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Abstract 
A popular dual systems theory of category learning argues that 
the structure of categories in perceptual space determines the 
mechanisms that drive learning. However, less attention has 
been paid to the nature of the perceptual dimensions defining 
the categories. Researchers typically assume that there is a 
direct, linear relationship between experimenter-defined 
physical input dimensions and learners’ psychological 
dimensions, but this assumption is not always warranted. 
Through a set of simulations, we demonstrate that, based on the 
nature of prior experience, the psychological representations of 
experimenter-defined dimensions can place drastic constraints 
on category learning. We compare the model’s behavior to 
several human studies and make conclusions regarding the 
nature of the psychological representations of the dimensions 
in those studies. These simulations support the conclusion that 
the nature of psychological representations is a critical aspect 
to understanding the mechanisms that drive category learning.  

Keywords: neural network; perception; category learning; 
statistical regularities 

Introduction 
Forming perceptual categories is thought to be at the heart of 
many complex cognitive processes, such as object 
recognition (Richler & Palmeri, 2014) and speech perception 
(Holt & Lotto, 2010). A popular dual systems model of 
category learning (Ashby et al., 1998) suggests that the 
mechanisms supporting category learning are engaged 
differently with different types of category structure. Many 
studies demonstrate differences in learning rule-based 
categories—requiring selective attention to individual input 
dimensions—and information-integration categories—
requiring pre-decisional integration across dimensions 
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby & 
Maddox, 2011; Yi & Chandrasekaran, 2016). However, 
claims of fundamental differences between these two 
learning problems have been questioned (Carpenter, Wills, 
Benattayallah, & Milton, 2016; Edmunds, Milton, & Wills, 
2015; Milton & Pothos, 2011; Wills, Suret, & McLaren, 
2004). 

Apart from the debate of dual versus single category 
learning systems, a critical assumption of many theories of 
category learning is that experimenter-defined input 

dimensions align with participants’ internal psychological 
dimensions.  

For some of the most well-studied pairs of dimensions in 
the visual domain, such as line length and orientation or 
spatial frequency and orientation of lines in a Gabor patch, 
this assumption is likely true. The underlying psychological 
and neural representations of simple visual input dimensions 
are well understood. However, more recent applications of 
these theories in the auditory domain make clear that the 
assumption may be problematic (Roark & Holt, 2019; 
Scharinger, Henry, & Obleser, 2013). In the auditory domain, 
the specific coding of many dimensions of acoustic signals is 
unclear. Beyond that, it is likely also the case that the 
representations of many of these dimensions interact in some 
way, potentially because the statistical structure of the 
dimensions is such that the neural coding for the dimensions 
is not independent (Garner, 1974; Wang, 2007).  

One approach to avoiding an implicit assumption that 
physical input dimensions align with psychological 
dimensions is to estimate psychological representation of 
perceptual spaces using multidimensional scaling based on 
similarity ratings (Nosofsky, 1992; Shepard, 1980). 
However, this approach is somewhat limited in the 
conclusions that can be made about how existing 
representations influence learning. By systematically varying 
the relationship among perceptual dimensions, we are able to 
investigate the interaction between perception and cognition 
during category learning. 

In the case of the dual-systems model of category learning, 
an argument is made about how so-called ‘rule-based’ 
category structures, which require selective attention to 
individual input dimensions, are optimally learned by an 
entirely different learning system than so-called 
‘information-integration’ category structures, which are said 
to require ‘pre-attentive’ integration across more than one 
input dimension. However, there is little consideration as to 
what these dimensions are, and whether dimensions that are 
manipulated independently by the experimenter are actually 
independent in the psychological and neural representations 
of perceivers. That is, the underlying psychological 
dimensions may place strong constraints on the interpretation 
of what is ‘rule-based’ and what is ‘information-integration’ 
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in terms of the actual problem being solved by the mind and 
brain.  

Multiple cognitive science literatures demonstrate that 
underlying psychological dimensions are not necessarily 
homologous with input dimensions. Prior experience, 
including category learning, influences perception of 
dimensions (Goldstone, 1998) and prior knowledge and 
concepts can influence attention to input dimensions and 
category learning outcomes (Kaplan & Murphy, 2000; 
Kaplan & Murphy, 1999). Nonetheless, these literatures do 
not directly address the question of how category learning 
driven by distinct systems, as in a dual systems account of 
category learning, would be impacted when apparently 
orthogonal input dimensions are not psychologically 
independent. In the current work, we unite these perspectives 
to probe the influence of prior knowledge on learning with a 
dual systems approach that specifies that unique mechanisms 
drive category learning depending on category structure.  

