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ABSTRACT OF THE DISSERTATION 

 

Understanding the impact of deleterious genetic variation on extinction risk in small populations 

by 

 

Christopher C. Kyriazis 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2022 

Professor Kirk Edward Lohmueller, Co-Chair 

Professor Robert Wayne, Co-Chair 

 

Deleterious genetic variation is abundant in wild populations and can contribute to extinction 

when populations become small and isolated. For example, elevated levels of inbreeding in small 

populations can expose recessive deleterious mutations as homozygous and depress population 

fitness. Additionally, increased genetic drift in small populations can result in relaxed selection 

against weakly deleterious mutations, leading to an accumulation of such mutations that can also 

contribute to fitness declines. Genomic sequencing tools have enabled a proliferation of studies 

on the threat of deleterious genetic variation in small populations of conservation concern. 

However, how to best leverage such data to predict extinction risk in these populations remains 

unclear. My dissertation aims to provide clarity to this issue by leveraging computational genetic 

simulations in concert with genomic data to better understand the threat that deleterious genetic 

variation poses to extinction risk. In my first chapter, I used eco-evolutionary simulations to 

explore the effects of deleterious genetic variation on extinction risk under a variety of 
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demographic scenarios. These results implicate recessive strongly deleterious mutations as the 

key drivers of extinction in small populations, as the exposure of such mutations via inbreeding 

can lead to extinction much faster than the more gradual impacts of weakly deleterious variation. 

In my second chapter, I applied a similar simulation framework to explore the threat of 

deleterious genetic variation to extinction risk in the critically endangered vaquita porpoise. My 

results suggest that the species is genetically well-equipped to recover from a severe bottleneck 

due to its small historical population size, which implies a low load of recessive strongly 

deleterious variation that can contribute to future inbreeding depression. In my third chapter, I 

examined the genomic factors enabling persistence in an isolated population of moose on Isle 

Royale. My results suggest a role for ‘purging’ of recessive deleterious mutations during a severe 

founder event for the population as a key factor resulting in the continued health of the 

population. Finally, in my fourth chapter, I reviewed simulation-based approaches for 

quantifying genetic load and predicting extinction risk. Here, I aim to encourage other 

researchers to also employ simulations in studies of deleterious variation in small populations, 

providing an overview of the components of a simulation of deleterious genetic variation and the 

relevant model parameters. Altogether, this dissertation provides novel perspectives and 

approaches for understanding the risks of extinction due to deleterious genetic variation in wild 

populations.     
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Chapter 1: Strongly deleterious mutations are a primary determinant of 

extinction risk due to inbreeding depression 

Originally published in Evolution Letters 

Supplementary materials available online from Evolution Letters: 

https://onlinelibrary.wiley.com/doi/full/10.1002/evl3.209 

Abstract 

Human-driven habitat fragmentation and loss have led to a proliferation of small and 

isolated plant and animal populations with high risk of extinction. One of the main threats to 

extinction in these populations is inbreeding depression, which is primarily caused by recessive 

deleterious mutations becoming homozygous due to inbreeding. The typical approach for 

managing these populations is to maintain high genetic diversity, increasingly by translocating 

individuals from large populations to initiate a ‘genetic rescue.’ However, the limitations of this 

approach have recently been highlighted by the demise of the gray wolf population on Isle 

Royale, which declined to the brink of extinction soon after the arrival of a migrant from the 

large mainland wolf population. Here, we use a novel population genetic simulation framework 

to investigate the role of genetic diversity, deleterious variation, and demographic history in 

mediating extinction risk due to inbreeding depression in small populations. We show that, under 

realistic models of dominance, large populations harbor high levels of recessive strongly 

deleterious variation due to these mutations being hidden from selection in the heterozygous 

state. As a result, when large populations contract, they experience a substantially elevated risk 

of extinction after these strongly deleterious mutations are exposed by inbreeding. Moreover, we 

demonstrate that, although genetic rescue is broadly effective as a means to reduce extinction 

risk, its effectiveness can be greatly increased by drawing migrants from small or moderate-sized 
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source populations rather than large source populations due smaller populations harboring lower 

levels of recessive strongly deleterious variation. Our findings challenge the traditional 

conservation paradigm that focuses on maximizing genetic diversity in small populations in 

favor of a view that emphasizes minimizing strongly deleterious variation. These insights have 

important implications for managing small and isolated populations in the increasingly 

fragmented landscape of the Anthropocene.  
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Introduction 

The prevailing paradigm in conservation biology prioritizes the maintenance of high genetic 

diversity in small populations threatened with extinction due to inbreeding depression (Caughley 

1994; Spielman et al. 2004). Under this paradigm, genetic diversity is considered one of the 

primary determinants of fitness (Allendorf and Leary 1986; Reed and Frankham 2003), and the 

harmful effects of inbreeding are thought to be minimized by maintaining genetic diversity. 

However, this thinking is challenged by the observation that some species, such as the Channel 

island fox, can persist at small population size with extremely low genetic diversity and show no 

signs of inbreeding depression (Robinson et al. 2016; Robinson et al. 2018). This example and 

other similar studies suggest that, rather than being mediated by high genetic diversity, the 

persistence of small populations may instead be enabled by the purging of strongly deleterious 

mutations (Laws and Jamieson 2011; Xue et al. 2015; Hedrick and Garcia-Dorado 2016; 

Robinson et al. 2016; Robinson et al. 2018; Van Der Valk et al. 2019; Grossen et al. 2020). In 

this study, we investigate how genetic diversity, deleterious variation, and demographic history 

influence extinction risk due to inbreeding depression using ecologically-realistic population 

genetic simulations. Our results demonstrate the central role of strongly deleterious variation in 

determining extinction risk due to inbreeding depression in small and isolated populations, and 

highlight the counterintuitive effects of strategies aimed at maintaining high genetic diversity. 

We argue that, in cases where populations are destined to remain small and isolated with high 

levels of inbreeding, management strategies should aim to minimize strongly deleterious 

variation rather than maximize genetic diversity.  
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The motivating example for our simulations is the gray wolf population on Isle Royale, an island 

in Lake Superior that has long served as a natural laboratory in ecology and conservation biology 

(Mech 1966; Peterson et al. 1984; Wayne et al. 1991; McLaren and Peterson 1994). Following 

70 years of near-complete isolation at a size of ~10-50 individuals, the population was driven to 

the brink of extinction by severe inbreeding depression, with just two individuals remaining in 

2018 (Hedrick et al. 2019; Robinson et al. 2019). Recent findings have suggested that the 

collapse of the population may have been prompted by the introduction of high levels of 

recessive strongly deleterious variation by a migrant individual who arrived from the mainland in 

1997 (Adams et al. 2011; Hedrick et al. 2014; Hedrick et al. 2019; Robinson et al. 2019). The 

high reproductive output of this individual on the island (34 offspring) led to intensive 

subsequent inbreeding in the population, driving these strongly deleterious mutations to high 

frequency and leading to severe inbreeding depression and ultimately the collapse of the 

population.  

 

The example of the Isle Royale wolf population, though extreme, highlighted the potentially 

negative effects of founding or rescuing small populations with individuals from large and 

genetically-diverse populations. An alternative approach for genetic rescue or reintroduction 

initiatives could instead target historically-smaller populations where strongly deleterious 

mutations have been purged, or screen populations for individuals with low levels of strongly 

deleterious variation. The growing evidence for purging in wild populations (e.g., Xue et al. 

2015; Robinson et al. 2018; Grossen et al. 2020) suggests that this approach may be effective as 

a means to decrease the severity of inbreeding depression in small populations at high risk of 

extinction. Given the ongoing reintroduction of wolves to Isle Royale, and the increasing 
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necessity of reintroduction and genetic rescue more broadly (Whiteley et al. 2015; Frankham et 

al. 2017; Bell et al. 2019), such an approach could have wide-ranging implications for the 

conservation of small populations at risk. 

 

The applicability of population genetic models to understanding extinction has historically been 

limited by unrealistic assumptions that often ignore stochastic ecological factors and rarely 

consider both weakly and strongly deleterious mutations (Lande 1994; Lynch et al. 1995; 

O’Grady et al. 2006; Caballero et al. 2017). Here, we use a novel population genetic simulation 

framework that combines realistic models of population dynamics with exome-scale genetic 

variation (Haller and Messer 2019) to assess how genetic diversity, deleterious variation, and 

demographic history influence extinction risk in small populations. Our simulations aim to 

capture the ecological factors that may contribute to extinction in small populations, such as 

those observed in the Isle Royale wolf population, by incorporating the effects of demographic 

and environmental stochasticity, as well as natural catastrophes. Coupled with these stochastic 

population dynamics, we model a genome with parameters reflecting that of a canine exome, 

which accumulates neutral and deleterious mutations from an empirically-estimated distribution 

of fitness effects (Kim et al. 2017). Although our model is motivated by the Isle Royale wolf 

population, it is also intended to capture the dynamics of many other classic examples of 

population decline, inbreeding depression, and genetic rescue, such as Scandinavian wolves 

(Åkesson et al. 2016), Florida panthers (Johnson et al. 2010), and bighorn sheep (Hogg et al. 

2006). Here, we focus on rapid contractions from large historical populations to very small 

populations, as these populations experience especially high risk of extinction due to inbreeding 

depression.    
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Methods 

Overview of the SLiM non-Wright-Fisher model 

We conducted non-Wright-Fisher (nonWF) simulations using SLiM 3 (Haller and Messer 2019). 

The impetus for this model was to allow for more ecologically-realistic population genetic 

simulations by relaxing many of the restrictive assumptions of the Wright-Fisher model (Haller 

and Messer 2019). Such assumptions include non-overlapping generations and a fixed population 

size that is not influenced by fitness, both of which are unrealistic when trying to model the 

extinction of a population due to genetic factors.  

 

Instead, the SLiM nonWF approach models population size (N) as an emergent property of 

individual absolute (rather than relative) fitness and a user-defined carrying capacity (K). Thus, 

if individual fitness declines, a population experiences extinction through a biologically realistic 

process (a fitness-driven reduction in population size). Further, the model includes overlapping 

generations, such that individuals with high fitness can survive and reproduce for multiple 

generations. At the start of each generation, each individual randomly mates with another 

individual in the population, with one offspring resulting from each mating. At the end of each 

generation, individuals die with a probability given by their absolute fitness (ranging from 0 to 

1), which is rescaled by the ratio of K/N to model the effects of density dependence. Thus, the 

carrying capacity here does not directly determine the simulated population size, but rather it 

indirectly influences it through its impact on individual fitness and viability selection. For the 

sake of both tractability and generality, we assume a hermaphroditic random mating population. 
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A discussion of how the carrying capacity of a SLiM nonWF model is related to its Wright-

Fisher effective population size is provided in the Supplementary Methods.   

 

Demographic scenarios  

To obtain a baseline understanding for how ancestral demography influences extinction risk in 

small populations, we first explored a ‘population contraction’ scenario with our simulations 

(Figure 1.1A). Here, we modeled an instantaneous contraction from a large ‘ancestral 

population’ (Kancestral Î {1,000, 5,000, 10,000, 15,000}) to a small ‘endangered population’ (Kendangered Î 

{25, 50}) (Figure 1.1A). This contraction scenario could represent the isolation of a population 

with historical connectivity (e.g., the Florida panther population) or alternatively the founding of 

an isolated population through migration or translocation (e.g., the initial founding of the Isle 

Royale wolf population). For each contraction event, we randomly sampled Kendangered number of 

individuals from the ancestral population to seed the endangered population after a burn-in of 

10*Kancestral generations. All simulations were run until the endangered population went extinct. To 

examine the effects of a more gradual contraction, we also explored a scenario where an 

ancestral population with carrying capacity 10,000 first contracted to an intermediate carrying 

capacity of 1,000 for 200 generations, and finally an endangered carrying capacity of 25. We ran 

25 simulation replicates for each combination of ancestral and endangered carrying capacities.   

 

We next explored a ‘genetic rescue’ scenario, which similarly consisted of a population 

contraction from a large ancestral population to a small endangered population (Figure 1.1B). 

Here, however, we fixed the ancestral carrying capacity to 10,000, and again explored two 

endangered carrying capacities of 25 and 50. Prior to the contraction, we split off the following 
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source populations for genetic rescue: 1) a large population remaining at the ancestral size 

(K=10,000); 2) a moderate-sized population with long-term isolation (K=1,000 for 1,000 

generations); 3) a small population with relatively recent isolation (K=100 for 100 generations); 

and 4) a very small population with very recent isolation (K=25 for 10 generations). These 

source population demographic histories were set to reflect a range of biologically-relevant 

scenarios (i.e., large and outbred populations, populations with moderate size and long-term 

isolation, smaller populations that have been more recently isolated) as well as provide a range of 

source population levels of genetic diversity and strongly deleterious variation to examine how 

these factors influence the efficacy of genetic rescue. Genetic rescue was initiated by 

translocating five randomly-selected individuals from the source population after the endangered 

population decreased in size to five or fewer individuals for the case when Kendangered=25, and 15 or 

fewer individuals for the case when Kendangered=50. Importantly, the exact number of generations of 

isolation for these source populations depended on the number of generations before 

translocation, which varied for each simulation replicate depending on the stochastic trajectory 

of the endangered population. For these simulations, we ran 50 replicates for simulations with 

Kendangered=25 and 25 replicates for simulations with Kendangered=50.  

 

To further explore the dynamics of our genetic rescue scenario, we ran several additional 

simulations, here with endangered carrying capacity fixed to 25. First, to investigate the impact 

of selecting individuals for translocation to either maximize genetic diversity or minimize 

strongly deleterious variation, we ran simulations (50 replicates) were we picked selected five 

migrants from the K=10,000 source population with either the highest heterozygosity or fewest 

number of strongly deleterious alleles (where strongly deleterious mutations were defined to be 
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those mutations with s < -0.01). We also explored scenarios with varying numbers of migrants 

(1, 5, or 10) with the number of translocations fixed to one, as well as varying the number of 

translocations (1, 2, or 5) with the number of migrants fixed to five. Here, we ran 25 replicates 

for each parameter combination. All simulations were run until the endangered population went 

extinct. 

 

Stochastic population dynamics 

To capture the non-genetic factors that can contribute to extinction in small populations 

(Caughley 1994), our model includes three sources of ecological stochasticity. First, 

demographic stochasticity was modelled using the built-in mechanics of the SLiM nonWF 

model, in which survival from one generation to the next is determined by a Bernoulli trial with 

the probability of survival determined by the absolute fitness of an individual scaled by K/N 

(Haller and Messer 2019). Next, we incorporated the effects of environmental stochasticity in 

our simulations by modelling the carrying capacity of the endangered population as an Ornstein-

Uhlenbeck process, in which the carrying capacity in a generation is given by:  

 

log(K(t +1)) = (1−φ)Kendangered + φlog(K(t)) + w(0,σ) 

 

where φ = 0.9, Kendangered Î {25,50} and σ = log10(1.3) (Figure S1-1). The values of φ and σ were set 

arbitrarily to model environmental stochasticity with a moderate amount of variation and a high 

degree of auto-correlation. Finally, we modelled the effects of random natural catastrophes in our 

simulations by drawing a probability of mortality due to a catastrophe each generation from a 

beta distribution with a = 0.5 and b = 8 (Figure S1-1). In each generation, deaths due to a 
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catastrophe are then determined by the outcome of a Bernoulli trial for each individual with the 

probability given by the beta distribution. Environmental stochasticity and natural catastrophes 

were only modelled in the small endangered population. Importantly, these stochastic ecological 

effects rarely lead to extinction in the endangered population in the absence of deleterious 

variation (8/25 simulation replicates with neutral mutations extinct within 10,000 generations at 

Kendangered = 25, and none extinct for Kendangered = 50). 

 

Genomic parameters  

We set the genomic parameters in our simulations to model the exome of a wolf-like organism. 

To do this, each diploid individual in our simulation has 20,000 genes of length 1500 bp, which 

occur on 38 autosomes with the number of genes on each chromosome determined by the ratios 

observed in the dog genome (Lindblad-Toh et al. 2005). Recombination between these genes 

occurs at a rate of 1 x 10-3, with no recombination within genes and free recombination between 

chromosomes. These genes accumulate neutral and deleterious mutations at a rate of 1 x 10-8 per 

site, with the ratio of deleterious to neutral mutations set to 2.31:1 (Huber et al. 2017; Kim et al. 

2017). The selection coefficients for these deleterious mutations were drawn from a distribution 

of fitness effects (DFE) estimated from a large sample of humans (Kim et al. 2017; see 

Supplementary Methods for additional details).  

 

We initially set the dominance coefficients for our simulations according to the following hs 

relationship from Henn et al. 2016, based on results from Agrawal and Whitlock 2011:  

h(s) = !/#
(!%&'&!.'&	´	*)
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This hs relationship intends to capture the pattern evident in empirical data that the dominance 

coefficient of a mutation tends to be inversely related to its selection coefficient, such that the 

most strongly deleterious mutations are highly recessive (Simmons and Crow 1977; Agrawal and 

Whitlock 2011; Huber et al. 2018). However, we found that simulations with this hs relationship 

in SLiM were extremely computationally intensive, such that we were only able to obtain results 

for simulations with the smallest ancestral carrying capacities of 1,000 and 5,000 (see 

Supplementary Methods for further discussion).  

 

To overcome these computational limitations for realistic models of dominance, we instead 

implemented an approach assuming that weakly/moderately deleterious mutations (s ≥ -0.01) 

were partially recessive (h=0.25) and strongly deleterious mutations (s < -0.01) were fully 

recessive (h=0). The aim of this approach (hereafter referred to as our “hmix” model) was to 

capture the key feature of the hs relationship that more deleterious mutations tend to be more 

recessive, with the dominance coefficients for these two classes of mutations reflecting their 

mean dominance coefficient under the hs relationship (Figure S1-2). Given our finding that the 

behavior of this model is extremely similar to that of the hs relationship (see Results), we used 

the hmix model for all simulations except where otherwise noted. More details on how the hmix 

model was implemented in SLiM is provided in the Supplementary Methods. 

 

To further explore the impact of dominance coefficients, we also ran simulations where we 

varied the dominance coefficient for all mutations (h Î {0, 0.01, 0.05, 0.2, 0.5}). In addition, we 

explored the impact of decreasing the number of sites in which fully recessive (h=0) deleterious 

mutations can occur (i.e., the mutational target size) by varying the number of genes in our 



 12 

simulations (g Î {1,000, 5,000, 10,000, 15,000, 20,000}). These simulations were run solely 

under the ‘population contraction’ demographic scenario with Kancestral Î {1,000, 5,000, 10,000, 

15,000} and Kendangered = 25. We ran 25 replicates for each of these simulations, terminating the 

simulation when the endangered population went extinct.  

 

During the simulations, we kept track of several summaries of the state of the population. These 

include the population’s mean heterozygosity, mean inbreeding coefficient (FROH), the mean 

fitness, and the average number of deleterious alleles per individual binned into weakly (-0.001 < 

s ≤ -0.00001), moderately (-0.01 < s ≤ -0.001), strongly (s < -0.01), and very strongly (s < -0.05) 

deleterious classes. Fitness was calculated multiplicatively across sites. Here, we restricted FROH to 

include only runs of homozygosity greater than 1 Mb to capture inbreeding due to mating 

between close relatives. These statistics were calculated from a sample of 30 individuals every 

1000 generations during the burn-in and every generation following the contraction.  

 

Burn-in conditions for the simulations  

Our simulations during the burn-in retained fixed mutations and did not model reverse mutation. 

Retaining fixed mutations during the burn-in was important to ensure that weakly deleterious 

mutations that drifted to fixation contribute to absolute fitness. However, one consequence of 

retaining fixed mutations is that there is no mutation-selection-drift equilibrium in the ancestral 

population since weakly deleterious mutations continue to accumulate as fixations even after 

heterozygosity of segregating variation has leveled off (Figure S1-3). As a result, fitness during 

the burn-in also never reaches equilibrium, but instead declines gradually as weakly deleterious 

mutations are fixed. Although fixation of weakly deleterious mutations occurs at a rate that is 
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inverse to population size (i.e., much faster in smaller populations), we found that this effect is 

cancelled out when the length of the burn-in is proportional to the population’s carrying capacity 

(i.e., 10*K, leading to a much shorter burn-in for smaller populations), resulting in the same pre-

contraction fitness regardless of population size (Figure S1-4a). To explore the impact of these 

proportional burn-ins, we ran simulations under an hmix model of dominance in which all burn-

ins were run for 30,000 generations, regardless of the ancestral size. This led to a notable 

reduction in pre-contraction fitness for the K=1,000 population, and a slight increase in fitness 

for the larger populations (Figure S1-4). However, there were no qualitative differences in 

extinction times relative to when proportional burn-ins were used (Figure S1-4C), suggesting 

that extinction dynamics are governed more by the numbers of recessive strongly deleterious 

alleles in these populations rather than their pre-bottleneck fitness. This finding is further 

supported by our simulation results that demonstrate that strongly deleterious mutations are a far 

more important determinant of extinction times compared to weakly or moderately deleterious 

mutations (see Results).  

 

Results 

Population contraction simulations under the hmix model 

Our population contraction simulations demonstrate that, although larger populations have 

higher genetic diversity (Figure 1.2A), they also harbor higher levels of strongly deleterious 

variation (Figure 1.2B). Consequently, we observe a strong effect of ancestral demography on 

time to extinction following a population contraction, with populations that were historically 

large experiencing more rapid extinction (Figure 1.2C). For example, given an endangered 

carrying capacity of 25, a population with an ancestral carrying capacity of 1,000 will go extinct 
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in 474 generations on average, whereas a population with an ancestral carrying capacity of 

15,000 will do so in 70 generations on average (Figure 1.2C). When modelling a more gradual 

contraction from an ancestral carrying capacity of 10,000, we found that extinction times were 

slightly increased relative to the instantaneous contraction scenario (Figure S1-5), suggesting that 

more gradual contractions can facilitate purging and ultimately decrease extinction risk. 

