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Isospin 0 and 2 two-pion scattering at physical pion mass using all-to-all propagators
with periodic boundary conditions in lattice QCD
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A study of two-pion scattering for the isospin channels, I = 0 and I = 2, using lattice QCD
is presented. Möbius domain wall fermions on top of the Iwasaki-DSDR gauge action for gluons
with periodic boundary conditions are used for the lattice computations which are carried out on
two ensembles of gauge field configurations generated by the RBC and UKQCD collaborations with
physical masses, inverse lattice spacings of 1.023 and 1.378 GeV, and spatial extents of L = 4.63
and 4.58 fm, respectively. The all-to-all propagator method is employed to compute a matrix of
correlation functions of two-pion operators. The generalized eigenvalue problem (GEVP) is solved
for a matrix of correlation functions to extract phase shifts with multiple states, two pions with
a non-zero relative momentum as well as two pions at rest. Our results for phase shifts for both
I = 0 and I = 2 channels are consistent with and the Roy Equation and chiral perturbation theory,
though at this preliminary stage our errors for I = 0 are large. An important outcome of this work
is that we are successful in extracting two-pion excited states, which are useful for studying K → ππ
decay, on physical-mass ensembles using GEVP.

I. INTRODUCTION

Understanding the interactions of two pions is an in-
teresting endeavor for practitioners of non-perturbative
QCD. Not only do we learn how the fundamental inter-
actions of quarks and gluons give rise to the observable
properties of hadrons, these two particle systems play
an important role in Standard Model processes under in-
tense investigation, such as K → ππ decays [1–3] and the
muon’s anomalous magnetic moment g−2 [4, 5]. Our fo-
cus in this study is primarily on isospin I = 0 and 2
for the former while I = 1 is important for the latter.
Isospin symmetry and Bose-Einstein statistics constrain
the states that appear in these processes.

With Lüscher’s technique [6] that relates two-pion en-
ergy in a finite box with the corresponding scattering
phase shift, there have been many studies of two-pion
scattering in lattice QCD at unphysical pion masses [7–
20]. For these studies, a chiral extrapolation was needed
to obtain physical results. The analytic evaluation of
two-pion scattering in chiral perturbation theory [21, 22]
(ChPT) was employed in these works to perform the ex-
trapolation of important parameters of two-pion scatter-
ing such as the scattering length. While we can expect
the extrapolation is reasonable for the scattering length,
which can be extracted near two-pion threshold, the ex-
trapolation of the scattering amplitudes or phase shifts
might not be accurate at high energies.

Now it is possible to perform a lattice calculation at
the physical pion mass so that we can directly com-
pute the two-pion phase shifts at relatively large ener-
gies without a chiral extrapolation. There was a study
where the I = 2 scattering length was computed includ-
ing the physical pion mass for the first time [23]. The
I = 0 channel is challenging already at unphysical pion
masses [7, 15, 17–19] because of the presence of discon-
nected diagrams and two-pion operators coupling with
the vacuum state. This paper is part of a series of stud-
ies of two-pion scattering undertaken by the RBC and
UKQCD collaborations [24, 25], where the challenging
I = 0 channel is examined at physical pion mass. Here
we present results for phase shifts at various energy levels
for I = 2 and I = 0 at physical pion mass using 2 + 1
flavors of Möbius domain wall fermions (MDWF) with
periodic boundary conditions.

The RBC and UKQCD collaborations have reported
results for CP violation in kaon decays and pion phase
shifts at the physical point for the corresponding I = 0
and 2 final states [2, 3, 24]. Because the physical kine-
matics for such decays require pions with back-to-back
relative momenta, which is not the ground state achieved
in ordinary lattice calculations where the pions are at
rest [26], G-parity spatial boundary conditions (GPBC)
were employed in the simulations [27]. GPBC forbid
pions with zero momentum, and if the box size is ad-
justed appropriately, then the two-pion ground state
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computed on the lattice will have physical momenta sat-
isfying Eππ ≈ MK . In the GPBC two-pion scattering
work [24], we obtained the phase shifts of the I = 0
channel as well as the I = 2 channel at various two-pion
energies with non-zero pion momenta that are consistent
with the prediction from the dispersion theory [28–32]
based on the Roy Equation [33] with inputs obtained by
a combination of chiral perturbation theory for the scat-
tering lengths and experimental data for the high energy
regime. GPBC are not implemented without extra cost,
however. They are at least twice as expensive for mea-
surements compared with periodic boundary conditions
because the G-parity Dirac operator is explicitly two-
flavor, with mixing between the flavors occurring at the
boundary, and they also require gauge ensembles with the
same boundary conditions to be generated. In addition,
an important future step is to include isospin breaking
effects in the calculation of ε′ which is expected to be
significant but GPBC may not be suitable due to the
intrinsic role of the isospin symmetry.

The long-term aim of this study is to explore the use of
periodic boundary conditions (PBC) to answer the ques-
tion whether the decay amplitudes with physical kine-
matics can be extracted reliably from an excited state
computed on the lattice. As a first step, we investigate
pion scattering in this setup.

Two-pion states with a definite total momentum can
vary their total energy not only by a standard excitation
of a single pion but also by changing the momenta of indi-
vidual pions, or equivalently the relative momentum. A
finite box forces the momenta to be quantized in units of
2π/L for PBC, implying that the typical interval among
two-pion energies is in general of O(2π/L). At the same
time simulations are carried out with typical values of
mπL of approximately 3.3–4 to keep exponential finite
volume effects under control. Therefore as we lower the
pion mass towards the physical value, the box sizes grows
and it may become increasingly challenging to extract the
signals of an excited state with the statistical and system-
atic errors under control. This is the case especially for
I = 0, where there are disconnected diagrams and cor-
responding operators couple with the vacuum state. In
fact, we learned from our earlier works [2, 3, 24] with
GPBC that there is significant higher-state contamina-
tion in two-pion correlation functions.

The generalized eigenvalue (GEVP) method [34, 35]
provides us with a systematic procedure to decompose
correlation functions into contributions from the sev-
eral lightest states with the same quantum numbers
and have been widely used for hadron spectrum stud-
ies. In our particular case, it turned out from earlier
works [2, 3, 17, 24] that introducing a σ operator for
I = 0 in the measurements plays a crucial role in remov-
ing the contamination from excited states and that the
introduction of the σ operator significantly reduces the
statistical error. In this work, we introduce a σ opera-
tor as well as four two-pion operators with various pion
momenta for our measurements and GEVP analysis to

extract the ground and excited states.

In addition, we propose a variant of the GEVP ap-
proach which we call the re-based GEVP (RGEVP). The
eigenvectors of GEVP obtained at a time slice give us
a new basis of operators. In principle, each operator in
the new basis couples well with one of the lowest energy
states considered in the GEVP. With limited statistics,
since we could lose the signal from one or more of those
states at large time separations, it may be reasonable to
exclude such noisy states by removing the corresponding
operators from the basis so that all the states included in
the GEVP analysis have good statistical precision. The
RGEVP is to reduce the size of GEVP by using fewer
operators that couple well with states. We find that this
approach gives us an improvement on statistical preci-
sion for the ground and first excited states of the I = 0
channel.

We perform lattice calculation for two-pion scattering
with 258 configurations on the 243 × 64 lattice with the
lattice cutoff a−1 = 1.023 GeV and 107 configurations
on the 323 × 64 lattice with a−1 = 1.378 GeV [36, 37].
Both ensembles are generated with 2 + 1-flavor Möbius
domain wall fermions and Iwasaki plus DSDR (disloca-
tion suppressed determinant ratio) gauge action. See
Tab. I for more detail. We employ several cutting-edge
lattice methods: all-mode-averaging (AMA) [38, 39] and
all-to-all (A2A) propagators [40] as well as the GEVP
method [34, 35] to compute correlation functions and ex-
tract energy eigenvalues. While better statistical pre-
cision is desired and we will update our results in the
near future, we take the continuum limit of the scatter-
ing phase shifts and scattering lengths at this point. Our
determination of the scattering length does not need a
chiral extrapolation, which assumes the leading order as
an input from ChPT and hence gives a precise value. Our
results are meaningful as a pure lattice determination,
though they have larger uncertainty. A companion pa-
per [25] using distillation [41] will also be available soon.

Although the core of this study is the application to
K → ππ and the direct CP violation parameter, ε′, the
experience gained here will provide impetus to other ap-
plications of π-K scattering phases. Examples that we
have in mind so far are direct CP violation in charm de-
cays [42, 43], possible CP violation in τ → νKπ [44], and
three body proton decays.

This paper is organized as follows. Section II de-
scribes the theoretical framework underlying the calcu-
lation. In Section III we give the lattice details. Sec-
tion IV gives results for the computed two-pion energies
and the corresponding phase shifts. Here we also com-
pare our results to recent data-driven studies [28]. In
Section V we compare the PBC calculation to the GPBC
one [24]. Section VI summarizes the present work and fu-
ture prospects.
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II. THEORETICAL FRAMEWORK

A. Operator Construction

In this subsection we describe the operators and states
used in this work.

We start with pion operators with definite spatial mo-
mentum

πa(t, ~p) =
∑
~x,~y

e−i(~p1·~x+~p2·~y)fr(||~x− ~y||)

× ψ(t, ~x)iγ5F
aψ(t, ~y), (1)

which is defined with the Coulomb gauge fixing and the
momentum ~p = ~p1 + ~p2 of the pion operator. In this
work we consider pion operators whose momentum for
a direction is zero or one unit. Thus a natural way of
assigning the inner momenta when ~p is non-zero is that
~p1 or ~p2 carries one unit of momentum and the other zero.
We assign ~p1 = ~0 and ~p2 = ~p in this work and add only ~p
as the momentum argument of the single-pion operators.
While there is no dependence on the relative momentum
~p1 − ~p2 without smearing, we introduce the exponential
smearing function

fr(||~x− ~y||) = exp(−||~x− ~y||/r), (2)

with smearing radius r and the periodic modulus ||~x−~y||,
the length of the shortest straight path from ~y to ~x in the
periodic box. This hydrogen-like wave function has been
used in our earlier works [3, 24]. While the single-pion
operator of course depends on the smearing radius, we
drop r from the pion operator on the left hand side of
Eq. (1) for simplicity. The quark and anti-quark isospin
doublets are defined as

ψ =

(
u
d

)
, ψ = ( ū d̄ ), (3)

and

F+ =
1

2
(σ1 + iσ2), (4)

F− =
1

2
(−σ1 + iσ2), (5)

F 0 =
1√
2
σ3, (6)

with the Pauli matrices σ1,2,3.
The two-pion operators are constructed by multiplying

two single-pion ones:

ÕI,Izππ (t1, t2, ~P , ~p/2) =
∑
a,b

cI,Izab πa(t1, (~P + ~p)/2)

×πb(t2, (~P − ~p)/2), (7)

where ~P and ~p are the center-of-mass and relative mo-
menta of the two pseudoscalar operators, respectively,

and a, b ∈ {+,−, 0}. The coefficients cI,Izab project the

two-pion operator to an isospin-definite channel labeled
by (I, Iz). Appendix A gives the explicit forms of the
(I, Iz) = (2, 0) and (0, 0) two-pion operators.

The discrete, finite lattice breaks the continuum rota-
tional symmetry of angular momentum SO(3) down to a
discrete subgroup, which depends on the center-of-mass
momentum. The irreducible representations of such a
discrete subgroup do not give rise to angular momentum
eigenstates that appear as irreducible representations of
SO(3). Instead, they are mixtures which can be classified
in terms of the continuum irreducible representations.

It is fairly straightforward to make this classification
based on fundamental group theory for one and two par-
ticle systems, both moving and at rest [14, 45]. Our main
target is the s-wave two-pion states and their phase shifts.
The corresponding interpolating operators are defined as

OI,Izππ (t1, t2, ~P , ~p/2) =
∑
T̂∈G

χA1
(T̂ )ÕI,Izππ (t1, t2, ~P , T̂ [~p/2]),

(8)

where we sum over all elements T̂ in the finite-volume
symmetry group G and the normalization factor χA1(T̂ )

is the character of the group element T̂ in the represen-
tation A1 [14, 45].

We can consider two-pion operators composed of two
bilinear operators located at different time slices t1 and
t2. As long as there is no other operator placed in be-
tween, the time-non-local two-pion operators still play
a role in creating and annihilating two-pion states with
corresponding quantum numbers and we can discuss the
spectrum at time slices outside the operator. It has been
shown that placing the two bilinear operators on slightly
different time slices is advantageous for reducing statisti-
cal noise especially for I = 0 [2, 3, 24], where the overlap
of the two-particle operator with the vacuum state can be
suppressed exponentially by the separation ∆ ≡ |t2− t1|.

In addition to these two-pion operators, we introduce
a σ operator, or iso-singlet scalar bilinear operator, for
I = 0:

σ(t, ~p) =
∑
~x,~y

e−i(~p1·~x+~p2·~y)fr(||~x−~y||)ψ(t, ~x)ψ(t, ~y), (9)

with ~p = ~p1 +~p2. Again, we set ~p1 = ~0 and ~p2 = ~p in this
work. This operator has been found to play an impor-
tant role in controlling the contamination from excited
states [3, 24].

In this work, we concentrate on the rest frame ~P = ~0
and s-wave operators and states. For I = 2, Iz = 0, we
consider four values of relative pion momenta and use the
following operator basis:

O2,0(t) =


O2,0
ππ (t, t+ ∆,~0, (0, 0, 0)× 2π/L)

O2,0
ππ (t, t+ ∆,~0, (0, 0, 1)× 2π/L)

O2,0
ππ (t, t+ ∆,~0, (0, 1, 1)× 2π/L)

O2,0
ππ (t, t+ ∆,~0, (1, 1, 1)× 2π/L)

 . (10)



4

ππ

ππ

ππ

ππ

ππ

ππ

ππ

ππ

FIG. 1: Elemental Wick contractions. Clockwise from top-
left: D (direct), C (cross), V (vacuum), and R (rectangle).
Linear combinations of the four diagrams are used to con-
struct pion scattering correlation functions for I = 0, 1, and
2 states with definite lattice hypercubic symmetry.

Similarly for I = 0, Iz = 0, we define

O0,0(t) =


O0,0
ππ (t, t+ ∆,~0, (0, 0, 0)× 2π/L)

σ(t,~0)

O0,0
ππ (t, t+ ∆,~0, (0, 0, 1)× 2π/L)

O0,0
ππ (t, t+ ∆,~0, (0, 1, 1)× 2π/L)

O0,0
ππ (t, t+ ∆,~0, (1, 1, 1)× 2π/L)

 . (11)

The order of the operators in these bases matters when it
comes toN×N GEVP as described in Section II D. When
we do not need to specify the isospin, we simply call the
four two-pion operators ππ(000), ππ(001), ππ(011) and
ππ(111), respectively.

B. Correlation Functions

For the GEVP a matrix correlation function is defined
in the basis of operators given in the previous sub-section,

CI,Izij (t) =
〈
OI,Izi (t)OI,Izj (−∆j)

†
〉
, (12)

where

∆j =

{
∆ (I = 2)

(1− δ2,j)∆ (I = 0)
, (13)

translates the source two-pion operators by ∆ but does
nothing for the σ operator so that the time variable t
always indicates the minimum time separation between
a bilinear of the source operator and that of the sink
operator. While the measured correlator matrix is not
exactly symmetric with finite statistics, we symmetrize
it by averaging with the transposed partner.

The Wick contractions of the two-point functions are
shown diagramatically in Figs. 1 and 2 . They are de-
noted “direct” (D), “cross” (C), “rectangle” (R), and

π

π

σ

π

π

σ

σσ σσ

FIG. 2: Elemental Wick contractions with one (upper) or two
(lower) scalar bilinear operators. These are analoguous to the
R (left) and V (right) diagrams in Fig. 1 and relevant for only
the I = 0 channel.

“vacuum” (V). By taking an appropriate linear combina-
tion of these elemental contractions, we construct a cor-
relation function of operators carrying definite isospin.
All diagrams in Figs. 1 and 2 contribute to the I = 0
channel, while only diagrams D and C contribute to the
I = 2 channel. We compute the disconnected diagrams
for every time translation and take the translation av-
erage, while the connected diagrams are computed at
every several source time slices, which are specified in
Section III. The complete formulae for the I = 2 and
I = 0 channels are given in Appendix A.

For I = 0 there is an additional complication: in the
rest frame the ground state in this channel is the vacuum.
This contribution dominates the correlation function and
must be subtracted,

C0,0
ij (t) =

〈
O0,0
i (t)O0,0

j (−∆j)
†〉

− 1

Lt

Lt−1∑
tsrc=0

〈
O0,0
i (t+ tsrc)

〉〈
O0,0
j (tsrc −∆j)

†〉
,

(14)

where Lt stands for the time extent of the lattice en-
semble in lattice units. While the second term on the
right hand side is independent of t in the limit of in-
finite statistics, we perform this subtraction time-slice-
by-time-slice as we found it provides a minor statistical
advantage [3, 24].

C. Thermal effects

Due to the finite time size of the lattice (Lt) and the pi-
ons satisfying periodic boundary conditions in time, un-
wanted contributions contaminate the correlation func-
tion. These so-called around-the-world (ATW), or ther-
mal, effects arise when one of the source pions propa-
gates forward in time while the other goes backwards
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through the boundary to reach the sink time slice. They
can be seen by inserting a complete set of states in the
two-point (“thermal”) correlation function and translat-
ing the source and sink operators to equal times.〈

Oππ(t)Oππ(0)†
〉

=
∑
m

∑
n

〈
m|Oππ(t) |n〉 〈n|O†ππ(0)|m

〉
=
∑
n

(e−E
ππ
n t + e−E

ππ
n (Lt−t))

〈
0|Oππ |n〉 〈n|O†ππ|0

〉
+ e−Eπ(~p)te−Eπ(~p)(Lt−t)

× 〈π(~p) |Oππ|π(~p)〉
〈
π(~p)

∣∣O†ππ∣∣π(~p)
〉

+ . . . , (15)

where we omit the isospin superscripts and momentum
arguments for simplicity and the sum over m gives the
thermal expectation value. The first term on the right
hand side contains the zero temperature expectation
value, while the last term is the thermal contribution
which vanishes as Lt → ∞. Notice when the rest frame
is employed, the leading ATW contribution is time inde-
pendent while the ATW effects of an excited-state pion
and those in a moving frame are time dependent. All
thermal effects are suppressed exponentially with Lt.

Since we employ the rest frame, the leading ATW term,
which is constant, can be removed simply by a “matrix”
subtraction

CI,Izij,subt(t) ≡ C
I,Iz
ij (t)− CI,Izij (t+ δt). (16)

where δt is an arbitrary time shift. This subtraction re-
moves all constant contributions to the correlation func-
tions and therefore the vacuum subtraction (14) is in
principle unnecessary if this subtraction is applied. In
this work, we still apply the vacuum subtraction so that
we can investigate the significance of the ATW effects
with the absence of vacuum effects by analyzing both
matrix-subtracted and unsubtracted correlators. As seen
in Section IV A, the ATW effects are significant for two-
pion at rest but can well be subtracted by the matrix
subtraction.

D. Generalized eigenvalue problem method

For the rest of the section we omit the superscripts I
and Iz and simplify our notation of the correlator matrix

CI,Izij,subt(t)→ Cij(t), or C(t) when the operator indices i
and j can be dropped without confusion.

As is well known, Euclidean space correlation functions
are a sum of exponential terms, each term correspond-
ing to one state in a tower of states with fixed quantum
numbers and increasing energies,

Cij(t) =
∑
n

An,iA
∗
n,je

−Ent, (17)

where we have neglected the backward propagating con-
tributions proportional to e−En(Lt−t) since t� Lt in our

setup1. An,i = 〈0|Oi|n〉(1 − e−Enδt)1/2 is the overlap of
the i-th operator acting on the n-th state and the vac-
uum multiplied with with a normalization factor due to
the matrix subtraction.

To extract the desired excited states in the correlator,
we employ the variational method by solving a general-
ized eigenvalue problem (GEVP) [34, 35]. For an N ×N
matrix C(t) we solve the following GEVP:

C(t)Vn(t, t0) = λn(t, t0)C(t0)Vn(t, t0), (18)

with eigenvalues λn(t, t0) and eigenvectors Vn(t, t0),
where in principle we can choose t0 in the range 0 <
t0 < t. At asymptotically large time separations the
eigenvalue behaves as λn(t, t0) = e−En(t−t0) where En is
n-th energy state in the GEVP. In Ref. [35] it was shown
that the leading correction behaves like e−(EN+1−En)t for
t0 ≥ t/2. In this work, we use the first N operators of the
bases in Eqs. (10) and (11) for the I = 2 and I = 0 chan-
nels, respectively, and solve GEVP with a t-independent
value of t − t0 ≡ ∆t. While the preferable inequality
t0 ≥ t/2 is violated in the region t < 2∆t, we do not
use data at such short times relative to ∆t for our final
results.

Effective two-pion energies are defined as [34, 35]

Eeff
n (t, t0) = lnλn(t, t0)− lnλn(t+ 1, t0). (19)

The corresponding eigenvector Vn(t, t0) at asymptotic
time separation provides a new operator that couples
to the n-th state but not with the other states in the
GEVP2 [35]

Õn =
∑
i

Vn.iOi. (20)

These eigenvectors play a key role in isolating the weak
operator matrix elements between an excited two-pion
state and the kaon in K → ππ decays, for example.