In the current investigation, we present a neural network 
model that demonstrates how underlying psychological 
representations that are formed by structured experience in 
the sensory environment may place strong constraints on 
novel category learning, depending on the structure of the 
categories in the physical space. We first describe the model 
architecture. We then describe the training and evaluation 
procedure for the model’s behavior. Finally, we compare the 
model’s behavior to human behavior from several perceptual 
category learning studies in the literature.  

Model Architecture 
There are two components to the model architecture (see 
Figure 1): the lower-level part supports representation 
learning, in which perceptual representations are gradually 
shaped through extensive experience prior to the experiment; 
the higher-level part supports category learning, in which 
the evoked representations of different stimuli are relatively 
rapidly associated with particular behavioral responses 
within an experimental context. 

 

 
Figure 1: Model architecture. 

Representation Learning 
In the model, representational learning over two physical 
input dimensions x and y is implemented by an autoencoder. 
That is, the model receives structured sensory input that it 

must recreate in the autoencoder output layer via a smaller, 
“bottleneck” layer. A 20 unit ‘sensory input’ layer connects 
to a ten-unit hidden layer which connects to a 20 unit 
‘autoencoder output’ layer. Ten of these 20 units represent 
the physical x-dimension value and ten represent the physical 
y-dimension value. For each dimension, a particular value 
was represented as an unnormalized Gaussian distribution 
centered on that value; the activation of the 10 units sampled 
this distribution uniformly over the full range of the 
dimension (such that their activations always summed to 1,0). 
This encoding allows for graded input, which reflects 
population encoding of information in sensory cortex. 
Activations in the sensory input layer also have a small 
amount of uniform noise (range = 0.1) to reflect a small 
amount of noise in the perceptual encoding of a stimulus. The 
goal of the network at this stage is to recreate the input in the 
output layer. As a result of the training experience, the 
network will learn perceptual representations over the 
intermediate (hidden) layer. (The number of input/output 
units and units in the hidden layer was determined based on 
our prior experience with these kinds of models. This was the 
only number of units that we implemented.)   

We trained the model on five separate training 
environments, reflective of different statistical relationships 
that might exist in the sensory world (Figure 2)—a positive 
relationship between two dimensions (Positive), a negative 
relationship (Negative), the x-dimension is represented in 
more detail than the y-dimension (X-Dimension), the y-
dimension is represented in more detail than the x-dimension 
(Y-Dimension), and where there is no correlation or 
relationship between the two dimensions (Independent). 
These environments are not meant to capture any particular 
natural signal statistics, but rather to reflect clear alternative 
scenarios to demonstrate how these simple relationships 
might be encoded in the perceptual system.  

We trained the network for 50,000 epochs on batched 
learning across the 289 stimuli within each training 
distribution with a learning rate of 0.0001 and a bound of 1.0 
on the length of the weight change vector. These learning 
parameters are intentionally conservative and were chosen 
solely to ensure that representation learning was stable and 
effective.  

Category Learning 
In the category learning phase, the model weights from the 
sensory input layer to the hidden layer were frozen, reflecting 
a long-term consistency in experience and the resulting 
development of robust psychological representations (e.g. 
adult-like representations). A two-unit category decision 
output layer was then connected to the hidden layer, 
reflective of decision responses in two-category problem. 

For each of the five representation environments, the 
model was separately trained on four category learning 
problems (Figure 3). Each of the category learning problems  
was identical in terms of statistical structure (category 
variance and overlap between categories). The key difference 
is the rotation of the categories in physical space, such that  
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Figure 2: Representation learning distributions. 

 
the category distinction requires different usage of the 
physical input dimensions (representative of the 
experimenter-defined dimensions). These category 
environments were designed to reflect two rule-based (RB) 
problems (RB-X dimension, RB-Y dimension) and two 
information-integration (II) problems (II-Positive boundary 
and II-Negative boundary). Critically, as a consequence of 
the representation learning phase, the physical dimensions 
(i.e., the experimenter-defined dimensions) do not 
necessarily align with the model’s internal perceptual 
representations.  