 

Examination of individual simulation replicates provides insight into the dynamics of extinction 

in these populations (Figures 3A and S6). Endangered populations with an ancestral carrying 

capacity of 1,000 contain fewer strongly deleterious mutations, translating to a decreased 

severity of inbreeding depression and ultimately longer persistence (Figures 3A and S6). This 

decreased severity of inbreeding depression allows these populations to become highly inbred 

(FROH ≈ 1) well before going extinct (Figures 3A and S6). By contrast, endangered populations 

with a larger ancestral carrying capacity of 15,000 have much higher levels of recessive strongly 

deleterious variation due to these mutations being hidden from selection in the ancestral 

population, resulting in a more rapid loss of fitness as these populations become inbred (Figures 

3B and S6). As a result, these populations typically go extinct well before FROH approaches one 

(Figures 3B and S6). These populations also lose fitness due to increased genetic drift and 

inbreeding among more distant relatives, which is not captured by our definition of FROH.  

 

Following contraction, the ability of the endangered population to purge its load of recessive 

deleterious mutations also depended on stochastic ecological factors. For example, when the 

carrying capacity of the endangered population was by chance higher due to environmental 

stochasticity, natural selection was most effective at removing strongly deleterious alleles, 
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translating to longer persistence (Figures 3 and S6). By contrast, when the carrying capacity of 

the endangered population was low soon after contraction, purging tended to be less effective, 

resulting in more rapid extinction (Figures 3 and S6). However, in both cases, purging was also 

counteracted by continual input of strongly deleterious alleles by mutation, which eventually 

contributed to population extinction. Overall, these various sources of genetic and ecological 

stochasticity together resulted in highly variable extinction times for any given parameter 

settings, highlighting the important role of random events in determining whether a small 

population can persist.  

 

Our simulations also demonstrate the importance of increasing the carrying capacity of the 

endangered population as a means to ensure population persistence. Larger endangered 

populations (K=50) were better able to purge recessive deleterious mutations following the 

contraction, resulting in much longer persistence (Figure S1-7). Moreover, larger populations 

were less impacted by stochastic ecological factors, which also contributed to increased time to 

extinction. Nevertheless, extinction times for these larger endangered populations still depended 

strongly on the ancestral carrying capacity (Figure S1-7), demonstrating the importance of 

considering both recent and historical demography when assessing extinction risk.  

 

Results under varying genomic parameters 

We next explored the sensitivity of our results to the genomic parameters assumed in our model. 

In particular, we focus on the impact of dominance coefficients, as previous work has suggested 

that the extent to which strongly deleterious mutations accumulate at higher frequencies in larger 

populations depends strongly on the assumed dominance coefficients (Nei 1968; Hedrick 2002; 
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Hedrick and Garcia-Dorado 2016). Under the most realistic model of an hs relationship, we 

found that strongly deleterious mutations do accumulate at much higher frequencies in larger 

populations, leading to much faster extinction following contraction (Figure 1.4). However, we 

also found that simulations with an hs relationship in SLiM were extremely computationally 

intensive, such that we were unable to obtain results for the larger ancestral carrying capacities of 

10,000 and 15,000 (see Supplementary Methods). Nevertheless, these results demonstrate a 

strong concordance between the hs relationship and our hmix model, suggesting that our hmix 

model captures the key features of the hs relationship (Figures 4 and S2).  

 

When assuming a single dominance coefficient for all mutations, our results demonstrate a range 

of outcomes that depended on the assumed dominance coefficient. Specifically, when assuming 

h=0 or 0.01, we again find that larger populations harbor higher levels of strongly deleterious 

variation, with similar patterns to the hs relationship or hmix model (Figure 1.4). However, this 

effect is greatly diminished when mutations are only partially recessive (h=0.05 or 0.2), and is 

nonexistent when mutations are additive (h=0.5), as expected (Figure 1.4). Notably, although the 

average dominance coefficient under our assumed hs relationship is approximately 0.2, our 

results with h=0.2 are dramatically different from those under the hs relationship (Figure 1.4).  

 

To further investigate the importance of strongly vs weakly/moderately deleterious mutations in 

our hmix model, we ran simulations where we truncated our DFE to only permit strongly 

deleterious (s < -0.01 and h=0) or weakly/moderately deleterious mutations (s ≥ -0.01 and 

h=0.25) to enter the population. More specifically, in the case of permitting only strongly 

deleterious mutations, we allowed any mutation with s < -0.01 to enter the population as normal, 
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however mutations with s ≥ -0.01 instead became neutral mutations. Here, our results for 

simulations that only included strongly deleterious mutations were notably similar to the full 

hmix model, with extinction times that depended strongly on ancestral demography (Figure S1-

8). By contrast, results for simulations that only included weakly/moderately deleterious 

mutations were dramatically different from the full model, and had greatly increased extinction 

times (Figure S1-8). Given that strongly deleterious mutations constitute only ~25% of all new 

deleterious mutations under our assumed DFE (Kim et al. 2017), these results demonstrate their 

disproportionate impact on extinction risk relative to the effects of more weakly or moderately 

deleterious mutations.  

 

As a final way of exploring the impact of recessive deleterious mutations, we also conducted 

simulations where we decreased the target size for deleterious mutations assuming h=0. The 

motivation for these simulations was to test whether we would still observe an impact of 

ancestral demography on extinction times when lowering the number of genes that could 

accumulate fully recessive deleterious mutations. To do this, we decreased the number of genes 

(g) in our simulations from 20,000 to g Î {1,000, 5,000, 10,000, and 15,000}. Here, we observed 

that the effect of ancestral demography is still present, though greatly diminished, with as few as 

1,000 genes, and remains substantial with as few as 5,000 genes (Figure S1-9).   

 

Genetic rescue simulations 

We next explored how demography and strongly deleterious variation impact the effectiveness of 

genetic rescue assuming the hmix model of dominance. Here, we quantify the effectiveness of 

genetic rescue as the extent to which the introduction of migrants to the endangered population 



 18 

increased extinction times. When translocating five migrants from one of four source populations 

(Figure 1.5A-B) to an endangered population with K=25, we found that all source populations 

led to increases in time to extinction relative to a no-rescue scenario (Figure 1.5C). Importantly, 

however, we found that the magnitude of increase in time to extinction was highly dependent on 

source population demography and levels of strongly deleterious variation. For example, 

whereas genetic rescue from the large source population (K=10,000) led to a notable increase in 

mean time to extinction of 16% (one-tailed t-test p=0.159), rescue from the moderate-sized 

source population resulted in a much more dramatic increase of 130% (p=1.75e-7; Figure 1.5C). 

Genetic rescue from small and moderately-inbred populations (mean F < 0.1; Figure S1-10) also 

resulted in increases in mean time to extinction that were at least as great as that of the large 

source population (63% increase for K=100 [p=0.00132], 13% increase for K=25 [p=0.224]) 

(Figure 1.5C). We observed similar patterns when conducting simulations with a larger 

endangered population (K=50) (Figure S1-11), though the beneficial effects of genetic rescue 

were somewhat diminished, likely due to the larger recipient population size when translocation 

was initiated (N ≤ 15) as well as the greater efficacy of purging within the larger recipient 

population. 

 

Examination of individual simulation replicates again offers insight into the factors driving 

extinction in these populations (Figures 6 and S12). In all simulated scenarios, we observed a 

large increase in fitness immediately following the introduction of migrants (Figures 6, S12-13), 

likely due to the high strength of heterosis (masking of fixed recessive deleterious alleles) 

following initial admixture. In most cases, these increases in fitness led to population growth, 

though the extent to which population sizes increased was strongly influenced by environmental 
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stochasticity (Figures 6 and S12). Soon after genetic rescue, however, the resumption of 

inbreeding again led to a decline in fitness (Figures 6 and S12). Here, the rate of fitness decline 

was determined by the levels of strongly deleterious variation in the migrant individuals and their 

descendants. For example, when translocation occurred from a large source population 

(K=10,000), levels of strongly deleterious variation remained high after genetic rescue, 

eventually resulting in severe inbreeding depression once inbreeding resumed (Figure 1.6). By 

contrast, when the moderate-sized source population was used (K=1,000), levels of strongly 

deleterious variation dramatically decreased following genetic rescue, greatly decreasing the 

severity of inbreeding depression in future generations (Figure 1.6).  

 

These results demonstrate that, although the larger source populations have higher fitness and 

genetic diversity, they also harbor a high number of heterozygous recessive strongly deleterious 

mutations (Figures 5 and S10). These mutations are quickly made homozygous by inbreeding in 

the endangered population following translocation, exacerbating the severity of inbreeding 

depression and eventually contributing to extinction. In support of this interpretation, we found 

that time to extinction following genetic rescue is predicted by the average number of strongly 

deleterious alleles per individual in the source population when examining all source populations 

simultaneously (Figure 1.5D). By contrast, we found that average source population 

heterozygosity was not very predictive of time to extinction, where in fact we observed a slight 

negative correlation due to the fact that source populations with higher genetic diversity also tend 

to harbor higher levels of recessive strongly deleterious variation (Figure 1.5E). We obtained 

similar results when restricting this analysis to the K=25 source population, the source 

population for which there was the highest variability in strongly deleterious variation and 
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genetic diversity (Figure S1-14). However, in this case, we do see a strong negative correlation 

between genetic diversity and extinction times, which is likely driven by heterozygosity being 

correlated with strongly deleterious variation at this intra-population scale.   

 

Our finding that source population levels of strongly deleterious variation predict the efficacy of 

genetic rescue suggests that genome-wide levels of deleterious variation could be used to select 

individuals for genetic rescue. We explored the efficacy of this strategy by selecting the 

individuals with the fewest strongly deleterious alleles (s < -0.01) from the large source 

population (K=10,000) for rescue. This approach resulted in an increase in mean time to 

extinction of 74% (p=1.15e-4) compared to the non-rescue scenario, a 49% increase relative to 

randomly selecting individuals from the large source population (Figure 1.5F). By contrast, when 

individuals with the highest genome-wide heterozygosity were selected, we observed an increase 

in time to extinction that was no greater than when individuals were selected at random 

(p=0.148; Figure 1.5F). These results further support the causal relationship between strongly 

deleterious variation and extinction risk due to inbreeding depression, as well as the lack of this 

relationship between heterozygosity and extinction risk.  

 

Lastly, we explored the effects of varying the number of migrants (1, 5, or 10) as well as the 

number of translocation events (1, 2, or 5), focusing on the K=10,000 and K=1,000 source 

populations. These simulations show persistent increases in time to extinction with increasing 

number of translocations regardless of the source population (Figure S1-15), suggesting that the 

efficacy of genetic rescue does not diminish with each additional migration event. When varying 

the number of migrants, we found that extinction times increased slightly in the case where 



 21 

migrants were drawn from the K=1,000 source population, but did not increase when drawing 

migrants from the K=10,000 source population (Figure S1-15).  

 

Discussion 

Our simulations demonstrate the central importance of demographic history and recessive 

strongly deleterious mutations in determining the risk of extinction due to inbreeding depression 

in small and isolated populations. We find that populations that were historically large have a 

much higher risk of extinction following a population contraction compared to historically-

smaller populations (Figure 1.2). These findings may be counterintuitive given the thinking that 

small populations should be less fit due to an accumulation of weakly deleterious alleles (Kimura 

et al. 1963; Lynch and Gabriel 1990; Lynch et al. 1995; Battaillon and Kirkpatrick 2000). The 

key insight that our simulations highlight is that larger ancestral populations harbor more 

recessive strongly deleterious mutations (Figure 1.2), due to these mutations being hidden from 

purifying selection as heterozygotes. The exposure of these mutations as homozygous by 

inbreeding in small populations can lead to dramatic reductions in fitness and drive rapid 

extinction, well before ‘mutational meltdown’ due to an accumulation of weakly deleterious 

mutations can occur (Lynch and Gabriel 1990; Lynch et al. 1995). By demonstrating that this 

effect is sufficient to ultimately drive extinction on short timescales, our simulations illustrate the 

importance of recessive deleterious variation as the primary mechanism of inbreeding depression 

(Charlesworth and Willis 2009; Hedrick and Garcia-Dorado 2016).  

 

Although the insight that strongly deleterious mutations that are fully recessive can accumulate 

at greater frequencies in larger populations has been noted elsewhere (Nei 1968; Battaillon and 
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Kirkpatrick 2000; Hedrick 2002; Hedrick and Garcia-Dorado 2016; Szpiech et al. 2019), our 

results add to this work by demonstrating that that these effects persist under realistic genomic 

parameters and models of dominance, including both an hs relationship and our hmix model 

(Figure 1.4). This result is due to the fact that strongly deleterious mutations under these models 

tend to be highly recessive (Simmons and Crow 1977; Agrawal and Whitlock 2011; Huber et al. 

2018), and are therefore hidden from purifying selection when present as heterozygotes in large 

populations Moreover, when examining models with a single dominance coefficient for all 

mutations, we find that our results with fully recessive mutations (h=0 or 0.01) are highly similar 

to those under more realistic models of dominance, whereas the impact of ancestral demography 

is greatly diminished with partially recessive (h=0.05 or 0.2) mutations and nonexistent with 

additive (h=0.5) mutations (Figure 1.4). The transition in this behavior has previously been 

explored using analytical models, where it was similarly shown that the impact of population 

size on levels of strongly deleterious variation greatly diminishes as h approaches 0.05 (Hedrick 

2002; Hedrick and Garcia-Dorado 2016) 

 

While the mean dominance coefficient under our assumed hs relationship is ~0.2, this model 

showed very different extinction dynamics compared to the model assuming h=0.2 for all 

mutations (Figure 1.4). This result suggests that the key factor mediating extinction dynamics is 

the presence of highly recessive strongly deleterious mutations, rather than the overall mean 

dominance coefficient. In support of this interpretation, we show that simulations that only 

include the fraction of mutations that are strongly deleterious and fully recessive (h=0) exhibit 

extinction times that are highly similar to those under an hs relationship or hmix model, whereas 

simulations that only include the fraction of mutations that are weakly or moderately deleterious 
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and partially recessive (h=0.25) have much longer extinction times that depend only minimally 

on ancestral demography (Figure S1-8). This result is especially striking when considering that 

strongly deleterious mutations comprise only ~25% of the overall number of deleterious 

mutations under our assumed DFE (Kim et al. 2017). Taken together, these results further bolster 

our conclusion that strongly deleterious mutations are the primary determinant of extinction risk 

due to inbreeding depression in small populations. The extent to which these dynamics may be 

relevant for a given species, however, will depend on their distribution of selection and 

dominance coefficients, and specifically the extent to which there exists a substantial fraction of 

mutations that are highly recessive and strongly deleterious. Although these parameters remain 

poorly known for the vast majority of organisms, highly recessive strongly deleterious mutations 

are commonly observed across disparate taxa (e.g., Simmons and Crow 1977; McCune et al. 

2002), suggesting that their influence on extinction may be widespread. However, these 

dynamics may prove to be most relevant to mammals and other vertebrates with high levels of 

“organismal complexity”, which has been demonstrated to result in a higher fraction of strongly 

deleterious mutations (Huber et al. 2017). 

 

The considerable influence of ancestral demography that our simulations reveal has important 

implications for predicting the threat of extinction due to inbreeding depression in wild 

populations. Quantifying inbreeding depression in the wild and predicting the threat it poses to 

extinction remains a major challenge in conservation biology, and the reasons why some small 

populations suffer from inbreeding depression and others do not is often unclear (Hedrick and 

Garcia-Dorado 2016). Our simulations suggest that these differences may be determined in large 

part by the ancestral demography of a species. Consequently, we suggest that information on 
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ancestral demography, which is increasingly becoming accessible using genomic data (Beichman 

et al. 2018), should be more widely incorporated into extinction risk predictions. In particular, 

given that nearly all threatened populations have recently undergone reductions in size due to 

anthropogenic pressures, these results suggest that their continued persistence may depend 

crucially on their ancestral demography and load of recessive strongly deleterious mutations. In 

addition, our results also suggest that island populations that have historically been small may in 

fact have reduced extinction risk due to inbreeding depression as a result of to their high isolation 

and smaller population size, which may have facilitated purging of recessive strongly deleterious 

mutations (Laws and Jamieson 2011; Robinson et al. 2018). However, our simulations also 

reveal that the fate of small populations is highly stochastic, and that even under the same 

ecological and genetic parameters, time to extinction can vary substantially (Figures 2 and 4). 

Thus, predictions of extinction risk for any wild population should necessarily be accompanied 

by a high degree of uncertainty.  

 

Our results also provide insight on how best to conduct genetic rescue, which is becoming 

increasingly necessary for maintaining small and isolated populations under growing 

anthropogenic pressures (Whiteley et al. 2015; Hedrick and Garcia-Dorado 2016; Frankham et 

al. 2017; Bell et al. 2019). Consistent with many other studies (e.g., Hogg et al. 2006; Johnson et 

al. 2010; Frankham 2015; Åkesson et al. 2016), our simulations highlight the beneficial effects 

of genetic rescue, supporting recent calls for its more widespread application (Whiteley et al. 

2015; Frankham et al. 2017; Bell et al. 2019). However, in stark contrast to existing 

recommendations (Pickup et al. 2012; Whiteley et al. 2015), we found that targeting large source 

populations with high genetic diversity was among the least effective genetic rescue strategies 
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(Figures 5 and S11). Instead, our results demonstrate that the effectiveness of genetic rescue can 

potentially be maximized by drawing migrants from moderate-sized source populations (Figures 

5 and S11). These source populations are ideal due to being small enough to purge strongly 

deleterious recessive mutations, but not so small that they accumulate a substantial load of fixed 

weakly deleterious mutations. Finally, our results demonstrate that even small and somewhat 

inbred populations (mean F < 0.1) can also serve as effective source populations (Figures 5C and 

S10), as other studies have shown (S. Heber et al. 2012; Sol Heber et al. 2012). Our results do 

not suggest, however, that inbred populations will always serve as more effective source 

populations than outbred populations, or that highly inbred source populations are likely to be 

effective, as has been recently claimed (Ralls et al. 2020). Rather, our results demonstrate that 

source populations that are only slightly inbred (mean FROH ~0.06) may be comparable in their 

effectiveness to large source populations, though both are likely to be less effective than purged 

source populations with long-term moderate size.  

 

A key factor accounting for the differences between our results and previous experimental and 

empirical studies examining source population effectiveness (Pickup et al. 2012; Frankham 

2015) is a difference of temporal scale. Specifically, existing studies rarely examine the 

consequences of gene flow beyond the F1 generation, whereas our simulation framework enables 

tracking these dynamics over the longer term. Previous research has shown that, during the 

generations immediately following genetic rescue, fitness increases are likely to be greatest when 

migrants are sourced from larger source populations (Pickup et al. 2012; Frankham 2015). 

Indeed, our results agree with these findings, and demonstrate greater fitness increases during the 

F1 generation when drawing migrants from larger source populations (Figure S1-13). Where our 
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results differ, however, is in the generations well after F1, after the initial strong heterosis is 

diminished and inbreeding resumes. Here, we find that using smaller source populations with 

decreased levels of strongly deleterious variation can lower the severity of inbreeding depression 

and increases population persistence (Figure 1.6). This result emphasizes the importance of 

evaluating genetic rescue outcomes over the longer term, since the dynamics in the generations 

immediately following genetic rescue might differ greatly from those several generations later, 

as was so dramatically demonstrated by the Isle Royale wolf population. 

 

Although our results suggest that large populations may not be ideal source populations for 

genetic rescue, we demonstrate that the effectiveness of this strategy can be greatly increased 

when individuals are screened for low levels of strongly deleterious variation (Figure 1.5F). 

