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The DNA damage response (DDR) is an organized network of multiple interwoven
components evolved to repair damaged DNA and maintain genome fidelity.
Conceptually the DDR includes damage sensors, transducer kinases, and effectors to
maintain genomic stability and accurate transmission of genetic information. We have
recently gained a substantially improved molecular and mechanistic understanding of how
DDR components are interconnected to inflammatory and immune responses to stress.
DDR shapes both innate and adaptive immune pathways: (i) in the context of innate
immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream
STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive
immunity, the DDR is needed for the assembly and diversification of antigen receptor
genes that is requisite for T and B lymphocyte development. Imbalances between DNA
damage and repair impair tissue homeostasis and lead to replication and transcription
stress, mutation accumulation, and even cell death. These impacts from DDR defects can
then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune
responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune
responses. Furthermore, DDR defects plus the higher mutation load in tumor cells
synergistically produce primarily tumor-specific neoantigens, which are powerfully
targeted in cancer immunotherapy by employing immune checkpoint inhibitors to
amplify immune responses. Thus, elucidating DDR-immune response interplay may
provide critical connections for harnessing immunomodulatory effects plus targeted
inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint
blockade, and of combined therapeutic strategies.

Keywords: DNA repair, immune response, DNA damage, cGAS-STING, innate immunity, adaptive immunity,
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INTRODUCTION

Key cancer hallmarks critically include genomic instability,
immune modulation, and altered DNA damage and other
stress responses to favor overall cell survival (1, 2). Every day,
tens of thousands of damaged DNA lesions occur in each human
cell that could impact cell survival and genomic integrity (3).
Importantly, the outcome of this DNA damage depends directly
upon the nature and actions of the DNA damage response
(DDR). Lesions become accurately or inaccurately repaired or
left as unrepaired mutations depending upon the DDR. As a
result, evolutionary selection ensures that the DDR is a carefully
orchestrated response system consisting of multiple signaling
pathways that largely maintain genomic stability and fidelity
despite high levels of DNA damage (4, 5). Yet, comprehensive
analyses of cancer genome databases reveal non-B DNA,
mitochondrial dysfunction, and the activation of DNA repair/
cell cycle pathways as major factors driving somatic mutation
loads in cancer cells (2, 6). From a mechanistic standpoint, the
positive correlations of these factors with mutations in cancer
cells likely arise from increased reactive oxygen species (ROS),
oncogenic replication and transcription stress, and the
combination of resulting excessive DNA damage plus its
escape from accurate repair.

In particular, DDR are activated by replication obstacles in
proliferating cells that lead to replication stress: replication fork
stalling, collapse or breakage, such as lesions from oxidation,
deamination and alkylation, DNA breaks, protein-DNA cross-
links, and non-B DNA structures including R-loops (RNA-DNA
hybrids formed by replication-transcription conflicts) (7–9).
DNA damage and activation of the DDR from endogenous
replication stress are seen at pre- or early stages of
oncogenesis, and adaptation to replication stress acts in tumor
development (10). In breast-cancer susceptibility gene 2
(BRCA2)-deficient cancer cells, the inactivation of replicative
stress response factors (e.g. poly (ADP-ribose) polymerase
[PARP1] or ATM and Rad3-related [ATR] inhibition) triggers
cyclic GMP-AMP synthase (cGAS)-STING-mediated innate
immune responses (11, 12). Furthermore, inherent DNA repair
defects in tumors may develop mutation-driven neoantigens that
can cause the immune system to recognize the tumor cells as
foreign while also increasing the amount of cytosolic DNA to
trigger a cGAS-STING response. Thus, the DDR that largely
protects against DNA damage in normal cells can often be
defective or defeated in proliferating cancer cells with
consequent impacts on immune responses. This finding
implies a fundamental importance of DDR for cancer biology,
for the elucidation of cancer vulnerabilities, and for optimal
applications of immunotherapy.

The DDR machinery can conceptually be divided into at least
six distinct DNA repair pathways responding to different types of
DNA damage: (i) homologous recombination (HR), which
repairs double-strand breaks (DSBs) using a homologous DNA
template; (ii) non-homologous end joining (NHEJ), which
repairs DSBs without a corresponding template; (iii) alternative
end-joining (A-EJ), which repairs DSBs with insertion and
Frontiers in Immunology | www.frontiersin.org 2
deletion errors by employing micro-homology; (iv) nucleotide
excision repair (NER), which repairs bulky DNA lesions globally
or coupled to transcription; (v) mismatch repair (MMR), which
repairs DNA single-strand breaks (SSBs) predominantly
generated during DNA replication and recombination
processes plus mismatches that escaped replication fidelity; and
(vi) base excision repair (BER), which removes bases damaged by
oxidation, alkylation, deamination, and methylation to avoid
replication and transcription blocks and errors (4, 13–15).

The various DDR pathways share similarities in how they
respond to the stress of damaged DNA, whereby a damage
sensor that can also be a repair effector [e.g., RPA, MUTY,
PARP1, Ku70/80, MRE11-RAD50-NBS1 (MRN) complex]
recognizes specific DNA damage types (single-stranded DNA,
base mismatches, SSBs, and DSBs) before recruiting and
activating downstream transducer kinases (such as ATM, ATR,
DNA-PKcs), which in turn transduce the signal to effector
proteins (such as MRN, CHK1, EXO5, p53, RAD51, and
BRCA1/2). The ensuing complexes ultimately orchestrate
repair by employing damage removal and sequence
replacement by handoffs or dynamic machinery that have
evolved to avoid the release of toxic and mutagenic DNA
intermediates (15, 16). Thus, the DDR is an ancient and
evolutionarily conserved mechanism that is essential for
genome stability and cell survival (17, 18).

As the major stress response system essential for surviving
infection, the immune response is an evolved network of proteins
and complexes that respond to invading pathogens and their
associated toxins. Importantly, DDR defects can lead to
imbalance between DNA damage and repair, impairing tissue
homeostasis and leading to replication and transcription stress,
mutation accumulation or outright cell death: this imbalance can
drive tumorigenesis as well as secretion of inflammatory
cytokines, and aberrant immune responses (19–23). All
organisms possess mechanisms to detect and eliminate foreign
pathogens via the innate immune system. Additionally, higher
vertebrates employ a sophisticated adaptive immune system that
includes antibodies as well as B and T lymphocytes with virtually
limitless repertoires of receptors that mediate neutralization of
foreign pathogens and removal malignant cells (24–26). To
stimulate strong anti-tumor immune responses, cancer
immunotherapy typically employs immune checkpoint
inhibitors for the PD-1/PD-L1 and CTLA-4 pathways to
amplify immune system responses and also to harnesses
responses to neoantigens that are primarily tumor-specific
antigens resulting from the higher mutation load in tumor
cells (27–29). The validity of the PD-1/PD-L1 approach
requires the functional MHC class I complex, which itself is
often deleted during tumor evolution to escape immune
regulation (30).

