Lawrence Berkeley National Laboratory

 Recent Work
Title

THE AZIMUTHAL COUPLING IMPEDANCE OF A RING BEAM SITUATED MIDWAY BETWEEN INFINITE PAEALLEL CONDUCTING PLANES

Permalink

https://escholarship.org/uc/item/23j4j40g

Authors

Brady, Victor
Faltens, Andris
Laslett, L. Jackson.
Publication Date
1981-12-01

③ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA
 Accelerator \& Fusion Research Division

Victor Brady, Andris Faltens, and L. Jackson Laslett

December 1981

For Reference

Not to be taken from this room

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Lawrence Berkeley Laboratory
 Technical Report of the Betatron Design Study

THE AZIMUTHAL COUPLING IMPEDANCE OF A RING BEAM SITUATED MIDWAY BETWEEN INF INITE PARALLEL CONDUCTING PLANES* Victor Brady, Andris Faltens, and L. Jackson Laslett

December 1981

Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

[^0]SECURITY CLASSIFICATION OF THISPAGE FWhen Deta EnIored

REPORT DOCUMENTATION PAGE	READ PSTR ${ }^{\text {RUCTIO, }}$
1. REPORT NUMEER BETA-18$\| 2$. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG MUMEER
The Azimuthal Coupling Impedance of a Ring Beam Situated Midway between Infinite Parallel Conducting Planes	8. TYPE OF REPOAT A PEPIOD =
Victor Brady, Andris Faltens, and L. Jackson Laslett	6. CONTRACT OR GRANT MUMGER(a) N60921-81-LT-W0031
9. PERFORMING ORGAMIZATION MAME AND ADDRESS Lawrence Berkeley Laboratory University of California Berkeley, California 94720	
1. Controlling orfice mame and adoress Defense Advanced Research Projects Agency 1400 Wilson Boulevard, Arlington, Virginia 22209 Attn: Program Management/MIS	$\begin{array}{\|c\|} \hline \text { 12 REPORT DATE } \\ \text { December } 1981 \\ \hline \text { 12. सUMEER OF PAGES } \\ 7 \\ \hline \end{array}$
Naval Surface Weapons Center White Oak, Silver Spring, Maryland 20910 Attn: Code R401	

Approved for public release; distribution unlimited.
17. DISTMBUTION STATEMENT (ol the abotrect entored in Biock 20, 11 difformit inm Ropart)
18. SUPPLEMENTARY NOTES
19. KEY WOROS (Conilinue on reveree olde If meceanery and ldentity by black number)
azimuthal coupling impedance
circular accelerators
cyclotrons
betatron
longitudinal stability
20. ABSTRACT (Consinue en reperee olde If neceesery and idertsty by block number)

The azimuthal coupling impedance, which pertains to the longitudinal stability of intense particle beams in circular accelerators, is calculated for a ring beam situated midway between infinite, parallel, conducting planes as a function of frequency. The peak value is consistent with the approximation $Z_{n} / n=300 \mathrm{~h} / \mathrm{R}$.

The Azimuthal Coupling Impedance of a Ring Beam

 Situated Midway between Infinite Parallel Conducting Planes*Victor Brady, Andris Faltens, and L. Jackson Laslett
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

The azimuthal or longitudinal coupling impedance, Z_{n}, usually enters into the analysis of the stability of intense particle beams in circular machines as

$$
\frac{z_{n}}{n} \equiv-\frac{2 \pi R E_{n}}{n I_{n}},
$$

where R is the beam major radius, E_{n} is the ac electric field amplitude, and I_{n} is the ac current at the $n^{\text {th }}$ harmonic of the beam revolution frequency. In a few machine types such as cyclotrons, betatrons, and the electron ring compressors, the beam-surrounding geometry is well approximated by conducting sideplates. The effect of the sideplates, or other similar conductors, is to suppress the electromagnetic radiation of the ring at the lowest few harmonics, that otherwise would be the major contributor to the coupling impedance of a relativistic ring, as well as to modify the self-field distribution and its minor contribution to the impedance.