However, applications of such approach may remain limited by our ability to accurately predict 

the fitness consequences of individual mutations, which remains a major challenge even in 

humans (Eilbeck et al. 2017). Our results also demonstrate that repeated genetic rescue from 

large or moderate-sized source populations can result in persistent beneficial effects (Figure S1-

15), highlighting the efficacy of this strategy for populations that are destined to remain small 

and isolated. One inevitable consequence of this or any other genetic rescue strategy, however, is 

a loss of native ancestry (Johnson et al. 2010; Adams et al. 2011; Harris et al. 2019), which can 

potentially swamp out locally adapted alleles (though see Fitzpatrick et al. 2020). Although we 

do not track levels of admixture in our simulations, it is probable that the post-rescue populations 

are composed of highly admixed individuals (Harris et al. 2019).  
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In addition to providing guidelines for how to best conduct genetic rescue, our results also have 

implications for understanding the mechanisms underlying genetic rescue. Two mechanisms 

have generally been proposed for genetic rescue: heterosis (masking of fixed recessive 

deleterious mutations) and adaptive evolution (increases in fitness due to selection on new 

alleles) (Whiteley et al. 2015). By demonstrating that, even in the absence of adaptive variation, 

migration into small and inbred populations can lead to increases in fitness and population size 

consistent with those observed in empirical systems (e.g., Hogg et al. 2006; Johnson et al. 2010; 

Adams et al. 2011; Åkesson et al. 2016), our results suggest that heterosis alone may be able to 

explain much of the beneficial effects of genetic rescue. However, a more thorough investigation 

of the relative roles of heterosis and adaptive evolution as mechanisms of genetic rescue could be 

conducted by incorporating adaptive mutations into our simulation framework. Finally, our 

finding that increases in fitness following migration do not always lead to increases in population 

size due to the effects of environmental stochasticity (Figure S1-12) suggests that definitions of 

genetic rescue based on demographic effects alone may be restrictively narrow, as other authors 

have suggested (Hedrick et al. 2011). In particular, this result has relevance to the debate of 

whether the Isle Royale wolf population truly experienced genetic rescue, given that the 

population size did not increase substantially following migration, perhaps due to poor 

environmental conditions (Adams et al. 2011; Hedrick et al. 2011) 

 

Our simulation framework has several notable limitations. First, due to the high computational 

load of our simulations (see Supplementary Methods), we were unable to examine ancestral 

populations with carrying capacities larger than 15,000, limiting the observed impact of ancestral 

demography. Second, we did not examine heterozygote advantage as a potential mechanism for 
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inbreeding depression, which could impact the negative relationship between extinction times 

and source population heterozygosity that we observed (Figure 1.5E). However, empirical 

support for heterozygote advantage as a mechanism for inbreeding depression is scarce 

(Charlesworth and Willis 2009; Hedrick and Garcia-Dorado 2016), suggesting that it may not 

substantially impact our results. In addition, we did not include adaptive mutations in our model, 

which may also be relevant to the ability of small populations to persist under environmental 

change, as well as for exploring the impacts of outbreeding depression due to differential local 

adaptation. Although recent work has suggested that concerns about outbreeding depression may 

have been overstated (Whiteley et al. 2015; Frankham et al. 2017), assessing its influence in 

determining source population selection nevertheless represents an important area for future 

research. Finally, we emphasize that the demographic scenarios explored here may not be 

applicable to all small and isolated populations. Specifically, our assumption of an instantaneous 

contraction from a large ancestral population to a small endangered population may not capture 

the demographic trajectory of many populations that have experienced more gradual declines. In 

these cases, a gradual decline may have facilitated purging of strongly deleterious mutations 

(Figure S1-5), decreasing the necessity for genetic rescue (e.g., Xue et al. 2015; Robinson et al. 

2018). Overall, we recommend that any conservation actions motivated by our results carefully 

consider the demography of the population of interest, ideally using simulations. 

 

In conclusion, our results highlight the detrimental effects of strongly deleterious variation in 

small populations, and suggest that many conservation strategies for endangered species may be 

improved by minimizing strongly deleterious variation rather than maximizing heterozygosity. 

Heterozygosity at putatively neutral markers (e.g., microsatellites and RAD loci) has long served 
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as an essential tool for assessing population health and risk of extinction due to inbreeding 

depression (Teixeira and Huber 2020); here, we highlight ways in which this approach may be 

misleading. These results are especially relevant to the ongoing reintroduction of wolves to Isle 

Royale, which has been guided by the goal of maximizing the genetic diversity of the new 

population. Although our simulations are motivated by this example, by examining a wide range 

of demographic scenarios, our results have implications beyond the Isle Royale wolf population. 

Future research should explore implementation of these strategies by expanding the use of 

genomic tools and assessments of deleterious variation in the context of the conserving small and 

isolated populations (Fitzpatrick and Funk 2019). Given the great expense of most translocation 

programs, incorporating genomic approaches represents a sound investment with the potential to 

substantially postpone the need for future intervention.  
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Figures 

Figure 1.1 

 
Figure 1.1: Schematic of the demographic scenarios used for simulations. (A) Schematic for ‘population 

contraction’ simulations. (B) Schematic for ‘genetic rescue’ simulations. Note that migration occurs in the 

genetic rescue scenario when the endangered population decreases in size to five or fewer individuals 

when Kendangered =25 and 15 or fewer individuals when Kendangered =50.  
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Figure 1.2 

 

Figure 1.2: Results for population contraction simulations under the hmix model of dominance. (A) Mean 

heterozygosity of ancestral populations prior to contraction. (B) Average number of strongly deleterious 

alleles (s < -0.01) per individual in the ancestral populations prior to contraction. (C) Time to extinction 

following contraction from ancestral populations of varying size to an endangered population with K=25. 

Extinction times for Kendangered = 50 shown in Figure S1-8. Note that the y-axis is on a log scale. For each 

parameter setting, 25 simulation replicates were run.  
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Figure 1.3 

Figure 1.3: Representative examples of population contraction simulations with ancestral 

populations of varying size. (A) Example with Kancestral = 1,000. (B) Example with Kancestral = 

15,000. The top of each panel shows population size (N) in black and carrying capacity (K) in 

gold, the middle shows the average number of strongly deleterious alleles (s < -0.01) per 

individual, and the bottom shows mean absolute fitness in blue and mean inbreeding coefficient 

(FROH) in orange. For both replicates, Kendangered = 25 and an hmix model of dominance was 

assumed. Note the differing x-axis scales for panels A and B.   
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Figure 1.4 

 

Figure 1.4: Impact of dominance coefficients on the accumulation of strongly deleterious mutations and 

extinction times following a contraction. (A) Mean number of strongly deleterious alleles per individual 

(s < -0.01) prior to contraction in ancestral populations of varying size and under varying models of 

dominance. (B) Time to extinction following contraction to Kendangered = 25 plotted on a log scale. Note 

that we were unable to obtain results for Kancestral = 10,000 and 15,000 under the hs relationship due to 

computational limitations. For each parameter setting, 25 simulation replicates were run. 
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Figure 1.5 

 

Figure 1.5: Source population deleterious variation determines the effectiveness of genetic rescue. (A) 

Average heterozygosity of source populations used for genetic rescue during the generation of rescue. (B) 

Mean number of strongly deleterious alleles (s < -0.01) per individual in the source populations used for 

genetic rescue. See Figure S1-10 for source population fitness and levels of inbreeding. (C) Time to 

extinction following genetic rescue from source populations of varying size. (D) Time to extinction 

following genetic rescue is negatively correlated with the number of recessive strongly deleterious alleles 

(s < -0.01) per individual used for rescue. (E) Time to extinction following genetic rescue is not correlated 

with the heterozygosity of the source population. See Figure S1-14 for regression results when 

considering only the K=25 source population. (F) Time to extinction under different strategies of genetic 

rescue from the K=10,000 source population. For each parameter setting, 50 simulation replicates were 

run. 
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Figure 1.6 

 

Figure 1.6: Representative examples of genetic rescue simulations with source populations of varying 

size. (A) Example when a large source population (K=10,000) is used for genetic rescue. (B) Example 

when a moderate-sized (K=1,000) is used. The top of each panel shows population size (N) in black and 

carrying capacity (K) in gold, the middle shows the average number of strongly deleterious alleles (s < -

0.01) per individual, and the bottom shows mean absolute fitness in blue and mean inbreeding coefficient 

(FROH) in green. The dashed grey line indicates the generation in which migration occurred. For both 

replicates, Kendangered = 25 and an hmix model of dominance was assumed. Note the differing x-axis scales 

for panels A and B. 
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Abstract 

In cases of severe wildlife population decline, a key question is whether recovery efforts 

will be impeded by genetic factors such as inbreeding depression. Decades of excess mortality 

from gillnet fishing have driven Mexico's vaquita porpoise (Phocoena sinus) to ~10 remaining 

individuals. We analyzed whole genome sequences from 20 vaquitas and integrated genomic and 

demographic information into stochastic, individual-based simulations to quantify the species' 

recovery potential. Our analysis suggests the vaquita's historical rarity has resulted in a low 

burden of segregating deleterious variation, reducing the risk of inbreeding depression. Similarly, 

genome-informed simulations suggest the vaquita can recover if bycatch mortality is 

immediately halted. This study provides hope for vaquitas and other naturally rare endangered 

species and highlights the utility of genomics in predicting extinction risk. 
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Main Text 

A central question for populations that have undergone severe declines is whether recovery is 

possible, or if it may be hindered by deleterious genetic factors (Wiedenfeld et al. 2021). Perhaps 

the most immediate genetic threat in populations of very small size (<25 individuals) is the 

deterioration of fitness due to inbreeding depression (Keller and Waller 2002; Charlesworth and 

Willis 2009). Thus, predicting the threat of inbreeding depression under various genetic and 

demographic conditions is essential for the conservation of endangered species.  

 

The critically endangered vaquita porpoise (Phocoena sinus), found only in the northernmost 

Gulf of California, Mexico, has declined from ~600 individuals in 1997 to around 10 individuals 

at present (Jaramillo-Legorreta et al. 2019). This precipitous decline has been driven by 

incidental mortality in fishing gillnets (bycatch) ((see Supplemental Methods; Jaramillo-

Legorreta et al. 2019); Figure 2.1A). Efforts to reduce the intensity of illegal gillnet fishing and 

implement stronger protections for vaquitas have not been successful, and vaquitas are now 

considered the most endangered marine mammal (Jaramillo-Legorreta et al. 2019). A recent 

viability analysis found that the vaquita population could theoretically rebound if bycatch 

mortality is eliminated (Cisneros-Mata et al. 2021). However, the degree to which genetic factors 

may prevent a robust recovery is unknown, leading some to argue that the species is doomed to 

extinction from genetic threats (see discussion in (Taylor and Rojas-Bracho 1999; Sonne et al. 

2021; Wiedenfeld et al. 2021)). 

 

Population viability analysis (PVA) has long been an important tool for modelling extinction risk 

(Brook et al. 2000). However, it is often challenging to parameterize PVA models for highly 
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endangered species where information on the potential impact of inbreeding depression is 

limited. Genomic data offer a potential solution, as they can be used to estimate the fundamental 

genetic and demographic parameters underlying inbreeding depression. Although the potential 

applications of genomics in conservation have been widely discussed (Allendorf et al. 2010; 

Lewin et al. 2018), genomics remain under-utilized in forecasts of population viability and 

extinction risk. 

 

To investigate the impact of the vaquita’s recent decline and to quantify the species’ recovery 

potential, we sequenced genomic DNA of 19 archival tissue samples to high depth (total n = 20 

including genome from (Morin et al. 2021), mean coverage = 60X; Table S2-1). Samples were 

obtained across three time periods: 1985-1993, 2004, and 2016-2017, spanning ~3 vaquita 

generations (assuming a generation time of 11.9 years; (Taylor et al. 2007)) and an estimated 

~99% decline in population size (Figure 2.1A, (See Supplemental Methods)). All 20 vaquita 

genomes contain uniformly low heterozygosity (mean = 9.04x10-5, standard deviation (S.D.) = 

2.44x10-6 heterozygotes/site; Figure 2.1B and S2-1), consistent with a previous estimate from a 

single individual (Morin et al. 2021). Additionally, genome-wide diversity appears stable over 

the sampling period (Figure 2.1B, C), as expected given the short duration of the decline. 

 

We also investigated whether vaquita genomes show signs of recent inbreeding. We found that 

the mean cumulative fraction of vaquita genomes in long (≥1 Mb) runs of homozygosity (ROH) 

is 5.42% (S.D. = 1.7%), implying a low average inbreeding coefficient of FROH = 0.05 (Figure 

2.1D and Figure S2-2). Furthermore, ROH in our sample are relatively short (mean length 1.59-

3.18 Mb), suggesting that they trace to a common ancestor from roughly 15-31 generations ago 
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(178-369 years; (See Supplemental Methods)). This result indicates that these ROH are a 

consequence of the vaquita’s historically limited population size rather than recent inbreeding. 

Finally, we found limited evidence for close relatives in our dataset, aside from two known 

mother-fetus pairs (Figure S2-3). 

 

To better characterize the vaquita’s long-term demographic history, we used the distribution of 

allele frequencies to perform model-based demographic inference. Overall, we found good fit for 

a two-epoch model in which the vaquita effective population size (Ne) declined from 4,485 to 

2,807 individuals ~2,162 generations ago (~25.7 KYA; (See Supplemental Methods); Figure 

2.1E, figs. S4 and S5, tables S2 to S4). Thus, vaquitas have persisted at relatively small 

population sizes for at least tens of thousands of years, resulting in uniformly low genome-wide 

diversity that is among the lowest documented in any species to date (Morin et al. 2021). Here, 

we use ‘long-term small population size’ to mean Ne on the order of a few thousand individuals 

over thousands of generations, as opposed to ‘small population size’ meaning Ne ≤100, as in 

some other contexts (e.g., (Kimura et al. 1963; Lynch et al. 1995))). 

 

A predicted consequence of long-term small population size is the reduced efficacy of purifying 

selection against weakly deleterious alleles with selection coefficients <<1/(2*Ne) (Kimura et al. 

1963; Lynch et al. 1995). Such alleles can drift to high frequencies and become fixed, potentially 

contributing to reduced fitness. To investigate this, we compared the burden of putatively 

deleterious protein-coding variants in vaquitas with 11 other cetacean species (Table S2-2-5, 

Figure S2-6). Specifically, we focused on nonsynonymous mutations at sites under strong 

evolutionary constraint (Ng and Henikoff 2001), and loss-of-function (LOF) mutations that are 
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predicted to disrupt gene function. We used the ratio of deleterious to synonymous variants as a 

proxy for the efficacy of purifying selection (See Supplemental Methods) and used genome-wide 

heterozygosity as a proxy for Ne (Figure 2.2A, B and Figure S2-7). The ratio of deleterious 

variants is significantly negatively correlated with Ne (phylogenetic generalized least squares 

(PGLS) regression, pdel. = 1.32x10-2, pLOF = 7.88x10-3), consistent with expectation. Among all 

species in our study, vaquitas have the highest proportional burden of deleterious alleles. 

Compared to the species with the next lowest diversity (orca, Orcinus orca), ratios for 

deleterious and LOF mutations in vaquitas are 1.14x and 1.23x higher, respectively. 

Furthermore, we demonstrate using simulations that this elevated ratio is minimally impacted by 

the vaquita’s recent population decline, and is instead attributable to its historical population size 

(Figure S2-9; (See Supplemental Methods)). Similar trends exist for homozygous deleterious 

mutations, which includes variants that may be fixed in the species (Figure S2-8). Thus, elevated 

ratios of deleterious to neutral variation among polymorphisms (heterozygotes) and substitutions 

(homozygotes) in vaquitas are consistent with an accumulation of weakly deleterious alleles 

under long-term small population size. The remaining vaquita individuals appear healthy and are 

actively reproducing (Taylor et al. 2019; Gulland et al. 2020), suggesting the species’ fitness has 

not been severely compromised by its longstanding elevated burden of weakly deleterious 

alleles. 

 

A larger concern for vaquita recovery is future fitness declines due to inbreeding depression, 

given the inevitability of inbreeding in any recovery scenario. However, the risk of inbreeding 

depression (or “inbreeding load”) is predicted to be reduced in species with long-term small 

population size because 1) increased homozygosity exposes recessive strongly deleterious alleles 
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to selection more frequently, and 2) drift decreases the absolute number of segregating recessive 

deleterious variants (Glémin 2003; Kyriazis et al. 2021). To assess the potential for future 

inbreeding depression in vaquitas relative to other cetaceans, we quantified the total number of 

heterozygous deleterious alleles per genome, which reflect alleles that could contribute to 

inbreeding depression when made homozygous through inbreeding. We found that the total 

number of heterozygous putatively deleterious alleles per genome is positively correlated with 

genome-wide diversity (PGLS pdel. = 5.57x10-6, pLOF = 1.91x10-5) (Figure 2.2C, D). Among all 

cetaceans in our study, vaquitas harbor the fewest deleterious heterozygotes per genome. 

Compared to the orca, vaquitas have 0.33x and 0.36x the number of deleterious and LOF 

heterozygotes, respectively. Similar trends are evident in all mutation classes, including 

conserved noncoding regions (Figure S2-10). Thus, although vaquitas have an elevated 

proportion of deleterious relative to neutral variants (Figure 2.2A, B, S2-8), they nevertheless 

have a low absolute number of segregating deleterious variants (Figure 2.2C, D), implying a low 

inbreeding load. 

 

To model potential recovery scenarios for the vaquita, we combined our genomic results with 

information about vaquita life history to parameterize stochastic, individual-based simulations 

using SLiM3 ((See Supplemental Methods; Haller and Messer 2019); Figure 2.3A, S2-11). 

These simulations were designed to model vaquita protein-coding regions, incorporating both 

neutral mutations and recessive deleterious mutations, the latter of which are thought to underlie 

inbreeding depression (McCune et al. 2002; Charlesworth and Willis 2009). We used our 

genomic dataset to estimate a vaquita mutation rate (Figure S2-12) as well as a distribution of 

selection coefficients for new mutations (Figure S2-13), and assumed an inverse relationship 
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between dominance and selection coefficients (See Supplemental Methods). Importantly, our 

model allows for deleterious mutations to drift to fixation and impact fitness (figs. S14 to S16; 

(See Supplemental Methods)). We used our demographic model (Figure 2.1E) to simulate the 

historical vaquita population (figs. S17 and S18), then initiated a bottleneck by introducing 

stochastic bycatch mortality at a rate calibrated to the empirical rate of recent decline as of 2018 

(Figure 2.1A and S2-19; (See Supplemental Methods)). Finally, we allowed for recovery by 

reducing the bycatch mortality rate after the population reached a ‘threshold population size’ of 

10 or fewer individuals, based on the current estimated population size.  

 

We first used this model to examine the impact of varying levels of bycatch mortality on 

extinction risk over the next 50 years. We estimate a high probability of recovery if bycatch 

mortality ceases entirely, with only 6% of simulation replicates going extinct (Figs. 3B, 4A). In 

addition, simulated populations that persist exhibit substantial growth, with a mean population 

size in 2070 of 298.7 individuals (S.D. = 218.2; Figure 2.4A). However, if bycatch mortality 

rates are decreased by just 90%, extinction rates increase to 27% (Figs. 3B and 4B), with more 

limited recovery in population sizes (mean of 49.2 individuals in 2070, S.D. = 34.4; Figure 

2.4B). Finally, if bycatch mortality rates are decreased by just 80%, extinction occurs in 62% of 

simulation replicates. Thus, recovery potential critically depends on reducing bycatch mortality 

rates, with even moderate levels of bycatch resulting in a high likelihood of extinction.  

 

Next, we examined the importance of the threshold population size, given uncertainty in the 

2018 estimate of 10 individuals (Jaramillo-Legorreta et al. 2019). As expected, extinction rates 

decrease when assuming a threshold population size of 20 and increase when assuming a 
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threshold population size of 5 (Figure 2.3B). These results emphasize that the number of 

remaining vaquita individuals is also a critical factor underlying extinction risk. 

 

To quantify the inbreeding load in our model, we estimated the ‘number of diploid lethal 

equivalents’ (or 2B), which characterizes the rate at which fitness is lost with increasing levels of 

inbreeding (Morton et al. 1956; Keller and Waller 2002). Typically, inbreeding load is quantified 

by comparing estimates of individual fitness and inbreeding in natural populations (Ralls et al. 

1988; Keller and Waller 2002); however, such data do not exist for most species, including the 

vaquita. Under our simulation parameters, we estimate an inbreeding load of 2B = 0.95 in 

vaquitas (Table S2-6), significantly lower than the median empirical estimate for mammals of 

6.2 (Ralls et al. 1988), likely due to the vaquita’s relatively small historical Ne. Nevertheless, 

simulations that exclude deleterious mutations result in a significantly lower extinction rate 

(Figure 2.3B), confirming that inbreeding depression impacts recovery potential in our model.  

 

To further explore how the inbreeding load in our model depends on historical demography, we 

ran simulations with the historical Ne increased x20. We found an increased extinction rate of 

52%, compared to 27% with our empirical population size parameters, with minimal recovery 

for replicates that persisted (mean of 16.2 individuals in 2070, S.D. = 14.5, Figure 2.4C). 

Additionally, with this larger historical Ne, we observe a greatly increased inbreeding load of 2B 

= 3.32 (Figure S2-20 and Table S2-6). These findings further demonstrate the importance of the 

vaquita’s natural rarity as a factor underlying their low inbreeding load and increased potential 

for recovery.  
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Given the uncertainty in many of our model parameters, we conducted sensitivity analyses 

varying the calving interval, mutation rate, distribution of dominance and selection coefficients, 

and target size for deleterious mutations (See Supplemental Methods). Although these factors 

influence extinction probabilities, recovery remains the likely outcome (>50% probability) in 

nearly all cases when assuming a threshold population size of 10 and a 90% reduction of bycatch 

mortality (Figure S2-21 and Table S2-6). Two notable exceptions to this are for models with a 

higher mutation rate, where we observed a 55% extinction rate compared to 27% in our ‘base’ 

model, and for models with decreased calving interval, where we also observed a 55% extinction 

rate (Figure S2-21 and Table S2-6). Thus, although uncertainty exists in our projections, the 

overall conclusion that recovery is possible if bycatch is greatly reduced remains robust to our 

model assumptions. Finally, we note that our simulations do not consider factors such as reduced 

adaptive potential or increased susceptibility to disease caused by low genetic variability, which 

may impact future persistence. Vaquitas have survived with low diversity for tens of thousands 

of years and have endured environmental changes in the past (Morin et al. 2021), suggesting that 

these factors alone do not doom the species to extinction. Conceivably, low diversity in the 

vaquita may limit the species’ capacity to adapt to increasing global change over the long term, 

but this risk is challenging to quantify and should not preclude recovery efforts in the short term.  

 

In conclusion, our results suggest there is a high potential for vaquita recovery in the absence of 

gillnet mortality, refuting the view that the species is doomed to extinction by genetic factors. 

