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Abstract  28 

A grand challenge in global change research is understanding how the interaction of 29 

vegetation with the environment influences ecosystem gross primary productivity (GPP) 30 

through carbon assimilation. An evolving goal is to continuously predict GPP variability 31 

everywhere by finding a robust scaling relationship between flux tower GPP and satellite 32 

spectral reflectance. The footprint mismatch between the pixel size of many early satellite 33 

measurements and eddy flux measurements is a major hindrance in such an endeavor. By 34 

using a large set of growing season data covering 100 site-years in North and Central 35 

America, we explored the potential of transforming incident and reflected shortwave (Rg) 36 

and photosynthetically active radiation (PAR) measurements into a broadband 37 

normalized difference vegetation index (NDVI) and near-infrared (NIR) reflectance of 38 

vegetation (NIRv) which simultaneously explains the GPP variability. We found that the 39 

broadband NDVI and NIRv derived from Rg and PAR measurements at the daily time 40 

scale were highly correlated with Planet Fusion, Landsat-8/9, and Sentinel-2 narrowband 41 

NDVI and NIRv across a wide range of climate and ecological gradients. The differences 42 

between satellite and broadband NDVI and NIRv were found to be significantly 43 

associated with soil background variations, phenological stages, water stress and signal 44 

saturation of broadband NIR reflectance at high biomass. The seasonal variability of 45 

broadband NDVI and NIRv remarkably captured the seasonality of vegetation phenology, 46 

evaporative fraction, GPP and rainfall in different ecosystems. Although a saturation of 47 

GPP at high NDVI was evident, a linear relationship between broadband NIRv times 48 

incident PAR versus GPP indicated the strength of NIRv-based approach to capture the 49 

hidden light use efficiency impacts on GPP. We conclude that the inexpensive 50 
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measurement of Rg and PAR components can provide highly reliable information on 51 

NDVI, NIRv, and GPP uninterruptedly thereby augmenting the proximal sensing 52 

capability of the flux tower sites without the need for additional spectrometer 53 

measurements. The proposed in-situ vegetation indices make a stronger case on the use of 54 

radiation signals for handshaking between ecosystem-scale measurements and remote 55 

sensing observables relevant to carbon uptake. 56 

Keywords: Spectral reflectance, broadband, vegetation index, NIRv, gross primary 57 

productivity, photosynthetically active radiation, ecosystem, climate 58 
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1. Introduction 71 

Vegetation is an integral component of the biosphere influencing the variability of 72 

energy, water, and carbon dioxide fluxes (Ryu et al., 2012; Hoek van Dijke et al., 2020; 73 

Camps-Valls et al., 2021; Brown et al., 2017). Systematic information of biophysical 74 

metrics that describe vegetation vigor, phenological development, and biomass 75 

production are required to enhance our understanding of the flux variabilities in the 76 

climate system, for ecosystem monitoring and agricultural management practices (Brown 77 

et al., 2017; Richardson et al., 2010; Zhang et al., 2004, Sellers et al., 1997; Foley et al., 78 

2011; Godfray et al., 2010). Consequently, leaf area index (LAI) and fraction of absorbed 79 

photosynthetically active radiation (FAPAR) are identified as two of the essential climate 80 

variables by the Global Climate Observing System (GCOS).  81 

For the large-scale monitoring of vegetation development through remote sensing 82 

satellites, FAPAR and LAI are not available as direct measurements, and they need to be 83 

retrieved through complex radiative transfer models. However, there are two more 84 

biophysical metrics namely NDVI (Normalized Difference Vegetation Index) and GCC 85 

(Green Chromatic Coordinate) that are closely related to vegetation growth and 86 

development yet have a proximity with both FAPAR and LAI (Seyednasrollah et al., 87 

2019; Gitelson et al., 2019; Richardson et al., 2007, 2013; Hao et al., 2012). In this 88 

context, NDVI can be directly obtained from the amount of reflectance in red and near-89 

infrared (NIR, hereafter) regions of the electromagnetic spectrum. Similarly, GCC can 90 

also be directly calculated from the amount of reflectance in red, green, and blue regions 91 

(Richardson et al., 2007; Brown et al., 2017). 92 
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Using the theory of strong absorption of photosynthetically active radiation (PAR) in the 93 

red region and dissipation of energy through reflection of the NIR radiation, a vast body 94 

of literature explored the potential of satellite derived NDVI to understand the variability 95 

in gross primary productivity (GPP, hereafter) with vegetation growth and development 96 

(Ustin and Middleton, 2021; Liu et al., 2020, Magney et al., 2019, Huang et al., 2019; 97 

Prabhakara et al., 2015; Mutanga et al., 2023; Tesfaye and Awoke, 2021; Mutanga and 98 

Skidmore, 2004). An asymptotic pattern in NDVI at maximum vegetation growth became 99 

evident from all these studies, and NDVI yielded poor GPP estimates in evergreen 100 

vegetation (Pierrat et al., 2022) or during the peak seasons when vegetation reaches 101 

maturity (Mutanga et al., 2023; Mutanga and Skidmore, 2004). This saturation is 102 

attributed to the imbalance due to the insensitivity of chlorophyll absorbing red light at 103 

dense canopy cover (Kumar et al., 2001, Mutanga et al., 2023) versus a simultaneous rise 104 

in the NIR reflectance, apparently leading to negligible changes in NDVI. Studies 105 

showed that NIR reflectance scales with leaf nitrogen (Ollinger et al., 2011), and 106 

therefore NIR reflectance can be used as an index of photosynthetic capacity (Field and 107 

Mooney, 1986).  108 

Following the analogy of linearity between GPP versus the product of absorbed PAR and 109 

light use efficiency, NIR reflectance of vegetation (NIRv) (product of NDVI and NIR 110 

reflectance) is explored to understand the magnitude and variability of GPP at hourly-to-111 

daily and from ecosystem to global scale (Badgley et al., 2017; Baldocchi et al., 2020). 112 

The philosophy of linking GPP with NIRv is based on the fact that increasing biomass 113 

(leaf layer) in the canopy results in multiple scattering, which leads to significant changes 114 

in NIR reflectance in moderate-to-high vegetation density (LAI from 2 to 6) (Sellers et 115 
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al., 1997). Some of the more recent studies demonstrated a much tighter coupling when 116 

GPP is linked with the product of NIRv and incident PAR (Dechant et al., 2022). All 117 

these studies generated encyclopedic understanding on the pros and cons of NDVI and 118 

NIRv towards explaining the GPP variability across and within ecosystems. However, 119 

there are some open challenges. Firstly, how to bridge the scale gap in linking global 120 

remote sensing reflectance with eddy covariance GPP? Secondly, how to obtain the best 121 

and consistent NDVI and NIRv information at the same scale of flux tower GPP 122 

measurements? Thirdly, how to extrapolate the findings of a handful of ecosystems to 123 

global scale?    124 

Over the last decade, there has been great evolution on in-situ monitoring of phenology 125 

through the PhenoCam network (http://phenocam.sr.unh.edu/) (Richardson et al., 2013; 126 

Filippa et al., 2018; Petach et al., 2014; Browning et al., 2017; Burke et al., 2021; Zhou et 127 

al., 2020; Tian et al., 2021). The broad objective is to develop deep insights into the 128 

temporal variation in phenology across (within) different (same) ecosystems, and how 129 

this variability is driven by environmental factors such as radiation, temperature, and 130 

precipitation. PhenoCam provides data at an intermediate scale between ground 131 

observations and satellite remote sensing. This camera-based monitoring of vegetation 132 

phenology is standardized with consumer-grade digital cameras (e.g., Sonnentag et al., 133 

2012) which records a three-layer image (red, green, and blue: RGB) and a NIR 134 

monochrome image. Broadband NDVI can be calculated from these paired images, 135 

however, a correction is needed if the exposure between the two images is different and 136 

there is a need for empirical adjustments to make the camera NDVI match with satellite 137 

NDVI (Petach et al., 2014). Most of the cameras have a nearly horizontal field of view 138 



7 

 

with about a quarter of the image sky. This can lead to earlier green up and saturation as 139 

compared to PAR and shortwave radiation sensors with vertical fields of view that better 140 

match satellite imagery. Another disadvantage of camera-based approach is the 141 

pronounced variability in normalized channel brightness resulting from changes in 142 

quality and quantity of incident solar radiation (Richardson et al., 2007, Liu et al., 2022). 143 

Like the dedicated NDVI sensors, the PhenoCam network is a relatively new invention 144 

whereas many measurements of PAR and shortwave radiation extend much further back 145 

in time.   146 

One of the emerging utilities of FLUXNET are continuous observations of NDVI and 147 

NIRv for assessing the contribution of vegetation seasonality on energy, water, and 148 

carbon fluxes at the corresponding flux tower footprint (Hoek van Dijke et al., 2020). 149 

Despite satellite NDVI providing global coverage of vegetation vigor, current NDVI 150 

products suffer from trade-off between high (low)-spatial and low(high)-temporal 151 

resolution. While coarse spatial resolution (250 m) satellite observations are available as 152 

continuous time series (e.g., MODIS and VIIRS), finer spatial resolution vegetation 153 

information (10 – 30 m) is available only as a discrete time series (e.g., Sentinel-2 and 154 

Landsat8/9). Contamination of satellite observations due to the cloud interference brings 155 

hindrance while diagnosing the seasonal variation of vegetation attributes. Therefore, 156 

