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Abstract

Essays on Influence of Information and Innovation in Digital Markets

by

Yilin Li

This dissertation presents three experimental studies with an emphasis on the influence

of information and innovation on digital markets including financial exchanges and

online marketplaces. The first chapter focuses on the experimental evaluation of a

new financial market design. The second and third chapters focus on how access to

information affects people’s behavior in the online marketplaces.

The first chapter provides a laboratory study of a newly proposed Flow Market

format as a response to the design weaknesses of the continuous double auction used in

most financial markets worldwide. We designed and deployed a laboratory experiment

that compares the Flow Market and the CDA using several fundamental metrics. We

find evidence that the flow market changes traders’ behavior relative to CDA, allowing

them to shred orders more effectively: compared to the CDA, the Flow market exhibits

fewer and larger orders. We also find both formats perform similarly in terms of price

and allocative efficiency. However, the Flow Market leads to lower price volatility.

Interestingly, the total traded volume is lower under the Flow Market than under CDA.

Still, this difference decreases with traders’ experience, i.e., as they learn the mechanics

ix



of the Flow format. Our findings provide initial insights regarding the feasibility of the

Flow trade format and its potential to promote financial market stability and fairness.

The second chapter modifies the traditional sequential search models to consider the

ex post uncertainty in which the uncertainty cannot be fully eliminated by the search.

We derived players’ optimal search strategy given their risk attitudes. We also test our

theory in a laboratory experiment with a search game to track subjects’ behavior and use

a multiple price list and a bomb risk elicitation task to elicit subjects’ risk preferences.

We find that, in this scenario, risk-averse players tend to increase their reservation value

and extend their search duration.

The last chapter investigates the informational barrier problem in the online mar-

ketplaces. We design a sequential game to study how informational barrier is formed

due to the reputation system and propose a fractional searching mechanism to enable

the entry by reliable firms. The model predicts the optimal behaviors of the firms and

shows that the fractional searching enables cost-effective firms with no reputation to

enter the market more easily. Additionally, we test our theory in a laboratory exper-

iment using an interactive market game to track subjects’ behaviors with a simplified

reputation system. The experimental results indicate that fractional searching effec-

tively alleviates the entry problem of new firms with superior quality.
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Chapter 1

Testing Flow Trading Format in the

Laboratory 1

1.1 Introduction

We present an experimental study of the Flow Market format, proposed by A. S.

Kyle and Lee (2017) and extended by Budish, Cramton, A. Kyle, et al. (2023). Al-

though the proposed flow format represents a significant departure from today’s most

widely used rules in stock exchanges, its study is relevant as economic theory predicts

this new format may also correct several design flaws of the currently prevalent market

rules.

Following or inspired by centuries-old rules of commodities and stock markets,

1The first chapter is a joint work with Daniel Friedman and Kristian López Vargas.
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most modern stock exchanges operate under adaptations of the double auction. The

prevailing adaptation, called continuous double auction (CDA) or the continuous limit

order book (CLOB), is essentially the electronic implementation and streamlined ver-

sion of the old centralized markets run manually. In the CDA, orders from traders are

posted in a dynamic public order book and matched based on price-then-time priority.

Orders are either market orders, executed immediately at the best available price, or

limit orders, set at a specific price and waiting to be filled.

Although CDA/CLOB is called “continuous” because trade can occur at any instant,

this market mechanism is not truly continuous. Prices, quantities, and time “continuity”

are all limited. Prices can only move in fixed steps called tick sizes (say, $0.01), as do

order sizes. Furthermore, orders are processed serially, one at a time, based on when

they arrive. The discreteness in price creates demand and supply schedules that are step

functions, making it typical to have unbalanced demanded and supplied quantities at

an instantaneous clearing price. When not all the demanded (supplied) quantity can be

instantly fulfilled, exchanges prioritize orders by when they arrive.

It follows that modern communication technology is remarkably consequential for

the CDA. In particular, (1) High-frequency traders (HFTs) have strong incentives to

exploit the CDA mechanism by using their speed to be first in line for orders when

competing with slower traders at the same price. Since prices move in steps, it is hard

to outcompete a trader with a speed advantage of even a fraction of a millisecond. HFTs
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can also react faster to new information and, before slower traders can respond, they

can either cancel their own orders or pick off slower orders resting in the book. (2) To

avoid price impact (obtaining a worse-than-necessary price for large orders), firms with

better technology can send a larger number of smaller orders than firms with worse

technology. Therefore, firms with worse technology also get worse prices on average,

as they tend to have a larger price impact.

In sum, modern markets under CDA have built-in limitations that tilt the playing

field in favor of those with cutting-edge technological capabilities, particularly high-

frequency trading (HFT) firms. This emphasis on speed, especially in volatile market

conditions where liquidity is crucial, raises concerns about market fairness and overall

stability. The billions of investments in communication technology and infrastructure

for trading, primarily driven by the race to exploit the time priority mechanism, are

mostly unproductive from a broader economic perspective. HFT’s strategies, heavily

reliant on speed, might also exacerbate market volatility, making flash crashes more

likely. This scenario underscores the need for a reassessment of market design.

There have been several proposals to correct the design limitations of the cur-

rently prevalent market institutions. Random priority (add reference), frequent batch

auctions Budish, Cramton, and Shim (2015), delayed messaging with order pegging

(Investor’s Exchange, Aldrich and Friedman (2022)), micro-burst fees (Brolley and

Zoican (2023)), priority rules (Degryse and Karagiannis (2022)). All of these propos-
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als, however, target the first issue (HFTs exploiting time priority). One proposed format

aims to correct both issues: the flow format proposed by A. S. Kyle and Lee (2017) and

extended by Budish, Cramton, A. Kyle, et al. (2023).

Flow trading is based on a new type of order, the Continuous Scaled Limit Order

(CSLO), which allows trading across a continuous price range. These orders are defined

by five parameters: direction (buy or sell), maximum quantity (Qmax), a price range

between lower (PL) and upper (PH) limits, and a maximum trading speed (Umax), in

shares per unit of time.

CSLOs enable traders to express the desired immediacy in a richer fashion than

standard limit orders in CDA, since CSLOs adapt their trading speed, U(p(t)), dynam-

ically based on the market price, p(t). Full trading speed is applied when the market

price is optimal for the trader –below PL for bids or above PH for asks. Within the price

range, the trading speed for buy orders decreases, and for sell orders increases linearly

with the price, indicating a trader’s varying willingness to execute orders depending

on how favorable the price is. The agent’s trading halts when prices move outside the

trader’s acceptable range, withdrawing from the market.

First, HFTs cannot exploit the mechanism significantly because their expected gains

from sniping stale are orders of magnitude smaller under Flow trading than under CDA

– they can pick off only tiny fractions of orders from slow traders. Second, the flow

exchange allows investors to move order shredding into the exchange, leveling the field

4



across many types of traders and improving the market outcomes related to the second

issue.

Despite the relevance of the flow trading design proposal, there is no empirical

study of its functioning and performance to our knowledge. Although studying this

format in-depth and measuring to what degree it solves the above-mentioned issues

will require extensive, more complex experiments, we postulate that a relatively simple

lab experiment is the appropriate starting point. This is precisely the contribution of

our paper; we study trader behavior and market performance within a relatively simple

controlled laboratory setting, focusing only on two market formats: the continuous

double auction (CDA) and the flow trading format (FLOW). In our setting, a single

asset is traded on a single exchange, allowing traders to own or owe multiple units of

this asset.

We adopt the induced value paradigm and adapt it slightly by providing contracts

to traders at the start of each trading period. These contracts are of two types: buy

contracts, committing the computer to buy a specified number of shares from the trader

at a set price and time, and sell contracts, committing the computer to sell shares to the

trader under similar conditions. This mechanism aims to generate trading incentives by

creating situations where traders can profit by executing trades at prices more favorable

than those specified in their contracts.

The experimental design utilized a between-group approach, with 80 participants

5



divided into 40 per market format across five groups of eight traders. Each market

session consisted of 20 trading periods, lasting two minutes each, with eight traders per

market. The participants were evenly split between receiving buy and sell contracts.

The 20 trading periods were split into five blocks, each containing four periods with

constant contract settings for repeated underlying demand and supply conditions.

We find significant changes in traders’ behavior emerging from the possibility of

managing order sizes and frequencies more effectively under the Flow format. Specif-

ically, the Flow Market format led to a significant reduction in the number of orders

placed, with 21-24 fewer orders in each period in the Flow format compared to CDA

(which, on average, displayed 47 orders). Moreover, the order size in the Flow for-

mat was larger by an average of 13 shares per order than in CDA (which, on average,

receives 21 orders per period). Interestingly, despite these improvements in order man-

agement, the total traded volume in the Flow Market was notably lower than in CDA.

However, this gap narrowed as trading periods progressed, suggesting a substantial

learning pattern in the Flow Market. Notably, price volatility was also significantly

lower in the Flow Market, with a difference of -0.7 in the absolute price change and

about 7% lower standard deviation of the log price change compared to CDA. Our

findings provide relevant insights into the viability of the Flow format as a design that

promotes a more stable market.

Our paper is related and contributes to the literature on design alternatives to the

6



CDA/CLOB format in the presence of heterogeneous access to technology and high-

frequency trading firms. In particular, our research contributes to understanding the

basic properties and empirical feasibility of the Flow Market format, conceptualized by

A. S. Kyle and Lee (2017) and extended by Budish, Cramton, A. Kyle, et al. (2023).

Along with the Flow format, there exist other market design proposals aimed at

correcting the weaknesses of the CDA-based prevalent current market designs. These

proposals include frequent batch auctions, delayed messaging and order pegging, burst

fees, and changing the priority rules.

The frequent batch auctions (FBA, Budish, Cramton, and Shim (2015)) consist of

aggregating orders over fixed, short intervals and conducting call auctions at the end of

each batching period. By batching orders, the speed advantage of HFTs’ is lost, and

in this manner, this format mitigates the exploitative behavior of HFTs. Aldrich and

López Vargas (2019) compare CDA and FBA formats using laboratory experiments.

They examine the effects of switching CDA for FBA on predatory trading behaviors,

technology investment, transaction costs, and volatility. The findings reveal that FBA

reduces predatory behaviors, diminishes the investment in socially-inefficient speed-

enhancing technologies, and lowers transaction costs and volatility compared to CDA.

Haas, Khapko, and Zoican (2021) also study this matter theoretically and find that

relative to continuous-time trading, periodic batch auctions reduce HFT informational

rents.
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Aldrich and Friedman (2022) presented an alternative approach through delayed

messaging with order pegging, inspired explicitly by the Investor’s Exchange (IEX)

context. They explore theoretically and empirically the potential of using intentional

messaging delays in financial markets to counteract the advantages of high-frequency

traders (HFTs) over traditional traders. Their model and empirical analysis show that

such delays can reduce the predatory behaviors of HFTs, safeguarding other traders’

orders from being exploited. They also document that message delay introduces addi-

tional transactions and queuing costs.

Brolley and Zoican (2023) propose micro-burst fees that target the economic incen-

tives fueling HFT. By imposing a fee on liquidity-taking orders during periods of high

message traffic, the proposed format aims to deter latency arbitrage, improve market

liquidity, and increase exchange revenues beyond what traditional colocation fees of-

fer. Their theoretical model shows that such fees can reduce the incentive for HFTs to

engage in predatory practices.

Degryse and Karagiannis (2022) explored the effects of priority rules. In particular,

this paper explores the implications of different order execution rules, such as price-

time (PT) priority versus price-broker-time (PBT) priority, which adds broker identity

to the prioritization. Employing both theoretical and empirical analysis, the authors

model investor behavior under these priority regimes. They find that the optimal design,

between PT or PBT, depends on the relative size of the price tick with respect to the
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dispersion of investors’ valuations.

In this literature, the current main contributions remain theoretical and the empirical

assessment of the proposed designs is challenging due to the lack of observational data

of non-existing market design. We argue that carefully designed lab experiments are

helpful for test-bedding these designs in similar fashion we implement the study of the

Flow format.

The rest of the paper is organized as follows: Section 1.2 presents the experiment

and its implementation. Section 3.5 presents the results, and Section 3.6 presents the

conclusions and discussion for future research.

1.2 Experiment

1.2.1 Environment

In our experiments, a single asset is traded on a single exchange, and traders can

own or owe multiple units of this asset. All prices and monetary magnitudes are ex-

pressed in Experimental Currency Units ECUs.

We implement an induced value environment with some innovations with respect to

the standard experiments. At the beginning of each trading period, we provide traders

with contracts. There are two types of contracts: 1) buy contracts, and 2) sell contracts.

A buy contract is a commitment from the computer to buy from the trader a specified
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number of shares at a certain price and at some point later in the trading period. For

example, a buy contract might read “Buy 300 shares at a price of 14 ECUs in 80 sec-

onds”. This means that 80 seconds from now, the exchange will buy up to 300 shares

from the traders inventory at a price of 14 ECUs per share. If the trader holds less than

300 units, the computer will purchase the whole inventory. Similarly, a sell contract

that says “Sell 400 shares at a price of 13 ECUs in 90 seconds” means that, in 90 sec-

onds, the exchange will sell to the trader up to 400 shares at the price of 14 ECUs per

share. If the trader is short (owes) only 350 shares, then the computer will sell only 350

units to this trader.

Contracts generate induced-value incentives to trade in our environment similar to

classic double auction experiments. For traders with a buy contract, it would be worth-

while to buy shares at a lower price than the contract price from other traders. Similarly,

for traders with a sell contract, it would be profitable to sell shares at a higher price than

the contract price. Buyers will earn the difference between the contract price and the

average buying price per share for their inventory while sellers will earn the difference

between their average selling price and the contract price per share instead. For sim-

plicity, in this experiment, we provided each trader with a single contract (buy or sell)

at the beginning of each trading period and with execution time right before the end of

the period.

Traders can also profit from trading outside the contract. For example, a trader with
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a buy contract from the computer at 10 dollars per share, could sell part of her inventory

to another trader at prices that are more convenient relative to the contract (i.e., if the

market price is above 10 ECUs).

Two main differences with the standard induced-value designs of standard CDA

experiments are worth noting. First, among other things, our study aims to measure

how order fragmentation (shredding) differs between the two formats. This requires a

design where traders are induced to value a much larger set of units than in the usual

CDA markets where inventories consist of a few items. Second, unlike standard market

experiments, we originally designed (value-inducing) contracts to have an issue and

expiration times to accommodate the possibility of manipulating the urgency of trading

during the same period by giving multiple consecutive contracts to the same trader

within the period. For the sake of simplicity we ended up giving a single contract per

trader-period in this paper.

Within the framework of these incentives to trade using contracts, our paper studies

two different market formats, the continuous double auction (CDA), and the flow trad-

ing format (FLOW), and, in particular, the differences in traders’ behavior and market

performance between these two formats.
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1.2.2 Market Formats

Continuous Double Auction (CDA)

The Continuous Double Auction mechanism, also known as the consolidated limit

order book, is structured around the concept of standard limit orders, which are defined

by three parameters: a buy-sell indicator, a specified quantity (Qmax), and a limit price

(P). A limit order expresses a trader’s commitment to buy or sell up to the specified

quantity of shares at the specified price or better.

At the core of an exchange operating under CDA is the order book, which is a

dynamic repository that prioritizes all pending limit orders first by their price level and

then by the time of order. That is, Buy orders or bids are arranged from the highest to

the lowest price; sell orders, or asks, are ordered from the lowest to the highest price.

When orders are at the same price level, the book prioritizes among them according to

the time of order submission, with earlier orders receiving precedence over later ones.

The difference between the highest bid and the lowest ask is called the spread.

When a new limit order is introduced with a price that matches or exceeds the best

available opposite-side price (the best contra-side price), it triggers immediate execu-

tion at the contra-side price, and the executed quantity is determined by the lesser of

the quantities specified in the matching buy and sell orders. In this case we say that

the arriving order has crossed the market. This immediate transaction removes the ex-

ecuted quantity from the order book, reflecting a completed trade. If instead the new

12



order does not cross the market, it is stored in the order book following the price-time

priority described above.

CDA User Interface

In the experiment, we implement the CDA format with the interface shown in Panel

(a) of Figure 1.1. We use a dynamic interactive graphical device to represent the limit

order book (top-middle box). In the same device, the trader sets and submits their limit

orders. The horizontal axis denotes the quantity of shares, and the vertical axis denotes

prices in ECUs per share. To set a buy order, the trader drags the blue dot inside the

grid to set the desired price and the quantity. Then, the trader submits this buy order by

clicking on the “Send Buy” blue button. The blue-line segments graphically describe

her buy order. Similarly, the trader sets a sell order by dragging the red square inside

the grid to the desired price and the quantity and submits it by clicking the “Send Sell”

red button. The active orders will appear in the same graph, and the Active Orders table

on the left side of the screen. To submit a new buy (sell) order, the trader must cancel

her active buy (sell) orders and then create and submit a new one.

In the top-right Market box, the trader can observe the current state of the market.

The blue curve is the market demand, and the red is the market supply. The intersection

of them determines the instantaneous trading price and the traded quantity. Trades

happen immediately when orders come into the market, crossing the spread. The green
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dots indicate the most recent trades. More prominent dots represent more recent trades.

In nearly all moments of the trading period, the demand and supply cross each other

along the vertical axis (q = 0) representing the CDA’s most common state where the

best bid is below the best ask. Only when an order arrives at the best price on the contra

side or beyond does the supply and demand cross for that instant to represent the trade.

The trader will see how her inventory and cash change within each trading period in

the bottom right section. In the bottom middle section, the trader will see her projected

profit, which indicates her profits if the active contract and the period were to expire at

that very moment – i.e., it provides a summary of her current state of potential profits

to the trader. The top left table shows an Active Contracts table, which describes the

contract the trader received from the computer right after the start of the trading period.

The table below describes the trader’s active (unexpired) contract. Fully executed or-

ders will appear in the third row of the same column. Finally, expired contracts will

move to the Executed Contracts section at the bottom of that left column of tables.

Flow Trading (FLOW)

We now describe the Flow trading format proposed by Kyle2017. The flow trad-

ing departs from the standard limit order and creates the concept of Continuous Scaled

Limit Orders (CSLO). This type of order is necessary for the interaction between de-

mand and supply over a continuous range of prices and for the flow trading of shares.
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CSLOs are characterized by a set of five parameters: a directional indicator specifying

buy or sell orders, a maximum quantity (Qmax) to be traded, a price range defined by

lower (PL) and upper (PH) bounds with PL < PH , and a maximum trading speed (Umax),

measured in shares per hour. This framework allows traders to express their willingness

to transact up to a specified quantity within a defined price range at a rate per unit of

time that does not exceed Umax.

The main feature of CSLOs lie in their adaptive trading speed or flow demand/supply,

U(p(t)), which is linked to the market clearing price, p(t), at every point in time during

the trading period.

The trading speed adjusts as follows. Full speed (Umax) is maintained when the

market price is at or below the lower price threshold (PL) for buy orders, or above the

upper price threshold (PH) for sell orders, signifying a trader’s eagerness to execute

orders outside their specified price range. Within the price range (PL ≤ p(t) ≤ PH),

the trading speed decreases linearly with price for buy orders and increases linearly for

sell orders. The linear interpolation ensures that the execution rate diminishes as prices

approach the less favorable end of the specified range, reflecting a trader’s diminishing

willingness to trade as prices move away from the trader’s best conditions. Trading

ceases (U(p(t)) = 0) when prices fall outside the favorable range—i.e., above PH for

buy orders or below PL for sell orders. This indicates a withdrawal from the market due

to the clearing price exceeding the acceptable price range of the trader.
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These conditions can be summarized in the following equations for a trader’s flow

demand and supply, respectively, at the clearing price at time t, p(t). We removed the

trader index for simplicity.