Our approach leverages genomic data and methodology to forecast population viability and 

extinction risk, enabling a more nuanced assessment of the threat of genetic factors to 

persistence. The key aspect of the vaquita that our analysis reveals is that its historical population 
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size was large enough to prevent the fixation of all but weakly deleterious alleles, and small 

enough to reduce the inbreeding load from recessive strongly deleterious mutations. Numerous 

other examples of species rebounding from bottlenecks of similar magnitude to that of the 

vaquita have been documented (reviewed in (Wiedenfeld et al. 2021)). For example, many 

parallels exist between the vaquita and Channel Island foxes, which similarly have exceptionally 

low genetic diversity, yet were able to rebound from severe recent bottlenecks without apparent 

signs of inbreeding depression (Robinson et al. 2018). Together, these examples challenge the 

assumption that populations that have experienced catastrophic declines are genetically doomed 

and provide hope for the recovery of endangered species that are naturally rare. Finally, our 

analysis demonstrates the potential for genomics-informed population viability modelling, which 

may have widespread applications given the increasing feasibility of genomic sequencing for 

non-model species amid a worsening extinction crisis (Ceballos et al. 2020).  
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Figure 2.1 

 

Figure 2.1. Vaquita genome-wide diversity and demographic history. (A) Model of vaquita 

census population size based on previous surveys (See Supplemental Methods) shows a dramatic 

recent decline. (B) Bar plots of per-site heterozygosity in 1-Mb genomic windows in three 

individuals (one from each sampling period; see Figure S2-1 for all) show little variability within 

or between individuals. (C, D) Genome-wide heterozygosity and ROH burden are consistent 

between sampling periods. Lines connect mother-fetus pairs; open symbols indicate offspring. 

expectation. Among all species in our study,
vaquitas have the highest proportional burden
of deleterious alleles. Compared with the spe-
cies with the next lowest diversity (the orca,
Orcinus orca), ratios for deleterious and LOF
mutations in vaquitas are 1.14×and 1.23×higher,
respectively. Furthermore, we demonstrate
using simulations that this elevated ratio is
minimally affected by the vaquita’s recent
population decline and is instead attributable
to its historical population size (fig. S9) (5). Sim-
ilar trends exist for homozygous deleterious
mutations, which include variants that may
be fixed in the species (fig. S8). Thus, elevated
ratios of deleterious-to-neutral variation among
polymorphisms (heterozygotes) and substi-
tutions (homozygotes) in vaquitas are consistent
with an accumulation of weakly deleterious
alleles under long-term small population size.

However, despite this elevated burden of
weakly deleterious variants, the remaining
vaquita individuals appear healthy and are
actively reproducing (17, 18), which suggests
that the species’ fitness has not been severely
compromised.
A larger concern for vaquita recovery is fu-

ture fitness declines resulting from inbreeding
depression given the inevitability of inbreeding
in any recovery scenario. However, the risk of
inbreeding depression (inbreeding load) is
predicted to be reduced in species with long-
term small population size because (i) increased
homozygosity exposes recessive strongly dele-
terious alleles to selection more frequently
and (ii) drift decreases the absolute number
of segregating recessive deleterious variants
(19, 20). To assess the potential for future
inbreeding depression in vaquitas relative to

other cetaceans, we quantified the total number
of heterozygous deleterious alleles per genome,
which reflect alleles that could contribute to
inbreeding depression when made homozy-
gous through inbreeding. We found that the
total number of heterozygous putatively dele-
terious alleles per genome is positively corre-
lated with genome-wide diversity (PGLS pdel =
5.57× 10−6, pLOF = 1.91× 10−5) (Fig. 2, C and D).
Among all cetaceans in our study, vaquitas
harbor the fewest deleterious heterozygotes
per genome. Comparedwith the orca, vaquitas
have 0.33× and0.36× the number of deleterious
and LOF heterozygotes, respectively. Similar
trends are evident in all mutation classes, in-
cluding conserved noncoding regions (fig. S10).
Thus, although vaquitas have an elevated pro-
portionof deleterious relative toneutral variants
(Fig. 2, A and B, and fig. S8), they nevertheless
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Fig. 1. Vaquita genome-wide diversity and demographic history. (A) Model
of vaquita census population size based on previous surveys (5) shows a
marked recent decline. (B) Bar plots of per-site heterozygosity in 1-Mb genomic
windows in three individuals (one from each sampling period; see fig. S1 for
all) show little variability within or between individuals. bp, base pair. (C and

D) Genome-wide heterozygosity (C) and ROH burden (D) are consistent
between sampling periods. Lines connect mother-fetus pairs, and open symbols
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(E) Two-epoch demographic model inferred with 𝜕a𝜕i. Parameter 95% confidence intervals 

indicated in parentheses.  
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Figure 2.2 

 

Figure 2.2. Deleterious variation in vaquitas and other cetaceans. Ratios of deleterious 

nonsynonymous (A) and LOF (B) heterozygotes to synonymous heterozygotes are significantly 

negatively correlated with genome-wide heterozygosity (per bp, log-scaled). Total numbers of 

deleterious nonsynonymous (C) and LOF (D) heterozygotes per genome are significantly 

positively correlated with genome-wide heterozygosity (per bp). Grey lines show phylogeny-

corrected regressions. 

have a low absolute number of segregating
deleterious variants (Fig. 2, C and D), which
implies a low inbreeding load.
To model potential recovery scenarios for

the vaquita, we combined our genomic results
with information about vaquita life history to
parameterize stochastic, individual-based sim-
ulations using SLiM3 (5, 21) (Fig. 3A and fig.
S11). These simulationswere designed tomodel
vaquita protein-coding regions, incorporating
neutral mutations and (partially) recessive
deleterious mutations, the latter of which are
thought to underlie inbreeding depression
(3, 22). We used our genomic dataset to es-
timate a vaquita mutation rate (fig. S12) as
well as a distribution of selection coefficients
for new mutations (fig. S13) and assumed an
inverse relationship between dominance and
selection coefficients (5). Notably, our model
allows for deleterious mutations to drift to
fixation and affect fitness (figs. S14 to S16)
(5). We used our demographic model (Fig.
1E) to simulate the historical vaquita popu-
lation (figs. S17 and S18) and then initiated a
bottleneck by introducing stochastic bycatch
mortality at a rate calibrated to the empiri-
cal rate of recent decline as of 2018 (Fig. 1A
and fig. S19) (5). Finally, we allowed for re-
covery by reducing the bycatch mortality
rate after the population reached a thresh-
old population size of 10 or fewer individuals,
on the basis of the current estimated popula-
tion size.
We first used this model to examine the

impact of varying levels of bycatch mortality
on extinction risk over the next 50 years. We
estimate a high probability of recovery if
bycatchmortality ceases entirely, with only 6%
of simulation replicates going extinct (Fig. 3B
andFig. 4A).Additionally, simulatedpopulations
that persist exhibit substantial growth, with a
mean population size in 2070 of 298.7 indi-
viduals (SD = 218.2; Fig. 4A). However, if
bycatch mortality rates are decreased by just
90%, extinction rates increase to 27% (Fig. 3B
and Fig. 4B), with more-limited recovery in
population sizes (mean of 49.2 individuals in
2070, SD = 34.4; Fig. 4B). Finally, if bycatch
mortality rates are decreased by just 80%, ex-
tinction occurs in 62% of simulation replicates.
Thus, recovery potential critically depends on
reducing bycatch mortality rates, with even
moderate levels of bycatch resulting in a high
likelihood of extinction.
Next, we examined the importance of the

threshold population size, given uncertainty
in the 2018 estimate of 10 individuals (4). As
expected, extinction rates decrease when
assuming a threshold population size of
20 and increase when assuming a threshold
population size of five (Fig. 3B). These results
emphasize that the number of remaining
vaquita individuals is also a critical factor
underlying extinction risk.
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Fig. 2. Deleterious variation in vaquitas and other cetaceans. (A and B) Ratios of deleterious
nonsynonymous (A) and LOF (B) heterozygotes to synonymous heterozygotes are significantly negatively
correlated with genome-wide heterozygosity (per base pair, log-scaled). (C and D) Total numbers of
deleterious nonsynonymous (C) and LOF (D) heterozygotes per genome are significantly positively correlated
with genome-wide heterozygosity (per base pair). Gray lines show phylogeny-corrected regressions
[excluding the Indo-Pacific finless porpoise (5)].
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Figure 2.3 

 

Figure 2.3. Model schematic and extinction rates under various simulation parameters. (A) 

Diagram of events that occur during one year in our SLiM simulation model. (B) Percent of 

replicates going extinct over the next 50 years under varying recovery parameters. Shading 

indicates extinction rates when only neutral mutations are simulated, and “N” represents the 

threshold population size. 

  

have a low absolute number of segregating
deleterious variants (Fig. 2, C and D), which
implies a low inbreeding load.
To model potential recovery scenarios for

the vaquita, we combined our genomic results
with information about vaquita life history to
parameterize stochastic, individual-based sim-
ulations using SLiM3 (5, 21) (Fig. 3A and fig.
S11). These simulationswere designed tomodel
vaquita protein-coding regions, incorporating
neutral mutations and (partially) recessive
deleterious mutations, the latter of which are
thought to underlie inbreeding depression
(3, 22). We used our genomic dataset to es-
timate a vaquita mutation rate (fig. S12) as
well as a distribution of selection coefficients
for new mutations (fig. S13) and assumed an
inverse relationship between dominance and
selection coefficients (5). Notably, our model
allows for deleterious mutations to drift to
fixation and affect fitness (figs. S14 to S16)
(5). We used our demographic model (Fig.
1E) to simulate the historical vaquita popu-
lation (figs. S17 and S18) and then initiated a
bottleneck by introducing stochastic bycatch
mortality at a rate calibrated to the empiri-
cal rate of recent decline as of 2018 (Fig. 1A
and fig. S19) (5). Finally, we allowed for re-
covery by reducing the bycatch mortality
rate after the population reached a thresh-
old population size of 10 or fewer individuals,
on the basis of the current estimated popula-
tion size.
We first used this model to examine the

impact of varying levels of bycatch mortality
on extinction risk over the next 50 years. We
estimate a high probability of recovery if
bycatchmortality ceases entirely, with only 6%
of simulation replicates going extinct (Fig. 3B
andFig. 4A).Additionally, simulatedpopulations
that persist exhibit substantial growth, with a
mean population size in 2070 of 298.7 indi-
viduals (SD = 218.2; Fig. 4A). However, if
bycatch mortality rates are decreased by just
90%, extinction rates increase to 27% (Fig. 3B
and Fig. 4B), with more-limited recovery in
population sizes (mean of 49.2 individuals in
2070, SD = 34.4; Fig. 4B). Finally, if bycatch
mortality rates are decreased by just 80%, ex-
tinction occurs in 62% of simulation replicates.
Thus, recovery potential critically depends on
reducing bycatch mortality rates, with even
moderate levels of bycatch resulting in a high
likelihood of extinction.
Next, we examined the importance of the

threshold population size, given uncertainty
in the 2018 estimate of 10 individuals (4). As
expected, extinction rates decrease when
assuming a threshold population size of
20 and increase when assuming a threshold
population size of five (Fig. 3B). These results
emphasize that the number of remaining
vaquita individuals is also a critical factor
underlying extinction risk.
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Fig. 2. Deleterious variation in vaquitas and other cetaceans. (A and B) Ratios of deleterious
nonsynonymous (A) and LOF (B) heterozygotes to synonymous heterozygotes are significantly negatively
correlated with genome-wide heterozygosity (per base pair, log-scaled). (C and D) Total numbers of
deleterious nonsynonymous (C) and LOF (D) heterozygotes per genome are significantly positively correlated
with genome-wide heterozygosity (per base pair). Gray lines show phylogeny-corrected regressions
[excluding the Indo-Pacific finless porpoise (5)].
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Fig. 3. Model schematic and extinction rates under various simulation parameters. (A) Diagram of
events that occur during 1 year in our SLiM simulation model. (B) Percent of replicates going extinct over the
next 50 years under varying recovery parameters. Shading indicates extinction rates when only neutral
mutations are simulated, and N values represent the threshold population sizes.
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Figure 2.4 

 

Figure 2.4. Simulation trajectories under various recovery scenarios. (A) Simulation trajectories 

under empirically-inferred historical demographic parameters assuming a reduction in bycatch 

mortality of 100%. (B) Simulation trajectories with bycatch mortality rate decreased by only 

90%. (C) Simulation trajectories with historical population size increased x20 and assuming a 

decrease in bycatch mortality of 90%. For all simulations, we assumed a population size 

threshold of 10 individuals. Replicates that went extinct are colored red and replicates that 

persisted are colored blue. 

  

To quantify the inbreeding load in our mod-
el, we estimated the number of diploid lethal
equivalents (2B), which characterizes the rate
at which fitness is lost with increasing levels
of inbreeding (2, 23). Typically, inbreeding load
is quantified by comparing estimates of indi-
vidual fitness and inbreeding in natural popu-
lations (2, 24); however, such data do not exist
for most species, including the vaquita. Under
our simulation parameters, we estimate an
inbreeding load of 2B = 0.95 in vaquitas (table
S6), which is substantially lower than the
median empirical estimate for mammals of
3.1 (24), likely because of the vaquita’s rela-
tively small historical Ne. Nevertheless, simu-
lations that exclude deleterious mutations
result in a substantially lower extinction rate
(Fig. 3B), which confirms that inbreeding
depression affects recovery potential in our
model.
To further explore how the inbreeding load

in our model depends on historical demogra-
phy, we ran simulations with the historical
Ne increased by 20×. We found an increased
extinction rate of 52%, compared with 27%

with our empirical population size param-
eters, with minimal recovery for replicates
that persisted (mean of 16.2 individuals in
2070, SD = 14.5; Fig. 4C). Additionally, with
this larger historical Ne, we observe a greatly
increased inbreeding load of 2B = 3.32 (fig.
S20 and table S6). These findings further
demonstrate the importance of the vaquita’s
natural rarity as a factor underlying their low
inbreeding load and increased potential for
recovery.
Given the uncertainty in many of our model

parameters, we conducted sensitivity analyses
varying the calving interval, mutation rate,
distribution of dominance and selection co-
efficients, and target size for deleterious muta-
tions (5). Although these factors influence
extinction probabilities, recovery remains the
likely outcome (>50% probability) in nearly all
cases when assuming a threshold population
size of 10 and a 90% reduction of bycatch
mortality (fig. S21 and table S6). Two notable
exceptions to this are for models with a higher
mutation rate, where we observed a 55% ex-
tinction rate compared with 27% in our base

model, and formodels with a decreased calving
interval, where we also observed a 55% extinc-
tion rate (fig. S21 and table S6). Thus, although
uncertainty exists in our projections, the overall
conclusion that recovery is possible if bycatch is
greatly reduced remains robust to our model
assumptions. Finally, we note that our simu-
lations do not consider factors such as reduced
adaptive potential or increased susceptibility
to disease caused by low genetic variability,
whichmay affect future persistence. Vaquitas
have survived with low diversity for tens of
thousands of years and have endured environ-
mental changes in the past (12), which suggests
that these factors alone do not doom the spe-
cies to extinction. Conceivably, low diversity in
the vaquita may limit the species’ capacity to
adapt to increasing global change over the long
term, but this risk is challenging to quantify
and should not preclude recovery efforts in the
short term.
Our results suggest that there is a high

potential for vaquita recovery in the absence
of gillnet mortality, refuting the view that the
species is doomed to extinction by genetic
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Fig. 4. Simulation trajectories under various recovery scenarios. (A) Sim-
ulation trajectories under empirically inferred historical demographic parame-
ters assuming a reduction in bycatch mortality of 100%. (B) Simulation
trajectories with bycatch mortality rate decreased by only 90%. (C) Simulation

trajectories with historical population size increased by 20× and assuming a
decrease in bycatch mortality of 90%. For all simulations shown here, we
assumed a population size threshold of 10 individuals. Replicates that went
extinct are colored red, and replicates that persisted are colored blue.
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Abstract 

Island ecosystems provide models to assess the impacts of isolation on population 

persistence. However, most studies of persistence have focused on a single species, without 

comparisons to other organisms they interact with in the ecosystem. The simple predator-prey 

system of moose and gray wolves on Isle Royale provides allows a direct contrast of genetic 

variation in a prey species with their natural predator. Wolves on Isle Royale exhibited signs of 

severe inbreeding depression, which nearly drove the population to extinction in 2019. In the 

relative absence of wolves, the moose population has thrived and exhibits no obvious signs of 

inbreeding depression despite being isolated for ~120 years. Here, we examine the genomic 

underpinnings of population persistence in the Isle Royale moose population. We document high 

levels of inbreeding in the population, roughly as high as the wolf population at the time of its 

decline. However, inbreeding in the moose population manifests in the form of intermediate-

length runs of homozygosity indicative of gradual inbreeding, contrasting with the severe recent 

inbreeding observed in the wolf population. Using simulations, we demonstrate that this more 

gradual inbreeding in the moose population has resulted in an estimated 50% purging of the 

inbreeding load. However, we also document notable increases in genetic load, which could 

eventually threaten population viability over the long term. Overall, our results demonstrate a 

complex relationship between inbreeding, genetic diversity, and population viability that 
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highlights the importance of maintaining isolated populations at moderate size to avert extinction 

from genetic factors. 
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Introduction 

Anthropogenic habitat fragmentation has dramatically increased the number of isolated and 

inbred populations (Haddad et al. 2015). To conserve these populations, a crucial question is 

whether they will be able to persist in isolation, or if they will be driven to extinction by 

deleterious genetic factors, such as inbreeding depression (Hedrick and Garcia-Dorado 2016). 

Numerous examples exist of inbreeding depression driving population decline in isolated 

populations (reviewed in (Keller and Waller 2002)). However, in some populations, harmful 

recessive mutations may potentially be ‘purged’ by purifying selection and such purging may 

avert inbreeding depression (Glémin 2003; Xue et al. 2015; Hedrick and Garcia-Dorado 2016; 

Robinson et al. 2018; Grossen et al. 2020; Pérez-Pereira et al. 2021). Purging may be most 

effective in populations where inbreeding is gradual due to a moderate population size (Day et al. 

2003; Glémin 2003; Pekkala et al. 2012; Robinson et al. 2018; Kyriazis et al. 2021; Pérez-Pereira 

et al. 2021). However, the extent to which purging is a relevant factor for the conservation of 

threatened populations, and more broadly, the degree to which populations can persist with low 

genome-wide diversity, is controversial (Ralls et al. 2020; Kardos et al. 2021; Khan et al. 2021; 

Kyriazis et al. 2021; Teixeira and Huber 2021; Kleinman-Ruiz et al. 2022; Pérez-Pereira et al. 

2022; Willi et al. 2022).  

 

One of the best-studied examples of inbreeding depression driving population decline is the gray 

wolf population on Isle Royale, an island in Lake Superior roughly 544 km2 in area. After ~70 

years of isolation at a population size of ~25 individuals, the Isle Royale wolf population 

declined nearly to extinction, with just two individuals remaining in the population in 2018 (Hoy, 

Peterson, et al. 2020). Recent research has demonstrated that this population collapse was a 



 65 

consequence of severe inbreeding depression in the form of widespread congenital deformities 

(Hedrick et al. 2019; Robinson et al. 2019). The decline of the Isle Royale wolf population 

allowed its main prey, moose, to thrive. The most recent moose census count was ~2000 

individuals, though the population generally numbers ~1000 individuals (Hoy, Peterson, et al. 

2020). Moreover, despite the moose population having low genetic diversity and being isolated 

on the island for ~120 years (Murie 1934; Mech 1966; Wilson et al. 2003; Sattler et al. 2017), it 

exhibits no obvious signs of inbreeding depression and has population growth rates similar to 

mainland populations (Hoy, MacNulty, et al. 2020). Thus, the contrasting fates of the Isle Royale 

wolf and moose populations provides a compelling case study for understanding the genetic 

underpinnings of population persistence in isolation and effects on predator-prey dynamics.  

 

Outside of the Isle Royale population, North American moose are also known to have low 

genetic diversity relative to Eurasian moose, which is thought to be a consequence of a relatively 

recent founder event following the Last Glacial Maximum (Hundertmark et al. 2002; 

Hundertmark et al. 2003; Decesare et al. 2020). Evidence for this recent founder also comes from 

a relative lack of population structure across North America as well as the near absence of moose 

in the North American fossil record prior to 15,000 years ago (Hundertmark et al. 2002; 

Hundertmark et al. 2003; Decesare et al. 2020; Dussex 2020). Depending on how recent and 

severe this founding bottleneck was, the effects of purging associated with the bottleneck may 

still be apparent in the North American moose population. Thus, the ability of moose to persist in 

isolation on Isle Royale may be enhanced by purging from historical bottlenecks. 
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Here, we use a dataset of high coverage whole genome sequences from 20 North American 

moose and one Eurasian moose to characterize the impacts of bottlenecks, population isolation, 

and purging in North American moose, focusing on the Isle Royale population. We confirm 

previous findings of low genetic diversity in North American moose, especially Isle Royale 

moose, where levels of inbreeding are comparable to that of the Isle Royale gray wolf population 

at the time of its decline. Furthermore, we demonstrate that this low diversity is a consequence of 

severe founder events in both the North American and Isle Royale populations. Finally, we 

conduct extensive simulations exploring the impact of bottlenecks and population isolation on 

genetic load and purging in North American moose. These results suggest substantial purging 

associated with founding bottlenecks for the North American and Isle Royale populations. 

However, this purging also has been accompanied by a notable increase in genetic load. Overall, 

our analysis provides insight into how populations can persist despite severe bottlenecks and 

high inbreeding and emphasizes the importance of maintaining moderate population size to 

ensure viability in isolated populations. Moreover, our results highlight the differential impacts 

of inbreeding depression in isolated predator and prey populations, with implications for 

maintaining healthy ecosystems in the increasingly-fragmented landscape of the Anthropocene.  