NDVI and NIRv at the ‘eyes and ears’ of the flux towers and at the temporal resolution of 157 

flux measurements is a critical requirement, especially since it is nearly impossible to 158 

measure LAI daily and without destruction. This could complement operational remote 159 

sensing data and document considerable diversity in plant development and seasonality in 160 
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greenness over the representative vegetation in which the flux towers operate. This will 161 

simultaneously complement and magnify the legacy research of PhenoCam.  162 

Many AmeriFlux sites are equipped with Decagon/METER (SRS-Ni, SRS-Nr) or 163 

Apogee (S2-111-SS, S2-112-SS, S2-411-SS, S2-412-SS) NDVI sensors on flux towers to 164 

capture the rapid change in ecosystem greenness and temporal variability of NDVI. 165 

However, these sensors have only been available since 2015, and the Decagon/METER 166 

model has already gone out of production. Both sensor models had early issues with 167 

stability as well (Anderson et al., 2016). The Apogee sensors have a similar cost to other 168 

research-grade radiation sensors (~$600 US). Thus, a major challenge concerns how to 169 

observe temporally continuous NDVI and NIRv at the flux tower sites accurately, 170 

inexpensively, and over the entire data record. 171 

Based on measurements of incident (i) and reflected (r) components of PAR (symbolized 172 

as Q in the equations and figures) (Qi, Qr) in conjunction with incident (i) and reflected (r) 173 

shortwave radiation (Rg) (Rg
i, Rg

r), Huemmrich et al. (1999) and Wilson and Meyers 174 

(2007) showed the possibility of estimating a robust broadband NDVI, but with limited 175 

evaluation with respect to spatially coarse satellite NDVI over a restricted number of 176 

sites. The approach has great potential as measurements of Q contain information on the 177 

visible waveband and greenness, and net flux of Rg - Q measurements inform us about 178 

infrared reflectance (shortwave minus visible). While Rocha and Shaver (2009) evaluated 179 

broadband NDVI and enhanced vegetation index (EVI) at a burnt and an unburnt site in 180 

the high latitude, Rocha et al. (2021) assessed the effects of solar position on the 181 

relationship between ecosystem function and NDVI derived from Rg - Q measurements. 182 

However, it remains unclear how well a broadband NDVI and NIRv perform in a range 183 



9 

 

of ecosystems and how they relate to carbon uptake when plants are exposed to large 184 

fluctuations of covarying biometeorological limits. Therefore, the current work seeks to 185 

address the following science questions and objectives: (SQ1) Can a broadband NDVI 186 

and NIRv retrieved from the flux tower shortwave and PAR measurements explain 187 

satellite NDVI and NIRv variability across ecosystems and climate of varying energy-188 

water availability limits? (SQ2) How effectively does the broadband NDVI capture the 189 

phenological changes and function of vegetation on the land surface? (SQ3) Can we use 190 

broadband NDVI and NIRv as a robust modulator of GPP across a wide range of 191 

energy-water availability? (SQ4) How does the background soil exposure variations, 192 

phenology, radiation components, and water stress impact the estimation of broadband 193 

NDVI? 194 

We present a cross-site synthesis of PAR and Rg observations to derive a broadband 195 

NDVI and NIRv (hereafter denoted as NDVIbb and NIRvbb) across a diverse range of 196 

ecosystems, water- and energy-limited conditions. NDVIbb and NIRvbb patterns and their 197 

seasonal variability were compared with satellite NDVI, NIRv, and GCC at multiple 198 

spatial scales from 3-30 m spatial resolution using PLANET Fusion (continuous time 199 

series) and Harmonized Landsat Sentinel (HLS) (discrete time series) datasets. We 200 

analyzed the relationship between NDVIbb, NIRvbb, and PAR variability with GPP to fill 201 

a critical scale gap between flux footprint, ecosystem, and satellite remote sensing. As a 202 

final test, we assessed the role soil background variations in different phenological stages, 203 

radiation components, and water stress variations on the performance of NDVIbb. 204 
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2. Materials and methods 205 

2.1. Estimating NDVIbb and NIRvbb 206 

Beer’s law already provides the theoretical link between incident, transmitted, and 207 

absorbed PAR versus leaf area. We hypothesize that from the net fluxes of PAR and Rg 208 

component measurements we can directly estimate NDVIbb and NIRvbb, which 209 

simultaneously explains GPP variability (Baldocchi et al., 2020; Wilson and Meyers, 210 

2007; Huemmrich et al., 1999). For estimating NDVIbb and NIRvbb, estimation of visible 211 

and near-infrared reflectance (vis,bb, nir,bb) in the broad visible (0.4 – 0.7 µm) and near-212 

infrared to shortwave infrared spectrum (0.7 – 3 µm) is needed. The derivation of 213 

NDVIbb is based on the theory of satellite narrowband NDVI. Vegetation shows strong 214 

absorption (85 – 90%) and low reflectance and transmittance (5 – 10%) in the visible 215 

wavelength. However, they show substantially higher reflectance, transmittance, and low 216 

absorption in the NIR radiation wavelength (Wilson and Meyers, 2007; Campbell and 217 

Norman, 1998). Figure 1a shows the conceptual diagram for estimating vis,bb and nir,bb 218 

from PAR and Rg measurements. 219 

 220 

 221 

 222 

 223 

 224 

 225 
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(a) 

 

(b) 

 

Figure 1: (a) Conceptual diagram showing the hypothesis for estimating broadband spectral 

reflectance from the measurements of hemispherical broadband radiation components in PAR and 

total shortwave spectral region. It also shows an example of the narrowband spectral reflectances 

that we obtain in red and near infrared spectral region from operational remote sensing satellite 

Landsat-9 (Source: https://landsat.usgs.gov/spectral-characteristics-viewer). VIS signified visible, 

NIR signifies near-infrared, MIR signifies mid-wave infrared. (b) Figure showing the scaling 

factor for converting PAR (both incident and reflected) from µmols/m2/s to W/m2 for a range of 

NDVI as an example over rice crop in California. 
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A pyranometer measures energy flux density in its native spectral range (0.3 – 3 µm) and 226 

the quantum sensor measures photon flux density in its native range (0.4 – 0.7 µm) (Fig. 227 

1). To produce a broadband NDVI that deduces the reflectance of energy, we need to do a 228 

transformation, starting with the principle of Planck’s law (E = hν, h = Planck’s constant 229 

and ν = frequency of radiation) and information on the incoming solar spectrum and 230 

reflected spectrum. Therefore, we used the incident and reflected PAR measurements in 231 

conjunction with incident and reflected Rg measurements to segregate vis,bb and nir,bb. 232 

The measurements of hemispherical broadband PAR and Rg components act as the 233 

proximal sensing data source to retrieve equivalent estimates of narrowband directional 234 

reflectances in red and NIR regions as obtained from remote sensing satellites (Fig. 1). 235 

The central wavelength of narrowband red and NIR directional reflectance of operational 236 

remote sensing satellite is around 0.66 (0.66) and 0.86 (0.86) µm. We hypothesize that 237 

separation of vis,bb and nir,bb from proximal sensing of broadband hemispherical PAR 238 

and Rg components are approximately equivalent to 0.66 and 0.86. Therefore,  239 

NDVIbb = (nir,bb - vis,bb)/(nir,bb + vis,bb) 240 

NDVIbb is considered as approximately equivalent proxy for the standard NDVI [NDVI = 241 

(0.66 - 0.86)/(0.66 + 0.86)]. The implication of approximating vis,bb  0.66 and nir,bb  242 

0.86 in different ecosystems are described in detail in section 3.4.  243 

At first, vis,bb was approximated from reflected (r) and incident (i) components of PAR 244 

(µmols/m2/s) measurements (symbolized as Q) as follows: 245 

vis,bb = Qr/Qi (1) 
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For estimating nir,bb, the shortwave radiation components (Rg
i and Rg

r) were partitioned 246 

into downward broadband visible (VISi,bb) and near-infrared (NIRi,bb) components 247 

following Weiss and Norman (1985) and Wilson and Meyers (1999), however with little 248 

modification. 249 

VISi,bb = kvisRg
i (2) 

Here kvis is the ratio of Qi and Rg
i, where Qi in µmols/m2/s was converted to W/m2 as 250 

(Qi/4.5946). This conversion factor is based on the energy of photons of visible light in 251 

0.4 – 0.7 µm region of the electromagnetic spectrum. Considering green wavelength 252 

(0.55 µm) as the central average wavelength in the entire visible band (0.4 – 0.7 µm), we 253 

can apply Planck’s law as E = hc/ = Nhc/. Where, h = Planck’s constant (6.626 x 10-34 254 

Js), c = speed of light (3 x 108 m/s), N = Avogadro number (6.022 x 1023 mol-1). By 255 

putting the central wavelength of Qi ( = 0.55 µm), we can derive the scaling factor (i.e., 256 

4.5946 µmols/joules) to convert Qi from µmols/m2/s to W/m2. Maximum plant 257 

photosynthesis occurs in the blue (0.44 µm) and red light (0.66 µm) (Liu and Van Iersel, 258 

2021). Putting these values in the conversion equation will make the conversion factor 259 

3.6757 µmols/joules and 5.5135 µmols/joules for blue and red bands, respectively. 260 

However, these are the maximum and minimum conversion factors. Averaging these 261 

three conversion factors from blue, green, and red leads to the mean value of 4.5946 262 

µmols/joules. Alternatively, by applying Planck’s law at every 0.01 µm interval within 263 

the visible spectrum, followed by integration over the entire visible band also results in 264 

the same value. Thus, for every datapoint kvis varies instead of assuming a constant 265 

(Weiss and Norman, 1985; Wilson and Meyers, 1999).  266 

https://www.frontiersin.org/articles/10.3389/fpls.2021.619987/full
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NIRi,bb = knirRg
i  (3) 

Given there is no universal consensus on converting the energy of photons from µmols to 267 

watts beyond the visible region, we cannot apply the same factor to estimate knir from the 268 

reflected components of PAR and Rg for the NIR region. The conversion factor of 4.5946 269 

