (Pearson’s r = 0.35 or 0.06 excluding or including experiment #1, 

respectively). 

Clones were isolated from each of the evolved population endpoints and subjected 

to further analysis to determine the physiological differences at 42°C between the wild-

type and the evolved strains (table 2.1, fig. 2.2). Interestingly, the fitness (i.e., growth 

rate) increase of the isolated clones relative to the ancestor is noticeably lower than that 

of the populations (paired t-test, p < 10-7). Although the discrepancy could be due to 

population-level altruistic interactions [22], it may result simply from the evolved 

populations being fully physiologically adapted to constant exponential growth after 

~1500 generations under static experimental conditions. This adapted intracellular state is 

in contrast with the evolved clones, for which growth curves were started up from 
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stationary phase overnight cultures, potentially resulting in suboptimal performance due 

to insufficient time for re-acclimation of their protein expression machinery to the 

exponential growth, an effect previously documented [23]. Indeed, additional growth rate 

tests on the fastest and slowest growing endpoints clones (strains 4 and 9, respectively) 

and the populations from which they were isolated support this hypothesis, and reveal 

that the clone and population growth rates are in fact in excellent agreement 

(supplementary fig. S3). Thus, the selected clones were assumed to be representative of 

the dominant phenotype and genotype within the population endpoints.  

 
Figure 2.1. Fitness trajectories of the evolving populations. Plotted is the population 
increase in fitness relative to the initial average growth rate of the common starting strain. 
At the approximate CCD of 200 x 1010, the even-numbered experiments’ serial passage 
volumes were increased 10 fold to examine the impact of CCD on overall fitness.  The 
variability in CCD across experiments is due to this as well as fluctuations encountered in 
passage cell density over the course of the ALE.  Dashed and dotted lines represent 
populations that became dominated by hypermutators, with identical colors indicating a 
similar hypermutator genotype. 
 

 

 

 



 
 

13 

Table 2.1: Physiological characterization of colonies isolated from evolved 
population endpoints 

Strain 
# 

New 
Mutations 
Relative 
to WT 

Growth 
Rate (hr-1) 

Relative 
Fitness 

Increase 

Glucose 
Uptake 

Rate (mmol 
gDW-1 hr-1) 

Acetate 
Production 
Rate (mmol 
gDW-1 hr-1) 

Biomass 
Yield 
(gDW 
gGlc-1) 

WT 0 0.82±0.01 1 10.2±0.2 5.8±0.4 0.45±0.02 
1 6 0.95±0.03 1.17±0.04 11.8±0.9 5.8±1.9 0.45±0.04 

  2a 34 0.97±0.03 1.19±0.04 15.5±1.2 11.0±1.6 0.35±0.03 
  3a 30 0.92±0.04 1.12±0.06 13.7±1.8 12.9±0.6 0.37±0.06 
4 8 1.03±0.01 1.26±0.01 14.3±0.3 10.9±0.6 0.40±0.01 
5 8 0.94±0.05 1.15±0.06 13.9±0.7 10.1±0.4 0.38±0.04 
6b 41 0.97±0.01 1.19±0.02 15.5±1.9 10.9±2.5 0.35±0.04 
7 8 0.99±0.01 1.21±0.03 14.8±2.4 8.0±0.6 0.37±0.06 
8b 55 0.95±0.03 1.17±0.02 16.0±0.7 13.8±1.2 0.33±0.03 
9 6 0.92±0.01 1.12±0.02 14.3±1.7 11.4±0.3 0.36±0.04 
10 8 0.98±0.02 1.19±0.03 13.6±0.7 9.5±0.5 0.40±0.03 

a and b are hypermutator strains of the same lineage. For growth rate and relative fitness 
the standard deviation based on triplicate experiments is given; for other values the 95% 
confidence interval is given 
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Figure 2.2. Physiology of the temperature-evolved strains. Strain numbers are listed 
below their respective bars. The error bars for growth rate represent standard deviation of 
three biological replicates, while error bars for the other traits represent 95% confidence 
intervals. 
 

The evolved strains all displayed similar physiological changes. However, 

genome examination revealed that strains 2 & 3 and 6 & 8 likely shared a lineage at some 

point (see Mutational Analysis), thus strains 3 and 8 were omitted from the following 

statistics to ensure that only fully independently evolved phenotypes were considered 

(changing which two strains to omit did not significantly alter any values). On average 

the independently evolved strains increased their growth rate (µ) by 0.15 hr-1 (equivalent 

to a decrease of 7.7 minutes in doubling time), increased their glucose uptake rate (GUR) 

by 4.0 mmol gDW-1 hr-1, increased their acetate production rate (APR) by 3.9 mmol 
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gDW-1 hr-1, and decreased in biomass yield by 0.07 gDW gGlc-1 (YX/S,ss; calculated at 

steady state by dividing growth rate by GUR). Correlation plots between the pairwise 

combinations of these characteristics highlight the physiological divergence of the 

evolved strains from the wild-type, as well as the relation or lack thereof between 

specifics traits (fig. 2.3). There is a strong negative correlation (Pearson’s r = -0.94) 

between biomass yield and GUR among the evolved strains and a notable positive 

correlation (r = 0.74) between APR and GUR, both of which contribute to the negative 

correlation between biomass yield and APR (r = -0.76). These results imply that the 

strains adopted a similar phenotypic change, but to a varying extent, of increased glucose 

uptake at the cost of increased acetate overflow metabolism [24], utilizing this greater 

metabolic flux not to create biomass but rather to generate more energy. Notably, growth 

rate itself was not correlated with any of the other traits (no Pearson’s r with a magnitude 

above 0.22). These physiological trends replicate what is observed upon evolution to 

glucose minimal media at 37°C [5]. 
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Figure 2.3. Pairwise correlation plots between the physiological traits of the evolved 
strains. Strain numbers are listed next to their respective points, with the mutL 
hypermutators in yellow and the mutD hypermutators in red. The least squares linear 
best-fit line to the evolved strains (excluding the wild-type starting strain from the fit as 
well as strains 3 and 8, so that only fully independently evolved phenotypes are 
considered) is overlaid along with its Pearson correlation coefficient. (YX/S,ss = biomass 
yield at steady-state, µ = growth rate, GUR = glucose uptake rate, APR = acetate 
production rate) 
 

2.2.2  Mutational Analysis 

Whole genome resequencing was performed on isolated clones from each 

experiment in order to investigate the genetic basis underlying their phenotypic changes. 

A total of 161 unique de novo mutations relative to the starting strain were found across 

all 10 endpoints (supplementary dataset S1), with a number of these being shared among 

two or more of the strains, or occurring within the same genes.  
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Table 2.2: Recurring mutations identified across the ALE endpoint strains 
Gene Specific Function Classa Mutation Protein Change Strain 

Number(s) 

pyrE/rph 
Orotate 

phosphoribosyl-
transferase/RNase PH 

M 82 bp 
deletion frameshift 1, 2, 3, 4, 5, 7, 

9, 10 

rpoC RNA polymerase 
subunit R 

SNP A734V (GCG→GTG)  1, 2 

SNP Q1367* (CAG→TAG)  5, 7, 10 

pykF Pyruvate kinase I M 

SNP ydhZ/pykF intergenic 
(-498/-59) 3 

SNP T278S (ACC→TCC)  10 

SNP K286* (AAA→TAA)  4, 5, 7 

rne Ribonuclease E R 

SNP D415N (GAC→AAC)  6/8 
SNP H243Y (CAT→TAT)  3 
SNP G124S (GGT→AGT)  9 

SNP V19A (GTA→GCA)  2 

ygaH/mpr
A 

L-valine efflux 
transporter/MprA 

repressor 
R 

SNP intergenic (+77/-14) 6/8 
SNP intergenic (+80/-11) 10 

SNP intergenic (+81/-10) 4, 5 

mlaE Phospholipid ABC 
transporter C SNP L107F (TTG→TTT)  4, 5, 7 

yfdI Predicted inner 
membrane protein C 

1 bp 
insertion 

frameshift (519/1332 
nt) 8 

SNP Q186* (CAA→TAA)  6 

1 bp deletion frameshift (1274/1332 
nt) 3 

nagC PTS regulator C 
SNP C264S (TGC→AGC)  6/8 

1 bp deletion frameshift (218/1221 
nt) 2 

hns/tdk H-NS regulator/ 
thymidine kinase R 

SNP intergenic (-22/-583) 6/8 
Insertion 
sequence intergenic (-111/-486) 9 

hfq RNA binding protein R SNP D9A (GAT→GCT)  1, 7 

nagA 
N-acetylglucosamine-

6-phosphate 
deacetylase 

C 
SNP G265D (GGC→GAC)  2 
21 bp 

deletion 
In-frame (381-401/1149 

nt) 1 

secD Membrane protein 
channel component C 

SNP R181L (CGC→CTC)  8 

SNP G499G (GGC→GGT)  2 

dinQ/arsR 
Toxic membrane 
peptide/ metal-

responsive regulator 
C 

SNP intergenic (-209/-486) 8 

1 bp deletion intergenic (-305/-390) 3 

ilvL/ilvX 

Leader peptide 
regulating isoleucine 
& valine biosynthesis 

operons 

M 
Double SNP intergenic (+47/-39) 6 

SNP intergenic (+48/-39) 8 
a M, R, C = Metabolic, Regulatory, Cell envelope 
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The emergence of several ‘hypermutators,’ a recurring feature of many ALE 

experiments [25], accounted for the majority of these unique mutations. Four of the ten 

strains were hypermutators, possessing on average 40 mutations, while the remaining six 

‘non-mutators’ had an average of 7 mutations. The resequencing results indicate that two 

of the four hypermutators likely resulted from unanticipated cross-mixing between the 

evolving populations, thus only two hypermutators can be said to have occurred 

independently: one likely due to a SNP in mutL (strains 2 and 3) [26] and the other due to 

a SNP in mutD, also known as dnaQ (strains 6 and 8) [27]. Analysis of the non-mutator 

genotypes does not indicate that they suffered from similar occurrences of cross-mixing 

(see Materials and Methods). 

 The observed mutations in the clones isolated from each population were 

compared. Fourteen genes or intergenic regions were found to mutate in parallel across 

two or more of the evolved strains (discounting those mutations shared due to cross-

mixing), which fell into three general functional categories: mutations affecting 

metabolism, regulation, or the cell envelope (table 2.2). Intergenic mutations were 

categorized based on their position relative to the genes (e.g., SNPs downstream of one 

gene and upstream of another likely change expression of the latter) and transcriptomic 

data obtained from RNA-seq analysis. The key mutations within each of the three 

functional categories are now described: 

1) Metabolic Mutations: Only three metabolic genes were found to mutate in more than 

one strain, but two of these occurred in half or more of the strains. Foremost among 

all mutations, regardless of category, is an 82 bp deletion between pyrE and rph that 

occurred in every strain except the two mutD hypermutators. This mutation does not 
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appear to be specifically temperature-related, having been observed in several other 

ALE studies on adaptation to lactate- or glucose-supplemented minimal media at 

30°C or 37°C, respectively [28, 29], and is hypothesized to relieve a defect in 

pyrimidine biosynthesis present in the starting strain [30]. The second most 

predominant metabolic mutation was in pykF, or pyruvate kinase I, which 

experienced one intergenic SNP (accompanied by a 2.7 fold down-regulation in gene 

expression) and two different nonsynonymous mutations that may cause PykF 

inactivation through premature truncation of the enzyme (K286*) or alteration of a 

putative substrate binding residue (T278S) [31]. As with pyrE/rph this is likely not a 

temperature-specific beneficial mutation, given that PykF inactivation is a recurring 

feature of E. coli adaptation to glucose minimal media, hypothesized to allow for 

increased glucose uptake by decreasing the metabolism of phosphoenolpyruvate to 

pyruvate [29, 32, 33]. 

 

2) Regulatory Mutations: Five of the fourteen recurring mutations were found in 

regulatory genes, with three of these occurring in half of the strains: rpoC, rne, and 

ygaH/mprA. RpoC is a subunit of the RNA polymerase complex, which, given its 

ability to function as a global regulator, is a frequent target of mutations in bacterial 

adaptation [34, 35]. Similar ALE-identified rpoC mutations have been found to 

increase the general metabolic efficiency of E. coli grown in minimal media [7, 36] or 

are inferred to adapt it to higher temperatures [18]. The ribonuclease rne had 4 

different SNPs, the most diverse set of mutations observed in any one gene in this 

study. Rne is an essential enzyme involved in rRNA and tRNA processing and, as a 
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key component of the RNA degradosome, is the rate-limiting or sole degrader of 

many transcripts [37]. A previously discovered rne mutant was nonviable at 44°C and 

significantly defective in rRNA/tRNA processing as well as mRNA degradation, but 

could be rescued at the elevated temperature by SNPs in the N-terminal catalytic 

domain (in which all four ALE-acquired SNPs occur) that restored the rRNA/tRNA 

processing to wild-type levels but did not undo the 2-3 fold decrease in mRNA decay 

rate [38]. Relevantly, in prokaryotes the stability of mRNA is directly correlated with 

the optimal growth temperature of the organism [39], suggesting that adaptation 

strategies to increased temperature might include increasing the stability of mRNA 

transcripts. Taken together, this implies that the rne mutations found in this study 

may function to improve the enzyme’s rRNA/tRNA processing capabilities at 42°C 

without likewise improving its endonuclease efficacy. It is also of note that a SNP in 

hfq was observed in two strains, and Hfq binding can prevent mRNA degradation by 

Rne (fig. 2.4A) [40]. The three different intergenic ygaH/mprA SNPs all occurred 

between 10-14 nucleotides upstream of the mprA start codon, likely influencing 

translation efficiency by modulation of the ribosomal binding site [41]. MprA is a 

transcriptional repressor for a number of genes that code for multidrug resistance 

pumps [42]. Although drug resistance is not a factor in this evolution, increased 

expression of the pumps leads to altered membrane flux for a variety of compounds 

[43], thus this regulatory mutation could also perhaps be classified as cell envelope-

related. 
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3) Cell Envelope Mutations: Despite no single cell envelope-related gene being mutated 

in more than 3 of the 10 endpoints, there was nevertheless a clear selective pressure 

on the cell envelope in general, with 6 of the 14 recurring mutations falling into this 

category. These range from phospholipid transporters to membrane proteins and 

channels to genes involved in the levels of cell envelope components. Note that 

although nagC and nagA could be classified as regulatory and metabolic, 

respectively, their role in the recycling of cell wall peptidoglycan (fig. 2.4B) is 

responsible for their classification as cell envelope-related mutations [44]. This 

category of mutations is a feature of ALEs in general [28, 45] and in this particular 

study may help the envelope maintain its essential physical properties at the elevated 

temperatures of the experiment [46]. 

 
Figure 2.4. Repeatedly mutated genes with related functionality. (A) Both rne and 
hfq, mutually involved in mRNA degradation, mutated in multiple of the temperature-
evolved ALE strains. (B) Genes in the nag operon facilitate uptake of GlcNAc from the 
periplasmic space, which can be channeled away into glycolysis or reincorporated into 
the peptidoglycan of the cell wall. Genes in red (nagC, nagA) were recurring mutational 
targets. (OM = outer membrane, PG = peptidoglycan, IM = inner membrane, GlcNAc = 
N-acetylglucosamine, GlcNAc6p = N-acetylglucosamine-6-phosphate, GlcN6P = 
glucosamine-6-phosphate, F6P = fructose-6-phosphate) 
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Although a number of ALE studies examining adaptation to increased 

temperature have been performed to date [18, 32, 47, 48], the one by Tenaillon et al. 

serves as an ideal point of mutational comparison given the significant similarity in 

culture environment between our two studies and the large number of independent lines 

they evolved, providing a statistically significant basis against which to compare the 

mutations observed herein. However, despite the similarity in evolution environment, the 

difference in mutational frequency is extremely pronounced. Of the fourteen genes in this 

study that mutated in two or more strains, only four were found to mutate in any of the 

114 evolved lines sequenced by Tenaillon. Both rne (4 different SNPs across 5 strains) 

and ygaH/mprA (3 different SNPs across 5 strains) had a mutation in only 1 out of the 

114 lines. Mutations in rpoC and those in or around ilvL were the only noticeably 

recurring feature: 5 out of 10 and 2 out of 10 rpoC and ilvL mutants, respectively, in the 

evolved strains of this study, vs. 21 out of 114 and 29 out of 114 identified in the 

Tenaillon strains. Even given the relatively small sample size in this study, to have 

greater than 20% mutational infiltration of 12 genes in one instance and less than 1% in 

another implies a substantial difference in evolutionary trajectory. Though the recurring 

mutations in this study (table 2.2) overlap poorly with those identified by Tenaillon, there 

is slightly more overlap between the functional units determined to be significant in their 

study (possessing 5 or more mutations across the 114 strains) and the mutations observed 

in this work: 9 of the 26 functional units share one or more mutated genes, despite most 

mutational overlap occurring in only a single one of our evolved strains (supplementary 

table S1). 
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2.2.3  Analysis of Mutational Causality Using MAGE 

Multiplex automated genome engineering (MAGE) [17] was utilized to examine 

causality of the various mutations identified in the evolved strains. To limit the scale of 

the experiments, only those mutations found in the 6 non-mutator strains were selected as 

targets to introduce via recombineering. This yielded 31 distinct mutations between the 

strains, resulting in 29 unique oligos with which to perform recombineering (two of the 

mutations were intergenic insertion sequences, infeasible for use in MAGE due to their 

size, while insertion sequences occurring within genes were assumed to function 

equivalently to knock-outs). These oligos were organized into seven distinct pools – six 

pools which contained only those oligos corresponding to the mutations found within 

each of the non-mutator evolved strains (strains 1, 4, 5, 7, 9, and 10), and one pool which 

contained all 29 oligos. Nine rounds of recombineering were performed on the starting 

strain for each of these 7 pools, after which serial growth and passage of the cultures 

occurred to enrich for those strains existing within the highly heterogeneous starting 

populations that were most fit for growth at 42°C. Multiple colonies were isolated from 

each of these enriched populations and subjected to whole genome resequencing 

(supplementary dataset S2). 

The most frequently observed MAGE mutations (occurring in at least three of the 

enriched strains, with a frequency > 25%) are given in table 2.3. Frequency for a gene is 

defined as the number of resequenced strains which possessed a mutation divided by the 

number of resequenced strains which potentially could have possessed it given the pool 

of oligos used in recombineering. This recapitulates what was observed in the evolved 

ALE strains – there is excellent agreement between the most frequent MAGE and ALE 
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mutations, keeping in mind that the use of only non-mutator strain mutations in MAGE 

explains the absence of yfdI, nagC, secD, dinQ/arsR, ilvL/ilvX, and hns/tdk (fig. 2.5). 

This leaves proQ, a regulator of the membrane transporter ProP, as the sole disagreement 

between tables 2 and 3, which mutated in only ALE strain 7 (a missense SNP, Q216P) 

and yet was found in 9 of 19 relevant MAGE strains. These results reinforce the 

conclusions drawn from examination of mutational parallelism across the independently 

evolved ALE strains – that the identified genes are likely key targets for adaptation to 

growth at 42°C in glucose minimal media. 

 

Table 2.3: The most significantly recurring genes following enrichment of MAGE 
strains 

Gene MAGE frequency ALE frequency New off-target mutationsa 

pyrE/rph 0.88 0.80 26 (including 9 frameshifts) 
ygaH/mprA 0.86 0.50 1 (intergenic 1bp deletion) 

rpoC 0.79 0.50 2 (I1357I, N762S) 
pykF 0.55 0.50 0 
hfq 0.50 0.20 0 

proQ 0.47 0.10 1 (G212G) 
nagA 0.36 0.20 2 (G127G, H129N) 
rne 0.33 0.50 0 

mlaE 0.27 0.30 1 (L99L) 
a Protein alterations given in parentheses 

 

On average, enriched strains possessed 4 mutated genes targeted by 

recombineering and 3 mutations in secondary locations throughout the genome. 