 

Results 

Sampling and population structure 

To examine patterns of moose genetic diversity in North America, we generated a high-coverage 

whole genome sequencing dataset for nine moose sampled from Minnesota and seven moose 

sampled from Isle Royale between 2005 and 2014. We added existing moose genomes to our 

dataset from Sweden, Alaska, Idaho, Wyoming, and Vermont. These genomes were aligned, 
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genotyped, and annotated relative to the cattle reference genome (ARS-UCD1.2). Although a 

moose reference genome was recently published (Dussex 2020), we used the more distantly-

related cattle reference in order to leverage its fully assembled chromosomes and high-quality 

annotations (see SI for further discussion). Average sequencing coverage after mapping was 21x 

(range 11-27; Table S1). 

 

We first used these data to characterize population structure among North American moose, 

primarily aiming to assess evidence for isolation of the Isle Royale population. Principal 

component analysis (PCA) revealed a tight clustering of Isle Royale samples relative to other 

North American samples, which were distinctly clustered on the first PC (Figure 3.1B). 

However, when down-sampled to one individual per North American population, the Isle Royale 

and Minnesota samples grouped more closely together, with overall patterns roughly reflecting  

North American geography (Figure 3.1B, inset). Nevertheless, we observe notable differentiation 

between Isle Royale and Minnesota samples, with a mean FST = 0.083. These patterns were also 

reflected in a tree based on identity-by-state, which found a tight clustering of Isle Royale 

samples nested within other North American samples (Figure 3.1C). Furthermore, using 

fastSTRUCTURE analysis we found no evidence for admixture between Isle Royale and 

mainland   

 

samples (Figure 3.1D and S3.1-2). Finally, we also estimated kinship for all North American 

samples, and found that the mainland samples are not closely related to one another (Figure 

3.S3). However, two pairs of samples from Isle Royale exhibited kinship coefficients consistent 

with first-order relationships (mean kinship = 0.234; Figure S3-3). In summary, these findings 
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suggest that the Isle Royale population has been entirely isolated from nearby mainland moose 

populations as suggested by previous work (Wilson et al. 2003; Sattler et al. 2017), and provide a 

general characterization of moose population structure in North America.  

 

Genetic diversity and inbreeding 

Next, we examined levels of genetic diversity and inbreeding across sampled individuals. 

Overall, we find that moose have relatively low diversity compared to other mammals (Figure 

3.2), though these estimates may be slightly downward biased due to using a distant reference 

genome (see SI for discussion). However, these biases do not impact estimates of relative 

diversity across moose populations, where several notable patterns are apparent. First, we 

observe substantially lower diversity in North American samples relative to a sample from 

Sweden, with a decrease of at least ~34% (Figure 3.2). This decrease in diversity is likely 

associated with a founder event for North American moose that is thought to have occurred 

during the last ~15,000 years (Hundertmark et al. 2002; Hundertmark et al. 2003; Decesare et al. 

2020). We observe further reductions in diversity in the Isle Royale population, with an 

estimated reduction of ~30% compared to samples from Minnesota (Figure 3.2). Surprisingly, 

we find even lower diversity in mainland samples from Idaho, Wyoming, and Vermont, possibly 

due to these samples being near the southern range edge, where population densities are 

generally low and declining ((Timmermann and Rodgers 2017); Figure 3.2).  

 

Mirroring these patterns of genetic diversity, the impact of inbreeding was prevalent across 

North American samples in the form of abundant runs of homozygosity (ROH), chromosomal 

segments that are inherited identical by descent from a recent common ancestor (Kirin et al. 
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2010). Specifically, we observed high levels of inbreeding in samples from Isle Royale, 

Vermont, Idaho, and Wyoming, with ~35% of their autosomal genomes being covered by 

ROH >100 kb on average (Figure 3.2) and ~26% covered by ROH >1 Mb (Figure S3-5). As this 

fraction represents an estimate of the inbreeding coefficient (FROH), this result suggests that these 

populations are on average more inbred than an offspring from a full-sib mating (F=0.25). 

Notably, these levels of inbreeding are comparable to the Isle Royale gray wolf population, 

where ~20-50% of their autosomal genomes contained ROH >100 kb (Robinson et al. 2019). By 

contrast, much lower levels of inbreeding were present in samples from Minnesota, Alaska, and 

Sweden, with ~12% of these genomes covered by ROH >100 kb (Figure 3.2), and ~3% covered 

in ROH >1 Mb (Figure S3-5).  

 

Demographic inference 

To understand the demographic processes accounting for these patterns of genetic diversity and 

inbreeding, we fitted demographic models to the site frequency spectrum (SFS) using 𝜕a𝜕i 

(Gutenkunst et al. 2009). Briefly, this approach uses observed allele frequency information to 

estimate demographic parameters for a model with an arbitrary number of population size 

changes (epochs). Our first aim was to estimate the severity of the North American founding 

bottleneck, given the apparent impact of this bottleneck on observed levels of genetic diversity 

between Eurasian and North American moose (Figure 3.2; (Hundertmark et al. 2002)). We 

generated a folded SFS for our Minnesota sample, and inferred various population size change 

models including one, two, three, and four epoch models. Overall, the best-fitting model was a 

four-epoch model that included two ancestral epochs followed by a severe bottleneck to an 

effective population size (Ne) of 49 for 29 generations and then expansion to Ne=193,472 for the 
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last 1,179 generations (Figure 3.3). Bottlenecks that are mild with long duration can lead to 

similar patterns in the SFS as short and severe bottlenecks (Beichman et al. 2022). Consequently, 

we found a similar fit for a model with a slightly more prolonged and less severe bottleneck of 

Ne=218 for 142 generations followed by expansion to Ne=105,531 for the last 1,223 generations 

(Table S3-2). Overall, both of these models are consistent in detecting a strong bottleneck of Ne = 

~50-225 for ~30-150 generations followed by dramatic population growth taking place ~1,200 

years ago. The timing of expansion at ~1,200 generations suggests a recent spread of moose 

across North America starting ~9,600 years ago, assuming a generation time of 8 years (Gaillard 

2007).  

 

 Our next aim for demographic inference was to obtain an estimate of the effective population 

size of the Isle Royale moose population after its founding ~120 years ago using the SFS from 

our Isle Royale sample. Given the shared evolutionary history of the Minnesota and Isle Royale 

populations prior to their divergence, we fixed the demographic parameters of our four-epoch 

model inferred from the Minnesota samples (Figure 3.3), then added a fifth epoch to this model 

representing the founding of Isle Royale. Furthermore, we fixed the timing of this fifth epoch to 

15 generations ago, thus assuming that the population was founded in the early 1900s (120 years 

ago, assuming a generation time of 8 years; (Gaillard 2007)), as suggested by available evidence 

(Murie 1934; Mech 1966). We used this approach to retain power for estimating the Isle Royale 

effective population size when fitting a complex five-epoch model to an SFS from a small 

sample size. When fixing these parameters, we obtained an estimate of Ne=187 on Isle Royale, 

highlighting a dramatic disparity in Ne between the North American and Isle Royale populations 

spanning three orders of magnitude. Additionally, given that the Isle Royale moose population 
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on average numbers ~1000 individuals (Hoy, Peterson, et al. 2020), these results suggest an Ne:N 

ratio of ~0.19, consistent with those observed in other species (Frankham 1995). Notably, we 

observe the same Ne:N ratio of ~0.19 when comparing our estimated North American 

Ne=193,472 (Figure 3.3) to the current census estimate of one million (Timmermann and 

Rodgers 2017). 

 

Quantifying putatively deleterious variation 

To understand how the vastly reduced effective population size on Isle Royale may have 

impacted patterns of deleterious variation compared to mainland populations, we examined 

variants in protein-coding regions that were predicted to be putatively damaging or benign on the 

basis of evolutionary constraint (Vaser et al. 2016). We observe a reduction in heterozygosity for 

both damaging and benign variants on Isle Royale, mirrored by an increase in homozygosity for 

the derived (i.e., mutant relative to the reference) allele (Figure 3.4), as expected given the higher 

levels of inbreeding in the Isle Royale population. Specifically, we find that homozygous derived 

genotype counts are 9.7% higher for damaging variants and 6.8% higher for benign variants in 

Isle Royale moose compared to mainland moose. However, we do not observe an excess of 

derived alleles on Isle Royale (Figure 3.4), as might be expected for a population that has 

accumulated an excess of weakly deleterious mutations due to relaxed purifying selection 

(Lohmueller et al. 2008; Do et al. 2015). Collectively, these results suggest that the genetic load 

attributable to an accumulation of weakly deleterious mutations is negligible in Isle Royale 

moose. 
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Simulations of deleterious variation and genetic load  

Empirical measures of deleterious variation are often challenging to interpret given that the 

functional impact and dominance of mutations are uncertain (Cooper and Shendure 2011; 

Pedersen et al. 2017). Consequently, we also conducted forward-in-time genetic simulations to 

assess the impact of bottlenecks on deleterious genetic variation in North American moose using 

SLiM3 (Haller and Messer 2019). These simulations consisted of a 20 Mb chromosomal 

segment, which included a combination of introns, exons, and intergenic regions. Neutral and 

deleterious mutations occurred at a rate of 7e-9 per base pair (Dussex 2020), with deleterious 

mutations only occurring within exons. Selection coefficients for deleterious mutations were 

drawn from a distribution estimated from human genetic variation data (Kim et al. 2017), and 

dominance coefficients were assumed to be inversely related to selection coefficients, such that 

the most deleterious mutations were also the most recessive (see Materials and Methods).  

 

Our first aim was to examine the impact of the North American colonization bottleneck on 

genetic diversity, genetic load, and purging. Here, we define “genetic load” as the realized 

reduction in fitness due to segregating and fixed deleterious mutations (Kirkpatrick and Jarne 

2000), and quantify purging as a reduction in the simulated “inbreeding load”, a measure of the 

quantity of recessive deleterious variation concealed in heterozygosis (Hedrick and Garcia-

Dorado 2016). To examine the dynamics of inbreeding, genetic diversity, and load in North 

American moose, we simulated under our best-fit demographic model (Figure 3.3), which 

includes a founding bottleneck of Ne=49 for 29 generations followed by expansion to 

Ne=193,472 for 1,179 generations. Over the duration of this bottleneck, we observe a decrease in 

genetic diversity of 21%, along with a decrease in the inbreeding load of 24%, an increase in 
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genetic load of 282% and an increase in FROH to 0.22 (Figure 3.5). However, these increases in 

genetic load and FROH are largely absent after 1,179 generations of recovery, though levels of 

inbreeding notably remain above zero, in agreement with our empirical data (Figure 3.2B). By 

contrast, genetic diversity and inbreeding load do not greatly increase after recovery, with the 

inbreeding load continuing to decline after the bottleneck and remaining 34% below its pre-

bottleneck value even after 1,179 generations of recovery (Figure 3.5). Thus, this result suggests 

that the North American moose population may still be experiencing the lingering purging 

effects of this founding bottleneck, despite occurring ~9,600 years ago. Importantly, we observe 

qualitatively similar patterns when simulating under a model with a slightly longer and less 

severe bottleneck (Figure S3-7), suggesting that these simulation results are robust to uncertainty 

in our estimated demographic parameters. 

 

Next, we examined the impact of isolation and small population size on Isle Royale on patterns 

of genetic variation and genetic load. We again simulated under our North America demographic 

model, though added a final epoch with the estimated Isle Royale demographic parameters of 

Ne=187 for 15 generations. When simulating under this demography, however, we do not 

recapitulate the differences in genetic diversity and inbreeding observed in our empirical data 

between Isle Royale and mainland samples (Figure 3.5). Specifically, heterozygosity decreased 

by only 3.6% compared to a ~30% difference between Minnesota and Isle Royale samples in our 

empirical data, and levels of inbreeding increase only to FROH=0.08 compared to FROH=0.35 from 

our empirical data (Table S3-3).  
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We hypothesized that this discrepancy may be due to the absence of a severe founder event at the 

origination of the Isle Royale population in our model, given that the population is believed  

to be founded by a small number of individuals (Murie 1934; Mech 1966). To test this 

hypothesis, we ran simulations where we included a bottleneck during the first three generations 

following the founding of Isle Royale. We tested three bottleneck severities with effective 

population sizes during the first three generations of Ne={6,24,96}, Ne={4,16,64}, and 

Ne={2,8,32}, each followed by expansion to Ne=187 for the final 12 generations. These 

bottleneck parameters were selected because available evidence suggests that population density 

was low soon after founding, particularly from 1900-1920, though it is unclear exactly how low 

or how many founders there were (Murie 1934; Mech 1966). When varying these bottleneck 

parameters, we find that only the most severe bottleneck of Ne={2,8,32} recapitulated the 

observed differences in genetic diversity and inbreeding, yielding a decrease in heterozygosity of 

32% and increase in inbreeding to FROH=0.35, in agreement with our empirical results (Figs. 5 

and S7-S8; Table S3-3). Under this model, we also observe a relative increase in genetic load on 

Isle Royale of 206% as well as a 53% reduction in the inbreeding load (Figure 3.5; Table S3-3). 

Thus, these results suggest that the Isle Royale moose population may have been founded by just 

two individuals, and that this severe founder event has been an essential factor in shaping 

patterns of genetic diversity, inbreeding, genetic load, and purging on the island. Finally, we do 

not observe any differences in allele counts between simulated island and mainland populations 

for mutations with selection coefficient (s) > -0.01 (Figure S3-9), in agreement with our 

empirical result suggesting negligible impacts on load due to weakly deleterious mutations 

(Figure 3.4). However, we do observe a sharp reduction in the number of strongly deleterious (s 

< -0.1) alleles per individual in the simulated Isle Royale population, suggesting that purging has 
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largely been driven by a reduction in the number of strongly deleterious recessive alleles (Figure 

S3-9). 

 

Although our results suggest a substantial decrease in genetic diversity and increase in 

inbreeding in Isle Royale moose, field observations of the population have not detected obvious 

signs of inbreeding depression or reduced population growth rates (Hoy, MacNulty, et al. 2020). 

We hypothesized that this may be in part due to the purging that occurred during the North 

America founding event, which could enhance the ability of North American moose to persist at 

small population size. To test this hypothesis, we ran simulations under the above parameters 

including a severe Isle Royale founding bottleneck, but excluding the North America founding 

bottleneck. Here, we observe a much greater increase in genetic load on Isle Royale of 350%, 

compared to 206% when including the North America founding event (Table S3-3). Thus, these 

results suggest that the lingering effects of purging due to the North American founder event 

may have aided the ability of moose to persist at small population size on Isle Royale. In other 

words, the negative genetic consequences of small population size on Isle Royale may have been 

greater if the North American moose population had not experienced a strong bottleneck during 

colonization.  

 

Next, we explored the potential impact of a low rate of historical migration on genetic variation 

in the Isle Royale population. Specifically, we explored the effect of a low rate of migration on 

genetic diversity, genetic load, levels of inbreeding, and inbreeding load. We ran simulations 

with migration fractions of 0.5% and 5%, roughly corresponding to 1 and 10 effective migrants 

per generation, respectively, chosen to model two relatively low but plausible rates of migration. 
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Under the low migration scenario of 0.5%, results are nearly identical to the no migration 

scenario (Figure S3-10; Table S3-3), implying that a very low level of historical migration (~1 

migrant per generation) would not have had much impact on the genetic state of the population. 

These results imply that we cannot fully rule out the possibility of a low rate of migration to Isle 

Royale, as suggested by direct observations of moose swimming between Isle Royale and the 

mainland (Vucetich 2021). By contrast, when the migration fraction is increased to 5%, 

heterozygosity is higher and inbreeding lower relative to empirical values (Figure S3-10; Table 

S3-3). In sum, these results further confirm that historical migration to Isle Royale was either 

absent or very low. Moreover, these results also suggest that any future attempts to restore 

genetic diversity and reduce genetic load in the Isle Royale moose population would require a 

relatively high rate of migration (>10 effective migrants per generation).  

 

Finally, we explored the sensitivity of our results to selection and dominance parameters. 

Specifically, we simulated under parameters proposed by Kardos et al. 2021, which assume that 

inbreeding depression is primarily due to recessive lethals and that deleterious mutations with s > 

-0.1 have largely additive effects on fitness. When simulating the North America founder event 

with these parameters, we observe a much smaller 22% increase in genetic load and a more 

substantial 60% decrease in the inbreeding load (Figure S3-11). Additionally, the inbreeding load 

recovers much more rapidly following the bottleneck, due to the faster increase towards 

equilibrium of recessive lethal mutations (Figure S3-11). When simulating a severe founder 

event for Isle Royale, we observe a much greater initial increase in genetic load; however, 

genetic load quickly decreases as recessive lethals are purged from the population, with a net 

increase of 66% (Figure S3-12). Additionally, we observe substantial purging on Isle Royale, 
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with a 75% reduction in the inbreeding load (Figure S3-12). Thus, simulations under these 

parameters predict a much smaller increase in genetic load and much larger impacts of purging. 

This greater impact of purging is likely a consequence of the increased emphasis on recessive 

lethals in this model, which are most easily purged (Hedrick 1994; Pérez-Pereira et al. 2021). 

 

Discussion 

Highly inbred populations are often thought to be doomed to extinction. However, some can 

persist, and understanding the factors enabling persistence can aid in conservation efforts. Our 

results document high inbreeding in the Isle Royale moose population (FROH=0.35 on average; 

Figure 3.2), roughly as high as the gray wolf population at the time of its decline. Yet, despite 

these high levels of inbreeding, the Isle Royale moose population does not exhibit obvious signs 

of inbreeding depression, and maintains population growth rates that do not noticeably differ 

from mainland moose (Hoy, MacNulty, et al. 2020). A key factor that likely underlies these 

different outcomes is the pace of inbreeding in these two populations: whereas the wolf 

population became quickly inbred while isolated at a population size of ~25 for ~70 years, 

inbreeding in the moose population was more gradual due to its more moderate population size 

of ~1000 for a longer duration of ~120 years. These differing demographic histories are reflected 

in the distribution of ROH lengths in the wolf and moose populations. In the wolf population, 

ROH were predominantly long (>10 Mb), reflecting recent and severe inbreeding (Robinson et 

al. 2019), whereas the moose population exhibits an abundance of intermediate-length ROH (1-

10 Mb; Figure 3.2). Several recent studies have highlighted the severe fitness consequences of 

long ROH, which tend to be enriched for highly deleterious recessive alleles, whereas more 

intermediate-length ROH may be largely purged of such variation (Szpiech et al. 2013; Robinson 
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et al. 2019; Szpiech et al. 2019; Martin A. Stoffel et al. 2021). Although our results imply an 

elevated genetic load in the Isle Royale moose population (Figure 3.5), this load has apparently 

not impacted population growth rates substantially, perhaps due to reduced interspecific 

competition on Isle Royale and soft selection (Agrawal and Whitlock 2012). Overall, our results 

emphasize the importance of maintaining moderate size (Ne > 100) in isolated populations to 

enable purging and avert extinction in the short to intermediate term, in agreement with other 

studies (Day et al. 2003; Glémin 2003; Pekkala et al. 2012; Robinson et al. 2018; Kyriazis et al. 

2021; Pérez-Pereira et al. 2021). Over the longer term, maintaining even larger population sizes 

(Ne > 1000) is preferable whenever possible to avoid the impacts of increasing drift load and loss 

of adaptive potential (Kardos et al. 2021; Willi et al. 2022). 

 

Our results suggest that roughly half of the inbreeding load in Isle Royale moose may have been 

purged in the ~15 generations or ~120 years since founding (Figure 3.5). The relatively rapid 

pace of this purging is notable, given that most existing examples of purging in wild populations 

occurred after thousands of years of isolation (Xue et al. 2015; Robinson et al. 2018; Yang et al. 

2018; M. A. Stoffel et al. 2021). In Isle Royale moose, purging appears to have been accelerated 

by a severe founding bottleneck of perhaps just two individuals (Figure 3.5). The impacts of 

severe bottlenecks on purging are well known (Kirkpatrick and Jarne 2000), and have also been 

recently documented in an analysis of Alpine ibex genomes (Grossen et al. 2020). For both Isle 

Royale moose and Alpine ibex, a severe bottleneck followed by relatively prompt recovery 

appears to have driven rapid purging on a timescale of ~100 years. Thus, rapid purging on the 

timescale of anthropogenic fragmentation may only be possible in the presence of severe 

bottlenecks, perhaps precluding intentional purging as a viable conservation strategy. 
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Nevertheless, many populations of at-risk species may have experienced historical purging due 

to severe bottlenecks or long-term moderate population size and identifying these populations 

could prove useful for future management actions.  

 

Our findings also have important implications for understanding the evolutionary history and 

conservation status of mainland North American moose populations. Across all North American 

moose samples, we observe a reduction in genome-wide diversity of at least 34% relative to a 

sample from Sweden (Figure 3.2), consistent with previous work (Hundertmark et al. 2002; 

Dussex 2020). Our demographic modeling indicates this reduction in diversity is due to a severe 

bottleneck in the ancestral North American moose population occurring ~9,600 years ago 

(Figure 3.3). This timing closely aligns with glacial recession at the onset of the Holocene 11,000 

years ago as well as the North American fossil record (Decesare et al. 2020). Furthermore, our 

simulation results suggest a substantial 34% purging of the inbreeding load associated with this 

founding bottleneck, the effects of which may persist until present day (Figure 3.5). This 

phenomenon could further explain the success of the isolated Isle Royale moose population, 

implying that the founding individuals may have been ‘pre-purged’ of inbreeding depression. 

Moreover, the possibility of ‘pre-purging’ in North American moose could also help explain the 

success of other introduced moose populations in North American, such as the Newfoundland 

population, which was founded by just six individuals and now numbers >100,000 individuals 

(Broders et al. 1999). Nevertheless, many fragmented North American moose populations near 

the southern range edge have experienced recent declines (Timmermann and Rodgers 2017). 