µmols/joules is applicable for Qi as we have Planck's law and a known solar spectrum. 270 

However, the reflected light is filtered and the filtering changes with season, leaf area, 271 

soil etc. Until now, there is no report on a scaling factor for converting reflected PAR 272 

from the molar to energy unit. Deriving such a scaling factor needs hyperspectral data of 273 

reflected PAR and shortwave radiation spectra. The UC Berkeley Biomet lab had 274 

collected reflected PAR and shortwave radiation spectra over rice, and we have computed 275 

this scaling factor for the reflected PAR for different classes of NDVI (Fig. 1b). While 276 

the conversion factor for the incoming PAR changes marginally with NDVI (4.56 – 4.60 277 

µmols/joules), the conversion factor for the reflected PAR changes with season from 4.78 278 

to 4.64 µmols/joules (Fig. 1b). The conversion factor of 4.72 µmols/joules is the average 279 

value for the reflected PAR as derived from the available observations in rice. Computing 280 

this value over other vegetation types is not within the scope of this study since it needs 281 

hyperspectral measurements.  282 

In the present case, we estimate  knir as (1 -  kvis). This gives us the advantage that no 283 

additional uncertainty is introduced due to the conversion from molar unit to energy unit 284 

for Qr. This is also another reason that we did not adopt the approach of Huemmrich et al. 285 

(1999) to bypass any uncertainty for converting the reflected component of PAR from 286 

molar to energy unit. 287 
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From the partitioning of VISi,bb, the reflected upward broadband visible component 288 

(VISr,bb) is estimated as follows. 289 

VISr,bb = vis,bbVISi,bb (4) 

For estimating the upward reflected broadband near-infrared (NIRr,bb), we used the Rg
r 290 

(W/m2) measurements as follows. 291 

NIRr,bb = Rg
r  - VISr,bb (5) 

From the information of NIRr,bb and NIRi,bb, we can now estimate nir,bb as follows. 292 

nir,bb = NIRr,bb/NIRi,bb (6) 

From eqs. (1) and (6), VIbb is computed as follows. 293 

NDVIbb = (nir,bb - vis,bb)/(nir,bb + vis,bb) 

 

(7) 

Reflected near‐infrared radiation from the vegetation, NIRvbb, was calculated in terms of 294 

a renormalized NDVIbb times broadband NIR reflectance (nir,bb) (NIRvbb = 295 

NDVIbb*nir,bb) (Baldocchi et al., 2020; Badgley et al., 2019). 296 

The daytime PAR and Rg components measured between 10:00 to 14:00 h were used for 297 

computing vis,bb and nir,bb. The purpose of selecting this time slot is, all the operational 298 

remote sensing satellites have equatorial crossing time either around 10:00 – 11:00 h 299 

(Terra platform) or around 13:00 – 14:00 h (Aqua platform) (Wilson and Meyers, 2007). 300 

Thus, the comparison between satellite versus broadband NDVI will be coherent in this 301 

way. The daily values of vis,bb and nir,bb was estimated by averaging their 30-min values 302 

from 10:00 to 14:00 h, followed by the calculation of NDVIbb and NIRvbb. 303 
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It is important to remember that satellite NDVI accounts for the signals of the entire field 304 

of view of the sensors. Based on the spatial resolution of the sensors, there is a possibility 305 

of inclusion of background soil reflectance in satellite NDVI due to different soil 306 

reflectance factors in red and NIR wave bands. Such possibility also exists while deriving 307 

NDVIbb from PAR and Rg measurements at the flux tower sites. For instance, in the 308 

deciduous vegetation and annual crops, early and late in the growing season when leaf 309 

area is small, the soil background can be seen by the sensors. The background reflectance 310 

can substantially influence the spectral reflectance (both for satellite and proximal) from 311 

the closed canopy due to multiple scattering in the NIR and SWIR bands. The extent of 312 

such background effects will be different in two methods of estimating NDVI. We 313 

anticipate that the impact of variations in soil background will be consequently reflected 314 

in their comparison.  315 

2.2. Sites and data 316 

The site locations, biome, vegetation type, climate and associated information are listed 317 

in Table 1. The analysis was carried out for cropland (CRO), grassland (GRA), woody 318 

savanna (WSA), open shrubland (OSH), forest (FOR), and nontidal wetlands (WET). 319 

These are AmeriFlux (11 sites) and NEON (14 sites) sites with publicly available data 320 

accessible through the respective AmeriFlux web pages. Seven out of eleven AmeriFlux 321 

site are from University of California, Berkeley, Biometeorology lab 322 

(https://nature.berkeley.edu/biometlab/sites.php) and the sites characteristics are 323 

published by the group (Baldocchi et al., 2020; Eichelmann et al., 2018; Hemes et al., 324 

2019; Ma et al., 2016). The remaining four AmeriFlux sites are maintained by University 325 

of Nebraska (US-Ne3), University of Illinois (US-UiA, US-UiB), and United States 326 
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Department of Agriculture (US-Wkg), respectively. The description of the NEON sites is 327 

available in the NEON web page (https://www.neonscience.org/field-sites/explore-field-328 

sites) and also in the site information of AmeriFlux 329 

(https://ameriflux.lbl.gov/sites).Croplands were a mix of rainfed (Ne3, UiA, UiB, xSL) 330 

and irrigated sites (Bi1, Bi2). While Bi2 received subsurface flooding irrigation, Bi1 331 

received subsurface ditch irrigation (Bi2 receives a single irrigation in July-August, Bi1 332 

receives 2 irrigations around May-June and August-September). Irrespective of single 333 

and multiple cropping systems, majority of the sites are covered with temporary crops 334 

followed by harvest and a bare soil period (Ne3, UiA, UiB, xSL). The time period of data 335 

availability for the individual sites are also mentioned in Table 1. 336 

Table 1. Sites characteristics where both incident and reflected photosynthetically active 337 
radiation measurements are available (Superscripts, P = PLANET fusion; HLS = 338 

Harmonized Landsat and Sentinel); Planet fusion: 01/2018 – 12/2021; Landsat: 01/2014 – 339 

12/2021; Sentinel-2: 01/2016 – 12/2021) 340 

Biome Site Vegetation type Latitude, 

Longitude 

P (mm) Climate 

type 

Time 

period 

Reference 

CRO Bi1P, HLS  Alfalfa 38.0992, -

121.4993 

338 Csa 2016 – 

2021 

Wang et al. 

(2023) 

 Bi2 P, HLS  Corn 38.1091, -

121.5351 

338 Csa 2017 – 

2021 

Baldocchi et al. 

(2020) 

 Ne3HLS  Corn-soybean  41.1797, -

96.4397 

783 Dfa 2003 – 

2021 

Suyker et al. 

(2005) 

 UiAHLS Switchgrass 40.0646, -

88.1961 

1051 Dfa 2015 Blackely et al. 

(2022) 

 UiBHLS  Miscanthus 40.0628, -

88.1984 

1051 Dfa 2014 – 

2016 

Blackely et al. 

(2022) 

 xSLHLS  Mixed 40.4619, -

103.0293 

432 Bsk 2017 – 

2021 

Metzger et al. 

(2019) 

GRA xAEHLS Herbaceous 35.4106, -

99.0588 

780 Cfa 2017 – 

2021 

Metzger et al. 

(2019) 

 xCPHLS Herbaceous 40.8155, -

104.7456 

320 Bsk 2017 – 

2021 

Metzger et al. 

(2019) 
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 xKAHLS Herbaceous 39.1104, -

96.6129 

850 Cfa 2017–- 

2021 

Metzger et al. 

(2019) 

 xKZHLS Herbaceous 39.1008, -

96.5631 

870 Cfa 2017–- 

2021 

Metzger et al. 

(2019) 

 Var P, HLS Herbaceous 38.4133, -

120.9508 

559 Csa 2000 – 

2021 

Baldocchi et al. 

(2020) 

 WkgHLS Herbaceous 31.7365, -

109.9419 

407 Bsk 2004 – 

2021 

Scott et al. 

(2010) 

WSA TonP, HLS Herbaceous, 

understory  

38.4309, -

120.9660 

559 Csa 2001 – 

2021 

Baldocchi et al. 

(2020) 

 xSJHLS Herbaceous, 

understory 

37.1088, -

119.7323 

540 Csa 2018 – 

2021 

Metzger et al. 

(2019) 

OSH xJRHLS woody (evergreen 

or deciduous) 

32.5907, -

106.8425 

270 Bsk 2017 – 

2021 

Metzger et al. 

(2019) 

 xNQHLS woody (evergreen 

or deciduous) 

40.1776, -

112.4524 

288 Dfb 2017–- 

2021 

Metzger et al. 

(2019) 

 xSRHLS woody (evergreen 

or deciduous) 

31.9107, -

110.8355 

346 Bsk 2017 – 

2021 

Metzger et al. 

(2019) 

FOR xABHLS ENF 45.7624, -

122.3303 

2450 Csb 2017 – 

2021 

Metzger et al. 

(2019) 

 xBLHLS DBF 39.0603, -

78.0716 

983 Cfa 2017 – 

2021 

Metzger et al. 

(2019) 

 xDLHLS MF 32.5417, -

87.8039 

1372 Cfa 2017 – 

2021 

Metzger et al. 

(2019) 

 xHaHLS DBF 42.5369, -

72.1727 

1071 Dfb 2017 – 

2021 

Metzger et al. 

(2019) 

 xJEHLS ENF 31.1948, -

84.4686 

1307 Cfa 2017–- 

2021 

Metzger et al. 

(2019) 

WET MybP,HLS herbaceous, 

woody 

38.0499, -

121.7650 

338 Csa 2010 – 

2021 

Arias-Ortiz et al. 