However, several of the targeted genes experienced mutations that differed from what 

would be expected given the design of the recombineering oligos. With the exception of 

one, all of these novel, ‘off-target’ mutations occurred within the 70 bp region introduced 

into the genome by allelic replacement and thus likely resulted from incorporation of 

mis-synthesized oligos containing erroneous bases, as has been observed with MAGE 
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previously [17]. Nevertheless, examining these unintentional mutations that were able to 

fix in the post-enrichment populations provides insight into the nature of the causal 

genetic changes. 

 

 
Figure 2.5: Mutational agreement between the MAGE strain enrichment and ALE 
experiment results. (A) A subset of the novel alleles acquired via evolution were 
randomly introduced into the ancestral strain with MAGE, and these MAGE strains were 
competed against one another in the enrichment process. ‘Frequent ALE gene targets’ 
refer to genes that mutated in at least two of the ten ALE endpoint strains, while 
‘Frequent MAGE gene targets’ refer to those that mutated in at least 25% of the relevant 
post-enrichment MAGE strains. Circle areas are proportional to the number of genes 
contained within each category. (B) Frequency comparison between MAGE and ALE 
strains for the 9 most frequent MAGE gene targets. The only disagreement occurs for 
proQ (marked by *), which was not a frequent ALE gene target. The vertical dashed line 
corresponds with 10%, the frequency for a gene mutating in only a single one of the ten 
ALE strains. 
 

In the case of pyrE/rph, 26 new SNPs and indels were found, and in no instance 

did a strain possess some combination of rph or pyrE/rph mutations that did not include 

the introduction of a shifted rph stop codon. Rph is naturally defective in the E. coli strain 

used in this study [30], so alterations to its coding sequence should be phenotypically 

neutral. These mutations support the mechanism put forth previously [28], whereby a 

frameshift that moves the rph stop codon closer to the pyrE attenuator loop allows for 
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improved regulation of pyrE expression. If these rph frameshifts and nonsense SNPs all 

yield roughly equivalent outcomes, then this begs the question of why only the same 82 

bp deletion was observed in the ALE strains. This disparity in variation can be explained 

by the different acquisition method of ALE vs. MAGE mutations. The 82 bp pyrE/rph 

deletion is flanked by two 10 bp repeats, thus its prevalence in the adaptively evolved 

strains may be due to the relative frequency of DNA polymerase slippage during DNA 

replication [28, 49], and once this fixes within the populations there is no longer a 

selective force for continued genetic alteration in the region. This mutational bias is 

decreased under MAGE conditions – even with only a small fraction of oligos with 

synthesis errors, a variety of mutations can be acquired across each round of 

recombineering before the populations are subjected to growth-based selection in the 

form of enrichment, negating the ease-of-acquisition benefit the 82 bp deletion has in 

gaining dominance. 

Unlike with pyrE/rph, where most frameshifts will be beneficial and gene 

inactivation is not a concern, one would expect that in the other MAGE gene targets the 

introduction of mis-synthesized oligos would in most instances result in a fitness decrease 

by altering the amino acid sequence of a functioning protein. This fitness decrease would 

render the mutants unable to survive the enrichment process, yielding few off-target 

mutations within the relevant genes of the enriched MAGE strains. The data support this 

conclusion; other than the 26 new pyrE/rph mutations, only 8 off-target mutations were 

found across all other MAGE-targeted genes in the resequenced strains, with more than 

half of these resulting in no protein sequence alteration (one intergenic 1 bp deletion, four 

synonymous SNPs, and three missense SNPs). There is no reason that the oligos used for 



 
 

27 

pyrE/rph should be more erroneous than those for any other gene, thus the difference in 

number of off-target mutations that survived enrichment highlights the relative specificity 

of the ALE-identified mutations for effecting a fitness increase. However, pykF 

experienced no off-targets despite its two separate oligo-introduced mutations both 

potentially leading to gene inactivation, either by altering a potential binding residue or 

truncating the protein. It may be that these mutations only decreased the enzymatic 

activity of PykF rather than completely eliminating it, and reduced PykF functionality 

happens to be more beneficial than the complete inactivation that would likely result 

from the introduction of random, mis-synthesized oligos. It should also be noted that one 

off-target mutation, a SNP in rpoC (N762S), fell outside of an oligo-targeted region and 

thus may have arisen independently. 

The resequenced MAGE strains were subjected to growth rate tests to ensure that 

they were in fact adapted to growth at 42°C. The tests revealed two strains that, despite 

possessing mutations and being picked from enriched populations, did not grow faster 

than the starting wild-type strain. These two strains were precluded from the MAGE 

mutational frequency analysis, but nevertheless highlighted an interesting feature: all 

adapted strains possessed mutations in pyrE/rph and/or rpoC, and the two un-adapted 

strains were the only ones to have neither. 

 

2.2.4  Transcriptomic Profiling via RNA-seq 

RNA-seq was performed to examine the global shifts in gene expression resulting 

from the altered genotypes of the evolved strains as compared to the wild-type ancestral 

strain at 42°C. To complement this analysis, the expression shift of the wild-type strain 
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when grown at 42°C vs. 37°C was also determined (supplementary dataset S3). Figure 

6A shows a heat map of fold changes for the 1208 genes deemed to be significantly 

differentially expressed (q-value < 0.05 [50]) in the wild-type strain when grown at the 

higher temperature. The differentially expressed wild-type genes and their pattern of up- 

and down-regulation are in good agreement with a previous study examining differential 

expression in E. coli after growth at 43°C [51], including such features as up-regulation 

of heat shock proteins (e.g., ClpB, DnaK, GrpE, and GroL, among others) and sulfur 

metabolism genes (cys genes), and down-regulation of genes involved in flagellar 

synthesis (fli and flg genes) and putrescine catabolism (puu genes).  

In most of these cases, and indeed as a general trend across many of the genes 

(fig. 2.6A), the mutations of the evolved strains served to reverse the heat-induced 

transcriptional shift, restoring the expression state back towards the levels of the wild-

type at 37°C. On average, each evolved strain had restorative shifts for 73% of the 1208 

genes, and principal component analysis provides an additional means of visualizing 

these evolved shifts in gene expression (supplementary fig. S4). Such restoration has 

been documented in two other instances; in one study examining evolution of E. coli onto 

lactate or glycerol as the sole carbon source as opposed to glucose [19], and in another 

examining evolution of Methylobacterium extorquens following replacement of a native 

central metabolism reaction with a functionally analogous, heterologous pathway [6]. In 

both cases there was widespread restoration of expression back to the wild-type levels, 

highlighted by the less common ‘reinforcement’ of a change (i.e., down- or up-regulated 

genes at the start of evolution becoming increasingly down- or up-regulated following 

evolution, respectively). This reinforcement, when occurring across multiple of the 
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independently evolved strains, was taken as evidence for the reinforcing shift being an 

important factor in their increased fitness. In this study, highly parallel (occurring in at 

least 8 of the 10 evolved strains) transcriptional reinforcement occurs in 101 genes, 

compared to 703 genes that experience highly parallel restorative shifts. It should be 

noted that expression levels can be influenced by growth rate-dependent effects [52], but 

this cannot explain the observed transcriptional restoration given that the growth rate of 

the wild-type strain at 42°C is higher than at 37°C (0.82 hr-1 vs. 0.7 hr-1), both of which 

are lower than the evolved strains. 

 
Figure 2.6. Heat maps of differential expression between the ancestral and evolved 
strains. (A) The 1208 genes which are significantly differentially expressed (q-value < 
0.05) in the wild-type after growth at 42°C, rank-ordered. (B) Mutations acquired by the 
evolved strains (relevant strains marked with *) could either serve to resist (proP; strain 
7) or aid in (nagE; strains 1, 2, 6, and 8) the reinforcement of the WT expression shift. 
(C) Widespread up-regulation of flagellar genes after evolution, partially resisted by two 
strains (6 and 8) possessing similar genotypes. 
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The reinforcing shifts in gene expression across the temperature-evolved strains 

were examined in more detail. Evidence was found both supporting and refuting the 

assumption that these reinforcements point to key mechanisms of adaptation. Supporting 

data include the expression shifts observed in nagE, which increased 1.6 fold in the wild-

type at 42°C followed by a further increase between 15-71 fold in evolved strains 1, 2, 6, 

and 8, in stark contrast with the remaining strains which changed in expression by no 

more than 1.6 fold (fig. 2.6B). The strains exhibiting the strongly reinforcing increase in 

nagE expression are those possessing mutations in nagC and/or nagA, both determined to 

be significant gene targets in the adaptation to increased temperature (table 2). These 

mutations are likely responsible for the observed nagE shifts, given the genes’ mutual 

involvement in peptidoglycan recycling [44]. This finding is similar to the strongly 

reinforced up-regulation of pntAB observed by Carroll and Marx in the M. extorquens 

evolved strains, which additional analysis showed to be a major contributor to their 

fitness increase, and the discovery of mutations within this operon. 

In contrast with nagE, expression shifts in proP serve as an example of a 

reinforcing shift seemingly acting against the best interest of the cells. Upon initial 

growth at 42°C the wild-type strain decreases in proP expression by 1.5 fold, a decrease 

which is reinforced uniformly across the ten evolved strains. However, strain 7 exhibits 

the smallest expression decrease (an insignificant -1.2 fold, compared to an average of -

2.7 fold across the other nine strains) and is also the strain that acquired a SNP in proQ. 

Though not appearing in multiple of the ALE endpoint strains, the proQ mutation was 

found to be significant in the MAGE enrichment analysis and is likely responsible for the 

greater comparative proP expression, given that ProQ’s only known function is as a 
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regulator of ProP levels [53]. This implies that the reinforced change in expression of 

proP is actually detrimental to growth at increased temperatures, enough to allow for 

fixation of this mutation that combats the change and provides a fitness increase of 

suitable magnitude to repeatedly survive MAGE enrichment. However, although no 

epistatic interactions could be inferred from the MAGE results (the proQ mutation did 

not appear solely in the presence of any other single mutation), the possibility cannot be 

discounted that different expression shifts in proP, or indeed any gene, could have 

different effects in different strains. 

In the same way that the reinforced expression shifts may not all necessarily aid in 

the fitness of the cells, so too is this the case for the restorative shifts. The most 

noticeably counterintuitive restorative shift is the massive up-regulation of flagellar genes 

in the evolved strains following their initial down-regulation in the wild-type upon 

growth at 42°C (fig. 2.6C). In the well-mixed environment of the ALE experiment there 

is no evident need for motility, so increased expression of these genes should incur a 

significant energetic cost [54] while providing no apparent benefit. Indeed, previous ALE 

studies, regardless of culturing temperature or carbon source in the growth medium, have 

yielded strains with mutations that led to the down-regulation of flagellar genes [5, 19, 

55]. Interestingly, strains 6 and 8 (the two mutD hypermutators) appear to have somewhat 

mitigated this flagellar up-regulation in the same way that strain 7 did for proP down-

regulation. The SNP 22 base pairs upstream of the hns start codon that strains 6 and 8 

share is a potential candidate for the genetic change behind their outlying behavior, given 

hns’s part in the regulation of flagellar genes [56]. Taken together, the data suggest that 
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the evolved expression shifts, whether restorative or reinforcing, can sometimes be 

actively detrimental instead of beneficial. 

Other than the influence of the nagA/nagC and proQ mutations on transcription of 

nagE and proP, respectively, the recurring ALE mutations (table 2) have only subtle, if at 

all discernible, effects on expression levels relative to the other endpoint strains lacking 

these mutations. This indistinct mutational influence on transcription includes both the 

genes that mutated, as well as separate genes that might logically experience an 

expression shift as a result (e.g., a proQ mutation causing proP shifts). Even the 

intergenic mutations, which are more likely to cause expression shifts than are protein 

sequence alterations [57], fail to noticeably distinguish themselves from the strains 

without the mutations, and can be inconsistent in their influence. For example, although 

the strain possessing a SNP 59 base pairs upstream of the pykF start codon has the 

greatest decrease in pykF expression (-2.7 fold; the second largest decrease being -2.2 

fold), it fails to stand distinctly apart from the remaining strains (t-test, p > 0.16). 

Similarly, although 8 of the evolved strains share the identical 82 bp pyrE/rph deletion 

that should influence pyrE expression [28], their fold changes for the gene ranged 

between -3 and +5. Isolating the transcriptional effects of any individual mutation is 

clearly complicated by the presence of other genetic changes within the evolved strains. 

Elucidation of the expression shifts enabled by specific mutations would likely require 

the creation and transcriptomic characterization of single knock-in mutants. 

 

2.3  Discussion 
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In this study, adaptive laboratory evolution of 10 replicate cultures was performed 

under carefully controlled conditions to yield E. coli strains selected solely for faster 

exponential-phase growth on glucose minimal media at 42°C. These strains were 

physiologically characterized, transcriptomically profiled, and subjected to whole 

genome resequencing to determine the genetic basis of their adaptation. Selected 

mutations were knocked-in to the ancestral strain in random combinations via MAGE to 

gain further insight into the causal genetic changes behind the acquired fitness increase. It 

was found that (1) frequency-based assignment of causality to mutations is largely 

consistent across the naturally evolved and genetically manipulated strains; (2) the path 

of genetic adaptation is greatly influenced both by the genotype of the starting strain and 

the conditions under which the evolution is performed; and (3) a variety of mutations 

leads to the same general trend of phenotypic and transcriptional convergence among the 

evolved strains, highlighted by the occasional counterintuitive shift in gene expression. 

Although the number and variety of mutations capable of conferring a growth 

advantage in any particular environment may be nearly limitless, those which strongly 

contribute to an improved phenotype have a much greater probability of fixing within the 

evolving populations than do detrimental, neutral, or slightly beneficial mutations. Thus, 

genes mutated in parallel across independently evolved cultures stand out as likely causes 

for the observed fitness increase, rather than simply being ‘hitchhiker’ mutations [16]. 

This frequency-based analysis pointed to 14 different genes, fewer than 10% of the 144 

genes mutated across all strains, as the foremost genetic targets for adaptation to growth 

on glucose at 42°C. A subset of these 144 altered genes, encompassing the mutations 

acquired by the six strains with few (≤ 8) genetic changes relative to the common 
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ancestor, were genetically engineered into the starting strain in random combinations 

with the techniques of MAGE. Repeated culturing of the highly heterogeneous MAGE 

populations enriched for the most fit strains existing within them, and genome 

resequencing revealed the genetic changes possessed by these strains. It was found that 

frequency-based analysis of the mutated genes within the MAGE strains perfectly 

recapitulated the likewise-determined key genes of the ALE strains (at least, for those 

genes which fell within the subset used in the genetic engineering) and pointed to only 

one additional key gene target that did not happen to mutate in parallel in the ALE. 

Additionally, the unintentional inclusion of oligos with synthesis errors in the MAGE 

allelic replacement [17] highlighted the effects the evolved mutations had on the genes; 

many unintentional off-target mutations accumulated if fitness was positively or neutrally 

affected by inactivation of the gene in question, but off-targets were generally lacking or 

synonymous if the mutated gene likely retained some measure of functionality. While not 

apparent in this study, MAGE analysis would also serve to highlight the existence of 

positive epistasis between acquired mutations if they predominantly showed up together 

in the post-enrichment strains, implying that their combined fitness benefit was greater 

than either individually. MAGE thus presents itself as a useful tool for reaffirmation of 

mutational causality following an ALE experiment. 

Though the excellent agreement in mutational frequency between ALE and 

MAGE strains implies that these recurring mutations would similarly appear in other E. 

coli temperature evolution experiments, comparison with the work of Tenaillon et al. 

revealed that for the most part this is untrue. Of the 14 recurring ALE mutations 

identified herein, ten experienced zero mutations across all 114 lines evolved by 
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Tenaillon, while two mutated in only 1 of the 114 lines. To understand where this 

discrepancy arises, it is important to classify the ways in which the two studies differ. 

Firstly, in this study K-12 MG1655 is used as the ancestral strain, differing from the B 

REL1206 strain used by Tenaillon (a descendant of B REL606 evolved for 2,000 

generations on glucose minimal media at 37°C [58]). This strain difference provides a 

clear explanation for several of the mutational discrepancies: the 82 bp pyrE/rph deletion 

widespread among the strains generated here is specific to MG1655, thought to relieve an 

inherent defect in pyrimidine biosynthesis [28], and Tenaillon does not observe pykF 

mutations because B REL1206 already contains an inactivating mutation in pykF, 

precluding it from further selective forces. The use of different starting strains also 

provides a possible explanation for the lack of rne mutants found by Tenaillon. Rph is 

naturally defective in MG1655 and is known to interact in vivo with Rne [59], so it may 

be that certain detrimental effects resulting from elevated temperature do not manifest 

themselves when Rph and Rne are able to form functional assemblies, but the absence of 

Rph places pressure upon Rne to develop compensatory mutations for improvement of its 

functionality. On top of these mutational discrepancies that can be intuited, there are 

doubtless those for which explanations are not obvious; for example, several beneficial 

rpoB mutations identified in the Tenaillon study were actually detrimental to fitness, or 

potentially even lethal, when introduced into MG1655 [60]. 

In addition to the different starting strains, differences in experimental 

methodology are likely to have a significant effect. Although evolved at essentially 

identical temperatures (42°C vs. 42.2°C) and on the same carbon source, the 

environments under which evolution occurred were nevertheless quite different. Whereas 
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in this study constant exponential phase growth was maintained and all nutrients were 

always in great excess, thus allowing for selection based solely on growth rate, the 

methodology of Tenaillon mimics that of the long-term evolution experiment (LTEE) [4] 

– the media contained only 25 mg/liter of glucose (160 times less than the 4 g/liter used 

here) and cultures were passed once per day, as a result spending the majority of their 

time in stationary phase. Significant differences in bacterial behavior arise during 

stationary phase [61], and the process of repeated feast and famine causes the selective 

force to be non-constant. This can give rise to unusual features, such as coexisting 

subpopulations that thrive in different phases of the daily cycle [15]. Furthermore, the 

Tenaillon strains evolved under poorly oxygenated conditions, given that 10 mL cultures 

were kept in 15 mL tubes shaken at only 100 rpm. The large difference in hypermutator 

prevalence between our two studies is also indicative of the methodological influence on 

genomic changes; at least 20% of our strains became hypermutators (discounting those 

likely caused by population cross-mixing), while Tenaillon evolved 115 lines of which 

only one became a hypermutator, and was precluded from further analysis.  

As for the carbon source availability, in this study mutations facilitating faster 

glucose uptake are selected for only to the extent that they enable faster growth, whereas 

in LTEE conditions faster uptake of the scarce glucose in and of itself provides a 

significant advantage. This may be why under LTEE conditions pykF is known to acquire 

an internal insertion sequence [58], almost certainly leading to full gene inactivation, but 

the pykF mutations identified herein potentially preserve some of the enzyme’s 

functionality given the failure of off-target pykF mutations to accrue in the MAGE 

strains. PykF is one of two enzymes catalyzing conversion of PEP to pyruvate in 
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glycolysis, and it is hypothesized that PykF inactivation enables faster glucose uptake by 

increasing intracellular concentrations of PEP, which can be used by the 

phosphotransferase system to drive glucose uptake [33]. In the glucose-rich conditions of 

this study, PykF impairment as opposed to inactivation could serve as a more beneficial 

alternative, balancing the pros of increased glucose uptake against the cons of a decrease 

in glycolytic flux capabilities. Another relevant comparison exists between this study and 

one with identical experimental conditions and starting strain, but with the culturing 

temperature set to 37°C instead of 42°C [5]. The most notable genetic feature of the 

lower-temperature ALE was the various rpoB SNPs acquired by every evolved strain, but 

rpoB did not mutate in any of our higher-temperature ALE strains. Recurring mutational 

agreements exist only for pyrE/rph, hns/tdk, and pykF (which similarly experienced no 

alterations causing clear-cut inactivation). Together these mutational comparisons with 

other studies highlight the significant influence of experimental conditions and starting 

genotype on the resulting genetic adaptation. Thus, mutational reproducibility largely 

cannot be expected if even slightly different strains are used, if experimental 

methodology varies, or if evolution to multiple factors is simultaneous instead of 

sequential (e.g., evolving on glucose at 42°C vs. evolving first on glucose at 37°C, and 

subsequently at 42°C). 