Though these declines have generally been linked to synergistic impacts of climate change and 

increasing disease and pathogen load (Murray et al. 2006; Timmermann and Rodgers 2017), the 
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potential role of genetic factors has been largely overlooked. For example, we observed low 

genetic diversity in samples from Idaho and Wyoming (Figure 3.2), perhaps due to the recent 

founding of these populations in the mid 19th century and low population density (Wolfe et al. 

2010). Notably, moose in this region exhibit low adult pregnancy rates (Ruprecht et al. 2016), 

which could potentially be a consequence of inbreeding depression. Moreover, it is possible that 

low genetic diversity in these populations has increased their susceptibility to parasites (Gibson 

and Nguyen 2021). Overall, the causes of moose population declines near the southern range 

edge appear to be complex, and additional genomic sampling of these populations will be 

necessary to more fully investigate the potential role of genetic factors. 

 

In conclusion, our results depict a complex relationship between genetic diversity, inbreeding, 

and population viability in isolated and fragmented populations. The contrasting fates of the Isle 

Royale wolf and moose populations serve as a dramatic example of the importance of 

maintaining isolated populations at moderate size to facilitate purging and avert extinction over 

the short to intermediate term. Moreover, this case study of predator and prey hints at a more far-

reaching phenomenon, in which isolated predator populations may be doomed to extinction by 

inbreeding depression due to their naturally lower density, whereas the higher abundance of prey 

populations may enable them to purge the most severe impacts of inbreeding depression. In light 

of the well-documented connections among gray wolf, moose and plant abundance on Isle 

Royale (McLaren and Peterson 1994), we suggest the possibility of an eco-evolutionary link 

between purging and the dynamics of the Isle Royale ecosystem. In general, purging may have 

system-wide effects in other isolated and fragmented ecosystems, where predator populations are 

declining in part due to inbreeding depression, and prey populations are thriving in their absence, 



 81 

often to the detriment of the broader ecosystem (Estes et al. 2011; Ripple et al. 2014). Thus, our 

results highlight a unique connection between deleterious genetic variation and ecosystem health, 

with implications for best management practices of small and fragmented populations. 
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Materials and Methods 

Sampling and sequencing 

Tissue samples were obtained opportunistically from moose carcasses on Isle Royale and 

Minnesota samples were collected during regular management activities by the Minnesota 

Department of Natural Resources (MN DNR). Isle Royale tissue samples were frozen and 

archived at Michigan Technological University and Minnesota tissue samples were provided by 

the MN DNR. DNA was extracted from samples using Qiagen kits and quantified using a Qubit 

fluorometer. Whole-genome sequencing was performed on an Illumina NovaSeq at the Vincent 

J. Coates Genomics Sequencing Laboratory at University of California, Berkeley and 

MedGenome. Existing genomes from (Kalbfleisch et al. 2018) and (Dussex 2020) were 

downloaded from the National Center for Biotechnology Information (NCBI) Sequence Read 

Archive (see Table S3-1).  

 

Read processing and alignment  

We processed raw reads using a pipeline adapted from the Genome Analysis Toolkit (GATK) 

(Van der Auwera et al. 2013) Best Practices Guide. We aligned paired-end 150bp raw sequence 

reads to the cattle genome (ARS-UCD1.2) using BWA-MEM (Li 2013), followed by removal of 

low-quality reads and PCR duplicates. Given that we do not have a database of know variants, 

we did not carry out Base Quality Score Recalibration, but instead carried out hard filtering of 

genotypes (see below). Although the cattle genome is highly divergent from moose, we opted to 

use it due to its much higher quality and contiguity compared to existing moose genomes 

(scaffold N50 of 103 Mb for ARS-UCD1.2 vs 1.7 Mb for NRM_Aalces_1_0) as well as its high-

quality annotations and existing resources on the Ensembl Variant Effect Predictor database 
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(McLaren et al. 2016). To explore the potential impact of this on our downstream analyses, we 

also mapped a subset of nine genomes to the more closely related hog deer reference genome 

(ASM379854v1), which has high contiguity with a scaffold N50 of 20.7 Mb. Importantly, we 

found that the choice of reference genome here does not appear to qualitatively impact our 

genetic diversity and runs of homozygosity results. Thus, we use the cattle reference genome for 

all downstream analyses (see SI text for further discussion).  

 

Genotype calling and filtering 

We performed joint genotype calling at all sites (including invariant sites) using GATK 

HaplotypeCaller. Genotypes were filtered to include only high-quality biallelic SNPs and 

monomorphic sites, removing sites with Phred score below 30 and depth exceeding the 99th 

percentile of total depth across samples. In addition, we removed sites that failed slightly 

modified GATK hard filtering recommendations (QD < 4.0 || FS > 12.0 || MQ < 40.0 || 

MQRankSum < −12.5 || ReadPosRankSum < −8.0 || SOR > 3.0), as well as those with >25% of 

genotypes missing or >35% of genotypes heterozygous. We masked repetitive regions using a 

mask file downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/Bos_taurus/. Finally, we applied 

a per-individual excess depth filter, removing genotypes exceeding the 99th percentile of depth 

for each individual, as well as a minimum depth filter of six reads.  

 

Population structure and relatedness 

We used SNPrelate v1.14 (Zheng et al. 2012) to run principal component analysis (PCA), 

construct a tree based on identity-by-state (IBS), and estimate kinship among sampled genomes. 

For all analyses, we pruned SNPs for linkage (ld.threshold=0.2) and filtered out sites with minor 
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allele frequency below 0.05, resulting in 50,361 SNPs for analysis. PCA was run both for all 

sampled individuals as well as for North American individuals down-sampled to one individual 

per population. We used the KING method of moments approach (Manichaikul et al. 2010) to 

estimate kinship among North American moose samples. Finally, we estimated IBS among all 

samples, then performed hierarchical clustering on the resulting matrix to construct a 

dendrogram.  

 

As another means of characterizing population structure, we used fastSTRUCTURE v1.0 (Raj et 

al. 2014) to test for admixture among sampled individuals. We converted our vcf to PLINK bed 

format with a minor allele frequency of 0.05 and maintained the order of alleles from the original 

vcf file. We ran fastSTRUCTURE on all sampled individuals as well as only Minnesota and Isle 

Royale individuals, each down-sampled to five unrelated individuals. For both analyses, we ran 

fastSTRUCTURE using values of k from 1-4. Finally, we used vcftools (Danecek et al. 2011) to 

estimate Weir and Cockerham’s (Weir and Cockerham 1984) FST between all Minnesota and Isle 

Royale samples using default settings. 

 

Genetic diversity and runs of homozygosity 

We calculated heterozygosity for each individual in non-overlapping 1 Mb windows across the 

autosomal genome. We removed windows with fewer than 80% of sites called, as well as 

windows below the 5th percentile of the total number of calls, as these windows have high 

variance in heterozygosity. We estimated mean genome-wide heterozygosity by averaging 

heterozygosity across windows for each individual.  
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Runs of homozygosity were called using BCFtools/RoH (Narasimhan et al. 2016). We used the -

G30 flag and allowed BCFtools to estimate allele frequencies. Due to the Swedish sample 

coming from a highly divergent population with differing allele frequencies, we excluded it from 

this analysis. We used a custom R script (R Core Team 2021) to partition the resulting ROH calls 

into length categories 0.1-1 Mb, 1-10 Mb, and 10-100 Mb. We calculated FROH by summing the 

total length of all ROH calls >100 kb (or >1 Mb) and dividing by 2489.4 Mb, the autosomal 

genome length for the cattle reference genome. When conducting this analysis for the subset of 

samples mapped to the hog deer reference genome, we only used scaffolds >1 Mb in length, 

which together sum to 2479 Mb (~93% of the total reference length).  

 

Identifying putatively deleterious variation 

Variant sites were annotated using the Ensembl Variant Effect Predictor (VEP) v.97 (McLaren et 

al. 2016). We used SIFT (Vaser et al. 2016) to determine whether a nonsynonymous mutation is 

likely to be damaging or benign based on phylogenetic constraint. We classified protein-coding 

variants as “damaging” if they were determined to be “deleterious” nonsynonymous variants 

(SIFT score of <0.05) or variants that disrupted splice sites, start codons, or stop codons. 

Variants were classified as “benign” if they were determined to be “tolerated” nonsynonymous 

variants (SIFT score of ≥0.05) or synonymous mutations. Using these annotations, we tallied the 

number of derived alleles of each category relative to the cattle reference genome, as well as the 

number of heterozygous and homozygous derived genotypes, comparing these tallies for 

genomes sampled from Isle Royale and Minnesota. Variants that were that were fixed derived 

across the entire sample were ignored.  
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Demographic inference 

We estimated historical demographic parameters for North American moose based on the neutral 

site frequency spectrum (SFS) using 𝜕a𝜕i (Gutenkunst et al. 2009). In brief, we first focused on 

estimating parameters for the mainland North American population based on the neutral SFS for 

our nine Minnesota genomes, then used these results to guide inference of the effective 

population size on Isle Royale based on a neutral SFS from five genomes of unrelated Isle 

Royale individuals.   

 

To generate a neutral SFS, we began by identifying regions that were >10kb from coding regions 

and did not overlap with repetitive regions (downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bos_taurus/). We also excluded un-annotated highly 

conserved regions that are under strong evolutionary constraint, identified by aligning the 

remaining regions against the zebra fish genome using BLASTv2.7.1 (Camacho et al. 2009) and 

removing any region which had a hit above a 1e-10 threshold.  

 

We then generated a folded neutral SFS for these regions using a modified version of EasySFS 

(https://github.com/isaacovercast/easySFS), which implements 𝜕a𝜕i’s hypergeometric projection 

to account for missing genotypes. We found that the number of SNPs was maximized by using a 

projection value of seven diploids for the Minnesota sample and four diploids for the Isle Royale 

sample. In addition, we counted the number of monomorphic sites passing the projection 

threshold in neutral regions and added these to the 0 bin of the SFS.  
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We then used these SFSs to conduct demographic inference using the diffusion approximation 

approach implemented in 𝜕a𝜕i (Gutenkunst et al. 2009). Using the Minnesota SFS, we fit 1-

epoch, 2-epoch, 3-epoch, and 4-epoch models. These models included the following parameters: 

Nanc (the ancestral effective population size), N1-3 (the effective size of the subsequent 1-3 

epochs), and T1-3 (the duration of the subsequent 1-3 epochs; Table S3-2). In other words, a 3-

epoch model includes the parameters Nanc, N1, N2, T1, and T2. Overall, we found the best fit for a 

4-epoch model including expansion in the second epoch followed by a strong bottleneck and a 

final epoch of expansion, though with poor convergence of estimated parameters. Based on 

initial results, we constrained parameter space for the 4-epoch model by setting a limit on N1 to 

be in the range [10, 30]*Nanc, N2 to be in the range [1e-2, 5]*Nanc, and N3 to be in the range [10, 

40]*Nanc.  

 

We next sought to obtain an estimate of the effective population size on Isle Royale using a 

folded neutral SFS from five unrelated individuals, projected to four diploids. Given this limited 

sample size and the shared evolutionary history of Isle Royale and Minnesota moose, we fixed 

the parameters estimated from our 4-epoch model inferred above based on the Minnesota SFS. 

We then added a fifth epoch to the model, fixing the duration of this epoch to 15 generations, 

based on an estimated date of colonization of 1900 and 8 year generation time (Gaillard 2007). 

Thus, the only estimated parameter in this approach is N5, the effective population size on Isle 

Royale.   

 

We carried out inference by permuting the starting parameter values and conducting 50 runs for 

each model. We calculated the log-likelihood using 𝜕a𝜕i’s optimized parameter values 
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comparing the expected and observed SFSs. For each model, we selected the maximum 

likelihood estimate from the 50 runs and used AIC to compare across models. We then used a 

mutation rate of 7e-9 mutations/site/generation and the total sequence length (L) to calculate the 

diploid ancestral effective population size as Nanc= ϴ/(4*µ*L). We scaled other inferred 

population size parameters by Nanc and time parameters by 2*Nanc, in order to obtain values in 

units of diploids and numbers of generations.  

 

Simulations of deleterious genetic variation 

We performed forward-in-time genetic simulations using SLiM v3.6 (Haller and Messer 2019). 

We simulated a 20 Mb chromosomal segment with randomly generated introns, exons, and 

intergenic regions following the approach from (Mooney et al. 2018). Thus, our aim with these 

simulations is not to quantify genome-wide effects of deleterious mutations, but rather to 

examine relative changes in deleterious mutations within a 20 Mb chromosomal segment. 

Deleterious (nonsynonymous) mutations occurred in exonic regions at a ratio of 2.31:1 to neutral 

(synonymous) mutations (Huber et al. 2017), and only neutral mutations occurred in intronic and 

intergenic regions. Following (Dussex 2020), we assumed a mutation rate of 7e-9 mutations per 

site per generation. Selection coefficients (s) for deleterious mutations were drawn from a 

distribution estimated using human genetic variation data by (Kim et al. 2017), consisting of a 

gamma distribution with mean s of -0.01314833 and shape = 0.186. Additionally, we augmented 

this distribution such that 0.5% of deleterious mutations were recessive lethal, given that this 

distribution may underestimate the fraction of lethal mutations (Kardos et al. 2021). The 

dominance coefficients (h) of our simulations were set to model an inverse relationship between 

h and s, given that highly deleterious mutations also tend to be highly recessive (Agrawal and 
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Whitlock 2011; Huber et al. 2018). Specifically, we assumed h=0.0 for very strongly deleterious 

mutations (s < -0.1), h=0.01 for strongly deleterious mutations (-0.1 ≤ s <-0.01), h=0.1 for 

moderately deleterious mutations (-0.01 ≤ s <-0.001), and h=0.4 for weakly deleterious 

mutations (s > -0.001). To test the sensitivity of our analysis to our assumed selection and 

dominance parameters, we also ran simulations under the selection and dominance parameters 

proposed by Kardos et al. 2021. Specifically, this model assumes that deleterious mutations 

come from a gamma distribution with mean s of -0.05 and shape = 0.5, augmented with an 

additional 5% of deleterious mutations being lethal. Dominance coefficients follow the 

relationship h = 0.5*exp(-13*s); however, we simplified this to five dominance partitions for 

computational efficiency: h=0.48 for s ³-0.01, h=0.31 for -0.1 ≤ s < -0.01, h=0.07 for -0.4 ≤ s < -

0.1, h=0.001 for -1.0 ≤ s < -0.4, and h=0.0 for s=-1.0. For all simulations, we retained fixed 

mutations, such that their impact on fitness was allowed to accumulate.  

 

We set the population sizes of our simulations according to our best-fit 4-epoch demographic 

model based on the SFS from our Minnesota moose genomes (Figure 3.3; Table S3-2). 

Specifically, this model estimated an ancestral effective population size of Nanc=6,548 diploids, 

followed by expansion to N1=79,647 for T1=22,628 generations, then contraction to N2=49 for 

T2=29 generations, and finally expansion to N3=193,472 for T3=1,179 generations. We also ran 

simulations under a second 4-epoch model that had similar log-likelihood and somewhat 

differing parameters of Nanc=7,017, N1=145,662, T1=20,883, N2=218, T2=142, N3=105,531 and 

T3=1,223. In both cases, we allowed the ancestral population to get to mutation-selection-drift 

equilibrium by running a burn-in at Nanc for 70,000 generations. 
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Following the fourth epoch of both models, we added a fifth and final epoch representing the 

founding of the Isle Royale population, consisting of Ne=187 for 15 generations. However, when 

simulating under this demography, we observed that the simulated levels of inbreeding and 

genetic diversity for the Isle Royale population did not recapitulate those observed in our 

empirical data (Figure 3.5). Specifically, we observed only a 3.6% reduction in heterozygosity 

(compared to ~30% in our empirical data) and an increase in FROH to just 0.08 (compared to 0.35 

in our empirical data). We hypothesized that this was due to the lack of a founder event at the 

origination of the Isle Royale population in our model. To explore the impact of a founder event, 

we modified the effective population sizes during the first three generations of the Isle Royale 

population, using three plausible bottleneck parameters of Ne={6,24,96}, Ne={4,16,64}, and 

Ne={2,8,32}. We focused on the three initial generations after founding, reflecting the period 

from ~1900-1924 when census estimates are crude and/or unavailable (Murie 1934; Mech 1966). 

Specifically, little is known about the number of founding individuals, though it is likely this 

number was small, particularly if the population was naturally founded. Additionally, available 

records indicate a population size of ~300 by 1920 and perhaps several thousand by 1930, 

suggesting that population growth was rapid following founding (Murie 1934; Mech 1966). 

Following this three-generation bottleneck, we simulated the final 12 generations at our 

estimated Ne=187, representing an average effective population size for the period ~1924-2020 

when census estimates ranged from ~500-2000 (average of ~1000; (Hoy, Peterson, et al. 2020)).  

 

During simulations, we recorded mean heterozygosity, mean FROH for ROH >100 kb and >1 Mb, 

mean genetic load (calculated multiplicatively across sites), mean inbreeding load (measured as 

the number of diploid lethal equivalents), and the mean number of strongly deleterious (s < -
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0.01), moderately deleterious (-0.01 ≤ s <-0.001), and weakly deleterious (s > -0.001) alleles per 

individual. These quantities were estimated from a sample of 40 diploids every 1,000 generations 

during the burn-in, every 100 generations during the second epoch, every 5 generations during 

the North America founding bottleneck, every 20 generations during the fourth epoch, and every 

generation during the Isle Royale bottleneck. For all simulated scenarios, we ran 25 replicates.   
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Figures 

Figure 3.1 

 

Figure 3.1. Moose sampling and population structure. (A) Map of North America including 

localities for individuals sampled for genomic data in our study. Note that Sweden is excluded. 

(B) PCA of 50,361 LD-pruned SNPs for all sequenced samples. Inset are results when down-

sampling to one individual per population and excluding the Swedish sample. (C) Tree based on 

identity-by-state constructed using 50,361 LD-pruned SNPs. (D) fastSTRUCTURE results for 

K=3. See Figure S3-1 for results with varying K values and Figure S3-2 for results when down-

sampling to four unrelated individuals each from Isle Royale and Minnesota. 
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Figure 3.2 

Figure 3.2. Moose genetic diversity and inbreeding. (A) Comparison of mean genome-wide 

diversity in three moose populations to published values for other mammals. (B). Plots of mean 

genome-wide diversity and summed ROH levels for North American moose genomes, with the 

corresponding FROH values on the right-hand axis. Note that we were not able to obtain ROH 

calls for the Sweden sample due to its differing population origin. (C) Per-site heterozygosity 

plotted in non-overlapping 1 Mb windows for representative individuals from Sweden, 

Minnesota, and Isle Royale. See Figure S3-4 for plots of all individuals. 
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Figure 3.3 

 

Figure 3.3. Demographic inference results. (A) Schematic of best-fit four epoch model based on 

the site frequency spectrum (SFS) for the Minnesota sample. Right-hand axis assumes a 

generation time of 8 years. Numbers denote maximum likelihood estimates of the effective 

population sizes at the various time points. Note the rapid and severe bottleneck occuring near 

the onset of the Holocene. See Table S3-2 for parameters of the second-best fitting run, which 

differs somewhat in bottleneck duration and magnitude and pre/post-bottleneck population sizes. 
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(B) Comparison of the empirical projected folded SFS from the Minnesota sample with the SFS 

predicted by the model in shown in (A). 
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Figure 3.4 

 

Figure 3.4. Empirical measures of deleterious variation in Isle Royale and Minnesota moose. 

Top row depicts counts of putatively damaging and benign heterozygotes, demonstrating that 

heterozygosity is reduced for both mutation types on Isle Royale. Middle row depicts counts of 

homozygotes for the derived allele at damaging and benign variants, similarly demonstrating 

increased homozygosity for both mutation types on Isle Royale. Bottom row depicts damaging 
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and benign derived allele counts, demonstrating no differences between Isle Royale and 

Minnesota.  
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Figure 3.5 

 

Figure 3.5. Simulation results under three demographic scenarios. Left column depicts 

simulation dynamics during the North America founding bottleneck; middle column depicts 

results when simulating the Isle Royale population at constant population size; right column 

depicts results when simulating the Isle Royale population including a severe founder event 

(Ne={2,8,32} for the first three generations). Each column includes plots of the simulated 

effective population size, mean heterozygosity, mean levels of inbreeding (FROH>100kb), mean 

genetic load, and mean inbreeding load from 25 simulation replicates. The black line represents 

the average from all replicates. The dashed lines represent the empirical estimates for 

heterozygosity and FROH from the Minnesota and Isle Royale populations, respectively. Note that 
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the simulation trajectories do not reach these empirical estimates when assuming constant 

population size (middle column) but do when a founder event is included (right column). See 

Figure S3-7 for results under additional bottleneck parameters. 
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Abstract 

Small and isolated populations face numerous threats to extinction, among which is the 

deterioration of fitness due to an accumulation of deleterious genetic variation. Genomic tools 

are increasingly used to quantify the impacts of deleterious variation in these populations, 

however, these approaches remain limited by an inability to accurately predict the selective and 

dominance effects of individual mutations. Computational simulations of deleterious genetic 

variation offer an alternative and complementary tool that can help overcome these limitations, 

though such approaches have yet to be widely employed. In this Perspective, we aim to 

encourage conservation genomics researchers to adopt greater use of computational simulations 

to aid in quantifying and predicting the threat that deleterious genetic factors pose to extinction. 