(2021) 

 TW1P,HLS herbaceous 38.1074, -

121.6469 

421 Csa 2012 – 

2020 

Baldocchi et al. 

(2020) 

 TW4P,HLS  herbaceous 38.1027, -

121.6413 

421 Csa 2013 – 

2021 

Eichelmann et 

al. (2018) 

P: Annual precipitation (mm) 341 

Bsk: Steppe: warm winter; Cfa: Humid Subtropical: mild with no dry season, hot summer; Csa: 342 
Mediterranean: mild with dry, hot summer; Csb: Mediterranean: mild with dry, warm summer; Dfa: Humid 343 
Continental: humid with severe winter, no dry season, hot summer; Dfb: Warm Summer Continental: 344 
significant precipitation in all seasons. 345 

CRO: cropland; GRA: Grassland; WSA: Woody savanna; OSH: Open shrubland; FOR: Forest; WET: 346 
Wetland; ENF: Evergreen needleleaf forest; DBF: Deciduous broadleaf forest; MF: Mixed forest 347 
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2.3. Measurements: Radiation and Energy Flux Density and Biophysical 348 

Conditions 349 

The incident and reflected PAR (Qi and Qr) measurements were made with upward and 350 

downward facing quantum sensors (Kipp & Zonen, PAR‐Lite or PQS1) at each tower. 351 

The shortwave radiation components were measured by pyranometers, one facing upward 352 

for measuring the incident component (Rg
i) and the other looking downward for 353 

measuring the reflected component (Rg
r) (Kipp & Zonen, CNR1 or Hukseflux NR01). A 354 

suite of meteorological variables was measured in conjunction with the mass and energy 355 

flux measurements. Air temperature and relative humidity were measured once every 10 356 

seconds (0.1Hz) with Vaisala HMP45 RH/Temp sensors, with fan-aspirated solar shields 357 

to represent ambient air and prevent solar heating. These data were then stored as a 30-358 

min average. 359 

Fluxes were calculated from high-frequency (20 Hz) continuous recordings of 360 

temperature, water vapor, and CO2 concentrations, along with three-dimensional 361 

measurements of wind velocities using infrared gas analyzers and a 3-D sonic 362 

anemometer mounted on a scaffold or a tower structure at each site. High-frequency data 363 

were integrated to 30-min intervals, and half-hourly fluxes were calculated from the 364 

covariance between fluctuations in the vertical wind velocity and concentrations of 365 

greenhouse gasses and energy. Common across sites are flux corrections and quality 366 

control, which include high-frequency data despiking, 2-D coordinate rotations, sensor 367 

separation distance, density corrections, and site-specific friction velocity (u*) filtering 368 

(Leuning, 2007, Wang et al., 2023).  369 
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Net CO2 exchange was partitioned into ecosystem respiration and gross photosynthesis 370 

(GPP) (symbolized as AG in figures and equations) by training an Artificial Neural 371 

Network on nighttime CO2 fluxes (Biomet lab sites) or by applying partitioning 372 

algorithms based on the short-term temperature sensitivity of respiration and nighttime 373 

CO2 fluxes to extrapolate respiration from nighttime to daytime periods and thus predict 374 

ecosystem respiration at all times (Reichstein et al. 2005). Regardless of the partitioning 375 

method, AG was estimated as the sum of measured net CO2 exchange and estimated 376 

ecosystem respiration. AG and surface energy balance fluxes measured between 10:00 to 377 

14:00 h were averaged from their 30-min values to support the analysis of NDVIbb and 378 

NIRvbb.  379 

Continuous measurements of leaf area index (LAI) were available from the University of 380 

California, Berkeley, Biometeorology lab for the Tonzi Ranch site. Three identical 381 

consumer grade point-and-shoot digital cameras (PowerShot A570IS, Canon, Japan) 382 

were used to quantify LAI continuously and details are available in Ryu et al. (2012). The 383 

cameras were leveled at 1 m height with the lens pointed towards the zenith. They were 384 

approximately 50 m apart and set to a maximum wide angle (focal length of 5.8 mm), 385 

automatic exposure, aperture priority mode and minimum aperture (F/2.6). These settings 386 

yielded a view zenith angle from 0 to 32° diagonally. The Canon Hack Development Kit 387 

(CHDK) (CHDK Project, http://chdk.wikia.com) was installed on the flash memory cards 388 

of the cameras to extend their capabilities, including digital repeat photography through a 389 

simple script written in uBasic (Sonnentag et al., 2012). The cameras were turned on and 390 

off with data loggers (CR200, CR10X, Campbell Scientific Inc., USA). 391 
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2.4. Remote sensing data 392 

Three different satellite datasets, namely Planet Fusion and Harmonized Landsat 393 

Sentinel-2 (HLS) are used with spatial resolution varying between 3 and 30 m, 394 

respectively. Planet Fusion data was available from 2017 to 2021 as a daily continuous 395 

time series and HLS data was available from 01/2014 (Landsat) and 01/2016 (Sentinel-2) 396 

as a daily discrete time series at 3 - 5 days interval. Although HLS data is continuously 397 

generated, the Ameriflux database was updated until 12/2021 at the time of start of this 398 

analysis, and therefore the present analysis is restricted up to year 2021. 399 

Planet Labs’ Planet Fusion data set comes from a constellation of more than 100 400 

CubeSats in low earth orbit. This provides high resolution (3m x 3m pixels) and high 401 

frequency revisits (<1day) but adds the complications of integrating data from many 402 

sensors, cross-calibration, and atmospheric contamination.  The Planet Fusion processing 403 

combines this high resolution CubeSat data with MODIS/VIIRS, Landsat-8, and 404 

Sentinel-2 imagery to create a daily, gap filled product that is radiometrically accurate, 405 

and free of clouds and shadows. The technical specification can be found in 406 

https://assets.planet.com/docs/Planet_fusion_specification_March_2021.pdf. The Planet 407 

Fusion data was only available for seven UC Berkeley Biomet lab sites (Table 1) (US-408 

Bi1, US-Bi2, US-Var, US-Ton, US-Myb, US-TW1, US-TW4). Therefore, comparison 409 

and evaluation of VIbb and NIRvbb at 3 m spatial resolution was restricted to seven sites. 410 

For analyzing and comparing NDVIbb with Planet Fusion at 3 m spatial resolution, we 411 

extracted the radiation & associated meteorological variables, surface energy balance and 412 

carbon fluxes, and ancillary hydrological variables (soil moisture and precipitation) of 413 
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seven Biomet sites of California corresponding to the Planet Fusion data availability 414 

period. 415 

HLS data was available across all the 25 sites. The HLS products take input data from the 416 

joint National Aeronautics and Space Administration-United States Geological Survey 417 

(NASA-USGS) Landsat-8 and Landsat-9 (L8/9, hereafter) and the European Space 418 

Agency (ESA) Sentinel-2A and Sentinel-2B (S2, hereafter) satellites to generate a 419 

harmonized, analysis-ready surface reflectance data product with observations every two 420 

to three days (https://www.earthdata.nasa.gov/esds/harmonized-landsat-sentinel-2) 421 

(Claverie et al., 2018). HLS data for all the sites were acquired for the central pixel of the 422 

tower sites through NASA AppEEARS (The Application for Extracting and Exploring 423 

Analysis Ready Samples, https://appeears.earthdatacloud.nasa.gov/). AppEEARS enables 424 

users to acquire datasets using coordinate, temporal, and band/layer information. For 425 

analyzing and comparing NDVIbb with HLS data at 30 m spatial resolution, we extracted 426 

the radiation & associated meteorological variables, surface energy balance and carbon 427 

fluxes, and ancillary hydrological variables (soil moisture and precipitation) of all the 25 428 

sites corresponding to the data availability time-period of L8/9 (01/2014 – 12/2021) and 429 

S2 (01/2016 – 12/2021), respectively. 430 

While we computed NDVI and NIRv from red and near-infrared surface reflectance as 431 

described in Baldocchi et al. (2020) and Badgley et al. (2019), we compared NDVIbb and 432 

NIRvbb against daily NDVI and NIRv from Planet Fusion and HLS (both L8/9 and S2) 433 

covering the time frame of both the datasets. The entire analysis is performed across 25 434 

flux tower sites of Ameriflux that covers a broad spectrum of ecosystems and energy-435 

water availability limits. For Planet Fusion, we used 5x5 pixel average values of 436 
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calculated NDVI and NIRv for all daily scenes around each flux tower sites (seven sites) 437 

of Biomet lab. For HLS, we acquired data over the central pixel of the flux tower location 438 

and conducted the subsequent evaluation.  439 

2.5. Evaluation method 440 

To evaluate NDVIbb and NIRvbb with respect to the satellite vegetation indices across 441 

different ecosystems and climate (SQ1), we used coefficient of determination (R2), bias, 442 

root mean squared difference (RMSD), normalized root mean squared difference 443 

(nRMSD, in percent), and systematic root mean squared difference (sRMSD, in percent) 444 

as statistical metrics (Fig. 3 – 8; section 3.1). To assess the efficacy of NDVIbb in 445 

capturing the phenological changes and vegetation function (SQ2), we computed the 446 

mean seasonal variation of NDVIbb and satellite NDVI in terms of the daily mean values 447 

normalized by their annual mean (Baldocchi et al., 2021) and examined their responses to 448 

green chromatic coordinate (GCC) and evaporative fraction (ratio of latent heat flux and 449 

net available energy) (FE). While GCC is used as a phenological metric to assess the 450 

responses of NDVIs with the progression from low vegetation cover (or senescent 451 

vegetation) until the peak vegetation, FE indicates the biophysical response of vegetation 452 

at different developmental stages (Fig. 9 – 10; section 3.2). To understand the 453 

explanatory potential of NDVIbb and NIRvbb to the GPP variability (SQ3), we followed a 454 

two-step procedure. We first verified the intraseasonal variability (coefficient of 455 

variation, CV) in NDVIbb  and NIRvbb by comparing them with the intraseasonal 456 

variability of GPP and corresponding precipitation variability for the growing season. 457 