Despite notable recurrence of multiple mutations across the evolved strains of this 

study, other than pyrE/rph no gene was mutated in more than half of the endpoints. In 

spite of these mostly distinct genotypes, convergence occurred toward the same 

physiological and transcriptional state. Growth, glucose uptake, and acetate production 

rates increased uniformly across all strains, while biomass yield decreased. Many genes 
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were significantly differentially expressed in the wild-type upon an upshift from 37°C to 

42°C, but following evolution at the elevated temperature more than 70% of these genes 

reverted their expression state back towards that of the ‘unperturbed’ wild-type at 37°C. 

Mimicking the uniform nature of the physiological changes, these expression shifts were 

generally highly parallel – over 700 genes shifted back towards the unperturbed state in 8 

or more of the 10 evolved strains. Though a minority, highly parallel shifts that moved 

expression further away from the unperturbed state occurred for over 100 genes. These 

trends in frequency and direction of shifts are in good agreement with two previous 

studies, demonstrating a consistent method of adaptation whether for growth on new 

carbon sources [19], acclimation after perturbation of a metabolic pathway [6], or 

adjustment to a global stress such as elevated temperature. Any changes in physiology 

and gene expression observed between the wild-type and evolved strains must arise from 

the genetic differences that developed, thus the lack of uniformly-occurring mutations 

means that the different genotypes acquired by each strain result in roughly the same 

overall state.  

That large-scale alterations to the expression state can result from relatively few 

genetic changes points to the influence of regulatory mutations, a category into which 

many of the most frequently mutated genes fell, most notably rpoC, rne, and ygaH/mprA. 

At least one of these genes was mutated in every evolved strain, a prevalence matched or 

exceeded only by mutations in pyrE/rph and pykF. Interestingly, these latter two genes 

were the only metabolically-related mutations to occur in more than 2 of the 10 evolved 

strains, and neither is thought to result specifically from the increased temperature of the 

evolution, as discussed above; temperature-specific adaptation for the most part seems to 
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involve changes in gene regulation or the cell envelope. The regulatory mutations clearly 

have a net positive benefit on the cell given their frequent occurrence, but this does not 

mean that every one of the widespread expression levels altered as a result is likewise 

beneficial. It could be that some expression shifts caused by the regulatory mutations are 

actively detrimental to the cell, just less so than the cumulative benefit of the global 

change. These deleterious changes would then be targets for further adaptation that could 

alleviate their effects. Here, as in previous works [62], we find several pieces of evidence 

supporting this hypothesis, most strikingly in the massive and counterintuitive up-

regulation of flagellar genes following evolution, a trend that is resisted by two strains 

that succeeded in acquiring a mutation to mitigate the likely detrimental up-regulation. 

Although overall fitness is always selected for, it seems that over the course of an 

evolution certain subsystems of the cell may experience transient fitness decreases before 

additional mutations can develop to undo them.  

Overall, the results of this study yield lessons important for the future 

implementation of ALE as a tool for both biological discovery and engineering. Firstly, 

we have demonstrated the utility of MAGE as a method by which to probe mutational 

causality, diminishing the need for the often-laborious creation of single and 

combinatorial knock-ins. Such a method would prove particularly useful in ALE studies 

lacking in replicates with which to examine mutational parallelism, or when 

hypermutability has produced an overabundance of genetic changes that obscure the 

strongly causal mutations hidden among them. Secondly, by comparing the mutations 

identified herein with those found in related studies, we have highlighted the great extent 

to which mutational development is predicated upon the ancestral genotype and 
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influenced by all aspects of the evolutionary environment. Rarely will two studies 

examine evolution of identical strains under identical experimental conditions, thus 

authors should be wary of basing their expectations on comparisons with similar works. 

For example, if a more heat-tolerant production strain for a particular biochemical were 

desired, knocking-in the mutations identified in this study would not necessarily provide 

a benefit in the dissimilar genetic background and culturing environment. Finally, the 

previously documented restoration of expression state towards wild-type levels following 

metabolic perturbations and subsequent evolution has been shown to extend to global 

stresses, namely elevated temperature, as the perturbation. Transcriptomic analysis of our 

evolved strains demonstrated this, as well as revealing the apparent occurrence of likely 

transient, localized, detrimental changes in gene expression. In much the same way that 

overall entropy maximization can be achieved despite entropic decreases in certain 

components, as with a protein folding in solution [63], genetic subsystems can experience 

fitness decreases in the cellular pursuit of overall fitness maximization. Although given 

enough evolutionary time such sub-optimal components would be ameliorated by 

compensatory mutations, this nevertheless provides an avenue for rational design to 

improve on the evolution process. Genome-scale metabolic models are capable of making 

a priori predictions on genes necessary for optimal cellular growth in a particular 

environment [64], so those genes predicted to be useless could be knocked out ahead of 

time, saving the cell from potentially energetically-wasteful expression. Starting with a 

‘pre-adapted’ strain such as this would expedite the evolution process and eliminate the 

need for mutations solely to counteract superfluous expression. 
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2.4  Materials and Methods 

2.4.1  Adaptive Evolution 

An automated system was used to propagate the evolving populations over the 

course of the ALE and monitor their growth rates. Flasks filled with 25 mL of 4 g/L M9 

minimal media were kept at 42°C through placement in a heat block and aerated by 

magnetic tumble stirrers at 1800 RPM. At the start of the experiment, a flask of the wild-

type strain E. coli K-12 MG1655 (ATCC47076) was grown up to stationary phase in the 

same conditions and used to inoculate 10 independent flasks with 900 µL of culture. As 

the bacteria grew, the automated system took optical density (OD) measurements at 600 

nm for each flask at four timepoints, targeted to evenly span an OD range of 0.05 - 0.3 

based on the most recently calculated growth rate and the starting OD of the flask. 

Growth rates were determined by taking the slope of a least-squares linear regression line 

fit to the logarithm of the OD measurements. Once reaching the target OD of 0.3, 10 µL 

of culture was passed into a new flask, and in the even numbered experiments this 

passage volume was changed to 100 µL after 20 days of evolution. At the OD of 0.3, 

glucose concentration only dropped from 4 g/L to ~3.5 g/L (determined by HPLC 

measurement of the cultures), so exponential growth in excess glucose conditions was 

constantly maintained. 

Growth rates for each flask were discarded as untrustworthy if fewer than four 

OD points were sampled, if the points spanned a range of fewer than 0.2 or more than 0.4 

OD units, or if the R2 correlation was below 0.99. To reduce noise, the data were 

smoothed by averaging each point with its five adjacent neighbors on either side after 

applying weights following a normal distribution (σ = 2) centered on the point in 
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question. The evolution trajectory curves were obtained by fitting a monotonically 

increasing piecewise cubic spline to the smoothed data. Fitting to the unsmoothed data 

resulted in negligible changes to the spline. The cumulative number of cell divisions 

(CCD) was calculated as outlined previously [21]. 

Glucose M9 minimal media consisted of 4 g/L Glucose, 0.1mM CaCl2, 2.0mM 

MgSO4, 1X Trace Element Solution and 1X M9 salts. 4000X Trace element solution 

consisted of 27g/L FeCl3*6H2O, 2g/L ZnCl2*4H2O, 2g/L CoCl2*6H2O, 2g/L 

NaMoO4*2H2O, 1g/L CaCl2*H2O, 1.3g/L CuCl2*6H2O, 0.5g/L H3BO3, and Concentrated 

HCl dissolved in ddH2O and sterile filtered. 10X M9 Salts solution consisted of 68g/L 

Na2HPO4 anhydrous, 30g/L KH2PO4, 5g/L NaCl, and 10g/L NH4Cl dissolved ddH2O and 

autoclaved. 

 

2.4.2  Cross-mixing Analysis 

The sequencing results of the evolved endpoint strains highlighted the fact that 

there was unintentional cross-mixing between the populations over the course of the 

ALE. Strains 6 (41 total mutations) and 8 (55 total mutations) shared 24 identical 

mutations which did not occur in any of the other isolated strains, including the SNP 

which caused a truncated form of MutD (DnaQ) likely responsible for the observed 

hypermutator phenotype [27]. Although less immediately apparent, it seems likely that 

strains 2 (34 total mutations) and 3 (30 total mutations) suffered from the same cross-

mixing – they share 3 identical mutations (a 1,222 bp deletion, a 1 bp deletion, and a 

SNP) which don’t occur in any of the other strains, including the mutL mutation which 

likely causes their hypermutator phenotype [26]. For these reasons, we did not consider 



 
 

43 

the mutations shared only between strains 6 & 8 or 2 & 3 to have arisen independently 

when performing mutational recurrence analysis. 

Given these occurrences of cross-mixing it was important to establish that the 

non-mutator strains did not likewise share a partially-evolved ancestor, which would 

complicate the determination of recurring mutations. If it were the case that all identical 

mutations resulted from cross-mixing and did not arise independently, then we would 

expect to see a number of identical mutations in two or more strains, but these strains 

would not share identical mutations with any other strains. This was decidedly not the 

case (supplementary fig. S5). For example, consider the identical rpoC mutation shared 

between strains 5, 7, and 10. If we posit that this is the result of the same rpoC mutant 

invading and fixing within all three populations, then it must be that the remaining shared 

mutations all occurred independently (hfq in strains 1 & 7, ygaH/mprA in strains 4 & 5, 

and pykF & mlaE in strains 4, 5, and 7) given that the other strains do not share the rpoC 

mutation. Thus in the ‘worst case’ scenario, only one of these four sets of shared 

mutations can be explained away by cross-mixing. 

 

2.4.3  DNA Sequencing 

After colonies were isolated and selected on LB agar plates, genomic DNA was 

extracted using Promega’s Wizard DNA Purification Kit. The quality of DNA was 

assessed with UV absorbance ratios using a Nano drop. DNA was quantified using Qubit 

dsDNA High Sensitivity assay. Paired-end resequencing libraries were generated using a 

Nextera XT kit from Illumina (San Diego, CA) with 1 ng of input DNA total. Sequences 

were obtained using an Illumina Miseq with a PE500v2 kit. The breseq pipeline [58] 
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version 0.22 with bowtie2 [65] was used to map sequencing reads and identify mutations 

relative to the E. Coli K12 MG1655 genome (NCBI accession NC_000913.2). All 

samples had an average mapped coverage of at least 25x. 

 

2.4.4  RNA Sequencing 

RNA-sequencing data were generated under conditions of exponential-phase, 

aerobic growth in glucose M9 minimal media. Cells were washed with Qiagen RNA-

protect Bacteria Reagent and pelleted for storage at -80°C prior to RNA extraction. Cell 

pellets were thawed and incubated with Readylyse Lysozyme, SuperaseIn, Protease K, 

and 20% SDS for 20 minutes at 37°C. Total RNA was isolated and purified using the 

Qiagen RNeasy Mini Kit columns, following vendor procedures. An on-column DNase-

treatment was performed for 30 minutes at room temperature. RNA was quantified using 

a Nano drop and quality assessed by running an RNA-nano chip on a bioanalyzer. Paired-

end, strand-specific RNA-seq was performed following a modified dUTP method [66]. 

The rRNA was isolated using Epicentre’s Ribo-Zero rRNA removal kit for Gram 

Negative Bacteria. Sequences were run on an Illumina Miseq using a PE50v2 kit.  Reads 

were mapped to the E. coli K12 Genome (NC_000913.2) using bowtie2, allowing for up 

to 2 mismatches and enforcing paired-end constraints. Differentially expressed genes 

were determined by cuffdiff [67] with upper-quartile normalization and setting a 

maximum false discovery rate of 0.05. Principal component analysis was performed on 

the RNA-seq FPKM values using the pca function in MATLAB. 

 

2.4.5  Physiological Measurements 
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Growth curves for selected clones were started from stationary phase overnight 

cultures and grown under conditions identical to the ALE experiment, but with sampling 

occurring every 20 minutes. At each sampling time the OD600 was taken along with a 

small volume of the growing culture that was then filter-sterilized. The filtrate was 

injected into a high performance liquid chromatography (HPLC) column (Aminex HPX-

87H Column #125-0140). Compound concentrations at each time point were determined 

by comparison to a standard curve of know concentrations, and were used to determine 

rates of glucose uptake and acetate secretion by the cells. No other compounds were 

detected in the filtrate. 

2.4.6  MAGE  

For recombineering, cells containing the pMA7 plasmid (manuscript under 

preparation) were grown in 15 mL LB media, with shaking at 37°C to an OD600 of 0.4. 

Recombineering was mediated by the lambda Red beta protein and induced through the 

ParaBAD promoter for 10 minutes by adding arabinose to a final concentration of 0.2%. 

After induction, cells were placed on ice for at least 15 minutes before being harvested, 

washed, and finally resuspended in a total volume of 200 µL ice-cold sterile water. 50 µL 

cells were mixed with 5 pmol oligo of each oligo and electroporated in 0.1 mm gap 

cuvettes; 1.8 kV, 200 Ω, 25 µF. Immediately after electroporation, 1 mL LB was added to 

the cells. Cells were transferred to a 50 mL Falcon tube to a total volume of 5 mL LB and 

grown for at least 3 hours at 37°C to allow full segregation of chromosomal DNA. A total 

of 9 consecutive rounds of recombineering were performed.  A total number of 29 oligos 

were designed (supplementary table S2) to recreate the majority of the mutations 

identified in ALE lines 1, 4, 5, 7, 9 and 10. Eight recombineering experiments were 
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performed in parallel: six using the oligos corresponding to each of the non-mutator ALE 

lines, one using all 29 oligos, and one control using oligo P9 malK (table S2). 

Introduction of the malK oligo does not alter fitness in the glucose environments used, 

but makes the cells turn purple when grown on MacConkey agar maltose plates. In this 

control MAGE experiment, the recombinant formation frequency was found to be on 

average 10% by plating the recombineered population and determining the proportion of 

purple colonies. Recombinant formation frequency is influenced largely by oligo length 

[17], which, along with all other experimental variables, was kept constant for all 

recombineering, thus allelic biases should not be present. 

Following recombineering, the mixed cell populations were cultured and serially 

passed for three days, under the same conditions as the ALE experiment, to select for the 

strains most fit for growth at 42°C. These enriched MAGE populations were then 

streaked on minimal M9 glucose agar plates and single colonies were isolated, screened 

for improved growth rates at 42°C in a microtiter plate reader, and subjected to whole 

genome DNA resequencing. 

Chapter 2 is a reprint of a published manuscript:  Sandberg TE, Pedersen M, 

LaCroix RA, Ebrahim A, Bonde M, Herrgard MJ, Palsson BO, Sommer M, Feist AM. 

2014. " Evolution of Escherichia coli to 42 °C and Subsequent Genetic Engineering 

Reveals Adaptive Mechanisms and Novel Mutations." Molecular Biology and Evolution, 

31(10):2647-62. The dissertation author was the primary author of the paper and was 

responsible for the research. 
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Chapter 3  

 

Evolution of E. coli on [U-13C]Glucose 

Reveals a Negligible Isotopic Influence on 

Metabolism and Physiology 

3.1  Introduction 

Metabolic flux analysis (MFA) has become an invaluable technique with which to 

probe the metabolic flux states of an organism [68, 69]. Knowledge of these intracellular 

fluxes is frequently used in complement with metabolic engineering, where it can be 

utilized to guide the rational design of genetic manipulations necessary for chemical 

production [70]. MFA relies on the isotopic labeling of a “tracer” compound that is 

passed through the reaction network of a cell, and 13C is typically used as the stable 

isotope of choice [71]. Inherent to 13C-MFA experiments is the assumption that the 

labeled compound is not metabolized differently than the unlabeled form, but the altered 

mass of the isotope can cause measurable kinetic isotope effects for chemical reactions. 

Evidentially, although 13C is only 8% more massive than 12C, plants are known to 

discriminate against the heavier isotope when it comes to carbon fixation [72], and recent 

work has indicated that neglecting kinetic isotope effects in 13C-MFA could potentially 

result in errors on the same scale as GC-MS measurement errors [73]. Thus, establishing 
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that 13C and 12C can be treated interchangeably when it comes to metabolic fluxes is 

important for the continued use of 13C-MFA as a robust experimental technique. 

Adaptive laboratory evolution (ALE) involves the continuous culturing of 

microorganisms in a controlled setting such that natural selection for beneficial mutations 

will lead to cells with improved fitness. This approach can be used for a number of 

purposes, such as increasing cellular tolerance to some chemical, determining how a 

metabolic network adapts to engineered alterations, or simply optimizing growth rate on 

a particular substrate [2]. ALE is ideally suited to investigate the potential metabolic 

impact of heavier carbon because there have already been studies on evolution to 

unlabeled glucose [5, 8], and long term culturing serves to amplify any differences 

between experiments – previously, very minor differences in experimental methodology 

and starting strain were found to lead to vastly different mutations following ALE 

experiments [18, 74]. By comparing with an unlabeled glucose evolution and keeping all 

variables the same except for the exchange of 13C with 12C, effects of the heavier isotope 

can be determined. For example, if the stronger C-C bonds caused by 13C were indeed 

impacting cellular metabolism, mutations in C-C bond breaking enzymes could 

potentially be enriched for. Moreover, isotopically-induced growth differences, if they 

exist, are more likely to become apparent in the excess nutrient conditions of an ALE 

experiment where the only limiting factor to growth is how quickly the cells can utilize 

the nutrients. For these reasons, we sought to investigate the interchangeability of 12C and 

13C glucose in E. coli metabolism by evolving cultures onto [U-13C]glucose. These 

evolved strains were then characterized phenotypically and genetically.  
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3.2  Results and Discussion 

3.2.1  Evolved Phenotypic Changes 

Wild-type Escherichia coli K-12 MG1655 was used to establish six independent 

cultures that were serially propagated in M9 minimal medium with uniformly labeled 

13C-glucose as the sole carbon source. An automated system was used [74] to perform 

this Adaptive Laboratory Evolution (ALE) experiment, continually tracking the cultures’ 

growth rates and passing them to fresh media flasks before depletion of the glucose could 

serve as a limiting factor to growth. Thus, selection only for cells with faster exponential-

phase growth rate was ensured. The fitness trajectories of the evolving cultures very 

closely resemble those of a previous ALE experiment by LaCroix et al. in which the 

evolution environment was the same except for the use of naturally labeled glucose 

(referred to as 12C-glucose herein) [5]. Noticeable jumps in the population growth rate 

occurred as fitter mutants emerged and gained dominance in the cultures, but over time 

these diminished as the trajectories asymptotically approached the “optimal growth rate” 

(Fig 3.1). Cultures were evolved for 40 days, corresponding with an average of 963 

generations, or 2.82 x 1012 cumulative number of cell divisions (CCD) per population 

[21]. Using CCD as the metric of evolutionary time is more beneficial in an ALE 

experiment as it factors in the population subsampling that accompanies serial passage of 

cultures [74]. At the endpoint of the adaptive evolution, the evolved populations were on 

average 44% fitter (i.e. displayed higher growth rate) than the wild-type ancestor. 
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Figure 3.1. Fitness trajectories. Growth rates of the evolving strains over the course of 
the ALE as they adapted to growth on 13C glucose. 
 

Clones were isolated from the evolved endpoint populations and subjected to 

phenotypic assays. Despite not having been exposed to 12C-glucose over the course of the 

evolution, the endpoint clones nevertheless demonstrated equivalent fitness on this 

substrate as they did on 13C-glucose (Fig 3.2A). Although in the wild-type strain there 

appears to be a slight growth advantage on 12C vs. 13C-glucose (3 ± 2 %), in the evolved 

strains there is no such statistically significant advantage (paired t-test, p = 0.18). Again 

drawing a close parallel with the evolution of LaCroix et al., biomass yields of both 12C- 

[5] and 13C-evolved strains slightly decreased, glucose uptake rates increased, and acetate 

production rates spanned a wide range of increases, indicating that the cells employed 

different metabolic tactics to realize equivalent fitness improvements (Fig 3.2B-D). 

Unassayed in the LaCroix study, oxygen uptake rates also increased significantly, from 

49 to 92% (Fig 3.2E). Together, these phenotypic data types and evolutionary 
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trajectories, in comparison with equivalent data from evolution onto 12C-glucose, do not 

point to any differences caused by the 13C isotope. 