Ud(p(t)) =



Umax if p(t)< PL

PH−p(t)
PH−PL

Umax if PL ≤ p(t)≤ PH

0 if p(t)> PH

(1.1)

Us(p(t)) =



Umax if p(t)> PH

p(t)−PL
PH−PL

Umax if PL ≤ p(t)≤ PH

0 if p(t)< PL

(1.2)

The market flow trading emerges from the intersection of aggregate individual flow

demands and supplies. The resulting market flow demand and supply are piece-wise

linear functions of the price at a certain point in time. This intersection determines

the market’s equilibrium (clearing) price and the overall transaction rate, balancing the

willingness to trade of all agents. Individual trading speeds are, in turn, dictated by

each trader’s specific flow demand or supply curve in relation to the clearing price.

This mechanism can accommodate a large set of trading strategies and preferences, en-

abling agents to tailor their market engagement to reflect not only their target prices but

also their urgency of trading, making their trading adaptable to fluctuations in market
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conditions.

FLOW User Interface

The software and interface for the Flow market is analogous to that of the CDA

market. Figure 1.1 panel (b) shows one trader’s FLOW trading screen. The trader

sets and submits buy and sell orders in the top-middle box (titled “Your Input”). The

horizontal axis denotes rate in shares per second, and the vertical axis denotes prices in

ECUs per share. The trader sets a buy order by moving the blue dot along the vertical

axis to set the high price and dragging the blue square anywhere inside the grid to set

the low price and the maximum rate. Then, she enters the total number of shares she

wants to buy in the box next to the “Send Buy” blue button and submits it by clicking

that button. The blue-line segments graphically describe her buy order, as shown in

Figure 1.1 panel (b). Likewise, she sets a sell order by moving the red dot along the

vertical axis to set the low price and dragging the red square anywhere inside the grid

to set the high price and the maximum rate. Then, she enters the total number of shares

she wants to sell in the box next to the “Send Sell” red button and submits it by clicking

that button. She can submit a new order by canceling her active orders on the same side

of the market and then creating a new order at any time.

The trader sees the market supply and demand in the top-right Market box. The blue

curve is the market demand, and the red is the market supply. The intersection of them
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determines the clearing price and the aggregate clearing rate. The green horizontal line

in the Market diagram extends into the Your Input box and indicates the current market

price. The x-coordinate of the intersection of this line and the trader’s order indicates

the trader’s clearing rate. The column of tables on the left side of the interface and the

bottom boxes (projected profits, inventory, and cash) are analogous to those in the CDA

format UI.

1.2.3 Implementation

We implemented a between-group design where each session consisted of 20 trad-

ing periods, each lasting two minutes. Each market consisted of eight traders. We have

80 participants, 40 trading in each market format and, therefore, five groups per format.

In each market of eight traders, four received a single buy contract and four a sell

contract. As mentioned above, buy and sell contracts are analogous to induced values

and costs in standard market experiments. In particular, a buy (sell) contract is a com-

mitment from the computer to buy (sell) up to Qcontract units at price pcontract at the

preset expiration time of the contract (all expiration times were set near the end of the

trading period).

We divided the 20 trading periods into five blocks, each block with four periods. In

each block, all four periods have the same contract configuration, which means that the

underlying period-level demand and supply curves repeat, and so do the quantity and
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(i) CDA Format

(ii) FLOW Format

Figure 1.1: Experiment Interfaces
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Figure 1.2: Contract Design
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(iii) Block 3 (T9 - T12)

price of equilibrium. After the four-period block, the configuration changes. We use

three different configurations of contracts in the five blocks. The first three blocks have

different configurations: 1, 2, and 3. Block four repeats the configuration 2, and the

fifth block repeats the configuration 1.

Figure 1.2 depicts the three contract configurations used in our experiment as period-

level underlying demand and supply. The blue staircase represents the buy contracts,

sorted to form the underlying demand curve, and the red underlying supply curve sim-

ilarly represents the sell contracts. Each contract assigned to an individual trader is a

step (a flat line segment) on either demand or supply curve. Within each block, each

trader receives the same contract each period. Across blocks, buyers and sellers keep

the same role, but we assign a new set of contacts as shown in Figure 1.2.

Experiment instructions were provided on the computer screen and paper.2 After

2Instructions were discussed and piloted (with students and colleagues) to balance clarity and reason-
able length.
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15 minutes of reading instructions, a video summary was played with animations and

annotations to clarify any confusion that subjects might have.3 After the instructions,

subjects participated in two 120-second trial periods where subjects became more fa-

miliar with the experiment interface and market rules. Subjects were then given the

option to ask any questions.

In between trading periods, each subject received a summary screen displaying the

profit history of each trading period. Each participant started each trading period with

a zero endowment. Final payments were based on the final accumulated wealth of all

twenty trading periods, using an exchange rate of 1000 ECUs = $1, plus a $7 participant

fee. This information was provided to subjects in the written instructions.

Although ending a trading period with negative profits is possible (i.e., having neg-

ative ECUs in the period), this happened in less than 5% of cases and subjects never

left the laboratory with less than $7. Payments were implemented following standard

confidentiality procedures.

The experiment software was developed on oTree (otree). Sessions were conducted

at the LEEPS Laboratory of the University of California, Santa Cruz. Recruitment was

implemented through LEEPS’ ORSEE instance (econlab.ucsc.edu; subject).
3Participants were not allowed to communicate with each other before, during, or after the experi-

ment, nor did they learn the identity or characteristics of other participants.
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1.3 Results

1.3.1 Descriptive statistics

Table 1.1 reports summary statistics for the experiment. Given that the transaction

sizes vary quite largely in CDA and to better quantify the price impact in both formats,

we weigh prices by the associated transaction quantity within each five-second interval

across all periods and compute the average prices, price deviations, and price volatility.

Panel (a) of the Table 1.1 shows measures of price and volatility. The next two lines of

Table 1.1 show that on average price changes are roughly one and a half times larger in

CDA as in FLOW and that price volatility is about twice as large.

Panel (b) shows measures of order sizes and transactions. Traded volume as a frac-

tion of the CE quantity is notably larger in the CDA in periods 1-10, but the increase

in periods 11-20 is larger in FLOW. The percentage of filled CE quantity also trends

upward, and FLOW eliminates more than half of its shortfall from CDA in the last

10 periods. We consistently see more but smaller orders placed in CDA than in Flow,

especially in periods 11-20. Figure 1.5 shows the underlying trends. Again there is

considerable heterogeneity across groups, but there is a clear tendency towards the CE

surplus (i.e., higher efficiency) and CE volume across blocks, perhaps especially in

FLOW sessions. We see that the clearing rate in FLOW is 9.5 shares per second in

periods 1-10 but decreases slightly by 0.3 share per second in periods 11-20. The mean
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transaction size in CDA is 82 shares in periods 1-10 but decreases slightly in periods

11-20 with a slight increase in the average number of transactions.

Panel (c) shows measures of efficiency. Recall that CE prices ranged from 6 to

14, depending on the block. The first line in this panel shows the mean absolute price

deviation from CE were rather large but declined slightly in CDA markets, from 2.19 in

periods 1-10 to 2.14 in periods 11-20. Price deviations in FLOW markets were larger

at 2.32 in periods 1-10 but declined faster to 1.84 in periods 11-20. Figure 1.4 shows

the evolution of prices over time in all sessions (in faint colors) and session averages

(dark green). There is considerable variation across sessions, but one sees a general

tendency to under-respond to shifts in CE price across blocks. Looking at the last block

confirms the impression that FLOW markets eventually track CE a bit better than do

CDA markets, although neither performance is especially impressive. The last row of

the table gives a first glimpse of allocative efficiency. In the CDA, average efficiency

rises from about 80% in the first 10 periods to almost 89% in the last 10. Efficiency

also rises by about 9 percentage points in FLOW, but remains 2 or 3 percentage points

behind. Figure 1.3 compares realized surplus across trader roles and market formats.

Even though the realized surplus is always slightly higher in CDA than in FLOW, the

difference between buyers and sellers is much smaller in FLOW. Buyers tend to earn

more than competitive equilibrium profits in CDA, with around 40% earning at least

one and a half times the CE profits, especially in the second half.
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Table 1.1: Summary Statistics of Experimental Sessions

T1 - T20 T1 - T10 T11 - T20
CDA FLOW CDA FLOW CDA FLOW

(a) Price and volatility

Average Price 8.62 9.37 9.04 9.57 8.21 9.18
(std.) (2.77) (2.54) (2.95) (2.75) (2.51) (2.29)

| PW
t −PW

t−1 | 0.57 0.39 0.58 0.39 0.55 0.4
Std(lnPW

t − lnPW
t−1) 0.14 0.07 0.15 0.07 0.13 0.07

(b) Order size and transactions

Traded/CE Quantity (%) 93.6 78.8 90.3 71.1 96.9 86.4
Filled CE Quantity (%) 85.2 77.1 81.0 69.8 89.3 84.5
#Orders 48 27 47 28 49 25
Order Size 21 36 22 32 20 40
Clearing Rate 9.37 9.54 9.2

(std.) (2.6) (2.8) (2.4)
Mean Transaction Size 78 82 74

(std.) (61) (61) (60)
#Transactions 14 13 15

(c) Efficiency

| Pt −PCE | 2.16 2.08 2.19 2.32 2.14 1.84
Realized Surplus (%) 84.3 81.81 79.76 77.31 88.85 86.31
Realized Surplus (buy-sell)(%) 53.7 11.18 27.38 -5.16 80.03 27.51

Note: Panel (a) shows the measures of price and volatility. Average Price is the overall average
quantity-weighted clearing price of each 5-second interval during each 120-second trading period
over each 20 period group and over all 5 groups (Nobs = 2400) for each format. | Pt − Pt−1 | is
the average absolute value of all quantity-weighted price changes within period, averaged again over
20 periods and 5 groups. Std(lnPt − lnPt−1) is the standard deviation of first differences of natural
logs of quantity-weighted prices averaged over 20 periods and 5 groups. Panel (b) shows measures
of order size and transactions. Traded/CE Quantity is the average of traded volume as a fraction
of CE quantity averaged over 20 periods and 5 groups. Filled CE Quantity is the average of filled
contract as a fraction of CE quantity averaged over 20 periods and 5 groups. #Orders, Order Size, and
#Transactions are all averages over the 20 trading periods and 5 groups (Nobs = 100 each). Clearing
Rate is the average non-zero clearing rate across over the 20 trading periods (excluding the first 10
seconds of each period) and 5 groups in the FLOW format. Mean Transaction Size is the average of
number of shares per transaction and #Transactions is the mean number of trades per period in the 5
CDA groups. Panel (c) shows measures of efficiency. | Pt −PCE | is the average absolute deviation
from CE price in each period of quantity-weighted price of each 5-second interval across 5 groups
over 20 trading periods (Nobs = 2400). Realized Surplus (%) is the end-of-period realized surplus
summed over all traders as a percentage of CE surplus, averaged over the 20 trading periods and 5
groups (Nobs = 100). Realized Surplus (buy-sell)(%) is the difference between realized surplus of
buyers and sellers, averaged over the 20 trading periods and 5 groups (Nobs = 100).
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Figure 1.3: Realized Surplus Distribution

(i) T1-T20 (ii) T11-T20

Figure 1.4: Clearing Price

(i) CDA

(ii) FLOW
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Figure 1.5: Realized Surplus and Traded Volume

(i) CDA Surplus (ii) FLOW Surplus

(iii) CDA Traded Volume (iv) FLOW Traded Volume

1.3.2 Regressions

We compare the CDA and FLOW trading formats with the following performance

metrics: (1) absolute deviations of clearing (or transaction) price from the competi-

tive equilibrium price, | PW
t −PCE |; (2) volatility of prices, measured by | PW

t −PW
t−1 |

and Std
(
lnPW

t − lnPW
t−1

)
; (3) order number; (4) order size; (5) traded volume Q; (6)

market efficiency, measured by the fraction π

πCE
of realized competitive equilibrium
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total surplus; (7) filled contract as a fraction Filled Contract
QCE

of the competitive equilib-

rium quantity; and (8) allocation efficiency, measured by the difference between buyer

surplus and seller surplus.

To quantify treatment effects on choices made by subjects, we estimate the follow-

ing model:

yg,t = α+
4

∑
i=1

(βi Blocki)+ γ FLOWg,t +θ Periodg,t + εg,t (1.3)

where yg,t is a performance metric indexed by group and time, Blocki is a dummy

variables for contract configuration, FLOWg,t is the dummy variable for FLOW trading

format, and Periodg,t indicates the time period. The βi’s capture the contract block fixed

effects, γ captures the market format treatment effect, and θ captures the period effect.

For yg,t ∈ {| PW
t −PCE |, | PW

t −PW
t−1 |}, we estimated this model using five-second time

intervals in order to have a balanced data between market formats. Within each time

interval, we computed a quantity-weighted price to represent the clearing price for that

time interval. The rest measures are at the group-period level. The estimation was done

by combining data for both formats and all paid trading periods. The coefficients of

models (1) - (4) in Table 1.2 are WLS estimates and the coefficients of the rest models

in Table 1.2, Table 1.3, and Table 1.4 are OLS estimates.
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Table 1.2: Regression Summary

| PW
t −PCE | | PW

t −PW
t−1 | Std

(
lnPW

t − lnPW
t−1

)
(1) (2) (3) (4) (5) (6)

T1-T20 T11-T20 T1-T20 T11-T20 T1-T20 T11-T20

Intercept 7.813∗∗∗ 7.970∗∗∗ 2.456∗∗∗ 2.924∗∗∗ 0.345∗∗∗ 0.391∗∗∗

(0.840) (0.997) (0.462) (0.905) (0.069) (0.124)
FLOW -0.116 -0.191 -0.736∗∗∗ -0.552∗∗∗ -0.070∗∗∗ -0.061∗∗∗

(0.218) (0.328) (0.119) (0.146) (0.016) (0.023)
round -0.228∗∗∗ -0.234∗∗∗ -0.062∗∗∗ -0.094∗∗ -0.010∗∗∗ -0.013∗

(0.052) (0.065) (0.024) (0.044) (0.004) (0.007)

Observations 4,800 2,400 4,600 2,300 200 100
R2 0.318 0.447 0.140 0.120 0.328 0.311
Adjusted R2 0.317 0.446 0.139 0.118 0.307 0.282

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The standard errors within parentheses are cluster-robust at the group
level.

Table 1.3: Regression Summary

order number order size traded volume

(1) (2) (3) (4) (5) (6)
T1-T20 T11-T20 T1-T20 T11-T20 T1-T20 T11-T20

Intercept 53.4∗∗∗ 60.7∗∗∗ 2.0 -6.9 746.6∗∗∗ 728.0∗∗∗

(6.0) (11.1) (7.0) (11.7) (116.5) (134.2)
FLOW -21.1∗∗∗ -23.7∗∗∗ 13.2∗∗∗ 17.5∗∗∗ -178.8∗∗∗ -132.3∗∗

(2.0) (2.1) (2.2) (1.9) (34.4) (63.5)
round -0.3 -0.7 1.2∗∗∗ 1.5∗∗ 18.9∗∗∗ 18.6∗∗

(0.3) (0.6) (0.4) (0.6) (6.0) (7.9)

Observations 200 100 200 100 200 100
R2 0.735 0.839 0.497 0.688 0.471 0.350
Adjusted R2 0.727 0.833 0.481 0.674 0.454 0.322

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The standard errors within parentheses are cluster-robust at the
group level.
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Table 1.4: Regression Summary

filled CE quantity realized surplus surplusbuy−sell

(1) (2) (3) (4) (5) (6)
T1-T20 T11-T20 T1-T20 T11-T20 T1-T20 T11-T20

Intercept 0.634∗∗∗ 0.641∗∗∗ 0.521∗∗∗ 0.627∗∗∗ 2.390∗∗∗ 3.530∗∗∗

(0.117) (0.122) (0.109) (0.138) (0.554) (0.940)
FLOW -0.080∗ -0.048 -0.025 -0.025 -0.425 -0.525∗

(0.044) (0.034) (0.035) (0.030) (0.276) (0.275)
round 0.016∗∗∗ 0.014∗∗ 0.020∗∗∗ 0.014∗∗ -0.019 -0.078

(0.005) (0.006) (0.005) (0.007) (0.030) (0.056)

Observations 200 100 200 100 200 100
R2 0.286 0.184 0.312 0.090 0.738 0.796
Adjusted R2 0.264 0.150 0.291 0.052 0.730 0.787

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The standard errors within parentheses are
cluster-robust at the group level.

Result 1. The FLOW market format exhibits lower price volatility than CDA.

Table 1.2 presents models of with respect to pricing. Models (3) - (6) measure the

price volatility. The absolute change of prices is around 0.7 smaller in FLOW than in

CDA, and is significant at the p = 0.0.1 level. The difference still persists in that last

ten periods. Additionally, model (5) suggests that the price is around 7% less volatile in

FLOW than in CDA, and is significant at the p = 0.0.1 level. The difference is carried

over to the second half of the periods. All models suggest there is some degree of

learning among subjects.
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Result 2. The FLOW market format effectively shreds orders as compared to

CDA.

Table 1.3 presents order and volume related models. Models (1) and (2) show that

FLOW market format has, on average, 21 - 24 fewer orders submitted in each period

than CDA, and is significant at the p = 0.01 level. Models (3) and (4) further suggest

that the order size in FLOW market format is 13 shares more per order on average than

in CDA. There is also a significant learning pattern in terms of order size.

Result 3. The FLOW market format results in less total traded volume than CDA.

In models (5) and (6) of Table 1.3, the shortfall in traded volume is significant at

the p = 0.01 level, but decreases in the last ten periods. Models (1) and (2) of Table

1.4 show that the shortfall in filled contract as a fraction of CE quantity is, on average,

about 8% lower in FLOW than in CDA, but becomes smaller and insignificant in the

last 10 periods. It also shows that subjects were learning across periods significantly.

Result 4. The FLOW market format has similar level of price and allocative effi-

ciency as CDA.

In Table 1.2, models (1) and (2) reports estimates of price efficiency. Recall that CE

prices ranged from 6 to 14. It shows that FLOW market format has a smaller absolute

price deviation of 0.1 from the CE price than CDA on average. The difference increases
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to around 0.2 on average in the last ten periods, though still not significant.

Table 1.4 presents models of allocative efficiency. In our data, allocations may

be less efficient in FLOW than in CDA. The average shortfall, of about 2.5%, is not

significant. There is learning effect among subjects and is also shown in Figure 1.5.

The surplus difference between buyers and sellers is around 42% lower in FLOW than

in CDA. The allocative difference is over 50% lower in FLOW than in CDA, and is

significant at the p = 0.1 level in the last ten periods.

1.4 Conclusions

Although the proposed Flow format is a significant departure from the standard and

prevalent market designs, there are no empirical analyses of the behavior of traders in

this format nor of its performance. To address this gap, our study examines using a

laboratory environment the flow trading format and how it stands against the prevalent

continuous double auction (CDA). Our exploration focuses on trader behavior and mar-

ket performance metrics, in a framework where a single asset is transacted on a virtual

exchange, and where traders are allowed to possess or owe multiple asset units.

We use the induced value paradigm with a modification: the introduction of con-

tracts to traders at the onset of each trading interval. These contracts, are either buy

and sell agreements and represent the commitment of the experimenter to respectively

purchase or sell a predetermined quantity of shares from or to the trader at a stipulated
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price and deadline.

The experimental design is between-group, and the experiment used 80 partici-

pants distributed across two market formats. Each format was deployed in five distinct

groups. Each session was organized into 20 trading periods of two minutes each, with

an equitable allocation of buy and sell contracts among eight traders per market. The

trading periods are further segmented into five blocks, maintaining uniform contract

configurations to enable consistent analysis of underlying demand and supply dynam-

ics.