For clarity this review is divided into five overall sections: 1)
Introduction, 2) DDR in innate immunity, 3) DDR in adaptive
immunity, 4) DDR inhibition in antitumor immunity, and 5)
Summary and prospects. Within these sections and their
subsections, we furthermore consider how these critical and
seemingly distinct DDR and immune stress responses are
December 2021 | Volume 12 | Article 797880
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intertwined and where defining their interconnections may
enable novel insights into etiology and advanced molecular-
based treatment of cancer and other human diseases.
DDR IN INNATE IMMUNITY

Innate immunity is the first immunological defense system
against pathogens. Activation of the innate immune response
relies on Pattern Recognition Receptors (PRRs). These PRRs
detect Damage-Associated Molecular Patterns (DAMPs) or
Pathogen-Associated Molecular Patterns (PAMPs) to initiate a
signaling cascade resulting in production of interferons (IFNs),
cytokines and chemokines (24, 26, 31). Importantly, non-self
nucleic acids are the most well-characterized stimuli for the
innate immune response (32, 33); furthermore, endogenous
cytosolic DNA released from the nucleus or mitochondria
stimulates the innate immune system.

DNA damage caused by genotoxic stresses or DNA damage
stimulus (e.g., cytotoxic chemotherapy and radiation) can create
cytosolic chromosomal fragments that may be recognized by
cGAS, a cytosolic DNA sensor. Cytosolic exposure of
chromosomal DNA by micronuclei rupture, breakage of
chromatin bridges, or disintegration of micronuclei-like
cytosolic chromatin fragments activates cGAS (34). Once
bound to cytosolic DNA, activated cGAS can form dimers and
multimer assemblies that undergo liquid–liquid phase separation
to form biomolecular condensates that amplify cGAS activation
(35). Activated cGAS produces 2´-3´cGAMP (cGAMP) as a
second messenger to function in both the host cell and
adjacent cells via secretion or by passage through gap
junctions, which contributes to the bystander response to
radiotherapy in non-irradiated neighboring cells (36–40). In
the presence of cGAMP, STING is relocated from the ER to
Golgi, where it recruits and activates TANK-binding kinase
(TBK1), that activates interferon regulatory factor 3 (IRF3) and
NF-kB signaling (41). Activated IRF3 and NF-kB then induce
transcription of innate immune response genes, including IFNs
and cytokines (36, 37, 42).

Interestingly, cGAS is also found in thenucleus.Nuclear cGAS is
inactivated by its acidic patch binding to nucleosome core particles,
which prevents DNA binding, thus preventing autoreactivity (34).
Moreover, nuclear cGAS is recruited to DNA damage sites by
gH2AX, which promotes its interaction with Poly (ADP-ribose)
polymerase 1 (PARP1) and impedes formation of PARP1-Timeless
complex to thereby suppress HR but not NHEJ (43, 44).

Another important cytosolic DNA sensor is g-interferon-
inducible protein-16 (IFI16). Like cGAS, IFI16 can detect both
self and non-self dsDNA to promote IRF3 and NF-kB -dependent
interferon production via STING (26, 45).

Emerging data reveal that DNA repair pathways and cytosolic
pathological DNA sensing pathways have overlapping effectors
that recognize and respond to damaged nuclear DNA, cytosolic
endogenous DNA, or foreign DNA (46). These observations
provide compelling evidence for inextricable links between the
DDR and innate immune responses (Figure 1).
Frontiers in Immunology | www.frontiersin.org 3
DDR Deficiency or Inhibition Enhances
Innate Immune Responses
Interference in DDR signaling elicits innate immune responses.
One of the most well-studied examples is PARP inhibition. PARP
inhibition generates cytosolic chromatin fragments and
significantly potentiates cGAS-STING-dependent immune
responses (11, 47–54). Similarly, DNA damage as a result of
cytotoxic chemotherapy, ionizing radiation (IR), metabolism, and
deficiencyofotherDDRelements (includingBRCA2,ATM,CHK1,
RPA, RAD51, TREX1 and FANCD2), also leads to increased IFN
signaling–mediated immune responses (11, 19, 55–61).

The RecQ–like BLM helicase partners with EXO5 and EEPD1
nucleases for stalled DNA replication restart and maintenance of
genome integrity (62, 63). BLM deficiency in Bloom syndrome
(BS) causes increased expression of inflammatory genes through
the cGAS–STING–IRF3 pathway, suggesting it prevents
unchecked inflammatory gene responses (64). ROS from
radiation therapy or cell stress lead to cGAS-STING-mediated
immune responses to cancer from DSBs as well as oxidative
adducts that must be removed by DNA glycosylases, such as
endonuclease VIII (Nei)-like proteins (NEIL) and oxoguanine
DNA glycosylase (OGG1) (65–67). Furthermore, high levels of
ROS that are not efficiently reduced by superoxide dismutases
and catalase can leave unrepaired 8-hydroxyguanosine (8-OHG)
(68, 69). 8-OHG stabilizes DNA against degradation by the
cytosolic DNA exonuclease TREX1, leading to accumulated
cytosolic DNA and increased cGAS activation (70). This ROS
effect can be amplified by vicious cycles of oxidative damage and
iron release from ROS-sensitive 4Fe-4S co-factors in multiple
replication and repair proteins (62, 71–73).

Metabolismand innate immunityconvergeat themitochondria,
which can orchestrate innate immune signaling pathways in
different cancer-relevant metabolic scenarios including a link to
PARylation and cell death (74, 75). Metabolic cues including
nucleotide imbalance can stimulate the release of mtDNA from
mitochondria that drives an interferon response with MRE11
playing a leading role (76). The fundamental importance of DNA
breaks in promoting such immune responses is evidenced by the
observation that mtDNA breaks synergize with nuclear DNA
damage to mount a robust cellular immune response (77).

In general, unresolved DNA damage can act as a mediator
linking the DDR and immune recognition, and this can involve
the formation of micronuclei as an initiating event in a cascade
promoting genomic instability and innate immune responses
(78, 79). Moreover, genome instability and imperfect cell cycle
checkpoints in tumor cells enhance formation of micronuclei,
making them more susceptible to targeting of the innate immune
response (5, 22, 79). DNA damage responses occur in minutes to
hours. Yet, there is a delayed onset of days for inflammatory
cytokines that modify tumor microenvironment by immune cell
recruitment as critical for local and systemic (abscopal) tumor
responses to radiotherapy.

DNA-PK in Innate Immune Response
DNA-dependent protein kinase (DNA-PK) is a trimeric nuclear
complex that functions as a central integrator of the DSB repair
December 2021 | Volume 12 | Article 797880
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system. The protein complex consists of a large catalytic subunit,
DNA-PKcs, and the Ku70/80 heterodimer (Ku70/80) which
recognizes DSB ends (80). DNA-PKcs is a Ser/Thr protein
kinase and the largest member of the phosphatidylinositol 3-
kinase (PI3K)-related kinase (PIKK) family (81). Once activated
by Ku70/80, DNA-PK undergoes autophosphorylation and is
then positioned to phosphorylate other repair effectors and
promote a synaptic complex for ligation of two dsDNA ends
(80, 82–86). In recent decades, emerging evidence revealed that
DNA-PK is a critical component of innate immunity against
multiple viruses, including human immunodeficiency virus
(HIV), Herpes Simplex Virus 1 (HSV-1), alphavirus M1, and
vaccinia virus (87–92). As such, DNA-PK is a key DNA sensor
that modulates innate immunity through several critical
components of innate immune pathways.