In practice, the large statistical error of correlation
functions at large time separations may cause misorder-
ing of eigenvalues and eigenvectors for specific jackknife
samples resulting in incorrectly large errors in two-pion
energies and GEVP eigenvectors. A brief description of
our procedure to ensure the correct order of eigenvectors
is given below:

1. At small time separations where correlators and
hence eigenvectors are well resolved, ensure the
descending order of eigenvalues. Then the corre-
sponding effective energies will be obtained in the
ascending order.

1 This contribution is exponentially suppressed compared to the
ATW effect considered earlier.

2 The coupling is not perfect: in Ref. [35] it is shown that correc-

tions are O(e−(EN+1−En)t0 ).
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2. At large time separations where excited-state con-
tamination is small, solve the GEVP with the corre-
lators that are mostly diagonalized by Eq. (20) with
the eigenvectors obtained at one time slice earlier.
The eigenvectors from such a GEVP are close to
a unit vector for a certain direction and the order-
ing is fairly trivial. Then change the basis of these
eigenvectors back into the original basis.

See Appendix B 1 for more detail.
In this work, we employ procedure 1 at t0 = 1, 2 and

procedure 2 at larger time separations t0 ≥ 3. The
reason why we switch the procedure at a certain value
of t0 rather than t is because the GEVP eigenvectors
Vn(t, t0) receive the contamination from the higher states
by O(e−(EN+1−En)t0) [35].

It is mathematically guaranteed that the GEVP eigen-
values and eigenvectors in Eq. (18) are real when C(t0)
is a positive-definite real symmetric matrix and some
software functions to solve GEVP have this assumption.
While the correlator matrix at large time separations
with limited statistics have zero-consistent eigenvalues
and it is inevitable that correlator matrix have negative
eigenvalues at some time slices, that may not necessarily
mean we cannot solve GEVP or obtain any information
of two-pion signals at those time separations. The posi-
tivity and real symmetry are sufficient but not necessary
to give us real eigenvalues and eigenvectors of GEVP. As
shown in Section IV A, we find that GEVP with C(t0) in-
cluding a negative eigenvalue can still give us good signals
of a few lowest energy states with the ordering strategy
explained above and in Appendix B 1 as long as GEVP
eigenvalues and eigenvectors are real.

E. Re-based GEVP

The GEVP method provides a decomposition based
on the N lightest states. It assumes sufficiently large
time separations, so the contamination of higher excited
states (n ≥ N + 1) can be ignored. On the other hand,
the GEVP becomes increasingly difficult with increas-
ing time separation due to the exponentially deteriorat-
ing signal-to-noise of the correlator matrix. For small
N , we expect the plateau to start at larger time separa-
tions, where the signal-to-noise ratio is already poor. For
large N , plateaus for the various energies move to ear-
lier times, but the larger statistical errors on the higher
energy states in the GEVP might spoil the signal of the
lower states. Thus for any choice of N (or operator set)
there is a chance that the signal loss occurs before a clear
plateau is observed.

To address the problem we propose a modified version
of the GEVP which we call the re-based GEVP (RGEVP)
whereby we choose a new reduced basis of fewer oper-
ators that couple well with a few resolved low energy
states. The idea originates from the fact that the number
of resolvable states which dictates the appropriate size
of GEVP decreases with increasing time separation and

that the GEVP at short time separations, even before
reaching a plateau, provides a set of nearly diagonalized
operators.

The simplest re-basing can be performed by Eq. (20)
with a chosen number N ′(< N) of eigenvectors Vn(<N ′)

obtained at a chosen time slice t0 = t′0. The new basis
provides an N ′×N ′ correlator matrix with which we can
perform GEVP without contamination from the states
labeled by N ′ + 1 to N .

The re-basing does not have to be a single step. When
one is interested in the ground (first excited) state, the
reduced GEVP size could minimally be one (two). Doing
such a reduction of basis with a single step may not mini-
mize both statistical and systematic errors. A multi-step
re-basing can be made by choosing multiple pairs of re-
basing time t0,α(> t0,α−1) and reduced size Nα(< Nα−1)
with the label α of re-basing steps and repeating the re-
basing Nα−1 → Nα at t0 = t0,α for each α. See Ap-
pendix B 2 for more detail.

In this work, we implement the re-basing with the cen-
tral values eigenvectors for all jackknife samples to main-
tain the configuration independence of the new operator
basis.

F. Phase shifts

The Lüscher method [6] allows us to extract the scat-
tering phase shifts from finite-volume energies on the lat-
tice. The interaction region is supposed to be confined
to a volume well contained inside a box of larger vol-
ume. Outside this region the solution of the wave equa-
tion corresponds to free (non-interacting) particles, and
the boundary conditions of the box impose a quantiza-
tion condition on the complete solution which necessarily
relates the phase shifts to finite-volume energies.

While the extension to moving frames is straightfor-
ward [46], we limit our discussion to the case of the rest
frame, where one obtains the two-pion s-wave scatter-
ing phase shift δ(Eππ) corresponding to a given two-pion
energy as follows:

k =

√
E2
ππ

4
−m2

π, (21)

q =
kL

2π
, (22)

tan φ(q) =
π3/2q

Z00(1; q2)
, (23)

δ(Eππ) = −φ(q) + πn, n ∈ Z, (24)

where Eππ is the energy of the two-pion state in a finite
box of size L3, mπ is the pion mass and Z00(1, q2) is the
Lüscher zeta function, which we compute via an efficient
numerical implementation given in Ref. [47]. Eq. (24) is
used to compute all I = 0 and 2 phase shifts.

The method outlined here for obtaining the phase
shifts is strictly valid in the limited region 2mπ ≤ Eππ ≤
4mπ and up to neglected higher partial waves. In the
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present work we apply this method also to energies above
the 4π inelastic threshold, and neglect these sources of
systematic errors. Numerical results presented in Sec-
tion IV B suggest these systematic errors may not be
large within the energy range considered here.

G. The dispersion relation method

Up to small finite lattice spacing effects, Lüscher’s
method, explained above, gives an accurate prescription
for obtaining the phase shift. With finite lattice spacing,
Eq. (21) needs modification since the appropriate disper-
sion relation for finite lattice spacing depends on the type
of lattice fermion. While simulations at multiple lattice
spacings enable the removal of these effects, we remove
some of them for each lattice spacing separately [24].

The method is based on the cancellation of artifacts
between interacting and non-interacting two-pion ener-
gies. The non-interacting two-pion energies, E0

n, are de-
termined from a product of two expectation values of
single-pion correlators, C0(t), which is analogous to the
D diagram in the interacting case. Since the correlation
functions involving the σ operator do not contain the
D diagram, they should be treated separately. We first
explain the method for I = 2, where the σ operator is
absent, and then explain its generalization to the case
including the σ operator.

The non-interacting correlator matrix C0(t) is diagonal

with analogous two-pion effective energies, E0,eff
1 (t, t0) <

E0,eff
2 (t, t0) < . . . < E0,eff

N (t, t0). The energy shift of two-
pion states due to interactions is

∆Eeff
n (t, t0) = Eeff

n (t, t0)− E0,eff
n (t, t0), (25)

where single-pion discretization errors largely cancel.
Thus we obtain an improved two-pion energy

Eeff ′
n (t, t0) = E0,disp

n + ∆Eeff
n (t, t0), (26)

where we define

E0,disp
n = 2

√
m2
π + |~pn|2, (27)

with a non-interacting pion momentum in the finite box
~pn = (0, 0, 0), (0, 0, 2π/L), (0, 2π/L, 2π/L), . . ..

In addition to reducing the scaling violation in the dis-
persion relation, this method determines two-pion ener-
gies and phase shifts with other improvements as well.
The first term on the right hand side of Eq. (26), which
is defined in Eq. (27), is as statistically precise as mπ. On
the other hand, the second term on the right hand side
of Eq. (26), which is given in Eq. (25), is also expected
to be more precise than Eeff

n (t, t0) because of the correla-
tion between the first and second terms on the right hand
side of Eq. (25). Furthermore, the energy difference in
Eq. (25) may also remove excited state effects related to
single pions and allow effective energies Eeff ′

n to plateau
sooner. We find these to be the case, especially for the
I = 2 channel, as discussed in Section IV.

mπ lattice a−1 L trajectories

(MeV) size Ls (GeV) (fm) (MD time units) configs

142.6(3) 243 × 64 24 1.023(2) 4.67 250-3860 258

143.6(9) 323 × 64 12 1.378(5) 4.58 200-1320 107

TABLE I: Ensemble parameters. 2+1 flavors of Möbius do-
main wall fermions, generated by the RBC/UKQCD collabo-
rations [36, 37]. Trajectories used for measurements are sep-
arated by 10 or 20 Monte Carlo time units. The last column
refers to the number of configurations in each ensemble used
for measurements.

For the I = 0 channel, the statistical errors are domi-
nated by the disconnected diagram which cannot be im-
proved by this method, though we still find some im-
provement for the combination of diagrams by applying
the following procedure with the σ operator. The I = 0
channel is more complicated not only because of the in-
clusion of the σ operator but also because the interaction
between the two pions makes the finite-volume two-pion
energies quite unlike the energies of non-interacting two
pions, i.e. |∆Eeff

n (t, t0)| for I = 0 is much larger than that
for I = 2. Therefore it is less meaningful to identify the
one-to-one correspondence between the interacting and
non-interacting two-pion energies as in Eq. (25). In this
work instead of matching the state label n of the interact-
ing and non-interacting two-pion energies, the first and
second terms in Eq. (25), we choose the non-interacting
two-pion energy as the one closest to the interacting n-th
state energy Eeff

n (t, t0) for the procedure explained above.

III. ENSEMBLE DETAILS AND
COMPUTATIONAL SETUP

Our computations are carried out on two ensembles of
2+1 flavors of Möbius domain wall fermions (MDWF)
with physical masses generated by the RBC/UKQCD
collaborations [36, 37]. Both use the Iwasaki-DSDR
gauge action [48] and correspond to inverse lattice spac-
ings of about 1.0 and 1.4 GeV, respectively, with similar
physical volumes (L ∼ 5 fm). The parameters of each
ensemble are listed in Tab. I.

Correlation functions are computed in an all-to-all
propagator (A2A) [40] framework using 2,000 low-modes
of the preconditioned, squared Dirac operator and spin-
color-time diluted random source propagators for the
high modes.

We employ all-mode averaging (AMA) [38, 39] to save
the computational cost for the conjugate gradient (CG).
While the traditional AMA is to perform fewer exact
measurements (e.g. with fewer source locations) for all
the configurations with which sloppy measurements are
performed, we rather reduce the number of configurations
for the exact measurements keeping the A2A procedure
as it is. We first perform both exact and sloppy measure-
ments with Nexact configurations and create correspond-
ing jackknife samples of the difference between exact and
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sloppy correlators, which would correct the bias due to
the sloppy CG. In the case of bin size 1,

∆C(l)(t) =
1

Nexact − 1

∑
k 6=l

(
CEkexact(t)− C

Ek
sloppy(t)

)
,

(28)
where E is the list of configurations with which both
exact and sloppy measurements are performed and
CEkexact/sloppy(t) stands for an exact/sloppy sample of the

correlator matrix calculated with a configuration Ek. The
average of the difference is defined as

∆C(t) =
1

Nexact

Nexact∑
l=1

∆C(l)(t). (29)

We also perform sloppy measurements with Nsloppy addi-
tional configurations in the list S and create correspond-
ing jackknife samples. If we set the bin size to 1, they
are written as

C
(l)
sloppy(t) =

1

Nsloppy − 1

∑
k 6=l

CSksloppy(t), (30)

and the average is given as

Csloppy(t) =
1

Nsloppy

Nsloppy∑
l=1

C
(l)
sloppy(t). (31)

With these jackknife samples and averages, we define
super-jackknife samples as

C
(l)
AMA(t) =

{
Csloppy(t) + ∆C(l)(t) (1 ≤ l ≤ Nexact)

C
(l−Nexact)
sloppy (t) + ∆C(t) (l > Nexact)

.

(32)
In this work, the sloppy (high-mode) propagators are

computed with 400 and 330 iterations of CG and the ex-
act propagators are computed to the CG residual of 10−8

with 14 and 17 configurations for the 243 and 323 lattices,
respectively. For the sloppy part of the measurements on
the 243, 1.023 GeV, ensemble we employ the zMöbius ap-
proximation [49] of the Möbius Dirac operator, reducing
the size of the fifth dimension by a factor of two.

As described in Section II A, the two-pion operators are
defined as a product of two single-pion operators sepa-
rated by a parameter ∆. We choose ∆ = 3 and 4 for the
243 and 323 lattices, respectively, so the separation in
physical units is about the same. The smearing radius r
of the single-pion and the sigma operators is set to 1.5 and
2.0 in lattice units for the 243 and 323 lattices, respec-
tively. We average the correlation functions over time
location of the source operator tsrc. The disconnected
diagrams are computed at tsrc = 0, 1, . . . , 63, while the
connected diagrams are computed at tsrc = 0, 8, . . . , 56
for the 243 lattice and tsrc = 0, 10, . . . , 50 for the 323

lattice.

momentum lattice DR

243 lattice

(000) 0.13944(17)[1.2] 0.13944(17)

(001) 0.29572(30)[0.9] 0.296621(80)

(011) 0.39431(66)[1.2] 0.395630(60)

(111) 0.4685(18)[1.0] 0.474407(50)

323 lattice

(000) 0.10422(20)[1.1] 0.10422(20)

(001) 0.22190(44)[1.1] 0.222293(94)

(011) 0.2954(10)[1.5] 0.296593(71)

(111) 0.3559(28)[1.2] 0.355697(59)

TABLE II: Summary of single-pion energies with the four
lowest momenta on the 243 and 323 lattices. The three-digit
number on the first column specifies the spatial momentum
of the single pion. Results from correlated χ2 fits to single-
pion correlators with the cosh function (lattice) and dispersion
relation, half of Eq. (27), (DR) are shown in lattice units. The
values of χ2/d.o.f. are displayed in the square brackets.

IV. RESULTS

A. Energies

Single-pion energies with the four lowest momenta are
summarized in Tab. II. The results from single-pion cor-
relation functions with respective momenta and from
the continuum dispersion relation are listed. The non-
interacting two-pion energies can be estimated as the
double of these values. The difference between the values
from the two approaches corresponds to the discretiza-
tion effect on the two-pion energies that can be removed
by the dispersion relation (DR) method explained in Sec-
tion II G. By definition, the results for zero-momentum
energy from the two approaches are identical. One can
recognize the discretization effect in the results for the
non-zero momenta on the 243 lattice, while the results
on the 323 are not sufficiently resolved to see the differ-
ence.

Interacting two-pion energies are tabulated and plot-
ted for several values of Euclidean times t0, t−t0, δt, and
various types (N × N or RGEVP) of GEVP, with and
without the dispersion relation method, in Appendix C.
The parameters for re-basing are found in captions of
respective figures and tables throughout this subsection
and tables in Appendix C. Some general patterns are
apparent. For short times the statistical errors are sub-
percent, even down to the per mille level in some cases.
The effect of increasing t − t0 is small and likewise for
δt. The DR method greatly enhances statistical preci-
sion, especially for the I = 2 ground state but gains are
seen generally. It also lessens (single-pion) excited state
contamination. In the next two subsections we discuss
the results in detail, including comparisons in a range of
t and for both lattice spacings to assess residual excited
state contamination and lattice artifacts, respectively.



9

0.27

0.28

0.29

4x4 GEVP

I = 2, n = 0, 243

0.2805

0.2810

0.2815

0.2820

0.2825

 2  4  6  8  10  12  14

4x4 GEVP + DR

t
no δt subt

δt = 4

δt = 5

δt = 6

δt = 7

δt = 8

δt = 9

δt = 10

δt = 11

FIG. 3: The I = 2 effective ground state energy with the
dispersion relation method (lower) and without (upper). 243,
4× 4 GEVP, t− t0 = 1. Without matrix subtraction there is
an evident downward shift in the energy, an indication of the
ATW effect, for the non-DR result.

Our guiding principle throughout this analysis is to
stick to as short times as possible, where statistics are
better and ATW effects are smaller, taking advantage of
the GEVP and the DR method that reduce excited state
contamination. In this section, the state label n begins
with 0 so that the ground state is labeled with n = 0, the
first excited state with n = 1 and so on.

1. I=2

We begin with the ground state for the 243 ensem-
ble. Fig. 33 shows the ground state energy for several
GEVP types and representative values of δt = 2, 5, 8,
t − t0 = 1, 2, 3, 4, and t = 4, 6, 8. Similar patterns of be-
havior emerge for the various GEVP types. Without the
DR method, increasing either δt or t−t0 tends to decrease
the energy, suggesting smaller excited state effects (the
statistical errors are relatively large, so we do not draw a
strong conclusion). For larger times the effect is smaller.
For fixed t we often observe smaller statistical errors as δt
increases, though after δt = 5 the improvement is slight.
Increasing t− t0 has little effect. The DR method, on the
other hand, shows a dramatic reduction in statistical er-
ror but little change after that for the other variables. In
either case, there is little dependence on the GEVP type.

This is because, in Eq. (26), E0,disp
0 = 2mπ dominates

the statistical error and ∆Eeff
0 (t, t0), which is dependent

on GEVP type, is much more precise for the ground state
in our measurements.

Fig. 3 shows the effective ground state energy for the
4× 4 GEVP (our largest basis for I = 2) with t− t0 = 1
and matrix subtractions in the range 4 ≤ δt ≤ 11 with
(lower panel) and without (upper panel) the DR method.
There are several interesting features. First a clear and

GEVP fit range

type 4–10 5–10 6–10

2× 2 0.28132(34)[0.7] 0.28129(34)[0.8] 0.28129(34)[1.0]

3× 3 0.28131(34)[0.7] 0.28129(34)[0.7] 0.28129(34)[0.9]

4× 4 0.28128(34)[0.6] 0.28126(34)[0.7] 0.28126(34)[0.9]

RGEVP 0.28130(34)[0.6] 0.28128(34)[0.7] 0.28128(34)[0.9]

TABLE III: Fit results for two-pion energy of the I = 2
ground state on the 243 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 5 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 4× 4→ 3× 3 at t0 = 4.

GEVP fit range

type 4–9 5–9 6–9

2× 2 0.60859(27)[1.3] 0.60824(31)[0.3] 0.60824(43)[0.4]

3× 3 0.60821(27)[0.9] 0.60793(31)[0.3] 0.60799(43)[0.4]

4× 4 0.60817(27)[0.8] 0.60789(31)[0.3] 0.60797(43)[0.3]

RGEVP 0.60816(27)[0.9] 0.60789(31)[0.3] 0.60797(43)[0.3]

TABLE IV: Fit results for two-pion energy of the I = 2 first
excited state on the 243 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 5 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 4× 4→ 3× 3 at t0 = 4.

stable plateau sets in between t = 4 and 5 for all non-zero
δt. Both statistical uncertainties and excited state con-
tamination are significantly reduced by the DR method.
In the upper panel (no matrix subtraction) there is a sys-
tematic downward shift for each time slice which grows
with increasing t. This is a clear indication of the ATW
effect, which is eliminated by the matrix subtraction.
Perhaps somewhat surprisingly the shift is also elimi-
nated by the DR method. This can be understood as
follows. A very similar ATW effect occurs in the single
pion case, so the observed cancellation implies that in the
interacting case, the two pions do not interact very much.
We also observe a small reduction in statistical error as δt
increases in the absence of the dispersion method while
there is no difference when it is used as the dominant er-
ror on the ground state energy after DR is from the error
on mπ. Since contractions were only computed for t ≤ 16
to reduce computational cost, the maximum value of t for
the effective energy in each case is tmax,δt = 15 − δt, as
seen in the figure (15 not 16 appears because the effective
energy depends on GEVP eigenvalues at t and t+ 1).

In Tab. III we tabulate the fit results for the ground
state energy using the dispersion relation method for dif-
ferent fit ranges and GEVP types and display them in
Fig. 19. In this work all fits are correlated fit to a con-
stant (t-independent) parameter, performed separately
for each individual effective energy. The stability of the
fits is quite robust for all values of t and GEVP types
considered in the figure.

The behavior of the first excited state is similar to the
ground state. In Fig. 4 we again observe a stable plateau
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FIG. 4: The I = 2 effective first excited state energy with
(lower) and without (upper) the dispersion relation method.
243, 4×4 GEVP, t− t0 = 1. The ATW effect is not observed,
c.f. Fig. 3.
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FIG. 5: The I = 2 effective second (upper) and third (lower)
excited state energies with the dispersion relation method.
243, 4×4 GEVP, t− t0 = 1. The ATW effect is not observed,
c.f. Fig. 3.

beginning with t = 5; however an ATW effect cannot be
seen. But we do see excited state effects, especially with-
out the DR method, and statistical errors are reduced
significantly by the DR method. There is little depen-
dence on δt. The small deviation visible at tmin = 4 in
the fit results in Tab. IV and Fig. 20 may be associated
with the slight blip observed in the effective energy at
t = 4 in Fig. 4. The 2× 2 GEVP may be systematically
high, especially for t = 4.