Our findings show clear changes in traders’ behavior within the Flow format, evi-

denced by a significant decrease in the frequency of orders and an increase in the aver-

age order size compared to the CDA format. Interestingly, the overall trading volume

within the Flow Market initially lagged behind the CDA, a discrepancy that diminished

progressively as participants seem to learn the Flow format’s mechanics. Moreover,

the Flow Market exhibited a reduced price volatility, (lower absolute price changes and

a lower standard deviation in log price differences). That is, the Flow format seems

to favor market price stability. These insights underline the Flow format’s potential

as a viable market design. This paper exhibits several limitations that are worth not-

ing. First, we do not measure the differences in price impact between the two formats.

Second, we do not test empirically the degree of protection against HFTs predatory

behavior between the two formats. We plan to study these two important aspects of our
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research agenda in a subsequent paper.
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Chapter 2

Sequential Search with Ex Post

Uncertainty 1

2.1 Introduction

In sequential search problems, players face ex ante uncertainty about product value.

They may have information on the distribution of the value but only learn the exact

utility they would receive after the search. In previous sequential search models, players

choose the optimal stopping rule and purchase the searched product that provides the

highest utility. This model has been widely discussed and applied in theoretical (e.g.,

Lippman and McCall (1976), Weitzman (1979)), empirical (e.g., Ghose, Ipeirotis, and

B. Li (2012), Ursu (2018)), and experimental (e.g., Schotter and Braunstein (1981),

1The second chapter is a joint work with Shuchen Zhao.
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Caplin, Dean, and Martin (2011)) studies.

Risk preference plays an important role in sequential search problems. Researchers

have found that the probability of continuing a search decreases with the level of risk

aversion (Nachman (1972), Lippman and McCall (1976)). Since players learn the exact

utility of the product after each search, they make their search decision by comparing

a current certain outcome with a future uncertain outcome. It is unsurprising that a

risk-averse player tends to end the search earlier than a risk-neutral player.

However, whether people can learn the exact utility of a product after their search

is questionable in experience goods markets. Imagine that you are looking for a lawyer

to defend you in a lawsuit. Your utility depends on whether you win the lawsuit, and

you can search for the quality and reputation of lawyers to maximize the probability of

winning. Unlike the traditional commodity goods market, you cannot observe the result

of the lawsuit when you hire the lawyer. Instead, you can only generate an expectation

and gain the exact utility afterward. This is also a typical problem in financial markets,

where most funds do not inform you of a guaranteed return, and there is always a

possibility of default.

In those markets, the uncertainty of the search process exists not only ex ante but

also ex post. Compared to traditional search models, a critical difference here is that

the players face a lottery instead of a certain outcome after each search. In this sce-

nario, both the current (a single lottery) and future outcomes (a complicated compound
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lottery) are uncertain. A risk-averse player may have an incentive to extend the search

if the current outcome is risky, which contradicts the findings in the literature and thus

motivates our study. How do players behave when such ex post uncertainty exists?

How do risk preferences affect the search process in this scenario? We study these two

research questions with a modified sequential search model and a laboratory experi-

ment. This paper contributes to the literature by introducing ex post uncertainty into

sequential search problems.

We first modify the sequential search model (Lippman and McCall (1976) and

Schunk (2009)) and replace the exact searched value with lotteries that differ in their

probability of success. If the player is risk-neutral, the two models will provide the

same prediction. However, if the player is not risk-neutral, the two models offer dif-

ferent predictions; i.e., the expected search duration increases with the level of risk

tolerance in the traditional model but decreases with the level of risk tolerance in our

modified model.

We further examine the theory in a laboratory experiment with a between-subjects

design. Laboratory subjects play either the traditional sequential search game with

certain searched outcomes or the modified game with uncertain lotteries. Subjects’ risk

preference is elicited through both a multiple price list (MPL) (Holt and Laury (2002))

and a bomb risk elicitation task (BRET) (Crosetto and Filippin (2013)) to build the

correlation between their search behavior and risk preferences. The results verify the
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theoretical predictions.

The remainder of this paper is organized as follows. Section 2 reviews the related

literature concerning sequential search and risk elicitation methods. Section 3 intro-

duces the modified sequential search model. Section 4 presents the experimental design

and the hypotheses. Section 5 describes the results of the experiments. Finally, Section

6 concludes with the main findings and highlights unsolved questions to be addressed

in future studies.

2.2 Literature

A large and growing literature has conclusively demonstrated consumers’ optimal

strategy in sequential search problems. Our paper adopts the consumer sequential

search framework first developed by Lippman and McCall (1976). In the fundamental

model, players actively seek an offer from a known distribution of values. Exactly one

offer is presented after each search with a constant search cost. An individual chooses

the optimal stopping rule and makes the purchase decision under risk neutrality, per-

fect recall, and an infinite time horizon. Lippman and McCall (1976) conclude that

the optimal stopping rule to terminate the search is when the maximum sampled bene-

fit exceeds the reservation prices of the unsampled products, which are determined by

equating the marginal benefit of sampling one more product and the marginal cost of a

search. Weitzman (1979) extends the fundamental model with heterogeneous product
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distributions and the optimal search order conditional on the distributions.

Although laboratory subjects do not perfectly follow the theoretical predictions,

many laboratory experiments find that subjects’ behaviors are close to those predicted

by theoretical models. Papers that examine the effects of search costs, recall options,

time horizon, searchers’ knowledge, interest rates, search subsidy, wage distribution,

and sunk costs have found that laboratory subjects behave similarly but not identi-

cally to theoretical predictions (e.g., Schotter and Braunstein (1981), Cox and Oax-

aca (1989), Kogut (1990)).

To capture how subjects sequentially make search decisions in the laboratory, pa-

pers adopt methods such as tape recording (John D. Hey (1987)) and electronic in-

formation boards where subjects need use a mouse to click on the screen to obtain

certain information (Sonnemans (1998)). Caplin, Dean, and Martin (2011)’s design

also captures how subjects sequentially make decisions with choice process data and

studies how complexity affects their behaviors. Other recent studies examine the ef-

fect of continuous time interactions (Brown, Flinn, and Schotter (2011)), the effect of

the ambiguity of the offer distribution (Asano, Okudaira, and Sasaki (2015)) and the

possibility of stock-out options (Kittaka and Mikami (2020)).

The previous literature mostly focuses on situations in which consumers are risk

neutral. However, risk preference has proven to be a vital factor in many economic

activities, including health (Barsky et al. (1997), Picone, Sloan, and Taylor (2004),
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Anderson and Mellor (2008)), investment (Barasinska, Schäfer, and Stephan (2008),

Dohmen et al. (2011)), and consumption (Chetty and Szeidl (2007)). Our experiment

is closely related to other search papers that focus on noisy signals and risk preference.

Both Zwick et al. (2003) and Palley and M. Kremer (2014) propose a search environ-

ment in which consumers only observe the relative ranking of the searched results in-

stead of their exact value. This limited information induces excessive searching in both

studies. Nonetheless, the evidence on how risk preferences affect consumer search re-

mains ambiguous. On the one hand, Schunk (2009) and Schunk and Winter (2009) find

that individual risk attitude appears to be unrelated to decision heuristics, whereas loss

aversion is related to search behavior. Individuals who avoid gambles tend to have a

higher degree of loss aversion and tend to stop their search earlier. On the other hand,

Miura, Inukai, and Sasaki (2017) also use laboratory experiments to test the effect of

risk preference on search activities without recall and, consistent with their theoretical

predictions, find a statistically significant effect of risk preference on the duration of

search.

Similar to the three papers above, we remove the assumption of risk neutrality to

study the effect of risk preferences in consumers’ sequential search problems. Further-

more, we introduce ex post uncertainty into our model; the searched results are lotteries

instead of exact values. The paper contributes to the existing literature by considering

the effect of individual risk preferences when there is ex post uncertainty, which is
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closely related to the real-life search circumstances in experience goods markets. To

our best knowledge, this is the first paper to focus on this specific setup and include

laboratory experiments.

There are several methods to elicit laboratory subjects’ risk preferences, including

MPL (Holt and Laury (2002)), random lottery pairs (John D Hey and Orme (1994)), or-

dered lottery selection (Eckel and Grossman (2002)), Becker-DeGroot-Marschak (Becker,

DeGroot, and Marschak (1964)), trade-off (Abdellaoui (2000)), portfolio choice and

investment (Gneezy and Potters (1997), Choi et al. (2007)), and a recently developed

method termed BRET (Crosetto and Filippin (2013)). Although the consistency of

the risk elicitation methods and the validity of the expected utility theorem are under

debate (see Friedman, Isaac, et al. (2014) and Friedman, Habib, et al. (2022) for an

overview), these methods are widely accepted in the literature for estimating the rel-

ative relationship of risk preferences among individuals. Specifically, we apply two

methods, namely, the MPL of Holt and Laury (2002) and the BRET of Crosetto and

Filippin (2013). The former method is a classic approach to risk preference elicitation

and has been frequently applied in the sequential search literature. In the latter method,

subjects observe the information updated in a sequential order, which is similar to how

they search and purchase in sequential search games. The subjects’ constant relative

risk tolerance preference is directly measured by the number of risky choices in MPL

and the number of boxes collected in BRET.
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2.3 Model

The model is based on the sequential search models of Lippman and McCall (1976)

and Schunk (2009). Homogeneous consumers search from an infinite number of dif-

ferentiable products and purchase one of the products. The consumers start with no

product on the searched list. They can either choose to purchase a product from the

current searched list or pay a constant cost c to search for the next product. Only one

product is revealed in each search. The model assumes an infinite time horizon and

perfect recall, so consumers can search an unlimited number of times and choose any

searched product on the list.

To introduce ex post uncertainty, we allow the value of the products to be either

high or low. Consumers receive vH when the product has a high value and vL when the

product has a low value, with vH > vL and vH > c. The products differ in the probability

of receiving the high value pi. To simplify the computation, we define that the probabil-

ity follows a uniform distribution, which is pi ∼U [0,1],∀i with cumulative distribution

function F(pi) = pi. Consumers observe the probability pi after each search and earn

either vH or vL when they purchase the product.

2.3.1 Reservation probability and comparative statics

In infinite horizon sequential search models (Lippman and McCall (1976), Schunk (2009)),

the optimization problem is solved by comparing the expected benefit of continuing the
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next search with the current best product, and consumers treat the previous search costs

as sunk costs. Consumers then seek to maximize their expected utility with an optimal

stopping rule. We continue to apply the same method in our model.

Suppose that the next product to be searched for is product i, and the maximal prob-

ability of a product being of high value in the current searched list is zi. If consumers

choose not to search for this product i, they obtain the product with zi, and their ex-

pected utility is u(vH)zi +u(vL)(1− zi). If they choose to search for product i, they can

expect the following marginal benefit.

G(zi) =[u(vH − c)zi +u(vL − c)(1− zi)]
∫ zi

0
dF(pi)

+
∫ 1

zi

u(vH − c)pi +u(vL − c)(1− pi)dF(pi) (2.1)

The first term in the above expression represents the case in which a probability

smaller than zi is found, and the second term represents the case in which a probability

greater than zi is found. Consumers continue their search if G(zi)> u(vH)zi+u(vL)(1−

zi), as the expected gain from the next search is higher than accepting the current best

product.

As proven in the literature, consumers apply a reservation value strategy, where they

stop their search when the current best offer exceeds their reservation value. Similarly,

we define reservation probability z∗ where G(z∗) = u(vH)z∗ + u(vL)(1 − z∗). Con-

sumers continue their search if zi < z∗, whereas they stop searching and choose the
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product with zi if zi ≥ z∗. Let ψ(zi) = G(zi)−u(vH)zi −u(vL)(1− zi). We have

ψ(zi) =[u(vH − c)zi +u(vL − c)(1− zi)]
∫ zi

0
dF(pi)

+
∫ 1

zi

u(vH − c)pi +u(vL − c)(1− pi)dF(pi)−u(vH)zi −u(vL)(1− zi)

=[u(vH − c)−u(vL − c)]z2
i +2[u(vL)−u(vH)]zi

+u(vH − c)+u(vL − c)−2u(vL) (2.2)

The reservation probability z∗ is computed by ψ(z∗) = 0. We have

[u(vH − c)−u(vL − c)]z∗2 +2[u(vL)−u(vH)]z∗+u(vH − c)+u(vL − c)−2u(vL) = 0

(2.3)

Using the quadratic formula, we can solve for z∗.

When u(vH − c) + u(vL − c)− 2u(vL) ≤ 0, z∗ = 0, consumers immediately stop

searching after the initial search, or choose not to search at all. The consumer’s decision

depends on whether the expected return of the initial search generates a positive payoff.

When u(vH − c)+u(vL − c)−2u(vL)> 0, there exists a unique z∗ ∈ (0,1) with

z∗ =
u(vH)−u(vL)−

√
[u(vL)−u(vH)]2 − [u(vH − c)−u(vL − c)][u(vH − c)+u(vL − c)−2u(vL)]

u(vH − c)−u(vL − c)

(2.4)
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The intuition for the solutions is straightforward. Given the marginal cost c, when

the difference between vH and vL is small, consumers are less willing to chase a high-

probability product; thus, they simply play the initial search or do not search at all.

When the difference between vH and vL is sufficiently large, consumers are motivated

to search for a product with a high probability of receiving vH .

Based on eq (2.3), we can compute the comparative statistics. First, we replace each

utility function with its second-order Taylor approximation at x = x0. Without loss of

generality, we assume that u′(x0) = 1, x0 = vL − c and use a =−u′′(x0) as a proxy for

the level of risk aversion. Through the implicit function theorem, we have

∂z∗

∂a
=

1
2(vH + vL −2x0)(z∗−1)2 − c(z∗2 + 1

2)−
(vH+3vL−4x0−2c)c

2(vH−vL)

2(z∗−1)+a(1− z∗)(vH + vL −2x0)+2acz∗

=

1
2(vH − vL +2c)(z∗−1)2 − c(z∗2 + 1

2)−
(vH−vL+2c)c

2(vH−vL)

2(z∗−1)+a(1− z∗)(vH − vL +2c)+2acz∗
(2.5)

Our conjecture is that the probability of continuing the search decreases with the

level of risk tolerance; thus, ∂z∗
∂a > 0. Although our conjecture does not hold true glob-

ally, there are interesting sufficient conditions in which the conjecture is true. See

Appendix A for an example.
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2.3.2 Model without ex post uncertainty

Following Schunk (2009), here we demonstrate the model without ex post uncer-

tainty for comparison. Define vi = pivH +(1− pi)vL as the expected value of the search

outcomes for product i in the previous section; we have vi ∼ U [vL,vH ]. In the model

with certain outcomes, the consumers observe the expected value of the products and

receive vi if they choose product i, thus eliminating the ex post uncertainty from the

model. To make this model comparable with that in the previous section, we continue

to represent vi with pi and solve for z∗, which is the reservation probability and can be

transferred directly to the reservation value.

The model modifies the outcomes of the search but does not affect consumers’

decision-making process. Apparently, risk-neutral consumers are indifferent between

the lottery and its expected value. For consumers, ψ(zi) appears as follows.

ψ(zi) =u(vHzi + vL(1− zi)− c)
∫ zi

0
dF(pi)

+
∫ 1

zi

u(vH pi + vL(1− pi)− c)dF(pi)−u(vHzi + vL(1− zi)) (2.6)

By solving for z∗ with ψ(z∗) = 0, we can calculate the reservation probability in the

model without ex post uncertainty. Without ex post uncertainty, the common prediction

in the literature is that ∂z∗
∂a < 0 (e.g., Nachman (1972)). That is, the reservation value

decreases with the level of risk aversion. Additional graphical comparison with simula-
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tions can be found in Appendix B and in the discussion of the experimental hypotheses.

2.4 Experimental design

Our experiment applies a two-group between-subjects design. Each experimental

session is divided into three parts. In part one, the subjects randomly complete one of

the two risk elicitation tasks, i.e., either the MPL or the BRET. The tasks are discussed

in detail later in this section. In part two, the subjects play 25 rounds of the sequential

search game, with 5 practice rounds and 20 paid rounds. In each round, the subjects

start with no item on the search list. They can choose to purchase one of the items from

the current searched list or to pay a constant search cost c to continue searching for

the next item. If they continue searching, another item (with an uncertain or a certain

outcome) will be added to the search list. The game is played in an infinite horizon in

which subjects can search an unlimited number of times, and the round ends when the

subjects eventually make a purchase. The subjects’ payoff for the current round when

choosing item i is given by (pi,vH ,vL,n,c), where pi is the probability of item i being

a high-value item, (vH ,vL) are the payoffs for high- and low-value items, respectively,

n is the total number of searches, and c is the constant marginal search cost. In all

sessions, we set (vH ,vL,c) = (500,100,5). In part three, the subjects play the other risk

elicitation task that was not played in part one.

The order of the three tasks is designed to mitigate the order effect between the
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search task and the risk elicitation tasks. One risk elicitation task is played before and

the other after the search. To control for the order effect between the two risk elicitation

tasks, their order is chosen randomly.

2.4.1 Treatment variables

The major treatment variable is the comparison between searching for certain values

or uncertain lotteries.

In the Uncertainty (UC) treatment, it is publicly known that the probability of the

items being of high value follows a uniform distribution pi ∼ U [0,1]. The subjects

observe pi after each search. If they choose to purchase item i, the system will randomly

draw the final value based on pi. In the UC treatment, the subjects receive vH −nc with

probability pi and vL − nc with probability 1− pi. Figure 2.1 provides a sample user

interface from the UC treatment.

In the Certainty (C) treatment, the subjects are paid directly based on the expected

value vi = pivH +(1− pi)vL after each search, which is the same as in the standard

sequential search model in the literature. We still have pi ∼ U [0,1], but the public

information is about vi, that is, vi ∼U [vL,vH ]. This treatment serves as the baseline for

this set of comparisons. The subjects’ end-of-round payoff is vi−nc in the C treatment.
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Figure 2.1: Uncertainty treatment sample user interface.

(Note: The instructions are displayed prior to this page, so the information on the screen just serves as a
reminder.)

2.4.2 Eliciting risk preferences

To elicit their risk preference, subjects are asked to complete an MPL task (Holt and

Laury (2002)) and a BRET task (Crosetto and Filippin (2013)) in a random order.

In MPL, each subject will first be given a multiple price list in text format, where

each row in the list has the same two allocations, but different rows have different state

probabilities. Subjects begin by indicating a preference, Option A or Option B, for
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each of the ten paired lottery choices in Table 2.1, with the understanding that only one

of these choices will be selected at random ex post to determine the earnings for the

option selected. Subjects’ risk preference can be estimated by using the proportion of

safe choices (Option A) among the ten decisions as an indicator of risk aversion. At the

end of the risk elicitation task, one of the rows will be selected, and the subjects will be

paid based on the realization of their choice for that row. In MPL, the subjects observe

all ten paired lottery choices at the beginning of the task.

Table 2.1: Multiple price list.

Option A Option B

Expected Open α interval

Payoff if subject switches to

Difference Option B (assume EUT)

280pts 1/10 of 500pts, 9/10 of 100pts 140pts (3.944, ∞)

280pts 2/10 of 500pts, 8/10 of 100pts 100pts (2.687, 3.944)

280pts 3/10 of 500pts, 7/10 of 100pts 60pts (1.896, 2.687)

280pts 4/10 of 500pts, 6/10 of 100pts 20pts (1.277, 1.896)

280pts 5/10 of 500pts, 5/10 of 100pts -20pts (0.734, 1.277)

280pts 6/10 of 500pts, 4/10 of 100pts -60pts (0.211, 0.734)

280pts 7/10 of 500pts, 3/10 of 100pts -100pts (-0.335, 0.211)

280pts 8/10 of 500pts, 2/10 of 100pts -140pts (-0.974, -0.335)

280pts 9/10 of 500pts, 1/10 of 100pts -180pts (-1.888, -0.974)

280pts 10/10 of 500pts, 0/10 of 100pts -220pts (−∞, -1.888)

“pts” refers to the points subjects earn in the experiment. α refers to the risk-aversion parameter in
u(x) = xα.