Growing seasons includes all the days of spring, summer, and early autumn (i.e., periods 458 

April to middle October). We subsequently used both these indices in conjunction with 459 
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EC GPP measurements to examine their relationship for range of energy-water 460 

availability limits (Fig. 11 – 12; section 3.3). To understand the effects of soil 461 

background variations and phenological progression on NDVIbb retrieval and its 462 

consequent impact on NDVIbb-NDVI difference (SQ4), we also adopted a two-step 463 

analysis. At the first step, we examined NDVIbb-NDVI difference (NDVI) with respect to 464 

GCC from senescent vegetation or bare soil to the peak vegetation stage. In this analysis, 465 

we used Soil Adjusted and Atmospherically Resistant Vegetation Index (SARVI) (Qi et 466 

al., 1994; Kaufman et al., 1992) as a third variable to simultaneously understand the 467 

impacts of soil background variations on NDVI during different phenological stages (Fig. 468 

13; section 3.4). At the second step, we analyzed the effects of individual radiation 469 

components on the performance of broadband hemispherical reflectances with respect to 470 

satellite directional reflectances (Fig. 14 – 16; section 3.4) across ecosystems. Same 471 

analysis is also performed for a range of energy-water availability limits and described in 472 

Appendix A4 (Fig. A3 – A5).   473 

3. Results and discussion 474 

To answer the four science questions, we organized the results and discussion into four 475 

sub-sections (3.1 to 3.4). The sequence of results and the corresponding figure numbers 476 

are in the order of the following progression. 477 
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Figure 2: An illustrative diagram showing the sequence of results corresponding to the science 

questions (SQs) and the respective figure numbers associated with the description of results falling 

under individual science question. 

3.1. Multiscale evaluation of broadband NDVI and NIRv across different 478 

ecosystems and climate (SQ1) 479 

Planet Fusion evaluation: The scatterplots of NDVIbb versus Planet Fusion NDVI (Fig. 480 

3-6) revealed a robust, stable, and linear relationship at all the four different ecosystems 481 

across seven EC flux tower sites of UC Berkeley Biomet lab in California. When all the 482 

data points of corn and alfalfa were combined, the goodness of fit of linear regression 483 

revealed NDVIbb to explain 86% of the variation of Planet Fusion NDVI (R2 = 0.86) at 484 

the croplands (CRO) with bias, RMSD and sRMSD of 0.02, 0.08 and 52% for a wide 485 

range of available energy-water limit (represented through evaporative fraction, FE). In 486 

CRO, the unexplained variation in NDVIbb at a given NDVI was larger for NDVI>0.7, 487 

which also corresponded to high water and available energy limits (Fig. 3a). Besides, 488 

some unexplained variation in NDVIbb at a given NDVI was also evident in CRO for low 489 
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NDVI (NDVI: 0.35 – 0.40) and low FE (FE: 0.3 – 0.4), which ultimately led to relatively 490 

less dense scatters around low NDVI region. 491 

(a) CRO 

 

(b) Temporal dynamics 

 

Figure 3: (a) Plots of NDVIbb and NIRvbb versus Planet Fusion NDVI and NIRV (3 m spatial resolution) in the 

Californian cropland ecosystems for NDVI>0.25 for a range of evaporative fraction (FE) representing stressed to 

unstressed conditions. FE is an indicator of water availability and denotes the ratio of evaporation (latent heat 

flux) to equilibrium evaporation. (b) Temporal dynamics of NDVIbb (black dots) and NDVI (green dots) along 

with daily precipitation (P) (blue stairs) shows close correspondence between them in Alfalfa [Bi1] and Corn 

[Bi2]. 

Same analysis by combining data of grassland (GRA) and woody savanna (WSA) sites 492 

revealed low range of NDVI in both the datasets with low mean 0.44 – 0.48 and median 493 

0.43 – 0.50 as compared to CRO (mean 0.57 – 0.61 and median 0.58 – 0.63). Due to the 494 
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strong water limitations, these ecosystems very rarely form a closed canopy cover, 495 

ultimately leading to low mean NDVI. The goodness of fit of linear regression revealed 496 

NDVIbb to explain 47% of the variation of Planet Fusion NDVI (R2 = 0.47) (Fig. 4a), 497 

which is substantially lower as compared to CRO. Consequently, bias and RMSD was 498 

also higher (0.04 and 0.11) than the croplands (Fig. 4a). Some exceptionally high 499 

magnitude of NDVIbb was evident at low satellite NDVI (0.3 – 0.5), which corresponded 500 

to unstressed conditions in GRA-WSA (Fig. 4a). 501 

(a) GRA and WSA 

 

(b) Temporal dynamics 

 

Figure 4: (a) Plots of NDVIbb and NIRvbb versus Planet Fusion NDVI and NIRV (3 m spatial resolution) in water-

limited Californian grassland (GRA) and woody savanna (WSA) ecosystems for NDVI>0.25 for a range of 

S
tr

e
ss

e
d

u
n

st
re

ss
e

d

W
a

te
r-

lim
it

E
n

e
rg

y
-

lim
it



28 

 

evaporative fraction (FE) representing stressed to unstressed conditions. FE is an indicator of water availability 

and denotes the ratio of evaporation (latent heat flux) to equilibrium evaporation. (b) Temporal dynamics of 

NDVIbb (black dots) and NDVI (green dots) along with daily precipitation (P) (blue stairs) shows close 

correspondence between them especially in the grassland [Var] and partly in woody savanna [Ton]. 

In comparison to CRO and GRA-WSA, scatterplot of NDVIbb versus Planet Fusion 502 

NDVI at the wetland (WET) sites revealed relatively lesser spread (Fig. 5a) with a mean 503 

and median of 0.51 – 0.52, respectively. NDVIbb explains 66% of the variations in Planet 504 

Fusion NDVI (R2 = 0.66), with a relatively low bias (-0.01), RMSD (0.06) and sRMSD 505 

(17%) for the entire range of available energy and limits. The seasonal dynamics of daily 506 

NDVIbb at the representative sites (Fig. 3b, 4b, 5b) revealed a close resemblance with 507 

satellite NDVI for the respective tower pixel at almost all the sites, except at the WSA 508 

(Tonzi ranch) (Fig. 4b). Despite the rising and falling behavior of NDVIbb was well 509 

coordinated with the satellite NDVI at WSA, substantial differences between NDVIbb and 510 

Planet Fusion NDVI is also evident as the magnitude NDVI declined with the 511 

progression of summer (Fig. 4b). This implies that NDVIbb could not efficiently capture 512 

the very low NDVI magnitude of the open canopy architecture at woody savanna during 513 

the water stressed summer months.   514 

(a) WET 

 

(b) Temporal dynamics 
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Figure 5: (a) Plots of NDVIbb and NIRvbb versus Planet Fusion NDVI and NIRV (3 m spatial resolution) in 

Californian wetland ecosystems (non-tidal) for NDVI>0.25 for a range of evaporative fraction (FE) representing 

stressed to unstressed conditions. FE is an indicator of water availability and denotes the ratio of evaporation 

(latent heat flux) to equilibrium evaporation. (b) Temporal dynamics of NDVIbb (black dots) and NDVI (green 

dots) along with daily precipitation (P) (blue stairs) shows close correspondence between them in both East End 

and Mayberry. 

Comparison of NIRvbb versus satellite NIRv revealed NIRvbb to explain 48 – 87% 515 

variation in satellite NIRv (R2 varying from 0.48 – 0.87; mean R2: 0.79) (Fig. 3a, 4a, 5a, 516 

6), RMSD (varying from 0.02 – 0.09; mean RMSD: 0.05), and sRMSD (varying from 35 517 

– 92%; mean sRMSD: 70%) for a broad range of FE. A distinct saturation in NIRvbb 518 

signal around NIRvbb> 0.3 and asymptotic behavior in NIRvbb was evident in CRO and 519 

WET with increasing satellite NIRv. While this saturation of NIRvbb corresponded to 520 

high FE (>0.7) (Fig. 3a) at the CRO sites, the saturation of NIRvbb corresponded to both 521 

high and low FE at the WET sites (Fig. 5a). Nevertheless, by combining data of all the 522 

sites, the overall performance of NDVIbb and NIRVbb appeared to be stable (Fig. 6). The 523 

range of NDVIbb and NIRVbb obtained from the net fluxes of PAR and RG are comparable 524 

with the magnitude and dynamics of satellite NDVI and NIRV within and across different 525 

ecosystems falling under the same climatic setting. 526 
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Figure 6: Pooled evaluation plots of NDVIbb and NIRvbb versus Planet Fusion NDVI and NIRV (3 m spatial 

resolution) by combining all the seven sites of Californian ecosystems for a range of evaporative fraction (FE) 

representing stressed to unstressed conditions. FE is an indicator of water availability and denotes the ratio of 

evaporation (latent heat flux) to equilibrium evaporation. 