The second and third excited state energies are shown
in Fig. 5 and listed for various fit ranges and GEVP types
in Tabs. V and VI (see also Fig. 21 and Fig. 22). In the
upper panel the energy fluctuates down at t = 4 which
leads to an elevated χ2 in the fit. The same happens at

GEVP fit range

type 3–9 4–9 5–9

3× 3 0.81855(58)[1.5] 0.81743(92)[1.3] 0.8183(15)[1.5]

4× 4 0.81743(56)[1.5] 0.81637(89)[1.3] 0.8178(15)[1.3]

RGEVP 0.81753(56)[1.4] 0.81665(87)[1.3] 0.8185(15)[1.0]

TABLE V: Fit results for two-pion energy of the I = 2 second
excited state on the 243 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 5 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 4× 4→ 3× 3 at t0 = 4.

GEVP fit range

type 3–5 4–5

4× 4 0.9658(17)[0.1] 0.9674(36)[0.0]

TABLE VI: Fit results for two-pion energy of the I = 2 third
excited state on the 243 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 5 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets.

t = 6 for the third excited state. Again, there is little
dependence on δt or GEVP type, except that the 3 × 3
GEVP is a bit high for small tmin in the fit (Figs. 21 and
22).With four interpolating operators for I = 2, the third
excited state is as far as we can go.

The effective ground state energy computed on the 323

lattice is shown in Fig. 6. The ATW effect is even more
pronounced, as expected, since the physical time extent
is smaller compared to the 243 lattice, and it is signifi-
cantly reduced again, but not completely eliminated, by
the DR method. The lower panel indicates that the ef-
fective energy even with the matrix subtraction might
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FIG. 6: The I = 2 effective ground state energy with (lower)
and without (upper) the dispersion relation method. 323,
4 × 4 GEVP, t − t0 = 1. Their is a pronounced ATW effect
without matrix subtraction (upper panel). The dispersion
relation method reduces, but does not entirely eliminate the
effect (lower panel).
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GEVP fit range

type 4–9 5–9 6–9

2× 2 0.21041(38)[0.8] 0.21041(38)[0.9] 0.21039(38)[0.7]

3× 3 0.21041(37)[0.8] 0.21042(37)[1.0] 0.21039(37)[0.7]

4× 4 0.21039(37)[0.8] 0.21039(37)[1.0] 0.21036(37)[0.7]

RGEVP 0.21041(37)[0.8] 0.21041(37)[1.0] 0.21038(37)[0.7]

TABLE VII: Fit results for two-pion energy of the I = 2
ground state on the 323 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 8 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 4× 4→ 3× 3 at t0 = 5.
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FIG. 7: The I = 2 effective first excited state energy with
(lower) and without (upper) the dispersion relation method.
323, 4× 4 GEVP, t− t0 = 1.

decrease with increasing time from t = 10 and it could
mean there are also higher-order ATW effects that can-
not be removed by the matrix subtraction in Eq. (16).
Since this tendency is not statistically significant and it
is still possible that this is due to statistical fluctuation,
we will conclude this point after increasing statistics but
do not use data point at t ≥ 10 for our fits. Again a large
reduction in the statistical error and excited state con-
tamination occurs with the dispersion relation method
where a plateau emerges beginning at t = 4. Fig. 23
shows fits for several ranges and GEVP types. Results
are tabulated in Tab. VII. There is little dependence on
tmin or GEVP type.

The situation is similar for the first excited state energy
(see Fig. 7) except the ATW effect is not detectable, the
same as we saw for the 243 lattice. The plateau begins
at t = 4 or 5 with the DR method. The DR method
removes a bit of jitter as well, which is probably due to
poor statistics. Fit results are summarized in Table VIII
and Fig. 24.

The energies for higher excited states are shown in
Fig. 8. Fits are summarized in Tabs. IX and X and shown
in Fig. 25 and 26.

GEVP fit range

type 4–10 5–10 6–10

2× 2 0.45698(37)[0.7] 0.45669(41)[0.4] 0.45665(47)[0.5]

3× 3 0.45654(36)[0.3] 0.45639(41)[0.3] 0.45638(47)[0.3]

4× 4 0.45648(36)[0.3] 0.45636(41)[0.2] 0.45638(47)[0.3]

RGEVP 0.45648(36)[0.3] 0.45637(41)[0.3] 0.45639(46)[0.3]

TABLE VIII: Fit results for two-pion energy of the I = 2 first
excited state on the 323 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 8 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 4× 4→ 3× 3 at t0 = 5.
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FIG. 8: The I = 2 effective second (upper) and third (lower)
excited state energies with the dispersion relation method.
323, 4× 4 GEVP, t− t0 = 1.

GEVP fit range

type 3–7 4–7 5–7

3× 3 0.61671(59)[0.5] 0.61605(83)[0.3] 0.6158(12)[0.4]

4× 4 0.61548(59)[0.3] 0.61523(80)[0.3] 0.6151(12)[0.4]

RGEVP 0.61552(58)[0.3] 0.61522(81)[0.3] 0.6151(12)[0.4]

TABLE IX: Fit results for two-pion energy of the I = 2 second
excited state on the 323 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 8 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 4× 4→ 3× 3 at t0 = 5.

GEVP fit range

type 4–7 5–7 6–7

4× 4 0.7230(17)[0.1] 0.7241(25)[0.0] 0.7245(43)[0.0]

TABLE X: Fit results for two-pion energy of the I = 2 third
excited state on the 323 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 8 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets.



12

0.268

0.272

0.276

0.280

5x5 GEVP

I = 0, n = 0, 243

0.268

0.270

0.272

0.274

5x5 GEVP + DR

0.268

0.270

0.272

0.274

1 2 3 4 5 6 7 8

RGEVP + DR

t
no δt subt

δt = 7

δt = 8

δt = 9

δt = 10

δt = 11

FIG. 9: The I = 0 effective ground state energy. 243, 5 × 5
GEVP, t − t0 = 1 with (middle, lower) and without (upper)
the dispersion relation method. The RGEVP result is shown
in the lower panel. The re-basing from 5 × 5 → 3 × 3 uses
GEVP eigenvectors at t0 = 4.

2. I=0

This case is statistically noisier than I = 2 due to the
disconnected diagrams of the correlation function as well
as to the coupling with the vacuum state. In Fig. 37 the
effective energies for the ground state are shown for sev-
eral GEVP types computed on the 243 ensemble. Values
of t− t0 range from 1 to 4 with 3 ≤ t ≤ 7 and δt = 2, 5, 8.
Like I = 2, there is little dependence on GEVP type. The
dispersion relation method reduces excited state contam-
ination and statistical errors as does increasing δt. The
effect of t− t0 is less clear, though it appears it may also
reduce excited state effects.

Fig. 9 shows the effective ground state energy for the
5 × 5 GEVP with t − t0 = 1 and matrix subtractions in
the range 7 ≤ δt ≤ 11, with and without the dispersion
relation method and for the RGEVP. A small ATW ef-
fect may be visible in the upper panel when no matrix
subtraction is performed, and it is largely absent in the
middle and lower panels, showing again that the disper-
sion relation method largely eliminates it. We also ob-
serve that the RGEVP makes a moderate improvement
on the statistical errors for larger times (lower panel).

Fit results are summarized in Tab. XI and Fig. 27.
There appears to be a small systematic shift with the
minimum time separation in the fit, tmin, but it is within
the statistical uncertainty.

The first excited state energies are summarized in
Tab. XXXIX and Fig. 38 for a wide range of parame-
ters. In Fig. 10 we show the first excited state energy

GEVP fit range

type 3–8 4–8 5–8

3× 3 0.27116(38)[1.8] 0.27082(41)[0.9] 0.27058(47)[0.8]

4× 4 0.27115(38)[1.5] 0.27087(41)[0.9] 0.27067(46)[0.9]

5× 5 0.27104(38)[1.6] 0.27074(41)[1.0] 0.27054(46)[1.1]

RGEVP 0.27122(38)[3.6] 0.27069(41)[1.1] 0.27053(46)[1.3]

TABLE XI: Fit results for two-pion energy of the I = 0
ground state on the 243 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 7 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 5× 5→ 3× 3 at t0 = 4.
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FIG. 10: The I = 0 effective first excited state energy with
(middle, lower) and without (upper) the dispersion relation
method. 243, 5× 5 (middle, upper) and 3× 3 (lower) GEVP,
t−t0 = 1. Note the significant jump from t = 6 to 7 for δt = 8
in upper two panels.

for the 5 × 5 GEVP and t − t0 = 1. A plateau begins
at t = 3 or 4, and an interesting systematic begins to
emerge as well which is even more pronounced for the
second excited state, as we see shortly. A careful inspec-
tion of Fig. 10 shows a systematic downward drift of the
energy for each tmax,δt . It is most visible between t = 6
and 7 for δt = 8, but a smaller shift appears at smaller
times for large values of δt. The effect is absent for the
RGEVP (lower panel), and leads us to believe it is due
to a breakdown of the GEVP at large t due to large sta-
tistical errors in the correlation matrix.

Fit results are given in Tab. XII and displayed in
Fig. 28. There is no detectable difference as tmin or the
GEVP type varies.

The second excited state is less well resolved statisti-
cally, so we restrict our focus to relatively small times (see
Fig. 11). There is little difference without or with the DR
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GEVP fit range

type 3–6 4–6 5–6

3× 3 0.5319(45)[0.1] 0.5306(59)[0.1] 0.5298(72)[0.1]

4× 4 0.5302(45)[0.4] 0.5296(64)[0.6] 0.5255(94)[0.8]

5× 5 0.5304(45)[0.3] 0.5296(61)[0.5] 0.5262(83)[0.6]

RGEVP 0.5308(44)[0.1] 0.5302(65)[0.1] 0.528(11)[0.1]

TABLE XII: Fit results for two-pion energy of the I = 0 first
excited state on the 243 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 9 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 5× 5→ 3× 3 at t0 = 3.

0.4

0.5

0.6

0.7

0.8
5x5 GEVP

I = 0, n = 2, 243

0.4

0.5

0.6

0.7

0.8
5x5 GEVP + DR

0.5

0.6

0.7

0.8

0.9
RGEVP + DR

0.6

0.8

1.0

1.2

1.4

1 2 3 4 5 6 7 8

3x3 GEVP + DR

t
no δt subt

δt = 7

δt = 8

δt = 9

δt = 10

δt = 11

FIG. 11: The I = 0 effective second excited state energy
with (2nd, 3rd, 4th) and without (1st) the dispersion relation
method. 243, 5×5 GEVP (1st, 2nd), 3×3 RGEVP (3rd) and
3× 3 pure GEVP (4th), t− t0 = 1. Note the significant jump
from t = 6 to 7 for δt = 8 in upper two panels. Statistical
error on 3 × 3 GEVP is significantly large compared to the
others.

method (upper and middle panels); however the down-
ward trend observed for the first excited state is even
more visible here and is also removed by the RGEVP
although the statistical errors increase significantly. Fit
results are listed in Tab. XIII and plotted in Fig. 29.

Another dramatic difference happens when we reduce
the GEVP to 3×3 (4×4 is essentially the same as 5×5)
without re-basing (see lower panel of Fig 11). The noise
increases dramatically because of the significant coupling

GEVP fit range

type 3–5 4–5

3× 3 0.713(40)[1.4] 0.841(89)[0.1]

4× 4 0.709(14)[0.4] 0.714(15)[0.0]

5× 5 0.710(13)[0.3] 0.714(14)[0.0]

RGEVP 0.695(12)[0.7] 0.699(23)[1.3]

TABLE XIII: Fit results for two-pion energy of the I = 0
second excited state on the 243 lattice with various fit ranges
and GEVP methods. We choose parameters δt = 9 and t −
t0 = 1. The χ2/d.o.f. is shown in the square brackets. The
re-basing matrix is calculated as: 5× 5→ 3× 3 at t0 = 1.
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FIG. 12: The I = 0 effective ground state energy with the
dispersion relation method. 323, 5 × 5 GEVP (upper) and
2 × 2 RGEVP (lower), t − t0 = 1. A multi-step RGEVP is
performed at t0 = 1, 2, and 4 to go from 5× 5→ 2× 2.

between the second excited state and the ππ(011) opera-
tor which is excluded in the 3×3 analysis. This is similar
to the effect observed in Refs. [3] and [24] where adding a
noisy scalar bilinear operator reduced the statistical error
of (and excited state contamination in) the ground state,
although it is the ππ(011) operator that is not included
in the 3 × 3 but in the 4 × 4 and 5 × 5 analyses in this
case.

The GEVP eigenvalues are too noisy even for short
times to extract meaningful energies for the higher energy
states. They will have to wait for better statistics in the
future.

On the 323 ensemble, the pattern repeats except the
effective energies are even noisier as seen in Fig. 12. It is
interesting to note that the statistical error in the latter
case is smaller at large time when no matrix subtrac-
tion is performed. Fits are summarized in Tab. XIV and
Fig. 30.

After t = 3 or 4, the statistical errors get very large
for the first excited state even with the DR method (see
Fig. 13). However, we observe a large reduction in the
statistical error using the RGEVP compared to the stan-
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GEVP fit range

type 4–9 5–9 6–9

3× 3 0.20268(44)[0.4] 0.20252(48)[0.3] 0.20225(57)[0.2]

4× 4 0.20279(48)[0.4] 0.20259(52)[0.3] 0.20234(62)[0.2]

5× 5 0.20288(50)[0.4] 0.20265(55)[0.2] 0.20237(67)[0.1]

RGEVP 0.20272(51)[0.5] 0.20248(56)[0.4] 0.20235(66)[0.5]

TABLE XIV: Fit results for two-pion energy of the I = 0
ground state on the 323 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 5 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 5×5→ 4×4 at t0 = 1, 4×4→ 3×3
at t0 = 2 and 3× 3→ 2× 2 at t0 = 4.
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FIG. 13: The I = 0 effective first excited state energy for
the 5× 5 GEVP (upper) and 2× 2 RGEVP (lower) with the
dispersion relation method. 323, t− t0 = 1.

dard GEVP in this case. Re-basings to go from 5 × 5
down to 2 × 2 are implemented at t0 = 1, t0 = 2 and
t0 = 4. Presumably the improvement occurs because the
overlap of the higher states with the lower states is more
and more unresolved with increasing t, adding only noise
to the GEVP. Fit results are summarized in Tab. XV and
Fig. 31.

The second excited state is shown in Fig. 14 where
again there is a large reduction in statistical error with
the RGEVP. A drift downwards with increasing time is
observed for larger values of δt for the 3 × 3 RGEVP,
though it is not easy to investigate the systematic error
at this point because of the accompanied large statisti-
cal errors. Fit results are summarized in Tab. XVI and
Fig. 32.

In preparation for the next subsection, we now summa-
rize in Tab. XVII the energies and corresponding time-
slice fit ranges and GEVP types that we will use to com-
pute the phase shifts. In all cases except the third ex-
cited state for I = 2, which is only accessible with the
4 × 4 GEVP, we choose the RGEVP since the noise is
usually reduced or unchanged from the ordinary GEVP.

GEVP fit range

type 3–8 4–8 5–8

3× 3 0.3989(60)[0.2] 0.399(12)[0.3] 0.394(24)[0.4]

4× 4 0.3998(57)[0.1] 0.399(14)[0.2] 0.390(41)[0.2]

5× 5 0.3997(59)[0.2] 0.398(17)[0.2] 0.392(28)[0.2]

RGEVP 0.4054(28)[0.5] 0.4052(41)[0.6] 0.3989(66)[0.3]

TABLE XV: Fit results for two-pion energy of the I = 0 first
excited state on the 323 lattice with various fit ranges and
GEVP methods. We choose parameters δt = 5 and t− t0 = 1.
The χ2/d.o.f. is shown in the square brackets. The re-basing
matrix is calculated as: 5×5→ 4×4 at t0 = 1, 4×4→ 3×3
at t0 = 2 and 3× 3→ 2× 2 at t0 = 4.
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FIG. 14: The I = 0 effective second excited state energy for
the 5× 5 GEVP (upper) and 3× 3 RGEVP (lower) with the
dispersion relation method. 323, t− t0 = 1.

In addition we believe it is more robust at large times
since poorly resolved elements of the correlation function
are avoided. As mentioned already, we stick to small
time slices where the signal is better resolved, and we
use the results of the DR method throughout. With the
DR method we see negligible dependence on t− t0, so we
take it to be 1 in all cases.

For the I = 2 ground state we choose 4–10 (243) and
4–9 (323) for the fit range. From Figs. 19 and 23 one can
see that the results are very stable with both the range
and GEVP type.

Similarly for the first excited state we choose 5–9 and
4–10 (in the case of 243 a small excited state effect may
be visible at t = 4). In both cases the 2 × 2 GEVP
appears to be a little high. For the second excited state
we take 3–9 and 3–7. Finally for the third excited state
our ranges are 3–5 and 4–7.

For I = 0 it is not as straightforward to choose central
values due to larger statistical errors, especially for the
323 ensemble, and as we have seen already, small times
comprise the set of usable time slices.

From Figs. 27(243) and 30(323) one sees small vari-
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GEVP fit range

type 3–6 4–6 5–6

3× 3 0.428(19)[0.2] 0.426(26)[0.3] 0.417(32)[0.4]

4× 4 0.442(44)[0.0] 0.450(66)[0.0] 0.445(80)[0.1]

5× 5 0.417(26)[0.1] 0.414(32)[0.1] 0.414(35)[0.3]

RGEVP 0.5296(65)[0.5] 0.524(11)[0.4] 0.523(19)[0.9]

TABLE XVI: Fit results for two-pion energy of the I = 0
second excited state on the 323 lattice with various fit ranges
and GEVP methods. We choose parameters δt = 5 and t −
t0 = 1. The χ2/d.o.f. is shown in the square brackets. The
re-basing matrix is calculated as: 5× 5→ 4× 4 at t0 = 1 and
4× 4→ 3× 3 at t0 = 2.

ations with tmin for the ground states. We choose fit
ranges 4–8 and 5–9, respectively. On the 243 lattice we
see no significant variation for the first excited state, so
we take 3–6. For 323 the errors are large for all but the
RGEVP, and we take 4–8. Finally for the second excited
state the fit ranges are chosen to be 3–6 and 4–6. In
the latter case we use δt = 3 since we observed a flat-
ter plateau and smaller statistical errors for this choice.
Higher excited states cannot be extracted from our data;
improved statistics are needed.

In Fig. 15 two-pion energies and energy shifts due to
pion-pion interactions in finite box are plotted. The error
is statistical only. The results for the I = 2 third excited
state (n = 3) show smaller energy shifts than that for the
second excited state (n = 2). This may indicate there is
significant systematic effects.

B. Phase shifts

The phase shifts are computed using the fitted energies
described in the previous subsections. Specifically, we
take fit values corresponding to Eq. (26) and insert them
into Eq. (24). For the I = 2 ground state with pions at
rest, the interacting two-pion energy is above the 2mπ

threshold since the interaction is repulsive, and a phase
shift is readily calculated using Eq. (24). For I = 0
the ground state is below the threshold, so the phase
shift is purely imaginary. The phase shifts for each state
and various fit ranges for the energies are summarized in
Tabs. XVIII-XXIX.

Results corresponding to the energies (fit ranges) cho-
sen at the end of the last section are shown in Fig. 16 and
given in Tab. XVII for both ensembles. Agreement with
the Roy Equation result3 [28, 30] is observed up to the
third (second) excited state for I = 2(0). Even though,
strictly speaking, Lüscher’s method [6] is not valid above

3 In the figures displaying Roy Equation results we always use the
formulae in Ref. [28], for technical reasons. In later papers we
will switch to the update in [30].
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FIG. 15: Summary of two-pion energies obtained by cor-
related fits to DR effective energies (top) and their differ-
ence from the corresponding non-interacting energies given
by Eq. (27) (bottom). On the top panel the non-interacting
energy is also drawn using the continuum dispersion rela-
tion (27) with |~pn|2 = n(2π/L)2 for both 243 and 323 lattices.

the inelastic scattering threshold (4mπ) which is shown
for each ensemble by the vertical gray lines in Fig. 16,
we see no evidence of a dramatic breakdown above this
threshold (or higher pion multiplicities, KK̄, and so on).
It will be interesting to see in future works with more
precision if a signal of such a breakdown emerges.