The subject of coupling impedance is closely related to electromagnetic radiation by a charge moving in a circular orbit. . 1,2 Starting with Eq. 7 of Nodvick and Saxon, ${ }^{2}$ converted to MKSA units, the power P_{n} radiated at

[^1]the $n^{\text {th }}$ harmonic is,
\[

$$
\begin{equation*}
P_{n}^{(\infty)}=\frac{1}{4 \pi \varepsilon_{0}} \frac{n \omega e^{2}}{R} \frac{4 \pi R}{2 h} R e\left\{\sum_{j=1,3, \ldots}^{\infty}-H_{n}^{(1)} J_{n}+\frac{\beta^{2}}{2}\left(H_{n-1}^{(1)} J_{n-1}+H_{n+1}^{(1)} J_{n+1}\right)\right\} \tag{1}
\end{equation*}
$$

\]

where the argument of the Bessel functions is

$$
\gamma_{n j} R=\left[(n \beta)^{2}-\left(\frac{j \pi R}{2 h}\right)^{2}\right]^{1 / 2},
$$

the plate separation is $2 h$, the charge of the particle is e, and the radian frequency is ω. The power may be related to an impedance Z_{n} as

$$
\begin{equation*}
p_{n}^{(\infty)}=\frac{1}{2} \operatorname{Re}\left\{I_{n}^{2} Z_{n}\right\} \tag{2}
\end{equation*}
$$

For a δ-function charge, $I_{n}=2 I_{0}=\omega e / \pi$; therefore

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{Z_{n}}{n}\right\}=2 \pi^{2} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}\left(\frac{R}{2 h}\right) R_{e}\left\{\sum_{j=1,3, \ldots}-H_{n}^{(1)} J_{n}+\frac{\beta^{2}}{2}\left(H_{n-1}^{(1)} J_{n-1}+H_{n+1}^{(1)} J_{n+1}\right)\right\} \tag{3}
\end{equation*}
$$

The results of evaluating this expression for $\beta=1$ and several values of the ratio of beam radius to plate separation are shown in Fig. 1. Also shown is the free-space radiation asymptote, and the values predicted from the approximate formula for the peak of the impedance function,

$$
\begin{equation*}
\left(\frac{Z_{n}}{n}\right)_{\max } \simeq 300 \frac{h}{R} \text { ohms } \tag{4}
\end{equation*}
$$

obtained in Ref. 3, for a beam situated between coaxial conducting cylinders. The close agreement of the approximate formula to the computed values is not surprosing for the present geometry in view of the results of Ref. 3, where the same approximation held for the essentially resonant geometry of a beam within a conducting cylinder as well as the nonresonant geometry of a beam outside of a conducting cylinder.

The impedance values shown in Fig. 1 are for a beam of vanishingly small minor dimensions and $\beta=1$. The effect of β approaching 1 is to increase the cutoff of the synchrotron radiation spectrum to higher harmonics ($n_{\text {crit }} \propto r^{3}$), but, because Z_{n} / n decreases with n at high harmonics, the detailed behavior there is not important for stability analyses. The effects of finite beam size, such as caused by the transverse and longitudinal emittances, are favorable for both the self-field and the radiation contributions to the impedance. The self-fields give a reactive term of the form

$$
\begin{equation*}
\frac{Z_{n}}{n}=-\frac{i \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}}{\beta r^{2}}\left(\frac{1}{4}+\ln \frac{h}{a}\right) \tag{5}
\end{equation*}
$$

at low harmonics, where a is the beam minor radius. The radiation from the ring near the maximum of the Z_{n} / n function for typical geometries of interest is largely due to the lowest axial harmonic, $j=1$, and the peak occurs far enough above the cutoff for the radial wavelength to be comparable to the free-space wavelength. For an extended beam with a spatial current density \vec{J} a factor

$$
\begin{equation*}
F \simeq \frac{\int \vec{\int}_{\text {beam }} \cdot \vec{E}_{\text {mode }} d A}{I E_{\max }} \tag{6}
\end{equation*}
$$

enters in the way the beam drives a given mode and in the way a mode drives the beam (which is completely analogous to the transit time factor in accelerating gaps), therefore the results of the impedance for a line beam should be multiplied by