The BRET is a risk elicitation method recently developed by Crosetto and Filip-
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pin (2013). In its dynamic version, subjects decide sequentially how many boxes to

collect among 100 in continuous time, one of which contains a bomb (hidden during

the game). One box is automatically collected each second, and the subjects can stop

the collection process at any time. The subjects’ earnings increase linearly with the

number of boxes collected but decrease to zero if the bomb is also collected. In short,

the decision can be represented as a sequence of binary choices. At each second, the

subjects compare two lotteries, namely, collecting k or k+1 boxes.

The BRET has several advantages. It requires minimal numeracy skills, avoids

truncation of the data, allows the precise estimation of both risk aversion and risk seek-

ing, and is not affected by the degree of loss aversion or by violations of the reduction

axiom. Another reason we select BRET is that the information is updated in sequential

order, which is similar to the sequential search tasks. In our sequential search models,

the players’ choices can also be regarded as comparing two risky outcomes, namely,

choosing the current best offer or continuing the search. We believe that the risk prefer-

ence that the method elicits best describes an individual’s risk preference in the search

tasks. Table B.1 in Appendix C shows the estimate of α for the BRET from the original

research.
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2.4.3 Session information

Ten sessions were held between December 2021 and June 2022. In total, 110

subjects participated in our sessions. The subjects were paid randomly based on one

round’s payoff of all 20 paid rounds, plus their $2 show-up fee and their payment in

the two risk preference elicitation tasks. On average, the subjects earned $10 during a

40-minute session. The experiments were developed on oTree (Chen, Schonger, and

Wickens (2016)), and the subjects were recruited on Orsee (Greiner (2015)), which is

operated by the Learning and Experimental Economics Projects of Santa Cruz (Leeps

Lab). Given the two between-subjects groups, the session information can be summa-

rized as follows in Table 2.2.

Table 2.2: Session table.

Group Search Outcomes #Session #Subjects

1 Certainty 5 54

2 Uncertainty 5 56

2.4.4 Hypotheses

In our experiment, we set (vH ,vL,c) = (500,100,5). Consistent with Crosetto and

Filippin (2013) and our simulation in Appendix B, we use the CRRA utility function

u(x)= xα to generate the hypotheses. Figure 2.2 shows how z∗ varies with α. The figure

shows a clear distinction between the two models, where the reservation probability
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decreases with the level of risk tolerance when the search outcomes are uncertain but

increases with the level of risk tolerance when the search outcomes are certain.

Figure 2.2: Reservation probability vs CRRA parameter.

(Note: The plot shows how the reservation probability z∗ varies with the CRRA parameter when
(vH ,vL,c) = (500,100,5). The blue curve refers to the model predictions with ex post uncertainty. The
red curve refers to the model predictions without ex post uncertainty.)

Although we cannot directly observe the reservation probability/value of the sub-

jects, the search duration can be calculated given the chosen probability/value and ob-

served in the experiment. From the model, we learned that the reservation value in-

creases with the level of risk tolerance in the C treatment but that the reservation prob-

ability decreases with the level of risk tolerance in the UC treatment. Accordingly, in

the C treatment, risk-averse consumers would shorten their search duration. In contrast,

in the UC treatment, risk-averse consumers would be unlikely to accept a risky lottery

with ex post uncertainty and thus would extend their search.

52



Hypothesis 1. The average search duration increases with the level of risk tolerance

in the C treatment.

Hypothesis 2. The average search duration decreases with the level of risk tolerance

in the UC treatment.

In addition, Figure 2.2 shows that risk neutral players choose the same reservation

probability/value under both the C and the UC treatments. The statement can be easily

verified in the model if we apply a linear utility function. We will also examine this

hypothesis in our experiment.

Hypothesis 3. Risk-neutral players have the same average search duration in the C

and the UC treatments.

2.5 Results

2.5.1 Data overview

We dropped one subject from the UC treatment because she selected 100 boxes in

the BRET task, which guarantees a 0 payoff. Clearly, the subject did not pay attention

to the tasks. After the deletion, we have 54 subjects in the C treatment and 55 subjects in

the UC treatment. There are also 10 subjects with multiple crossing points in the MPL

task, 6 from the UC treatment and 4 from the C treatment. In the main text of the paper,

we use their last crossing point to determine their level of risk tolerance. Appendix D
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also provides another approach that uses their first crossing point (see Friedman, Habib,

et al. (2022) for an overview). The main results are robust across the two specifications.

Table 2.3 presents the summary statistics of the experiment. Each row refers to an

average value of a specific variable by treatments in the columns. The third column

shows the p-value of the t-test of the comparison between the two treatments. “Chosen

probability” is the subjects’ final decision, where their chosen value in the C treatment

is converted to the equivalent value of probability in the UC treatment. “Recall rate”

refers to the fraction of decisions where the subjects did not choose their last searched

result, thus indicating that the subjects adjust their reservation probability/value during

the game. “Optimal choice rate” refers to the fraction of time the subjects choosing

the best searched outcome. The high optimal choice rate shows that the subjects rarely

make mistakes in the experiment.

As indicated in Table 2.3, most differences of average data between treatments are

insignificant. On average, the subjects search for slightly longer in the C treatment

than in the UC treatment, but this difference becomes insignificant when we focus on

the second half of the experiments. Subjects also have a higher recall rate in the C

treatment than in the UC treatment. Nonetheless, both rates are close to the average

experimental findings in the literature. In addition, the average search duration and

chosen probability vary little between the data for all rounds and that for the last 10

rounds, which indicates weak learning between rounds.
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Table 2.3: Descriptive Statistics of average data.

C UC C-UC p-value

search duration (all rounds) 3.81 3.27 0.013**

search duration (last 10 rounds) 3.75 3.55 0.502

chosen probability (all rounds) 0.83 0.8 0.111

chosen probability (last 10 rounds) 0.84 0.83 0.422

# of risky choices in MPL 5.07 4.29 0.014**

# of boxes collected in BRET 39.11 43.20 0.243

Recall rate in search task 23.06% 13.64% 0.000***

Optimal choice rate in search task 99.07% 97.00% 0.001***

Number of subjects 54 55 –

Number of decisions 1080 1100 –

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

2.5.2 Search duration

The summary statistics reveal similarity between treatments, but the same aver-

age data may result from distinct relations between the subjects’ behavior and their

risk preference. For each subject, we calculate her average search duration in all 20

paid rounds and plot the relation between the average search duration and the subject’s

choices in the risk elicitation tasks. Figures 2.3 and 2.4 show the relations; both support

hypotheses 1 and 2. The dots represent the relation for each subject, and the lines are

estimated by OLS regression given these subject-level data (the shaded band refers to

the 95% confidence interval of the estimated parameters). As shown in both figures,

the search duration increases with the level of risk tolerance in the C treatment but de-
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creases with the level of risk tolerance in the UC treatment, thus supporting hypotheses

1 and 2. Figures 2.5 and 2.6 confirm the hypotheses with the average of the last 10

rounds instead of all 20 rounds. Figures 2.5 and 2.6 also confirm that learning between

rounds weakly exists in our experiments. However, hypothesis 3 is not supported, as

the intersection of the two lines is located on the left side of the figures. Both figures

show that a particular type of risk-averse subject, not risk-neutral subjects, plays the

two treatments in the same manner.

Figure 2.3: Search Duration vs BRET (all 20 rounds).

(Note: The scatter plot shows how search duration changes with the level of risk tolerance when using
the average behavior of 20 paid rounds and number of boxes collected in BRET. The dots represent the
relation for each subject, and the lines are estimated by OLS regression given these subject-level data
(the shaded band refers to the 95% confidence interval of the estimated parameters).)

Tables 2.4 and 2.5 report the results of the estimation of the following regression

(2.7). “Risk Tolerance” refers to the number of boxes collected in the BRET and the

number of risky choices in the MPL. To make the two tasks comparable, we normalize
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Figure 2.4: Search Duration vs MPL (all 20 rounds).

(Note: The scatter plot shows how search duration changes with the level of risk tolerance, when using
the average behavior of 20 paid rounds and number of risky choices in MPL. The dots represent the
relation for each subject, and the lines are estimated by OLS regression given these subject-level data
(the shaded band refers to the 95% confidence interval of the estimated parameters).)

Figure 2.5: Search Duration vs BRET (last 10 rounds).

(Note: The scatter plot shows how search duration changes with the level of risk tolerance when using
the average behavior in the last 10 paid rounds and number of boxes collected in BRET.)

57



Figure 2.6: Search Duration vs MPL (last 10 rounds).

(Note: The scatter plot shows how search duration changes with the level of risk tolerance when using
the average behavior in the last 10 paid rounds and number of risky choices in MPL.)

the choices to [0,1] and set the risk-neutral point (50 boxes in BRET and 6 risky choices

in MPL) at 0.5. The higher the risk tolerance is, the higher the level of risk seeking.

“UC” is an indicator dummy for the subjects in the UC treatment. The dependent

variable “Duration” is defined as the average search duration of subjects. In Tables 2.4

and 2.5, columns (1) and (2) apply BRET, columns (3) and (4) use MPL, columns (1)

and (3) cover the all 20 paid rounds, and columns (2) and (4) only count the last 10

paid rounds. Based on our hypotheses 1 - 3, we should have β1 > 0, β1 +β2 < 0, and

0.5β2 +β3 = 0, respectively.

Overall, the signs of the regression outcomes satisfy hypotheses 1 and 2: the data

reveal a positive β1 and a negative β1+β2 in all conditions. However, the significance is

not always strong. Hypothesis 1 is rejected when using the BRET data, and hypothesis
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2 is rejected when using the MPL data. The main reason for the insignificant results is

that the slope of the lines in Figure 2.2 is relatively flat, and it is therefore difficult to

detect significance in the data. Nonetheless, the experimental data already show a larger

difference between the two treatments than the difference in the theoretical predictions.

Duration = α+β1 Risk Tolerance+β2 Risk Tolerance×UC+β3 UC+ ε (2.7)

Table 2.4: Regression summary.

Dependent Variable: Average Search Duration

BRET BRET MPL MPL

1-20 rounds 11-20 rounds 1-20 rounds 11-20 rounds

Risk Tolerance 2.173∗∗ 2.241∗ 0.917 1.225

(0.835) (1.189) (0.858) (1.196)

Risk Tolerance x UC -2.815∗∗ -3.043∗ -2.707∗ -4.439∗∗

(1.172) (1.669) (1.507) (2.101)

UC 0.583 1.018 0.498 1.484∗

(0.527) (0.750) (0.619) (0.864)

const 2.965∗∗∗ 2.878∗∗∗ 3.417∗∗∗ 3.223∗∗∗

(0.359) (0.512) (0.403) (0.561)

Observations 109 109 109 109

R2 0.118 0.041 0.084 0.045

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 2.5: Tests of regression coefficients.

BRET BRET MPL MPL

1-20 rounds 11-20 rounds 1-20 rounds 11-20 rounds

H0 t-stat p-value t-stat p-value t-stat p-value t-stat p-value

β1 > 0 2.603 0.005*** 1.885 0.031** 1.069 0.144 1.024 0.154

β1 +β2 < 0 -0.781 0.218 -0.684 0.248 -1.445 0.076* -1.860 0.033**

0.5β2 +β3 = 0 -3.484 0.001*** -1.826 0.071* -3.031 0.003*** -2.131 0.035**

Result 1. Search duration increases with the level of risk tolerance in the C treatment

in all conditions, but the hypothesis is weak when using the BRET data.

Result 2. Search duration decreases with the level of risk tolerance in the UC treatment

in all conditions, but the hypothesis is weak when using the MPL data.

Similarly to what we observe from the figures, hypothesis 3 is rejected in all con-

ditions. The current intersection deviates from the theoretical prediction toward the

risk-averse side, either because players systematically search more in the C treatment

or search less in the UC treatment.

Result 3. Hypothesis 3 is rejected in all conditions. Risk-neutral subjects play differ-

ently in the two treatments.

Although the experiment is not designed to explain the rejection of hypothesis 3,

we list three possible explanations for further exploration. First, the downward-shifting

blue lines show that people are more risk averse in the search tasks than in the risk
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elicitation tasks (Friedman, Habib, et al. (2022)). There is a spatial difference between

BRET and the search task, and the subjects become more risk averse when seeing lot-

teries as numbers instead of images. Comparing MPL and the search task, we find

that there could be a cardinality issue because the items appear sequentially in random

order in the search task but are monotonic in MPL. Second, following the first explana-

tion, the risk aversion in the UC treatment could also result from aversion to compound

lotteries. In the UC treatment, the aggregated lotteries for the next search can be con-

sidered compound lotteries, and thus, subjects may behave more risk aversely in the

search tasks in the UC treatment (see Abdellaoui, Klibanoff, and Placido (2011) for

an overview of aversion to compound lotteries) than under the C treatment. Third, the

subjects might subjectively weight the probabilities of the lotteries in the UC treatment,

following either prospect theory or salience theory. The subjective weighting function

could also bias the theoretical predictions.

2.5.3 Reservation strategies

Do the subjects follow the constant reservation probability strategy? Figure 2.7

shows the quantiles and the mean of the chosen outcome by search duration. Note that

we transfer the chosen value to the equivalent probability in the C treatment. In this sec-

tion, we take each subject’s decision as a single observation instead of averaging them

by subject. Overall, the subjects’ decisions are highly consistent over search durations.
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We do not observe any increasing or decreasing trend between the chosen probabili-

ties and the search duration, which supports the notion that subjects have consistent

reservation probability strategies. The fluctuation on the right side of the figure is due

mainly to the small sample size with long search duration. The result is also strength-

ened by the subjects’ recall rate, which is the fraction of time in which the subjects did

not choose their last searched result. When the subjects apply the reservation strategy,

they will not recall a previously searched outcome but will immediately stop searching

once the searched outcome exceeds the reservation probability. The recall is 13.64% in

the UC treatment and 23.06% in the C treatment, which supports the notion that a large

fraction of decisions are motivated by reservation strategies.

Figure 2.7: Individual chosen probabilities at each search duration.

(Note: The boundaries of the boxes refer to the quantiles of the data given the search duration q1 and q3.
Define IQR = q3 −q1. The boundaries of the extended lines refer to q1 −1.5IQR and q3 +1.5IQR. The
+ sign refers to the mean, and the horizontal line inside the box refers to the median. )
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Conjecture 1. In general, players follow the constant reservation probability strategies

described in Section 3.

2.6 Conclusion

Do risk-averse people search more or less? In traditional sequential search models,

risk-averse players consistently search less than risk-neutral and risk-seeking players.

However, consumers could also extend their search in experience goods and financial

markets, where they face ex post uncertainty and receive uncertain outcomes after the

search. We have shown and proven the results with a modified sequential search model

and a laboratory experiment.

Intuitively, both the present best outcome and potential future outcomes are uncer-

tain in our new scenarios. The risk from the current best outcome may exceed the

aggregated risk from all the possible future outcomes and motivate risk-averse peo-

ple to extend their search and reduce their risk. This paper adds new insights into

both theoretical models and laboratory experiments of sequential search problems with

non-risk-neutral players. Furthermore, our findings provide insights for empirical prob-

lems, such as advertising and recommendation mechanism design, in related markets.

If people search longer in these markets, firms could adopt different strategies, and the

market equilibrium, including the salience and prominence of the top advertising po-

sitions, might be substantially different between the experience goods markets and the
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commodity goods market. Our results can be applied to various types of mechanism

design problems.
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Chapter 3

Informational Entry Barrier and

Fractional Searching

3.1 Introduction

The fast developing online marketplaces is becoming a powerful tool to help traders

exchange goods across a variety of industries. Platforms such as eBay and Amazon

lower the traders’ search cost and have already become worldwide popular. Among the

mechanisms that improve the market efficiency, reputation system is a key component.

Reputation is generated from participants’ transaction history and thus makes partic-

ipants’ previous actions observable. On the one hand, reputation system can greatly

mitigate problems caused by asymmetric information and increase market efficiency.
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Over the past years almost every online marketplaces have built up their own feedback

and rating system. On the other hand, current reputation systems suffer from prob-

lems. We are interested in the question whether the history of incumbent firms create

entry barriers for new entrants and propose a fractional searching method to solve the

problem.

Consider a recently-developed product that is listed on Amazon. Initially, its quality

is unknown. What is worse is that a similar product with hundreds of reasonable re-

views on Amazon might create an entry barrier for this new product to enter the market

even when the new product is more cost efficient or with higher quality. The intuition

is straightforward as consumers will more likely choose a product from a supplier who

has already established a credible reputation. The new entrant, who has not yet had a

chance to build it, is assumed to be of average quality only. Meanwhile, there is an-

other argument that the incumbent has a good review and thus is likely to provide the

high quality good, leading to the market efficiency. However, this neglects the possi-

bly better quality the new entrants can provide for consumers, which would not have a

chance to be proven with the entry deterrence. In order to mitigate such problems, we

propose the fractional searching mechanism to promote the product from new entrants

so that they would be able to establish good reputation for their superior quality. By

fractional searching, we mean to list only a fraction of sellers to consumers’ search so

as to increase the relative exposure of new entrants.
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This project studies the phenomenon of entry barrier under reputation system in

the laboratory environment. First, based on the previous studies on optimal recom-

mendation policy, this project adds to the possible solutions to “cold start” problem.

Promoting the early exploration for users to discover potentially valuable products af-

fects the market efficiency. Second, the reputation barrier affects firms when they enter

the market sequentially and the experiment simulates this by letting subjects enter the

market at two separate timings. Furthermore, the paper aims at studying the mech-

anisms that help firms with no or low reputation profiles to overcome the entry and

reputation barrier. This paper has two major contributions to the literature. To my best

knowledge, it is the first paper that discusses in general firms’ entry and exit decisions

and entry barrier in a competitive market in the laboratory environment. It is also the

first paper that discusses potential policy impact on such markets.

We first established a game theoretical model to consider the entrant’s entry problem

when there are incumbents in a market with reputation system. We choose oligopoly

model to serve as the baseline where the incumbent and the entrant simultaneously

set their quality and then price. To account for the reputation system, we consider

a sequential move game where entrants join the market occupied by incumbents and

their quality information is unknown to consumers initially. In the first stage, entrants

choose the quality after observing the incumbent’s quality decision. Then in the next

stage, they simultaneously set their prices to compete against each other. In this setting,
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we study two conditions in which incumbents and entrants interact with each other.

In the first condition with complete searching, entrants and incumbents simply com-

pete as described above. In the second condition with fractional searching, entrants

are provided an opportunity of not competing against the incumbent in the first place.

Instead, they are separated into a fraction of the entire market and get an opportunity

to produce better quality. Under both conditions, the entrant’s quality is revealed as

public information to consumers if they can get a positive demand in the second stage.

We derived the Nash equilibrium under the above conditions and further examine the

theory in a laboratory experiment with a between-subjects design. Laboratory subjects

were in either oligopoly, complete searching or fractional searching environment and

took a role of incumbent or entrant randomly assigned at the beginning of each round.

The results show that most subjects follow theoretical predictions and fractional search-

ing effectively alleviates the informational barrier to entry resulted from the reputation

system.

The rest of the paper is organized as follows. Section 3.2 provides a discussion

of the related literature on reputation system and entry barrier problems. Section 3.3

introduces an adapted model to examine the informational entry barrier. Section 3.4

introduces the experimental design and treatment definition. Section 3.5 presents the

experimental results. Finally, section 3.6 concludes with the main findings and presents

a brief discussion about future research.
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3.2 Literature

A large and growing literature has conclusively demonstrated the importance of rep-

utation within online marketplaces and empirically study the mechanism (e.g. Resnick

et al. (2000); Einav, Farronato, and Levin (2016)). Though designed differently, rep-

utation systems have the same aims at reducing adverse selection and moral hazard

problems and empirical evidence seems to demonstrate it to have worked well (e.g.