In addition to statistical errors, we also estimate a sys-
tematic error due to choice of fit range for the energy
and δt in the matrix subtraction to remove the ATW ef-
fect. The error is estimated by comparing phase shifts for
various fit ranges and δt values and taking half the dif-
ference between minimum and maximum central values
for a given state. For the comparison of the systematic
error, we use the fit ranges shown in Tabs. XVIII–XXIX
and a range of δt values shown in the square bracket in
Tab. XVII. We remove the fit results that have more than
twice as large statistical error as the fit result shown in
Tab. XVII from the estimation of the systematic error.
In all cases we do not vary the GEVP type and choose the
RGEVP except for the I = 2 third excited state where
we need to use the full-size 4× 4 GEVP. This is because
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I n GEVP type fit range δt χ2/d.o.f. energy δ0 (deg) mπa
I
0

243 lattice

2 0 RGEVP 4–10 5[4–8] 0.6 0.28130(34) −0.374(13)(4) −0.0496(11)(5)

2 1 RGEVP 5–9 5[4–8] 0.3 0.60789(31) −12.33(22)(20)

2 2 RGEVP 3–9 5[4–8] 1.4 0.81753(56) −20.18(43)(54)

2 3 4× 4 3–5 5[4–8] 0.1 0.9658(17) −26.5(2.4)(4)

0 0 RGEVP 4–8 7[5–9] 1.1 0.27069(41) 0.2038(70)(160)

0 1 RGEVP 3–6 9[6–9] 0.1 0.5308(44) 45.1(2.9)(2.1)

0 2 RGEVP 3–5 9[7–9] 0.7 0.695(12) 83(11)(15)

323 lattice

2 0 RGEVP 4–9 8[4–8] 0.8 0.21041(37) −0.424(51)(23) −0.0537(42)(22)

2 1 RGEVP 4–10 8[4–8] 0.3 0.45648(36) −13.37(32)(11)

2 2 RGEVP 3–7 8[4–8] 0.3 0.61552(58) −22.90(59)(34)

2 3 4× 4 4–7 8[4–8] 0.1 0.7230(17) −24.2(3.2)(2.1)

0 0 RGEVP 5–9 5[5–8] 0.4 0.20248(56) 0.1947(150)(126)

0 1 RGEVP 4–8 5[5–8] 0.6 0.4052(41) 38.6(3.6)(10.1)

0 2 RGEVP 4–6 5[4–6] 0.4 0.5304(91) 71(12)(16)

TABLE XVII: Summary of two-pion energies and phase shifts (δ). The energies are determined by correlated χ2 fits to the
effective energies with the DR method. The last column gives the scattering length in units of the pion mass. The first error
is statistical, and the second (δ, mπa0) a systematic error, which is estimated by varying fit range as well as δt in the range
shown in the square brackets. See text for more detail.
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FIG. 16: Pion scattering phase shifts for ground and higher
excited states. I = 0 (upper) and I = 2 (lower). Bars de-
note statistical and systematic errors added in quadrature (see
Tab. XVII. The Roy Equation results [28] are shown by solid
lines and corresponding error bands. Vertical gray lines de-
note 4mπ thresholds for 243 and 323 ensembles, above which
the method of determining phase shifts [6] in this work is no
longer strictly valid.

only the RGEVP appears to give reasonable results for
the I = 0 excited states on the 323 lattice, while the other
results are less dependent on GEVP type than fit range.
The systematic errors are small for the ground state (less
than the statistical error) and become comparable, and
even larger than, the statistical error with increasing en-
ergy. Since the I = 0 energies are noisier than their I = 2
counterparts, so too are their phase shifts.

The physical energies corresponding to the various
states differ slightly on the two ensembles, so to com-
pare the phase shifts at fixed energy, we do a piece-wise
linear interpolation of the phase shifts in discrete energy
at fixed lattice spacing and then extrapolate the inter-
polated phase shifts to the continuum, a → 0, at fixed
energy. The extrapolation is performed linearly in a2.
The results are shown in Fig. 17. In each panel the
a→ 0 extrapolation is shown with a green band. The val-
ues are compatible with the Roy Equation, albeit within
relatively large uncertainties especially for I = 0. For
this study we calculate error bands for the dispersive re-
sults using Ref [28] and we defer a more comprehensive
study, including for example the more accurate results of
Ref. [30], to a future publication.

Lastly, we discuss the two-pion scattering length. Since
the relation between the two-pion phase shift δ0 and scat-
tering length a0 is given as4

k cot δ0(k) =
1

a0
+

1

2
r0k

2 +O(k4), (33)

with the effective range parameter r0, we can calculate
the scattering length by

a0 =
tan δ0(k)

k
+O(k2), (34)

with a sufficiently small value of k, which can be ob-
tained with the ground state straightforwardly for the

4 The subscript refers to the s-wave channel.
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FIG. 17: Continuum limit of the pion scattering phase shifts
for ground and higher excited states (light green bands) for
I = 2 (upper panel) and I = 0 (lower). The continuum ex-
trapolation is performed linearly in a2 after linear interpola-
tion in the energy at fixed lattice spacing. The Roy Equation
results [28] are shown by the light red error bands.

I = 2 channel. For the I = 0 channel, k is a pure imagi-
nary number for the ground state and we cannot directly
use Eq. (33) and the formulae given in Section II F for
this case. It is known [19] that these formulae can be
analytically continued with pure imaginary values of k.
With that, we obtain the scattering length as a real num-
ber. The values for the scattering lengths for various
ranges of fits to the ground state energies are given in
Tabs. XXX-XXXIII. In Tab. XVII central values are dis-
played; systematic errors are computed as before for the
phase shifts. A simple linear extrapolation in a2, after
combining statistical and systematic errors in quadra-
ture, yields

mπa
2
0 = −0.058(11), (35)

mπa
0
0 = 0.184(47), (36)

for I = 2 and I = 0, respectively.
Figure 18 shows comparison of these numbers with re-

sults from earlier works including phenomenology and
lattice QCD. The figure indicates our results are con-
sistent with ChPT prediction and earlier lattice calcula-
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FIG. 18: Summary plot of two-pion scattering length mπa
I
0

for I = 2 (upper) and I = 0 comparing with results from
earlier phenomenology and lattice studies summarized by
FLAG [50]. Earlier lattice results quoted with statistical er-
ror only are not plotted. The plotted earlier results are all
obtained by a chiral extrapolation (Eqs. (37) and (38)) to the
physical pion mass using an inputted value of fπ and lattice
results at unphysical pion masses, while the result from this
work is a purely lattice result at the physical pion mass.

tions [29, 50] within 1.3σ for I = 2 and 1σ for I = 0.
The errors on our results are somewhat larger because
the earlier works at unphysical pion masses performed a
chiral extrapolation with the assumption

mπa
2
0 = − m2

π

8πf2
π

{
1 +

m2
π

16π2f2
π

[
3 ln

m2
π

f2
π

− 1− l2ππ
]}

,

(37)

mπa
0
0 =

7m2
π

16πf2
π

{
1− m2

π

16π2f2
π

[
9 ln

m2
π

f2
π

− 5− l0ππ
]}

,

(38)

where the leading order with the pion decay constant
fπ was inputted independently of lattice calculation.
They only used lattice results for determination of the
low energy constants lIππ which is associated with the
sub-leading contribution to the scattering length. Our
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results on the other hand are pure lattice results ob-
tained without assuming the leading contribution. An-
other work [23] carried out at physical pion mass gave
mπa

2
0 = −0.0481(86), which is omitted from the plot be-

cause of the absence of the systematic error but certainly
has larger error than others even without the continuum
extrapolation.

V. COST COMPARISON WITH G-PARITY
BOUNDARY CONDITIONS

One of the main goals of this study is to extract the
signal of an excited state that has the energy near the
kaon mass and is useful for calculation of K → ππ decay
matrix elements and ε′, the measure of direct CP viola-
tion. We find from the previous section that the energy
of the first excited state is close to the kaon mass and well
resolved. We have carried out the same kind of studies
with G-parity boundary conditions (GPBC) [2, 3, 24], in
which pions are anti-periodic in space and therefore must
have non-zero spatial momentum, and realized the on-
shell K → ππ kinematics with the corresponding I = 0
ground two-pion state. It is valuable to compare the ef-
fectiveness of GPBC against the conventional periodic
boundary conditions (PBC). In this section we carry out
an efficiency comparison between GPBC ground state
and PBC first-excited state.

In Ref. [24] measurements were carried out on an
ensemble of 741 gauge field configurations with identi-
cal parameters to those used in the 323 ensemble ex-
cept GPBC were used. Nine hundred low-modes and
twenty-four (spin-color-flavor diluted) random source
fields on each time slice comprised the A2A [40] measure-
ment setup. The high-mode part is double for GPBC,
1,536 vs 768 modes in this work because of no need
of flavor dilution with PBC. The low-mode part also
differs, 900 exact eigenvectors (GPBC) vs. 2,000 ap-
proximate coarse-grained eigenvectors based on local-
coherence (PBC) [51]. It is not easy to estimate a quan-
titative difference between this and the GPBC calcula-
tion since different setups (low-modes, AMA, solvers etc.)
have been used in the two cases. However, assuming sim-
ilar solver performances, we expect the cost of GPBC be-
ing roughly twice as much, for the same quark mass and
lattice volume, because of the doubled size of the Dirac
operator. Taking the two-pion energy at the kaon mass
as the goal of our calculation, this cost has to be con-
trasted with a possibly easier extraction of energy levels
in GPBC compared to PBC. Another difference is the
time-translation interval of connected diagrams. Most
of connected diagrams are calculated with 6 source loca-
tions in this work and 8 source locations in the earlier
work. One exception is the connected diagram of σ–
σ two-point function, which is computed, again, with 6
source locations in this work but with 64 source locations
in the earlier work. This difference in σ–σ measurement
detail would not affect computational cost as it is very

cheap, though it might make an impact on the precision.

We will focus on the zero total momentum rest frame.
For I = 2 Tab. X in Ref. [24] lists the energy (in lat-
tice units) as 0.41528(46) with t0 = 11, t − t0 = 1. In
this study the corresponding value is 0.45549(160). Re-
call that the momentum, in units of 2π/L, of the pions

is slightly smaller in the GPBC case,

√
3×

(
1
2

)2
instead

of 1 and therefore we do not expect the central values
to agree. In fact both the number in our present study
and that of Ref. [24] agree with the dispersive results
at their corresponding momenta. Accounting for the in-
creased error growth due to this slight mismatch in the
energy [52] and the difference in number of measurements
expects the GPBC result should be more precise the PBC
by a factor of ≈ 1.6×

√
741/107 = 4.2, which implies the

efficiency is about the same for the two methods in this
case.

The more salient comparison is for the I = 0 case
since that is the main reason for using GPBC. In Tab. X
in Ref. [24] the energy of the two-pion state is given as
0.3479(11)[10], where the first error is statistical and the
second is excited state systematic. It is determined from
a three-operator, two-state fit with fit range 6–15. A
GEVP analysis with t0 = 5, t − t0 = 1, without matrix
subtraction, gives 0.3489(11), where the error is statisti-
cal. The matrix subtraction was not performed for this
analysis as the ATW effects with GPBC are due to a long-
time propagation of moving pions and the estimates of
the size of the dominant ATW contribution gave values
ten times smaller than the statistical errors on the data,
and separate multi-operator fits with the ATW term in-
cluded gave results consistent with zero. The correspond-
ing result for PBC is 0.406(16), where a matrix subtrac-
tion was done to remove ATW contamination. While
accounting again for the mismatch in energies and num-
ber of measurements expects the GPBC result should be
more precise by a factor of about 3.5, we do not see sig-
nificant shift by the matrix subtraction for I = 0 and it
would be interesting to study and understand how sig-
nificant the ATW effect on I = 0 is. In any case the
factor 3.5 is not big enough to explain the difference in
the statistical error which is about four times bigger in
the PBC case for equivalent statistics and energies. Of
course the argument about exponential growth of errors
is not perfect since the pre-factors may differ between the
two cases.

In the GPBC case, the boundary conditions lead to
cubic symmetry breaking at the quark level which is
suppressed by averaging pairs of single-pion interpolat-
ing operators with different quark and anti-quark mo-
mentum assignments but with the same total pion mo-
mentum [24, 27]. For the ground state eight pairs
(averages) of pion interpolating operators are used to
construct sixty-four correlation functions, which most
strongly overlap with the s-wave G-parity ground state.
Here, we use six single-pion operators with momentum
(±1, 0, 0) (plus permutations), or thirty-six correlators,
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for the corresponding s-wave excited state. While it is
difficult to quantify the improvement gained from aver-
aging over more combinations due to correlations, we do
expect some benefit and will study this question in future
calculations in both setups.

While not as direct, it is interesting and useful to com-
pare the 243 ensemble to the GPBC case. Here the PBC
setup is the same as before, but the statistics are based on
258 configurations. The relevant two-pion energy (t = 4)
is 0.5298(64) in lattice units. Converting the errors to
GeV and accounting for the different number of mea-
surements yields a factor ≈ 2.5, by which the GPBC re-
sult is expected to be more precise than the PBC result.
Accounting for the different number of pion momentum
combinations as before, this factor is further reduced to
somewhere between 1 and 2 (These factors are based on
an assumption of statistical independence between the
momentum orientations that may not be born out in
practice). The exponential factor is roughly one in this
case which we ignore. A more thorough comparison be-
tween the GPBC and PBC approaches will be performed
when we have measurements performed on an equivalent
statistical sample.

VI. CONCLUSION

In this work we have carried out a study of pion scat-
tering at the physical point using 2+1 flavor Möbius do-
main wall fermion ensembles with inverse lattice spacings
of 1.023 and 1.378 GeV using periodic boundary con-
ditions (PBC). The main focus was to extract the first
excited state energies in the rest frame, in both I = 0
and 2 channels, and their corresponding phase shifts, us-
ing the finite volume Lüscher formalism [6]. The first
excited state energy (roughly) corresponds to the impor-
tant case of on-shell K → ππ decay which is our longer
term goal [53].

The energies were computed using the GEVP
method [34, 35]. In order to extract the desired first
excited state and control excited state contamination,
several two-pion interpolating operators were used, in-
cluding a simple scalar bilinear. The other operators
were constructed from pions with equal and opposite mo-
menta. The single pion momentum took values (0,0,0),
(±1,0,0), (±1,±1,0), (±1,±1,±1) (and permutations) in
units of 2π/L. As found in [3, 24], the inclusion of the
scalar bilinear with the quantum numbers of the vacuum
is crucial to disentangle the first and second excited state
energies.

The GEVP, or matrix correlation function, size ranged
from 2×2 to 5×5. We found in most cases the size did not
have a large effect after 2×2 for I = 2 and 3×3 for I = 0.
However in some cases the noise of the higher states in
the correlation matrix at large times adversely impacted
the lower energies. In these cases the overlap of higher
states with lower states was small, and the extra states
only contributed noise to the lower states. This problem

led to a modification of the method: as time increases the
operator basis of the GEVP is changed (“re-based”) using
the eigenvectors of the GEVP from earlier times. While
this method gives similar results in most cases studied
here, it had a dramatic improvement for the I = 0 first
excited state on the 323 ensemble where the statistics
were relatively poor (see Figs. 30–32). This RGEVP then
allowed a relatively precise phase shift determination (see
Fig. 16).

We started this series of K → ππ studies with G-parity
boundary conditions (GPBC) [2, 3, 24] because we antic-
ipated it would be challenging to extract the signal of an
excited two-pion state which is necessary for the K → ππ
study using PBC. After seeing the successful calculation
of two-pion scattering and K → ππ decay amplitudes
with GPBC [3, 24], we launched this PBC project to find
a practical alternative, as a further check, and to enable
calculations with isospin corrections. We note once again
that we have been successful in extracting signals of mul-
tiple states: the four lowest energy states for I = 2 and
the three lowest ones (at least on the 243 lattice with bet-
ter statistics) for I = 0, despite the anticipated difficulty
of extracting the excited state signals.

In this first study we have focused on two important
systematic effects. First, by computing energies and
phase shifts on ensembles with different lattice spacings
we find no statistically significant discretization errors for
I = 0 and small, but statistically significant, effects for
I = 2. Second, we studied the time-dependence of the
effective energies and observed noticeable excited state
contamination for short times. We also saw that much
of the effects arising from single-pion excited states could
be removed with the dispersion relation method, which
also removes leading discretization errors. Moreover, we
expect the systematic uncertainties for PBC to be similar
to GPBC. In that case statistical and systematic errors
on the energies were estimated to be roughly equal [24].

Another important motivation of employing PBC is
that it appears difficult to use GPBC to compute QED
and strong-interaction isospin breaking effects since they
explicitly enforce isospin symmetry, though isospin sym-
metry breaking is expected to significantly impact the
value of the direct CP violation parameter ε′ (20–
30%)[54]. Controlling such effects precisely is important
for the next generation of ε′ calculations.

We are currently improving the statistics on both en-
sembles for our companion K → ππ calculation, and
when that is complete, we will have an even better com-
parison with G-parity and estimates of systematic errors.
These results and the ones so far from the kaon decay
project leave us optimistic for the PBC method.
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Appendix A: Wick contractions

We write down the explicit forms of two-pion operators
and the Wick contractions of two-point functions of these
operators to clarify the convention used in this paper.

Õ2,0
ππ (X1, X2) =

1√
6

(π+(X1)π−(X2) + 2π0(X1)π0(X2)

+ π−(X1)π+(X2)), (A1)

Õ0,0
ππ (X1, X2) =

1√
3

(π+(X1)π−(X2)− π0(X1)π0(X2)

+ π−(X1)π+(X2)), (A2)

where Xi denotes the 4D position xi or the set of the
time coordinate and spatial momentum, (ti, ~pi), of the
operator labeled by i. Wick contractions for two-piont
functions of these operators yield〈

Õ2,0
ππ (X1, X2)Õ2,0

ππ (X3, X4)†
〉

= 2D(X1, X2, X3, X4)− 2C(X1, X2, X3, X4), (A3)〈
Õ0,0
ππ (X1, X2)Õ0,0

ππ (X3, X4)†
〉

= 2D(X1, X2, X3, X4) + C(X1, X2, X3, X4)

− 6R(X1, X2, X3, X4) + 3V (X1, X2, X3, X4), (A4)

where we define the contributions of the diagramsD,C,R
and V by

D(x1, x2, x3, x4)

=
1

2

〈
Tr[γ5Sl(x1, x3)γ5Sl(x3, x1)]

· Tr[γ5Sl(x2, x4)γ5Sl(x4, x2)]

+ Tr[γ5Sl(x1, x4)γ5Sl(x4, x1)]

· Tr[γ5Sl(x2, x3)γ5Sl(x3, x2)]
〉
, (A5)

C(x1, x2, x3, x4)

=
1

2

〈
Tr[γ5Sl(x1, x3)γ5Sl(x3, x2)

· γ5Sl(x2, x4)γ5Sl(x4, x1)]

+ Tr[γ5Sl(x1, x4)γ5Sl(x4, x2)

· γ5Sl(x2, x3)γ5Sl(x3, x1)]
〉

=
〈

Tr[γ5Sl(x1, x3)γ5Sl(x3, x2)

· γ5Sl(x2, x4)γ5Sl(x4, x1)]
〉
, (A6)

R(x1, x2, x3, x4)

=
1

4

〈
Tr[γ5Sl(x1, x2)γ5Sl(x2, x3)

· γ5Sl(x3, x4)γ5Sl(x4, x1)]

+ Tr[γ5Sl(x1, x4)γ5Sl(x4, x3)

· γ5Sl(x3, x2)γ5Sl(x2, x1)]

+ Tr[γ5Sl(x1, x2)γ5Sl(x2, x4)

· γ5Sl(x4, x3)γ5Sl(x3, x1)]

+ Tr[γ5Sl(x1, x3)γ5Sl(x3, x4)

· γ5Sl(x4, x2)γ5Sl(x2, x1)]
〉

=
1

2

〈
Tr[γ5Sl(x1, x2)γ5Sl(x2, x3)

· γ5Sl(x3, x4)γ5Sl(x4, x1)]

+ Tr[γ5Sl(x1, x3)γ5Sl(x3, x4)

· γ5Sl(x4, x2)γ5Sl(x2, x1)]
〉
, (A7)

V (x1, x2, x3, x4)

=
〈

Tr[γ5Sl(x1, x2)γ5Sl(x2, x1)]

· Tr[γ5Sl(x3, x4)γ5Sl(x4, x3)]
〉
. (A8)

for Xi = xi. For our actual calculation with the A2A
quark propagators proposed in Ref. [40], we define the
pion meson field Ππ

ij(t, ~p), which is projected to a certain
spatial momentum and spin-color singlet but has mode
indices that label the low and high modes. In our calcu-
lation, there are 2,000 low modes and 4 × 3 × 64 = 768
high modes from the spin-color-time dilution and there-
fore each mode index runs for 1, 2, . . . , 2,768. The ex-
pressions of the contractions in Eqs. (A5)–(A8) in time-
momentum space with the pion meson fields are then
given as follows:

D(X1, X2, X3, X4)

=
1

2

〈∑
i,j

Ππ
ij(X1)Ππ

ji(X3) ·
∑
k,l

Ππ
kl(X2)Ππ

lk(X4)

+
∑
i,j

Ππ
ij(X1)Ππ

ji(X4) ·
∑
k,l

Ππ
kl(X2)Ππ

lk(X3)

〉
,

(A9)

https://github.com/RBC-UKQCD/CPS
https://github.com/paboyle/Grid
https://github.com/aportelli/hadrons
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C(X1, X2, X3, X4)

=

〈 ∑
i,j,k,l

Ππ
ij(X1)Ππ

jk(X3)Ππ
kl(X2)Ππ

li(X4)

〉
, (A10)

R(X1, X2, X3, X4)

=
1

2

〈 ∑
i,j,k,l

Ππ
ij(X1)Ππ

jk(X2)Ππ
kl(X3)Ππ

li(X4)

+
∑
i,j,k,l

Ππ
ij(X1)Ππ

jk(X3)Ππ
kl(X4)Ππ

li(X2)

〉
,

(A11)

V (X1, X2, X3, X4)

=

〈∑
i,j

Ππ
ij(X1)Ππ

ji(X2) ·
∑
k,l

Ππ
kl(X3)Ππ

lk(X4)

〉
,

(A12)

with Xi = (ti, ~pi).
Wick contractions for two-point functions including

one or two sigma operators read〈
Õ2,0
ππ (X1, X2)σ(X3)†

〉
= −
√

6Rσ(X1, X2, X3) +
√

6Vσ(X1, X2, X3), (A13)〈
σ(X1)σ(X3)†

〉
= −Rσσ(X1, X3) + 2Vσσ(X1, X3), (A14)

Here we define

Rσ(x1, x2, x3)

=
1

2

〈
Tr[γ5Sl(x1, x2)γ5Sl(x2, x3)Sl(x3, x1)]

+ Tr[γ5Sl(x2, x1)γ5Sl(x1, x3)Sl(x3, x2)]
〉

=
〈

Tr[γ5Sl(x1, x2)γ5Sl(x2, x3)Sl(x3, x1)]
〉
, (A15)

V σ(x1, x2, x3)

=
〈

Tr[γ5Sl(x1, x2)γ5Sl(x2, x3)] · Tr[Sl(x3, x1)]
〉
,

(A16)

Rσσ(x1, x3) =
〈

Tr[Sl(x1, x3)Sl(x3, x1)]
〉
, (A17)

V σσ(x1, x3) =
〈

Tr[Sl(x1, x1)Sl(x3, x3)]
〉
, (A18)

which can be expressed in terms of the pion Ππ
ij and

sigma Πσ
ij meson fields as

Rσ(X1, X2, X3)

=

〈∑
i,j,k

Ππ
ij(X1)Ππ

jk(X2)Πσ
ki(X3)

〉
, (A19)

V σ(X1, X2, X3)

=

〈∑
i,j

Ππ
ij(X1)Ππ

ji(X2) ·
∑
k

Πσ
kk(X3)

〉
, (A20)

Rσσ(X1, X3) =

〈∑
i,j

Πσ
ij(X1)Πσ

ji(X3)

〉
, (A21)

V σσ(X1, X3) =

〈∑
i

Πσ
ii(X1) ·

∑
j

Πσ
jj(X3)

〉
, (A22)

for Xi = (ti, ~pi).