$$
\begin{equation*}
F_{n}^{2} \simeq\left(\frac{\sin \frac{\pi a}{2 h}}{\frac{\pi a}{2 h}}\right)^{2}\left(\frac{\sin \frac{2 \pi b}{\lambda_{n}}}{\frac{2 \pi b}{\lambda_{n}}}\right)^{2} \tag{7}
\end{equation*}
$$

where a and b are the axial and radial minor radii of the beam. For an example of current interest, let $a=b=5 \mathrm{~cm}, h=17.5 \mathrm{~cm}, R=2 \mathrm{~m}, \mathrm{n}_{\text {max }}$ $\simeq 60$, and $\lambda_{n}=\frac{2 \pi R}{n} \simeq 21 \mathrm{~cm}$, these factors give 0.41 , or approximately a halving of the effective coupling impedance. In addition to these extended beam effects, the formulation of the stability criteria for such beams will be re-examined by members of the theory group.

To make the infinite plane results applicable to a finite ring geometry, it is necessary to provide an $r f$ absorber at the outer radius of the vacuum chamber. In the ERA compressor this consisted of a few centimeter deep layer of loosely woven absorptive cloth cut from $100 \Omega / \square$ material. With such an absorber, the wave impedance does not differ greatly from the free space value and there are no abrupt geometric discontinuities, resulting in very broad band absorption of propagating waves. A termination other than an absorptive outer wall will lead to undesirable reflections of radiation, and higher peaks in the impedance curve.

1. J. Schwinger, Phys. Rev. 75, 1912 (1949).
2. J. S. Nodvick and D. S. Saxon, Phys. Rev. 96, 180 (1954).
3. A. Faltens and L. J. Laslett, Particle Accelerators 4, 151 (1973) and ERAN 195.

The program PINIF calculates the sum

$$
S=\sum_{j=1,3, \ldots}\left[-H_{n}^{(1)} J_{n}+\frac{1}{2} \beta^{2}\left(H_{n-1}^{(1)} J_{n-1}+H_{n+1}^{(1)} J_{n+1}\right)\right]
$$

where $H_{n}^{(1)}$ is the Hankel function

$$
H_{n}^{(1)}=J_{n}+i Y_{n} .
$$

The argument of the Bessel functions is

$$
\left[(n \beta)^{2}-(j \pi R / H)^{2}\right]^{1 / 2}
$$

and the summation is carried out for all odd j such that

$$
j \leqslant n B H / \pi R .
$$

The program is set to calculate the sum for $n=1,2, \ldots, 400$ but seldom reaches $n=400$ due to overflow in Y_{n}. The output consists of the argument value for the largest j, the real part of S, the imaginary part of S, and the magnitude of S. This output is printed for each value of n. The program is stored as subset PINIF in PSS library COILS and may be accessed by the command

The values of the parameters BETA, R, and H may be changed, and the progr am may then be submitted to the 7600 computer. The output is disposed to the printer with the hold-out option, and it may then be claimed from a terminal. A listing of the program follows.