Landsat & Sentinel evaluation: Analysis of NDVIbb and NIRvbb derived from Qi and Qr 527 

measurements in all 25 sites with respect to HLS NDVI and NIRV  provided another 528 

assessment of NDVIbb and NIRvbb in energy- and water-limited environments across 529 

diverse ecosystems. Our analysis revealed that NDVIbb consistently captured the 530 

variations in NDVI when compared with both L8/9 and S2 sensors (Fig. 7; Fig. 8). While 531 

the mean and median NDVIbb at the energy-limited ecosystems was found to be 0.56 532 

(0.52 for HLS) and 0.59 (0.53 for HLS), these metrics were 0.41 (0.34 for HLS) and 0.38 533 

(0.31 for HLS) in the water-limited ecosystems. Four distinct features are notable from 534 

this analysis. Firstly, the scatterplots of NDVIbb versus satellite NDVI showed significant 535 

spread in the energy-limited ecosystems for both L8/9 and S2 across the entire range of 536 

FE (Fig. 7a, c). Secondly, the statistical metrics of NDVIbb with respect to NDVI were 537 

very similar across the sensors, with higher coefficient of determination for S2 (R2 = 538 

0.59) as compared to L8/9 (R2 = 0.43) and lower systematic difference in L8/9 as 539 

compared to S2 (Fig. 7a, c).  540 
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(a) Energy-limited (L8/9) 

 

(b) Temporal dynamics energy-limited (L8/9) 

 

(c) Energy-limited (S2) 

 

(d) Temporal dynamics energy-limited (S2) 

 

Figure 7: (a, c) Plots of NDVIbb and NIRVbb versus Landsat and Sentinel-2 NDVI and NIRV (30 m spatial resolution) 

in energy-limited ecosystems of Biomet and NEON sites. Color shading is done by evaporative fraction (FE) showing 

stressed to unstressed conditions which corresponds to water and energy limits within the energy-limited environment. 

(b, d) Illustrative examples of temporal dynamics of NDVIbb (black dots) and NDVI (green dots) along with daily 

precipitation (P) (blue stairs) showing close correspondence in the seasonal and interannual variability of NDVIbb and 

NDVI at the NEON sites Blandy Experimental Farm (xBL) and Dead Lake (xDL). 

 

Thirdly, the agreement between NDVIbb versus satellite NDVI and NIRvbb versus 541 

satellite NIRV was much stronger (with less systematic difference) in the water-limited 542 

ecosystems (R2 = 0.59 – 0.66 and 0.69 – 0.74; sRMSD: 33 - 42% and 49 - 54%) as 543 

compared to energy-limited ecosystems (R2 = 0.44 – 0.49 and 0.41 – 0.46; sRMSD: 48 - 544 

57% and 76 - 77%). Fourthly, a marked asymptotic pattern and saturation in NIRvbb was 545 

evident with increasing satellite NIRV (>0.3)  (Fig. 7a, c; Fig. 8a, c) in both the climatic 546 

limits. This resulted in large differences and high RMSD between NIRvbb versus satellite 547 

NIRV across the entire range of FE. The seasonal dynamics of NDVIbb at the 548 

representative cropland and grassland sites in the water-limited ecosystems revealed a 549 

close resemblance with satellite NDVI for the respective tower pixel at each site (Fig. 8b, 550 
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d). A detailed description of ecosystem wise analysis by combining data of both L8/9 and 551 

S2 is given in Appendix A1, Fig. A1, Table A1 (for L8/9) and Table A2 (for S2), 552 

respectively. 553 

(a) Water-limited (L8/9) 

 

(b) Temporal dynamics water-limited (L8/9) 

 

(c) Water-limited (S2) 

 

(d) Temporal dynamics water-limited (S2) 

 

Figure 8: (a, c) Plots of NDVIbb and NIRVbb versus Landsat and Sentinel-2 NDVI and NIRV (30 m spatial resolution) in 

water-limited ecosystems of Biomet and NEON sites. Color shading is done by evaporative fraction (FE) showing 

stressed to unstressed conditions which corresponds to water and energy limits within the water-limited environment.  

(b, d) Illustrative examples of temporal dynamics of NDVIbb (black dots) and NDVI (green dots) along with daily 

precipitation (P) (blue stairs) showing close correspondence in the seasonal and interannual variability of NDVIbb and 

NDVI over Bouldin corn (Bi2), Vaira ranch (Var) and two grasslands sites of NEON Konza Prairie Biological Station 

(xKA and xKZ). 

To understand the explanatory potential of NDVIbb in tracking the variation in LAI, we 554 

also analyzed NDVIbb with respect to continuous LAI observations at the Tonzi ranch site 555 

(detailed explanations are in Appendix A2; Fig. A2). 556 

It is further important to emphasize that in the comparisons between broadband versus 557 

satellite NDVI, we do not expect to see an ideal 1:1 relationship. Discrepancies between 558 

these two indices could arise, (i) due to the differences in bandwidths for the bands used 559 
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in satellite and broadband vegetation indices and (ii) due to comparing broadband 560 

hemispherical reflectance derived through proximal sensing versus directional 561 

narrowband reflectance from remote sensing. The effects of these two important aspects 562 

are demonstrated and discussed in detail in section 3.4. 563 

3.2. Mean seasonal variability of broadband NDVI with phenology and 564 

vegetation function (SQ2)  565 

This section examines the mean seasonal variability of NDVIbb along with satellite 566 

NDVI, a phenological metric namely Green Chromatic Coordinate (GCC), and their 567 

response to water stress (evaporative fraction, FE). (Fig. 9, 10). This analysis is based on 568 

the continuous time series information of NDVIbb, Planet Fusion NDVI, and UC 569 

Berkeley Biomet lab flux tower datasets. The reasons to use Planet Fusion data are that 570 

firstly they are finely resolved in time to allow for filtering day-to-day variability and 571 

secondly, they span over a period of four years to allow investigating the mean seasonal 572 

variations. Figure 9 shows the synthesis of the mean seasonal variation of NDVIbb, 573 

NDVI, GCC, and FE for the two cropland ecosystems (alfalfa and corn) in California. The 574 

seasonal variation is expressed in terms of the daily mean values normalized by their 575 

annual mean following Baldocchi et al. (2021). 576 
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Figure 9: (a-b) Daily variation in NDVIbb, Planet Fusion NDVI, Green Chromatic Coordinate (GCC) 

(secondary y-axis), and evaporative fraction (FE) over agricultural ecosystems (alfalfa and corn) in 

California. Here we plot daily values, averaged over 4 years, normalized by the annual mean for that 

variable. (c-d) Correlation map showing the strength of seasonal relationship between individual variables. 

For corn, the correlation map is applicable for the growing season from March to September. 

Two things became evident in this analysis. (i) The coordination of NDVIbb and satellite 577 

NDVI was found to be remarkably high with GCC at alfalfa throughout the entire year 578 
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(Fig. 9a, c). The coordination of the two NDVIs with GCC was also substantially strong 579 

in corn from the start of the growing season (day of the year 120), green-up phase (day of 580 

the year 150 – 180), peak growth phase (day of the year 180 – 250) and until the end of 581 

the growing season (day of the year 250 – 300) (Fig. 9b, d). (ii) The response of both the 582 

NDVIs and GCC is also highly correlated with FE at the alfalfa site (Fig. 9a, c) (r = 0.52 583 

– 0.61), and their responses to FE were also very robust in corn during the annual growth 584 

cycle that spans from day of the year 120 to 300 (Fig. 9d) (r = 0.53 – 0.66). This 585 

indicates substantial controls of water availability on the growth dynamics of both alfalfa 586 

and corn. Peak daily NDVIbb (and NDVI) and GCC coincided when FE is greater than 587 

their mean annual values (Fig. 9b). 588 
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Figure 10: (a-b) Daily variation in NDVIbb, Planet Fusion NDVI, Green Chromatic Coordinate (GCC) 

(secondary y-axis), and evaporative fraction (FE) over grassland (Vaira ranch) and woody savanna (Tonzi 

ranch) ecosystems in California. Here we plot daily values, averaged over 4 years, normalized by the 

annual mean for that variable. (c-d) Correlation map showing the strength of seasonal relationship between 

individual variables during the growing season from March to October. 

Figure 10 shows the synthesis of the mean seasonal variation of NDVIbb, NDVI, GCC, 589 

and FE at GRA and WSA ecosystems in California. Here also, some distinctive behavior 590 

of NDVIbb, NDVI and GCC and their response to water stress variations was noted. 591 

Firstly, the overall coordination of GCC and NDVIs with FE was high in both the 592 

ecosystems (r = 0.83 – 0.88 and r = 0.93 – 0.97) and the coordination strength of NDVI 593 

versus GCC was equally high (r = 0.83 – 0.96 and r = 0.87 – 0.98). Secondly, the 594 

coordination strength between the two NDVIs versus water availability in GRA and 595 

WSA is substantially higher as compared to the croplands (Fig. 10c, d). In both the 596 

ecosystems, peak daily NDVIbb (and NDVI) and GCC coincided when FE is greater than 597 
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their mean annual values  (Fig. 10a, b). The maximum NDVI and GCC was found in 598 

early spring (day of year 120) during the unstressed conditions. After that, the two 599 

NDVIs started declining with FE and it reached the minimum during the middle of the 600 

summer, between days 170 and 250. Interestingly, despite the declining pattern of GCC 601 

was very similar to NDVI in WSA, it remained invariant in GRA between days 150 and 602 

300. This is the period when the soil remains nearly bone dry due to prolong absence of 603 

precipitation. The coalition of high soil water stress and atmospheric aridity (as defined 604 

by vapor pressure deficit) in association with high net available energy triggers the 605 

stomatal closure and consequently the photosynthetic activity is at the minimum level. 606 

It is further important to emphasize that croplands receive subsurface irrigation at a depth 607 

of 2 m and the irrigation frequency is very low. While corn receives a single irrigation 608 