 

Figure 3.2. Phenotypic characterization of the wild-type and evolved strains. (A) 
Growth rates on 12C-glucose and 13C-glucose. (B) Biomass yields on 13C-glucose. (C) 
Glucose uptake rates on 13C-glucose. (D) Acetate production rates on 13C-glucose. (E) 
Oxygen uptake rates on 13C-glucose. All error bars represent standard error of the mean 
(n = 3). 
 

Additionally, due to results from the genetic analyses (discussed below), it was 

decided to run a smaller scale ALE. This “reALE” proceeded for ten days and evolved 

triplicate cultures of the wild-type used previously, as well as triplicate of a strain from 

the LaCroix study pre-evolved on 12C-glucose. This shorter evolutionary time scale only 

allowed the wild-type cultures to undergo the first main jump in fitness (Fig 3.1), while 

the pre-evolved 12C-cultures did not appreciably change in growth rate at all (S1 Fig). 

Colonies isolated from the endpoints again had essentially identical growth rates on 12C 

and 13C-glucose (S2 Fig). 

 

3.2.2  Evolved Genetic Changes 
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Although evolution on 12C and 13C-glucose yields essentially equivalent 

phenotypes, the genetic adaptations underlying these changes could potentially differ, 

which would point to isotopic effects. To investigate this possibility, whole genome 

sequencing was performed on the phenotypically characterized endpoint clones to 

identify the mutations they had acquired (Table 3.1). On average, each evolved strain had 

about 6 mutations, with as many as 11 and as few as 3. Four genes or intergenic regions 

mutated in parallel across two or more of the strains. By comparing these mutations with 

those observed in the 12C-evolved endpoint strains [5], it was found that alterations to the 

same three key genetic regions (pyrE/rph, rpoB, and hns/tdk) appear to be responsible for 

the majority of fitness increases (Fig 3.3). The gene ygaZ mutated several times in the 

12C-evolved strains but only once here, while corA and iap were not observed to mutate. 

However, this is unsurprising given that the 12C-adapted strains evolved for up to twice as 

long as this 13C evolution (for reasons of 13C resource conservation, and because growth 

rates for the 13C ALEs had already visibly leveled off).  Had the 13C evolution proceeded 

for longer, it is likely that more of these smaller-effect mutations would have had time to 

fix in the populations, just as ygaZ started to. 
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Figure 3.3. Mutational frequency in evolved endpoint strains. Comparison of the most 
frequently mutated genes observed in evolved endpoint strains grown on either 12C-
glucose or 13C-glucose. 
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Table 3.1. Mutations identified in the endpoints of the 13C-evolution. 

Mutationa Gene Protein change 
ALE

1 
ALE

2 
ALE

3 
ALE

4 
ALE

5 
ALE

6 
G→T murC V13L (GTG→TTG)  

 
X 

    T→G lolB/hemA intergenic (-142/-72) 
     

X 
IS2 hns/tdk intergenic (-75/-526) 

     
X 

IS1 hns/tdk intergenic (-112/-486) 
  

X 
   IS1 hns/tdk intergenic (-116/-481) X 

     IS5 hns/tdk intergenic (-258/-344) 
    

X 
 

G→C ycjV 
pseudogene (664/957 
nt) 

     
X 

T→C rhsE V429A (GTT→GCT) 
 

X 
   

X 
T→C rhsE F431L (TTT→CTT) 

 
X 

   
X 

C→T rhsE Y432Y (TAC→TAT) 
 

X 
   

X 

C→A rhsE 
G438G 
(GGC→GGA) 

 
X 

   
X 

C→T rhsE L443L (CTC→CTT) 
 

X 
   

X 

Δ6 bp pscG 
coding (778-783/939 
nt) 

 
X 

    +GGCTGTC
A yfjR coding (32/702 nt) 

     
X 

T→G ygaY/ygaZ intergenic (+59/-65) 
   

X 
  +C barA coding (2425/2757 nt) 

 
X 

    T→A ptsP Q538L (CAG→CTG)  
   

X 
  

Δ13 bp nirC 
coding (414-426/807 
nt) 

 
X 

    Δ1 bp pyrE/rph intergenic (-41/+54) 
 

X 
  

X 
 Δ82 bp pyrE/rph intergenic X 

 
X X 

  +CCTGGC rffD coding (771/1263 nt) 
   

X 
  C→T rpoB T657I (ACC→ATC)  

 
X 

    
G→T rpoB 

G1189C 
(GGT→TGT)  X 

 
X X X 

 +9 bp rpoC coding (749/4224 nt) 
     

X 
G→T mrdA P481T (CCT→ACT)  

    
X 

 a IS = insertion sequence 
 

Notable is the rpoB G1189C mutation, occurring in four of the six endpoint 

strains. Such an occurrence is highly unlikely unless this specific mutation is either 

highly causal or lays in a hotspot region for mutations, but a more plausible explanation 

is that it arose in the overnight culture used to inoculate the initial flask of the ALE 

experiment and was subsequently enriched for. The repeat appearance of the same rhsE 
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mutations suggests a similar possibility. To address these issues of genetic reproducibility 

the smaller scale “reALE” was started with triplicate of the wild-type and triplicate of a 

12C-glucose pre-evolved strain. Of the three 12C pre-evolved reALE endpoint clones 

selected for sequencing, only one had any new mutations relative to its starting genotype, 

a 1 base pair deletion in rpoS. The absence of the rpoB G1189C mutation in the 

genotypes of the three wild-type reALE endpoints revealed that it had likely occurred in 

the starting culture of the main ALE (S2 File). Although the same rhsE SNPs were 

observed in both the main and reALE, it was subsequently discovered that these 

mutations were present in the purportedly-isogenic frozen wild-type stock at roughly 

50% frequency. Given that rhsE is a pseudogene [75] whose knockout does not alter 

growth rate (0.73 ± 0.01 hr-1 13C-glucose vs. 0.73 ± 0.02 hr-1 12C-glucose, biological 

triplicates), it seems highly likely that these rhsE mutations are simply neutral genetic 

hitchhikers. 

Mutations in pyrE/rph are the most frequently occurring in both 12C and 13C-

glucose evolutions, and this is a well known and repeatedly seen genetic change which is 

thought to relieve a strain-specific defect in pyrimidine biosynthesis when grown on 

minimal media [28, 30]. Unique to this 13C evolution, however, is the appearance of 

pyrE/rph mutations other than the ubiquitous 82 base pair deletion, which has been 

observed multiple times in evolutions to different environments and by different labs [74, 

76]. Although any frameshifting mutation that moves the rph stop codon closer to the 

pyrE attenuator loop appears to confer a fitness benefit [74], the 82 base pair deletion has 

thus far only been observed in evolution experiments because it has a large ease-of-

acquisition benefit – it is flanked by two 10 base pair repeats, which allows slipped-
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strand mispairing (SSM) to occur and preferentially delete the region at a much higher 

frequency than random SNPs or indels arise [28, 49]. Here, for the first time there is 

evidence for a possible decrease in the ease-of-acquisition benefit of the 82 base pair 

deletion, and sequencing of strains during midpoints in the evolution revealed even more 

atypical pyrE/rph mutations (S3 Fig and S2 File). 

To investigate whether growth on 13C-glucose was acting to decrease the 

frequency of SSM during DNA replication, we tested an engineered strain of E. coli 

designed to allow determination of this mutational rate [77]. Added to the chromosome of 

this strain is a region of the mod gene from H. influenzae, which is a site of naturally 

occurring phase variation caused by SSM that acts on the tetranucleotide (AGTC) repeats 

present in the sequence, translationally fused to lacZ. LacZ will be produced when this 

construct is in-frame and colonies will appear blue when streaked on plates with X-gal, 

but SSM-produced insertions/deletions of the tetranucleotide repeat that cause a 

frameshift will lead to colonies without LacZ that will appear white on the plates. By 

growing the strain on 13C and 12C-glucose and calculating the rate of color switching the 

rate of SSM can thus be determined. However, despite suggestions to the contrary based 

on the genotypes of the 13C-evolved strains, the rate of SSM is not any different on 13C-

glucose than it is on 12C-glucose (Table 3.2). Although no difference in SSM frequency at 

this tetranucleotide length scale doesn’t necessarily mean there is no difference at larger 

(e.g., 82 base pair) scales, SSM is generally only physiologically relevant at the short 

scale of simple sequence repeats [78]. 
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Table 3.2. Measurement of slipped-strand mispairing mutation rates. 

 
Switch frequency ± SD (* 10-4) 

 
Blue --> White White --> Blue 

12C-glucose 52.1 ± 5.6 31.0 ± 10.5 
13C-glucose 54.1 ± 9.2 36.7 ± 4.7 
original studya 55.5 ± 14.6 22.3 ± 4.1 

a Reference: [77] 

 

3.2.3  Glucose Isotopic Preference 

Although there are as of yet no significant indications that evolution on 13C-

glucose impacted the cells differently than evolution on 12C-glucose, it remains to be seen 

if these evolved strains exhibit a preference for 13C, or similarly if the wild-type prefers 

12C. The effects of a kinetic isotope effect would manifest in a (perhaps quite slight) 

difference in uptake rates of glucose based on carbon isotopic composition. This 

phenomenon was tested for by growing all cultures on a mixture of both 12C-glucose and 

13C-glucose, and monitoring total glucose concentration and the isotopic composition 

over time (Fig 3.4 and S4 Fig). The calculated preference factors (f) for all strains are 

reported in Fig 3.4C. An f-value greater than 1 indicates preference for unlabeled 

glucose, while a value less than 1 reflects a preference for 13C-glucose. The only 

statistically significant (p < 0.05) preferences were small (less than 1%) preferences for 

12C-glucose in ALE4 and ALE6. We suspected that these fits were affected by relatively 

larger GC-MS measurement errors at low glucose concentrations, and upon repeating the 

experiment with ALE4, ALE5, and ALE 6 we observed no statistically significant 

preferences (Fig 3.4C and S5 Fig). Notably, there was no evidence for a preference for 

12C-glucose in the wild-type (i.e., no kinetic isotope effect), and no evidence for an 

evolved preference for 13C-glucose in the ALE strains. This result held for two strains, 
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WT and ALE1, also tested in chemostat (glucose-limited) cultures. The f-values were 

1.003 ± 0.003 and 1.003 ± 0.006, respectively, demonstrating that there is negligible 

glucose preference across a range of conditions in which different sugar transporters may 

be expressed [79].  
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Figure 3.4. Glucose competition. Results of glucose competition experiments, where the 
medium contained a mixture of 12C-glucose and 13C-glucose. Profiles of total glucose 
concentration and labeling ratio are shown for the WT (A) and one representative ALE 
strain culture (B). The estimated glucose preference factor “f” reflects the preference for 
12C-glucose vs. 13C-glucose (C). An f-value of 1 reflects no preference, greater than one 
reflects a preference for 12C-glucose, and less than one a preference for 13C-glucose. 
 

  



 
 

60 

3.3  Conclusion 

In this study, six independent E. coli cultures were evolved for ~1000 generations 

on uniformly labeled 13C-glucose. The resultant strains were then characterized 

phenotypically and genetically. The results of these analyses, together with comparisons 

to an evolution study identical except for its use of unlabeled glucose [5], revealed that 

the heavier carbon does not significantly change any aspect of the adaptive evolution. 

Regardless of the isotopic composition of the glucose carbon source, populations 

evolving in parallel take similar trajectories across the fitness landscape. This fitness 

improvement is enabled by genetic changes that lead to decreased biomass yield, 

increased glucose and oxygen uptake rates, and increased acetate production rates. 

Although this trend holds uniformly, these rate and yield changes differ in their 

magnitude across the evolved strains despite their roughly identical growth rates. Whole 

genome sequencing on the evolved strains was performed and compared to the sequences 

of 12C-evolved strains. The only notable genetic dissimilarity was the appearance of 

atypical pyrE/rph mutations after 13C-evolution, despite no apparent isotopically-induced 

change in slipped-strand mispairing. Nevertheless, this mutational discrepancy is minor – 

the key genetic regions selectively mutated to optimize growth rate are identical on both 

12C-glucose and 13C-glucose. The metabolic properties of the strains were also probed 

with a glucose competition experiment, demonstrating that the wild-type exhibits no 

preference for unlabeled glucose, and the evolved strains have no preference for 13C-

glucose. This lack of a kinetic isotope effect is yet another indicator of the negligible 

influence of heavy carbon on the functioning of cells. 
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 Overall, the data presented herein indicate that 12C and 13C-glucose are 

interchangeable with respect to E. coli growth and metabolism, a validation of the 

assumption that is made ubiquitously in 13C-metabolic flux analysis experiments. This 

assumption is further supported by results of parallel labeling experiments, in which 

multiple tracers with diverse 13C labeling are used and then simultaneously fit to a global 

flux solution. In an extreme recent example, Crown et. al successfully fit the results of 14 

unique parallel tracer experiments in E. coli [80]. This would not be possible if any of the 

tracers caused a change in metabolism significant relative to the tight confidence intervals 

calculated. Thus, based on distinct data from both 13C-evolved and wild-type strains, 

there is strong evidence that no kinetic isotope effect can be detected in 13C-MFA studies 

with the current best available methods. However, careful consideration should be taken 

before attempting to extend these results to organisms or conditions other than the one 

studied herein. For example, Wasylenko and Stephanopoulos have demonstrated via 

mathematical modeling that isotopic effects can vary significantly across different 

enzymes and organisms, particularly depending on the distribution of metabolic fluxes 

around certain carbon-carbon bond breaking reactions, and the resulting effect on isotopic 

labeling can approach the magnitude of GC/MS error [73]. However, in a recent study 

Millard et. al demonstrated through systems-level modeling that these local effects are 

muted by metabolic network properties including flux control distribution and 

bidirectional isotope exchange [81]. The results presented here support the assertion that 

the kinetic isotope effect is insignificant at the physiological scale, but caution should still 

be applied when assessing the interchangeability of 12C and 13C compounds. 
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3.4  Materials and Methods 
 

3.4.1  Materials 

Media and chemicals were purchased from Sigma-Aldrich (St. Louis, MO). [1,2-

13C]glucose (99.5 atom% 13C), [1,6-13C]glucose (99.5% 13C), and [U-13C]glucose (98% 

13C) were purchased from Sigma-Aldrich Isotec (St. Louis, MO). Unless otherwise noted 

in the text, “12C-glucose” refers to naturally labeled glucose and “13C-glucose” refers to 

[U-13C]glucose. All experiments were performed in M9 minimal medium, which 

consisted of 1x M9 salts dissolved in distilled water, 2.0 mM MgSO4 and 0.1 mM CaCl. 

Glucose was added as indicated in the text. All solutions were sterilized by filtration. 

 

3.4.2  Strain and Evolution 

The starting strain for evolution was wild-type E. coli K-12 MG1655 (ATCC 

700926). For ALE, cultures were serially propagated (100 µL passage volume) in 15 mL 

(working volume) flasks of M9 minimal medium with 2 g/L 13C-glucose, kept at 37°C 

and well-mixed for full aeration. An automated system passed the cultures to fresh flasks 

once they had reached an OD600 of 0.3 (Tecan Sunrise plate reader, equivalent to an 

OD600 of ~1 on a traditional spectrophotometer with a 1 cm path length), a point at which 

nutrients were still in excess and exponential growth had not started to taper off 

(confirmed with growth curves and HPLC measurements). Four OD600 measurements 

were taken from each flask, and the slope of ln(OD600) vs. time determined the culture 

growth rates. A cubic interpolating spline constrained to be monotonically increasing was 

fit to these growth rates to obtain the fitness trajectory curves. 
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3.4.3  Whole genome sequencing 

Colonies were isolated from evolved populations by streaking on LB agar plates. 

Genomic DNA was extracted using Promega’s Wizard DNA Purification Kit. The quality 

of DNA was assessed with UV absorbance ratios using a NanoDrop spectrophotometer. 

DNA was quantified using a Qubit dsDNA High Sensitivity assay. Paired-end 

resequencing libraries were generated using a Nextera XT kit from Illumina with 1 ng of 

total input DNA. Sequences were obtained using an Illumina Miseq with a PE500v2 kit. 

The breseq pipeline [82] version 0.23 with bowtie2 [65] was used to map sequencing 

reads and identify mutations relative to the E. coli K12 MG1655 genome (NCBI 

accession NC_000913.2). All samples had an average mapped coverage of at least 90x. 

 

3.4.4  Slipped-strand mispairing frequency measurement 

E. coli strain MV759 [77] was streaked onto an M9 glucose agar plate with X-gal. 

One white colony and one blue colony were selected and used to inoculate flasks of both 

12C and 13C-glucose M9 medium. After growing up, a volume of these cultures was 

plated onto 12C or 13C-glucose M9 agar plates with X-gal, and the number of cells of each 

color was counted. This process was repeated independently three times, and an average 

of ~1200 cells were counted on each plate. The SSM-induced color switching frequency 

was calculated by dividing the fraction of cells that had switched color by the generations 

of growth that had occurred. 

 

3.4.5  Glucose competition experiments 
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Glucose competition experiments were performed to determine the preference of 

the various E. coli strains for 12C vs. 13C-glucose. Cells were first pre-cultured overnight 

in medium containing 2 g/L 12C-glucose. Next, 50 µL of the overnight pre-culture was 

used to inoculate 10 mL of M9 medium containing approximately equal amounts (2 g/L) 

of 12C-glucose and 13C-glucose. Total glucose concentration was measured over time, as 

well as 13C-labeling of glucose remaining in the medium. Based on this data, a preference 

factor (f) was calculated, defined as follows: 

 

𝑢𝑝𝑡𝑎𝑘𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑔𝑙𝑢𝑐𝑜𝑠𝑒
𝑢𝑝𝑡𝑎𝑘𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑔𝑙𝑢𝑐𝑜𝑠𝑒

= f×
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑢𝑚
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑢𝑚   

 

An f-value greater than one indicates a preference for 12C-glucose, while a value 

less than one reflects a preference for 13C-glucose. To determine the f-value, the 

following expression was used (see S4 File for derivation): 

 

𝑙𝑛
𝑥!"#$%&#&' 𝑡 ∗ 𝑔𝑙𝑢𝑐 𝑡

𝑥!"#$!"#"$ 𝑡 = 0 ∗ 𝑔𝑙𝑢𝑐 𝑡 = 0 = 𝑓 ∗ 𝑙𝑛(
𝑥!"#$!$%(𝑡) ∗ 𝑔𝑙𝑢𝑐(𝑡)

𝑥!"#$!$%(𝑡 = 0) ∗ 𝑔𝑙𝑢𝑐(𝑡 = 0)) 

 

Where, gluc(t) is the measured glucose concentration over time, xunlabeled(t) is the fraction 

of 12C-glucose in the medium over time, and xlabeled(t) is the fraction of 13C-glucose in the 

medium over time. The f-parameter and its error estimate were obtained with the above 

equation by one-parameter linear least-squares regression. To reduce sensitivity to 
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measurement error in the initial values (t=0), the average fractional labeling of the first 

two samples was used as xlabeled(t=0) and xunlabeled(t=0). 

For the competition experiments in chemostat mode, M9 feed medium with 

approximately 3 mM each of 12C-glucose and 13C-glucose was prepared. The working 

cell culture volume was 15 mL, and the feed rate was 3 mL/hr, resulting in a dilution rate 

of 0.2 hr-1. Media samples were taken after 20 hours, well after steady state was 

established. Error estimates of the f-value were obtained by propagating the typical 

GC/MS error of 0.3%. 

 

3.4.6  Analytical methods 

Cell growth in glucose competition experiments was monitored by measuring the 

optical density at 600nm (OD600) using a spectrophotometer (Eppendorf BioPhotometer). 

The OD600 values were converted to cell dry weight concentrations using a pre-

determined OD600-dry cell weight relationship for E. coli (1.0 OD600 = 0.32 gDW/L). 

Glucose concentration was measured with a YSI 2700 biochemistry analyzer (YSI, 

Yellow Springs, OH). Acetate concentration was measured by HPLC [83]. No 

compounds other than glucose and acetate were detected in the cultures. 