We trained the category learning network using an online 
learning paradigm to approximate human behavior during 
category learning, as the network updated its weights after 
each stimulus presentation. The network was trained 
separately on each of the category learning problems and 
exemplars were presented in random order without 
replacement. The model was trained and tested on one 
presentation of each of 200 stimuli from each category 
learning environment (100/category) and the same stimuli 
were used for training and testing. Because generalization of 
category learning was not a main component of our 
experiment and because we tested a conservative approach as 
a proof-of-concept demonstration, we trained and tested the 
model on the same stimuli. This is consistent in some ways 
with many studies of category learning that often do not 
directly test generalization. Future work should explore the 
extent of the model to generalize learned knowledge to novel 
exemplars. 

 
 

Figure 3: Category learning distributions. 
 

During category learning, the network was trained with 
steepest descent using a learning rate of 0.5. Ten simulated 
subjects were run for each category learning type. For each 
simulated subject, after a single sweep through all 200 
exemplars with the model updating its weights after each 
exemplar, the model was tested on the same stimulus set 
while keeping the weights stable (i.e. providing no feedback 
to the model).  

Results 
We examined the model’s categorization performance after 
training with all 200 exemplars. This reflects the situation in 
which a human has encountered all category exemplars (with 
feedback) and is then tested on them without feedback. 

Categorization accuracy 
We quantified accuracy as the percent of category exemplars 
for which the model met a target activation criterion of 0.5. 
The simulated subjects’ accuracies for each of the 
representation environments and category problems are 
shown in Figure 4.  

The performance of the model on these categorization 
problems greatly depended on the nature of the pre-trained 
representations. Each representation environment 
(Independent, Positive, Negative, X-Dimension, Y-
Dimension) makes specific predictions about the pattern of 
accuracy for the four different category types.  

Training with the Independent distribution led to very high 
accuracy among the four category problems, with no 
significant differences across the four types (F(3,36) = 1.51, 
p = .23, hp2 = .11). However, there appears to be numerical 
differences in the means, such that the two RB problems have 
higher accuracies than the two II problems. 
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Figure 4: Model simulation accuracies in the four 

category learning environments with different perceptual 
representations. 

 
The Negative and Positive correlation distributions had 

complementary results. For the Negative training 
distribution, accuracy was highest for the II-Positive problem 
and lowest for the II-Negative problem, with the two RB 
problems at intermediate levels (F(3, 36) = 106.79, p < 
0.0005, hp2 = .899). For the Positive training distribution, 
accuracy was highest for the II-Negative category and lowest 
for the II-Positive category, with the two RB categories at 
intermediate levels (F(3,36) = 54.13, p < 0.0005, hp2 = .92). 

The Y-Dimension and X-Dimension distributions, for 
which one dimension was represented more faithfully, and in 
more detail, than the other dimension had complementary 
results. For the Y-Dimension training distribution, accuracy 
was highest for the RB-Y problem, for which correct 
categorization required a distinction along the y-dimension 
and lowest for the RB-X problem, requiring a distinction 
along the x-dimension (F(3,36) = 45.3, p < .0005, hp2 = .79). 
The opposite pattern was observed for the X-Dimension 
distribution, with the RB-X problem having the highest 
accuracy and the RB-Y problem having the lowest (F(3,36) 
= 10.03, p < .0005, hp2 =  .46). The two II problems were at 
intermediate accuracy levels for both the Y-Dimension an X-
Dimension distributions.  

These results demonstrate the potential for existing 
perceptual representations to have a major impact on the 
outcomes of category learning, especially when the physical 
dimensions or experimenter-defined dimensions do not align 
with the dimensions of representations.  

Comparison with Human Behavior 
In this section, we compare the model’s behavior to human 
behavior on the four category learning types. When we can 
observe the pattern of accuracy in humans across several 

category learning types in the same physical space, we are 
able to draw conclusions about the nature of human 
perceptual representations across particular dimension pairs. 
This kind of comparison is especially useful in cases in which 
the underlying cognitive or neural representations of 
dimensions is not well understood, as with complex auditory 
dimensions.  

Roark and Holt (2019): Auditory dimensions 
In Roark and Holt (2019), participants learned categories 
based on the auditory dimensions of center frequency (CF) 
and modulation frequency (MF). As in the simulations, they 
trained participants on four category problems—RB-CF, RB-
MF, II-Positive, or II-Negative with feedback (four blocks of 
96 trials each).   