Appendix B: Details of GEVP procedure

1. Ordering of GEVP eigenvectors

While a simple description of how we order GEVP
eigenvectors was made in Section II D, it is valuable to
address the exact procedure using equations.

Since we fix t − t0 to a constant ∆t, we can drop t
or t0 from the arguments of eigenvalues and eigenvectors
and it is valuable for the following discussion. We drop
t rather than t0 since the contamination from excited
states in eigenvalues and eigenvectors are measured by
t0. The GEVP equation is then rewritten as

C(t)Vn(t0) = λn(t0)C(t0)Vn(t0). (B1)

At short time separations where the statistical errors
are small enough, we simply sort eigenvalues into de-
scending order. This will give us the ascending order
of effective energies and ensure. Since this approach for
short times is trivial and has no ambiguity, we spend
the rest of the subsection for the ordering at larger time
separations where the statistical error is large but the
excited-state contamination is expected to be small.

At long distances we employ a recursive approach us-
ing the eigenvectors obtained at one time slice earlier. As
explained in Section II D, the idea is to use eigenvectors
at one time slice earlier to construct a near diagonal cor-
relator matrix with which it is very easy to obtain the
correct order of eigenvectors at the current time slice.
The exact procedure is given as follows.

We now suppose the ordering of the eigenvectors
Vn(t0 − 1) at t0 − 1 is successful and give a recipe to
obtain the correct order of the eigenvectors Vn(t0) at t0
using Vn(t0 − 1). We define an N ×N matrix

T (t0 − 1) = (V1(t0 − 1) V2(t0 − 1) . . . VN (t0 − 1)),(B2)

using the set of the GEVP eigenvectors Vn(t0 − 1) ob-
tained at one time slice earlier. Then we can calculate
approximately diagonal matrices

C ′(t, t0 − 1) = T (t0 − 1)†C(t)T (t0 − 1), (B3)

C ′(t0, t0 − 1) = T (t0 − 1)†C(t0)T (t0 − 1). (B4)

Here, the second argument of C ′ on the left hand sides
corresponds to the argument of T on the right hand sides.
The off-diagonal elements of these matrices are associated
only with the statistical fluctuation and systematic effect



22

from excited states. With these near diagonal matrices,
we can express the GEVP (B1) as

C ′(t, t0 − 1)V ′n(t0) = λn(t0)C ′(t0, t0 − 1)V ′n(t0), (B5)

where V ′n(t0) satisfies

Vn(t0) = T (t0 − 1)V ′n(t0). (B6)

If we can obtain the correct order of V ′n(t0) when solving
the modified GEVP (B5), we can also obtain the cor-
responding GEVP eigenvectors Vn(t0) with the original
basis through Eq. (B6). In fact eigenvectors V ′n(t0) are
mostly a unit vector for a certain direction and it is easy
to recognize their correct order at sufficiently large t0
where the contamination from the N + 1-th and higher
states is small and therefore the correlator matrices in
the GEVP (B5) are mostly diagonal.

2. RGEVP

In this work we consider the RGEVP with fixed t−t0 ≡
∆t and we continue to omit t from the arguments of Vn
in this subsection. In this subsection we give the recipe
for finding a new basis of fewer operators.

1. Choose the GEVP size Nt0 at each time slice

N1 ≥ N2 ≥ . . . . (B7)

Note that Nt0 here has a different meaning than
Nα used in Section II E.

2. Solve the N1 × N1 GEVP at the beginning time
slice t0 = 1 and order the eigenvectors Vn(1) en-
suring the descending order of the corresponding
eigenvalues.

3. For t0 ≥ 2, suppose we have obtained the eigenvec-
tors Vn(t0− 1) at t0− 1 for n = 1, 2, . . . , Nt0−1 and
calculate the Nt0×Nt0 re-based correlator matrices
by Eqs. (B3) and (B4) with the modified N1 ×Nt0
re-basing matrix

T (t0 − 1) = (V1(t0 − 1) V2(t0 − 1) . . . VNt0 (t0 − 1)).(B8)

4. Solve the GEVP (B5) with the re-based correlators
in Eqs. (B3) and (B4) and obtain the eigenvectors
Vn(t) by Eq. (B6) for n = 1, 2, . . . , Nt using the
ordering procedure described in the previous sub-
section.

Note that, in step 3, the number Nt0 of columns of T (t0−
1) despite Nt0−1(≥ Nt0) eigenvectors Vn(t0−1) obtained

at time slice t0−1 plays a role in reducing the size of the
GEVP at time slice t0 when Nt0−1 6= Nt0 .

While repeating steps 3 and 4 and applying the results
to Eq. (19) give us a new series of effective two-pion en-
ergies, they are identical to the normal GEVP results at

GEVP fit range

type 4–10 5–10 6–10

2× 2 −0.378(13)◦ −0.372(14)◦ −0.372(13)◦

3× 3 −0.377(13)◦ −0.371(14)◦ −0.371(14)◦

4× 4 −0.369(13)◦ −0.364(14)◦ −0.364(14)◦

RGEVP −0.374(13)◦ −0.369(14)◦ −0.369(13)◦

TABLE XVIII: Results for the I = 2 phase shift on the 243

lattice for two-pion energy of the ground state shown in Ta-
ble III.

GEVP fit range

type 4–9 5–9 6–9

2× 2 −12.94(19)◦ −12.64(23)◦ −12.63(34)◦

3× 3 −12.61(18)◦ −12.37(23)◦ −12.41(34)◦

4× 4 −12.58(18)◦ −12.33(23)◦ −12.40(34)◦

RGEVP −12.57(18)◦ −12.33(23)◦ −12.40(34)◦

TABLE XIX: Results for the I = 2 phase shift on the 243

lattice for two-pion energy of the first excited state shown in
Table IV.

small t0 that satisfies Nt0 = N1. On the other hand, it
is interesting to investigate how the GEVP with the re-
duced new basis behaves at smaller time slices. Therefore
we perform the following additional steps:

5. Repeat steps 3 and 4 to obtain T (t̃0) with a chosen
time t̃0 where the final re-basing is performed, i.e.
Nt̃0−1 > Nt̃0 = Nt̃0+1 = . . ..

6. Perform the GEVP analysis with the re-based cor-
relator matrices T (t̃0)†C(t)T (t̃0) for all available
time slices.

The N1 × Nt̃0 matrix T (t̃0) is the matrix to define the
new operator basis. These steps can be parametrized by
the pairs of t0 and Nt0 that satisfy Nt0−1 > Nt0 . A
single pair gives us a single-step RGEVP, while multiple
pairs correspond to a multi-step RGEVP. We present the
RGEVP results with these parameters in Section IV.

Appendix C: Supplemental figures and tables
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GEVP fit range

type 3–9 4–9 5–9

3× 3 −20.97(44)◦ −20.10(71)◦ −20.8(1.2)◦

4× 4 −20.11(42)◦ −19.29(68)◦ −20.4(1.2)◦

RGEVP −20.18(43)◦ −19.50(67)◦ −20.9(1.1)◦

TABLE XX: Results for the I = 2 phase shift on the 243

lattice for two-pion energy of the second excited state shown
in Table V.

GEVP fit range

type 3–5 4–5

4× 4 −26.5(2.4)◦ −28.7(5.0)◦

TABLE XXI: Results for the I = 2 phase shift on the 243

lattice for two-pion energy of the third excited state shown in
Table VI.

GEVP fit range

type 4–9 5–9 6–9

2× 2 −0.427(50)◦ −0.427(51)◦ −0.419(52)◦

3× 3 −0.426(51)◦ −0.427(51)◦ −0.420(52)◦

4× 4 −0.418(53)◦ −0.418(53)◦ −0.411(54)◦

RGEVP −0.424(51)◦ −0.424(52)◦ −0.417(53)◦

TABLE XXII: Results for the I = 2 phase shift on the 323

lattice for two-pion energy of the ground state shown in Ta-
ble VII.

GEVP fit range

type 4–10 5–10 6–10

2× 2 −13.96(32)◦ −13.61(40)◦ −13.57(47)◦

3× 3 −13.45(32)◦ −13.26(39)◦ −13.26(47)◦

4× 4 −13.37(32)◦ −13.23(39)◦ −13.25(47)◦

RGEVP −13.37(32)◦ −13.24(39)◦ −13.26(46)◦

TABLE XXIII: Results for the I = 2 phase shift on the 323

lattice for two-pion energy of the first excited state shown in
Table VIII.

GEVP fit range

type 3–7 4–7 5–7

3× 3 −24.13(59)◦ −23.44(83)◦ −23.1(1.2)◦

4× 4 −22.85(59)◦ −22.59(81)◦ −22.5(1.2)◦

RGEVP −22.90(59)◦ −22.59(81)◦ −22.4(1.2)◦

TABLE XXIV: Results for the I = 2 phase shift on the 323

lattice for two-pion energy of the second excited state shown
in Table IX.

GEVP fit range

type 4–7 5–7 6–7

4× 4 −24.2(3.2)◦ −26.4(4.7)◦ −27.1(8.1)◦

TABLE XXV: Results for the I = 2 phase shift on the 323

lattice for two-pion energy of the third excited state shown in
Table X.

GEVP fit range

type 3–6 4–6 5–6

3× 3 44.4(3.0)◦ 45.3(3.8)◦ 45.8(4.7)◦

4× 4 45.5(3.0)◦ 45.9(4.1)◦ 48.5(6.0)◦

5× 5 45.4(2.9)◦ 45.9(3.9)◦ 48.1(5.3)◦

RGEVP 45.1(2.9)◦ 45.5(4.2)◦ 46.9(6.8)◦

TABLE XXVI: Results for the I = 0 phase shift on the 243

lattice for two-pion energy of the first excited state shown in
Table XII.

GEVP fit range

type 3–5 4–5

3× 3 65(38)◦ 141(72)◦

4× 4 69(13)◦ 64(14)◦

5× 5 68(13)◦ 65(13)◦

RGEVP 83(11)◦ 79(22)◦

TABLE XXVII: Results for the I = 0 phase shift on the 243

lattice for two-pion energy of the second excited state shown
in Table XIII.

GEVP fit range

type 3–8 4–8 5–8

3× 3 44.1(5.2)◦ 44(11)◦ 49(20)◦

4× 4 43.4(5.0)◦ 44(12)◦ 52(34)◦

5× 5 43.4(5.2)◦ 45(15)◦ 50(24)◦

RGEVP 38.4(2.5)◦ 38.6(3.6)◦ 44.1(5.7)◦

TABLE XXVIII: Results for the I = 0 phase shift on the 323

lattice for two-pion energy of the first excited state shown in
Table XV.

GEVP fit range

type 3–6 4–6 5–6

3× 3 17(19)◦ 20(25)◦ 28(30)◦

4× 4 40(680)◦ 140(690)◦ 80(860)◦

5× 5 28(24)◦ 30(30)◦ 31(33)◦

RGEVP 71.6(8.4)◦ 79(14)◦ 80(24)◦

TABLE XXIX: Results for the I = 0 phase shift on the 323

lattice for two-pion energy of the second excited state shown
in Table XVI.

GEVP fit range

type 4–10 5–10 6–10

2× 2 −0.0499(11) −0.0494(12) −0.0494(12)

3× 3 −0.0499(12) −0.0493(12) −0.0493(12)

4× 4 −0.0492(11) −0.0487(13) −0.0487(12)

RGEVP −0.0496(11) −0.0492(12) −0.0492(12)

TABLE XXX: Results for the I = 2 scattering length times
pion mass mπa0 calculated on the 243 lattice using the phase
shift of the ground state shown in Table XVIII and Eq. (34).
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FIG. 19: I = 2 ππ ground state energy on the 243 ensemble
obtained from fits to a constant for various fit ranges and
GEVP types plotted in lattice units.
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FIG. 20: Same as Fig. 19 but result for the I = 2 first-excited
state on the 243 ensemble.
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FIG. 21: Same as Fig. 19 but result for the I = 2 second-
excited state on the 243 ensemble.
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FIG. 22: Same as Fig. 19 but result for the I = 2 third-excited
state on the 243 ensemble.
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FIG. 23: Same as Fig. 19 but result for the I = 2 ground
state on the 323 ensemble.
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FIG. 24: Same as Fig. 19 but result for the I = 2 first-excited
state on the 323 ensemble.
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FIG. 25: Same as Fig. 19 but result for the I = 2 second-
excited state on the 323 ensemble.
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FIG. 26: Same as Fig. 19 but result for the I = 2 third-excited
state on the 323 ensemble.
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FIG. 27: Same as Fig. 19 but result for the I = 0 ground
state on the 243 ensemble.
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FIG. 28: Same as Fig. 19 but result for the I = 0 first-excited
state on the 243 ensemble.
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FIG. 29: Same as Fig. 19 but result for the I = 0 second-
excited state on the 243 ensemble.
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FIG. 30: Same as Fig. 19 but result for the I = 0 ground
state on the 323 ensemble.
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GEVP fit range

type 4–9 5–9 6–9

2× 2 −0.0538(41) −0.0539(42) −0.0532(43)

3× 3 −0.0538(42) −0.0539(42) −0.0533(43)

4× 4 −0.0531(44) −0.0532(44) −0.0525(45)

RGEVP −0.0537(42) −0.0537(42) −0.0531(44)

TABLE XXXI: Results for the I = 2 scattering length times
pion mass mπa0 calculated on the 323 lattice using the phase
shift of the ground state shown in Table XXII and Eq. (34).

GEVP fit range

type 3–8 4–8 5–8

3× 3 0.1902(52) 0.2001(72) 0.2069(98)

4× 4 0.1904(53) 0.1986(72) 0.2044(95)

5× 5 0.1937(53) 0.2023(73) 0.2080(95)

RGEVP 0.1885(48) 0.2038(70) 0.2083(91)

TABLE XXXII: Results for the I = 0 scattering length times
pion mass mπa0 calculated on the 243 lattice using Eq. (34).
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FIG. 32: Same as Fig. 19 but result for the I = 0 second-
excited state on the 323 ensemble.
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FIG. 33: I = 2 effective ground state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t− t0. For each label there are up to six values, corresponding to two sets of t = 4 (circle),
6 (square) and 8 (diamond), one set each for non-dispersion relation method and dispersion relation method, respectively.
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FIG. 34: I = 2 effective first excited state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond
to GEVP type, δt (matrix subtraction), and t − t0. For each label there are up to six values, corresponding to two sets of
t = 4 (circle), 6 (square) and 8 (diamond), one set each for non-dispersion relation method and dispersion relation method,
respectively.
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FIG. 35: I = 2 effective second excited state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond
to GEVP type, δt (matrix subtraction), and t − t0. For each label there are up to six values, corresponding to two sets of
t = 4 (circle), 6 (square) and 8 (diamond), one set each for non-dispersion relation method and dispersion relation method,
respectively.
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FIG. 36: I = 2 effective third excited state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond
to GEVP type, δt (matrix subtraction), and t − t0. For each label there are up to six values, corresponding to two sets of
t = 4 (circle), 6 (square) and 8 (diamond), one set each for non-dispersion relation method and dispersion relation method,
respectively.
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FIG. 37: I = 0 effective ground state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t− t0. For each label there are up to six values, corresponding to two sets of t = 4 (circle),
6 (square) and 8 (diamond), one set each for non-dispersion relation method and dispersion relation method, respectively.
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FIG. 38: I = 0 effective first excited state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond
to GEVP type, δt (matrix subtraction), and t − t0. For each label there are up to six values, corresponding to two sets of
t = 3 (circle), 5 (square) and 7 (diamond), one set each for non-dispersion relation method and dispersion relation method,
respectively.
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FIG. 39: I = 0 effective second excited state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond
to GEVP type, δt (matrix subtraction), and t − t0. For each label there are up to six values, corresponding to two sets of
t = 3 (circle), 5 (square) and 7 (diamond), one set each for non-dispersion relation method and dispersion relation method,
respectively.
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FIG. 40: I = 0 effective third excited state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond
to GEVP type, δt (matrix subtraction), and t − t0. For each label there are up to six values, corresponding to two sets of
t = 3 (circle), 5 (square) and 7 (diamond), one set each for non-dispersion relation method and dispersion relation method,
respectively.
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FIG. 41: I = 0 effective fourth excited state ππ energies on the 243 lattice plotted in lattice units. X-axis labels correspond
to GEVP type, δt (matrix subtraction), and t − t0. For each label there are up to six values, corresponding to two sets of
t = 3 (circle), 5 (square) and 7 (diamond), one set each for non-dispersion relation method and dispersion relation method,
respectively.
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FIG. 42: I = 2 effective ground state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label there are results for five values of of t = 5 (circle), 7 (square), 9
(diamond), 11 (pentagon) and 13 (cross).
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FIG. 43: I = 2 effective first excited state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to
GEVP type, δt (matrix subtraction), and t− t0. For each label there are results for five values of of t = 5 (circle), 7 (square),
9 (diamond), 11 (pentagon) and 13 (cross).
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FIG. 44: I = 2 effective second excited state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to
GEVP type, δt (matrix subtraction), and t− t0. For each label there are results for five values of of t = 5 (circle), 7 (square),
9 (diamond), 11 (pentagon) and 13 (cross).
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FIG. 45: I = 2 effective third excited state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to
GEVP type, δt (matrix subtraction), and t− t0. For each label there are results for five values of of t = 5 (circle), 7 (square),
9 (diamond), 11 (pentagon) and 13 (cross).
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FIG. 46: I = 0 effective ground state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to GEVP
type, δt (matrix subtraction), and t − t0. For each label there are results for four values of of t = 4 (circle), 7 (square), 9
(diamond) and 11 (cross).
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FIG. 47: I = 0 effective first excited state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to
GEVP type, δt (matrix subtraction), and t− t0. For each label there are results for four values of of t = 4 (circle), 7 (square),
9 (diamond) and 11 (cross).
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FIG. 48: I = 0 effective second excited state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to
GEVP type, δt (matrix subtraction), and t− t0. For each label there are results for four values of of t = 4 (circle), 7 (square),
9 (diamond) and 11 (cross).
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FIG. 49: I = 0 effective third excited state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond to
GEVP type, δt (matrix subtraction), and t− t0. For each label there are results for four values of of t = 4 (circle), 7 (square),
9 (diamond) and 11 (cross).
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FIG. 50: I = 0 effective fourth excited state ππ energies on the 323 lattice plotted in lattice units. X-axis labels correspond
to GEVP type, δt (matrix subtraction), and t − t0. For each label there are results for two values of of t = 4 (circle) and 7
(square).