 

3.4.7  Determination of yields and biomass specific rates 

Yield of biomass on glucose was determined as the slope of least-squares 

regression of biomass concentration versus glucose concentration [84]. Acetate yield was 

determined based on the initial and final glucose and acetate concentrations in batch 

cultures. Specific growth rate (GR, h-1) was determined as the slope of least-squares 



 
 

66 

regression of ln(OD600) versus time during the exponential growth phase, typically for 

OD600 values between 0.01 and 0.7. Growth rates as presented in Fig 3.2A and S2 Fig 

represent “physiologically adapted” rates [74], i.e. cultures were kept in exponential 

phase growth for three flasks so that their growth rates stabilized and were no longer 

decreased due to recently coming out of stationary phase [23]. This was to allow for 

comparison with the fitness trajectories, which inherently represent physiologically 

adapted rates. For calculations of compound uptake/production rates, the non-

physiologically adapted (i.e. from the first post-overnight culture growth flask) growth 

rates were used, to allow for proper comparison with other studies (values given in S1 

File). Specific glucose uptake (GUR, mmol/gDW/h) was determined as the ratio of growth 

rate to biomass yield. Specific acetate production rate (APR, mmol/gDW/h) was 

determined as the product of specific glucose uptake rate and acetate yield. Specific 

oxygen uptake (OUR, mmol/gDW/h) was determined based on electron balance as 

described previously, assuming a degree of reduction of 4.35 and a molecular weight of 

0.0255 gDW/mmol-C for dry biomass [85]:  

OUR (mmol/gDW/h) = (24×GUR – 8×APR – 4.35/0.0255×GR) / 4 

 

3.4.8  Gas chromatography mass spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped with a 

DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; Agilent J&W 

Scientific), connected to an Agilent 5977A Mass Spectrometer operating under ionization 

by electron impact (EI) at 70 eV [86]. Labeling of glucose was determined by GC-MS 

analysis of the aldonitrile pentapropionate derivative of glucose [87]. The fragments at 
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m/z 173 and m/z 370 were analyzed, which contain the last two and first five carbon 

atoms of glucose, respectively. Mass isotopomer distributions were obtained by 

integration and corrected for natural isotope abundances [88]. 

Chapter 3 is a reprint of a published manuscript: Sandberg TE, Long CP, 

Gonzalez JE, Feist AM, Antoniewicz MR, Palsson BO. 2016. “Evolution of E. coli on 

[U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and 

Physiology.” PLoS One, 11(3):e0151130. The dissertation author was the primary author 

of the paper and was responsible for the research.  
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Chapter 4  

 

Laboratory Evolution to Alternating 

Substrate Environments Yields Distinct 

Phenotypic and Genetic Adaptive 

Strategies 

4.1  Introduction 

In heterotrophs such as E. coli, catabolism of carbon substrates is the driving 

force behind the energy generation and chemical synthesis necessary for homeostasis and 

anabolism [89]. Although glucose is the most readily metabolized carbohydrate [90], the 

frequent environmental availability of other carbon compounds long ago led most 

organisms to evolve the ability to subsist on a range of nutritional sources. These 

alternative compounds can vary greatly in energy content, the point at which they enter 

into the metabolic network, and impact on cellular phenotype [91]. Alternative 

compounds’ ability to sustain growth and proliferation in the absence of glucose makes it 

almost essential for a robust bacterium to be able to switch between carbon growth 

substrates as environmental circumstances dictate. For example, an enteric E. coli 

bacterium depends on its ability to switch to metabolizing different carbohydrates as it 
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passes through the digestive tract [92]. Such switching between carbon sources has 

relevance to more than just natural environments – the use of genetically engineered 

microbes to produce commercially valuable chemicals frequently relies on batch growth, 

which can include a stage at which the cells run out of the preferred nutrient (e.g., 

glucose) and have to switch to a less-than-optimal alternative (e.g., xylose) [93].  

Understanding diauxic shifts has been a long-standing effort of the scientific 

community [94].  Diauxic lag has traditionally been understood to result from catabolite 

repression, wherein the depletion of the preferred substrate relieves the repression on 

genes for metabolizing the remaining substrate(s). However, recent work has shown that 

cells in a multi-substrate environment can display divergent bet-hedging behaviors, 

which can result in subpopulations that grow differently on the substrates [95]. Moreover, 

slightly different microbial strains can have notably different lag-phase durations and 

behaviors, which can be targets for natural selection in a competitive environment [96]. 

Adaptive Laboratory Evolution, or ALE, serves as a technique that harnesses natural 

selection to arrive at genetic and phenotypic outcomes that are difficult to predict a priori 

[2]. ALE work so far has examined E. coli adaptation to a number of environments 

characterized by temporal heterogeneity – fluctuations in temperature [97, 98], pH [99], 

UV irradiation [100], and random stressors [101] have all been studied. It is well 

established that homogenous environments tend to develop narrow niche width 

“specialists” while heterogeneous environments usually lead to broader niche width 

“generalists” [102], to the extent that the failure of a generalist to develop in certain 

fluctuating environments is seen as surprising [103]. However, evolution of E. coli on a 

glucose/acetate mixture (of which the glucose is first depleted before a diauxic shift to 
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acetate occurs, creating temporal variability) has been shown to repeatedly lead to 

coexisting specialists rather than generalists [104], due to competition for limited 

resources and the fitness trade-offs of glucose vs. acetate specialization [105]. While 

several cases of E. coli evolution to alternating growth substrates have been studied, few 

substrates have been examined [106] and analyses have been limited to fitness assays 

[107] or in-depth study of a single operon [108]. 

In this study, we sought to investigate switching with different compounds of 

industrial relevance, and examine evolutionary outcomes via a number of different data 

types. ALE was used to adapt E. coli cultures for ~1000 generations to a dynamic, 

nutrient-excess environment in which the available carbon substrate alternated with every 

tube of growth, and cultures were serially propagated while still growing exponentially. 

Though such resource-abundant laboratory environments have few natural counterparts, 

the conditions of excess help to ensure that selection occurs for growth rate, without the 

complicating factors of resource competition or changing growth phases that introduce 

new stressors [109]. Populations evolved to these switching environments had substrate-

specific fitnesses comparable to those reached by single-substrate-evolved control 

cultures. The adaptive mechanism used to achieve this fitness improvement varied based 

on substrate, and evolved strains likewise exhibited phenotypic, genetic, and 

transcriptomic dynamics that varied across compounds. Genome-scale metabolic models 

were used to help interpret substrate-specific results and to explain the propensity for 

specialist or generalist development given different switching setups.  
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4.2  Results 

4.2.1  Evolved Population Fitness 

Adaptive Laboratory Evolution (ALE) was employed to adapt Escherichia coli to 

an environment with constantly alternating carbon growth substrates. Wild-type E. coli 

K-12 MG1655 was used, and substrate switching was examined on four different carbon 

compounds: glucose, xylose, glycerol, and acetate (E. coli wild-type growth rates at 37°C 

being 0.73, 0.55, 0.45, and 0.27 hr-1, respectively). ALE replicates were each assigned a 

substrate in addition to glucose, and at the end of each growth tube a culture was passed 

to a fresh tube of M9 minimal medium containing the next carbon source such that 

substrate procession was glucose → [substrate] → glucose → [substrate] → etc. (Figure 

4.1A). Three tubes switched between glucose/xylose (1180 generations of growth; 164 

tubes of growth; 3.1 x 1012 cumulative cell divisions), three between glucose/glycerol 

(1170 generations; 162 tubes; 3.0 x 1012 CCD), and three between glucose/acetate (650 

generations; 91 tubes; 1.8 x 1012 CCD). Because each tube underwent serial passage at 

the same optical density (at a point at which nutrients were still in excess and cultures 

were still growing exponentially), the generations/tubes/CCDs of growth upon each 

individual substrate were half of the total. As controls, cultures were also evolved to each 

of the four different compounds on their own, with no switching. 
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Figure 4.1: Experimental setup and evolutionary trajectories (A) A “static ALE” 
exposes cultures to a constant environment, while a “dynamic ALE” introduces temporal 
variability in carbon growth substrate. (B) An example plot of fitness trajectories (i.e., 
growth rates) for statically evolved (pink/purple) and switching (dark/light green) 
cultures on glucose and xylose over the course of the ALE experiment. Similar fitnesses 
are reached, though under switching conditions cultures take longer to get there. Glc = 
glucose; Xyl = xylose; Gly = glycerol; Ac = acetate 
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Comparison of evolutionary trajectories between the “dynamic” (switching) and 

“static” (non-switching) populations gives the first indication of consequences of the 

substrate switching. As a general trend across all compounds, replicates undergoing 

switching adapted at a slower rate, but were still able to reach comparable final fitness 

values as those control populations exposed solely to a single compound (Figure 4.1B). 

Although establishing a statistically significant difference between the final growth rates 

is made more difficult by the small number of samples, average final population growth 

rates on a compound failed to differentiate dynamic and static ALE setups (one-way 

ANOVA, p=0.05). However, cultures under static conditions reached their half-maximal 

final growth rates, on average, 43% faster than switching cultures (Supplementary File 

1). Thus, it seems that adaptation proceeds at a faster rate when the selection pressure is 

more sustained (in this case, greater “time under selection” leads to a greater selective 

force), but fitness plateaus towards a similar value since the same objective is still being 

optimized for (namely, exponential phase growth rate on a compound). 

 

4.2.2  Genetic Analysis 

Population sequencing was performed on the cultures evolved under dynamic 

conditions to examine whether specialists (coexisting subpopulations optimized for the 

different substrates) or generalists (one main dominant strain capable of good growth on 

both substrates) had developed. The endpoint populations for each dynamic ALE 

replicate were grown up on each of the different carbon sources they had been switching 

between and population sequencing results were compared (see Methods). Consider, as 

an example, a population switching between glucose and acetate. If specialist 
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subpopulations are present, then growing the culture on glucose will preferentially enrich 

for the glucose-specialist, and likewise for the acetate-specialist with acetate growth. 

Population sequencing would then show a significant change in mutational frequency 

dependent upon which growth enrichment was performed. If there were no specialist 

subpopulations, but instead one dominant generalist, then the mutational frequencies 

would be roughly identically regardless of substrate used for growth enrichment. 

Applying this sequencing analysis to all evolved replicates revealed the various 

compounds’ propensities to elicit subpopulation development (Supplementary File 2) – 

all three glucose/glycerol replicates were isogenic, all three glucose/acetate replicates 

were subpopulations, and two of three glucose/xylose replicates were clearly isogenic, 

while the third replicate developed hypermutability which complicated the genetic 

analysis. As examples for each case, the glucose/acetate switcher Glc/Ac #3 developed 

two distinct specialist populations (a sapA/rpoC mutant for glucose growth and a 

nrd/ptsP/rpoC mutant for acetate growth, on top of two mutations which swept both 

subpopulations), while the glucose/glycerol switcher Glc/Gly #2 was a generalist, having 

the same population composition regardless of growth substrate (Table 4.1). 
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Table 4.1: Substrate-induced mutational frequency differences or lack thereof 

Apparent Specialists (Glc/Ac #3) 

  
population frequency (%) 

mutation gene Glucose Acetate 
L14R (CTT→CGT)  sapA 85 0 

Δ88 bp nrdA/nrdB 0 68 
Δ1 bp (708/2247 nt) ptsP 0 100 
R98H (CGC→CAC)  rpoC 95 11 

K398M (AAG→ATG)  rpoC 7 79 
IS5 (141-144/144 nt) yobF 100 100 

Δ1 bp intergenic (-33/+33) pyrE/rph 100 100 

Apparent Generalist (Glc/Gly #2) 

  
population frequency (%) 

mutation gene Glucose Glycerol 
IS5 (258-261/491 nt) ybbD 35 42 

Δ82 bp pyrE/rph 84 90 
M272I (ATG→ATT)  glpK 100 100 
E672K (GAA→AAA)  rpoB 100 100 

 

Comparing mutational frequency across the switching-adapted cultures and 

single-substrate-evolved controls revealed key genes under selective pressure in these 

conditions (Table 4.2). Many of the repeatedly mutated genes are seen frequently in other 

evolution experiments, with the fitness benefit already either known or inferred – 

pyrE/rph mutations for improved minimal media growth [28], pykF and hns/tdk 

mutations for glucose growth [5, 74], glpK mutations for glycerol growth [7], and rpoB 

and rpoC mutations to serve as large scale transcriptional re-wirings [36, 110]. In 

addition to these oft seen mutational targets, several genes stood out as indicators of 

differing adaptive strategies between dynamic and static conditions. Most striking are 

mutations in the cspC/yobF region, in which a number of distinct mutations were seen 

across five out of six glucose/xylose and glucose/acetate populations (with the sixth 

having a mutated cspE rather than cspC), but only in a single acetate-evolved replicate. 
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These dynamically-favored mutations may be altering CspC’s role as a transcript 

stabilizer in stressful environments, a functionality more relevant as a target for 

adaptation when the carbon source is frequently changing [111]. Similarly, mutations in 

ptsP (3 unique dynamic mutations, with 2 in one lineage), relA (3 unique dynamic 

mutations), and sapB (2 unique dynamic mutations) appeared to be dynamically-favored, 

while mutations in rho (4 unique static mutations) and xylR (2 unique static mutations) 

appeared statically-favored. Although, as a whole, these data indicate differing adaptive 

strategies for dynamic and static growth environments, the explicit biochemical 

mechanisms through which such mutations enable fitness improvements remain unclear 

without detailed follow-up analyses [7, 110]. 

 

Table 4.2: Genetic regions mutated repeatedly during selection 
Gene Unique Mutations Dynamic Occurrences Static Occurrences 

rpoC 8 
Glc/Xyl (3/3) 
Glc/Gly (1/3) 
Glc/Ac (3/3) 

Glc (1/3) 
Xyl (2/4) 
Gly (2/2) 

cspC/yobF 6 Glc/Xyl (2/3) 
Glc/Ac (3/3) Ac (1/3) 

rho 5 Glc/Ac (1/3) Xyl (2/4) 
Ac (2/3) 

glpK 5 Glc/Gly (3/3) 
Glc/Xyl (1/3) Gly (2/2) 

ptsP 4 Glc/Ac (2/3) Ac (1/3) 

rpoB 4 Glc/Gly (2/3) 
Glc/Ac (1/3) Glc (2/3) 

pyrE/rph 4 Glc/Gly (2/3) 
Glc/Ac (3/3) 

Glc (2/3) 
Xyl (4/4) 
Ac (1/3) 

relA 3 Glc/Xyl (3/3) n/a 

pykF 3 Glc/Xyl (1/3) 
Glc/Ac (2/3) n/a 

xylR 2 n/a Xyl (2/4) 

sapB 2 Glc/Xyl (1/3) 
Glc/Ac (1/3) n/a 

hns/tdk 2 n/a Glc (2/3) 
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4.2.3  Physiological Analysis of Evolved Strains 

Representative clones were isolated from evolved cultures for purposes of 

physiological characterization. For cultures that evolved substrate specialists, this 

involved isolating a clone for each of the observed subpopulations. Clones were 

sequenced to ensure that they were representative of the evolved cultures, containing the 

same key mutations revealed from population sequencing (Supplementary File 2). The 

substrate switching phenotypes of the clones were characterized via a series of diauxic 

growth curves. Clones were grown in the presence of 5 mM glucose and 5 mM of an 

additional carbon substrate, depending on the environment the clone had been exposed to 

over the course of the evolution. The 5 mM concentrations were chosen such that 

sufficiently dense final Optical Densities (ODs) could be obtained, but not without 

utilizing both of the available carbon compounds. 
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Figure 4.2: Diauxic growth curves (A) Wild-type performance on all substrate 
mixtures. (B) Evolved strains on glucose + glycerol. (C) Evolved strains on glucose + 
xylose. (D) Evolved strains on glucose + acetate. 
 

Unsurprisingly, the different carbon substrates led to different growth phenotypes 

for the various evolved strains (Figure 4.2). The wild-type achieved the highest density 

on glucose/xylose, an intermediate density on glucose/glycerol, and the lowest density on 

glucose/acetate. While xylose and glycerol both caused diauxic lag phases, there was no 

such lag when the wild-type was grown on glc/ac, likely due to acetate’s frequent 

presence as an overflow metabolite in regular batch culturing [112] and inability to 

trigger anabolism following glucose exhaustion [113]. Nevertheless, overall growth rate 

on glc/ac improved in all evolved strains, with the static acetate-evolved strain growing 

most robustly. Similarly, the static xylose-evolved strain outperformed the other strains 

under conditions of glc/xyl diauxie. The dynamically-evolved glc/xyl generalist’s 
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increased lag phase duration appears counterintuitive, but a simultaneous multi-substrate 

environment is not something the cells were ever exposed to during the ALE – in this 

case inter-tube substrate switching adaptation did not extend to intra-tube switching. 

Contrastingly, the clone evolved to an environment switching between glucose and 

glycerol was able to completely abolish the lag phase that typically occurs midway 

through growth on both substrates. Moreover, this lag phase was not abolished in either 

of the statically-evolved glucose or glycerol controls, leading to much different 

performance in the diauxic growth test. Overall, the evolved strains’ variable diauxic 

growth phenotypes across substrate conditions highlight the complexity of adaptation to 

dynamic environments. 

 

4.2.4  Transcriptomic Analysis of Evolved Strains 

RNAseq was performed on both statically- and dynamically-evolved clones to 

probe the transcriptional states of the strains under relevant substrate growth conditions. 

For a given growth environment, principal component analysis was expected to cluster 

statically-evolved strains together in a region corresponding to the “optimal” expression 

state for fast growth on that substrate. Dynamically-evolved strains, however, would be 

expected to cluster apart from the static controls given that their expression state evolved 

in response to multi-substrate exposure. This transcriptomic “distance” serves as an 

indicator of dissimilarity that should mirror substrate differences – for example, if 

[substrate1] is more similar to glucose than [substrate2], then a strain evolved 

dynamically to glucose/[substrate1] should fall closer to glucose-evolved controls than a 

glucose/[substrate2] strain. Indeed, PCA reinforced the conclusion drawn from 
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population sequencing that growth of evolved strains on glycerol and xylose create 

cellular states more similar to glucose than acetate – glc/xyl and glc/gly generalists 

clustered closer to glucose optimality than do the glc/ac specialist strains (Figure 4.3A). 

Similar logic implies that the dynamically evolved strains have moved closer to transcript 

optimality, represented by the statically-evolved controls, than the wild-type starting 

strain, which is what is seen for glycerol (Mahalanobis distance to static strains = 4.89 for 

wild-type, 2.63 for dynamic) and xylose (1.88 for wild-type, 1.35 for dynamic) (Figure 

4.3B-C). However, in the case of glc/ac switching, the specialist strains appear to have 

adopted a different transcriptional strategy than acetate-evolved controls, falling further 

away from the “optimum” expression state of the static strains than does the wild-type 

(Figure 4.3D). This specialist discrepancy may result from the strains’ nature as 

coexisting subpopulations and the resultant transcriptional adjustments necessary for 

alternating dominance between tubes during the ALE experiment. Although it is possible 

that the two specialists interact and exhibit different phenotypes when cultured together 

vs. independently, this appears unlikely given the precipitous drop in frequency of 

acetate-characteristic mutations after glucose enrichment, and likewise for glucose-

characteristic mutations after acetate enrichment (Table 4.1, Supplementary File 2). 
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Figure 4.3: Principal Component Analysis of RNAseq on various growth substrates 
PCA plots clustering different strains’ expression states grown on (A) glucose, (B) 
glycerol, (C) xylose, and (D) acetate. Overall, the statically evolved strains grouped 
together. In addition, for growth on glucose, the generalist strains grouped together closer 
in proximity to the static strains than did the specialist strains. glc/xyl = glucose/xylose 
generalist; glc/gly = glucose/glycerol generalist; GLC/ac = glucose specialist 
subpopulation; glc/AC = acetate specialist subpopulation; WT = wild-type 
 

Hierarchical clustering of expression data for the statically-evolved strains further 

highlights the differing transcriptional strategies adopted in pursuit of substrate optimality 

(Figure 4.4A). Glucose and glycerol strains clustered most closely together, followed by 

xylose, with acetate adaptation resulting in the most distinct pattern of relative gene 

expression levels. For dynamically-evolved strains, these substrate-optimal 

transcriptional patterns cannot be adopted without leaving the cells in a state where 
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widespread expression changes must be made between every growth tube, an adaptation 

strategy unlikely to prove optimal given the time and energy it takes to alter expression 

levels [114]. It would be expected that for the rapidly switching ALE environment 

utilized herein, the transcriptome will adapt such that shifts in expression level needed 

between the two relevant substrates become minimized. To test this, RNAseq data for 

individual strains (wild-type or evolved) was compared to determine how expression 

levels changed when a strain was grown on glucose vs. when it was grown on [alternative 

substrate] (Figure 4.4B-C). For glucose/glycerol switching, the wild-type starting strain 

had 1689 genes with greater than 2-fold changes in gene expression across the two 

substrates and an average gene fold change magnitude of 6.9, while the evolved 

glucose/glycerol generalist significantly decreased (paired t-test, p=0.018) to 665 genes 

and a 2.3-fold average expression change, respectively (Figure 4.4B). Similarly, the wild-

type on glucose/xylose had 1676 genes with |fold change|>2 and an average fold change 

of 4.9, which significantly decreased (p=0.034) in the glucose/xylose generalist to 842 

genes and a 2.9-fold average change. This stands in stark contrast with the phenotype of 

the dynamically evolved glucose/acetate specialist strains, which did not approach any 

closer to transcriptional parity across the substrates than the wild-type strain (Figure 

4.4C). Unlike the generalists, the coexisting glucose and acetate specialist subpopulations 

obviated the need for a single genotype capable of reconciling the dissimilar optimal 

expression states between the two substrates. Thus, it becomes clear that global 

transcriptional analyses across substrates can be used to interpret the differential 

development of specialists or generalists under various substrate switching regimes. 