In STING-dependent DNA sensing pathways, cGAS, IFI16,
and IRF3 are substrates for DNA-PK (89, 93, 94). However, the
role of DNA-PK within the cGAS-STING pathway remains
controversial. One recent study reported that DNA-PK directly
phosphorylates cGAS to suppress its enzymatic activity and thus
attenuate innate immune responses (93). To this end, DNA-PKcs
deficiency caused by missense mutations in its coding gene,
Frontiers in Immunology | www.frontiersin.org 4
PRKDC, leads to an increased inflammatory response in both
human and mouse cells (93). In contrast, a pioneering study
showed that DNA-PK interacts with and phosphorylates IRF-3,
thus promoting its nuclear translocation (94). In a systematic
profiling study, DNA-PKcs directly phosphorylated the DNA
sensor IFI16 and promoted IFI16-driven cytokine responses
(89). Furthermore, regardless of its partner cGAS, STING can
localize to the inner nuclear membrane in breast cancer tumor
samples and promote cancer cell survival by resistance to DNA-
damaging agents through interacting with DNA-PK (95).
Therefore, further studies are warranted to better understand
mechanisms governing DNA-PK substrate selection within the
context of the innate immune response.

As described above, although a potentially suppressive role of
DNA-PK on cGAS was reported which may be context
dependent, most studies suggest that DNA-PK promotes a
STING-dependent innate immune response (96–100).
Mechanist ical ly , the HEXIM1-DNA-PK-paraspeckle
components-ribonucleoprotein complex (HDP-RNP),
containing DNA-PK subunits and paraspeckle proteins, is
required for foreign DNA sensing through the cGAS-STING
pathway. The HDP-RNP interacts with cGAS, and when
FIGURE 1 | Overview of DDR components in innate immune responses. DDR factors, including DNA-PK and MRE11, promote cytosolic DNA sensing signaling
pathways. When activated by cytosolic DNA, cGAS produces cGAMP, a soluble second messenger that initiates STING-IRF3 signaling both within the host cell and
adjacent cells. In addition, RAD50 associates with CARD9, leading to NF-kB activation and downstream cytokine production. XRCC4 interacts with RIG-I, which
promotes the RIG-I-MAVS-IRF3 pathway.
December 2021 | Volume 12 | Article 797880
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stimulated by cytosolic DNA, the paraspeckle proteins from the
complex are released to recruit STING and activate DNA-PK
and IRF-3. Knockdown of HDP-RNP subunits including Ku70,
the DNA binding subunit in DNA-PK, resulted in loss of IFN
stimulatory DNA–mediated immune response (97). In addition,
Ku70 was identified as a cytosolic DNA sensor that translocates
to the cytoplasm to form a complex with STING and induce
production of IFN-l1 (98, 99).

Besides STING-dependent DNA sensing mechanisms, DNA-
PK also acts as a DNA sensor to trigger a robust and broad
antiviral response in a STING-independent DNA sensing
pathway (SIDSP) in human cells, but not in laboratory mice
(101), perhaps a reflection that DNA-PK levels in human cells
are much higher than in mouse cells (102–104). A recently
characterized DNA-PK partner is LINP1, a lncRNA that can
recruit multiple DNA-PK assemblies and promote formation of
phase condensates (105). As LINP1 is present in both cytoplasm
and nucleus, it will be important to test its potential role in
cytosolic immune activation.

Overall, DNA-PK is considered a cytosolic DNA sensor for
both STING-dependent and -independent DNA sensing
pathways. The extent to which the role of DNA-PKcs in the
innate immune response is distinct from its well-characterized
nuclear functions in NHEJ is under active investigation.

MRN Complex in Innate Immunity
MRN, a core orchestrator that senses DSB damage and activates
DNA repair cascades, is required to maintain genome integrity
(13). In recent years, the MRN complex, which acts in DSB
sensing, stabilization, signaling, and effector scaffolding (106),
has furthermore been found to localize to viral replication sites
and trigger innate immune responses (107–109).

An exemplary MRN role in regulating innate immunity
comes from the meiotic recombination 11 homolog A
(MRE11) nuclease subunit, which recognizes and processes
DSB DNA ends as a part of HR repair, replication fork
processing, and telomere length maintenance (110, 111).
MRE11 has both endonuclease and exonuclease activities that,
together, initiate HR repair (112). Furthermore, MRE11
functions as a key cytosolic DNA sensor in recognition of a
broad spectrum of dsDNA and activates STING trafficking and
type I IFN production in various cell types (108).

An intriguing observation is that nuclease activity is not
required for the cytosolic DNA-sensing function of MRE11,
which reinforces the notion that besides their nucleotide
processing activity DDR nucleases also function to recognize
and sculpt specific DNA structures (113–116). In fact, the
nuclease-inactive mutant form of MRE11 triggers an even
higher immune response than the wild-type form. Therefore,
MRE11 may act as a regulatory switch within the STING-
dependent immune response, initially functioning as a DNA
sensor to activate STING-mediated signaling, then subsequently
working as a nuclease to suppress excessive immune responses
(108). Obviously, further studies are required to better elucidate
the pro- and anti-immune–modulating mechanisms of MRE11
in STING-dependent signaling. Nevertheless, these data suggest
that STING-mediated signaling may be activated by one of the
Frontiers in Immunology | www.frontiersin.org 5
existing MRE11 inhibitors (112, 117). It will also be interesting to
see if the adaptor regulator GRB2 complex with MRE11, which
promotes HR and suppresses A-EJ in the nucleus, plays a role in
STING-mediated signaling (118). Intriguingly, multiple GRB2
molecules can also bind to Linker of Activation of T cells (LAT)
to mediate its oligomerization, which is important for T-cell
signaling under limiting stimulating conditions. Furthermore,
GRB2 promotes metabolic reprogramming to support T cell
activation (119–121). These and other data support the notion
that tight protein and DNA binding plus conformational
sculpting can regulate activities and switch DNA repair
pathways (122).

MRE11 mutations that result in loss of binding ability to
Nijmegen breakage syndrome protein 1 (NBS1) induce type I
IFN comparable to wild-type MRE11 (108). This finding suggests
that NBS1 is not instrumental for sensing cytosolic DNA and
provoking an immune response. This concept is consistent with
the mechanistic role implied by the NBS1 structure and its MRE11
interface, to flexibly restrict DNA end processing and homologous
recombination activities to the vicinity of DSBs (123). On the basis
of prior data showing that NBS1 loss promotes cytosolic MRE11
distribution (124), we propose that a deficiency of NBS1 may
enhance cytosolic DNA sensing by MRE11.