We first provide an overview of the components of a simulation of deleterious genetic variation, 

describing key parameters involved in such models. Next, we clarify several misconceptions 

about an essential simulation parameter, the distribution of fitness effects (DFE) of new 

mutations, and review recent debates over what the most appropriate DFE parameters are. We 

conclude by comparing modern simulation tools to those that have long been employed in 

population viability analysis, discussing the pros and cons of a “genomics-informed” simulation 

approach. Our aim is that this Perspective will facilitate broader use of computational 
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simulations in conservation genomics, enabling a deeper understanding of the threat that 

deleterious genetic variation poses to biodiversity.  
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Introduction  

Anthropogenic pressures are resulting in a growing number of small and isolated populations 

facing an elevated risk of extinction due in part to deleterious genetic factors. Deleterious genetic 

variation can contribute to extinction in small populations via two related mechanisms: fixation 

of weakly deleterious alleles due to relaxed purifying selection (Lynch et al. 1995a,b) and 

inbreeding depression due to the exposure of recessive deleterious variation (Keller and Waller 

2002; Hedrick and Garcia-Dorado 2016). The burden of deleterious variation carried by a 

population is typically referred to as its “genetic load”, often defined as the reduction in fitness 

due to segregating and fixed deleterious mutations (Muller 1950; Agrawal and Whitlock 2012; 

Hedrick and Garcia-Dorado 2016). Genomic tools are now commonly used to quantify 

deleterious variation and genetic load in wild populations (Kardos et al. 2016; Díez-del-Molino 

et al. 2018; Bertorelle et al. 2022), though the best approaches for leveraging such datasets to 

help conserve small populations remains an active area of research. In particular, empirical 

measures of putatively deleterious variation have seen increased use in conservation genomics 

studies (Bertorelle et al. 2022); however, these measures remain relatively crude and often 

challenging to interpret (Cooper and Shendure 2011; She and Jarosz 2018; Huber et al. 2020; 

Sandell and Sharp 2022).  

 

In light of the limitations of empirical measures of deleterious variation and genetic load, the aim 

of this review is to encourage more conservation genomics researchers to employ computational 

genetic simulations. To that end, we first provide an overview of simulations of deleterious 

genetic variation, illustrating how such approaches can be used to estimate genetic load. Next, 

we review recent debates on deleterious mutation parameters, focusing on the distribution of 
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fitness effects of new mutations (or DFE), aiming to determine which parameters are best 

supported by empirical evidence. Finally, we compare modern simulation approaches for 

modelling inbreeding depression to existing methods that have long been employed in population 

viability analysis, discussing the pros and cons of “genomics-informed” models of inbreeding 

depression. Our hope is that this review will provide useful information for researchers aiming to 

incorporate simulation-based approaches into genomics-based studies of genetic load, enabling 

more comprehensive assessments of the genomic risks to extinction in small and isolated 

populations.  

 

Defining genetic load 

Understanding the implications of genetic load for organismal fitness and population viability 

has been a topic of long-standing interest in population and conservation genetics (Haldane 

1937; Muller 1950; Morton et al. 1956; Agrawal and Whitlock 2012; Henn et al. 2015; Hedrick 

and Garcia-Dorado 2016). Several definitions of genetic load have been put forth in the literature 

recently, often with the aim of partitioning genetic load into “realized” and “potential” load (e.g., 

(Mathur and DeWoody 2021; Bertorelle et al. 2022)). Here, we adhere to the definition of 

genetic load as the realized reduction in mean fitness in a population due to segregating and fixed 

deleterious mutations (note that the “mutation load” refers only mutations segregating under 

mutation-selection balance; (Muller 1950; Agrawal and Whitlock 2012)). The genetic load of a 

population at a single locus is given by: 

     L = 2hsq(1-q) + sq2 

Here, s is the selection coefficient of a mutation, h is the dominance coefficient, and q is the 

mutation frequency. Here, the effect of deleterious mutations found as heterozygotes is captured 
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by the 2hsq(1-q) term and the effect of homozygous deleterious mutations is captured by the sq2 

term. Genetic load at a single locus can be related to mean population fitness (w/ ) as: w/  = 1-L. To 

obtain the mean genome-wide genetic load of a population, L is typically multiplied across sites, 

thus assuming no epistasis and no linkage disequilibrium (Agrawal and Whitlock 2012). Thus, 

the units of genetic load are in terms of multiplicative absolute fitness scaled from 0 to 1. 

 

Another important quantity for predicting the impacts of inbreeding and small population size is 

the inbreeding load, which quantifies the potential reduction in fitness after inbreeding exposes 

segregating recessive deleterious mutations (Morton et al. 1956; Hedrick and Garcia-Dorado 

2016). Unlike the genetic load, the inbreeding load is measured in terms of lethal equivalents, 

which represent a summed quantity of s for recessive deleterious mutations that are masked as 

heterozygotes. For a population at equilibrium, the inbreeding load (B) at a single locus is given 

by (Morton et al. 1956):  

B = sq- sq2-2hsq(1-q) = sq - L 

Thus, this equation demonstrates that the inbreeding load is determined by the frequency and 

fitness effect of a mutation (sq), minus the expressed effects of the mutation in homozygotes 

 (sq2) as well as any heterozygous effects of the mutation due to partial recessivity (2q(1-q)sh). 

To calculate the total inbreeding load across a diploid genome (2B), this quantity can be summed 

across sites with deleterious mutations and multiplied by two to account for diploidy. 

 

These fundamental principles demonstrate that an essential component of estimating the genetic 

load and inbreeding load (hereafter, referred to together as “load”) using genetic variation data is 

knowing s and h for individual mutations. However, although some progress has been made in 
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predicting whether a mutation is likely to be neutral or deleterious (e.g., (Cooper et al. 2005; 

Kumar et al. 2009; Choi et al. 2012; Cingolani et al. 2012; Kircher et al. 2014)), accurately 

predicting h and s for individual mutations in genomic sequencing data remains a major 

challenge, even in humans and model organisms (Cooper and Shendure 2011; She and Jarosz 

2018; Huber et al. 2020; Sandell and Sharp 2022). For example, a recent simulation study 

demonstrated that Genomic Evolutionary Rate Profiling (GERP; (Cooper et al. 2005)), a popular 

method for predicting the deleterious effect of mutations based on evolutionary conservation, 

cannot reliably distinguish weakly deleterious mutations from strongly deleterious mutations 

(Huber et al. 2020), though it is commonly used for this purpose (e.g., (Henn et al. 2016; 

Marsden et al. 2016; Van Der Valk et al. 2019; Dussex et al. 2021)). Similarly, experimental 

studies in yeast have found that methods such as SIFT (Kumar et al. 2009) and PROVEAN 

(Choi et al. 2012) are poor predictors of the functional impact of a mutation (She and Jarosz 

2018; Sandell and Sharp 2022) that provide only crude proxies of s. Moreover, these methods do 

not provide any information on dominance, an essential component of quantifying load. These 

limitations are unlikely to be fully overcome, particularly for non-model organisms, implying 

that methods for quantifying load based on sequence data will remain only crude approximations 

for the foreseeable future.  

 

Overview of simulation-based approaches 

Computational simulations using evolutionary models provide an alternate way of quantifying 

load that alleviates many of the limitations discussed above. Simulations are widely used in 

population genetics (e.g., (Marjoram and Donnelly 1994; Akey et al. 2004; Ramachandran et al. 

2005; Fu et al. 2014; Harris and Nielsen 2016; Henn et al. 2016; Uricchio et al. 2016; Adrion et 
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al. 2020a)), yet remain underused in conservation genomics. Historically, this may be due to a 

relative lack of simulation tools capable of modelling ecologically-realistic scenarios and an 

often steep learning curve for using simulation software that may be poorly documented (Hoban 

et al. 2012). However, many of these challenges have been addressed by the forward-in-time 

genetic simulation program SLiM (Haller and Messer 2016, 2019), which offers a flexible array 

of models incorporating realistic ecological dynamics as well as comprehensive documentation 

and accompanying user-friendly graphic user interface. Other similar programs include Nemo 

(Guillaume and Rougemont 2006; Cotto et al. 2020) and SimBit (Matthey-Doret 2021), both of 

which have been applied in a conservation genetics context (Grossen et al. 2020; Grummer et al. 

2022). 

 

Simulations are broadly useful in evolutionary genetics because they can serve the critical 

function of revealing which evolutionary scenarios are consistent with observed patterns of 

genetic variation. All sequence-based evolutionary genetics studies suffer from the limitation that 

they are observing a single outcome of a stochastic evolutionary process, where underlying 

mechanisms are largely unobservable. Simulations allow researchers to model this evolutionary 

process and determine which mechanisms (e.g., genetic drift, gene flow, selection, migration) are 

needed to explain observed patterns in a dataset. Moreover, this process of using simulations can 

be extremely valuable for developing intuition on how various evolutionary forces interact to 

influence patterns of genetic variation, improving the ability of researchers to design 

evolutionary genetics studies and interpret their results.    
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For studies aiming to characterize the impacts of small population size on deleterious variation, 

simulations can be especially useful for quantifying load, which can be directly tabulated from 

the simulation output (see Supplemental Appendix 1). Simulations can therefore be used to 

complement empirical measures of load, providing a framework in which to interpret observed 

patterns and verify that they are expected under a plausible evolutionary model. Moreover, 

simulations can go beyond empirical measures by projecting load under various future scenarios, 

illuminating how management actions in the present-day may impact load decades or centuries 

from now. Finally, modern simulation tools, such as the ecologically-realistic models supported 

by SLiM3 (Haller and Messer 2019), also offer the potential to conduct an analysis of future 

extinction risk while incorporating genome-scale genetic variation, analogous to the population 

viability analysis (PVA) approaches that have long been employed in conservation genetics (e.g., 

(Lacy 1993, 2019; Beissinger and Westphal 1998; Brook et al. 2000); see below for further 

discussion).  

 

In summary, simulation-based approaches have much to offer for genomic studies of deleterious 

variation in wild populations, yet their application remains relatively limited. In Table 4.1, we 

have summarized existing studies that employ simulations along with genomic analyses to 

investigate genetic load in organisms ranging from ibex to Chinese crocodile lizards. We suggest 

that future research should incorporate similar approaches those implemented in these studies to 

provide a more thorough investigation of load in wild populations.  
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What are the components of a simulation of deleterious genetic variation? 

Modelling deleterious genetic variation in a simulation framework at a minimum requires 

specifying a population history, mutation rate, recombination rate, genome structure, and 

distribution of selection and dominance coefficients. The extent to which these parameters need 

to be tailored to a focal organism will vary depending on questions being asked. For example, 

many studies may be interested in using simulations primarily to explore qualitative dynamics of 

deleterious variation under various demographic and genetic scenarios. For example, one may be 

interested in asking: what are the qualitative effects of a bottleneck on genetic load under two 

extreme scenarios where deleterious mutations are either fully additive or fully recessive? For 

these studies, tailoring the simulation parameters to the focal organism may not be crucial, so 

long as the chosen parameters are reasonable or justified. 

 

For studies aiming to make more quantitative statements about genetic load or project future 

extinction risk, tailoring simulation parameters to the focal organism may be more critical. For 

example, demographic history can vary widely between populations and has a large influence on 

deleterious genetic variation and is therefore a crucial factor in modelling load and extinction 

risk. Fortunately, historical demographic parameters can be inferred from genomic datasets, 

though estimating recent demography (i.e., during the last tens or hundreds of generations) 

remains challenging (reviewed in (Beichman et al. 2018)). The mutation rate is another essential 

component influencing levels of deleterious variation in a population, though high-quality 

mutation rate estimates (i.e., based on a large number of sequenced trios) do not exist for the vast 

majority of species. However, mutation rates can also be estimated from substitution rates 

between species, an approach that is now widely feasible given the abundance of whole genome 
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sequencing data (Lynch et al. 2016). Precisely estimating recombination rates may be less 

important for modelling load, though a growing number of approaches exist for estimating 

recombination rates from genomic datasets from as little as one diploid individual (e.g., (Barroso 

et al. 2019; Adrion et al. 2020b)). Tailoring the genome structure (i.e., the length and number of 

genes and extent of non-coding variation) of a simulation to a specific organism can also be an 

important component of a simulation, particularly for studies aiming to model extinction risk in 

more ecologically-realistic models (Kyriazis et al. 2021; Robinson et al. 2022). To aid in this, a 

growing number of annotated reference genomes are now available, which can provide useful 

information on genome structure, particularly for protein-coding regions of the genome.  

 

Finally, the joint distributions of selection and dominance coefficients are essential components 

of modelling deleterious variation and load. These distributions determine the effect that new 

mutations exert on fitness, as well as the corresponding dominance coefficient of a mutation 

based on its selection coefficient. Although there is broad agreement that more deleterious 

mutations tend to be more recessive, the parameters of the distribution of dominance coefficients 

remain especially poorly known (Simmons and Crow 1977; Caballero and Keightley 1994; 

Agrawal and Whitlock 2011; Huber et al. 2018). Much more is known about the distribution of 

selection coefficients for new mutations, often termed “the distribution of fitness effects” or 

DFE, though most studies remain focused on humans and model organisms such as Drosophila 

((Eyre-Walker and Keightley 2007; Huber et al. 2017; Kim et al. 2017); Figure 4.1). Given the 

importance of the DFE for simulations of deleterious variation, as well as recent debate over 

DFE parameters (Kardos et al. 2021; Pérez-Pereira et al. 2021, 2022), below we provide a more 

detailed review of this topic.  
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Determining the appropriate DFE and dominance parameters for a simulation 

The DFE is a probability distribution that quantifies the selective effect (s) of new mutations 

entering the population, i.e., what fraction of new mutations are adaptive, neutral, weakly 

deleterious, or strongly deleterious. Here, we focus our discussion on the deleterious portion of 

the DFE, given that adaptive mutations do not influence load. Importantly, the DFE is not an 

estimate of segregating variation and therefore does not directly quantify load (see Supplemental 

Appendix 1; Figure S4-1), a misconception that has recently spread in the literature (e.g., (Jones 

et al. 2020; Kutschera et al. 2020)). Instead, the fate of a mutation after it enters a population, 

and whether it will segregate and potentially reach fixation, will be influenced by selection as 

well as the stochastic effects of genetic drift and linkage. Thus, quantifying segregating variation 

and load using the DFE requires modelling these effects under a given demographic model (see 

Supplemental Appendix 1 for an example; Figure S4-1).  

 

Historically, the DFE was estimated primarily using experimental mutation accumulation 

approaches (Mukai 1964; Simmons and Crow 1977; Eyre-Walker and Keightley 2007; Halligan 

and Keightley 2009). However, these approaches are limited to detecting the small fraction of 

deleterious mutations that have large enough effects to be observed in a laboratory setting 

((Davies et al. 1999; Eyre-Walker and Keightley 2007; Halligan and Keightley 2009); see 

Supplemental Appendix 2). These limitations motivated the development of sequence-based 

approaches for estimating the DFE over the past two decades (Eyre-Walker and Keightley 2007). 

Sequence-based methods estimate the DFE based on differences in the synonymous (assumed to 

be neutral) and nonsynonymous (assumed to be primarily neutral and deleterious) site frequency 
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spectrum (SFS), a summary of allele frequencies in a sample ((Eyre-Walker et al. 2006; Eyre-

Walker and Keightley 2007; Boyko et al. 2008; Kim et al. 2017; Tataru et al. 2017); see 

Supplemental Appendix 2). Specifically, these methods typically use the synonymous SFS to 

control for neutral demographic effects and, conditioning on inferred demographic or nuisance 

parameters, then estimate the parameters of the distribution of s for new nonsynonymous 

mutations (most frequently, the mean and shape parameters of a gamma distribution). Thus, 

although these approaches have much greater power for estimating the weakly deleterious 

portion of the DFE, existing sequence-based DFEs are generally limited to nonsynonymous 

single nucleotide variants (though see (Torgerson et al. 2009)). Finally, one important limitation 

of sequence-based approaches is that they typically assume that all mutations have additive 

effects on fitness, given that information on the distribution of dominance coefficients is very 

limited (though see (Huber et al. 2018)). Consequently, sequence-based DFE approaches may 

not be well powered for estimating the relatively small portion of the DFE that is highly 

recessive and strongly deleterious (Wade et al. 2022).  

 

A growing number of studies have used sequence-based methods to estimate the DFE for 

nonsynonymous mutations in various taxa including humans, non-human primates, mice, 

Arabidopsis, Drosophila, and the highly endangered vaquita porpoise ((Eyre-Walker et al. 2006; 

Boyko et al. 2008; Ma et al. 2013; Chen et al. 2017; Huber et al. 2017, 2018; Kim et al. 2017; 

Tataru et al. 2017; Castellano et al. 2019; Robinson et al. 2022); Figure 4.1). In general, these 

studies estimate a relatively high proportion of weakly deleterious mutations (here defined as s > 

-1e-3), though this fraction varies among major taxonomic groups. For example, studies in 

mammals generally estimate ~50% of mutations as weakly deleterious, whereas studies in 
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Arabidopsis, Drosophila, and yeast suggest that >80% of new nonsynonymous mutations are 

weakly deleterious (Figure 4.1). Comparative analyses of the DFE have suggested that such 

differences may be related to species complexity (Huber et al. 2017) as well as life history traits, 

such as selfing (Arunkumar et al. 2015; Chen et al. 2017).  

 

Recently, these sequence-based DFE estimates have been criticized on the grounds that they 

underestimate the fraction of highly deleterious mutations (Kardos et al. 2021; Pérez-Pereira et 

al. 2021, 2022). Specifically, Kardos et al. 2021 argued that a DFE with mean s = -0.05 and an 

additional 5% of mutations being recessive lethal was more realistic and Pérez-Pereira et al. 

2022 argued that a DFE with mean s = -0.2 was more realistic (Figure 4.2). Along with these 

DFEs, the Pérez-Pereira et al. 2022 and Kardos et al. 2021 models each assume dominance 

distributions that are based on mean estimates of h=~0.3 from experimental studies in 

Drosophila ((Simmons and Crow 1977; Caballero and Keightley 1994; Lynch et al. 1995a); 

Figure 4.2; Supplemental Appendix 3). These models imply that ~67% and ~71% of new 

mutations are strongly deleterious (here defined as s < -0.01), respectively (Figure 4.2). By 

contrast, one of the more recent sequence-based DFE estimates for nonsynonymous mutations in 

humans estimated a mean s = -0.0131 with ~26% of mutations being strongly deleterious (Kim et 

al. 2017), a result that is generally concordant with other estimates in humans and non-human 

mammals (Figure 4.1). Moreover, these sequence-based estimates are also in agreement with a 

broad literature in population genetics and functional genomics suggesting that the majority of 

nonsynonymous mutations have relatively minimal effects on fitness (Kruglyak et al. 2022).  
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To determine whether the Pérez-Pereira et al. 2022 and Kardos et al. 2021 models make 

predictions that are consistent with genetic variation datasets, we ran simulations under a human 

demographic model (Kim et al. 2017) where we compared the predicted nonsynonymous SFS 

from each model to the empirical SFS from the 1000G dataset for humans (Auton et al. 2015). 

We find that both models exhibit poor agreement with the empirical 1000G SFS, predicting 

nonsynonymous SFSs that are greatly shifted towards rare mutations (Figure 4.3; Table S4-1). 

For example, the Kardos et al. 2021 and Pérez-Pereira et al. 2022 models predict ~72-76% of 

nonsynonymous mutations to be singletons (variants with frequency 1/2n), whereas ~57% of 

variations are singletons in the 1000G dataset (Figure 4.3; Table S4-1). This surplus of rare 

variation is due to the very strong predicted effects of purifying selection under these models, 

which results in deleterious mutations being held at low frequency. This result is consistent with 

the expectation that such models based on experimental studies are biased towards detecting 

highly deleterious mutations (Davies et al. 1999; Eyre-Walker and Keightley 2007; Halligan and 

Keightley 2009). By contrast, the Kyriazis et al. 2021 model, which consists of the Kim et al. 

2017 DFE and a dominance distribution proposed by Henn et al. 2016, is in much better 

agreement with empirical data, predicting ~55% of variants as singletons (Figure 4.3; Table S4-

1). Thus, these results demonstrate that the Kardos et al. 2021 and Pérez-Pereira et al. 2022 

models make predictions that are inconsistent with patterns of genetic variation in human 

genomic sequencing datasets (see Supplemental Appendix 4 for further discussion).   

 

Another way to test whether proposed DFE and dominance models fit empirical data is to 

compare the predicted inbreeding load from each model to empirical estimates of inbreeding 

load (2B). Such empirical estimates can be derived by regressing measurements of fitness against 
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estimates of individual inbreeding in a population (Morton et al. 1956; Ralls et al. 1988; Keller 

and Waller 2002; Hedrick and Garcia-Dorado 2016; Nietlisbach et al. 2018). These estimates 

therefore represent an orthogonal source of information on deleterious mutation parameters. 

When making comparisons of the predicted inbreeding load from the Kardos et al. 2021, 

Pérez-Pereira et al. 2022, and Kyriazis et al. 2021 DFE and dominance models under simulations 

assuming human genomic and demographic parameters (i.e., assuming a genomic deleterious 

mutation rate of U=0.63; see Supplemental Appendix 3), we find that all models over-predict the 

estimated inbreeding load in humans of 2B=1.4 (Bittles and Neel 1994), as well as the median 

estimated inbreeding load in captive mammals of 2B=3.1 (Ralls et al. 1988) and wild vertebrates 

of 2B=4.5 (Nietlisbach et al. 2018). Specifically, the Kardos et al. 2021 and Pérez-Pereira et al. 

2022 models very high inbreeding loads of 2B=20.0 and 2B=28.4, respectively, while the 

Kyriazis et al. 2021 model also predicts a substantial inbreeding load of 2B=11.3 (Figure 4.4). 