 



 
 

83 

 
Figure 4.4: Global transcriptome changes in statically and dynamically evolved 
strains (A) Hierarchical clustering of strains statically evolved to each of the four studied 
substrates. Strains optimized for glucose and glycerol growth have the most similarity in 
expression state, followed by xylose and then acetate. (B & C) Scatter plots of expression 
data for the wild-type ancestor and dynamically evolved strains when grown on (B) 
glucose vs glycerol or (C) glucose vs acetate. Points falling on the diagonal represent 
genes whose expression does not vary, while those falling outside the dashed lines are 
genes with more than 2-fold changes in expression across the two substrates. (B) The 
number and magnitude of transcriptional shifts between glucose and glycerol growth 
conditions significantly decreased in the dynamically evolved generalist strain. (C) The 
number and magnitude of transcriptional shifts between glucose and acetate growth 
conditions did not significantly change in the dynamically evolved specialist strains. 
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4.2.5  Metabolic Modeling 

To better understand the mechanisms underlying growth substrate-driven adaptive 

responses, genome-scale metabolic modeling techniques were applied. By modeling the 

metabolic reaction network of an organism with a stoichiometric matrix [115] and 

applying relevant physiological constraints, predictions can be made on optimal growth 

behavior and metabolic flux states in a particular environment [116]. Here, the relevant 

environments are identical except for the different carbon growth substrates.  

The experimental analyses performed thus far indicate that ALE cultures adapted 

differently to different switching schemes, becoming either generalists or specialists in 

response to different substrate combinations. Robust growth under glucose/xylose and 

glucose/glycerol switching was achieved by versatile generalist strains, whereas 

glucose/acetate switching failed to select for such strains, instead opting for co-existing 

specialist subpopulations as the strategy for growth improvement. One potential 

explanation for this discrepancy is that glucose and acetate are too metabolically 

dissimilar (requiring conflicting or disparate pathways for metabolism) for a single strain 

to easily evolve for robust growth on both, while xylose and glycerol are both similar 

enough to glucose to avoid this. To test this, optimal growth of the wild-type strain was 

modeled on the four different relevant substrates individually, and the flux states 

necessary for optimal growth were inferred from Monte Carlo sampling of a genome-

scale M-model [117]. This sampling yielded flux distributions for each chemical reaction 

in the model, and the three nonstandard substrates were pairwise compared with glucose 

(Figure 4.5). As an example case, consider how metabolic fluxes resulting from growth 
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on xylose compare with glucose-growth fluxes (Figure 4.5A). Glucose import and 

conversion reactions have lower flux, while xylose import/conversion reactions have 

higher flux, and these differences impact the metabolic flux network as a whole, e.g. via 

increased non-oxidative pentose phosphate pathway (PPP) activity from xylose’s 

conversion to xylulose 5-phosphate. Expression profiling could be used to perform such 

analyses or support modeling-derived results (e.g., RNAseq data show that the glucose 

PTS permease ptsG decreased 2.4-fold in expression upon xylose growth, while the 

xylulokinase xylB increased expression 120 fold), but scalar gene expression values do 

not give insight into reaction directionality, which can cause important network features 

to be overlooked. Expression of pgi, for example, changed by less than 2% in glucose vs. 

xylose growth, but modeling showed that, although flux magnitude didn’t appreciably 

change, the direction did – increased non-oxidative PPP activity from xylose growth 

leads to increased fructose 6-phosphate levels, which drive flux “backwards” through pgi 

to glucose 6-phosphate in the direction of gluconeogenesis. A two-sample Kolmogorov-

Smirnov test was applied to the modeling-determined fluxes to quantify a metabolic 

“distance” between glucose and each of the substrates, and this scaled as expected – 

glycerol and xylose are more similar to glucose than acetate is (Figure 4.5B). 
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Figure 4.5: Metabolic flux analysis of substrate differences (A) Flux map of central 
carbon metabolism, with colors indicating the extent of difference in reaction fluxes 
between optimal growth on, as an example, glucose and xylose. (B) Substrate “distance” 
from glucose based on Monte Carlo sampling of the M-Model network, plotted against 
the observed frequency of specialist subpopulations arising in ALE strains under 
glucose/[substrate] switching. (C) Same as (B), but using Euclidean distance between 
ME-Model-predicted expression levels as the distance metric. 
 

M-Models, although powerful tools for predicting and analyzing physiology, do 

not quantitatively predict gene expression, which can in certain circumstances lead to 

inaccurate predictions [118]. Monte Carlo sampling is one way to skirt this issue, but 

genome-scale models of metabolism that factor in gene expression and its concomitant 

energy costs have recently been developed, dubbed ME-Models [119]. This additional 
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model content allows for quantitative predictions on the optimal gene expression and flux 

state in a given environment without the need for random sampling. Taking the Euclidean 

distance between the expression state on glucose and on the other substrates is another 

way to quantify their extent of dissimilarity, and the results are in excellent agreement 

with M-model sampling (Figure 4.5C). Moreover, ME-models do not require 

physiological data on substrate uptake rates, so many compounds can be computationally 

tested. Dynamic ALEs on compounds with a lower glucose “distance” than glycerol 

(from these simulations, mono- and disaccharides) would likely lead to generalists, and 

compounds more distant than acetate (other carboxylic acids) would likely lead to 

specialists, but it is as of yet unclear at what intermediate substrate distance a dynamic 

evolution would begin to favor specialists over generalists. This study thus helps to 

establish the explanatory and predictive power of metabolic modeling for understanding 

why and under what circumstances generalists or specialists arise, but future 

experimental work will be needed to determine the extent and limitations of this efficacy. 

 

4.3  Discussion 

In this study, E. coli cultures were evolved for upwards of 1000 generations under 

environmental conditions in which the available carbon source alternated repeatedly 

between glucose and either glycerol, xylose, or acetate. These dynamically-evolved 

cultures reached fitnesses comparable to those of statically-evolved controls only ever 

grown on a single compound. Genetic analysis revealed that glucose/glycerol and 

glucose/xylose switchers adopted a generalist strategy, while glucose/acetate switching 

resulted in the development of specialist subpopulations for each of the two carbon 
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sources. Mutational comparison between static and dynamic strains highlighted genes 

important for robust growth on the various substrates, as well as ones targeted 

differentially depending on the static or dynamic nature of the evolutionary environment. 

The diauxic phenotype of dynamically-evolved strains varied across the substrates, but in 

one case lag phase was completely abolished whereas in statically-evolved controls it was 

not. Transcriptional analysis further highlighted the divergence in substrate-optimal 

expression states and resultant evolved expression shifts, and genome-scale metabolic 

modeling provided insight into the metabolic basis underlying substrate differences and 

generalist vs. specialist development.  

Several important conclusions can be drawn from this study. Although the genetic 

basis for fitness improvement between static and dynamic conditions was mostly similar, 

several genetic regions stood out as being differentially targeted based on the temporal 

nature of the evolution environment. This is most noticeable in the cspC/yobF region, 

which acquired 5 unique mutations across the 6 total replicates of glc/xyl and glc/ac 

strains but only 1 mutation in a single acetate static strain. That such mutations occur 

disproportionately in dynamic conditions, and are not constrained to a single substrate 

pair, implies that this region influences substrate switching in general, perhaps through 

CspC’s interactions with RNA polymerase complexes in response to stress [111]. Further 

analysis could establish the underlying mechanism for this influence, and find ways to 

leverage this knowledge for genetic engineering to produce strains with robust growth 

under dynamic conditions. However, simply looking at genes that mutate repeatedly does 

not provide the whole picture. Another striking finding from this study is the evolved 

diauxic behavior of a glucose/glycerol generalist, which eliminated its lag phase where 
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glucose and glycerol statically-evolved strains did not. In both the generalist and the 

glycerol-evolved strain the key mutations (Table 4.1) were in glpK and rpoC, genes 

known to be targeted under glycerol evolution [7]. Despite this genetic similarity, the 

different evolutionary histories selected for different mutations within the same genes, 

with a resultant phenotypic difference that would not be deduced from genotype alone. 

Additionally, diauxic lag phase elimination or duration reduction can significantly 

increase bioprocess fermentation efficiency [120]. The successful improvement in 

diauxic phenotype from both dynamic (e.g., glc/gly generalist, Figure 4.2B) and static 

(e.g., xylose-evolved strain, Figure 4.2C) ALE environments highlights the importance of 

utilizing both methods. ALE studies such as this one can thus help to expand the genetic 

knowledge base and indicate promising directions for genetic engineering of a desired 

phenotype, as well as naturally generating strains with industrially valuable phenotypes. 

In addition to phenotypic and genetic analysis, transcriptomics and metabolic 

modeling helped to explain the observed evolutionary outcomes. Hierarchical clustering 

of static strain transcriptomes established the ordinality of substrate similarity (glucose → 

glycerol → xylose → acetate) that had been hinted at by the genetic and phenotypic ALE 

results. Generalist strains were found to shift their expression from the wild-type starting 

state closer to, but still distinct from, statically-evolved strains, while specialists adopted 

a different transcriptional strategy that moved them further from static strains than the 

wild-type. Where the generalists evolved to minimize the number and magnitude of gene 

expression shifts across two substrates, the specialists were not subject to this adaptive 

constraint given their tactic of coexistence and niche partitioning. Genome-scale 

modeling was also performed to examine the metabolic differences between the relevant 



 
 

90 

substrates, and perfectly recapitulated the experimentally determined substrate similarity 

hierarchy. These results indicate promising avenues of investigation for future studies. 

Firstly, evolving to static conditions can yield insight into the results of dynamic 

evolutions. The amount to which expression states differed among statically-evolved 

strains explained the development of subpopulations under dynamic environments, and as 

ALE studies increase in number there are more and more available data researchers can 

reference when designing studies of their own [5, 74]. However, when such data are 

lacking or it is prudent to avoid the time and resource costs of performing a static ALE, 

genome-scale metabolic modeling serves as a way to make these predictions without 

requiring starting data. The propensity for specialist subpopulation development can be 

deduced from the modeling-quantified substrate “distances,” and ALE studies can be 

designed accordingly depending on the desired outcome. If a single dominant genotype 

were desired, such as when optimizing a genetically engineered strain [121], an 

environment favoring generalist development could be selected; if overall culture 

performance were instead the important factor, then an environment favoring specialists 

would not need to be avoided, allowing naturally evolved specialists to substitute for 

artificially engineered microbial consortia that would have the same collective phenotype 

[122, 123]. 

Overall, the data presented herein provide insight into adaptive strategies and 

evolutionary outcomes in dynamic environments, and demonstrate the efficacy of various 

data types for analyzing or designing such studies. Dynamic environments present a 

much more complicated selection pressure than static alternatives, with increased 

environmental heterogeneity known to lead to greater population heterogeneity [107]. As 
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dynamic ALE studies increase in number [98, 101] it is essential that appropriate 

experimental tools are in place to properly guide analyses and assess outcomes. 

Moreover, the dynamically-driven development of generalists or specialists is of clinical 

importance in regards to antibiotic resistance and treatment regimes [124]. The genome-

scale models used in this study to quantify metabolic variation due to growth on different 

substrates can also model the network perturbations caused by antibiotics targeting 

specific biochemical reactions [125]. With modeling-driven predictions and -omics data 

follow-up characterizations after ALE experiments, strides can be made in both basic 

evolutionary research and applied clinical and biotechnological studies. 

 

4.4  Materials and Methods 

4.4.1  Adaptive Laboratory Evolution and    

  Phenotypic Profiling 

Strains were evolved in an automated system that tracked growth rates and 

propagated cultures in constant exponential growth phase, as described previously [126]. 

Starting with wild-type Escherichia coli K-12 MG1655 (ATCC 4706), cultures were 

serially propagated (100 µL passage volume) in 15 mL (working volume) tubes of M9 

minimal medium kept at 37°C and well-mixed for full aeration. Cultures were propagated 

once reaching an Optical Density at 600 nm of 0.3 (Tecan Sunrise plate reader; 

equivalent to an OD600 of ~1 on a typical instrument with 1 cm path length), a point at 

which nutrients were still in excess and exponential growth was still occurring 

(confirmed with growth curves and HPLC measurements). The M9 medium contained 
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either 4 g/L glucose, 4 g/L xylose, 4 g/L acetate, or 0.2% (by volume) glycerol. Dynamic 

cultures were alternately passed between glucose medium and one of the three alternative 

media types, while static cultures were only ever grown on a single type of medium. For 

dynamic cultures, average growth period in glucose tubes (time from inoculation to 

passage) decreased from 8.2 hours to 5.3 hours over the course of the ALE experiment, 

while average xylose growth period decreased from 9.1 to 6.0 hours, glycerol decreased 

from 10.4 to 5.8 hours, and acetate decreased from 22.5 to 12.9 hours. Lag phases were 

not evident when passing cultures between alternating substrates, likely because lag 

would occur immediately after passage and before OD600 values were detectable. Diauxic 

growth tests were performed under identical conditions to the ALE experiment, but M9 

medium was used containing 5 mM glucose + 5 mM xylose or acetate or glycerol. 

 

4.4.2  DNA and RNA sequencing 

Genomic DNA, either clonal or population, was isolated using the Machery-Nagel 

Nucleospin Tissue Kit, following the manufacturer’s protocol for use with bacterial cells. 

The quality of isolated genomic DNA was assessed using Nanodrop UV absorbance 

ratios. DNA was quantified using the Qubit dsDNA high-sensitivity assay. Paired-end 

whole genome DNA sequencing libraries were generated using Illumina’s Kappa Kit and 

run on an Illumina Miseq platform with a PE600v3 kit. The generated DNA sequencing 

fastq files were processed with the breseq computational pipeline [82] and aligned to the 

E. coli genome (NCBI accession NC_000913.3) to identify mutations. For population 

sequencing, evolved endpoint populations were used to inoculate a tube of medium with 

the desired carbon source and DNA was then harvested following growth enrichment 
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overnight. Mean read depth for each population was at least 110x, and only mutations 

with greater than 15% population frequency in at least one growth condition were 

examined. Mutations differing by more than 1.5x in frequency across different carbon 

source growth enrichments were taken as evidence of subpopulations (Supplementary 

File 2). DNA sequencing data from this study are available from the Sequence Read 

Archive database (SRP103966). 

RNA sequencing data were generated under conditions of aerobic, exponential 

phase growth on M9 minimal medium plus the relevant carbon substrate at the 

concentrations used in the ALE experiment. Cells were harvested using the Qiagen RNA-

protect bacteria reagent according to the manufacturer’s specifications. Prior to RNA 

extraction, pelleted cells were stored at -80°C, then thawed and incubated with lysozyme, 

SuperaseIn, protease K, and 20% sodium dodecyl sulfate for 20 min at 37°C. Total RNA 

was isolated and purified using Qiagen’s RNeasy minikit column according to the 

manufacturer’s specifications. Ribosomal RNA (rRNA) was removed using Epicentre’s 

Ribo-Zero rRNA removal kit for Gram-negative bacteria. A KAPA Stranded RNA-Seq 

Kit was used to generate paired-end, strand-specific RNA sequencing libraries, which 

were then run on an Illumina HiSeq. RNAseq reads were aligned to the E. coli genome 

using bowtie2 [65] and FPKM values were calculated with cufflinks [67]. Each sample 

had at least 80x mean read depth coverage. Sample normalization was performed with 

cuffnorm and differential expression levels were quantified via cuffdiff [127]. RNA 

sequencing data from this study are available from the Gene Expression Omnibus 

database (GSE97944). 
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4.4.3  In silico modeling 

Monte Carlo sampling of M-model flux distributions under different substrate 

growth conditions was performed on the most current genome-scale model of E. coli 

metabolism, iJO1366 [128], using the Matlab COBRA Toolbox [129], as described 

previously [117]. Substrate uptake rates for the different carbon compounds were set to 

wild-type values (Supplementary File 3) and the allowable growth rate to within 10% of 

model-determined optimum, and Monte Carlo sampling was performed with the 

sampleCbModel function using default parameters. A two-sample Kolmogorov-Smirnov 

test statistic was used to pairwise compare, for every reaction in the model, the difference 

in flux distribution between xylose- or glycerol- or acetate-growth and glucose-growth. 

The cumulative sum of test statistics for every reaction led to a quantitative value of 

metabolic “distance” from glucose, and values were normalized such that acetate’s 

distance was 100. Flux differences were visualized by mapping model outputs to a 

metabolic pathway map (Figure 4.5A) via the Escher tool [130]. 

A genome-scale model of E. coli metabolism and gene expression (ME-Model), 

iLE1678-ME [131], was used to simulate growth on each of the four carbon substrates 

used in this study, as well as several other common growth substrates. To model each 

condition, the uptake of the growth substrate was unconstrained and other carbon 

substrates’ uptakes were set to 0. The remaining default ME-model parameters are 

optimized to model the growth of a laboratory evolved E. coli K-12 MG1655 strain, so 

they remained set to their default values. The ME-model was simulated by computing the 

maximum feasible growth rate of the model under the imposed in silico conditions via a 

bisection procedure [132] that uses a quadruple-precision version of the MINOS 
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optimizer [133].  A single ME-model simulation provides a prediction of the 

transcriptome, proteome, and metabolic flux state required for the cell to grow optimally. 

Using these values, the metabolic “distance” of a compound from glucose was quantified 

by calculating the Euclidean distance between ME-predicted translation reaction fluxes 

(proteome), and values were normalized such that acetate’s distance was 100. 

Chapter 4 is a reprint of a published manuscript: Sandberg TE, Lloyd CJ, Palsson 

BO, Feist AM. 2017. “Laboratory Evolution to Alternating Substrate Environments 

Yields Distinct Phenotypic and Genetic Adaptive Strategies.” Applied and Environmental 

Microbiology, 83(13):e00410-17. The dissertation author was the primary author of the 

paper and was responsible for the research 
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Chapter 5  

 

Synthetic Cross-Domain Gene 

Replacement and Evolutionary 

Assimilation of Major Glycolytic 

Enzymes into E. coli 

5.1   Introduction 

 The ability of life forms to incorporate and use foreign DNA is an incredibly 

important process, underlying much of the phenotypic flexibility of Earth’s biome. In 

natural settings this biological feature enables species diversification via Horizontal Gene 

Transfer (HGT), and in applied settings it can be harnessed to engineer organisms for a 

desired purpose, such as heterologous protein expression.  