The third component of the MRN complex is the ATP-
binding cassette-ATPase (RAD50). MRE11 nuclease activity is
regulated by ATP-dependent RAD50 helical coiled-coil
conformations that switch the MRE11-RAD50 complex
between DNA tethering, ATM signaling, and strand resection
(125, 126). RAD50 plays an important role in innate immunity
via a STING-independent signaling pathway (109). RAD50
binds a proinflammatory signaling adaptor amino-terminal
caspase-recruitment domain (CARD9) through its structurally
defined zinc-hook region (127). Together with MRE11, RAD50
recognizes cytosolic DNA and interacts with CARD9, which
leads to the recruitment of Bcl-10 to induce NF-kB activation
and pro-inflammatory cytokine IL-1b generation (109).

Other DDR Factors in Innate Immunity
BRCA1, which together with the MRN complex plays a central
role in HR DNA repair, interacts with IFI16 (128, 129). In
herpesvirus-infected cells, BRCA1 is required for IFI16-
mediated recognition of foreign DNAs, association with
STING, and subsequent IFN-b production (128). Aside from
DNA virus sensing, X-ray repair cross-complementing group 4
(XRCC4), a DNA ligase IV (LIG4)-associated protein essential
for NHEJ (130–132), acts in an RNA-sensing pathway through
interaction with retinoic acid-inducible gene I (RIG-I) (133).
XRCC4 promotes oligomerization and ubiquitination of RIG-I,
which results in enhancement of the RIG-I-MAVS-IRF3-type I
IFN signaling cascade and subsequent suppression of RNA virus
replication in host cells. Reciprocally, RIG-I competes with LIG4
to interact with XRCC4, and therefore it impedes XRCC4-
dependent NHEJ cascades and hinders retrovirus integration
into the host genome by suppressing the NHEJ pathway
(133). This finding highlights the critical role of XRCC4 in
defense against RNA viruses and in potentiating innate
immune response.
December 2021 | Volume 12 | Article 797880
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DDR IN ADAPTIVE IMMUNITY

Unlike the innate immune system, characterized by rapid sensing
and elimination of pathogens as first line of defense, the adaptive
immune system provides broader and more accurate
discrimination between self and non-self immunogens based
on the process of positive and negative selection during
lymphocyte development (25). A robust adaptive immune
response to any pathogen or biological macromolecule seen for
the first time takes weeks to mount. However, subsequent
exposure to the same pathogen promotes a rapid “memory”
response that is often magnitudes stronger than the response
following the first exposure. In adaptive immunity, the DDR is
essential for lymphocyte development by facilitating the
assembly and diversification of antigen receptor genes (134,
135). Thus, DDR deficiencies are linked with immunological
disorders, including autoimmune diseases, such as systemic
sclerosis, pediatric systemic lupus erythematosus, and severe
sepsis (136–139).

Ataxia-telangiectasia (A-T), a disorder arising from ATM
germline mutations, was one of the first-identified disorders
whereby immunodeficiency was associated with an aberrant
DDR (140–142). Missense mutations of PRKDC, which
encodes the catalytic subunit in DNA-PK, were also found in
patients with the organ-specific autoimmunity phenotype (93,
143). In addition, autoantibodies directed against Ku 70/80 were
detected in autoimmune patient sera (144, 145). Indeed, Ku was
first identified via autoantibodies in sera from patients with the
autoimmune disease polymyositis-scleroderma overlap
syndrome (146).

Adaptive maturation of T and B lymphocytes is guided by
the “blueprint” of different cell surface receptors. During the
process of lymphocyte maturation, three highly regulated
processes, including variable, diversity, and joining [V(D)J]
recombination, class-switch recombination (CSR), and somatic
hypermutation (SHM) together with negative and positive
selection (147), lead to generation of a functional, genetically
diverse, and non-autoreactive antigen receptor repertoire.
Interestingly, these processes naturally generate DSBs and/or
trigger a DDR in adaptive immunity (Figure 2) (136, 148). In
this section, we review these pathways highlighting roles of
important DNA repair factors.

DDR in V(D)J Recombination
V(D)J recombination occurs in G1 phase of naive, progenitor T
and B lymphocytes, and enables rearrangement of gene segments
at both immunoglobulin and T-cell receptor loci in a lineage
specific and developmental stage specific manner (148, 149). V
(D)J recombination is initiated by the recombinase activating
gene (RAG) endonucleases RAG1 and RAG2, which is directed
by RAG recognition sequences (recombination signal sequences
[RSS]) (Figure 2A). The RAG complex creates a nick between
the coding segment and the flanking RSS which leads to a DNA
hairpin at the ends of the gene segment containing the coding
regions (coding-ends) and a blunt-ended DSB at the end of the
RSS, so called signal-ends. Alignment of coding regions, excision,
Frontiers in Immunology | www.frontiersin.org 6
and formation of hairpin-ended coding-ends and blunt-ended
signal-ends takes place within the RAG1/2 complex, aided by
HMGB1 (148, 149). RAG-mediated DSBs are processed by the
NHEJ machinery to assemble genes encoding immunoglobulin,
and heterodimeric B- and T-cell receptors (150–152). The rapid
repair of RAG-mediated DSBs by NHEJ is essential for normal
lymphocyte development. Failure to repair RAG-mediated DSBs
in immature B cells leads to a DDR including ATM-mediated
upregulation of NF-kB signaling (134, 153–157).

DNA-PKcs in complex with Artemis, a member of the
metallo-b-lactamase protein family, is required for successful V
(D)J recombination and lymphocyte development. DNA-PKcs
interaction is required for Artemis endonuclease and
exonuclease activities for the RAG-mediated hairpin-opening
step in V(D)J recombination and for 5’ and 3’ overhang
processing in NHEJ (158). The two coding-ends, each
terminating with a DNA hairpin, are released from the RAG1/
2 complex first. Prior to rejoining, the DNA hairpins are opened
by the Artemis-DNA-PKcs complex, which cleaves 3’ to the apex
of the DNA hairpin. Artemis requires DNA-PKcs for its hairpin
opening activity but how this occurs is still an open question
(159, 160). Nevertheless, both the interaction of DNA-PKcs with
Artemis, and DNA-PKcs phosphorylation are important for
Artemis activation (161, 162).

Irrespective of the mechanism, DNA-PKcs protein and
Artemis are both required for opening the coding-end
hairpins, as the unopened hairpins accumulate in cells lacking
either Artemis or DNA-PKcs (158). Indeed, mice, dogs and
horses with mutations that compromise DNA-PKcs protein
levels are characterized by radiation sensitivity (due to defects
in NHEJ and DSB repair) as well as severe loss of T and B cells
resulting in severe combined immunodeficiency (SCID) (163–
165). Kinase-dead (KD) point mutation in the catalytic domain
of DNA-PKcs blocks end-ligation without abolishing hairpin
opening in knock-in mouse models (166). However, hairpin
opening in the DNA-PKcs-KD mice requires ATM kinase
activity (166). While pathogenic PRKDC mutation in humans
is rare, six patients with SCID and DNA-PKcs mutation have
been identified, five of whom share mutation of L3062R in the C-
terminal FAT domain (85). Interestingly, DNA-PKcs with the
L3062R mutation maintains full catalytic activity, but the
mutation appears to hinder activation of the Artemis nuclease
(167). In addition, one patient with two DNA-PKcs mutations
that severely impair (but do not completely ablate) catalytic
activity presented both with SCID and a severe neurologic deficit
incompatible with life (168). Description of this patient has led to
speculation that complete loss of DNA-PK in humans is not
compatible with life, and may have a unique function in neuronal
development. Deficiencies in Artemis are also associated with
SCID with radiation sensitivity (RS-SCID) (169–171).