Roark and Holt (2019) found that the category problems 
with the highest accuracy were the II-Positive and RB-MF, 
with RB-CF learned at more moderate levels, and II-Negative 
learned at the lowest levels (Figure 5). This overall pattern 
most closely aligns with the model’s behavior for the Positive 
distribution, indicating that these acoustic dimensions may 
have a representation that reflects a long-term positive 
relationship between CF and MF.  

 

 
Figure 5. Human categorization performance in the 

generalization test in Roark & Holt (2019) compared with 
model performance with Positive distribution. 

Ell, Ashby and Hutchinson (2012): Visual 
dimensions 
In Ell, Ashby and Hutchinson (2012), Experiment 2, 
participants learned categories based on the visual 
dimensions of saturation and brightness. As in the 
simulations, they trained participants on four category 
problems—RB-Saturation, RB-Brightness, II-Positive, or II-
Negative with feedback (nine blocks of 80 trials each).  

By the end of training, participants performed similarly on 
all four category learning problems. However, there were 
differences in early learning which may give clues about 
which category distinctions are better in alignment with the 
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way humans represent the visual dimensions. In the first 
block, RB-Brightness had higher accuracy than RB-
Saturation and II-Negative but was not significantly different 
from II-Positive. None of the other comparisons were 
statistically different, but there were few subjects in each 
condition, and this was not the main comparison of interest 
to these authors. However, the general pattern in which one 
RB category is learned better than another aligns with the 
model’s behavior for the X-Dimension or Y-Dimension 
distributions. Therefore, this may reflect a situation where 
brightness may have a more veridical or detailed 
representation relative to saturation. Although examination 
of the visualization of the data from Ell et al. (2012) indicates 
that there may be some differences among the four category 
problems, the statistical analyses do not indicate a difference. 
It would be necessary to examine this same kind of category 
learning with a larger sample to truly understand the nature 
of the representation of these dimensions.  

Additionally, whereas in the current set of simulations, the 
performance for the worst-performing category problem is 
around chance levels, participants in Ell et al. (2012) were 
able to learn all four category problems to a similar extent by 
the end of 720 trials. The nature of the current model 
simulations is that the training is extreme to demonstrate a 
first-pass confirmation that the nature of the representations 
can have drastic impacts on learning outcomes. However, it 
is likely the case that to match human behavior and 
representations more closely, the training representations will 
need to be less extreme.  

Smith et al. (2014): Cross-modal dimensions 
In Smith et al. (2014), Experiments 1 and 2, participants 
learned categories with one visual and one auditory 
dimension. The dimensions varied across the two 
experiments, but the results are very similar, so we discuss 
them together. The auditory dimension was duration of three 
100 Hz tones in Experiment 1 and frequency of a pure tone 
in Experiment 2. The visual dimension was pixel density in 
both experiments.  

The purpose of these experiments was not to compare 
accuracies of the two RB and two II tasks. As such, Smith et 
al. (2014) do not compare accuracy across the four tasks. 
Although they trained on all four training types, they report 
the average accuracy for the two RB tasks to the average 
accuracy for the two II tasks. This comparison stems from 
their investigation into the differences between RB and II 
category learning but distorts the ability to compare the 
statistical outcomes to the current set of model simulations.  

However, we can observe the pattern in the reported means 
from their experiments to assess the descriptive pattern of 
results within the four category learning problems. These 
descriptive results indicate that for Experiment 1, the two RB 
problems are learned better than the two II problems, which 
aligns with the model’s behavior with the Independent 
distributions, reflecting a situation where the two sensory 
dimensions are encoded independently. The explanation 

makes sense in that cross-modal dimensions are likely to be 
encoded by distinct and separate sensory representations.  

In contrast, in Experiment 2, there was slightly higher 
accuracy for the RB-Auditory problem compared to the RB-
Visual problem (88.5% accuracy compared to 77.8%). 
However, performance on each was better than for the two II 
problems. This exact pattern is not represented directly in the 
model’s behavior. However, it is still mostly aligned with the 
Independent representations, with some combination for 
which one dimension is represented slightly more faithfully 
than the other dimension, resulting in disproportionate 
perceptual salience across the two sensory dimensions. 
Though there are some limitations in our ability to directly 
compare the effects to the model behavior, it seems 
reasonable that one of these dimensions may be more salient 
than the other, which may have influenced learning 
outcomes.  