Additionally, the partitioning of the inbreeding load (i.e., the contribution of the inbreeding load 

from detrimental mutations, semi-lethal mutations, and lethal mutations) in these models is also 

not consistent with empirical measures. For example, whereas an empirical estimate suggests 0.6 

recessive lethal mutations per human, the Kardos et al. 2021 and Pérez-Pereira et al. 2022 

models predict 16.0 and 12.2 recessive lethal mutations per individual, respectively (Figure 4.4; 

see Supplemental Appendix 4 for further discussion). By contrast, the Kyriazis et al. 2021 

predicts no recessive lethal mutations. Thus, none of these models are consistent with empirical 

inbreeding load estimates, though over-predictions are especially notable for the Kardos et al. 

2021 and Pérez-Pereira et al. 2022 models, due to these original analyses assuming 

unrealistically low effective population sizes (see Supplemental Appendix 5). Importantly, this 

over-prediction of the inbreeding load becomes much more extreme when assuming the original 
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genomic deleterious mutation rate (U=1.2) of the Kardos et al. 2021 model, and somewhat less 

extreme when assuming the original genomic deleterious mutation rate (U=0.4) from 

the Pérez-Pereira et al. 2022 model (Figure S4-5).  

 

Given the shortcomings of these existing models, we propose a new model based on recent 

analysis of the DFE in humans under non-additive model (Cavassim & Lohmueller, in prep) as 

well as an estimation of the recessive lethal portion of the DFE (Wade et al. 2022). In brief, this 

‘preferred model’ assumes a somewhat less recessive dominance distribution compared to the 

Henn et al. (Henn et al. 2016) distribution assumed by Kyriazis et al. 2021 model and is 

augmented with a small proportion (0.3%) of recessive lethal mutations (see Supplemental 

Appendix 3 for details). Indeed, simulation results under this model are in much better agreement 

with empirical estimates. Specifically, our preferred model predicts an inbreeding load of 

2B=6.3, which is relatively evenly partitioned into contributions from detrimentals, semi-lethals, 

and lethals (Figure 4.4), in agreement with empirical evidence (Simmons and Crow 1977; Gao et 

al. 2015; Clark and et al 2019; Stoffel et al. 2021a). Although this value exceeds empirical 

estimates in humans (2B=1.4) and captive mammals (2B=3.1), this result is expected given that 

these estimates are based on juvenile survival and may therefore be underestimates (Ralls et al. 

1988; Bittles and Neel 1994). Overall, this analysis demonstrates that sequence-based DFE 

estimates can explain empirical patterns of the inbreeding load when making slight adjustments 

to account for their shortcomings in estimating the proportion of recessive lethal mutations 

(Wade et al. 2022). Thus, these DFEs remain preferable for modelling deleterious variation in 

coding regions in that they account for the impacts of both weakly and strongly deleterious 

variation.  
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Comparing genomics-informed models of inbreeding load to traditional PVA 

approaches 

Although simulation-based approaches remain under-used in genomic studies of genetic load in 

wild populations, simulations have long been employed in conservation genetics in the context of 

population viability analyses (PVAs; (Lacy 1993, 2019; Beissinger and Westphal 1998; Brook et 

al. 2000)). For example, the simulation software VORTEX has been widely used to model 

inbreeding depression in wild populations (Lacy 1993, 2000). Such programs allow the user to 

specify an empirical estimate of the inbreeding load for their focal organism. However, a key 

limitation of this approach is that empirical estimates of the inbreeding load do not exist for the 

vast majority of species, and many existing estimates are not reliable (Nietlisbach et al. 2018). 

Accurately estimating the inbreeding load is not a trivial task: it requires large sample sizes, 

accurate estimates of the inbreeding coefficient ideally from genomic data, high variance in 

inbreeding in a population, and a reliable proxy for fitness (Kalinowski and Hedrick 1999; 

Nietlisbach et al. 2018). Relatively few studies exist that combine all of these elements, leading 

to wide variance in available estimates (see Supplemental Appendix 6 for further discussion). 

 

Given the relative lack of empirical estimates of the inbreeding load, most existing PVA studies 

of inbreeding depression instead employ a default inbreeding load of 2B=3.1, a value derived 

from captive mammals by Ralls et al. 1988. Many studies opt to use a much higher value of 

2B=12 from O’Grady et al. 2006, though this estimate has been shown to be unreliable 

((Nietlisbach et al. 2018); see Supplemental Appendix 6). This use of a default, one-size-fits-all 

inbreeding load estimate is a critical limitation for many existing PVA studies, as it ignores the 
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possibility of the inbreeding load varying across species and being influenced by the genetic and 

demographic characteristics of a given population. This issue may be most important for species 

with long-term small population size, for which inbreeding load is likely to be reduced due to 

purging.  

 

A genomics-informed simulation approach for modelling inbreeding depression offers many 

potential advantages to help overcome the limitations of using default inbreeding load values. In 

a genomics-informed approach, inbreeding load is modeled as an emergent property of 

fundamental genetic and demographic parameters that can be estimated from genomic data, 

rather than being predetermined. Based on these parameters, such models can predict the 

inbreeding load for a given species, helping avoid use of a default estimate. The benefits of a 

genomics-based approach are illustrated by the analysis of extinction risk for the critically 

endangered vaquita porpoise presented in Robinson et al. 2022, a species for which inbreeding 

load is expected to be low due to long-term small population size (Figure S4-4), though no 

empirical estimate of the inbreeding load exists. By parameterizing simulations with genomics-

based estimates of demographic parameters, mutation rates, and the DFE, we predicted an 

inbreeding load of 2B=0.95 and a high potential for recovery in the absence of excess mortality 

driven by the use of illegal gillnets. Moreover, we demonstrated that this low inbreeding load is 

largely a consequence of the small historical population size of the vaquita, finding that 

simulations with a 20x increased historical population size resulted in an increased predicted 

inbreeding load of 2B=3.32 and a much lower potential for recovery. Thus, the conclusion of 

high recovery potential for the vaquita would not have been reached when assuming a default 

inbreeding load for mammals of 2B=3.1.  
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There are several potential drawbacks to a genomics-informed simulation approach for 

modelling inbreeding depression, which should be taken into consideration before attempting to 

employ such an approach in a PVA model. First, forward-in-time simulations of genome-scale 

genetic variation tend to be highly computationally intensive, particularly when modelling large 

effective population sizes (Ne >> 10,000). This high computational load is largely due to the need 

for long burn-in periods for each simulation replicate during which mutations are allowed to 

reach their equilibrium frequency, a process that typically takes 10*Ne generations. However, 

these long burn-ins can be shortened by instead using durations long enough for inbreeding load 

to reach equilibrium, which typically takes <1*Ne generations (Figure S4-6). Second, the 

reliability of a genomics-based PVA depends in large part on obtaining accurate estimates of 

relevant genetic and demographic parameters, which may be challenging for many species. In 

particular, mutation rates can be especially difficult to accurately estimate and have a large 

influence on the predicted inbreeding load in a model. For example, Robinson et al. 2022 

estimated a mutation rate for the vaquita of 5.8e-9 per site per generation using a substitution-

based approach, though with a plausible range of 2.2e-9 and 1.08e-8. When conducting 

sensitivity analyses under these varying mutation rates, we found that the predicted inbreeding 

load ranged from 2B=0.2 to 2B=2.4 and these varying inbreeding loads led to notable differences 

in projected extinction rates (Robinson et al. 2022). Thus, genomics-based PVAs should be 

subject to extensive sensitivity analyses for genetic and demographic parameters and, given the 

challenges of validating these models, should be interpreted cautiously, as is the case for any 

PVA model (Beissinger and Westphal 1998).  
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Finally, although our discussion here focuses on modelling the influence of deleterious variation 

and genetic load on extinction, numerous other genetic threats to extinction can also be included 

in a genomics-informed PVA using modern simulation tools. For example, increased 

susceptibility to disease due to low genetic diversity could contribute to population declines 

(Gibson 2022), as can the challenge of adapting to changing environmental conditions (Cotto et 

al. 2017). Future work should aim to better parameterize these processes in wild populations in 

order to more fully integrate evolutionary processes into PVAs (Pierson et al. 2015). 

 

Remaining questions 

How much does the DFE and inbreeding load partitioning differ across taxa? 

Much of our analysis in this paper focuses on the human DFE, given that genomic and 

demographic parameters in humans have been subject to extensive study. However, the extent to 

which the DFE may differ across species remains poorly known. Although available DFE 

estimates in mammals are generally similar to humans (Figure 4.1), relatively few species have 

been examined, and little to no information is available on the DFE in non-mammalian 

vertebrates. Obtaining a better understanding of the DFE across diverse vertebrate species will 

provide insight not only into the factors shaping the evolution of the DFE, but also on whether 

mammalian DFEs, such as the human DFE presented in this paper (Figure 4.2), can reasonably 

be used in simulations for other vertebrate taxa where DFE estimates are not available. 

Moreover, additional DFE estimates will also be informative as to the extent to which inbreeding 

load partitioning may vary across taxa.   
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How can we reconcile sequence-based DFEs for Arabidopsis and Drosophila with evidence 

for inbreeding depression in these species? 

As discussed above, sequence-based DFE estimates for Arabidopsis, Drosophila, and yeast 

contain a very high proportion (>80%) of weakly deleterious mutations,  substantially more than 

inferred in mammalian DFEs in that (Figure 4.1; (Huber et al. 2017)). The abundance of weakly 

deleterious mutations in non-mammal model organisms could appear to be at odds with evidence 

for inbreeding depression in these species (e.g., (Swindell and Bouzat 2006; Sletvold et al. 2013; 

Pérez-Pereira et al. 2021)). Specifically, a DFE with many weakly deleterious mutations would 

have few recessive strongly deleterious mutations that can contribute to inbreeding depression. 

However, available evidence in Drosophila suggests that inbreeding depression is primarily due 

to lethal or semi-lethal mutations (Swindell and Bouzat 2006; Pérez-Pereira et al. 2021), and 

these mutations are challenging to detect using genetic-variation based methods (Wade et al. 

2022). For example, Pérez-Pereira et al. 2021 estimated an inbreeding load of 2B=1.5-2 in D. 

melanogaster and demonstrated that this load could be nearly entirely purged, implying that it is 

due to a small number of highly deleterious mutations, rather than a large number of weakly 

deleterious recessive mutations. Additionally, estimates of the number of segregating recessive 

lethals in Drosophila are generally in the range of 1-3 per individual (Simmons and Crow 1977; 

McCune et al. 2002), also implying that inbreeding depression in Drosophila is almost entirely 

due to recessive lethals. Taken together, these results suggests that the genetic architecture of 

inbreeding depression may differ between Drosophila and mammals, as studies in mammals 

suggest a much larger contribution from deleterious mutations of more modest effect (Clark and 

et al 2019; Stoffel et al. 2021a). Nevertheless, further work is needed to establish the differences 

in architecture of inbreeding depression across species. 
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What is the distribution of dominance coefficients?  

Minimal information exists on the distribution of dominance coefficients, and the few studies 

that exist are based on a handful of species (Simmons and Crow 1977; Caballero and Keightley 

1994; Agrawal and Whitlock 2011; Huber et al. 2018). Moreover, results from these studies 

sometimes conflict with one another, with available evidence in yeast and Drosophila suggesting 

a much less recessive distribution of dominance coefficients compared to results from 

Arabidopsis (Simmons and Crow 1977; Caballero and Keightley 1994; Agrawal and Whitlock 

2011; Huber et al. 2018). Whether this discrepancy is a consequence of true biological 

differences among these taxa or is instead due to methodological issues remains unclear. 

Obtaining additional information on the distribution of dominance coefficients represents one of 

the most essential components for studies modelling inbreeding depression. Specifically, if most 

deleterious mutations are found to have dominance coefficients that are highly recessive 

(h<0.05) as suggested by a recent study (Huber et al. 2018), this would suggest a high severity of 

inbreeding depression due to contributions from both weakly and strongly deleterious mutations. 

Moreover, a highly recessive dominance distribution would also suggest a very large dependence 

of inbreeding depression on historical population size (Nei 1968; Hedrick 2002; Kyriazis et al. 

2021).  

 

What is the role of heterozygote advantage and non-coding variation in inbreeding 

depression? 

Understanding the genetic basis of inbreeding depression has long been a topic of interest in 

evolutionary genetics (Charlesworth and Willis 2009). Although many of the simulation models 
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discussed above focus solely on the contribution of recessive deleterious mutations at 

nonsynonymous sites in coding regions (e.g., (Kyriazis et al. 2021; Robinson et al. 2022; Xie et 

al. 2022)), it is likely that other mechanisms and types of mutations also contribute to some 

extent. For example, heterozygote advantage could play a role in influencing inbreeding 

depression, though its contribution has been hard to quantify (Charlesworth and Willis 2009). 

Similarly, deleterious mutations in conserved noncoding regions could also contribute, given that 

~4.5% of the non-coding genome has been shown to be highly conserved across mammals, 

potentially implying a high strength of purifying selection in these regions (Cooper et al. 2005; 

Siepel et al. 2005; Oosterhout 2019; Huber et al. 2020). 

 

Although these mechanisms and types of mutations likely play some role in influencing 

inbreeding depression, available evidence suggests that their impact may be relatively minimal. 

Specifically, studies on heterozygote advantage generally suggest that it occurs only at a small 

number of loci in the genome (Hedrick 2012), implying a small contribution to inbreeding 

depression (Charlesworth and Willis 2009). Similarly, although deleterious mutations in 

conserved noncoding regions appear to be widespread, several studies suggest that these 

mutations tend to be weakly deleterious (s on the order of 1e-3; (Torgerson et al. 2009; Murphy 

et al. 2021; Dukler et al. 2022)), such that they likely do not contribute much to inbreeding 

depression. These considerations imply that recessive deleterious mutations in coding regions 

likely represent the predominant driver of inbreeding depression. In support of this, we note that 

the models of inbreeding depression summarized in Figure 4 all ignore contributions of these 

mechanisms, yet all of these models predict inbreeding loads that are at least as large as those 

observed empirically. Nevertheless, we emphasize that additional research is needed to explore 
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the potential contribution of heterozygote advantage and noncoding variation to inbreeding 

depression and extinction risk. For example, simulation studies that parameterize these factors 

based on the literature and quantify their effect on inbreeding depression would be a valuable 

step towards better determining their importance.  

 

How do simulation dynamics in a Wright-Fisher model compare to those in more ecologically-

complex models? 

The Wright-Fisher (WF) model is a ubiquitous model in population genetics that underlies many 

of the methodological approaches discussed above. For example, sequence-based DFE methods 

assume a WF model (Eyre-Walker et al. 2006; Boyko et al. 2008; Kim et al. 2017; Tataru et al. 

2017; Ragsdale et al. 2018), as do the simulation results presented in Figures 3 and 4. However, 

in many cases, it may be desirable to use parameter estimates derived from a Wright-Fisher 

model in the context of more ecologically complex simulation models, such as the non-Wright-

Fisher (nonWF) model in SLiM3 (Haller and Messer 2019). This model allows for populations 

with overlapping generations, an important departure from the WF model that is also present in 

other ecologically-realistic simulation programs such as Nemo-age (Cotto et al. 2020).  

 

A key question when using these more complex models with overlapping generations is whether 

parameters that are inferred assuming a WF model apply in a nonWF setting. For example, DFEs 

inferred assuming a WF model are scaled in terms of per-generation selection coefficients rather 

than per-year. As models with overlapping generations assume selection occurs on a yearly 

timescale (or some other arbitrary unit of time), the selection coefficients from the DFE will need 

to be rescaled. Although theory suggests that selection coefficients in this case can be rescaled 
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simply by dividing by the generation time of a species (Charlesworth 1994), the extent to which 

this rescaling should apply to the full DFE is not clear. For example, highly deleterious 

mutations that impair development are likely to act during early life stages and not over the span 

of an entire generation, thus dividing the selection coefficient of such mutations by the 

generation time may have unintended consequences. In Robinson et al. 2022, our solution to this 

issue was to rescale selection coefficients for weakly deleterious mutations with s > -0.01, but 

not for strongly deleterious mutations with s < -0.01. The validity of this approach, and more 

broadly the best practices for using parameter estimates derived from WF models under more 

complex models, remains in need of further investigation.   
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Tables 

Table 4.1 

Recent studies combining simulations with empirical genomic data to explore impact of small population 
size on deleterious variation in non-human species 

Paper Organism Simulation 
software 

Distribution of 
fitness effects Question addressed with simulations 

Beichman 
et al. 2022 Sea otter SLiM Kim et al. 2017^ How has the fur trade bottleneck impacted 

genetic load in the sea otter? 
     

Dussex et 
al. 2021 Kākāpō SLiM mean s = -0.024* Has purging occurred in the Stewart island 

kakapo population? 
     

Grossen et 
al. 2020 Alpine ibex nemo mean s = -0.01* How has deleterious variation been impacted 

by a recent human-mediated bottleneck? 
     

Kyriazis et 
al. 2022 

North 
American 

moose 
SLiM Kim et al. 2017^ How have bottlenecks influenced purging and 

genetic load in North American moose? 

 
Marsden et 

al. 2016 
Dogs PReFerSim Boyko et al. 2008 How has the domestication bottleneck shaped 

deleterious variation in dogs? 
     

Robinson 
et al. 2018 

Channel 
island fox SLiM Kim et al. 2017 

How has recessive deleterious variation been 
impacted by small population size in island 

foxes? 
     

Robinson 
et al. 2019 Gray wolf SLiM Kim et al. 2017 

How does the large North American wolf 
population size influence recessive deleterious 

variation? 
     

Robinson 
et al. 2022 Vaquita SLiM Estimated by 

authors^ 
Are vaquitas doomed to extinction by 

inbreeding depression? 
     

Stoffel et 
al. 2021b Soay sheep SLiM Eyre-Walker et al. 

2006# 
Are short runs of homozygosity purged of 

deleterious variation? 
     

Takou et 
al. 2021 

Arabodopsis 
lyrata PReFerSim Estimated by 

authors 
Do range-edge populations have elevated 

genetic load? 
     

Xie et al. 
2022 

Chinese 
crocodile 

lizard 
SLiM Kim et al. 2017 Have population declines resulted in purging? 

*mean for gamma distribution, not based on explicit analysis   
#DFE uses shape parameter from Eyre-Walker et al. 2006 and mean s of -0.01, -0.03, -0.05 
^sensitivity analysis conducted with additional DFEs  
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Figures 

Figure 4.1 

 

Figure 4.1. Representative estimates of the distribution of fitness effects from sequence-based 

approaches. Distributions are plotted in discrete bins of weakly deleterious (s >= -0.001), 

moderately deleterious (-0.001 > s >= -0.01), strongly deleterious (-0.01 > s >= -0.1), semi-lethal 

(-0.1 > s > -1) and lethal (s = -1.0) mutations. DFEs estimated for humans are colored in shades 

of blue, DFEs for non-human mammals are in shades of green, and non-mammalian DFEs are in 

shades of red. Note the higher fraction of weakly deleterious mutations in non-mammalian 

DFEs.  
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Figure 4.2 

 

Figure 4.2. Comparison of DFE and dominance models employed by Kyriazis et al. 2021, 

Kardos et al. 2021, Pérez-Pereira et al. 2022, as well as our ‘preferred model; informed on the 

analysis of Cavassim & Lohmueller, in prep and Wade et al. 2022. Distributions of h and s are 

plotted in discrete bins of weakly deleterious (s >= -0.001), moderately deleterious (-0.001 > 

s >= -0.01), strongly deleterious (-0.01 > s >= -0.1), semi-lethal (-0.1 > s > -1) and lethal (s = -

1.0) mutations. Note that our preferred model includes 0.3% of mutations being recessive lethal 

based on results from Wade et al. 2022.  
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Figure 4.3 

 

Figure 4.3. Predicted proportional nonsynonymous SFS from various DFE and dominance 

models compared to SFS from 1000G data plotted on a log scale. Predicted nonsynonymous SFS 

derived from simulations of ~8.1 Mb of coding sequence under a human demographic model 

inferred using the synonymous SFS from the same 1000G dataset. Note that the predicted SFS 

from the Kyriazis et al. 2021 model and the model proposed in this paper fit the 1000G data well, 

whereas the predicted SFSs from the Pérez-Pereira et al. 2022 and Kardos et al. 2021 models are 

greatly shifted towards rare alleles due to the overabundance of strongly deleterious variation in 

these models. Also note that many entries of the Perez-Pereira et al. 2022 and Kardos et al. 2021 

SFSs about allele frequency 5% are 0 and are therefore omitted due to log scaling. See Figure S3 

for plots of simulated vs empirical synonymous SFSs and Table S4-1 for proportion of singletons 

and common variants predicted by each model.  
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Figure 4.4 

 

Figure 4.4. Inbreeding load partitioning under various DFE and dominance models using 

demographic and genomic parameters for humans. Colors depict contribution of inbreeding load 

from each class of deleterious mutations, with the total height of each bar representing the total 

predicted inbreeding load (2B). Detrimentals are here defined as mutations with s > -0.1, semi-

lethals as mutations with -0.99 < s <= -0.1, and lethals as mutations with s < -0.99. Dashed lines 

show estimated of number of lethals per diploid human from Gao et al 2015 (“human lethals”), 

inbreeding load estimate for humans from Bittles & Neel 1994 (“human 2B”), and estimate of 

average inbreeding load for vertebrates from Nietlisbach et al. 2018 (“vertebrate 2B”). Note that 

predicted inbreeding load partitioning under the model proposed in this paper agrees well with 

empirical estimates, whereas predicted inbreeding load partitioning from other models do not. 
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All displayed models assume a genomic deleterious mutation rate of U=0.63; see Figure S4-5 for 

results under differing mutation rates.  
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