Once the coding end hairpins are opened, they can be acted
upon by nucleases, and extended by error prone polymerases
such as V(D)J specific terminal deoxynucleotidyl transferase
(TdT) and/or the more general NHEJ polymerases mu and
lambda (148, 149, 172, 173). This processing of the coding-end
creates additional diversity for antigen selectivity. Finally, the
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processed coding-ends are ligated by the XLF-XRCC4-LIG4
complex in conjunction with Ku (174). The RSS signal ends are
released after the coding-ends and directly ligated by the Ku-XLF-
XRCC4-LIG4 complex (175–177). DNA-PKcs, but not Artemis,
also plays a role in rejoining of signal ends (166, 178, 179).

Although NHEJ is required for both repairing DSBs produced
by IR and those produced by the RAG endonuclease in V(D)J
recombination, there are both similarities and differences
between the two processes. IR introduces complex forms of
DNA damage resulting in DSB ends with diverse sequences
and overhanging ends, some of which will contain non-ligatable
ends (180). Thus, after IR, NHEJ must be able to 1) respond to
DSBs wherever they occur in the genome and 2) hold and tether
the ends while they are processed before ligating them. The
recently determined structures of NHEJ synaptic complexes
reveal how NHEJ proteins can both tether and secure DSB
ends while DNA-PKcs autophosphorylation provides a
mechanism for handover to end processing enzymes and
subsequent ligation by the XLF-XRCC4-LIG4 complex (82,
Frontiers in Immunology | www.frontiersin.org 7
130, 181–184). In V(D)J recombination, defined DSBs with
discrete coding-ends and signal-ends are generated and held
within the RAG1/2 heterotetrameric complex (185, 186) before
being released and opened by DNA-PKcs-Artemis (coding-ends)
and ligated by Ku-XRCC4-LIG4 (coding-ends and signal-ends)
(177, 185–187). After hairpin opening, coding ends are processed
to include both additional antibody diversity (e.g. TdT) and
generate ligatable ends. It will be interesting to determine how
the NHEJ machinery interfaces with the RAG1/2 complex and
the DNA-PK/Artemis hairpin opening complex.

While the role of Artemis in V(D)J recombination is clear, its
role in NHEJ after IR is enigmatic (160). It may act to remove
overhanging DNA ends, acting at ds-to-ssDNA transitions as a
flap-endonuclease or by direct exonuclease activity and/or it may
be required to open secondary structure elements formed by
looping of ssDNA at the ends of DSBs. It is likely that Artemis is
required for repairing only a subset of DSBs after IR, as Artemis-
null cells are not as radiation sensitive as those lacking Ku,
XRCC4, LIG4 or DNA-PKcs (148, 188–191).
A B

C

FIGURE 2 | Overview of DDR components in adaptive immune responses. Certain DDR signaling pathways, such as MMR, BER, NHEJ, and A-EJ, are required in
V(D)J recombination (A), SHM (B) and CSR (C) processes, supporting successful lymphocyte development.
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Animals lacking DNA-PKcs, Artemis, Ku70 or Ku80 are
viable but radiosensitive due to defects in NHEJ and immune-
deficient due to defects in V(D)J recombination (192–195). For
V(D)J recombination in mice lacking functional DNA-PKcs or
Artemis, unopened coding-end DNA hairpins accumulate,
producing a profound defect in coding joint formation (192,
193, 196). Signal joints are unaffected by loss of Artemis whereas
mutation of DNA-PKcs has variable effects on signal joints (157,
175). In SCID horses signal ends are profoundly affected by
DNA-PKcs mutation, while SCID dogs and mice have
intermediate signal end rejoining, indicating species differences
in V(D)J recombination at signal ends, possibly due to relative
levels of DNA-PKcs and ATM (165). In contrast, in animals
lacking Ku70 or Ku80, both coding and signal joins are affected
(194, 195). Mice lacking XRCC4 or LIG4 are non-viable, with
embryos undergoing neuronal apoptosis, while cells lacking
XRCC4 or LIG4 are radiation sensitive and defective in coding
and signal joints, consistent with a more severe V(D)J
recombination defect (148, 188–190). Notably, deletion of Ku
rescued the embryonic lethality, but not the V(D)J
recombination defects in LIG4-null mice, likely through
aberrant end-resection and the repair by the Alt-EJ pathway
(197, 198).

Besides the DNA-PKcs-Artemis/Ku-XRCC4-LIG4 axis, the
MRN-associated kinase ATM plays a critical role in lymphocyte
development via direct or indirect involvement at various stages
of development. Although many details are still unclear, ATM is
required for stabilization of the RAG post-cleavage complex that
releases the DNA ends to the NHEJ pathway (157, 199, 200).
Inactivating somatic ATM mutations are associated with T- and
B-cell lymphoma (201, 202); dysregulated V(D)J recombination
results in translocations in ATM-deficient lymphocytes,
potentially promoting tumorigenesis (203, 204). While XLF-
deficient cells have significant V(D)J recombination, ATM
kinase activity and its chromatin bound DDR factors (e.g.,
53BP1 and H2AX), while dispensable for V(D)J recombination
in otherwise wild type cells, become essential for chromosomal
NHEJ during V(D)J recombination in XLF-deficient cells (205–
207). Indirectly, ATM-related repression of GSK3b and cyclin
D3 also plays an important role in thymocytes and pre-B cells
(208, 209). DSBs generated by both V(D)J recombination and
CSR induce ATM-dependent phosphorylation of GSK3b, which
is a constitutively active kinase known to promote cell death
(209, 210). The inactivation of GSK3b by DSB-initiated Ser389

phosphorylation protects B cells during V(D)J recombination
and CSR that are required for antigen-specific IgG antibody
responses following immunization. During T cell development,
GSK3b phosphorylation created by V(D)J recombination also
promotes survival of DN3 thymocytes undergoing TCRb
rearrangements, mimicking the results described in mice
harboring deficiency in several key DDR factors, including
ATM, NBS1 and H2AX (209, 211, 212).

DDR in CSR and SHM
The DDR is also essential for additional adaptive immune
responses that occur after antigen exposure in germinal center
Frontiers in Immunology | www.frontiersin.org 8
B cells. V(D)J recombination-rearranged immunoglobulin (Ig)
variable regions are further modified by the process of SHM,
after which antibodies with highest affinity are selected. While in
CSR, the constant regions of immunoglobulin genes are
excised and rearranged to produce other isotypes (e.g. IgA and
IgG) from the initially expressed IgM or IgD isotypes (213, 214)
(Figures 2B, C). Both CSR and SHM are initiated by B cell-
specific, activation-induced cytidine deaminase (AID), a member
of the apolipoprotein B mRNA editing enzyme catalytic
polypeptide like (APOBEC) family of deaminases, which
converts cytosine to uracil on single-stranded DNA or RNA
(215, 216). Various DDR pathways are then involved in both the
generation of strand breaks and their repair.