PINIF，1，100，170030，XXXXXX，BPADY
FLOOR（5）
FTN4，L＝LIST，ROUVO．
MATHLIG．
LINK，X，L＝＿IST，PF．
DI SPOS E，TAPE1＝PR，PA＝1F，HO，R＝\｛FLOOR 51．
CXIT．
039．
COPY．）AYFILE，LIST．
OISPOSE，LIST＝PR， $10, R=[F L O J R$ 51．
EXIT．
OUMP，S，L $=$ ．IST．
009．
COPY，JAYFILE，LIST．
OISPOSE，LIST＝PR，HO．R＝（FLOSR 51． PROGRAM PIVIF（INPUT，OUTP＇JT，TAPE1）
＊
＊this program caggulates the part of formula 7 contained
＊IV CUR＿Y 3RACKETS FROM THE JAPER • SUPPRESSION OF
＊CJHERENT RAOIATION BY ELECTRONS IN A SYNCYROTRON• BY JOHN S．
＊NOJVICく AND OAVID S．SAXJN PUBLISHED IN PHYISJAL REVIEW VOLUME
＊9j．NJyber 1．IV THIS PPOGRAM THE cISTANCE OF SEPARATION IS CALLED h
＊IVSTEAD OF 4．the calculatijn is done for v＝1．．．．．，403．
＊THIS PROGRAM IS STOREO AS SJBSET PINIF IN FSS LIZRARY COILS．
OIMENSION Y（3）
REA．JAY（3）
COMPLEX S．HAV（3）
CALL DATE（－） 5 WFITE（：，120）L
PI＝？．＊ACOS（0．）
$H=.35$
$\mathrm{P}=2$ 。
BETA＝1．
SETSQ＝9ETA＊＊？
$A 1=3 I * 2 / H$
$A 3=8 E T A / A_{1}$
WRITE（1，100） $3 E T A, R, H$
DO＋O N＝1， 4 C
JMAX $=A 3 * F L D A R(N)$
IF（？＊（JMAX／2）．EQ．JMAX）SMAX＝JMAX－1
IF（JMAX．GT．0）GO TO 1：
WRITE（1．111）N
GO FO 40
$\mathrm{S}=$ CMPLX（0．．O．）
DO $3 \mathrm{JJ} \mathrm{J}=1$ ，JMAX， 2
$A R G=S O R T((3 E T A * F L O A T(N)) * * 2-(A 1 * F L O A T(J)) * * 2)$
$N O R J=N-1$
CAL－BESYN（ARG，NORD，3，Y）
$A L P H A=F L O A T$（YORD）
CALL BESJ（ARJ，ALPHA，3，JAY，NZ）
$0020 \quad I=1,3$
$\operatorname{HAN}(I)=C M P L X(J A Y(I), Y(I))$
$A_{2}=.5 * 9 E T \leq 3$
IF（［．EQ．2）A ？$=-1$ 。
S＝S＋A2＊JAY（I）＊HAN（I）
CONT INUE
20 CONTINUE
$P=$ REAL（S）
AIS＝AIMAG（S）
SMAS＝SQRT（J＊＊2＋AIS＊＊2）
WRITE（1，11］）I，ARG，O，AIS，SMAG，JMAX
CONT INUE

STOD

10

 FORMAT(I5.: PE: 2.6. 3E12.'t, I5)
120 FORMAT(28X.A10//)
END

```
555555555.555555555.555555555.555555555.555555555.555555555.555555555.55555555
```



```
555555555.555555555.555555555. 555555555. 555555555. 555555 555.555555555.55555555
555555555. 555555555. 555555555.555555555.555555555.555555555.555555555.55555555
```



```
    A2<J 822
    **3<Y74J*C 16 APR 92 {4.jう..11.
F 0.76; ' PAGES: 134 PRINT LINES: ORINTEN 12, EO
B I L L 3 O A P O WRITEUPS SUSSET GKYNEHS WAS LAST CHANGEO OEC 14
    OCCUMENTATION WAS LAST CHANGED OCTOBER 2G - SEE
    THE HANOBOOK SUBSET CHANGES FOP DETAILS.
```

APR 16 RENT-A-TERMINALS
ONE VISTAR SATELLITE CFT ANO JNE TI 745 (SPECIAL DAPER). EJ BCY(IM (XE249)
APR 14 VEN VAX CLASS
AN 3 HOUR VAX JラER CLASS WILL BE GIVEN DJRING THE SECONO HALF CF APRIL.
STAPTING ON APRIL, 2O. TO FEGISTER. CALL LISA LJVG.X 5G47

IJ CALL A CJYSJLTANT JA:LK. 5981 . (415) 4865981 . OP. FTS 4515981

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

[^0]: *Sponsored by Defense Advance Research Projects Agency (DoD)
 ARPA Order No. 3718 , Amend. 37
 Monitored by NSWC under Contract No. N60921-81-LT-W0031

[^1]: *Sponsored by Defense Advanced Research Projects Agency, ARPA Order No. 3718, Amend. 37, Contract Number N60921-81-LT-W0031.