37

GEVP type δt t− t0 t = 4 t = 6 t = 8 t = 4 w DR t = 6 w DR t = 8 w DR

2× 2 2 1 0.2845(28) 0.2817(27) 0.2812(29) 0.28139(41) 0.28121(43) 0.28121(45)

2× 2 5 1 0.2833(12) 0.2810(12) 0.2810(13) 0.28135(35) 0.28123(36) 0.28126(37)

2× 2 8 1 0.28268(98) 0.28121(94) — 0.28130(35) 0.28120(35) —

2× 2 2 2 0.2845(28) 0.2817(27) 0.2812(29) 0.28139(41) 0.28121(43) 0.28121(45)

2× 2 5 2 0.2833(12) 0.2810(12) 0.2810(13) 0.28135(35) 0.28123(36) 0.28126(37)

2× 2 8 2 0.28268(98) 0.28121(94) — 0.28130(35) 0.28120(35) —

2× 2 2 3 0.2846(28) 0.2817(27) 0.2812(29) 0.28139(41) 0.28121(43) 0.28121(45)

2× 2 5 3 0.2833(12) 0.2810(12) 0.2810(13) 0.28135(35) 0.28123(36) 0.28126(37)

2× 2 8 3 0.28268(98) 0.28121(94) — 0.28131(35) 0.28120(35) —

2× 2 2 4 — 0.2817(27) 0.2812(29) — 0.28121(43) 0.28121(45)

2× 2 5 4 — 0.2810(12) 0.2810(13) — 0.28123(36) 0.28126(37)

2× 2 8 4 — 0.28121(94) — — 0.28120(35) —

3× 3 2 1 0.2845(28) 0.2817(27) 0.2812(29) 0.28137(41) 0.28121(43) 0.28122(45)

3× 3 5 1 0.2833(12) 0.2810(12) 0.2810(13) 0.28134(35) 0.28123(36) 0.28126(37)

3× 3 8 1 0.28268(98) 0.28121(94) — 0.28130(35) 0.28120(35) —

3× 3 2 2 0.2845(28) 0.2817(27) 0.2812(29) 0.28137(41) 0.28121(43) 0.28121(45)

3× 3 5 2 0.2833(12) 0.2810(12) 0.2810(13) 0.28134(35) 0.28123(36) 0.28126(37)

3× 3 8 2 0.28268(98) 0.28121(94) — 0.28130(35) 0.28120(35) —

3× 3 2 3 0.2845(28) 0.2817(27) 0.2812(29) 0.28137(41) 0.28121(43) 0.28121(45)

3× 3 5 3 0.2833(12) 0.2810(12) 0.2810(13) 0.28134(35) 0.28123(36) 0.28126(37)

3× 3 8 3 0.28268(98) 0.28121(94) — 0.28130(35) 0.28120(35) —

3× 3 2 4 — 0.2817(27) 0.2812(29) — 0.28121(43) 0.28121(45)

3× 3 5 4 — 0.2810(12) 0.2810(13) — 0.28123(36) 0.28126(37)

3× 3 8 4 — 0.28121(94) — — 0.28120(35) —

4× 4 2 1 0.2845(28) 0.2817(27) 0.2812(29) 0.28135(41) 0.28119(43) 0.28122(45)

4× 4 5 1 0.2833(12) 0.2810(12) 0.2810(13) 0.28133(35) 0.28122(36) 0.28125(37)

4× 4 8 1 0.28267(98) 0.28121(94) — 0.28129(35) 0.28120(35) —

4× 4 2 2 0.2845(28) 0.2817(27) 0.2812(29) 0.28135(41) 0.28123(43) 0.28122(45)

4× 4 5 2 0.2833(12) 0.2811(12) 0.2810(13) 0.28133(35) 0.28123(36) 0.28126(37)

4× 4 8 2 0.28267(98) 0.28121(94) — 0.28129(35) 0.28120(35) —

4× 4 2 3 0.2845(28) 0.2817(27) 0.2812(29) 0.28135(41) 0.28123(43) 0.28121(45)

4× 4 5 3 0.2833(12) 0.2811(12) 0.2810(13) 0.28133(35) 0.28123(36) 0.28126(37)

4× 4 8 3 0.28267(98) 0.28121(94) — 0.28129(35) 0.28120(35) —

4× 4 2 4 — 0.2817(27) 0.2812(29) — 0.28123(43) 0.28121(45)

4× 4 5 4 — 0.2811(12) 0.2810(13) — 0.28124(36) 0.28125(37)

4× 4 8 4 — 0.28122(94) — — 0.28121(35) —

RGEVP 2 1 0.2845(28) 0.2817(27) 0.2812(29) 0.28134(41) 0.28126(43) 0.28123(45)

RGEVP 5 1 0.2833(12) 0.2811(12) 0.2810(13) 0.28133(35) 0.28125(36) 0.28125(37)

RGEVP 8 1 0.28267(98) 0.28122(94) — 0.28129(35) 0.28121(35) —

RGEVP 2 2 0.2845(28) 0.2817(27) 0.2812(29) 0.28134(41) 0.28124(43) 0.28122(45)

RGEVP 5 2 0.2833(12) 0.2811(12) 0.2810(13) 0.28133(35) 0.28124(36) 0.28125(37)

RGEVP 8 2 0.28267(98) 0.28122(94) — 0.28129(35) 0.28121(35) —

RGEVP 2 3 0.2845(28) 0.2817(27) 0.2812(29) 0.28136(41) 0.28122(43) 0.28121(45)

RGEVP 5 3 0.2833(12) 0.2810(12) 0.2810(13) 0.28134(35) 0.28123(36) 0.28125(37)

RGEVP 8 3 0.28267(98) 0.28121(94) — 0.28129(35) 0.28120(35) —

RGEVP 2 4 — 0.2817(27) 0.2812(29) — 0.28123(43) 0.28121(45)

RGEVP 5 4 — 0.2810(12) 0.2810(13) — 0.28123(36) 0.28125(37)

RGEVP 8 4 — 0.28121(94) — — 0.28120(35) —

TABLE XXXIV: Effective energy of the I = 2 two-pion ground state on the 243 lattice for various GEVP methods and input
time parameters: δt, t− t0 and t. The values are shown in lattice units. The re-basing matrix is calculated as: 4× 4→ 3× 3 at
t0 = 4. The dashes ‘—’ mean that the effective energy could not be evaluated because of one of the following possible reasons:
1. Correlators at t + δt + 1 that are needed for calculating effective energy are not computed. 2. The ratio of corresponding
GEVP eigenvalues λ0(t, t0)/λ0(t+ 1, t0) is negative for at least one jackknife sample.
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GEVP type δt t− t0 t = 4 t = 6 t = 8 t = 4 w DR t = 6 w DR t = 8 w DR

2× 2 2 1 0.6117(20) 0.6059(21) 0.6048(33) 0.60974(53) 0.60821(78) 0.6068(17)

2× 2 5 1 0.6102(13) 0.6059(14) 0.6065(22) 0.60941(43) 0.60833(58) 0.6085(11)

2× 2 8 1 0.6101(13) 0.6059(13) — 0.60935(40) 0.60810(51) —

2× 2 2 2 0.6117(20) 0.6059(21) 0.6048(33) 0.60974(53) 0.60821(78) 0.6068(17)

2× 2 5 2 0.6102(13) 0.6059(14) 0.6065(22) 0.60940(43) 0.60833(58) 0.6085(11)

2× 2 8 2 0.6101(13) 0.6059(13) — 0.60935(40) 0.60810(51) —

2× 2 2 3 0.6117(20) 0.6059(21) 0.6048(33) 0.60974(53) 0.60821(78) 0.6068(17)

2× 2 5 3 0.6102(13) 0.6059(14) 0.6065(22) 0.60940(43) 0.60833(58) 0.6085(11)

2× 2 8 3 0.6101(13) 0.6059(13) — 0.60935(40) 0.60810(51) —

2× 2 2 4 — 0.6059(21) 0.6048(33) — 0.60821(78) 0.6068(17)

2× 2 5 4 — 0.6059(14) 0.6065(22) — 0.60833(58) 0.6085(11)

2× 2 8 4 — 0.6059(13) — — 0.60810(51) —

3× 3 2 1 0.6111(20) 0.6054(21) 0.6049(33) 0.60913(53) 0.60775(79) 0.6069(16)

3× 3 5 1 0.6097(13) 0.6056(14) 0.6066(22) 0.60887(43) 0.60803(58) 0.6086(11)

3× 3 8 1 0.6095(13) 0.6056(13) — 0.60882(40) 0.60779(52) —

3× 3 2 2 0.6111(20) 0.6054(21) 0.6050(33) 0.60913(53) 0.60775(79) 0.6070(16)

3× 3 5 2 0.6097(13) 0.6056(14) 0.6066(22) 0.60887(43) 0.60803(58) 0.6086(11)

3× 3 8 2 0.6095(13) 0.6056(13) — 0.60882(40) 0.60779(52) —

3× 3 2 3 0.6111(20) 0.6054(21) 0.6049(33) 0.60913(53) 0.60775(79) 0.6069(16)

3× 3 5 3 0.6097(13) 0.6056(14) 0.6066(22) 0.60887(43) 0.60803(58) 0.6086(11)

3× 3 8 3 0.6095(13) 0.6056(13) — 0.60882(40) 0.60779(52) —

3× 3 2 4 — 0.6054(21) 0.6050(33) — 0.60774(79) 0.6070(16)

3× 3 5 4 — 0.6056(14) 0.6066(22) — 0.60803(58) 0.6086(11)

3× 3 8 4 — 0.6056(13) — — 0.60779(52) —

4× 4 2 1 0.6111(20) 0.6054(21) 0.6047(33) 0.60908(53) 0.60771(79) 0.6067(17)

4× 4 5 1 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)

4× 4 8 1 0.6095(13) 0.6055(13) — 0.60877(39) 0.60773(52) —

4× 4 2 2 0.6111(20) 0.6053(21) 0.6048(33) 0.60908(53) 0.60770(79) 0.6068(17)

4× 4 5 2 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)

4× 4 8 2 0.6095(13) 0.6055(13) — 0.60877(39) 0.60773(52) —

4× 4 2 3 0.6111(20) 0.6053(21) 0.6048(33) 0.60908(53) 0.60770(79) 0.6068(17)

4× 4 5 3 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)

4× 4 8 3 0.6095(13) 0.6055(13) — 0.60877(39) 0.60773(52) —

4× 4 2 4 — 0.6053(21) 0.6048(33) — 0.60770(79) 0.6068(17)

4× 4 5 4 — 0.6056(14) 0.6065(22) — 0.60797(58) 0.6085(11)

4× 4 8 4 — 0.6055(13) — — 0.60773(52) —

RGEVP 2 1 0.6111(20) 0.6054(21) 0.6048(33) 0.60908(53) 0.60771(79) 0.6068(17)

RGEVP 5 1 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)

RGEVP 8 1 0.6095(13) 0.6055(13) — 0.60877(39) 0.60774(52) —

RGEVP 2 2 0.6111(20) 0.6053(21) 0.6048(33) 0.60908(53) 0.60770(79) 0.6068(17)

RGEVP 5 2 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)

RGEVP 8 2 0.6095(13) 0.6055(13) — 0.60877(39) 0.60773(52) —

RGEVP 2 3 0.6111(20) 0.6053(21) 0.6048(33) 0.60909(53) 0.60770(79) 0.6068(17)

RGEVP 5 3 0.6096(13) 0.6056(14) 0.6065(22) 0.60881(42) 0.60797(58) 0.6085(11)

RGEVP 8 3 0.6095(13) 0.6055(13) — 0.60877(39) 0.60773(52) —

RGEVP 2 4 — 0.6053(21) 0.6048(33) — 0.60769(79) 0.6068(17)

RGEVP 5 4 — 0.6056(14) 0.6065(22) — 0.60797(58) 0.6085(11)

RGEVP 8 4 — 0.6055(13) — — 0.60773(52) —

TABLE XXXV: Same as Table XXXIV but for the I = 2 two-pion first excited state on the 243 lattice. The re-basing matrix
is calculated as: 4× 4→ 3× 3 at t0 = 4.
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GEVP type δt t− t0 t = 4 t = 6 t = 8 t = 4 w DR t = 6 w DR t = 8 w DR

3× 3 2 1 0.8153(29) 0.8136(66) 0.798(14) 0.8168(18) 0.8159(51) 0.805(12)

3× 3 5 1 0.8142(23) 0.8095(52) 0.7997(94) 0.8162(13) 0.8129(41) 0.8077(74)

3× 3 8 1 0.8146(22) 0.8116(52) — 0.8165(14) 0.8150(39) —

3× 3 2 2 0.8153(29) 0.8136(66) 0.798(14) 0.8168(18) 0.8159(51) 0.805(12)

3× 3 5 2 0.8142(23) 0.8095(52) 0.7997(94) 0.8162(13) 0.8129(41) 0.8077(74)

3× 3 8 2 0.8146(22) 0.8116(52) — 0.8165(14) 0.8150(39) —

3× 3 2 3 0.8153(29) 0.8136(66) 0.798(14) 0.8168(18) 0.8159(51) 0.805(12)

3× 3 5 3 0.8142(22) 0.8095(52) 0.7997(94) 0.8162(13) 0.8129(41) 0.8077(74)

3× 3 8 3 0.8146(22) 0.8116(52) — 0.8165(14) 0.8150(39) —

3× 3 2 4 — 0.8136(66) 0.798(14) — 0.8159(51) 0.805(12)

3× 3 5 4 — 0.8095(52) 0.7997(94) — 0.8129(41) 0.8077(74)

3× 3 8 4 — 0.8116(52) — — 0.8150(39) —

4× 4 2 1 0.8136(29) 0.8140(66) 0.798(15) 0.8150(17) 0.8163(51) 0.805(12)

4× 4 5 1 0.8130(22) 0.8098(52) 0.8000(94) 0.8150(12) 0.8133(41) 0.8080(74)

4× 4 8 1 0.8134(22) 0.8119(51) — 0.8153(13) 0.8154(39) —

4× 4 2 2 0.8135(29) 0.8143(66) 0.798(14) 0.8150(18) 0.8166(51) 0.805(12)

4× 4 5 2 0.8130(22) 0.8101(52) 0.7998(95) 0.8150(12) 0.8136(41) 0.8078(74)

4× 4 8 2 0.8134(22) 0.8122(51) — 0.8153(13) 0.8157(39) —

4× 4 2 3 0.8135(29) 0.8143(66) 0.799(14) 0.8150(18) 0.8166(51) 0.806(12)

4× 4 5 3 0.8130(22) 0.8102(52) 0.8002(94) 0.8150(12) 0.8136(40) 0.8082(74)

4× 4 8 3 0.8134(22) 0.8122(51) — 0.8153(13) 0.8157(39) —

4× 4 2 4 — 0.8143(66) 0.800(14) — 0.8167(51) 0.807(11)

4× 4 5 4 — 0.8103(52) 0.8006(95) — 0.8137(41) 0.8085(75)

4× 4 8 4 — 0.8123(51) — — 0.8158(39) —

RGEVP 2 1 0.8135(29) 0.8147(66) 0.801(14) 0.8150(18) 0.8171(51) 0.808(12)

RGEVP 5 1 0.8130(22) 0.8105(52) 0.8016(96) 0.8150(12) 0.8139(40) 0.8096(78)

RGEVP 8 1 0.8134(22) 0.8126(51) — 0.8153(13) 0.8160(39) —

RGEVP 2 2 0.8135(29) 0.8145(66) 0.801(14) 0.8150(18) 0.8168(51) 0.808(12)

RGEVP 5 2 0.8130(22) 0.8103(52) 0.8014(96) 0.8150(12) 0.8138(40) 0.8094(77)

RGEVP 8 2 0.8134(22) 0.8124(51) — 0.8153(13) 0.8159(39) —

RGEVP 2 3 0.8137(29) 0.8141(66) 0.800(14) 0.8152(18) 0.8164(51) 0.807(11)

RGEVP 5 3 0.8131(22) 0.8099(52) 0.8008(95) 0.8151(13) 0.8134(40) 0.8088(76)

RGEVP 8 3 0.8135(22) 0.8120(51) — 0.8154(13) 0.8155(39) —

RGEVP 2 4 — 0.8141(66) 0.800(14) — 0.8164(51) 0.807(11)

RGEVP 5 4 — 0.8099(52) 0.8008(95) — 0.8134(40) 0.8088(76)

RGEVP 8 4 — 0.8120(51) — — 0.8154(39) —

TABLE XXXVI: Same as Table XXXIV but for the I = 2 two-pion second excited state on the 243 lattice. The re-basing
matrix is calculated as: 4× 4→ 3× 3 at t0 = 4.
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GEVP type δt t− t0 t = 4 t = 6 t = 8 t = 4 w DR t = 6 w DR t = 8 w DR

4× 4 2 1 0.9653(70) 0.940(21) 0.841(60) 0.9700(57) 0.948(17) 0.845(60)

4× 4 5 1 0.9620(58) 0.940(17) 0.905(53) 0.9670(43) 0.946(13) 0.909(54)

4× 4 8 1 0.9603(57) 0.936(17) — 0.9654(41) 0.943(13) —

4× 4 2 2 0.9653(70) 0.940(21) 0.841(60) 0.9700(57) 0.948(17) 0.845(61)

4× 4 5 2 0.9620(58) 0.939(17) 0.905(53) 0.9670(43) 0.946(13) 0.910(54)

4× 4 8 2 0.9603(57) 0.935(17) — 0.9655(41) 0.942(13) —

4× 4 2 3 0.9653(70) 0.940(21) 0.840(61) 0.9700(57) 0.948(17) 0.844(61)

4× 4 5 3 0.9620(58) 0.939(17) 0.905(53) 0.9670(43) 0.946(13) 0.909(54)

4× 4 8 3 0.9603(57) 0.935(17) — 0.9655(42) 0.942(13) —

4× 4 2 4 — 0.940(21) 0.839(61) — 0.948(17) 0.843(61)

4× 4 5 4 — 0.939(17) 0.904(53) — 0.946(13) 0.909(54)

4× 4 8 4 — 0.935(17) — — 0.942(13) —

TABLE XXXVII: Same as Table XXXIV but for the I = 2 two-pion third excited state on the 243 lattice.
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GEVP type δt t− t0 t = 3 t = 5 t = 7 t = 3 w DR t = 5 w DR t = 7 w DR

3× 3 2 1 0.2790(28) 0.2694(29) 0.2711(32) 0.27281(51) 0.27011(74) 0.2700(15)

3× 3 5 1 0.2752(12) 0.2700(13) 0.2708(14) 0.27166(44) 0.26999(60) 0.27079(73)

3× 3 8 1 0.27437(96) 0.2705(10) 0.2705(11) 0.27156(39) 0.27060(47) 0.27012(66)

3× 3 2 2 0.2793(28) 0.2696(29) 0.2711(31) 0.27311(49) 0.27022(68) 0.2700(15)

3× 3 5 2 0.2755(12) 0.2701(13) 0.2708(14) 0.27193(43) 0.27004(58) 0.27080(74)

3× 3 8 2 0.27457(96) 0.2705(10) 0.2705(11) 0.27176(39) 0.27060(47) 0.27013(65)

3× 3 2 3 — 0.2697(29) 0.2712(31) — 0.27038(63) 0.2700(13)

3× 3 5 3 — 0.2702(13) 0.2708(14) — 0.27018(55) 0.27079(74)

3× 3 8 3 — 0.2705(10) 0.2705(11) — 0.27063(46) 0.27015(64)

3× 3 2 4 — 0.2701(29) 0.2714(31) — 0.27073(59) 0.2702(11)

3× 3 5 4 — 0.2705(13) 0.2708(14) — 0.27050(51) 0.27078(74)

3× 3 8 4 — 0.2707(10) 0.2705(11) — 0.27078(46) 0.27015(63)

4× 4 2 1 0.2789(28) 0.2695(29) 0.2698(40) 0.27275(52) 0.27012(74) 0.2686(27)

4× 4 5 1 0.2752(12) 0.2700(13) 0.2708(14) 0.27163(44) 0.26995(61) 0.27081(76)

4× 4 8 1 0.27434(96) 0.2705(10) 0.2700(14) 0.27153(39) 0.27061(47) 0.2696(10)

4× 4 2 2 0.2792(28) 0.2696(29) 0.2707(33) 0.27307(50) 0.27022(68) 0.2695(16)

4× 4 5 2 0.2754(12) 0.2700(13) 0.2708(15) 0.27189(44) 0.27000(59) 0.27084(80)

4× 4 8 2 0.27455(96) 0.2705(10) 0.2702(12) 0.27173(40) 0.27060(47) 0.26984(82)

4× 4 2 3 — 0.2697(29) 0.2711(31) — 0.27038(64) 0.2699(13)

4× 4 5 3 — 0.2702(13) 0.2708(15) — 0.27015(55) 0.27081(78)

4× 4 8 3 — 0.2705(10) 0.2703(12) — 0.27063(47) 0.27001(71)

4× 4 2 4 — 0.2701(29) 0.2713(31) — 0.27072(60) 0.2701(11)

4× 4 5 4 — 0.2705(13) 0.2708(15) — 0.27048(51) 0.27079(78)

4× 4 8 4 — 0.2707(10) 0.2704(12) — 0.27078(47) 0.27002(68)

5× 5 2 1 0.2789(28) 0.2694(29) 0.2694(49) 0.27275(52) 0.27008(77) 0.2682(38)

5× 5 5 1 0.2752(12) 0.2700(13) 0.2706(14) 0.27163(44) 0.26996(60) 0.27064(72)

5× 5 8 1 0.27435(96) 0.2706(10) 0.2698(16) 0.27153(39) 0.27065(47) 0.2695(12)

5× 5 2 2 0.2792(28) 0.2695(29) 0.2705(34) 0.27306(50) 0.27019(68) 0.2693(18)

5× 5 5 2 0.2754(12) 0.2700(13) 0.2707(14) 0.27189(44) 0.27000(58) 0.27075(77)