Houser and Wooders (2006)). However, the systems suffer from problems such as

manipulation (Mayzlin, Dover, and Chevalier (2014)), inflation (Horton and Golden

2015), and under-provision (Fradkin et al. (2015)). Moreover, well-constructed reputa-

tion could become an entry barrier of new merchants, which prevents the marketplaces

from growing (e.g. Bagwell (1990)).

This project focuses on the entry barrier caused by the reputation system and infor-

mational uncertainty in the market entry problems and propose a fractional searching

method to solve the problem. The project is related to laboratory and theoretical stud-

ies on reputation system as it is the backgroud of the project. Lab studies have found

that both direct reputation (fixed matching) and indirect reputation (observable past)

improve the efficiency of the trust game, which is the most frequently used game for

studying reputation system (Bohnet and Huck (2004); G. E. Bolton, Katok, and Ock-

enfels (2005)). While the majority of paper studying related mechanisms of reputation

(e.g. Charness, Du, and Yang (2011); G. Bolton, Greiner, and Ockenfels (2013); L. Li
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and Xiao (2014)) and various signalling mechanisms (Mailath and Samuelson (2001);

Board and Meyer-ter-Vehn (2013)), few papers put the reputation system in the mar-

ket and early market-related studies focused more on adverse selection and signalling

(Miller and Plott (1985); Lynch et al. (1986)). Hörner (2002) first introduces the rep-

utation system to a competitive market with firms choosing effort and timing of exit.

The study shows how competition mitigates the inefficiencies of moral hazard with the

existence of high-effort equilibria. Dana and Fong (2011) also shows that equilibrium

exhibiting high quality may exist in oligopoly markets even when low-quality is the

unique equilibrium outcome in monopoly and competitive markets. Huck, Lünser, and

Tyran (2012) and Huck, Lünser, and Tyran (2016) run lab experiments on the efficiency

of reputation system. They find that both reputation and competition improve market

efficiency but adding the price competition leads the market to the opposite inefficient

direction.

However, literature in reputation system focus on long-run interactions but our

project studies the short-run entry problem, which is related to the literature of market

entry. Since Heflebower (1957), a major direction of researches on market entry stud-

ies various ways of entry barrier and entry deterrence strategies. Informational barrier

caused by consumers’ uncertainty of entrants’ product quality is one of the main types

of barriers. Schmalensee (1982) highlights how superior information regarding product

quality can endow incumbent firms with a first-mover advantage, leading to inefficient

70



entry choices, even when price competition is added. His finding is further confirmed

and developed by Conrad (1983) with a dominant firm price leadership model and by

Bagwell (1990) with inefficient incumbents. Farrell (1986) models moral hazard as

entry barriers from another prospective when producers have incentive to provide low

quality and quit the market. Consumers foresee this possibility and do not purchase

from new entrants. Recent papers from Rouviere and Soubeyran (2008), Jeon and

Lovo (2012), and Atkeson, Hellwig, and Ordoñez (2014) study reputation barrier re-

spectively with collective reputation, with credit rating agencies, and with entry taxes.

In the marketing literature, similar idea has also been discussed as brand names and

several papers explained the phenomenon from consumers’ prospective by risk aver-

sion (Krouse (1984)) and brand loyalty (Villas-Boas (2004)). Lab studies on market

entry problems mainly focus on price deterrence (Cooper, Garvin, and Kagel (1997);

Müller and Götz (2017)) and capacity deterrence (Mason and Nowell (1992); Brandts,

Pezanis-Christou, and Schram (2008)). To our best knowledge, there is no lab experi-

ment that studies the informational entry barrier.

The entry barrier we aim to solve can be considered as a form of “cold start” prob-

lem in computer science context, which has also been highlighted in recent years in

mechanism design studies. There is a great presence of entry barriers in web search en-

gines which can be thought of as recommendation systems as search engines repeatedly

return currently popular pages and those newly-created but high-quality pages are ef-
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fectively shut out since users usually focus on the top few results (Cho and Roy (2004);

Cho, Roy, and Adams (2005)). They propose a new ranking metric, named page qual-

ity, and it effectively alleviates the information imbalance problem and identifies high-

quality pages much easier. Pandey et al. (2005) also identifies the similar entrench-

ment problems suffered by search engines and proposes a randomized rank promotion

scheme to offer new pages a chance to prove their worth, in which the promoted pages

are assigned randomly-chosen rank positions. They show that a modest amount of

randomness leads to improved search results, as is measured by the aggregate results

quality amortized over time. While the above studies focus on the web search en-

gines, Einav, Kuchler, et al. (2015) and Fradkin (2015) explore the inefficiencies of

online marketplaces caused by that consumers cannot consider all options available,

and demonstrate better ranking algorithms can improve transaction probabilities and

generate large gains in volume, revenue and consumer surplus. Che and Hörner (2017)

and I. Kremer, Mansour, and Perry (2014) examine the intertemporal informational

externality that consumer choices generate, and thus also identify policies that are con-

sistent with Pandey et al. (2005). They treat the range of products as exogenous, and

thus abstract from firms’ incentives. Dinerstein et al. (2018) specifically examines the

platform’s role in guiding search and provides evidence for a search redesign by pri-

oritizing product quality to achieve higher efficiency. Vellodi (2018) studies the role

of information design in shaping industry dynamics through endogenous participation
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and incorporates the social learning feature of information diffusion. The optimal rating

design he proposes involves the upper censorship to stimulate participation.

While our project is related to previous studies, we also make contribution to the

literature. First, instead of studying the long-run reputation effect, we take it as the

backgroud of our project and focus on the short-run entry problem when new entrants

enter the market with no history. Second, we build a theoretical framework where both

incumbents and entrants in our model compete by price but their type of quality is also

endogenously determined. Third, we first introduces fractional searching mechanism

to solve reputation problems. Fourth, none of the above topics has been studied in

the laboratory environment and we believe we are the first project to study reputation

barrier and introduce related market mechanisms in the lab.

3.3 Model

3.3.1 Market Environment

To show the existence of reputation barrier and the efficiency of fractional search-

ing, we construct a model of infinitely repeated market with two long-lived firms: in-

cumbent I and entrant E, and a continuum of short-lived consumers in each period.

Firms compete with price and quality of their products and consumers pick the firm

that provides them with the highest expected utility.
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The game is played as follows. Before the repeated game starts, incumbent and

entrant sequentially decide the quality of their products. Then firms start a Bertrand

competition for an infinite number of periods while keeping their quality consistent

during the game. Incumbent moves first so her quality is observed by entrant when

entrant chooses her quality. At the beginning of the repeated interaction, consumers

only observe incumbents’ quality. The payoff for both firms is their inter-temporal

discounted total payoff in the repeated interaction.

Firms choose to produce their products with quality qi ∈ {L,H} and sell it on the

market with price pit in each period, where i = I,E and t = 1,2, ...,∞. We normalize

the cost of producing L for both firms to 0. Incumbent produces H with cost cI and

entrant produces H with cE . Firms share the same inter-temporal discount factor δ and

maximize the inter-temporal payoff ∑
∞
t=1(pit − ci)dit , where dit ∈ [0,1] is the demand

for firm i at time t. The continuum of consumers live uniformly on [0,1] in each period.

Each consumer chooses to purchase a unit of product from the firm which gives them

the highest non-negative expected utility in each period. Consumers receive uH for H

and uL for L. Consumers’ expected utility for firm i at time t can be represented as

Euit − pit . For firms and consumers, we make the following assumptions.

Assumption 1. Producing H is more beneficial to both consumers and the social wel-

fare but more costly to the firm than producing L. We have

(1) cI > 0,cE > 0;
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(2) uH > uL;

(3) uH − cI ≥ uL, and uH − cE ≥ uL.

Assumption 2. Predatory pricing is not allowed: ∀t, pit ≥ 0 if firm i chooses L and

pit ≥ ci if firm i chooses H.

Assumption 3. Consumers Euit changes when firms’ quality is revealed. If firms

produced H, Eu = uH . If firms produced L, Eu = uL. For firms with no history,

Eu = πuH +(1−π)uL, where parameter π ∈ [0,1] and π is exogenously determined.

Assumption 4. Incumbent’s quality can be directly observed by the consumers from

t = 1. At period t, entrant’s quality is revealed to consumers if entrant received positive

demand in any period before t.

Assumption 5. Both firms and consumers prefer H to L at the decision boundaries:

(1) Consumers will choose the firm with a higher probability of producing H when firms

provide the same expected utility;

(2) Firms will choose to produce H when producing H and L earn the same inter-

temporal total payoff.

Assumption 6. Firms know all exogenous parameters {uH ,uL,π,cI,cE ,δ} while con-

sumers only know their own parameters {uH ,uL,π}. Both firms and consumers have

access to the full market history.
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3.3.2 Baseline Model with Simultaneous Entry

The market environments reveals some important principles. First, as both firms

know all the market information, consumers’ expected utility can be perfectly predicted

before firms choose the price in each period. Second, the quality of both firms is de-

termined before repeated game starts, so both firms know the other firm’s quality when

they are playing the Bertrand competition. Third, given the consumers’ expectation and

the quality of the firms, both firms will try to set the price such that the expected utility

they provide is slightly higher than their opponents’, which is exactly what Bertrand

competition predicts. With the principles above, the infinitely repeated game can be

seen as a 2-stage extensive-form super-game where incumbent and entrant sequentially

choose their quality. The inter-temporal discounted payoff they get from their quality

decisions can be directly calculated based on the principles. We follow the base model

of Bertrand competition and rule out the possibility of tacit collusion in the infinitely

repeated interaction.

When either incumbent or entrant plays as the monopolist of the market, they pro-

duce H as it is more profitable than producing L when they can extract all market

surplus. They will also set the price of their products equal to consumers’ expected

utility. If both firms enter the market simultaneously, they both serves as incumbents

and consumers have access to both of their quality in period 1. Let ε be defined as the

minimum unit of price. Similar to the general prediction of Bertrand competition, the
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Nash equilibrium (q∗I ,q
∗
E) can be display as follows.

Proposition 1. When both firms enter the market simultaneously, (q∗I ,q
∗
E) = (H,H).

Whoever with a lower cost sets the price slightly lower than the other firm’s cost and

takes the entire market.

3.3.3 Sequential Entry and Reputation Barrier

What if incumbent and entrant enter the market sequentially? The question focuses

on the short-term interaction when entrants join the market occupied by incumbents

in the infinitely repeated game. As described in the previous subsection, the infinitely

repeated game can be seen as a 2-stage extensive-form super-game where incumbent

and entrant sequentially choose their quality and price and payoff are automatically

optimized by Bertrand competition. The game can be solved by backward induction

and the equilibrium is conditional on the exogenous parameters.

Proposition 2. When both firms enter the market sequentially,

1) If cI ≤ (1−π)(uH −uL), incumbent sets up a strong entry barrier by producing

H and take the market. (q∗I ,q
∗
E) = (H,H).

2) Entrant will choose the fly-by-night strategy by producing L when

cI > (1−π)(uH −uL) and cI − cE ≤ (1−π)(uH −uL), or

cI − cE > (1−π)(uH −uL) and δ

1−δ
(cI − cE − ε)− cE < 0.
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(q∗I ,q
∗
E) = (H,L). Consumers choose entrant at t = 1 and go back to incumbent

when t > 1.

3) If cI − cE > (1−π)(uH −uL) and δ

1−δ
(cI − cE − ε)− cE ≥ 0, (q∗I ,q

∗
E) = (H,H).

Entrant successfully enters and takes the market.

Proof. See Appendix C.1.

3.3.4 Sequential Entry with Fractional Searching

Fractional searching provides an opportunity for entrants to producing H without

competing with incumbents. Assume that τ of consumers can only search for and trade

with entrant while the other 1−τ of consumers can only trade with incumbent at t = 1.

The restriction is removed from t = 2 and consumers share the product information at

t = 1. To set up the environment for fractional searching, some additional assumptions

are made below.

Assumption 7. (1) Market can be perfectly separated at t = 1;

(2) Information can be perfectly shared from t = 2.

Releasing both assumptions affect the initial market power of both firms and the

spread of information, which in fact affect τ when both assumptions are true. As a

result, we can follow these two assumptions and simplify the environment with only

one parameter and no uncertainty.
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Under fractional searching, entrant has the chance to build up her reputation at

t = 1 and earn a positive payoff. Meanwhile, entrant earns less fly-by-night payoff if

they produce L when τ < 1 because she faces a smaller market at t = 1. As a result,

it is more likely that entrant will produce H compared to the market with no fractional

searching. As consumers share the same reputation information, entrant’s quality is

revealed and consumers’ Eu becomes uH after t > 1. Cost-efficient entrant is able to

compete with incumbent and take the market. However, it is also possible that entrant

chooses fly-by-night strategy when the incentive of producing H is weak or when they

are not allowed to play H.

Proposition 3. When both firms enter the market sequentially, let τ ∈ (0,1) be the

fractional searching parameter.

1) Entrant will choose the fly-by-night strategy by producing L and consumers choose

incumbent after t > 1 if either one of the conditions is satisfied:

cI ≤ cE , πuH +(1−π)uL < cE , or δ

1−δ
(cI − cE − ε)− τcE < 0.

In these conditions, (q∗I ,q
∗
E) = (H,L).

2) If cI > cE , πuH +(1− π)uL ≥ cE , and δ

1−δ
(cI − cE − ε)− τcE ≥ 0, (q∗I ,q

∗
E) =

(H,H). Entrant will produce H and successfully enter and take the market.

3) It is easier for entrant to enter the market with H when the market allows frac-

tional searching.
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Proof. See Appendix C.2.

3.4 Experimental Design

Based on the model, we design a game to test the information barrier and a simpli-

fied fractional searching algorithm. The game is a 2-player game with 1 incumbent and

1 entrant. Consumers are played by automated bots in this experiment as we assume

that consumers understand the idea of reputation system and treat firms in the same

way. Bots are set to play the same strategy as defined in the model.

The game mainly focuses on the short-term impact of information barrier and entry

problems. The game we use in the experiment only applies the first two periods of the

repeated interaction as only the first two periods of price competition in the model affect

players’ total payoff. The simplified extensive-form game has 3 stages. At stage 1, in-

cumbent and entrant sequentially enter the market and choose their product quality. At

stage 2 and 3, both players begin price competitions after observing each other’s quality

and consumers choose whose product to purchase based on the predefined algorithm.

Similar to the model, consumers’ belief of player B’s product quality (phrased as type

in the experiment) may change at stage 3. The set of parameters (uH ,uL,π,cI,cE ,τ) are

predetermined and are public information for all firms but consumers only learn their

own information as assumed in the model. In the experiment, we will rename incum-

bent and entrant as “player A” and “player B”. We will also use product type instead
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of quality, where firms produce either X(L) or Y(H). However, the instruction is still

under a market environment as it is easier for subjects to understand the game without

causing additional bias.

The experiment has one pair of main treatment. In the complete searching treatment

(CC), consumers can find all firms which are currently in the market at stage 2 and 3,

and compare the expected utility they provide. In the fractional searching treatment

(FC), τ of the consumers can only find entrants at stage 2 when they start the automated

repeated interaction (τ is public information to firms). We also add one control group.

In oligopoly market (OL), all firms join the market at the beginning of the game and

consumers know the quality of both firms’ products at the beginning of stage 2. The

game is the same as a Bertrand competition where both firms play as the incumbents.

Each experimental session consists of 2 practice periods and 15 paid periods with

randomly matching between periods. Three treatment and control groups use between-

subject design.

3.4.1 Treatment Variables

The major treatment variable is the comparison between complete searching and

fractional searching. The OL treatment serves as the baseline and the stage 1 of the

game is shown in Figure 3.1.

In the CC treatment, the incumbent and the entrant sequentially enter the market.
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Figure 3.1: Game Interface (OL)

(i) Incumbent Quality Page (ii) Entrant Quality page

All consumers can choose to buy from either of them. At stage 1, the incumbent makes

quality decision and the entrants observes that when making its quality decision. At

stages 2 and 3, both players begin price competition after observing each other’s quality.

Figure 3.3 shows a screenshot of the game interface for the incumbent and the entrant

in FC Treatment.

Figure 3.2: Game Interface (CC)

(i) Incumbent Quality Page (ii) Entrant Quality page

In the FC treatment, the incumbent and the entrant sequentially enter the market.

However, a fraction of consumers can only choose to buy from the entrant whereas the
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Figure 3.3: Game Interface (FC)

(i) Incumbent Quality Page (ii) Entrant Quality page

(iii) Incumbent Price Page (iv) Entrant Price page

rest can only choose to buy from the incumbent. The same process follows as in the

CC treatment. Figure 3.2 shows a screenshot of the game interface for the incumbent

and the entrant in CC Treatment.

3.4.2 Hypotheses

In our experiment, we use two sets of parameters (uH ,uL,π,cI,cE ,τ)∈{(30,10,0.5,

15,10,20),(30,10,0.5,20,7,20)}. We expect to see that the behavior of most subjects

in the experiment matches what our solutions in Section 3.3 predict. The details can be

summarized in the following hypotheses.
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Hypothesis 4. In line with Proposition 1, under oligopoly, the incumbent and the en-

trant enter the market simultaneously. We expect to see that most entrant subjects in

the experiment choose the high quality and set the price below the incumbent subjects’

cost of producing high quality in both parameter settings.

Hypothesis 5. In line with Proposition 2, when the incumbent and the entrant enter the

market sequentially, we expect to see the following. Under parameter set (1), we expect

most entrant subjects to choose the low quality and set a price to acquire a positive

demand where as most incumbent subjects to choose the high quality and set a price at

their marginal cost in stage 2. Then most incumbent subjects will set a price at their

marginal cost whereas most incumbents will set a price to acquire the entire market

in stage 3. In comparison, under parameter set (2), we expect most entrant subjects

to choose the high quality and set a price to acquire a positive demand whereas most

incumbent subjects to choose the high quality and set a price at their marginal cost in

stage 2. Then most incumbent subjects will set the same price whereas most entrant

subjects will set a price lower than the incumbents’ marginal cost in stage 3.

Our primary research question is whether market entry problem can be alleviated

by allowing fractional searching. Our model predicts that, when allowed, market entry

can be easier for cost-efficient entrants and their reputation can be built up by offering

high quality. This is summarized in the following hypotheses.

Hypothesis 6. In line with Proposition 3, with fractional searching, we expect most
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entrant subjects to choose high quality and set a price to acquire a positive demand in

their separate market whereas most incumbent subjects to do the same in stage 2. Then,

in stage 3, we expect most entrant subjects to compete with the incumbent subjects

by setting a price to acquire the entire market. The same conjecture holds in both

parameter settings.

Hypothesis 7. With fractional searching, it is easier for entrant subjects to enter the

market by producing High quality and easier for the market to reach Nash equilibrium.

3.4.3 Session Information

Ten sessions were held between August 2020 and November 2020. In total, 102

subjects participated in our sessions. The subjected were paid the sum of all fifteen

periods’ payoffs, plus their show-up fee of four dollars. On average, subjects earned

fourteen dollars during a forty-minute session. The experiments were developed on

oTree otree and the subjects were recruited on Orsee subject which is operated by the

Learning and Experimental Economics Projects of University of California at Santa

Cruz (LEEPS Lab). Given the three between-subjects groups and two sets of parame-

ters, the session information can be summarized as follows in Table 3.1.
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Table 3.1: Summary of Sessions

Parameters Group #Sessions #Subjects

(30,10,0.5,15,10,20)
CC 2 22
FC 2 20
OL 1 8

(30,10,0.5,20,7,20)
CC 2 20
FC 2 20
OL 1 12

3.5 Results

3.5.1 Data Overview

We have 50 subjects participating in our experiment with parameter set 1 and 52

subjects participating with parameter set 2. The main results are robust across the two

parameter sets.