During SHM, AID deaminates a particular trinucleotide
sequence in ssDNA of transcriptionally active genes, leaving
behind numerous uracil residues and producing predominantly
nucleotide substitutions in rearranged V genes on the heavy- and
light-chain loci, and switch (S) regions, which precede most C
genes on the heavy chain locus (217, 218). The mutagenic
outcome of uracil lesions can then be determined by one of the
following DDR responses: (i) Uracil can act as a template for
replication, resulting in a fixed C-T transition mutation; (ii) U-G
mismatches can be recognized by the error‐prone MMR
machinery, in which the MutSa complex (MSH2-MSH6)
detects the mismatch and recruits MutLa complex (MLH1-
PMS2) to nick the DNA, followed by the recruitment of Polh
(DNA polymerase h) to generate mutations (219, 220); (iii) Non‐
canonical BER initiated by uracil DNA glycosylase (UNG) can be
used to recruit proliferating cell nuclear antigen (PCNA) at the
lesions, and low‐fidelity polymerases such as Polh, which can
increase mutations during replication of common DNA fragile
sites (221), then can be recruited by PCNA ubiquitination and
utilized by both MMR and BER resulting in mutagenic repair
(149, 222–224). The nick generated by the UNG-dependent BER
pathway is particularly important for CSR, as UNG1 knock out
largely abolishes CSR (225).

During CSR, DSBs are generated in the switch regions that are
subsequently ligated by either the canonical NHEJ pathway or A-
EJ pathway which involves XRCC1, MRE11, plus FEN1 (which
threads and removes DNA flaps) and Pol theta for which there
are inhibitors (114, 149, 226–230). Although many details of this
important pathway remain to be determined, it has been
suggested that UNG removes AID-incorporated uracil to
create an abasic site which is then cleaved by apurinic/
apyrimidic endonuclease (APE) to create an SSB. Two closely
spaced SSBs on opposite DNA strands can create a DSB (213,
231, 232). Indeed, UNG inhibition sensitizes cells to high
APOBEC3B deaminase and to floxuridine (5-FdU), which are
toxic to tumor cells through incorporation of 5-FU into DNA
(233, 234).

Much of what we have learned about CSR has come from
disruption of DNA repair genes in mice leading to
immunodeficiency characterized by the production of IgM (the
first spliced constant region) but not IgA or IgG (products of
CSR) (136). As reviewed recently by Zha and colleagues (191),
the most dramatic defects (>90% reduction) in CSR have been
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observed in mice lacking the tumor suppressor p53-binding
protein (53BP1). In contrast, more modest defects (50-70%
reduction) occur in animals lacking MDC1, H2AX, Ku,
XRCC4, LIG4 and mice lacking DNA-PKcs, Artemis or ATM
have only a minor defect (<10%) in CSR (191, 235–239). Yet, a
recent report revealed that defects of 3’-flap endonuclease XPF-
ERCC1 in B cells impairs A-EJ-mediated CSR by impeding
joining of resected 3′ flap DSB ends (240). Since 53BP1 and
Shieldin both block resection and promote NHEJ, loss of either
would be expected to promote resection over NHEJ (241–245).
However, even loss of LIG4, which abolishes NHEJ, decreases
CSR by only 70% (236, 238). A major feature of CSR is removal
of large regions of chromatin between the switch regions to be
joined. 53BP1 plays a role in looping DNA at telomeres and is
required for rejoining of distal joins in V(D)J recombination
(246–248), suggesting that long-range conformational changes in
DNA may be disrupted in 53BP1-deficient cells, possibly
explaining the importance of 53BP1 in CSR (249, 250). Indeed,
loss of components of the shieldin complex, which protects DSB
ends to mediate 53BP1-dependent repair, also yield defects in
CSR (242, 245, 250–252). Alternatively, 53BP1 also recruits
PTIP, an evolutionarily conserved chromatin regulator that
binds gH2AX, acts as a major effector of ATM and ATR
signaling mechanisms, and is also implicated in CSR (253, 254).

Besides the direct usage of DDR pathways, there are several
indirect links between DDR elements in CSR and SHM. For
instance, targeting HR by RAD51 inhibitor reduces AID
expression, hampering the repair of AID-initiated lesions
(255). Interestingly, indirect links reach into RNA-binding
proteins such as the autism-associated protein vigilin, which
interacts with RAD51 and BRCA1, so its depletion impairs their
recruitment to DSB sites (256).
DDR INHIBITION IN ANTITUMOR
IMMUNITY

Emerging evidence supports the idea that DDR inhibition in
tumor cells remodels the inflammatory microenvironment (10,
257). Impaired DDR typically enhances the tumor foreignness by
increasing the number of tumor cell mutations/neoantigens (10,
258). When examined by CIBERSORT analysis through the
TIMER2.0 web server (259, 260), the mRNA levels of many
DDR factors, such as RPA1, Ku70, Ku80, MRE11A, RAD50,
NBS1, PRKDC, RAD51, PARG and XRCC4, were negatively
associated with cytotoxic CD8+ T cells infiltration levels across
various cancer types (Figure 3A). Indeed, as exemplified in
prostate adenocarcinoma, significant negative correlations
between gene expression and cytotoxic T cell infiltration levels
were found in 19 genes of the 22 DDR related genes we tested
(Figure 3A, B). These findings suggest enhanced anticancer
immunity in tumors with lower DDR factor expression and
imply substantial potential benefits from DNA repair inhibitors.
Thus, inhibitors of these DDR factors, such as poly(ADP-ribose)
glycohydrolase (PARG) inhibitors that impact DNA break repair
Frontiers in Immunology | www.frontiersin.org 9
and replication fork restart, may be employed to activate the
innate immune response (261).

Antitumor immune responses can be promoted and utilized
to treat cancer via immune checkpoint blockade with use of
agents such as PD-1/PD-L1 and CTLA-4 inhibitors (29, 262,
263). The DDR also offers attractive targets for inhibition (264,
265). Preclinical and clinical efficacy of DDR inhibition in cells
with a defective DDR genetic background, are exemplified by the
success of PARP inhibitors in BRCA1/2-mutated advanced
cancers and of inhibitors to the PARG in cancer cells (261,
266, 267). Emerging evidence has progressively unveiled the
involvement of the DDR in antitumor immunity by enhancing
STING-dependent immune responses, further supporting the
immune-modulatory role of DDR inhibition in anticancer
immunity (Figure 4) (134, 135, 268, 269).