5× 5 8 2 0.27455(96) 0.2705(10) 0.2701(13) 0.27173(40) 0.27061(46) 0.26977(90)

5× 5 2 3 — 0.2697(29) 0.2711(31) — 0.27038(64) 0.2700(12)

5× 5 5 3 — 0.2702(13) 0.2707(14) — 0.27015(55) 0.27074(76)

5× 5 8 3 — 0.2705(10) 0.2703(12) — 0.27063(47) 0.27001(73)

5× 5 2 4 — 0.2701(29) 0.2713(31) — 0.27073(60) 0.2701(11)

5× 5 5 4 — 0.2705(13) 0.2707(14) — 0.27048(51) 0.27076(77)

5× 5 8 4 — 0.2707(10) 0.2704(12) — 0.27077(47) 0.27003(69)

RGEVP 2 1 0.2792(28) 0.2694(29) 0.2719(29) 0.27301(49) 0.27010(78) 0.27073(97)

RGEVP 5 1 0.2753(12) 0.2700(13) 0.2707(14) 0.27173(43) 0.27001(60) 0.27073(71)

RGEVP 8 1 0.27454(96) 0.2706(10) 0.2709(11) 0.27172(39) 0.27070(47) 0.27055(62)

RGEVP 2 2 0.2792(28) 0.2696(29) 0.2717(30) 0.27306(49) 0.27022(67) 0.2706(10)

RGEVP 5 2 0.2755(12) 0.2700(13) 0.2708(14) 0.27196(42) 0.27001(59) 0.27079(75)

RGEVP 8 2 0.27459(96) 0.2705(10) 0.2706(11) 0.27178(38) 0.27062(46) 0.27028(68)

RGEVP 2 3 — 0.2697(29) 0.2713(30) — 0.27035(65) 0.2702(12)

RGEVP 5 3 — 0.2702(13) 0.2708(14) — 0.27013(53) 0.27077(76)

RGEVP 8 3 — 0.2705(10) 0.2704(12) — 0.27061(46) 0.27008(70)

RGEVP 2 4 — 0.2700(29) 0.2713(31) — 0.27067(59) 0.2701(12)

RGEVP 5 4 — 0.2704(13) 0.2707(14) — 0.27035(49) 0.27071(74)

RGEVP 8 4 — 0.2706(10) 0.2703(12) — 0.27070(45) 0.26999(70)

TABLE XXXVIII: Same as Table XXXIV but for the I = 0 two-pion ground state on the 243 lattice. The re-basing matrix is
calculated as: 5× 5→ 3× 3 at t0 = 4.
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GEVP type δt t− t0 t = 3 t = 5 t = 7 t = 3 w DR t = 5 w DR t = 7 w DR

3× 3 2 1 0.5415(65) 0.497(44) 0.498(49) 0.5356(63) 0.499(44) 0.498(49)

3× 3 5 1 0.5279(84) 0.512(18) 0.543(21) 0.5240(83) 0.513(18) 0.544(21)

3× 3 8 1 0.5331(53) 0.5315(72) 0.528(18) 0.5294(53) 0.5331(72) 0.529(18)

3× 3 2 2 0.5457(46) 0.499(33) 0.502(54) 0.5398(43) 0.501(34) 0.502(54)

3× 3 5 2 0.5336(56) 0.511(20) 0.546(20) 0.5296(54) 0.512(20) 0.546(20)

3× 3 8 2 0.5345(44) 0.5325(74) 0.529(18) 0.5309(43) 0.5341(75) 0.530(18)

3× 3 2 3 — 0.503(25) 0.505(62) — 0.505(25) 0.506(62)

3× 3 5 3 — 0.509(20) 0.551(19) — 0.511(20) 0.552(19)

3× 3 8 3 — 0.5329(79) 0.531(17) — 0.5345(80) 0.532(17)

3× 3 2 4 — 0.511(15) 0.499(62) — 0.513(15) 0.499(62)

3× 3 5 4 — 0.508(16) 0.555(19) — 0.510(16) 0.556(19)

3× 3 8 4 — 0.5304(81) 0.533(17) — 0.5320(81) 0.534(17)

4× 4 2 1 0.5411(63) 0.497(52) 0.393(75) 0.5352(61) 0.499(52) 0.393(74)

4× 4 5 1 0.5270(76) 0.498(16) 0.523(46) 0.5231(75) 0.500(16) 0.524(46)

4× 4 8 1 0.5303(50) 0.5268(89) 0.463(61) 0.5267(49) 0.5284(89) 0.463(61)

4× 4 2 2 0.5444(48) 0.499(36) 0.433(62) 0.5385(45) 0.501(36) 0.433(62)

4× 4 5 2 0.5320(54) 0.500(16) 0.526(40) 0.5281(52) 0.501(16) 0.527(40)

4× 4 8 2 0.5319(44) 0.5270(87) 0.483(43) 0.5282(43) 0.5286(87) 0.484(43)

4× 4 2 3 — 0.503(24) 0.460(59) — 0.505(24) 0.460(59)

4× 4 5 3 — 0.500(16) 0.532(34) — 0.502(16) 0.533(34)

4× 4 8 3 — 0.5272(87) 0.495(35) — 0.5288(87) 0.495(34)

4× 4 2 4 — 0.511(15) 0.464(53) — 0.513(15) 0.464(53)

4× 4 5 4 — 0.501(14) 0.536(31) — 0.502(14) 0.537(31)

4× 4 8 4 — 0.5257(86) 0.499(31) — 0.5273(86) 0.500(30)

5× 5 2 1 0.5411(62) 0.474(94) 0.4(1.6) 0.5352(60) 0.476(94) 0.4(1.6)

5× 5 5 1 0.5268(80) 0.499(16) 0.508(42) 0.5229(79) 0.501(16) 0.509(42)

5× 5 8 1 0.5304(50) 0.5274(87) 0.450(82) 0.5267(49) 0.5290(87) 0.451(82)

5× 5 2 2 0.5441(48) 0.485(60) 0.44(11) 0.5382(45) 0.487(60) 0.44(11)

5× 5 5 2 0.5320(53) 0.501(14) 0.519(35) 0.5281(52) 0.503(14) 0.520(35)

5× 5 8 2 0.5319(44) 0.5275(84) 0.476(54) 0.5283(43) 0.5290(85) 0.477(54)

5× 5 2 3 — 0.498(32) 0.48(11) — 0.500(32) 0.48(11)

5× 5 5 3 — 0.501(15) 0.530(31) — 0.502(15) 0.530(31)

5× 5 8 3 — 0.5274(85) 0.491(41) — 0.5290(85) 0.491(41)

5× 5 2 4 — 0.510(15) 0.474(65) — 0.512(15) 0.474(65)

5× 5 5 4 — 0.501(14) 0.536(29) — 0.502(14) 0.536(29)

5× 5 8 4 — 0.5257(86) 0.494(36) — 0.5273(86) 0.495(36)

RGEVP 2 1 0.5409(62) 0.490(57) 0.487(43) 0.5350(60) 0.492(57) 0.487(43)

RGEVP 5 1 0.5268(79) 0.506(16) 0.541(27) 0.5229(79) 0.508(16) 0.542(27)

RGEVP 8 1 0.5303(50) 0.5275(98) 0.529(21) 0.5267(49) 0.5291(98) 0.530(21)

RGEVP 2 2 0.5459(43) 0.487(56) 0.523(65) 0.5400(40) 0.489(56) 0.524(65)

RGEVP 5 2 0.5325(57) 0.508(23) 0.548(21) 0.5286(56) 0.510(23) 0.549(21)

RGEVP 8 2 0.5320(48) 0.531(12) 0.556(21) 0.5284(47) 0.532(12) 0.556(21)

RGEVP 2 3 — 0.497(32) 0.548(85) — 0.499(32) 0.548(85)

RGEVP 5 3 — 0.498(20) 0.558(24) — 0.500(20) 0.559(24)

RGEVP 8 3 — 0.526(10) 0.532(32) — 0.527(10) 0.532(32)

RGEVP 2 4 — 0.510(17) 0.509(55) — 0.512(17) 0.509(55)

RGEVP 5 4 — 0.501(14) 0.544(38) — 0.502(13) 0.545(38)

RGEVP 8 4 — 0.5244(88) 0.507(32) — 0.5260(88) 0.507(32)

TABLE XXXIX: Same as Table XXXIV but for the I = 0 two-pion first excited state on the 243 lattice. The re-basing matrix
is calculated as: 5× 5→ 3× 3 at t0 = 3.
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GEVP type δt t− t0 t = 3 t = 5 t = 7 t = 3 w DR t = 5 w DR t = 7 w DR

3× 3 2 1 0.672(44) 0.599(96) 1.13(94) 0.666(44) 0.601(96) 1.14(94)

3× 3 5 1 0.656(51) 0.78(25) — 0.652(51) 0.78(25) —

3× 3 8 1 0.743(81) 1.5(1.3) — 0.739(81) 1.5(1.3) —

3× 3 2 2 0.668(46) 0.60(11) 1.13(94) 0.662(47) 0.60(11) 1.14(94)

3× 3 5 2 0.650(54) 0.78(25) — 0.646(54) 0.78(25) —

3× 3 8 2 0.741(83) 1.5(1.3) — 0.737(83) 1.5(1.3) —

3× 3 2 3 — 0.59(12) 1.13(93) — 0.59(12) 1.14(93)

3× 3 5 3 — 0.78(25) — — 0.78(25) —

3× 3 8 3 — 1.5(1.3) — — 1.5(1.3) —

3× 3 2 4 — 0.58(13) 1.13(92) — 0.59(13) 1.14(92)

3× 3 5 4 — 0.78(26) — — 0.78(26) —

3× 3 8 4 — 1.5(1.3) — — 1.5(1.3) —

4× 4 2 1 0.672(36) 0.60(12) 0.618(61) 0.666(36) 0.60(12) 0.626(61)

4× 4 5 1 0.655(42) 0.655(27) 0.650(58) 0.650(42) 0.658(27) 0.656(58)

4× 4 8 1 0.698(19) 0.715(23) 0.515(50) 0.694(19) 0.718(23) 0.521(50)

4× 4 2 2 0.682(26) 0.59(13) 0.66(13) 0.676(26) 0.60(13) 0.66(13)

4× 4 5 2 0.656(37) 0.668(32) 0.665(58) 0.651(37) 0.670(32) 0.671(58)

4× 4 8 2 0.694(19) 0.720(22) 0.500(58) 0.690(20) 0.723(22) 0.506(58)

4× 4 2 3 — 0.59(13) 0.69(16) — 0.59(13) 0.70(16)

4× 4 5 3 — 0.677(43) 0.677(63) — 0.679(43) 0.683(63)

4× 4 8 3 — 0.730(22) 0.496(61) — 0.732(22) 0.501(62)

4× 4 2 4 — 0.60(12) 0.71(17) — 0.60(12) 0.71(17)

4× 4 5 4 — 0.663(51) 0.693(69) — 0.665(51) 0.698(69)

4× 4 8 4 — 0.733(23) 0.498(63) — 0.735(23) 0.503(63)

5× 5 2 1 0.668(44) 0.58(12) 0.69(22) 0.662(44) 0.58(12) 0.70(22)

5× 5 5 1 0.643(59) 0.656(26) 0.599(65) 0.638(59) 0.658(26) 0.605(65)

5× 5 8 1 0.698(21) 0.709(22) 0.514(50) 0.694(22) 0.711(22) 0.520(50)

5× 5 2 2 0.684(26) 0.57(15) 0.75(25) 0.678(26) 0.57(15) 0.75(25)

5× 5 5 2 0.653(44) 0.676(35) 0.619(63) 0.649(44) 0.679(35) 0.625(63)

5× 5 8 2 0.695(20) 0.717(21) 0.503(56) 0.691(20) 0.720(20) 0.508(56)

5× 5 2 3 — 0.57(17) 0.77(23) — 0.57(17) 0.77(23)

5× 5 5 3 — 0.685(45) 0.649(59) — 0.688(45) 0.654(59)

5× 5 8 3 — 0.729(21) 0.499(59) — 0.732(21) 0.504(60)

5× 5 2 4 — 0.58(15) 0.78(25) — 0.58(15) 0.79(25)

5× 5 5 4 — 0.666(51) 0.672(62) — 0.668(51) 0.677(63)

5× 5 8 4 — 0.733(23) 0.500(62) — 0.735(23) 0.505(62)

RGEVP 2 1 0.7045(98) 0.696(31) 0.616(49) 0.6985(100) 0.698(31) 0.624(50)

RGEVP 5 1 0.684(12) 0.650(34) 0.96(26) 0.679(12) 0.652(34) 0.97(26)

RGEVP 8 1 0.697(13) 0.751(60) 1.01(46) 0.693(13) 0.753(60) 1.02(46)

RGEVP 2 2 0.690(15) 0.662(41) 0.654(99) 0.684(15) 0.663(41) 0.663(99)

RGEVP 5 2 0.660(24) 0.667(80) 2.2(3.6) 0.656(24) 0.669(80) 2.2(3.6)

RGEVP 8 2 0.696(22) 0.80(11) — 0.691(22) 0.81(11) —

RGEVP 2 3 — 0.634(59) 0.72(18) — 0.636(59) 0.73(18)

RGEVP 5 3 — 0.69(13) — — 0.70(13) —

RGEVP 8 3 — 0.79(11) — — 0.79(11) —

RGEVP 2 4 — 0.595(97) 0.88(44) — 0.596(97) 0.89(44)

RGEVP 5 4 — 0.69(14) — — 0.69(14) —

RGEVP 8 4 — 0.755(70) 1.19(76) — 0.757(70) 1.20(76)

TABLE XL: Same as Table XXXIV but for the I = 0 two-pion second excited state on the 243 lattice. The re-basing matrix
is calculated as: 5× 5→ 3× 3 at t0 = 1.
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GEVP type δt t− t0 t = 3 t = 5 t = 7 t = 3 w DR t = 5 w DR t = 7 w DR

4× 4 2 1 0.788(49) 0.84(14) — 0.782(49) 0.84(14) —

4× 4 5 1 0.812(69) 1.7(1.9) — 0.808(69) 1.7(1.9) —

4× 4 8 1 0.93(19) — -0.37(30) 0.93(19) — -0.37(30)

4× 4 2 2 0.775(62) 0.84(15) — 0.769(62) 0.84(15) —

4× 4 5 2 0.806(79) 1.7(1.9) — 0.802(79) 1.7(1.9) —

4× 4 8 2 0.94(19) — — 0.93(19) — —

4× 4 2 3 — 0.84(16) — — 0.84(16) —

4× 4 5 3 — 1.7(1.9) — — 1.7(1.9) —

4× 4 8 3 — — — — — —

4× 4 2 4 — 0.82(19) — — 0.82(19) —

4× 4 5 4 — 1.7(1.9) — — 1.7(1.9) —

4× 4 8 4 — — — — — —

5× 5 2 1 0.767(60) 0.79(27) — 0.761(60) 0.79(27) —

5× 5 5 1 0.785(77) 1.8(2.4) — 0.780(77) 1.8(2.4) —

5× 5 8 1 0.92(24) — 1.1(6.6) 0.92(24) — 1.1(6.6)

5× 5 2 2 0.764(77) 0.81(18) — 0.758(77) 0.81(18) —

5× 5 5 2 0.784(99) 0.97(24) — 0.779(99) 0.98(24) —

5× 5 8 2 0.93(22) 1.01(14) 1.2(2.0) 0.93(22) 1.01(14) 1.2(2.0)

5× 5 2 3 — 0.81(19) — — 0.81(19) —

5× 5 5 3 — 1.10(27) 1.5(1.6) — 1.10(27) 1.5(1.6)

5× 5 8 3 — 1.00(14) 1.2(2.0) — 1.01(14) 1.2(2.0)

5× 5 2 4 — 0.80(23) — — 0.80(23) —

5× 5 5 4 — 1.19(34) 1.5(1.6) — 1.20(34) 1.5(1.6)

5× 5 8 4 — 1.00(13) 1.2(2.0) — 1.00(13) 1.2(2.0)

TABLE XLI: Same as Table XXXIV but for the I = 0 two-pion third excited state on the 243 lattice. The re-basing matrix is
calculated as: 5× 5→ 3× 3 at t0 = 1.

GEVP type δt t− t0 t = 3 t = 5 t = 7 t = 3 w DR t = 5 w DR t = 7 w DR

5× 5 2 1 0.906(30) 0.81(21) — 0.903(31) 0.82(21) —

5× 5 5 1 0.879(22) 0.79(17) 1.5(1.6) 0.878(22) 0.80(17) 1.5(1.6)

5× 5 8 1 0.893(28) — -0.2(6.3) 0.892(28) — -0.2(6.3)

5× 5 2 2 0.891(38) 0.79(12) — 0.887(39) 0.80(12) —

5× 5 5 2 0.864(26) 1.6(2.6) 1.5(1.6) 0.863(26) 1.6(2.6) 1.5(1.6)

5× 5 8 2 0.881(36) — — 0.879(37) — —

5× 5 2 3 — 0.77(13) — — 0.78(13) —

5× 5 5 3 — 1.5(2.6) — — 1.5(2.6) —

5× 5 8 3 — — — — — —

5× 5 2 4 — 0.75(15) — — 0.76(15) —

5× 5 5 4 — 1.4(2.6) — — 1.4(2.6) —

5× 5 8 4 — — — — — —

TABLE XLII: Same as Table XXXIV but for the I = 0 two-pion fourth excited state on the 243 lattice.
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GEVP type δt t− t0 t = 5 t = 7 t = 9 t = 11 t = 13

2× 2 2 1 0.21049(69) 0.21075(52) 0.21076(65) 0.21030(64) 0.20982(62)

2× 2 5 1 0.21070(49) 0.21068(45) 0.21046(51) 0.21001(49) 0.20982(51)

2× 2 8 1 0.21060(46) 0.21055(41) 0.21032(47) 0.21011(45) 0.20993(45)

2× 2 11 1 0.21050(45) 0.21047(42) 0.21038(46) — —

2× 2 2 3 0.21049(69) 0.21074(52) 0.21077(65) 0.21031(64) 0.20985(63)

2× 2 5 3 0.21070(49) 0.21068(45) 0.21046(51) 0.21000(49) 0.20982(51)

2× 2 8 3 0.21060(46) 0.21055(41) 0.21032(47) 0.21011(45) 0.20994(45)

2× 2 11 3 0.21050(45) 0.21047(42) 0.21038(46) — —

3× 3 2 1 0.21051(69) 0.21075(52) 0.21073(65) 0.21030(65) 0.20990(66)

3× 3 5 1 0.21070(49) 0.21068(45) 0.21045(51) 0.21001(49) 0.20983(51)

3× 3 8 1 0.21060(46) 0.21055(41) 0.21031(47) 0.21011(45) 0.20992(45)

3× 3 11 1 0.21050(45) 0.21047(42) 0.21037(46) — —

3× 3 2 3 0.21051(69) 0.21075(52) 0.21075(65) 0.21031(65) 0.20986(64)

3× 3 5 3 0.21070(49) 0.21067(45) 0.21045(51) 0.21000(49) 0.20982(51)

3× 3 8 3 0.21060(46) 0.21055(41) 0.21031(47) 0.21011(45) 0.20993(45)

3× 3 11 3 0.21050(45) 0.21047(42) 0.21037(46) — —

4× 4 2 1 0.21056(69) 0.21075(52) 0.21081(67) 0.21010(82) 0.2089(21)

4× 4 5 1 0.21071(49) 0.21068(45) 0.21048(51) 0.21001(49) 0.2089(11)

4× 4 8 1 0.21061(46) 0.21055(41) 0.21033(47) 0.21011(45) 0.20952(72)

4× 4 11 1 0.21052(45) 0.21047(42) 0.21038(47) — —

4× 4 2 3 0.21052(69) 0.21076(53) 0.21077(65) 0.21020(67) 0.20995(84)

4× 4 5 3 0.21071(49) 0.21068(45) 0.21046(51) 0.20999(50) 0.20958(60)

4× 4 8 3 0.21061(46) 0.21055(41) 0.21032(47) 0.21011(45) 0.20977(48)

4× 4 11 3 0.21051(45) 0.21047(42) 0.21038(46) — —

RGEVP 2 1 0.21051(69) 0.21075(52) 0.21073(65) 0.21029(65) 0.20991(66)

RGEVP 5 1 0.21069(49) 0.21068(45) 0.21045(51) 0.21000(49) 0.20984(51)

RGEVP 8 1 0.21059(46) 0.21055(41) 0.21031(47) 0.21011(45) 0.20993(46)

RGEVP 11 1 0.21050(45) 0.21047(42) 0.21037(46) — —

RGEVP 2 3 0.21050(69) 0.21075(52) 0.21076(65) 0.21029(65) 0.20987(63)

RGEVP 5 3 0.21070(49) 0.21067(45) 0.21045(51) 0.21000(49) 0.20984(51)

RGEVP 8 3 0.21060(46) 0.21055(41) 0.21032(47) 0.21011(45) 0.20994(45)

RGEVP 11 3 0.21050(45) 0.21047(42) 0.21037(46) — —

TABLE XLIII: Same as Table XXXIV but for the I = 2 two-pion ground state on the 323 lattice. Only results with DR are
shown. The re-basing matrix is calculated as: 4× 4→ 3× 3 at t0 = 5.
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GEVP type δt t− t0 t = 5 t = 7 t = 9 t = 11 t = 13