(around day of the year 230), alfalfa receives maximum 2 irrigation (around day of the 609 

year 160 and 180; 240 and 260). The atmospheric humidity over cropland is higher (as 610 

compared to GRA and WSA) due to being situated close to the delta shores of 611 

Sacramento and due to moisture advection (Wang et al., 2023). All these factors lead to 612 

an increased evaporative fraction, and vegetation seasonality responds significantly to FE 613 

dynamics. On the contrary, being situated at the valley, GRA and WSA sites face dual 614 

challenge due to high soil and atmospheric water stress. The different NDVI, NDVIbb and 615 

GCC profiles for these two ecosystems indicate that the vegetation seasonality in GRA 616 

and WSA has a stronger coupling to the seasonality in water stress as compared to the 617 

croplands, despite being situation in the same Mediterranean climate. 618 
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3.3. Efficacy of NDVIbb and NIRVbb to explain GPP variability (SQ3) 619 

This analysis is carried out into two halves. In the first step, we examined whether the 620 

intraseasonal variability (expressed as ‘coefficient of variation’, cv) of NDVIbb and 621 

NIRVbb can explain the intraseasonal variability of GPP (symbolized as AG). In the 622 

second step, we tested the robustness and feasibility of using daily NDVIbb and NIRVbb as 623 

a robust predictor of daily GPP. Here also, we used the continuous time series EC tower 624 

GPP record of seven Biomet lab sites and the Planet Fusion data. The reasons to use 625 

PLANET Fusion data is the same as mentioned in section 3.2. 626 

(a) Intraseasonal variability (NDVI vs. AG) 

 

(b) Intraseasonal variability (NIRv vs. AG) 

 

Figure 11: (a-b) Plots of intraseasonal variability (expressed as ‘coefficient of variation’, cv) in NDVI (NDVIbb) 

and NIRV (NIRVbb) versus intraseasonal variability in gross photosynthesis (AG) by combining all the site data in 

different ecosystems of California. Color shading is by precipitation (P) variability. This also shows the steeper 

slope of cv-NDVI (and cv-NDVIbb) vs. cv-AG and cv-NIRV (and cv-NIRVbb) vs. cv-AG relationship with 

increasing precipitation variability. 

Combining data of all the seven Biomet sites showed a relatively stronger relationship 627 

between NIRV (NIRVbb) variability with GPP variability (r = 0.67 – 0.69) as compared to 628 

NDVI (NDVIbb) (r = 0.62 – 0.65) (Fig. 11a, b). The intraseasonal variability of the two 629 

NDVIs versus GPP and two NIRV versus GPP relationship was also found to be strongly 630 

associated with the rainfall variability during the growing season in CRO, GRA, and 631 

WSA (Appendix A3, Fig. A3). Previous studies also showed the tendency of the water-632 

limited ecosystems towards higher interannual variability in vegetation productivity 633 

(Ritter et al., 2020). The high water use efficiency of cropland, grassland, and savanna 634 
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plays a major role. During the pluvial years or wet seasons, water infiltration into deep 635 

soil layers compensates for the preceding water deficit (Ritter et al., 2020), increasing the 636 

soil water content available for transpiration and biomass production for the following 637 

months. This leads to an increased productivity during high rainfall years relative to their 638 

reduction during the dry years (Ritter et al., 2020). Similar mechanism is also reflected in 639 

these two vegetation indices through efficient vegetation greening as a result of optimum 640 

vegetation productivity. This led to steeper slopes between the coefficient of variation of 641 

these two vegetation indices (both broadband and satellite) versus the coefficient of 642 

variation of GPP (cv-AG) with increasing precipitation variability when all the data were 643 

pooled together (Fig. 11). 644 

 (a) AG vs. NDVIbb 

 

(b) AG vs. NIRvbb*Qi 

 

(c) AG vs. NDVI (Planet Fusion) (d) AG vs. NIRv*Qi (Planet Fusion) 
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(e) AG vs. NDVIbb
2*Qi 

 

Figure 12: (a, b) Site-level relationships of AG 

versus NDVIbb and AG versus NIRvbb*Qi at seven 

eddy covariance towers of UC Berkeley Biomet 

sites that includes 2 crop sites (one C4, one C3), 

one grassland site, one woody savanna and 3 

wetland sites. (c, d) Similar plot is shown by 

plotting AG with Planet Fusion NDVI and 

NIRvbb*Qi. Here Qi and AG are the daily 

integrated Qi (MJ) and AG (gC/m2) obtained by 

summing up the half-hourly observation. Data 

points inside the red circle showed saturation in AG 

with increasing NIRvbb*Qi. These data points 

belong to corn crop and could presumably be 

associated with the diffuse component of Qi. (e) 

Scatter plot of AG versus NDVIbb
2*Qi. 

By combining the Planet Fusion and EC data of all the seven Biomet lab sites, we found a 645 

distinct exponential pattern between flux tower GPP and NDVIbb (Fig. 12a) with 646 

Spearman’s correlation (rSpearman) of 0.79. This further confirms that NDVI saturates at 647 

high biomass and this saturation is mainly attributed to the insensitivity of chlorophyll 648 

absorbing red light at 100% vegetation cover (Sellers et al., 1985; Kumar et al., 2001). 649 

Any addition of vegetation does not impact further changes since the amount of red light 650 

that can be absorbed by leaves reaches a peak, whereas NIR reflectance will increase 651 

because an addition of leaves results in multiple scattering (Tesfaye and Awoke, 2020; 652 

Kumar et al., 2001). The imbalance between red and high NIR reflectance results in a 653 

marginal change in the NDVI ratio and yields saturation at high biomass. Given the 654 
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product of NIRv and incident PAR (Qi) is considered as a proxy for GPP at different 655 

spatial scales (Dechant et al., 2022), we further evaluated the relationships between GPP 656 

versus the product of NIRvbb and daily integrated PAR (NIRvbb*Qi). We found a strong 657 

and significant correlation between AG versus NIRvbb*Qi (r = 0.68) (Fig. 12b). Despite 658 

substantial linearity between AG versus NIRvbb*Qi
 relationship, a small portion of data 659 

points (inside red circle) showed saturation in AG with increasing NIRvbb*Qi (Fig. 12b). 660 

These data points belong to corn and could presumably be associated with the diffuse 661 

component of Qi. The scatterplots of flux tower AG versus Planet Fusion NDVI and the 662 

product of NIRv*Qi also showed the same exponential and linear pattern and very 663 

similar correlation (rSpearman= 0.81 and rPearson = 0.70) (Fig. 12c, d). These results 664 

corroborate with the findings of Pierrat et al. (2022), Gamon et al. (1995), and Liu et al. 665 

(2021) which showed that NDVI is insensitive to maximum carbon uptake in evergreen 666 

trees and reported the similar pattern of saturation as we found in Fig. 12a. However, 667 

where canopy structure, PAR, and carbon uptake are in synchrony, NDVI was found to 668 

be significantly correlated with gross photosynthesis (Gamon et al., 1995, Liu et al., 669 

2021). The NIRvbb*Qi approach constituted a nonlinear stretch of NDVIbb by 670 

multiplying NDVIbb with the NIR reflectance, thereby increasing the sensitivity of 671 

NIRvbb*Qi for high vegetation carbon uptake and green biomass. NIRvbb implicitly 672 

assumes a linear relationship between NDVIbb and fractional absorbed PAR, and this 673 

fraction is 100% at maximum NDVIbb. Therefore, multiplying NIRvbb by Qi gives a 674 

close estimate of absorbed PAR, and we see a good relationship with gross primary 675 

productivity. Although the scatterplot of AG versus Planet Fusion NIRv*Qi shows a 676 

tendency to saturate at high AG (Fig. 12d), overall NIRvbb*Qi approach reflects much 677 
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better fidelity to capture the variability in carbon fluxes (Baldocchi et al., 2020; Dechant 678 

et al., 2022).  679 

The relationship between AG versus NIRvbb*Qi has a physical basis and it is analogous 680 

to the classic light use efficiency (LUE) approach of Monteith (1972), Gitelson and 681 

Gamon (2015). According to Monteith (1972), Gitelson and Gamon (2015), GPP = 682 

LUE*APAR, where APAR is the absorbed PAR. From this analogy, NIRv seems to 683 

carry the dual information of absorbed PAR and LUE. While high (low) GPP is the 684 

consequence of high (low) absorbed PAR, NIRv is the consequence of multiple reflection 685 

in the near infrared reflectance which increases with vegetation layer. Therefore, 686 

NIRvbb*Qi has a clear upper and lower bound to explain the GPP variability for a wide 687 

range of vegetation and radiation conditions. For example, high GPP during the peak 688 

developmental phase of vegetation is due to high absorbed PAR, which apparently leads 689 

to high NIRv. On the other hand, during the early growth phase and maturity, we see 690 

increasing and declining GPP with increasing and decreasing absorbed PAR and NIRv. 691 

Thus, NIRvbb*Qi is able to separate green from dead vegetation. This is the reason why 692 

we found a remarkably good relationship when we plotted daily AG with NIRvbb*Qi 693 

(Fig. 12b, d). One other aspect worth highlighting is that corn is C4 crop and has a 694 

complex canopy structure. The fact that our broadband NIRv can capture this so well, 695 

further shows the promise of this analysis.  696 

Interestingly, by simply taking the square of NDVI and by multiplying NDVI2 with Qi, 697 

we obtained even better correlation (rPearson = 0.81) between AG versus NDVI2*Qi (Fig. 698 

12e) as compared to AG versus NIRvbb*Qi. The square of NDVI gives an almost 699 
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equivalent result as fractional absorbed PAR (Carlson and Ripley, 1997). Then 700 

multiplying NDVI2 with *Qi, we get an estimate of absorbed PAR, which is why Fig. 701 

12e showed strong correlation between AG and NDVI2*Qi.  702 

It is worth mentioning that in the higher latitude sites, NDVI describes GPP during 703 

vegetation green-up when the energy from PAR is generally high (Zhang et al., 2020; 704 