For an HGT event to be selected for in the wild the new DNA sequence must 

provide a fitness advantage via which HGT strains can outcompete non-HGT strains in a 

particular niche, after which adaptive mutations further refine the functionality of the 

HGT product in its new host. This process underlies much of the rise and spread of 

antibiotic resistance [134]. Unfortunately, while facilitating HGT in the wild, evolution 

tends to work against the successful use of heterologous expression for biotech purposes. 
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This is due to the vastly different role HGT plays in biotech vs. nature – human genetic 

engineering of organisms is generally done to induce a desirable phenotype, with 

concomitant fitness costs that render the engineered cells easily outcompeted by mutants 

that purge the foreign DNA.  Moreover, simply providing the genetic instructions for 

proteins does not mean they will be produced in proper amounts, with proper 

functionality, or without negatively impacting cell physiology. Techniques have been 

developed to lessen these issues, such as codon optimization to increase expression in the 

new host or pathway engineering to force use of the foreign DNA [135], but biological 

parts remain much less ‘plug and play’ than would be ideal [136]. 

Given the importance of understanding principles governing cross-species genetic 

interchangeability, several studies have investigated this matter. Kachroo et al. performed 

large scale essential gene replacements in yeast using both human [137] and bacterial 

[138] donor DNA, finding pathway-specific biases in outcome and swap successes for 

roughly half of all genes targeted. Functional gene replacement is an important dataset, 

but pairing with evolution allows for greater insight into the physiological consequences 

of the foreign DNA. Lind et al. replaced ribosomal genes in S. typhimurium with 

microbial orthologs, and within a few hundred generations of laboratory evolution found 

gene amplifications aimed at increasing orthogene copy number as a way to ameliorate 

fitness defects [139]. Kacar et al. replaced the essential elongation factor tufB in E. coli 

with an ancestral variant, and evolution similarly selected for upregulation [140]. 

Bershtein et al. replaced the essential folA gene in E. coli with orthologs from 35 close 

bacterial relatives and evolved, finding that fitness defects were frequently compensated 

by protease-deactivating mutations that increased intracellular orthogene levels [141]. 
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The aforementioned studies begin to shine light on the factors governing gene 

replaceability, but the influence of particular variables remains difficult or impossible to 

deconvolute from existing data. Codon optimization was typically performed on the 

foreign genes before insertion, a critical change that limits applicability of observed 

results to natural HGT. Essential genes were also the main targets for replacement, 

precluding any outcome in which an initially non-functional swap could evolve 

functionality, and vastly limiting the pool of organisms from which an orthogene could 

be taken without inducing lethality in the new host. Additionally, the in vivo role for 

many of the chosen genes involves protein-protein interactions and complex formation, 

adding confounding factors that muddy mutational interpretation. 

To answer remaining unsolved questions of how a cell differentiates “self” from 

“non-self” components, an ALE experiment was carefully designed and implemented.  

Eight unique gene-swapped strains of E. coli were constructed, evolved for hundreds to 

thousands of generations, and analyzed to discover principles governing success or 

failure of foreign gene assimilation. 

 

5.2  Results 

5.2.1  Strain Design and Construction 

A number of factors constrained the experimental design in terms of gene targets, 

donor organisms, and method of strain construction. The genes pgi and tpiA were ideal 

targets for a variety of reasons – neither gene is essential, but KO causes a fitness 

decrease of ~70%, enabling viability of strains with initially non-functional swaps but 

providing extremely strong selective pressure to get the swapped gene working. Both 
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genes are well studied, with known crystal structures, enzymatic mechanisms, 

physiological consequences of the KO, and even adaptive outcomes from evolution of 

KO strains [11, 142-144]. Neither gene has significant protein-protein interactions or 

necessary cofactors, reducing factors that could influence mutational results and 

complicate analysis. To further minimize potential confounding factors, strain 

construction involved scarless chromosomal replacement, from start codon to stop codon, 

with the coding sequence of the foreign ortholog not subjected to any codon optimization. 

This method of construction preserves native sequence context, leaving the promoter, 5’-

UTR, terminator, and genomic location completely unchanged. 

Orthogene donor organisms were selected so as to span a range of dissimilarities 

from E. coli: the fellow gammaproteobacterium Vibrio cholerae (Vch), the 

alphaproteobacterium Brucella melitensis (Bme), the hyperthermophilic archaeum 

Pyrobaculum aerophilum (Pae), and the mammalian eukaryote Homo sapiens (Hsa) 

(Table 5.1, Figure 5.1B). This spectrum of swaps allows us to distinguish between 

adaptive outcomes and mutations specific to a particular gene, specific to a particular 

species’ DNA, or general aids to heterologous expression. Spanning all three domains of 

life, the pgi and tpiA orthologs from these organisms have notably different GC content 

(Figure 5.1C), codon usage (Figure 5.1D), and amino acid composition (Figure 5.1E) 

when compared to the native E. coli genes. 
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Figure 5.1: Gene-swap strain construction and properties (A) Schematic of metabolic 
network and method of strain construction. (B) Phylogenetic distance between E. coli 
host strain and gene donor species. (C) GC content of native and donor gene sequences 
(GC% total in parentheses) (D) Histogram of the change in codon usage resulting from 
replacement of native sequences with foreign versions (E) Change in protein’s amino 
acid usage resulting from replacement of native sequences with foreign versions 

 

5.2.2  Pre- and Post-Evolution Physiology 

Initial physiology of gene-swapped strains was a function of the donor species - 

both Vch swaps had wild-type growth rates, both swaps for Hsa and Pae had KO growth 
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rates, and both swaps for Bme had rates intermediate to KO and wild-type. However, the 

BmePgi swap grew only 20% faster than the KO (60% slower than WT), while the 

BmeTpi swap grew 185% faster (17% slower than WT), demonstrating significant gene-

specific differences in interchangeability even from the same donor organism. Given the 

stochastic nature of evolution and uncertain outcomes for these atypical strains, a large 

number of independent replicates was desirable – more than 65 independent lineages 

were evolved to optimize exponential-phase growth on glucose minimal media for ~30 

days (Figure 5.2A). This experimental length was chosen so that fitness trajectories 

would be dominated by sequential selective sweeps of large-effect beneficial mutations 

[145]. Other studies serve as crucial comparison points – under identical selection 

conditions, adaptive outcomes for wild-type [5, 126], Δpgi [11, 142], and ΔtpiA [144] E. 

coli strains are well established, and additional controls run alongside the gene-swaps 

recapitulated these results (Figure 5.2B). 

Based on fitness trajectories from the ALE experiments and final growth rates 

reached by the populations, each independent lineage was classified as either a ‘success’ 

or ‘failure’ in terms of foreign gene assimilation (Figure 5.2C). Such classification is 

greatly facilitated by the intrinsic growth rate gap between pgi or tpiA deficient strains 

and the wild-type, even when comparing evolved KOs to the unevolved wild-type. ALE 

outcomes were sometimes, but not always, consistent across replicate lineages founded 

from the same ancestor – while 10/10 BmePgi swaps and 0/10 PaePgi swaps were 

successful, HsaPgi swaps were 60% successful and 40% failures (Figure 5.2D). Notably, 

a single HsaTpi lineage was the only failure across all tpiA swaps, establishing significant 

gene-specific differences in ease of orthogene assimilation. 
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Figure 5.2: Fitness trajectories and evolutionary outcomes (A) More than 65 
independent lineages were serially propagated in glucose minimal media for ~30 days (B) 
Typical fitness trajectories for wild-type, Δpgi, and ΔtpiA E. coli strains evolved on 
glucose minimal media (C) Individual gene-swap lineages could be characterized as a 
‘success’ or ‘failure’ of orthogene assimilation based on final growth rate reached (D) 
Starting growth rates of gene-swapped strains and box plots of ALE growth rate 
outcomes across the independent replicates 

 

5.2.3  Mechanisms of Orthogene Assimilation 
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Evolved endpoint clones were isolated and whole genome sequenced to determine 

mechanisms of adaptation. Strikingly, but not surprisingly, every single “successful’ 

replicate (reaching a growth rate above 0.75 /hr) had one or more mutations in or around 

the foreign gene, barring Vibrio cholerae swaps which didn’t require any mutations to 

enable functionality in E. coli (Figure 5.3A-B). Genome amplifications, an established 

adaptive mechanism for orthogene upregulation [139], were one of the least prevalent 

mutational types for both pgi and tpiA. In the case of pgi, far more common were 

mutations targeting the ribosome binding site or promoter. The exact same A→G SNP 12 

basepairs upstream of the start codon occurred independently eight separate times across 

both Bme and Hsa swaps, changing the RBS from AGAAGA to AGAGGA, closer to the 

canonical Shine-Delgarno sequence. After RBS mutations, promoter mutations were the 

most frequent method of pgi upregulation, with SNPs falling exactly in the -10 or -35 

sites, again with independent, identical mutations across strains. Evolved tpiA swap 

strains had markedly different adaptive mutations compared to pgi swaps – rather than 

promoter or RBS changes, by far the most common mutation was a silent SNP in yiiQ, 

the gene upstream of tpiA, occurring independently more than 20 times.  Overall, changes 

to the foreign coding sequence were less common than proximal mutations, and fell into 

two main types – missense SNPs in the archaeal PaeTpi, and a number of N-terminal, 

mostly synonymous SNPs across a variety of swapped strains.  

Existing literature and gene annotation allows for easy interpretation of RBS and 

promoter mutations, but other mutations require more detailed analysis. For the yiiQ 

L179L SNP to aid in orthogene assimilation it must increase levels of the foreign tpiA, 

and it appears to accomplish this by creating a new promoter binding site. Analysis with 
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promoter prediction tools [146] reveals the increased chance for RNA polymerase 

binding which the C→T mutation creates (Figure 5.3C). This mechanism has been 

documented in a study before [147], and highlights the importance of genome location 

and local context on adaptive outcomes. As far as coding sequence changes, the PaeTpi 

swaps repeatedly acquired SNPs to the penultimate amino acid. Given that the protein 

ends with two prolines, this is most consistent with a mechanism of increasing expression 

by reducing poly-proline ribosomal stalling [148], a conclusion supported by the isolation 

of growth-improved clones stemming from changes to either of the two proline residues 

(Figure 5.3D). The archael tpi swap is also characterized by the only observed mutation 

that likely alters enzyme activity rather than expression level – residue 150 is 

immediately adjacent to the conserved proton acceptor region of the active site. 
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Figure 5.3: Mutational mechanisms of orthogene assimilation (A) pgi-proximal 
mutations found in gene-swapped endpoint ALE strains (B) tpiA-proximal mutations 
found in gene-swapped endpoint ALE strains (C) New promoter creation via silent SNP 
upstream of tpiA (D) Orthogene coding sequence changes found in evolved PaeTpi 
strains; C-terminus of the gene and multiple sequence alignment of the active site region 
 

 

5.2.4  mRNA Stem-loop SNPs as an Adaptive Mechanism 

  for Tuning Expression  
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Other than PaeTpi nonsense SNPs, the only observed coding sequence changes 

were a number of N-terminal SNPs across multiple different strains, which often didn’t 

alter the amino acid sequence. The ability of synonymous mutations to nevertheless 

increase fitness has been observed before, but studies examining such occurrences have 

been unable to deduce the exact causal mechanism – tuning codon frequency, altering 

internal ribosome sites, or changing mRNA secondary structure all remain potential 

explanations [149, 150]. Fortunately, the large sample size of this study, coupled with 

computational analysis tools [151], allows us to confidently deduce the adaptive 

mechanism of these mutations – they appear to target stem-loops, or hairpins, in the 

mRNA secondary structure, destabilizing them and thereby “opening up” the transcript 

for increased ribosomal readthrough. In the case of the human tpiA swap, the foreign 

coding sequence binds to the native 5’-UTR and the P3P and P3H SNPs (and an S4S 

SNP found in a midpoint strain) target this stem-loop for destabilization (Figure 5.4A). 

This also explains the observed +A mutation 42 bp upstream of the stop codon – it 

similarly destabilizes the stem-loop, but on the opposite side as the coding SNPs and via 

increased stabilization of a stem-loop-adjacent, unstructured region. SNPs found in 

evolved BmePgi strains are even more strikingly aimed at stem-loop destabilization, this 

time due to binding of the coding sequence with itself rather than the native 5’-UTR. 

A5A and V12V target the exact same rung of the primary stem-loop, but on opposite 

sides, and A13T targets an adjacent rung (Figure 5.4B-C) 
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Figure 5.4: SNPs targeting mRNA stem-loops (A) Minimum free energy (MFE) 
structure at 37 °C of tpiA transcript for HsaTpi swap, with observed mutations (B) MFE 
structure at 37 °C of tpiA transcript for BmePgi swap, with observed mutations and 
altered MFEs (C) Equilibrium pair probabilities at 37 °C for unaltered BmePgi and 
BmePgi V12V transcripts; the less red the coloration, the more unstructured the MFE (D) 
Mutation-induced changes in growth rate and flux/mRNA for different mutational types 
(E) SNP accumulation in pgi across 924 sequenced E. coli strain variants 
 

To empirically validate this deduced mechanism of phenotypic influence, we 

performed pairwise characterizations of pgi expression level and enzymatic activity in 

strains genetically identical except for single mutations of interest, thus enabling causal 
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establishment. Promoter SNPs should increase both mRNA expression levels and flux, 

while RBS and stem-loop SNPs should increase protein expression, and thus flux, but by 

virtue of falling within the transcript have minimal impact on mRNA expression. This 

expectation is born out by the results – the repeatedly observed -10 element promoter 

SNP increases growth rate via roughly equal fold changes in flux and mRNA, while the 

RBS SNP significantly increases flux/mRNA, and the V12V SNP increases it to a smaller 

extent (Figure 5.4D). 

We next sought to establish if these stem-loop SNPs are potentially a widespread 

mutational mechanism, or merely a consequence of the atypical transcripts caused by the 

gene-swaps. In a survey of 924 E. coli strain variants with whole genome sequences 

available, SNPs within the first 40 codons of pgi were found to accumulate preferentially 

in the area of strongest mRNA secondary structure, specifically a 5-rung GC segment 

(and thus strongest region) of a longer stem-loop (Figure 5.4D). When taken together 

with another study examining ‘nucleotide compatibility’ across pathogenic E. coli strains, 

in which pgi stood out as the gene most frequently targeted by mutations [152], we begin 

to see how these stem-loop SNPs may in fact be underappreciated drivers of adaptation 

rather than neutral signatures of drift. Indeed, mRNA structural analysis of N-terminal 

synonymous mutations found in other ALE experiments gives further evidence for their 

phenotypic impact – e.g., fpr N14N for increased ferredoxin expression under ROS stress 

[153], or carB L11L for increased expression following KO of carA [154]. 

 

5.2.5  Adaptive Dynamics and Genome Rearrangements 
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To probe the evolutionary dynamics governing observed fitness trajectories and 

adaptive outcomes, we isolated and whole-genome sequenced multiple midpoint strains 

from every ALE lineage, in addition to the previously sequenced endpoints. With 200+ 

genetically distinct strains, in many cases we could decipher the full stepwise acquisition 

order for every mutation found in an endpoint, while in others clonal interference was 

observed as different strains alternated dominance in the evolving ALE populations.  

Although mutations to the swapped gene were the ultimate determinate of 

‘success’ or ‘failure’ of orthogene assimilation, a number of other genes exhibited 

strongly causal influence via three or more independent mutational hits across this or 

reference studies (Table 5.2). In many cases the mutational occurrences reinforced 

conclusions drawn from initial physiology and adaptive outcomes – for example, 3/4 

VchPgi strains got hns/tdk IS element mutations, a causal mechanism only observed for 

wild-type glucose evolutions [5, 126], highlighting the negligible influence of the Vch 

swap. Moreover, ‘failure’ lineages, in addition to lacking orthogene mutations, had 

mutations characteristic of evolved KO strains – for example, the gene sthA didn’t mutate 

in any ‘successful’ pgi swaps, but did in two of the failures (1 HsaPgi, 1 PaePgi) and 

multiple Δpgi controls [11]. Although only a single HsaTpi swap was a failure, it 

likewise had unique adaptive signatures characteristic of ΔtpiA evolutions – ptsG, galR, 

and nemR all mutated [144]. 
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Table 5.2: Independently recurring mutations 

 
Causal influence in ALE of 

different genetic backgrounds? Gene swap occurences 

Gene WTa Δpgib ΔtpiAc pgi tpiA 
hns/tdk y     3 1 

pyrE/rph y     16 19 
rpoB y y y 12 10 
rpoC y y y 14 9 
rpoA   y   14 7 
icd   y   7 4 
crp   y   5 1 
gnd   y   5 0 
cyaA   y   4 0 
hfq   y   4 0 
sthA   y   2 0 
sgrR   y   2 0 
oxyR     y 0 7 
pykF     y 1 16 
nusA       4 3 

hemA/prfA       1 2 
a Refs: [5, 126], b Refs: [11, 142], c Ref:[144] 

 

Of note are multiple mutations that cannot be uniquely classified as success- or 

failure-characteristic, but which are found across a variety of strains. For example, icd, 

cyaA, and crp are known to accumulate mutations in Δpgi evolutions, and were 

unsurprisingly found mutated in multiple failure lineages, but notably also in several 

successful lineages. Similarly, although tpiA swaps were all successful but for one, oxyR 

and pykF were still found to mutate as observed in ΔtpiA ALEs. Strikingly, the exact 

same mutation was sometimes acquired – the crp A152E SNP was found in a failure 

PaePgi lineage, but also a successful BmePgi one. Such shared mutations across both 

successful and KO/failure lineages could represent escape events from local fitness 

maxima after an ultimately successful lineage initially began a KO-like adaptive walk, or 
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they could indicate a shared underlying physiological state resulting from either absence 

of, or deficit in, pgi or tpiA flux, towards which the mutations prove beneficial regardless 

of lineage success or failure. Our high frequency sampling of the fitness landscape 

revealed temporal mutation dynamics providing explicit instances of both. As examples, 

in one BmePgi lineage a cyaA mutation fixed after the strain had already started down a 

‘success’ trajectory by acquiring two different upstream pgi SNPs. In a different HsaPgi 

lineage, the first mutation was a specific rpoA SNP characteristic of pgi KO/failures, but 

it was followed by the -12 pgi RBS SNP, and ultimately lineage ‘success.’ 

To examine if successful orthogene assimilation was possible even in the 

presence of multiple KO-characteristic mutations, we performed ‘continuation ALEs’ 

starting from endpoint strains isolated from various failed lineages, evolving them for a 

further 30 days (Figure 5.5A) The additional evolutionary time enabled success for the 

HsaTpi strain that was the only tpiA swap failure, and for a midpoint BmePgi strain that 

started with two KO-characteristic mutations. However, continuation did not always 

guarantee success, as HsaPgi and PaePgi strains remained ‘failures’ despite minor fitness 

improvements. 

Surprisingly, our extensive midpoint sequencing found that genome 

amplifications were much more common than endpoint sequencing alone revealed. 

Although only a single additional pgi amplification was found in a midpoint HsaPgi 

strain, complementing the amplifications found in two BmePgi and two HsaPgi endpoints 

(Figure 5.5B), tpiA amplifications were rampant – more than 90% of clones isolated 

across Bme/Hsa/PaeTpi lineages after their first fitness trajectory growth rate jump had 

amplifications. As the ALE experiment progressed these tpiA-amplified strains were 
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ultimately outcompeted by strains with more parsimonious methods of upregulation (yiiQ 

L179L and mRNA stem-loop SNPs), leaving only a single PaeTpi endpoint with a 

persistent amplification. 

Examination of the type and location of genome amplifications helped to explain 

the swap-specific differences in evolutionary outcomes for orthogene copy number. The 

location of pgi on the chromosome leaves it open to homology-mediated genome 

amplification of various types – flanking repetitive extragenic palindromic, or REP, 

sequences facilitated several of the observed amplifications, as well as sequence 

homology between flanking genes (Figure 5.5B). Minimal homology was needed – as 

few as 10 identical bp between metH and mdtP could nonetheless facilitate a >5x 

amplification of a 74,000 bp region. In contrast to pgi, tpiA falls amidst several ribosomal 

RNA operons, and every single observed genome expansion was a duplication (2x read 

depth increase) resulting from homology-mediated amplification between different 

combinations of the rrn operons (Figure 5.5C). Taken together, the high frequency of tpiA 

amplifications in early midpoint strains and low frequency in endpoint strains implies that 

these amplifications have an ease-of-acquisition rather than fitness benefit, compared to 

other mechanisms of orthogene upregulation. This is supported by a 15% higher growth 

rate resulting from the yiiQ L179L SNP, as compared to a genome duplication. 