Table 3.2 presents statistics of subjects’ quality and price choices in all experimental

sessions. The first column indicate the treatment group. The second and third columns,

qualityI and qualityE , indicate the quality1 chosen by the incumbent subject and the

entrant subject, respectively. The fourth column shows the total number of observation

of that (qualityI , qualityE) combination. The fifth column shows the entry rate, calcu-

lated as the number of observations in which the entrant subjects’ quality was revealed

as a fraction of total number of observations within each quality combination. The last

1High quality is denoted by 1 and Low quality is denoted by 0. Same for the following tables.
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four columns avg pi
t (for i ∈ {I,E} and t ∈ {1,2}) shows the mean of prices chosen by

subjects i at stage t of the experiment across all observations.

Result 1. In the OL treatment group, most entrant subjects with lower cost chose the

High quality and can almost always enter the market with High quality by undercutting

the incumbent’s price.

As is shown in Table 3.2, subjects were able to get to Nash equilibrium in 48 out

of 60 pairs under parameter set 1 and in 85 out of 90 pairs under parameter set 2 in the

OL group. According to Figure 3.42, most entrant subjects were able to maximize their

payoff by setting a price one tick size below the incumbent’s cost of producing High

quality and acquiring the entire market.

Result 2. In the CC treatment group, most entrant subjects chose Low quality and can-

not enter the market with High quality under parameter set 1. While under parameter

set 2, when the difference in cost of producing High quality between incumbent and en-

trant is relatively larger, entrant subjects successfully entered the market around 80%

to 96% of the time with High quality. Both support Hypothesis 5.

Result 3. In the FC treatment group, most entrant subjects chose the High quality and

can always successfully enter the market under both parameter sets. Hypothesis 6 is

supported.

2The incumbent pricet is the price chosen by the incumbent subject at stage t, and entrant pricet is
the price chosen by the entrant subject at stage t. One vertical red line indicates the predicted price in
line with propositions.
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In the CC group, 111 out of 165 and 87 out of 150 pairs were able to get to the

Nash equilibrium under parameter set 1 and 2, respectively. Under parameter set 1,

most incumbent subjects chose High quality and set a price to block the entry of entrant

subjects, whereas most entrant subjects chose the fly-by-night strategy by producing

Low quality. Under parameter set 2, though most pairs both chose High quality, around

a third of the incumbent subjects chose Low quality instead and a few entrant subjects

chose the fly-by-night strategy. In the FC group, 96 out of 150 and 125 out of 150 pairs

reached the Nash equilibrium of both producing High quality under two parameter

sets, respectively. There were 13% - 19% of entrant subjects playing the fly-by-night

strategy. According to the distribution of prices in the Nash equilibria as is shown

in Figure 3.53, most subjects set prices as are predicted by the model. In both Nash

equilibria in the CC group, the lower entry rates were resulted from the higher prices

set by the entrant subjects at stage 1. In Table 3.2, the avg pE
1 s are 4.74 and 10.02 in

the two Nash equilibria, and are slightly higher than the model predictions at 4 and

9, respectively. This is also verified by looking at the bars to the red vertical lines in

entrant price1 of CC group in Figure 3.5a and Figure 3.5b. In comparison, the entry

rate in the FC group is always at 1 and entrant subjects can always successfully enter the

market. Both incumbent and entrant subjects set their prices in the equilibrium range at

stage 1 and set some variable prices at stage 2.

3Qi is the subject i’s quality choice where i ∈ {I,E}. Two vertical lines indicate a predicted price
range in line with propositions.
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Table 3.2: Summary Statistics

treatment qualityI qualityE obs entry rate avg pI
1 avg pE

1 avg pI
2 avg pE

2

(a) param. set 1

CC
1 1 40 0.00 17.58 12.42 18.40 12.38
1 0 111 0.85 16.02 4.74 18.94 1.86
0 1 6 0.67 4.67 11.67 3.33 12.50
0 0 8 1.00 0.88 7.38 2.00 1.75

FC
1 1 96 1.00 27.88 18.58 17.52 16.42
1 0 28 1.00 26.96 17.82 21.21 4.32
0 1 22 1.00 8.27 18.05 4.91 19.95
0 0 4 1.00 7.75 13.00 5.75 3.75

OL
1 1 48 0.92 17.85 14.62 16.50 14.77
1 0 1 0.00 20.00 5.00 20.00 5.00
0 1 10 1.00 3.40 16.70 5.60 18.50
0 0 1 1.00 1.00 1.00 1.00 1.00

(b) param. set 2

CC
1 1 87 0.78 20.60 10.02 20.43 16.77
1 0 11 0.73 20.18 8.55 20.09 4.36
0 1 48 0.96 2.00 9.62 1.69 16.19
0 0 4 1.00 0.75 7.75 0.50 1.25

FC
1 1 125 1.00 29.07 19.17 19.54 19.07
1 0 19 1.00 28.16 17.84 20.53 0.21
0 1 3 1.00 10.00 20.00 0.00 20.00
0 0 3 1.00 10.00 11.67 0.67 0.00

OL
1 1 85 0.96 20.72 18.65 20.12 18.76
1 0 3 0.00 20.00 0.67 20.00 0.00
0 1 1 0.00 1.00 27.00 0.00 19.00
0 0 1 1.00 0.00 0.00 0.00 0.00

Figure 3.4: Baseline Price Distribution

(a) param. set 1 (b) param. set 2
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Figure 3.5: Price Distribution

(a) param. set 1

(i) QI = 1,QE = 0 (CC) (ii) QI = 1,QE = 1 (FC)

(b) param. set 2

(i) QI = 1,QE = 1 (CC) (ii) QI = 1,QE = 1 (FC)
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3.5.2 Average Quality and Entry Rate

Figure 3.6 and Figure 3.7 show how the average quality of incumbent subjects’ and

entrant subjects’ changes in different treatment groups. As is shown in Figure 3.6, the

average quality of entrants’ is converging to 1 pretty quickly during round 2 or 3. The

average quality of incumbents’ shows a less obvious pattern during first four rounds

under parameter set 1 but converge later to 1 under both parameter sets. In Figure 3.7a,

we can see a clear difference between CC and FC treatment groups. Though the average

quality of incumbents’ converges to 1, the average quality of entrants’ converges to 0

in the CC group compared to 1 in the FC group. In Figure 3.7b, the entrants’ average

quality converges to 1 in both groups but the pattern of the incumbents’ average quality

is unclear in the CC group while also converging to 1 in the FC group. Hypotheses 4 -

6 are supported.

Table 3.3 reports the results of the estimation of the logistic regressions of incum-

bent’s quality (columns (1) and (5)), entrant’s quality (columns (2) and (6)), entry status

(columns (3) and (7)), and NE outcome status (columns (4) and (8)). The standard er-

rors are cluster-robust at the outcome level, shown in parentheses. The independent

variable round is the round number in the experimental session, and FC and OL are the

indicator dummies for FC and OL treatment groups. Columns (1)-(4) apply parameter

set 1 and columns (5)-(8) apply parameter set 2. The coefficient estimates support most

of our hypotheses. Under parameter set 1, columns (1) and (2) show that incumbent
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subjects’ quality is not different across three treatment groups, whereas entrant subjects

are more likely to producing High quality in FC and OL treatment groups, which is sta-

tistically significant at the p = 0.01 level. Column (3) also shows that it is easier for

entrants to enter the market in the FC group at the p = 0.01 significance level. Under

parameter set 2, column (5) shows that incumbent subjects are more likely to produce

High quality in the FC and OL groups whereas the odds of entrant subjects producing

High quality is lower in the FC treatment, though it is not statistically significant as is

shown in column (6). Column (7) suggests it is easier for entrants to enter the market in

the FC group at the p = 0.01 level. Lastly, columns (4) and (8) show that FC treatment

group does not increase the odds of reaching Nash equilibrium but it shows some ev-

idence that subjects are learning to converge to Nash equilibrium under parameter set

1 while OL treatment group increases the odds of achieving NE under parameter set 2,

both at the p = 0.01 level.

Result 4. It is easier for entrant subjects to enter the market with High quality in the

FC treatment group than in the CC treatment group. However, our experiment did not

show evidence that subjects converge to Nash equilibrium better in the FC treatment

than in the CC treatment group. Hypothesis 7 is partially rejected.
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Figure 3.6: Baseline Average Quality

(a) param. set 1 (b) param. set 2

Figure 3.7: Average Quality

(a) param. set 1

(i) CC (ii) FC

(b) param. set 2

(i) CC (ii) FC

93



Table 3.3: Logistic Regression

parameter set 1 parameter set 2
(1) (2) (3) (4) (5) (6) (7) (8)

round 0.058 -0.070∗ 0.179∗∗∗ 0.104∗∗∗ 0.022 0.252∗∗∗ 0.063 0.129
(0.053) (0.037) (0.036) (0.028) (0.032) (0.054) (0.109) (0.081)

FC -0.821 2.302∗∗∗ 13.275∗∗∗ -0.152 2.547∗∗∗ -0.484 25.582∗∗∗ 1.364
(1.047) (0.124) (1.506) (2.697) (0.693) (0.557) (1.248) (0.980)

OL -0.890 4.381∗∗∗ 1.966∗ 0.691 3.153∗∗∗ 0.927∗ 0.821 2.621∗∗∗

(1.374) (0.696) (1.107) (2.488) (0.701) (0.537) (1.108) (0.776)

Observations 375 375 375 375 390 390 390 390

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.6 Conclusion

We examine problems associated with informational entry barriers when there is

presence of reputation systems. We first propose a model to capture the existence of rep-

utation systems and show how this results in inefficiencies that cost-effective entrants

cannot enter the market where there are incumbents with well-established reputations.

In order to mitigate such problems, we propose the fractional searching mechanism in

which it allows entrants to not compete against incumbents during their initial entry

into the market. This provides an opportunity for entrants to establish some reputation

for their possibly superior quality. Additionally, we propose an experiment design sim-

ulating such markets and implement a simplified fractional searching algorithm. Our

results suggest that the existence of such reputation systems creates an informational

barrier for cost-effective entrants to enter the market but this problem can be alleviated

by introducing fractional searching. On the one hand, cost-effective entrants are more

likely to produce high quality when the market allows fractional searching. On the
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other hand, the market entry rate is significantly higher with fractional searching. This

paper adds new insights into both theoretical models and empirical solutions to infor-

mational barrier problems. Furthermore, our model and experiment assumes exogenous

beliefs held by consumers when entrant’s quality is unknown, it is worth exploring how

fractional searching could affect the market if beliefs are endogenous instead.
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Appendix A

Supplement to Chapter One

A.1 Summary statistics for profits

Figure A.1: Profit Distribution

(i) Gross CDF (ii) Excess CDF
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Table A.1: Summary of Profits

T1 - T20 T1 - T10 T11 - T20
CDA FLOW CDA FLOW CDA FLOW

(a) Gross Profits

Overall 1223 1184 1158 1120 1288 1249
(1128) (1106) (1090) (1082) (1161) (1127)

Sellers 891 1053 936 1039 845 1067
(936) (1036) (997) (992) (871) (1080)

Buyers 1555 1316 1380 1200 1730 1431
(1203) (1159) (1136) (1162) (1246) (1146)

(b) Excess Profits

Overall -227 -266 -292 -330 -162 -201
(1031) (910) (1043) (975) (1016) (836)

Sellers -544 -382 -499 -396 -590 -368
(1028) (951) (1069) (1066) (985) (822)

Buyers 90 -149 -85 -265 265 -34
(933) (853) (976) (871) (854) (819)

Note: Gross profit is the average of individual trader’s end-of-period profit across 5 groups over
all 20 trading periods. Excess profit is the average of the difference between individual trader’s
end-of-period profit and the individual CE profit across 5 groups over all 20 trading periods.
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A.2 Summary statistics with unweighted prices

Table A.2: Summary Statistics of Experimental Sessions

T1 - T20 T1 - T10 T11 - T20

CDA FLOW CDA FLOW CDA FLOW

Average price 9.04 9.57 8.21 9.18 8.62 9.37

| Pt −PCE | -0.83 -0.21 -1.59 -0.54 -1.21 -0.37

| Pt −Pt−1 | 0.14 0.15 0.14 0.15 0.14 0.15

Std(Pt −Pt−1) 0.08 0.05 0.08 0.05 0.07 0.05

Note: Summary statistics using prices from each second across

5 groups and 120 seconds over 20 trading periods

A.3 Regression with interaction term

Table A.3: Regression Summary with interactions

| price deviation | | price change | price volatility order number order size traded volume filled contract/QCE realized surplus surplusbuy−sell

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 7.661∗∗∗ 2.788∗∗∗ 0.357∗∗∗ 51.2∗∗∗ 6.6 810.6∗∗∗ 0.675∗∗∗ 0.527∗∗∗ -2.311∗∗∗

(0.902) (0.410) (0.079) (6.4) (5.6) (127.8) (0.120) (0.120) (0.713)
FLOW 0.136 -1.287∗∗∗ -0.094∗∗ -16.5∗∗∗ 3.9 -306.8∗∗∗ -0.163∗∗ -0.036 0.266

(0.629) (0.316) (0.044) (4.1) (4.5) (78.2) (0.080) (0.065) (0.585)
FLOW × round -0.023 0.051∗∗ 0.002 -0.4∗ 0.9∗∗∗ 12.2∗ 0.008∗ 0.001 0.015

(0.060) (0.024) (0.004) (0.3) (0.3) (7.3) (0.004) (0.004) (0.041)
round -0.213∗∗∗ -0.094∗∗∗ -0.012∗∗ -0.1 0.7∗∗∗ 12.8∗ 0.012∗∗ 0.019∗∗∗ 0.012

(0.059) (0.021) (0.005) (0.4) (0.3) (7.7) (0.005) (0.006) (0.045)

Observations 4,800 4,600 200 200 200 200 200 200 200
R2 0.319 0.155 0.337 0.745 0.552 0.495 0.310 0.313 0.739
Adjusted R2 0.318 0.153 0.313 0.736 0.536 0.477 0.285 0.288 0.730

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.4: Hypothesis Test for treatment effect

H0: β2 +20β4 = 0 | price deviation | | price change | price volatility order number order size traded volume filled contract/QCE realized surplus surplusbuy−sell
— test-stat — 0.151 5.636 3.55 7.624 3.681 5.704 1.976 0.667 1.057

p-value 0.88 0.0 0.0 0.0 0.0 0.0 0.048 0.505 0.29
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A.4 Experiment Instructions (CDA)

Welcome, and thank you for participating!

From now until the end of the experiment, please do not communicate with other

participants. Please turn off your cell phones and stay focused on the task. If you have

any questions, please raise your hand or let the experimenters know; they will answer

your questions.

Please pay careful attention to the instructions, as real money is at stake. During

the experiment, you will earn Experimental Currency Units (ECUs). At the end of the

experiment, we will convert your earnings into US Dollars (USD) at one dollar for every

1000 ECUs. You are guaranteed a show-up fee of USD 6 but can earn considerably

more.

Basic Idea

In this experiment, you and seven other participants will be traders in a simple

automated financial market. Using the information displayed on your screen, you will

make trades to earn as many ECUs as possible. As explained below, your earnings will

depend on the trade offers you and the other traders make in your group. There will be

22 trading periods, each lasting 2 minutes.

The two first rounds are practice rounds (they don’t count for your actual payment).

Your final earnings for the session will be the sum of your show-up fee and the
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cumulative profits from all trading periods, converted into US Dollars.

Buy Orders and Sell Orders (Treat CDA)

All traders can submit or update buy and/or sell orders. Each order consists of two

elements or pieces of information:

• The total quantity stating the number of shares that the agent wants to trade.

• The limit price of the order. In buy orders, the limit price indicates the maximum

price the trader is willing to pay per share. In sell orders, the limit price indicates

the minimum price the trader is willing to accept for each share.

Example

The blue line and blue square in Figure A.2 show that the trader submitted a buy

order for a total of 200 shares at a limit price of 13 ECUs. If someone is willing to

sell for 13 ECUs or less, the former trader’s buy order will be filled. If that counterpart

wants to trade less than 200 shares, then the order will be filled only partially.

Figure 1 also shows (in red) that the trader submitted a sell order for 100 shares.

The limit price of this order is 15 ECUs. That is, if someone is willing to buy at 15

ECUs or a higher price, the sell order will be filled. If said counterpart wants to trade

less than 100 shares, then the order will be filled only partially.
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Figure A.2: CDA Your Input

Submitting orders in the graphical interface (Treat CDA)

To set a sell order, you drag the red square anywhere inside the “your input” grid to

set the limit price and the total quantity (volume). You submit your order by clicking

on the “Send Sell” red button, as is shown in Figure A.3.

Similarly, to set a buy order, you can drag the blue square anywhere inside the grid

to set the limit price and the total quantity (volume). Then you can submit your order

by clicking on the “Send Buy” button.

In case your order is not completely executed, your order will remain active with the

remaining quantity. For example, if your order is for buying 200 shares and you only

obtain 150 shares when trading with another participant. Then, your order remains

active, but now only for 50 shares.

You can submit a new buy (sell) order, or cancel it, at any time. However, if you

have an active order, you first need to cancel it by pressing the “cancel buy” (“cancel
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sell”) button. Then you can submit a new order.

Figure A.3: CDA Your Input

Contracts

Why do you want to trade? What is a share worth to you? The answer to both

questions is that the computer will give you a contract that enables you to profit from

trading. You will receive your contract near the beginning of the trading period, and it

will appear in the “Active Contracts” table on the left of the screen, as shown in Figure

A.2.

For example, your contract might read “Buy 500 shares at a price of 18 ECUs in

97 seconds.” This means that 97 seconds from now, the computer will buy up to 500

shares from your inventory at a price of 18. To take advantage of this opportunity, you

need to buy some shares to build up your inventory. Your profit on each share (up to the

500th share) is the contract price (here 18) minus the price you paid when you bought

that share. Of course, for this contract it would not be worthwhile to buy shares at a
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higher price than 18 or to buy more than 500 shares.

Similarly, a contract that says “Sell 150 shares at a price of 13 ECUs in 80 sec-

onds” means that, in 80 seconds, the computer will sell you up to 150 shares at the

price of 13 ECUs per share. Here you make a profit by selling up to 150 shares at

prices above 13 ECUs per share. For this contract, it would not be worthwhile to sell

shares at a lower price than 13 or to sell more than 150 shares.

Keep in mind that you can buy more shares than you have cash for and thus have

a negative cash balance, or sell more shares than you own and thus have a negative

inventory (this is called shorting). If you have a BUY contract for 400 shares, your

inventory should be between zero and your contract quantity, 400 shares. If you have

a SELL contract for 500 shares, your inventory should be between -500 (minus 500)

shares and zero.

How the market works (Treat CDA)

The market price at which you can buy or sell shares depends on other traders' buy

and sell orders. Consider the example illustrated in Figure A.4. All traders, except

Trader 1, have active buy or sell orders. In particular, the four sellers want to sell at

prices of 15 or more, respectively (see red steps). These four sellers conform to the

market supply (the sum of their four sell orders) shown in red. The four buyers want to

buy at prices of 13, 12 and 11 or less, respectively (see blue steps). These three buyers
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conform to the market demand (the sum of their three buy orders) shown in blue.

The green dots indicate the most recent trades. The latest trade is represented by

the largest dot.

As you can see, the demand and supply do not cross each other inside the box but

along the y-axis. That is there cannot be trade at that point.

Let us see what happens when Trader 1 decides to submit a buy order. There are

two cases.