The most studied DDR inhibitors in anticancer
immunotherapies are those directed against PARP (PARPi). In
line with the usage of PARPi in DDR-deficient tumors (266),
PARPi combined with immune checkpoint blockade, including
PD-1/PD-L1 and CTLA-4, exerts remarkable efficacy in tumors
with BRCA1/2 or ERCC1 mutations via STING-dependent
immune responses and infiltration of cytotoxic T cells into
tumor (50, 51, 54, 270). There are also findings suggesting that
PARPi, with anti-PD-1 inhibitors, have strong therapeutic
potential regardless of BRCA1/2 status (49, 271, 272), although
the mechanisms involved remain unclear. Besides the STING-
dependent pathways, PARPi also increased PD-L1 expression in
breast cancer cell lines through inhibition of GSK3b (273), which
provided the rationale for combining PARPi with PD-L1 or PD-
1 immune checkpoint blockade, a strategy that has been tested in
clinical trials (49, 271, 274).

Recently, many other inhibitors targeting DDR components
have been developed and are in preclinical study. Recently,
several of them, including inhibitors of DNA-PKcs, ATM,
ATR, CHK1 and WEE1, have entered into clinical trials (275).
Inhibitors of DNA-PKcs promote radiation sensitization
through inhibition of NHEJ (276). Their importance in
modulating the innate immune response have also been
demonstrated. ATR inhibition can further increase cGAS-
positive micronuclei and cytokine production in PARPi-treated
cancer cells (12). Significantly, inhibition of DNA-PK with
AZD7648 resulted in IFN-dependent inhibition of tumor
growth following IR in immune competent mouse models,
indicating that inhibition of DNA-PK in combination with
radiotherapy could lead to durable immune-mediated tumor
control in cancer patients (277).

Another important application of DDR in antitumor
immunotherapy is the usage of the DDR status as biomarkers
to select the patients who are targetable to immune checkpoint
blockade. Currently, only a subset of patients respond to immune
checkpoint blockade. Predictive biomarkers for reliable response
could better guide therapeutic choices (104). As DNA
repair deficiencies that promote genome instability are
relatively common among tumors, mutational signatures and
DDR biomarkers may identify features associated with
response to immune-directed therapies. For instance, MMR
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status was reported to predict response to the PD-1 inhibitor
pembrolizumab in a phase 2 study of 41 patients with progressive
metastatic carcinoma (278, 279). Also, loss of BRCA1 and defects
of MMR in tumors resulted in many somatic mutations, leading
to continuous renewal of neoantigens, increased immune
response gene expression, and enhancement of immune
surveillance (20, 270, 278, 280). In non–small cell lung cancer,
deleterious mutations in several DDR-related genes correlated
with pembrolizumab clinical efficacy (281). A high mutation
Frontiers in Immunology | www.frontiersin.org 10
level causing a high load of tumor neoantigens suppresses
immune evasion. Whereas aneuploidy of large chromosomal
regions (arm and whole-chromosome), which cause somatic
copy number alterations (SCNAs) and consequent protein
imbalances, can weaken cytotoxic immune cell infiltration
(282). Importantly, blockade of the immune system PD-1/PD-
L1 inhibitory pathway can restore exhausted immune responses
as an effective immunological strategy to overcome immune
evasion by chronic imbalances and infections (283). For
A B

FIGURE 3 | DDR factors negatively associate with CD8+ T cells infiltration levels in diverse cancer types. (A) A heatmap based on the CIBRSORT method shows
the purity-adjusted Spearman’s rho of DDR factors with CD8+ T cells across various cancer types. The boxes with indicate non-significant p values (p>0.05). The
figures was made using the TIMER2.0 web server based on CIBRSORT analysis (http://timer.cistrome.org/). (B) Detailed correlation between DDR factors and CD8+
T cells in prostate adenocarcinoma (PRAD) from panel (A) The purity-adjusted Spearman’s rho and p value are labeled in red. ***p < 0.001; ****p < 0.00001.
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monoclonal antibodies used to block checkpoint molecules, such
as PD-1 and PD-L1, to activate immune cells to kill tumor cells
more effectively, it may be worth adding designed features such
as metal ion binding sites to add to their capabilities or removing
free cysteines to improve their stability (284–286).
SUMMARY AND PROSPECTS

The DDR shapes how the innate immune system responds to
tumors, as well as how the adaptive immune system is recruited
to sites of malignancy. Consequently, the interconnections of the
DDR and the immune system, which maintain genomic fitness
and pathogen protection, can be utilized to improve cancer
therapeutic strategies (5, 135, 287–291). Yet, defining how the
DDR impacts immune responses has remained challenging as
immune activation can evidently be triggered by different types
of DDR components including DNA damage sensors,
transducers, and effectors (292).

Here, we assessed current molecular and mechanistic data
showing how the DDR induces and impacts immune responses.
At present, cancer immunotherapy is less widely used than surgery,
chemotherapy, or radiation therapy. As only a subset of patients
respond to immune checkpoint blockade, enhancements from
Frontiers in Immunology | www.frontiersin.org 11
defining and modulating the DDR along with reliable predictive
biomarkers of response are needed to guide and improve
therapeutic strategies. DNA repair deficiency is common among
tumors, and emerging experimental and clinical evidence suggests
that features of genomic instability are associated with response to
immune-directed therapies. We propose that advancing all
successful cancer therapies will benefit from elucidating key
molecular and mechanistic relationships linking DDR, DNA
damage outcomes, and immune responses. In fact, the efficacy of
conventional chemotherapy and radiotherapy can depend in part
upon induction of innate and adaptive immunity.

In innate immunity (Figure 1), MRN (along with its
associated ATM and ATR kinases) and DNA-PK complex,
which co-regulates DNA DSB repair, can serve as master
cytosolic DNA sensors to initiate innate immune response.
DNA-PKcs expression with validated immune biomarkers can
guide patient selection for DNA-PKcs targeting strategies, DNA-
damaging agents, and their combination with an immune-
checkpoint blockade (293). Analogously, ATM inhibition
induces tumor growth delay and overcomes tumor resistance
to anti–PD-1 therapy (294). In addition, other DDR components
interact with and promote cytosolic DNA sensing pathways or
RIG-I–mediated RNA sensing signaling to trigger innate
immune response. Whereas mice and other model systems
FIGURE 4 | DDR Inhibition and Antitumor Immunity. DDR Inhibition and DDR defects can increase cytosolic DNA that activates the cGAS to generate cGAMP and
promote tumor neoantigen production. cGAMP can activate cell intrinsic STING pathway and spread the immunity to bystander cells. All these factors contribute to
an inflammatory tumor microenvironment and promote the recruitment of cytotoxic CD8+ T cells and constrict cancer growth effectively. Combining DDR inhibition
(such as PARP or PARG inhibition) with Immune checkpoint blockade (including PD-1/PD-L1 or CTLA4 blockade) may be a promising strategy with the potential to
improve survival outcomes.
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have proven to be of great value for testing these molecular
mechanisms, it is critical to consider possible impacts from the
far higher DNA-PKcs levels in human cells compared to
laboratory mice (104).