Conclusions 
The current set of simulations demonstrates that the nature of 
experience in a sensory environment can shape the 
representations of input dimensions in a way that can 
drastically impact category learning behavior. Depending on 
the nature of the representations, which are shaped by 
experience, some category learning problems are easily 
learnable, whereas others are completely unlearnable. This 
model demonstrates that consideration of perceptual 
processing and acknowledgement of the constraints that the 
perceptual system and existing representations place on 
learning are critical to understanding the mechanisms at play 
during perceptual category learning. The nature of the 
learning problem may differ substantially depending on the 
perceptual representations across the very same input 
dimensions.  

The current model used relatively simple and somewhat 
extreme training spaces that are clearly much more abstract 
than the way sensory information is presented in the real 
world. While there was a small amount of noise in the input 
to the model to reflect modest perceptual noise in the 
encoding process, there was no noise in the actual 
distributions. Future expansion of this model should include 
a simulation of the kind of variability and noise that exists in 
real-world sensory environments. Additionally, different 
kinds of relationships in the input should also be tested to 
make clear predictions about how the many different kinds of 
relationships (rather than just independence or a perfect 
correlation) can be represented by the model to affect 
behavior. Finally, this model is restricted to a two-
dimensional space. The world beyond simple experiments 
has many more dimensions, some of which are relevant, 
others irrelevant, some present and varying, some rarely 
present and stable. A future iteration of this model should 
seek to understand how multiple dimensions may be 
represented independently and, in conjunction, what the 
effects on higher-level cognition might be. 

An important next step would be to train the model and 
humans on identical distributions and to compare visual, 
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auditory, and cross-modal dimensions on the same category 
distributions. However, the current investigation provides 
valuable insight into the nature of the representations of these 
dimension comparisons and provides a proof-of-concept 
investigation that indicates that rule-based and information-
integration distinctions may not be the key determiner in 
understanding categorization. Instead, these results 
demonstrate that it is imperative to understand the nature of 
the perceptual representations of the dimensions involved to 
understand the learning challenge.  

The current model used an autoencoder for training the 
representations to reflect sensory regularities. Of course, an 
autoencoder does not fully reflect the complexities of human 
learning or sensory experience. Future work might expand 
the current demonstration to include more nuanced training 
methods, including feedback-based learning. We suspect that 
training with feedback may impact subsequent category 
learning behavior even more strongly. 

The goal of the current neural network model simulation 
experiment was to illuminate the influence of perceptual 
representations on category learning. This formulation of the 
model allows us to make predictions about how perceptual 
representations of sensory information influence category 
learning mechanisms. What is clear from this investigation is 
that the nature of learning problem can vary dramatically 
based on the network’s existing hidden unit representations. 
The same is likely true with human learning. While much of 
the human perceptual category learning research has used 
simple, verbalizable dimensions that are likely represented 
independently both neurally and in mental representations, it 
is a much more difficult and interesting problem to 
understand what happens when perception is not so 
straightforward. The current model demonstrates scenarios in 
which the influence of perception on cognition can be drastic.  

This approach challenges the typical assumption made in 
theories of category learning—that experimenter-defined 
dimensions are aligned with participants’ psychological 
representations. If there is a misalignment between these 
concepts of dimensions, then what may appear to the 
experimenter to be a ‘rule-based’ problem may not actually 
be ‘rule-based’ for the perceptual system. Therefore, labeling 
problems as rule-based or information-integration based on 
experimenter-defined dimensions does not capture the true 
complexity of the problem or the nature of the problem for 
the human perceptual system.  

The influence of existing representations on learning is a 
major focus of the speech and language learning fields (Best, 
1995; Iverson & Kuhl, 1995; Scharinger et al., 2013). The 
influence of the psychological representation of dimensions 
was also a focus of earlier work in the domain of perception 
and learning (Garner, 1974; Kemler & Smith, 1979; Kemler 
Nelson, 1993; Melara & Marks, 1990). However, the 
perceptual side of perceptual category learning has drifted 
out of focus of current theories of learning. The current set of 
simulations demonstrates that the psychological 
representation of information, shaped by experience, can 
have strong influences on the nature of the learning problem. 

Acknowledgements 
The project described was supported by Award Number 
T32GM081760 from the National Institute of General 
Medical Sciences. 

References  
Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & 

Waldron, E. M. (1998). A neuropsychological theory of 
multiple systems in category learning. Psychological 
Review, 105(3), 442–481. 

Ashby, F. G., & Maddox, W. T. (2011). Human category 
learning 2.0. Annals of the New York Academy of 
Sciences, 1224, 147–161.  