• First, if her buy order has a price below the lowest sell order price (say 15), then

Trader 1 will only add to the demand, and no transaction will occur.

• Second, if Trader 1’s buy order comes at a price above the lowest selling price

(say 13), then she will transact immediately with the seller(s) with the lowest

price. Suppose the seller with the lowest price does not offer enough volume

(quantity) to fill Trader’s 1 order. In that case, the buy order of Trader 1 will be

filled only partially or the remaining quantity will be purchased from the second

lowest selling price, and so on.
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Figure A.4: CDA Market

Your Earnings

You make a profit by selling shares at higher prices than you bought them.

However, notice that you do not need to buy a share in order to sell it. Even if

you have zero inventory you can still sell shares (making your inventory negative).

Similarly, even if you have no cash, you can still buy shares (making your cash balance

negative).

Also, notice that you can buy and sell from and to either the computer and other

participant traders, or both. Your profits from transactions with other participants will

appear immediately in your cash account, whereas your profits from contracts with the

computer will be added to the cash account when the contract expires (aka contract

deadline).
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Examples: You lose money when you buy at a higher price than you sold, or sell at

a lower price than you bought. For example, suppose you pay 23 ECUs for one share

that you sell to the computer at a contract price of 17 ECUs. Then your profit is 17 -

23 = - 6 ECUs. That is, you incurred a loss of 6 ECUs on that share. If, instead, you

bought that share at price of 14 ECUs before the deadline, you would get a profit of 17

- 14 = 3 ECUs on that share.

Projected Profits

The middle bottom box shows your projected profits which indicate your period

profits if the active contract (if any) expires immediately and the period ends right

away. This provides a summary of your current state.

Session Dollar Earnings: After the last trading round, the computer will add up

all your period earnings to determine your actual compensation. These earnings will be

converted into US dollars at one dollar for every 1000 ECUs.
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Figure A.5: CDA UI

A.5 Experiment Instructions (FLOW)

Welcome, and thank you for participating!

From now until the end of the experiment, please do not communicate with other

participants. Please turn off your cell phones and stay focused on the task. If you have

any questions, please raise your hand or let the experimenters know; they will answer

them.
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Please pay careful attention to the instructions, as real money is at stake. During

the experiment, you will earn Experimental Currency Units (ECUs). At the end of the

experiment, we will convert your earnings into US Dollars (USD) at one dollar for every

1000 ECUs. You are guaranteed a show-up fee of USD 6 but can earn considerably

more.

Basic Idea

In this experiment, you and seven other participants will be traders in a simple

automated financial market. Using the information displayed on your screen, you will

make trades to earn as many ECUs as possible. As explained below, your earnings will

depend on the trade offers you and the other traders make in your group. There will be

20 trading periods, each lasting 2 minutes.

The first two rounds are practice rounds (they don’t count for your actual payment).

Your final earnings for the session will be the sum of your show-up fee and the

cumulative profits from all trading periods, converted into US Dollars.

Buy Orders and Sell Orders (Treat FLOW)

All traders can submit or update buy and/or sell orders. Each order consists of four

elements:

• The total quantity stating the number of shares that the agent wants to trade,
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• The maximum rate of shares to trade per second.

• The low price of the order. In buy orders, the low price indicates the price un-

der which the order is filled at the maximum rate. In sell orders, the low price

indicates the price under which the order is not filled.

• The high price of the order. In buy orders, the high price indicates the price

above which the order is not filled. In sell orders, the high price indicates the

price above which the order is filled at the maximum rate.

Example

The blue line and blue box in Figure A.6 show that the trader submitted a buy order

for a total of 500 shares at the maximum rate of 15 shares per second at prices between

6 (low price) and 12 (high price). When the market price is at or below 6 ECUs per

share, her order will be filled at her maximum rate (15 shares per second). Her buy

order will not be executed when the market price is at or above 12 ECUs per share.

When the market price is between 6 to 12 ECUs per share, her order will be filled at a

rate between zero and her maximum rate. The higher the market price, the lower the

rate of execution.

Figure A.6 also shows (in red) that the trader submitted a sell order for 50 shares.

Her maximum rate is 19 shares per second, her low price is 14, and her high price is 18.

When the market price is at or above 18 ECUs per share, her order will be filled at her
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maximum rate of 19 shares per second. Her sell order will not be executed when the

market price is at or below 14 ECUs per share. When the market price is between 14

to 18 ECUs per share, her order will be filled at a rate between zero and her maximum

rate. The higher the market price, the higher the rate of execution.

Figure A.6: FLOW Your Input

Submitting orders in the graphical interface (Treat FLOW)

To set a sell order, you move the red dot along the vertical axis to set the low

price, and you drag the red square anywhere inside the grid to set the high price and

maximum rate. You enter the total number of shares you want to sell in the box next

to the “Send Sell” red button. When you have finished setting the order, submit your

order by clicking on the “Send Sell” button.

Similarly, to set a buy order, you move the blue dot along the vertical axis to set
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the high price, and you drag the blue square anywhere inside the grid to set the low

price and the maximum rate. You enter the total number of shares you want to buy in

the box next to the “Send Buy” blue button. When you have finished setting the order,

submit your order by clicking on the “Send Buy” button.

You can submit a new buy (sell) order, by first canceling your active buy (sell)

orders and then submitting a new buy (sell) order. You do not need to wait for an order

to be fully executed to cancel it.

Contracts

Why do you want to trade? What is a share worth to you? The answer to both

questions is that the computer will give you a contract that enables you to profit from

trading. You will receive your contract near the beginning of the trading period, and it

will appear in the “Active Contracts” table on the left of the screen, as shown in Figure

A.6.

For example, your contract might read “Buy 500 shares at a price of 14 ECUs in

40 seconds.” This means that 40 seconds from now, the computer will buy up to 500

shares from your inventory at a price of 14. To take advantage of this opportunity, you

need to buy some shares to build up your inventory. Your profit on each share (up to the

500th share) is the contract price (here 14) minus the price you paid when you bought

that share. Of course, for this contract it would not be worthwhile to buy shares at a
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higher price than 14 or to buy more than 500 shares.

Similarly, a contract that says “Sell 150 shares at a price of 13 ECUs in 80 sec-

onds” means that, in 80 seconds, the computer will sell you up to 150 shares at the

price of 13 ECUs per share. Here you make a profit by selling up to 150 shares at

prices above 13 ECUs per share. For this contract, it would not be worthwhile to sell

shares at a lower price than 13 or to sell more than 150 shares.

Keep in mind that you can buy more shares than you have cash for and thus have

a negative cash balance, or sell more shares than you own and thus have a negative

inventory (this is called shorting). If you have a BUY contract for 400 shares, your

inventory should be between zero and your contract quantity, 400 shares. If you have

a SELL contract for 500 shares, your inventory should be between -500 (minus 500)

shares and zero.

How the market works (Treat FLOW)

The market price and the rate at which you can buy or sell shares depends on the

buy and sell orders of all traders, as illustrated in the top chart of Figure A.7. Here, one

trader submitted the buy order and sell order shown in Figure A.6. Together with the

buy and sell orders submitted by the other 7 traders, they resulted in the market demand

(sum of buy orders) shown in blue and market supply (summed sell orders) shown in

red. The supply and demand intersect at a price of 10.48 and a Rate of 3.8. Therefore
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the trader from Figure A.6 is buying at a price of 10.48 ECU to some other trader(s) at a

rate of 3.8 shares per second (where the price crosses the agents’ demand curve). Thus,

her cash position is decreasing at a rate of 10.48 x 3.8 = 19.82 ECU per second while

her inventory is increasing at a rate of 3.8 shares per second. This will continue until

she buys her total quantity of 500 shares, or until the other traders change their supply

or demand, e.g., when they reach their requested total quantity or when they place a

new order.

Figure A.7: FLOW Market
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Your Earnings

You make a profit by selling shares at higher prices than you bought them.

However, notice that you do not need to buy a share in order to sell it. Even if

you have zero inventory you can still sell shares (making your inventory negative).

Similarly, even if you have no cash, you can still buy shares (making your cash balance

negative).

Also, notice that you can buy and sell from and to either the computer and other

participant traders, or both. Your profits from transactions with other participants will

appear immediately in your cash account, whereas your profits from contracts with the

computer will be added to the cash account when the contract expires (aka contract

deadline).

Examples: You lose money when you buy at a higher price than you sold, or sell at

a lower price than you bought. For example, suppose you pay 23 ECUs for one share

that you sell to the computer at a contract price of 17 ECUs. Then your profit is 17 -

23 = - 6 ECUs. That is, you incurred in a loss of 6 ECU on that share. If, instead, you

bought that share at price of 14 ECUs before the deadline, you would get a profit of 17

- 14 = 3 ECUs on that share.

Projected Profits

The middle bottom box shows your projected profits which indicate your period

profits if the active contract (if any) expires immediately and the period ends right
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away. This provides a summary of your current state.

Session Earnings: After the last trading period, the computer will add up all your

period earnings to determine your actual compensation. These earnings will be con-

verted into US Dollars at a rate of one US Dollar for every 1000 ECUs.

Figure A.8: FLOW UI
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Appendix B

Supplement to Chapter Two

B.1 Examples of comparative statics

Following eq (2.5), we provide an example of sufficient conditions in this section

for ∂z∗
∂a > 0. Recall that

∂z∗

∂a
=

1
2(vH − vL +2c)(z∗−1)2 − c(z∗2 + 1

2)−
(vH−vL+2c)c

2(vH−vL)

2(z∗−1)+a(1− z∗)(vH − vL +2c)+2acz∗

=

vH−vL
2 z∗2 − (vH − vL +2c)z∗+ vH−vL

2 − c2

vH−vL

[2−a(vH − vL +2c)+2ac]z∗− [2−a(vH − vL +2c)]

Both the numerator and the denominator can be considered functions of z∗, which

can be used to find conditions that determine the sign of ∂z∗
∂a . We consider the suffi-

cient conditions where the numerator and the denominator share the same sign with the
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following conditions.

0 ≤ z∗ ≤
(vH − vL +2c)−

√
(vH − vL +2c)2 −2(vH − vL)(

vH−vL
2 − c2

vH−vL
)

vH − vL

2−a(vH − vL +2c)< 0

or

2−a(vH − vL +2c)> 0

z > 1− 2ac
2−a(vH − vL +2c)+2ac

In our experiment with (vH ,vL,c) = (500,100,5), we would have ∂z∗
∂a > 0 when

0 ≤ z∗ ≤ 0.865 and a > 0.005, or when 1− 10a
2−400a ≤ z∗ ≤ 0.865 and a < 0.005.

B.2 Simulations

In the simulations, we apply the CRRA utility function u(x) = xα, which is con-

sistent with Crosetto and Filippin (2013). As in our experiment, we set the baseline

(vH ,vL,c) = (500,100,5) and vary these parameters. Given the minor theoretical in-

crease, it is difficult to observe the comparative statistics in the model without ex post

uncertainty (C). However, we observe trends where the reservation probabilities de-

crease with the level of risk tolerance in our modified model with ex post uncertainty
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(UC).

Figure B.1: Heatmaps of reservation probabilities.

(Note: The x-axis refers to the α in u(x) = xα. The y-axis refers to an exogenous parameter. The color
reflects the z∗ value given the parameters. We compare the model predictions with ex post uncertainty
(left panel) to the model predictions without ex post uncertainty (right panel).)
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B.3 Estimates of α for the BRET task

Table B.1: Estimates of α for the BRET, assuming CRRA u(x) = xα.

K α K α K α

1 0 ≤ α ≤ 0.014 36 0.551 ≤ α ≤ 0.574 71 2.39 ≤ α ≤ 2.508
2 0.015 ≤ α ≤ 0.025 37 0.575 ≤ α ≤ 0.599 72 2.509 ≤ α ≤ 2.636
3 0.026 ≤ α ≤ 0.036 38 0.6 ≤ α ≤ 0.625 73 2.637 ≤ α ≤ 2.773
4 0.037 ≤ α ≤ 0.046 39 0.626 ≤ α ≤ 0.652 74 2.774 ≤ α ≤ 2.921
5 0.047 ≤ α ≤ 0.058 40 0.653 ≤ α ≤ 0.68 75 2.922 ≤ α ≤ 3.081
6 0.059 ≤ α ≤ 0.069 41 0.681 ≤ α ≤ 0.709 76 3.082 ≤ α ≤ 3.255
7 0.07 ≤ α ≤ 0.08 42 0.71 ≤ α ≤ 0.739 77 3.256 ≤ α ≤ 3.444
8 0.081 ≤ α ≤ 0.092 43 0.74 ≤ α ≤ 0.769 78 3.445 ≤ α ≤ 3.651
9 0.093 ≤ α ≤ 0.104 44 0.77 ≤ α ≤ 0.801 79 3.652 ≤ α ≤ 3.878
10 0.105 ≤ α ≤ 0.117 45 0.802 ≤ α ≤ 0.834 80 3.879 ≤ α ≤ 4.129
11 0.118 ≤ α ≤ 0.129 46 0.835 ≤ α ≤ 0.869 81 4.13 ≤ α ≤ 4.406
12 0.13 ≤ α ≤ 0.142 47 0.87 ≤ α ≤ 0.904 82 4.407 ≤ α ≤ 4.715
13 0.143 ≤ α ≤ 0.155 48 0.905 ≤ α ≤ 0.941 83 4.716 ≤ α ≤ 5.062
14 0.156 ≤ α ≤ 0.169 49 0.942 ≤ α ≤ 0.98 84 5.063 ≤ α ≤ 5.453
15 0.17 ≤ α ≤ 0.183 50 0.981 ≤ α ≤ 1.02 85 5.454 ≤ α ≤ 5.898
16 0.184 ≤ α ≤ 0.197 51 1.021 ≤ α ≤ 1.061 86 5.899 ≤ α ≤ 6.41
17 0.198 ≤ α ≤ 0.212 52 1.062 ≤ α ≤ 1.105 87 6.411 ≤ α ≤ 7.003
18 0.213 ≤ α ≤ 0.226 53 1.106 ≤ α ≤ 1.15 88 7.004 ≤ α ≤ 7.7
19 0.227 ≤ α ≤ 0.242 54 1.151 ≤ α ≤ 1.197 89 7.701 ≤ α ≤ 8.53
20 0.243 ≤ α ≤ 0.257 55 1.198 ≤ α ≤ 1.247 90 8.531 ≤ α ≤ 9.534
21 0.258 ≤ α ≤ 0.273 56 1.248 ≤ α ≤ 1.298 91 9.535 ≤ α ≤ 10.776
22 0.274 ≤ α ≤ 0.29 57 1.299 ≤ α ≤ 1.352 92 10.777 ≤ α ≤ 12.351
23 0.291 ≤ α ≤ 0.307 58 1.353 ≤ α ≤ 1.409 93 12.352 ≤ α ≤ 14.412
24 0.308 ≤ α ≤ 0.324 59 1.41 ≤ α ≤ 1.469 94 14.413 ≤ α ≤ 17.229
25 0.325 ≤ α ≤ 0.342 60 1.47 ≤ α ≤ 1.531 95 17.23 ≤ α ≤ 21.3
26 0.343 ≤ α ≤ 0.36 61 1.532 ≤ α ≤ 1.597 96 21.31 ≤ α ≤ 27.76
27 0.361 ≤ α ≤ 0.379 62 1.598 ≤ α ≤ 1.666 97 27.761 ≤ α ≤ 39.532
28 0.38 ≤ α ≤ 0.398 63 1.667 ≤ α ≤ 1.739 98 39.533 ≤ α ≤ 68.274
29 0.399 ≤ α ≤ 0.418 64 1.74 ≤ α ≤ 1.816 99 α ≥ 68.275
30 0.419 ≤ α ≤ 0.438 65 1.817 ≤ α ≤ 1.898
31 0.439 ≤ α ≤ 0.459 66 1.899 ≤ α ≤ 1.985
32 0.46 ≤ α ≤ 0.481 67 1.986 ≤ α ≤ 2.077
33 0.482 ≤ α ≤ 0.503 68 2.078 ≤ α ≤ 2.174
34 0.504 ≤ α ≤ 0.526 69 2.175 ≤ α ≤ 2.278
35 0.527 ≤ α ≤ 0.55 70 2.279 ≤ α ≤ 2.389

Note: K is the number of boxes collected.
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B.4 Main results with MPL first crossing point

Figure B.2: Search duration vs risk tolerance.

(Note: The plot shows how search duration changes with the level of risk tolerance when using the
average behavior in the last 10 paid rounds and number of boxes collected in BRET. )

Figure B.3: Search duration vs risk tolerance.

(Note: The plot shows how search duration changes with the level of risk tolerance when using the
average behavior in the last 10 paid rounds and number of risky choices in MPL. )
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Table B.2: Regression summary.

Dependent Variable: Average Search Duration

BRET BRET MPL MPL

1-20 rounds 11-20 rounds 1-20 rounds 11-20 rounds

Risk Tolerance 2.173∗∗ 2.241∗ 1.261 0.560

(0.835) (1.189) (0.837) (1.185)

Risk Tolerance x UC -2.815∗∗ -3.043∗ -3.789∗∗∗ -4.161∗∗

(1.172) (1.669) (1.290) (1.826)

UC 0.583 1.018 1.035∗ 1.476∗

(0.527) (0.750) (0.586) (0.828)

const 2.965∗∗∗ 2.878∗∗∗ 3.235∗∗∗ 3.497∗∗∗

(0.359) (0.512) (0.413) (0.584)

Observations 109 109 109 109

R2 0.118 0.041 0.130 0.066

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table B.3: Tests of regression coefficients.

BRET BRET MPL MPL

1-20 rounds 11-20 rounds 1-20 rounds 11-20 rounds

H0 t-stat p-value t-stat p-value t-stat p-value t-stat p-value

β1 > 0 2.603 0.005 1.885 0.031 1.506 0.068 0.473 0.319

β1 +β2 < 0 -0.781 0.218 -0.684 0.248 -2.575 0.006 -2.592 0.005

0.5β2 +β3 = 0 -3.484 0.001 -1.826 0.071 -3.641 0.000 -2.306 0.023

121



Appendix C

Supplement to Chapter Three

C.1 Proof of Proposition 2

The game can be solved by backward induction. From the last decision nodes for

entrant, we have the following conditions.

1) Both firms choose L:

Entrant will gain an advantage at the beginning since consumers will expect them

to produce H with a positive probability. Consumers update Euit based on entrant’s

quality to uL for t > 1 and both firms will share the market after the first period.
Incumbent Entrant

pi1 0 π(uH −uL)− ε

pit , t > 1 0 0
payoff 0 π(uH −uL)− ε

2) Incumbent chooses L and entrant chooses H:

The results depend on the consumers’ choices. Although consumers prefer H to L,

they have a low prior belief towards entrant which plan to provide H.

If cE > π(uH −uL), consumers will choose to purchase from incumbent and entrant

cannot enter the market.
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Incumbent Entrant
pit , t > 0 cE −π(uH −uL)− ε cE

profit 1
1−δ

[cE −π(uH −uL)− ε] 0
If cE ≤ π(uH − uL), consumers will choose to purchase from entrant instead. En-

trants successfully enter the market and take the entire market share.
Incumbent Entrant

pi1 0 π(uH −uL)− ε

pit , t > 1 0 uH −uL − ε

profit 0 π(uH −uL)− cE − ε+ δ

1−δ
(uH −uL − cE − ε)

3) Incumbent chooses H and entrant chooses L:

Entrant plays a fly-by-night strategy since consumer strictly prefer H to L with

complete information. However, it could also be profitable to play such strategy since

consumers expected entrants to play H with a positive probability, which leave space

for profit.