Most immune-related DDR components and immune
responses converge upon the STING-IFN signaling pathway,
which plays a crucial role in cancer cell immune-surveillance. In
adaptive immunity (Figure 2), DDR pathways (including MMR,
BER, NHEJ, and A-EJ) are required for V(D)J recombination,
CSR and SHM processes, which are critical to lymphocyte
development. From a pathology standpoint, DDR modulates
anticancer immunity via both innate and adaptive immunity,
with the underlying molecular mechanisms being increasingly
defined. Such knowledge is likely broadly applicable to human
disease, including cancer, infectious disease and atherosclerotic
disorders. For instance, SARS CoV-2 proteins, can hijack the
human immune response to pathogens and the DNA damage
repair system, thereby damaging both innate and adaptive
immunity (295, 296). Furthermore, the results of targeting
endonuclease V, a ROS response and structure-specific
nuclease that cleaves DNA and RNA at inosines as a regulator
of innate immune responses, suggests blocking such DDR-
related epitranscriptomic modifications to ameliorate carotid
atherosclerosis and ischemic stroke (297–299).

For advanced immunotherapeutic strategies, DDR defects
plus the increased mutation load in tumor cells produce
tumor-specific neoantigens. So chemical tools to alter the DDR
in predetermined ways can leverage the full power of cancer
immunotherapy. Importantly, advances in structural biology for
combining atomic resolution structures with X-ray scattering
and computation for solution conformations and assemblies are
providing critical enabling methods to define and target dynamic
complexes that can generally control mutation rates (66, 300–
302). We propose here that the dynamic DNA-PK and MRN-
activated ATM and ATR are potential master keys to unlock
DDR and their immune system roles. As DNA-PKcs, ATM, and
ATR inhibitors are already being evaluated in clinical trials as
sensitizers of chemotherapy and radiotherapy, we suggest that
these kinases may be both a predictive biomarkers and
therapeutic targets for immunotherapy in future clinical trials.

To effectively use such master keys, it will be important to
better define the molecular mechanisms orchestrating their
activities in DDR and immune system outcomes and their
potential as biomarkers for prognosis. We know that with
Frontiers in Immunology | www.frontiersin.org 12
molecular mechanistic knowledge, examination of DDR status
can provide informed predictive biomarkers for patient selection
and therapeutic approaches (135). Moreover, like immune
checkpoint inhibitors, DDR inhibition strategies show great
potential to improve cancer treatment efficacy by harnessing
their immunomodulatory effects for radiat ion and
chemotherapies, immune checkpoint blockade, and combined
therapeutic strategies.
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GLOSSARY

5-FdU floxuridine

53BP1 p53-binding protein

8-OHG 8-hydroxyguanosine

A-EJ alternative end joining

AgR antigen receptor

AID activation-induced cytidine deaminase

APE2 Apurinic/apyrimidinic endodeoxyribonuclease 2

APOBEC apolipoprotein B mRNA editing enzyme
catalytic polypeptide like

ATM ataxia telangiectasia mutated

A-T Ataxia-telangiectasia

BCL10 B cell CLL/lymphoma 10

BER base excision repair

BLM bloom syndrome RecQ like helicase

BRCA1/2 breast-cancer susceptibility gene 1/2

BS bloom syndrome

CARD9 caspase-recruitment domain

CHK1 checkpoint kinase 1

CTLA-4 cytotoxic T-lymphocyte-associated antigen 4

cGAMP 2’-3’cGAMP

cGAS cyclic GMP-AMP synthase

CSR class-switch recombination

DAMPs damage-associated molecular patterns

DDR DNA damage response

DNA-PK DNA-dependent protein kinase

DSBs double-strand breaks

EEPD1 endonuclease/exonuclease/phosphatase
family domain containing 1

dsDNA double-stranded DNA

ERCC1 excision repair cross complementary gene 1

EXO1 exonuclease 1

EXO5 exonuclease 5

FANCD2 Fanconi anemia complementation group D2

FEN1 flap structure-specific endonuclease 1

GSK3b glycogen synthase kinase 3 beta

GRB2 growth factor receptor bound protein 2

H2AX H2A histone family member X

HDP-RNP HEXIM1-DNA-PK-paraspeckle components-
ribonucleoprotein complex

HIV human immunodeficiency virus

HMGB1 high mobility group box 1

HR homologous recombination

HSPA8 heat shock protein family A (Hsp70) member 8

HSV-1 herpes simplex virus 1

Ig immunoglobulin

IRF3 interferon regulatory factor 3

IFI16 IFN-inducible protein 16

IFN interferon

LAT Linker of Activation of T cells

LIG4 DNA ligase IV

LINP1 lncRNA in nonhomologous end joining
(NHEJ) pathway 1

IL7 interleukin 7

IR ionizing radiation
MAVS mitochondrial antiviral signaling protein

MDC1 Mediator of DNA damage checkpoint 1

MMR mismatch repair

MLH1 MutL homolog 1

MRE11 meiotic recombination 11 homolog 1

MRN MRE11-RAD50-NBS1

MSH2 MutS homolog 2

MSH6 MutS homolog 6

MUTY MutY DNA glycosylase

NBS1 Nijmegen breakage syndrome protein 1

NEIL endonuclease VIII (Nei)-like proteins

NER nucleotide excision repair

NF-kB nuclear factor kappa B subunit 1

NHEJ non-homologous end joining

OGG1 oxoguanine DNA glycosylase

p53 tumor protein p53

PARG poly(ADP-ribose) glycohydrolase

PARP poly (ADP-ribose) polymerase

PARPi PARP inhibitors

PAMPs pathogen associated molecular patterns

PCNA proliferating cell nuclear antigen

PD-1/PD-L1 prog rammed ce l l d ea th pro t e in 1 /
programmed cell death ligand 1

PIKK phosphatidylinositol 3-kinase (PI3K)-
related kinase

PMS2 PMS1 homolog 2

Polh DNA polymerase h

pre-BCR pre-B cell receptor

PRRs pattern recognition receptors

PRKDC P r o t e i n k i n a s e , DNA - a c t i v a t e d ,
catalytic polypeptide

RAD50 ATP-binding cassette (ABC)-ATPase 50

RAD51 ATP-binding cassette (ABC)-ATPase 51

RAG recombinase activating gene

RIG-I retinoic acid-inducible gene I

RPA replication protein A

ROS reactive oxygen species

RSS recombination signal sequences

SARS CoV-2 seve r e acu t e r e sp i ra to ry syndrome
coronavirus-2

SCID severe combined immunodeficiency

SHM somatic hypermutation

SCNAs somatic copy number alterations

SIDSP STING-independent DNA sensing pathway

SSBs single-strand breaks

STING stimulator of interferon genes

TBK1 TANK-binding kinase 1

TCRb T cell receptor beta

TdT terminal deoxynucleotidyl transferase

TREX1 three prime repair exonuclease 1

WEE1 WEE1 G2 checkpoint kinase

XLF XRCC4-like factor

XRCC1 x-ray repair cross-complementing group 1

XRCC4 x-ray repair cross-complementing group 4

UNG uracil DNA glycosylase

V(D)J variable, diversity, and joining.
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