2× 2 2 1 0.45634(84) 0.4580(12) 0.4550(15) 0.4589(21) 0.4499(33)

2× 2 5 1 0.45660(55) 0.45714(76) 0.45536(100) 0.4559(14) 0.4524(21)

2× 2 8 1 0.45675(52) 0.45697(70) 0.45584(90) 0.4570(12) 0.4543(19)

2× 2 11 1 0.45663(51) 0.45697(68) 0.45585(85) — —

2× 2 2 3 0.45634(84) 0.4580(12) 0.4550(15) 0.4589(21) 0.4498(33)

2× 2 5 3 0.45660(55) 0.45715(76) 0.45535(100) 0.4559(14) 0.4524(21)

2× 2 8 3 0.45675(52) 0.45697(70) 0.45584(90) 0.4570(12) 0.4543(19)

2× 2 11 3 0.45662(51) 0.45697(68) 0.45584(85) — —

3× 3 2 1 0.45589(82) 0.4576(11) 0.4549(15) 0.4588(21) 0.4499(33)

3× 3 5 1 0.45624(54) 0.45690(75) 0.45523(97) 0.4558(14) 0.4522(21)

3× 3 8 1 0.45638(51) 0.45672(69) 0.45572(87) 0.4569(12) 0.4543(19)

3× 3 11 1 0.45626(50) 0.45671(67) 0.45572(82) — —

3× 3 2 3 0.45590(82) 0.4577(11) 0.4548(15) 0.4587(21) 0.4499(33)

3× 3 5 3 0.45625(54) 0.45691(75) 0.45522(96) 0.4558(14) 0.4522(21)

3× 3 8 3 0.45638(51) 0.45672(69) 0.45572(86) 0.4569(12) 0.4543(19)

3× 3 11 3 0.45626(50) 0.45672(67) 0.45572(82) — —

4× 4 2 1 0.45582(80) 0.4576(11) 0.4550(15) 0.4587(21) 0.4507(48)

4× 4 5 1 0.45619(54) 0.45689(74) 0.45529(95) 0.4555(14) 0.4501(29)

4× 4 8 1 0.45633(50) 0.45670(69) 0.45576(86) 0.4565(12) 0.4529(23)

4× 4 11 1 0.45621(49) 0.45669(67) 0.45574(81) — —

4× 4 2 3 0.45583(80) 0.4577(11) 0.4548(15) 0.4588(21) 0.4497(34)

4× 4 5 3 0.45620(53) 0.45690(74) 0.45521(96) 0.4557(14) 0.4509(23)

4× 4 8 3 0.45633(50) 0.45670(68) 0.45569(86) 0.4567(12) 0.4533(21)

4× 4 11 3 0.45621(49) 0.45669(66) 0.45568(81) — —

RGEVP 2 1 0.45582(81) 0.4577(11) 0.4548(15) 0.4587(21) 0.4498(33)

RGEVP 5 1 0.45619(54) 0.45689(74) 0.45516(96) 0.4557(14) 0.4520(21)

RGEVP 8 1 0.45633(51) 0.45670(68) 0.45566(86) 0.4568(12) 0.4541(19)

RGEVP 11 1 0.45620(50) 0.45669(66) 0.45564(82) — —

RGEVP 2 3 0.45583(81) 0.4577(11) 0.4548(15) 0.4586(21) 0.4498(33)

RGEVP 5 3 0.45620(54) 0.45689(74) 0.45517(96) 0.4557(14) 0.4521(21)

RGEVP 8 3 0.45633(51) 0.45670(69) 0.45567(86) 0.4568(12) 0.4542(19)

RGEVP 11 3 0.45621(50) 0.45669(66) 0.45565(82) — —

TABLE XLIV: Same as Table XXXIV but for the I = 2 two-pion first excited state on the 323 lattice. Only results with DR
are shown. The re-basing matrix is calculated as: 4× 4→ 3× 3 at t0 = 5.
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GEVP type δt t− t0 t = 5 t = 7 t = 9 t = 11 t = 13

3× 3 2 1 0.6146(19) 0.6142(36) 0.6294(72) 0.601(18) 0.614(37)

3× 3 5 1 0.6154(14) 0.6185(27) 0.6249(52) 0.611(12) 0.635(28)

3× 3 8 1 0.6152(14) 0.6166(25) 0.6240(47) 0.608(11) 0.645(27)

3× 3 11 1 0.6154(13) 0.6171(25) 0.6253(47) — —

3× 3 2 3 0.6145(19) 0.6142(36) 0.6294(72) 0.601(18) 0.615(37)

3× 3 5 3 0.6154(14) 0.6185(27) 0.6249(52) 0.611(12) 0.635(28)

3× 3 8 3 0.6152(14) 0.6166(25) 0.6240(47) 0.608(11) 0.645(27)

3× 3 11 3 0.6154(13) 0.6171(25) 0.6253(47) — —

4× 4 2 1 0.6141(19) 0.6125(35) 0.6290(71) 0.601(18) 0.60(37)

4× 4 5 1 0.6147(14) 0.6173(26) 0.6248(53) 0.611(12) 0.638(28)

4× 4 8 1 0.6146(13) 0.6156(25) 0.6238(48) 0.608(11) 0.645(27)

4× 4 11 1 0.6147(13) 0.6159(24) 0.6250(48) — —

4× 4 2 3 0.6142(19) 0.6126(35) 0.6290(72) 0.601(18) 0.602(50)

4× 4 5 3 0.6147(14) 0.6173(26) 0.6249(53) 0.611(12) 0.635(28)

4× 4 8 3 0.6146(13) 0.6155(25) 0.6238(48) 0.608(11) 0.644(26)

4× 4 11 3 0.6148(13) 0.6159(24) 0.6250(48) — —

RGEVP 2 1 0.6141(19) 0.6129(35) 0.6290(71) 0.601(18) 0.620(37)

RGEVP 5 1 0.6147(14) 0.6174(26) 0.6249(53) 0.612(12) 0.636(27)

RGEVP 8 1 0.6145(13) 0.6156(25) 0.6238(48) 0.608(11) 0.644(26)

RGEVP 11 1 0.6147(13) 0.6160(24) 0.6250(48) — —

RGEVP 2 3 0.6141(19) 0.6125(35) 0.6290(72) 0.602(18) 0.622(37)

RGEVP 5 3 0.6147(14) 0.6173(26) 0.6250(54) 0.612(12) 0.636(27)

RGEVP 8 3 0.6145(13) 0.6155(25) 0.6239(48) 0.608(11) 0.644(26)

RGEVP 11 3 0.6147(13) 0.6159(24) 0.6251(48) — —

TABLE XLV: Same as Table XXXIV but for the I = 2 two-pion second excited state on the 323 lattice. Only results with DR
are shown. The re-basing matrix is calculated as: 4× 4→ 3× 3 at t0 = 5.

GEVP type δt t− t0 t = 5 t = 7 t = 9 t = 11 t = 13

4× 4 2 1 0.7231(40) 0.7203(94) 0.759(23) 0.697(74) 0.64(45)

4× 4 5 1 0.7247(29) 0.7267(72) 0.736(17) 0.667(52) 0.635(96)

4× 4 8 1 0.7240(28) 0.7248(70) 0.738(17) 0.694(51) 0.70(11)

4× 4 11 1 0.7235(28) 0.7248(67) 0.745(17) — —

4× 4 2 3 0.7231(40) 0.7202(95) 0.759(23) 0.697(74) 0.64(13)

4× 4 5 3 0.7246(29) 0.7267(72) 0.736(17) 0.666(52) 0.636(98)

4× 4 8 3 0.7239(28) 0.7248(70) 0.738(17) 0.694(51) 0.70(11)

4× 4 11 3 0.7234(28) 0.7248(67) 0.745(17) — —

TABLE XLVI: Same as Table XXXIV but for the I = 2 two-pion third excited state on the 323 lattice. Only results with DR
are shown.
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GEVP type δt t− t0 t = 4 t = 7 t = 9 t = 11

3× 3 2 1 0.20359(73) 0.20313(96) 0.2020(14) 0.20(11)

3× 3 5 1 0.20304(55) 0.20252(93) 0.2017(15) 0.2022(35)

3× 3 8 1 0.20287(49) 0.20269(60) 0.2020(98) 0.2013(16)

3× 3 11 1 0.20280(47) 0.20226(64) 0.2011(68) —

3× 3 2 3 0.20397(75) 0.20319(94) 0.2023(10) 0.201(50)

3× 3 5 3 0.20325(56) 0.20261(75) 0.2017(14) 0.202(18)

3× 3 8 3 0.20308(51) 0.20265(60) 0.2018(12) 0.2013(31)

3× 3 11 3 0.20291(48) 0.20228(61) 0.202(33) —

4× 4 2 1 0.20356(74) 0.20314(97) 0.201(19) 0.207(27)

4× 4 5 1 0.20302(56) 0.20255(100) 0.2015(24) 0.2025(16)

4× 4 8 1 0.20285(51) 0.20262(77) 0.203(12) 0.20(37)

4× 4 11 1 0.20274(49) 0.2022(27) 0.2012(19) —

4× 4 2 3 0.20395(75) 0.2033(10) 0.2022(12) 0.201(42)

4× 4 5 3 0.20322(57) 0.20264(78) 0.2016(12) 0.202(42)

4× 4 8 3 0.20305(52) 0.20260(63) 0.202(27) 0.2012(16)

4× 4 11 3 0.20287(49) 0.20234(67) 0.201(19) —

5× 5 2 1 0.20356(74) 0.20318(97) 0.205(77) —

5× 5 5 1 0.20303(57) 0.2025(10) 0.20(16) —

5× 5 8 1 0.20285(51) 0.2025(29) 0.2017(48) 0.2014(15)

5× 5 11 1 0.20273(50) 0.2022(58) 0.2011(12) —

5× 5 2 3 0.20395(75) 0.2033(10) 0.2022(13) 0.194(57)

5× 5 5 3 0.20322(57) 0.20263(79) 0.2013(17) 0.202(40)

5× 5 8 3 0.20305(52) 0.20253(71) 0.203(20) 0.2013(15)

5× 5 11 3 0.20286(49) 0.20236(72) 0.201(11) —

RGEVP 2 1 0.20361(78) 0.20355(99) 0.2017(16) 0.2022(36)

RGEVP 5 1 0.20307(59) 0.20277(81) 0.2015(14) 0.2021(18)

RGEVP 8 1 0.20286(53) 0.20253(67) 0.2018(11) 0.2013(15)

RGEVP 11 1 0.20273(49) 0.20235(66) 0.20118(100) —

RGEVP 2 3 0.20374(78) 0.20328(97) 0.2021(11) 0.2015(60)

RGEVP 5 3 0.20317(59) 0.20263(75) 0.2017(13) 0.2020(27)

RGEVP 8 3 0.20297(55) 0.20261(60) 0.20184(99) 0.201(13)

RGEVP 11 3 0.20273(51) 0.20232(66) 0.202(12) —

TABLE XLVII: Same as Table XXXIV but for the I = 0 two-pion ground state on the 323 lattice. Only results with DR are
shown. The re-basing matrix is calculated as: 5× 5→ 4× 4 at t0 = 1, 4× 4→ 3× 3 at t0 = 2 and 3× 3→ 2× 2 at t0 = 4.
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GEVP type δt t− t0 t = 4 t = 7 t = 9 t = 11

3× 3 2 1 0.4057(70) 0.43(11) 0.27(77) 0.38(60)

3× 3 5 1 0.397(17) 0.31(12) 0.25(30) 0.15(56)

3× 3 8 1 0.379(29) 0.31(16) 0.09(21) 0.01(22)

3× 3 11 1 0.382(36) 0.28(14) 0.08(16) —

3× 3 2 3 0.4083(38) 0.413(71) 0.26(36) 0.31(84)

3× 3 5 3 0.4065(53) 0.32(12) 0.24(26) 0.15(36)

3× 3 8 3 0.3994(66) 0.32(16) 0.10(23) 0.01(22)

3× 3 11 3 0.4006(67) 0.28(15) 0.08(17) —

4× 4 2 1 0.4049(64) 0.46(11) 0.38(34) 0.0(2.1)

4× 4 5 1 0.396(19) 0.31(15) 0.24(40) 0.3(2.2)

4× 4 8 1 0.376(40) 0.27(25) -0.08(38) -0.04(46)

4× 4 11 1 0.38(18) 0.25(19) -0.02(26) —

4× 4 2 3 0.4060(43) 0.43(19) 0.22(56) 0.4(1.1)

4× 4 5 3 0.4062(53) 0.31(15) 0.22(35) 0.2(2.8)

4× 4 8 3 0.3993(63) 0.29(24) -0.03(36) -0.05(30)

4× 4 11 3 0.4005(61) 0.25(19) 0.00(24) —

5× 5 2 1 0.4054(70) 0.457(81) 0.39(52) —

5× 5 5 1 0.396(22) 0.31(14) 0.29(47) —

5× 5 8 1 0.38(12) 0.27(27) -0.2(3.9) -0.1(1.7)

5× 5 11 1 0.40(36) 0.25(44) -0.0(1.1) —

5× 5 2 3 0.4056(45) 0.43(19) 0.22(59) 0.4(1.6)

5× 5 5 3 0.4062(53) 0.31(14) 0.22(43) 0.3(2.6)

5× 5 8 3 0.3994(63) 0.29(26) -0.10(52) -0.08(55)

5× 5 11 3 0.4004(60) 0.24(21) -0.01(29) —

RGEVP 2 1 0.4036(60) 0.436(19) 0.361(44) 0.357(87)

RGEVP 5 1 0.4071(51) 0.401(17) 0.351(36) 0.397(92)

RGEVP 8 1 0.3970(65) 0.397(21) 0.391(42) 0.418(88)

RGEVP 11 1 0.3976(79) 0.404(22) 0.346(44) —

RGEVP 2 3 0.441(35) 0.417(95) 0.26(17) 0.29(28)

RGEVP 5 3 0.404(46) 0.32(11) 0.25(20) 0.22(27)

RGEVP 8 3 0.374(57) 0.31(13) 0.13(18) 0.03(20)

RGEVP 11 3 0.367(89) 0.25(17) 0.05(16) —

TABLE XLVIII: Same as Table XXXIV but for the I = 0 two-pion first excited state on the 323 lattice. Only results with DR
are shown. The re-basing matrix is calculated as: 5× 5→ 4× 4 at t0 = 1, 4× 4→ 3× 3 at t0 = 2 and 3× 3→ 2× 2 at t0 = 4.
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GEVP type δt t− t0 t = 4 t = 7 t = 9 t = 11

3× 3 2 1 0.489(54) 0.458(74) 0.29(75) 0.35(60)

3× 3 5 1 0.457(52) 0.432(49) 0.38(11) 0.39(49)

3× 3 8 1 0.436(44) 0.402(25) 0.400(31) 0.432(54)

3× 3 11 1 0.420(41) 0.419(18) 0.399(23) —

3× 3 2 3 0.486(57) 0.48(11) 0.30(25) 0.43(72)

3× 3 5 3 0.447(64) 0.426(64) 0.384(98) 0.389(88)

3× 3 8 3 0.415(68) 0.389(48) 0.391(55) 0.433(53)

3× 3 11 3 0.401(72) 0.416(24) 0.397(27) —

4× 4 2 1 0.50(48) 0.459(86) 0.47(77) 0.3(1.6)

4× 4 5 1 0.453(68) 0.433(54) 0.37(18) 0.3(3.1)

4× 4 8 1 0.428(59) 0.396(35) 0.398(40) 0.425(24)

4× 4 11 1 0.40(23) 0.420(18) 0.396(38) —

4× 4 2 3 0.519(22) 0.51(19) 0.30(26) 0.5(1.1)

4× 4 5 3 0.465(70) 0.432(71) 0.38(15) 0.4(4.4)

4× 4 8 3 0.431(93) 0.380(69) 0.389(73) 0.435(32)

4× 4 11 3 0.41(12) 0.421(25) 0.395(36) —

5× 5 2 1 0.57(58) 0.58(100) — —

5× 5 5 1 0.448(78) 0.430(43) 0.5(1.1) —

5× 5 8 1 0.42(16) 0.396(38) 0.40(30) 0.4(1.1)

5× 5 11 1 0.37(44) 0.41(45) 0.4(1.0) —

5× 5 2 3 0.519(21) 0.51(19) 0.30(26) —

5× 5 5 3 0.463(77) 0.430(62) 0.37(21) 0.4(6.4)

5× 5 8 3 0.43(10) 0.379(73) 0.391(80) 0.436(29)

5× 5 11 3 0.41(13) 0.422(23) 0.396(37) —

RGEVP 2 1 0.533(10) 0.576(52) 0.41(12) 0.48(61)

RGEVP 5 1 0.523(11) 0.475(36) 0.454(54) 0.42(17)

RGEVP 8 1 0.487(19) 0.437(50) 0.35(36) 0.29(85)

RGEVP 11 1 0.467(32) 0.418(19) 0.400(25) —

RGEVP 2 3 0.485(61) 0.49(13) 0.27(29) 0.45(86)

RGEVP 5 3 0.440(83) 0.436(93) 0.36(15) 0.4(1.1)

RGEVP 8 3 0.403(89) 0.381(66) 0.391(65) 0.444(70)

RGEVP 11 3 0.375(96) 0.421(30) 0.391(36) —

TABLE XLIX: Same as Table XXXIV but for the I = 0 two-pion second excited state on the 323 lattice. Only results with
DR are shown. The re-basing matrix is calculated as: 5× 5→ 4× 4 at t0 = 1 and 4× 4→ 3× 3 at t0 = 2.



51

GEVP type δt t− t0 t = 4 t = 7 t = 9 t = 11

4× 4 2 1 0.53(51) 0.78(35) -0.4(1.5) —

4× 4 5 1 0.574(38) 0.68(29) 0.54(87) 0.6(3.7)

4× 4 8 1 0.570(36) 0.58(13) 0.55(17) —

4× 4 11 1 0.554(22) 0.67(16) 0.53(18) —

4× 4 2 3 0.505(80) 0.76(33) -0.0(1.2) —

4× 4 5 3 0.552(63) 0.68(28) 0.55(89) 0.6(5.5)

4× 4 8 3 0.544(52) 0.57(15) 0.51(27) —

4× 4 11 3 0.519(41) 0.66(16) 0.50(23) —

5× 5 2 1 0.41(55) 0.5(1.0) 0.1(5.5) —

5× 5 5 1 0.571(44) 0.630(94) — —

5× 5 8 1 0.567(42) 0.58(10) 0.5(1.4) —

5× 5 11 1 0.549(27) 0.641(70) 0.56(16) —

5× 5 2 3 0.48(10) 0.71(14) 0.43(31) —

5× 5 5 3 0.547(73) 0.64(11) 0.73(33) —

5× 5 8 3 0.540(60) 0.57(10) 0.52(22) 1.16(84)

5× 5 11 3 0.514(47) 0.648(86) 0.54(17) —

RGEVP 2 1 0.666(16) 0.686(88) 0.66(60) 0.3(8.2)

RGEVP 5 1 0.605(29) 0.630(99) 0.67(35) 1.0(3.3)

RGEVP 8 1 0.584(33) 0.577(80) 0.54(15) 1.4(2.4)

RGEVP 11 1 0.563(25) 0.65(11) 0.53(15) —

RGEVP 2 3 0.500(83) 0.78(36) -0.1(1.4) —

RGEVP 5 3 0.548(68) 0.71(36) 0.5(1.1) 0.5(5.1)

RGEVP 8 3 0.541(54) 0.58(17) 0.51(30) —

RGEVP 11 3 0.516(44) 0.67(18) 0.50(24) —

TABLE L: Same as Table XXXIV but for the I = 0 two-pion third excited state on the 323 lattice. Only results with DR are
shown. The re-basing matrix is calculated as: 5× 5→ 4× 4 at t0 = 1.

GEVP type δt t− t0 t = 4 t = 7 t = 9 t = 11

5× 5 2 1 0.670(16) 1.8(2.5) — —

5× 5 5 1 0.668(26) 2.1(8.2) — —

5× 5 8 1 0.685(30) 1.3(2.0) — —

5× 5 11 1 0.681(24) 1.4(1.7) — —

5× 5 2 3 0.648(27) 1.7(2.4) — —

5× 5 5 3 0.666(31) 2.1(8.2) — —

5× 5 8 3 0.683(34) 1.3(2.1) — —

5× 5 11 3 0.675(29) 1.4(1.7) — —

RGEVP 2 1 0.670(16) 1.8(2.5) — —

RGEVP 5 1 0.668(26) 2.1(8.2) — —

RGEVP 8 1 0.685(30) 1.3(2.0) — —

RGEVP 11 1 0.681(24) 1.4(1.7) — —

RGEVP 2 3 0.648(27) 1.7(2.4) — —

RGEVP 5 3 0.666(31) 2.1(8.2) — —

RGEVP 8 3 0.683(34) 1.3(2.1) — —

RGEVP 11 3 0.675(29) 1.4(1.7) — —

TABLE LI: Same as Table XXXIV but for the I = 0 two-pion fourth excited state on the 323 lattice. Only results with DR
are shown.
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