If cI ≤ (1− π)(uH − uL), consumer will prefer to purchase from incumbent and

entrant cannot enter.
Incumbent Entrant

pit , t > 0 (1−π)(uH −uL)− ε 0
profit 1

1−δ
[(1−π)(uH −uL)− cI − ε] 0

If cI > (1−π)(uH −uL), consumer will prefer to purchase from entrant but will go

back to incumbent starting from t > 1 once the entrant’s quality is revealed.
Incumbent Entrant

pi1 cI cI − (1−π)(uH −uL)− ε

pit , t > 1 uH −uL − ε 0
profit δ

1−δ
(uH −uL − cI − ε) cI − (1−π)(uH −uL)− ε

4) If both firms choose H:

Incumbent will have an advantage given its high reputation and can undercut the

price of entrant. However, if entrant has a lower cost, she can undercut incumbent’s

price if consumers has a high prior belief that entrant will produce H, or if entrant has

a strong cost advantage over incumbent.

If cI −cE > (1−π)(uH −uL), entrant has an advantage over incumbent and can take

the market.
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Incumbent Entrant
pi1 cI cI − (1−π)(uH −uL)− ε

pit , t > 1 cI cI − ε

profit 0 (cI − cE)− (1−π)(uH −uL)− ε+ δ

1−δ
(cI − cE − ε)

If cI − cE ≤ (1− π)(uH − uL), incumbent gets the advantage and can set a lower

price to permanently prevent entrant from entering the market.
Incumbent Entrant

pit , t > 0 cE +(1−π)(uH −uL)− ε cE
profit 1

1−δ
[cE − cI +(1−π)(uH −uL)− ε] 0

Go back to the initial node for incumbent. When incumbent chooses L,

• If cE ≤ π(uH −uL), entrant will choose H and take over the market when −cE +

δ

1−δ
(uH −uL − cE − ε)≥ 0.

• Entrant will choose L and share the market with incumbent if

cE > π(uH −uL), or

cE ≤ π(uH −uL) and −cE + δ

1−δ
(uH −uL − cE − ε)< 0.

There is no entry barrier when incumbent produces L. Entrant can always enter the

market with either L or H. As a results, incumbent always earn 0 when they choose L.

When incumbent chooses H,

• If cI ≤ (1−π)(uH −uL), we will also have cI − cE < (1−π)(uH −uL). Entrant

cannot enter the market and incumbent earns a positive payoff.

• If cI > (1−π)(uH −uL) and cI −cE > (1−π)(uH −uL), entrant compares the fly-

by-night payoff and long-term high quality payoff. When δ

1−δ
(cI −cE −ε)−cE ≥

0, entrant produce H and take over the entire market.

• Entrant will produce L and earn a fly-by-night payoff if

cI > (1−π)(uH −uL) and cI − cE ≤ (1−π)(uH −uL),

or

cI > (1−π)(uH −uL), cI −cE > (1−π)(uH −uL), and δ

1−δ
(cI −cE −ε)−cE < 0.
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For incumbent, choosing L is always weakly dominated by choosing H given en-

trant’s choices and in many conditions strictly dominated by choosing H. Incumbent

sets up the entry barrier with H and entrants’ response to the incumbent’s strategy con-

ditional on the market conditions. The market equilibrium can be summarized as fol-

lows.

• If cI ≤ (1−π)(uH −uL), incumbent set up a strong entry barrier by producing H.

• Entrant will choose a fly-by-night strategy by producing L when

cI > (1−π)(uH −uL) and cI − cE ≤ (1−π)(uH −uL), or

cI > (1−π)(uH −uL), cI −cE > (1−π)(uH −uL) and δ

1−δ
(cI −cE −ε)−cE < 0.

Incumbent get 0 at t = 1 but can still defend the market with H.

• If cI − cE > (1−π)(uH − uL) and δ

1−δ
(cI − cE − ε)− cE ≥ 0, entrant successful

enters the market with H.

C.2 Proof of Proposition 3

At t = 1, both incumbent and entrant play as monopolist in their own niche market.

Both firms set the price equal to consumers’ expected utility and set the quality for

the long-run consideration. At t > 1, both players’ compete in the same market and

entrant’s quality is revealed from her choice at first period.

To motivate entrant to produce H, entrant should be able to produce H and take the

market if she does so, which requires cI > cE and πuH +(1−π)uL ≥ cE . Another com-

parison is between the fly-by-night strategy and producing H for reputation. Entrant

produces H when she earns more long-run benefit from H than short-run benefit from

L.
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τ(πuH +(1−π)uL − cE)+
δ

1−δ
(cI − cE − ε)≥ τ(πuH +(1−π)uL) (C.1)

δ

1−δ
(cI − cE − ε)− τcE ≥ 0 (C.2)

The third part can be simply proved by comparing the conditions for entrant to enter

the market with H with and without fractional searching.
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C.3 Price Distribution (Param. set 1)

Figure C.1: CC treatment group

(i) QI = 1,QE = 1 (ii) QI = 1,QE = 0

(iii) QI = 0,QE = 1 (iv) QI = 0,QE = 0
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C.4 Price Distribution (Param. set 1)

Figure C.2: FC treatment group

(i) QI = 1,QE = 1 (ii) QI = 1,QE = 0

(iii) QI = 0,QE = 1 (iv) QI = 0,QE = 0
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C.5 Price Distribution (Param. set 2)

Figure C.3: CC treatment group

(i) QI = 1,QE = 1 (ii) QI = 1,QE = 0

(iii) QI = 0,QE = 1 (iv) QI = 0,QE = 0
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C.6 Price Distribution (Param. set 2)

Figure C.4: FC treatment group

(i) QI = 1,QE = 1 (ii) QI = 1,QE = 0

(iii) QI = 0,QE = 1 (iv) QI = 0,QE = 0

C.7 Experiment Instructions (OL)

General Ideas In the following rounds, you will be matched with another partici-

pant as your counterpart in each round.

• The match is anonymous: you do not know who you are matched with.
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• The experiment randomly rematches between rounds so your counterpart changes

every round.

• There are two roles: player A and player B. One of you will be randomly assigned

to player A and the other one will be player B.

• Each round is a new game and is not correlated with other rounds.

In each round, the game has 3 stages. You and your counterpart choose the type of

your products at stage 1 and compete with price and product type at stages 2 and 3.

Stage 1: At stage 1, you and your counterpart simultaneously choose the type of

your products.

• Production is costly. The costs of producing X and producing Y are different.

• You can observe both players’ costs before you make the decision.

• When you choose your product type, you cannot observe your counterpart’s de-

cision.

• You cannot change your product type at stage 2 or 3.

Stage 2: At stage 2, you and your counterpart simultaneously choose the price of

your products.

• You can observe both players’ product types before you choose your price.

• Your price is required to be between the cost of your product and the value con-

sumers get from your product.

After you choose your prices, 100 bot consumers choose whose product they will

purchase at this stage. For consumers, their net benefit = product value - product price.
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• Consumers choose to purchase from the player that provides them a higher net

benefit.

• Consumers observe both players’ product types and prices before they make de-

cisions.

• If both of you provide the same net benefit, consumers will prefer the one with a

higher product value.

• If both of you provide the same net benefit and the same product value, both of

you will equally share the market.

Stage 3: At stage 3, you and your counterpart repeat what you have done at stage

2: both of you simultaneously choose your price and consumers choose whose product

they will purchase. You can choose a different price at stage 3 based on what you learn

from the result of stage 2. However, what you have chosen at stage 2 does not affect

the result of stage 3.

Your payoff in this round

At stage 2 and 3, your stage payoff is (your product price - your product cost) ×

your demand.

• Your demand is the number of consumers who purchase your product. It can be

either the whole market (100), 0, or half of the market (50).

Your payoff in this round is the sum of your payoffs at stages 2 and 3. If you finish

reading, please raise your hand in the Zoom meeting room with the blue icon under

”participants” and wait for the experimenter to advance the page.
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C.8 Experiment Instructions (CC)

General Ideas In the following rounds, you will be matched with another partici-

pant as your counterpart in each round.

• The match is anonymous: you do not know who you are matched with.

• The experiment randomly rematches between rounds so your counterpart changes

every round.

• There are two roles: player A and player B. One of you will be randomly assigned

to player A and the other one will be player B.

• Each round is a new game and is not correlated with other rounds.

In each round, the game has 3 stages. You and your counterpart choose the type of

your products at stage 1 and compete with price and product type at stages 2 and 3.

Stage 1: At stage 1, you and your counterpart sequentially choose the type of your

products, X or Y.

• Production is costly. The costs of producing X and producing Y are different.

• You can observe both players’ costs before you make the decision.

• Player A first choose their product type. Then, player B observe player A’s prod-

uct type and choose their type.

• Your product type affects your actions and payoffs at stage 2 and 3. You cannot

change your product type at stage 2 or 3.

Stage 2: At stage 2, you and your counterpart first simultaneously choose the price

of your products.
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• You can observe both players’ product types before you choose your price.

• Your price is required to be between the cost of your product and the value con-

sumers get from your product, so none of the participants in this game gets neg-

ative payoff.

After you choose your prices, 100 bot consumers choose whose product they will

purchase at this stage. For consumers, their net benefit = product value - product price.

• Consumers choose to purchase from the player that provides them a higher net

benefit.

• If both of you provide the same net benefit, consumers will prefer the one with a

higher product value.

• If both of you provide the same net benefit and the same product value, both of

you will equally share the market.

However, consumers only observe part of product information:

• Consumers only observe player A’s product type at stage 2. Player B’s type is

unknown to consumers.

• Besides value from X and Y, consumers have a third value when the product

type is unknown. As player B’s product type is unknown to consumers at stage

2, consumers will use the value of unknown product when calculating the net

benefit from player B.

• Both players know the value of unknown product when they make decisions.

• Consumers know both players’ prices when they make purchase decisions.
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Stage 3: At stage 3, you and your counterpart repeat what you have done at stage

2: both of you simultaneously choose your price and consumers choose whose product

they will purchase. You can choose a different price at stage 3 based on what you learn

from the result of stage 2. Whether consumers know player B’s type at stage 3 depends

on player B’s demand at stage 2:

• If player B gets positive demand at stage 2, their product type becomes known to

consumers at stage 3. Consumers will use the value of player B’s product type

when calculating the net benefit.

• If player B gets 0 demand at stage 2, their product type is still unknown to con-

sumers at stage 3.

Your payoff in this round At stage 2 and 3, your stage payoff is (your product

price - your product cost) × your demand.

• Your demand is the number of consumers who purchase your product. It can be

either the whole market (100), 0, or half of the market (50).

Your payoff in this round is the sum of your payoffs at stages 2 and 3. If you finish

reading, please raise your hand in the Zoom meeting room with the blue icon under

”participants” and wait for the experimenter to advance the page.

C.9 Experiment Instructions (FC)

General Ideas In the following rounds, you will be matched with another partici-

pant as your counterpart in each round.

• The match is anonymous: you do not know who you are matched with.

• The experiment randomly rematches between rounds so your counterpart changes

every round.
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• There are two roles: player A and player B. One of you will be randomly assigned

to player A and the other one will be player B.

• Each round is a new game and is not correlated with other rounds.

In each round, the game has 3 stages. You and your counterpart choose the type of

your products at stage 1 and compete with price and product type at stages 2 and 3.

Stage 1: At stage 1, you and your counterpart sequentially choose the type of your

products, X or Y.

• Production is costly. The costs of producing X and producing Y are different.

• You can observe both players’ costs before you make the decision.

• Player A first choose their product type. Then, player B observe player A’s prod-

uct type and choose their type.

• Your product type affects your actions and payoffs at stage 2 and 3. You cannot

change your product type at stage 2 or 3.

Stage 2: At stage 2, you and your counterpart first simultaneously choose the price

of your products.

• You can observe both players’ product types before you choose your price.

• Your price is required to be between the cost of your product and the value con-

sumers get from your product, so none of the participants in this game gets neg-

ative payoff.

After you choose your prices, 100 bot consumers choose whose product they will

purchase at this stage. For consumers, their net benefit = product value - product price.
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• At stage 2, you and your counterpart will be placed in two separate markets,

where 20 consumers can only purchase from player B and 80 consumers can

only purchase from player A.

• You and your counterpart cannot affect each other at stage 2. Consumers will

purchase when their net benefit is non-negative.

However, consumers only observe part of product information:

• Consumers only observe player A’s product type at stage 2. Player B’s type is

unknown to consumers.

• Besides value from X and Y, consumers have a third value when the product

type is unknown. As player B’s product type is unknown to consumers at stage

2, consumers will use the value of unknown product when calculating the net

benefit from player B.

• Both players know the value of unknown product when they make decisions.

• Consumers know both players’ prices when they make purchase decisions.

Stage 3: At stage 3, all 100 consumers return to the same market and share the

information of products they purchased at stage 2. Whether consumers know player

B’s type at stage 3 depends on player B’s demand at stage 2.

• If player B gets positive demand at stage 2, their product type becomes known to

all consumers at stage 3.

• If player B gets 0 demand at stage 2, their product type is still unknown to all

consumers at stage 3.

You and your counterpart then interact in the same market. Both of you simultane-

ously choose your price and consumers choose whose product they will purchase. You
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can choose a different price at stage 3 based on what you learn from the result of stage

2. Consumers’ decision is as the following:

• Consumers choose to purchase from the player that provides them a higher net

benefit.

• If both of you provide the same net benefit, consumers will prefer the one with a

higher product value.

• If both of you provide the same net benefit and the same product value, both of

you will equally share the market.

Your payoff in this round

At stage 2 and 3, your stage payoff is (your product price - your product cost) ×

your demand.

• Your demand is the number of consumers who purchase your product. It can be

either your own market or 0 at stage 2, or the whole market (100), 0, or half of

the market (50) at stage 3.

Your payoff in this round is the sum of your payoffs at stages 2 and 3. If you finish

reading, please raise your hand in the Zoom meeting room with the blue icon under

”participants” and wait for the experimenter to advance the page.

C.10 Sequential Entry with Endogenous Prior Belief

In the previous sections, π is set as an exogenous parameter and consumers are set to

believe that firms produce H only when they always produce H in the past. What if con-

sumers endogenously decide their prior belief π? Note that consumers are not defined

as players in the extensive form game and thus do not have optimization problems but

follow a pre-defined behavioral rule. From the previous propositions, we have learned
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that incumbent will always choose H to set up the entry barrier. For consumers, given

that they can observe incumbent’s quality, they have no incentive to motivate entrant

to produce H. However, consumers’ belief affects entrant’s strategies and consumers

may get a higher expected utility by adjusting π. To make π an endogenous parameter,

consumers’ belief need to be consistent with firm’s strategy given the belief.

Consumers need to learn the distribution of firm’s cost to generate the prior belief,

which requires us to release Assumption 6. Let us assume that consumers know cI as

incumbent is defined to be in the market before entrant tries to enter. We also assume

that consumers believe that cE ∼U [c, c̄], where 0< c< cI < c̄. That is, consumers belief

that entrant’s cost is somewhere around incumbent’s cost. Note that the equilibrium in

the section highly depends on consumers’ prior belief and we just provide a simple

assumption where consumers are not quite sure whether entrant is cost efficient or not.

In the sequential entry without fractional searching, we can transform the conditions

in Proposition 2 with respect to cE and thus calculate the probability of entrant choosing

a specific quality. For example, let ε −→ 0, we can transform the conditions as follows.

cI − cE > (1−π)(uH −uL)−→ cE < cI − (1−π)(uH −uL) (C.3)

δ

1−δ
(cI − cE)− cE ≥ 0 −→ cE ≤ δcI (C.4)

In this way, we can rephrase Proposition 2 from consumers’ perspective as follows.

• From consumers perspective, entrant produces L when:

(1) cE ≥ cI − (1−π)(uH −uL) (2) δcI < cE < cI − (1−π)(uH −uL)

• Similarly, entrant produces H when cE < cI − (1−π)(uH −uL) and cE ≤ δcI .

Note that consumers’ prior belief needs to be consistent with firms’ strategies. Let

ĉ = min{δcI,cI −(1−π∗)(uH −uL)}. Consumers’ endogenous belief π∗ can be defined

as follows.
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• If ĉ ≥ c̄, consumers believe that entrant will always produce H and consumers set

π∗ = 1. However, this contradicts our assumption that cI < c̄ so consumers never

set π∗ = 1. Plug π∗ = 1 back to the condition, we have π∗ = 1 when δcI ≥ c̄.

• If ĉ ≤ c, consumers believe that entrant will always produce L and consumers set

π∗ = 0. Plug π∗ = 0 back to the condition, we have π∗ = 0 when min{δcI,cI −

(uH −uL)}≤ c. Based on our assumption, we have cI −(uH −uL)< 0 so the con-

dition above is always satisfied. That is to say, in any circumstances, consumers’

belief of entrant producing L is an equilibrium belief.

• If ĉ ∈ (c, c̄), consumers believe that it is possible for entrant to produce either L

or H and π∗ = ĉ−c
c̄−c . Plug π∗ = ĉ−c

c̄−c back to the condition, we have π∗ = ĉ−c
c̄−c when

min{δcI,cI −π∗(uH −uL)} ∈ (c, c̄).

Although not mathematically complete, the equilibrium belief π∗ reveals an impor-

tant aspect of consumers belief that consumers never believe that entrant produces H

with 100 percent certainty but the belief of entrant producing L is always an equilib-

rium belief regardless of the exogenous parameters. The endogenous belief explains

the entry barrier from consumers’ perspective.

In the sequential entry with fractional searching, applying similar methods, we can

get new conditions from consumers’ perspective.

• If cE < cI , cE ≤ πuH +(1−π)uL, and cE ≤ δ

δ+(1−δ)τcI , entrant produces H.

• Otherwise, entrant produces L.

Let ĉ = min{cI,πuH +(1− π)uL,
δ

δ+(1−δ)τcI}. Consumers’ endogenous belief π∗

can be defined as follows.

• If ĉ ≥ c̄, entrant will always produce H and consumers set π∗ = 1. Plug π∗ =

1 back to the condition, we have π∗ = 1 when δ

δ+(1−δ)τcI ≥ c̄. Similar to the

previous conditions, this never holds.
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• If ĉ ≤ c, entrant will always produce L and consumers set π∗ = 0. Plug π∗ = 0

back to the condition, we have π∗ = 0 when min{uL,
δ

δ+(1−δ)τcI} ≤ c.

• If ĉ ∈ (c, c̄), it is possible for entrant to produce either L or H and π∗ = ĉ−c
c̄−c .

Plug π∗ = ĉ−c
c̄−c back to the condition, we have π∗ = ĉ−c

c̄−c when min{π∗uH +

π∗uL,
δ

δ+(1−δ)τcI} ∈ (c, c̄).

Compared to sequential entry without fractional searching, π∗ = 0 is not guaranteed

as an equilibrium belief when there exists fractional searching. Also, as δ

δ+(1−δ)τ > δ,

consumers would have a higher belief of entrant producing H when fractional searching

exists.
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Aldrich, Eric M. and Kristian López Vargas (Mar. 2019). “Experiments in high-frequency

trading: comparing two market institutions”. In: Experimental Economics 23(2),

pp. 322–352. ISSN: 1573-6938. DOI: 10.1007/s10683- 019- 09605- 2. URL:

http://dx.doi.org/10.1007/s10683-019-09605-2.

Anderson, Lisa R and Jennifer M Mellor (2008). “Predicting health behaviors with an

experimental measure of risk preference”. In: Journal of health economics 27(5),

pp. 1260–1274.

142

https://doi.org/10.1007/s10683-019-09605-2
http://dx.doi.org/10.1007/s10683-019-09605-2


Asano, Takao, Hiroko Okudaira, and Masaru Sasaki (2015). “An experimental test of a

search model under ambiguity”. In: Theory and Decision 79, pp. 627–637.

Atkeson, Andrew, Christian Hellwig, and Guillermo Ordoñez (Nov. 2014). “Optimal
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