Fortuitously, enough clones were isolated and sequenced to find 5 strains 

genetically identically except for extent of amplified region, allowing for phenotypic 

comparison (Figure 5.5D). Under glucose growth conditions, duplication of the middle 

(tpiA-containing), or middle + left regions leads to highest growth rates, while inclusion 

of the right region lowers the growth rate. Examining different growth environments, we 
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see drastic changes in relative fitness – on xylose growth all differences in strain fitness 

are essentially negated, while on glycerol growth the middle and middle + right 

duplications having significantly higher fitness than any duplication that includes the left 

region. Thus, specifics of local gene context can not only influence accessible adaptive 

mutations, but also facilitate (or hinder) expansion into entirely new niches. 

 

Figure 5.5: Adaptive dynamics and genome rearrangements (A) Continuation ALEs 
had the potential to enable escape from a ‘failed’ trajectory, even in the presence of 
multiple KO-characteristic mutations (B) All genome expansions found in pgi swap 
strains (C) All genome expansions found in tpiA swap strains (D) Relative growth rates 
on various carbon sources for HsaTpi strains genetically identical except for the size of 
tpiA duplication; coloration corresponds with (C) 
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5.2.6  Structural Elucidation of Mutation Hotspots 

Across all strains, the genes with the highest number of independent mutational 

hits (rpoB, rpoC, rpoA) were components of the RNA polymerase complex, as is 

frequently the case in ALE experiments [36]. These mutations effect global 

transcriptional shifts that can significantly alter cell physiology and proteome 

composition, but detailed interpretation is notoriously difficult, often requiring whole 

studies to investigate single mutations [110]. In this study, our large sample size resulted 

in a plethora of observed mutations which, when taken together, point to several 

structural regions as key accumulators of adaptive mutations. Most notably, C-terminal 

rpoA mutations were a rampant mechanism of adaptation for both Δpgi and failure pgi 

swap lineages – the rpoA G315V mutation was observed 5 times independently across 

various strains, along with several frameshifting mutations falling within the same 5 bp 

window. Contrastingly, tpiA swaps never acquired these C-terminal rpoA mutations, but 

instead targeted glycine residue 36 for alteration, with rpoA G36D, G36V, and G36C 

SNPs observed across one or more tpiA swap strains. 

Although mutation hotspot regions can be deduced from mutational recurrence in 

protein primary structure, this overlooks potential hotspots involving SNPs distant in 

primary structure but localized in the same region of the full quaternary protein structure. 

Recent cryoEM techniques are yielding an unprecedented view into the in vivo dynamics 

of protein complexes, and mapping our 75+ unique observed rpo SNPs to the E. coli 

transcriptional activation complex [155] revealed distinct spatial clusters (Figure 5.6). 

This clustering highlighted mutational associations that would not have been drawn 

without such structural interpretation: the frequently observed C-terminal rpoA mutations 
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were found to fall in close proximity to the various crp mutations. Given that both 

mutation types are characteristic of Δpgi, and fall directly in a protein-DNA interaction 

region, this implies a shared mechanism of phenotypic influence via altered transcription 

initiation dynamics. This is in contrast to the rpoA G36 mutations, which have close 

proximity to important rpoC SNPs, but no association with crp (Figure 5.6C) 

A recent study by Wytock et al. examined adaptation following a range of 

metabolic gene KOs, which despite significant genetic and growth rate differences still 

converged on several instances of identical RNA polymerase mutations [156]. Here we 

see striking agreement between the Wytock mutations and many found in this study – 

rpoB residues D516, P520, D654, and rpoC residues R1075 and R978 all acquired 

multiple independent mutations across gene-swapped strains. Many of these most 

frequently targeted residues fell into distinct spatial clusters with one another, despite 

amino acid positions hundreds of residues distant in primary structure (Figure 5.6C). The 

spectrum and frequency of adaptive rpo mutations found with ALE essentially amounts 

to an empirical, rather than computational, Monte Carlo sampling of the ‘solution space’ 

for RNA polymerase alterations capable of enabling fast growth in spite of metabolic 

lesions. This sampling revealed the surprising ability for identical mutations to increase 

growth across a diverse range of metabolic perturbations, pointing to global principles 

underlying transcriptional dynamics and resultant cell physiology. Informed by ALE-

derived sampling of structural solution spaces and increasingly available cryoEM 

structures, deciphering complex biochemical dynamics and their physiological influence 

may soon be feasible. 
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Figure 5.6: Structural clustering of RNApol complex SNPs (A) RNA Polymerase 
transcription activation complex cryoEM structure; observed mutations across all gene-
swapped and KO strains colored based on amino acid replacement distance (B) 
Clustering of mutations identified hotspot regions in 3D space (C) Various hotspot 
regions were characteristic of repeatedly observed SNPs 
 
 

5.3  Discussion  

In this study, we genetically engineered E. coli to replace native copies of pgi and 

tpiA with foreign orthologs from all domains of life, and evolved dozens of independent 

lineages for hundreds to thousands of generations. We found that, despite initial impaired 
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or negligible functionality, strains readily evolved to ‘assimilate’ the foreign gene, 

reaching growth rates just as high as found in evolved wild-type E. coli. We examined 

the mutational mechanisms by which orthogenes were either successfully assimilated or 

relegated to disuse, uncovering specific features of both the DNA and protein sequences 

that became targets for adaptive mutations in the new E. coli host. With hundreds of 

genetically distinct evolved clones, we identified multiple genes and even specific protein 

residues that were repeated mutational targets. While some genes were mutated uniquely 

under specific conditions, others provided fitness benefits across a range of strain types, 

and structural analysis of RNA polymerase mutations pointed to specific spatial regions 

underlying adaptive shifts in global expression state. We established the contingency of 

accessible adaptive mutations on a gene’s chromosomal location, and demonstrated how 

the specifics of local gene context can facilitate expansion into new niches. 

Increasing orthogene expression was the key determinate of a strain’s ‘success’ or 

‘failure’ to assimilate the foreign DNA, and a variety of mutational mechanisms were 

observed. Predominantly, expression-increasing mutations did not alter the foreign DNA 

at all, but instead targeted cis-regulatory regions such as ribosomal and promoter binding 

sites. The gene chosen for swapping led to significantly different mutational outcomes, 

with promoter/RBS SNPs dominant for pgi, but tpiA swaps characterized predominantly 

by a silent SNP in the upstream gene that creates a new promoter. Similarly, 

chromosomal location constrained both the accessibility of genome amplifications as a 

method of upregulation, and cross-environment fitness changes stemming from the 

specific gene content of the amplified region. In addition to the influence of local 

sequence context, specifics of the swapped gene also altered adaptive trajectories. The 
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archael PaeTpi swap induced poly-proline ribosomal stalling that was ameliorated by 

missense SNPs to either of the two prolines, while HsaTpi and BmePgi swaps had 

prohibitively strong mRNA secondary structures that were targeted for destabilization by 

stem-loop SNPs. 

With strongly demonstrated causal influence from multiple different synonymous 

mutations, both promoter-creating and mRNA-targeting, a reevaluation of the common 

assumption that synonymous SNPs are phenotypically neutral is in order, and thus the 

applicability of Ka/Ks in evolutionary biology. Indeed, calculations of adaptive protein 

substitution rates are known to be sensitive to even weak selection for synonymous 

mutations [157]. We also provided evidence that missense SNPs can sometimes induce 

phenotypic changes by targeting mRNA stem-loops for destabilization, rather than due to 

any alterations in enzyme activity caused by the new amino acid. In light of these 

findings, a reexamination of mutations observed in ALE experiments is warranted – 

adaptive mutations may have been overlooked if synonymous, or misinterpreted if 

residue-altering. Similarly, databases of genome sequences are ripe for computational 

analysis to identify the extent to which stem-loop SNPs play a role in adaptation across 

different gene types and organisms. 

Our findings also have implications for the rational design of strains for 

heterologous production. Codon optimization is unnecessary to enable orthogene 

functionality, as demonstrated herein, and if done naïvely may in fact induce mRNA 

stem-loops that countervail any expression increases from improved codon adaptation 

index. The strong influence of N-terminal mRNA structure on expression levels suggests 

new techniques for expression tuning – pairing a strong RBS with intentional stem-loops 
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of varying strength could achieve a range of expression levels. This variation would be 

due to changes in flux/mRNA, which we saw has a fitness advantage over less 

parsimonious methods of expression increase, such as promoter mutations or genome 

amplifications. Also relevant for genetic engineering, specifically evolutionary stability, 

we found that genome placement strongly influences the nature and likelihood of both 

adaptive point mutations and genome amplifications. 

Overall, this study establishes the impressive adaptive flexibility of E. coli - only 

a few mutations are necessary to get a gene working in a new host, despite billions of 

years of evolutionary divergence from the replaced native copies. With the rising use of 

gene KO ALEs to investigate metabolic perturbations and thus understand cellular 

functions in greater detail [156, 158], the results of this study imply similar fruitful 

investigations enabled by gene-swaps. Depending on donor organism specifics, such 

swaps can introduce new metabolic capabilities, probe genetic interchangeability, or 

serve as gene knock-downs rather than knock-outs. With a carefully selected 

experimental design for appropriate selection pressure, ALE can be used both to facilitate 

traditional methods of heterologous strain construction and make biological discoveries 

of pertinent protein/DNA features necessary for robust in vivo functionality. 
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5.4  Materials and Methods 

5.4.1  Strain Design and Engineering 

DNA sequences for gene replacement were ordered from Gene Universal Inc. For 

the human genes, the coding sequence (introns removed) of the annotated main isoform 

was used. Strains were constructed in two different ways - pgi swaps with a modified 

gene gorging protocol [159] as depicted in Figure 5.7, and tpiA swaps with a similar 

method but using CRISPR-induced double-stranded DNA breaks on the native E. coli 

sequence as the method of counter-selection, thus not requiring an antibiotic cassette. 

Strain construction was checked for compositional and locational accuracy with both 

whole-genome and Sanger sequencing. 

Strain phylogeny (Figure 5.1B) was compared with the TimeTree tool [160]. 

Protein similarity scores (Table 1) were obtained using EMBOSS Needle pairwise 

sequence alignment [161]. Codon adaptation index (Table 1) was calculated with the tool 

from Biologics International Corp (https://www.biologicscorp.com/tools/CAICalculator). 
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Figure 5.7: Method of scarless strain construction. The pgi swap strains were 
constructed as shown. The tpiA swap strains used a construct lacking the foreign gene 
start homology, I-SceI site, and antibiotic cassette; double stranded DNA breaks were 
induced by CRISPR-targeting to native gene sequence, obviating the need for antibiotics. 
 
 
5.4.2  Adaptive Laboratory Evolution 

Strains were evolved via batch culture serial propagation of 100 ul volumes into 

15 mL (working volume) tubes of 4 g/L glucose M9 minimal media kept at 37 C and 

aerated via magnetic stirring, exactly as described previously [162]. Cultures were 

propagated for 30 days, or until measured population growth rate reached within 10% of 

the maximum known to occur for the growth conditions. Each independent ALE replicate 
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was started from a unique pre-culture inoculated with a clone isolated from an LB plate, 

so as to prevent standing variation from influencing mutational independence across 

replicates. 

 

5.4.3  DNA Sequencing and Analysis 

Genomic DNA was isolated using bead agitation in 96-well plates as outlined in 

[163]. Paired-end whole genome DNA sequencing libraries were generated with a Kapa 

HyperPlus library prep kit (Kapa Biosystems) and run on an Illumina HiSeq 4000 

platform with a HiSeq SBS kit, 150 bp reads. The generated DNA sequencing fastq files 

were processed with the breseq computational pipeline [82] and aligned to the E. coli 

genome (NCBI accession NC_000913.3) to identify mutations. Genome amplifications 

were identified with a custom script, and all read depth coverage plots and marginal 

mutation calls were also manually inspected. 

 

5.4.4  Strain Characterizations 

Strains were assayed for growth rate via serial propagation and OD sampling 

conditions identical to the ALE experiments, with given values an average over at 

minimum 5 independent growth tubes. Strains were assayed for pgi expression level via 

RT-qPCR as follows: total RNA was purified with the Qiagen mRNeasy kit, assessed for 

quality on an Agilent Bioanalyzer, and quantified with a Nanodrop. RNA was converted 

to cDNA with the NEB LunaScript RT Kit, then quantified with the NEB Luna Universal 

qPCR kit. A panel of 5 housekeeping genes were assayed along with pgi to allow for 

normalization. Strains were assayed for enzymatic flux with a PGI activity colorimetric 
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assay kit from BioVision (#K775) as per manufacturer protocols. For both expression 

level and flux measurements, cultures were first flash frozen (both biological and 

technical duplicates) in liquid nitrogen at the same OD in mid-exponential growth phase. 

 

5.4.5  Mutation Structural Analysis 

Structures for mRNA transcripts were evaluated using the NUPACK 

computational tool [151]. Annotated transcription start sites served as the 5’ end for 

evaluated structures, and a range of transcript lengths were analyzed to ensure robustness 

of results to region chosen. RNA Polymerase mutations were analyzed with a hierarchical 

clustering algorithm to identify the occurrence of non-random mutational "hotspots" on 

the transcriptional activation complex (PDB ID: 6b6h) from the 3D coordinates of the 

mutated amino acid residues. Mutations were clustered into n-groups, where 𝑛 ∈ [1, 18]. 

For each number of clusters (n) selected, the mean-squared error (MSE) was identified 

using the formula below: 

𝐷 𝐶!  ,𝑃!,!
!

!,!

!

!!!

 

 

Where the distance (D) between a cluster centroid (Cj) and each of the mutations 

identified to belong to that cluster (Pi,j) is squared and summed across the n-clusters.  To 

quantify the "randomness" of the 3-dimensional localization of mutations, the MSE of n-

clusters was compared to the MSE of hierarchical clustering in a random sample.  Here, a 

random sample of amino acid positions was selected so that (1) the number of amino 

acids reflects the number of mutations in the data (Random or Un-Weighted Sampling); 

(2) the redundancy—number of repeated positions—of the mutation data is enforced on 



 
 

125 

the random selection (Enzyme-Weighted Sampling); and (3) the redundancy of the 

mutation data is enforced and restricted to each protein subunit (Chain-Weighted 

Sampling).  The third sampling technique ensures that the distribution across protein 

subunits of amino acids selected matches that of the mutation data, and removes any bias 

of mutation occurrence across different protein subunits. At each number of clusters, the 

MSE of 30,000 random samples in each sampling technique was calculated.  The mean 

and standard deviation of the distribution was used to derive p-values for the likelihood 

of the mutation clustering occurring by random chance, establishing statistical 

significance for the 7-cluster classification being both optimal and reflective of non-

randomness. 

Chapter 5 is a version of a manuscript in preparation for submission: Sandberg 

TE, Catoiu E, Szubin R, Phaneuf PV, Feist AM, Palsson BO. “Synthetic Cross-Domain 

Gene Replacement and Evolutionary Assimilation of Major Glycolytic Enzymes into E. 

coli.” The dissertation author was the primary author of the paper and was responsible for 

the research.  
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Chapter 6 

 

Conclusions and Outlook 

 

 In this dissertation, we performed in-depth analysis of the mechanisms by which 

Escherichia coli evolved to tolerate a diverse range of conditions. By studying 

perturbations of fundamentally different natures, we gained insight into both general and 

condition-specific adaptive strategies. Informed by a wide array of data types and 

physiological assays, we examined evolved strain phenotypes and linked their properties 

to the causal influence of various mutations. The lessons learned from such analyses, and 

implied future directions of research investigation, are discussed below. 

 

6.1  Lessons Learned 

In our investigation of adaptation to elevated temperature, we demonstrated the 

incredible sensitivity of mutational outcomes to both environmental particulars and 

starting genotype, established Multiplex Automated Genome Engineering as a method to 

prove mutational causality, and studied how global expression patterns shift over the 

course of adaptation. This highlighted the importance of appropriate control lineages for 

unbiased mutational comparison, and of independent ALE replicates for easy causal 

mutation identification without the need for laborious genetic engineering. We saw that a 

strongly driving force for the adaptive process is a restoration of cellular physiology to 
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pre-perturbed levels. This preferred homeostatic state could be reacquired with a minimal 

number of mutation steps due to the large-scale expression changes wrought by 

regulatory or RNA polymerase mutations. Though increasing fitness overall, we found 

that such mutations can also carry along actively detrimental expression changes, which 

subsequently become targets for additional ameliorating mutations. 

In our investigation of adaptation to alternate growth substrates, we established 

the impressive ability of E. coli to exhibit completely normal physiology even when 

every carbon atom composing the cell is Carbon-13 rather than Carbon-12. Given the 

importance of 13C-labelling in metabolic flux analysis experiments, and previous 

questions on the validity of neglecting any potential kinetic isotope effect, this result is a 

sigh of relief to metabolic engineers. Examining a more complex carbon growth substrate 

perturbation, we added temporal variability to the typically-constant ALE conditions, 

investigating how E. coli adapted to rapidly alternating growth nutrients. We showed that 

the particulars of the alternating environment led to either co-existing specialist 

subpopulations or the predominance of a single generalist strain. Informed by these 

results, we then established the utility of computational techniques, specifically genome-

scale metabolic modeling, to interpret or even predict such condition-specific 

evolutionary outcomes. 

In our investigation of adaptation to genetic perturbations by foreign DNA, we 

demonstrated the remarkable ability of E. coli to tolerate replacement of important 

metabolic genes with orthologous copies that have been evolutionarily diverging for 

billions of years. We showed how, in addition to cis-regulatory elements, specific DNA 

or protein features were targeted for mutations that enabled increased orthogene 
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expression, frequently resulting in evolved growth rates of the same level achievable by 

the wild-type. We established genes and even structural regions that were repeated 

mutational targets either across conditions or specific to particular ones, and revealed the 

contingency of evolutionary outcomes on the genomic location of mutational hotspots. 

We also provided both observational and empirical evidence for the adaptive importance 

of mRNA stem-loop SNPs, thus partially resolving questions on the possible mechanism 

of phenotypic improvement for synonymous mutations. 

 

6.2  The Future of ALE 

As demonstrated herein, Adaptive Laboratory Evolution experiments can be a 

powerful method to probe living systems. Among the myriad variables and molecular 

interactions that come together to form a cohesive living cell, ALE is able to consistently 

and reproducibly point to the few genes or cellular processes most strongly under 

selection in a given environment. It thus serves as a tool for biological discovery (by 

elucidating adaptive mechanisms), strain engineering (by generating desired phenotypes), 

and hypothesis generation (by pointing to subtle effects that indicate potentially novel 

causal influences). 

Key to the successful use of ALE throughout this dissertation were the automated 

‘ALE machine’ platforms, enabling experimental control, throughput, and data quality at 

heretofore unachievable levels. The increased capabilities bestowed by automation are 

leading others to develop similar systems [164, 165], and ALE is thus poised to see even 

wider adoption. As the number of ALE studies grows their utility will only increase 

further – the preexisting datasets serve as essential comparison points, allowing 
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discernment between mutations specific to a perturbation of interest or merely some other 

factor. Databases of such ALE-identified mutations are ripe for computational probing 

using big data analytics techniques to discover evolutionary features hidden in the 

massive multidimensionality of genotype space [166]. 

Together with automation, advances in genetic engineering and synthetic biology 

open up exciting new possibilities for ALE. With synthetic gene circuits begging to see in 

vivo therapeutic use [167], ALE provides a way to both examine and engineer the 

evolutionary stability of such systems. Ambitious alterations such as genomic recoding 

leave microbes with severe growth defects, and ALE allows for optimization of these 

synthetic strains [168, 169]. New CRISPR-based tools for targeted mutagenesis [170] 

provide the ability to force previously stochastic adaptive walks down desired paths. 

Taken all together, the outlook for ALE appears bright – evolutionary engineering allows 

for optimization of dauntingly complex systems, and evolutionary investigations open 

new lines of inquiry into biological phenomena.  
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