Best, C. T. (1995). A Direct Realist View of Cross-Language 
Speech Perception. In Speech Perception and Linguistic 
Experience: Issues in Cross-Language Research. 

Carpenter, K. L., Wills, A. J., Benattayallah, A., & Milton, F. 
(2016). A Comparison of the neural correlates that 
underlie rule-based and information-integration category 
learning. Human Brain Mapping, 37(10), 3557–3574.  

Edmunds, C. E. R., Milton, F., & Wills, A. J. (2015). 
Feedback can be superior to observational training for 
both rule-based and information-integration category 
structures . The Quarterly Journal of Experimental 
Psychology, 37–41.  

Ell, S. W., Ashby, F. G., & Hutchinson, S. (2012). 
Unsupervised category learning with integral-dimension 
stimuli. The Quarterly Journal of Experimental 
Psychology, 65(8), 1537–1562. 

Garner, W. R. (1974). The Processing of Information and 
Structure. Hillsdale, NJ: Erlbaum. 

Goldstone, R. L. (1998). Perceptual learning. Annual Review 
of Psychology, 49, 585–612.  

Holt, L. L., & Lotto, A. J. (2010). Speech perception as 
categorization. Attention, Perception, & Psychophysics, 
72(5), 1218–1227.  

Iverson, P., & Kuhl, P. K. (1995). Mapping the perceptual 
magnet effect for speech using signal detection theory and 
multidimensional scaling. Journal of Acoustical Society 
of America, 97(1), 553–562. 

Kaplan, A. S., & Murphy, G. L. (2000). Category learning 
with minimal prior knowledge. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 26(4), 
829–846.  

Kaplan, Audrey S., & Murphy, G. L. (1999). The acquisition 
of category structure in unsupervised learning. Memory 
and Cognition, 27(4), 699–712.  

Kemler, D. G., & Smith, L. B. (1979). Accessing similarity 
and dimensional relations: effects of integrality and 
separability on the discovery of complex concepts. 
Journal of Experimental Psychology. General, 108(2), 
133–150.  

Kemler Nelson, D. G. (1993). Processing integral 
dimensions: the whole view. Journal of Experimental 
Psychology: Human Perception and Performance, 19(5), 
1105–1113.  

Melara, R. D., & Marks, L. E. (1990). Hard and soft 

1822



interacting dimensions: differential effects of dual context 
on classification. Perception & Psychophysics, 47(4), 
307–325.  

Milton, F., & Pothos, E. M. (2011). Category structure and 
the two learning systems of COVIS. European Journal of 
Neuroscience, 34(8), 1326–1336. 

Nosofsky, R. (1992). Similarity Scaling And Cognitive 
Process Models. Annual Review of Psychology, 43(1), 25–
53.  

Richler, J. J., & Palmeri, T. J. (2014). Visual category 
learning. Wiley Interdisciplinary Reviews: Cognitive 
Science, 5(1), 75–94.  

Roark, C. L., & Holt, L. L. (2019). Perceptual dimensions 
influence auditory category learning. Attention, 
Perception, and Psychophysics, 81(4), 912–926.  

Scharinger, M., Henry, M. J., & Obleser, J. (2013). Prior 
experience with negative spectral correlations promotes 
information integration during auditory category learning. 
Memory & Cognition, 41, 752–768.  

Shepard, R. N. (1980). Multidimensional Scaling, Tree-
Fitting, and Clustering. Science, 210(24), 390–398. 

Smith, J. D., Johnston, J. J. R., Musgrave, R. D., Zakrzewski, 
A. C., Boomer, J., Church, B. A., & Ashby, F. G. (2014). 
Cross-modal information integration in category learning. 
Attention, Perception, & Psychophysics, 1473–1484.  

Wang, X. (2007). Neural coding strategies in auditory cortex. 
Hearing Research, 229(1–2), 81–93.  

Wills, A. J., Suret, M., & McLaren, I. P. L. (2004). Brief 
communication: the role of category structure in 
determining the effects of stimulus preexposure on 
categorization accuracy. The Quarterly Journal of 
Experimental Psychology. B, Comparative and 
Physiological Psychology, 57(1), 79–88.  

Yi, H. G., & Chandrasekaran, B. (2016). Auditory categories 
with separable decision boundaries are learned faster with 
full feedback than with minimal feedback. The Journal of 
the Acoustical Society of America, 140(2), 1332–1335.  

 

1823