Descals et al., 2022). However, NDVI provides little information about GPP in the 705 

autumn where photosynthesis is driven by the seasonally decreasing PAR. Therefore, 706 

including PAR with NIRvbb could have added advantage in describing the day-to-day 707 

variability in GPP during the periods of varying cloudiness where NDVI remains almost 708 

invariant (Zhang et al., 2020; Descals et al., 2022). 709 

3.4. Impacts of background soil exposure, phenology, radiation 710 

components, and water stress on broadband NDVI (SQ4) 711 

This analysis is categorized into two parts. First, we examined the consequence of 712 

background soil exposure and phenology on the estimation of NDVIbb. We carried a 713 

residual error analysis across different ecosystems where the differences between 714 

broadband and satellite NDVI (NDVI = NDVIbb – NDVI) were assessed with respect to 715 

GCC for a range of Soil Adjusted and Atmospherically Resistant Vegetation Index 716 

(SARVI) (Fig. 13 below). At the second step, we compared the broadband VIS and NIR 717 

hemispherical reflectances with satellite narrowband directional reflectance for a large 718 

range of incident and reflected radiation components (Fig. 14 - 16). 719 
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Figure 13: Plots of residual difference between NDVIbb and satellite NDVI (𝛅NDVI = NDVIbb - NDVI) versus Green 

Chromatic Coordinate (GCC) for a wide range of soil background conditions across diverse ecosystems. Color shading 

is by Soil Adjusted and Atmospherically Resistant Vegetation index (SARVI), which serves as an indicator of soil -

canopy background. The black line indicates the average bias for each bin. This clearly indicates a consistent positive 

difference between NDVIbb and satellite NDVI during low vegetation or during vegetation senescence, which also 

coincides with low SARVI. The black line shows the mean bias pattern for different classes of GCC.  

 

The scatterplots of mean NDVI clustered for different classes of GCC (from 720 

senescence/low vegetation to peak vegetation) showed significant relationships between 721 

mean NDVI and GCC for varying background from high soil cover to high canopy cover 722 

across different ecosystems (r = 0.31 – 0.84) (Fig. 13). A consistent positive bias in 723 
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NDVIbb (NDVI >0) is evident when the vegetation cover is low (low GCC) or during the 724 

senescent phase of vegetation (datapoints in red color cluster). The green reflectance 725 

contributes very little during senescence and red reflectance has a greater dominance 726 

among the three primary band reflectances, ultimately leading to low GCC 727 

(0.30<GCC<0.35). Low leaf area during the senescent phase in forests or due to grazing 728 

in the grasslands leads to greater exposure of soil background at the field-of-view of the 729 

sensors, ultimately reading to high NIR reflectance (Huete et al., 1988; Qi et al., 1994). 730 

Spectral reflectance of the canopies is mixed with background reflectance due to multiple 731 

scattering in the broad NIR band. Such high NIR reflectance apparently leads to an 732 

overestimation of NDVIbb under low vegetation cover. These positive biases in NDVIbb 733 

also corresponded to low SARVI (0 – 0.2) (Fig. 13), indicating soil background to be 734 

exerting considerable influence on the canopy spectra and the calculated NDVIbb (Huete 735 

et el., 1988; Qi et al., 1994). This dual assessment of NDVI with respect to phenology and 736 

soil background variations authenticates the sensitivity of NDVIbb to first-order soil 737 

exposure effects. 738 

In the estimation of NDVIbb, the consistency of broadband hemispherical VIS and NIR 739 

reflectances (vis,bb, nir,bb) play a crucial role where proximal sensing of Rg (Rg
i, Rg

r) and 740 

PAR components (Qi, Qr) are used. Therefore, to further understand the effects of 741 

background on this overestimation of NDVIbb, we compared the performance of vis,bb 742 

and nir,bb with respect to satellite narrowband directional reflectances under varying PAR 743 

(both Qi and Qr) (Fig. 14 - 16 below). The effects of individual Rg components (Rg
i, Rg

r) 744 

on this comparison is very similar to what is seen in Fig. 14 – 16 and they are not shown 745 

for brevity. 746 
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(a) vis,bb vs. 0.66 (Alfalfa) 

 

(b) vis,bb vs. 0.66 (Alfalfa) 

 

(c) vis,bb vs. 0.66 (Corn) 

 

(d) vis,bb vs. 0.66 (Corn) 

 

Figure 14: Illustrative examples of comparison between vis,bb versus 0.66 for a range of incident 

and reflected PAR (Qi and Qr) over alfalfa (a, b) and corn (c, d) in California. This clearly shows a 

tendency of systematic underestimation of vis,bb with respect to 0.66, and the underestimation 

increases at high Qi and Qr. Figures in the inset shows a similar comparison between nir,bb versus 

0.86 for a range Qi and Qr. This analysis was performed with Planet Fusion data. 

The spectral reflectance comparison revealed vis,bb<0.66 for the majority of the data 747 

points and their differences were magnified with increasing Qi (Qi>1500 µmols). The 748 

effects of high Qi and Qr on nir,bb was also visible and nir,bb>0.86 at low satellite 0.86 749 

(inset of Fig. 14 – 16). This implies that in the estimation of NDVIbb [NDVIbb  = (nir,bb – 750 

vis,bb)/(nir,bb + vis,bb)], there is a consistent overestimation of the numerator (nir,bb – 751 

vis,bb>0.86 – 0.66) with increasing Qi under low fractional vegetation cover. This 752 
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ultimately led to greater difference between NDVIbb and satellite NDVI (NDVI >0) at high 753 

Qi, Qr, and at high soil background. 754 

(a) vis,bb vs. 0.66 (GRA) 

 

(b) vis,bb vs. 0.66 (GRA) 

 

(c) vis,bb vs. 0.66 (WSA) 

 

(d) vis,bb vs. 0.66 (WSA) 

 

Figure 15: Illustrative examples of comparison between vis,bb versus 0.66 for a range of incident and 

reflected PAR (Qi and Qr) over grassland (Vaira ranch) (a, b) and woody savanna (Tonzi ranch) (c, d) 

in California. This clearly shows a tendency of systematic underestimation of vis,bb with respect to 

0.66, and the underestimation increases at high Qi and Qr. Figures in the inset shows a similar 

comparison between nir,bb versus 0.86 for a range Qi and Qr. This analysis was performed with Planet 

Fusion data. 

The overestimation tendency of NDVIbb apparently diminished with vegetation greening 755 

and it showed underestimation under dense vegetation cover (NDVI<0). However, 756 

exceptions were also found in the deciduous broadleaf forest (DBF) and evergreen 757 

needleleaf forest (ENF), where the underestimation tendency of NDVIbb was visible 758 

across all the clusters of GCC (Fig. 13d, e). In the NDVIbb retrieval, the broadband NIR 759 
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reflectance covers up to 3.0 µm, which also accounts the reflectance signals from the 760 

shortwave infrared domain. Studies reported that in the coniferous needles, the surface 761 

reflectance in the shortwave infrared region is low (Pierrat et al., 2022; Roberts et al., 762 

2004). This consequently leads to an underestimation of nir,bb and NDVIbb at the ENF. 763 

(a) vis,bb vs. 0.66 (DBF) 

 

(b) vis,bb vs. 0.66 (DBF) 

 

(c) vis,bb vs. 0.66 (ENF) 

 

(d) vis,bb vs. 0.66 (ENF) 

 

(e) vis,bb vs. 0.66 (OSH) (f) vis,bb vs. 0.66 (OSH) 
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Figure 16: Illustrative examples of comparison between vis,bb versus 0.66 for a range of incident 

and reflected PAR (Qi and Qr) over deciduous broadleaf forests (DBF) (a, b), evergreen 

needleleaf forests (ENF) (c, d), and open shrubland (OSH) (e, f). This clearly shows a tendency 

of systematic underestimation of vis,bb with respect to 0.66, and the underestimation increases at 

high Qi and Qr. Figures in the inset shows a similar comparison between nir,bb versus 0.86 for a 

range Qi and Qr. This analysis was performed with HLS data since no Planet Fusion data was 

available for these ecosystems. 

Figure 13 (a-f) also showed underestimation of NDVIbb at low GCC (GCC<0.35) 764 

corresponding to high background soil exposure (red data cluster at NDVI <0). These 765 

datapoints could be associated with the low magnitude of Qi and the details are revealed 766 

in Fig. 14 – 16. In all the ecosystems, there were data clusters with vis,bb>0.66 and these 767 

datapoints are associated with low Qi (Qi: 0 - 650 µmols) (Fig. 14 - 16). In the croplands, 768 

vis,bb could also be affected due to irrigation, and vis,bb might pick up the signal of wet 769 

soil, ultimately leading to vis,bb>0.66 (Ma et al., 2019). The effects of low Qi and low Qr 770 

were also evident in nir,bb to some extent (inset of Fig. 14 – 16). These conditions led to 771 

an underestimation of the numerator in eq. (7) (nir,bb – vis,bb<0.86 – 0.66), ultimately 772 

leading to an underestimation of NDVIbb as compared to satellite NDVI.   773 

These detailed analysis (Fig. 14 – 16) additionally helped understanding the reasons for 774 

underestimation of NDVIbb (Fig. 3 – 6, Fig. 13) and saturation of NIRvbb under high 775 

biomass when compared with the satellites (Fig. 3 – 6). A closer look at these figures 776 
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(inset of Fig. 14 - 16) revealed that almost 75-85% of the nir,bb signal tends to become 777 

invariant with increasing 0.86 beyond 0.30 µm at the cropland (alfalfa, corn) and forests 778 

(DBF, ENF) and beyond 0.25 µm at the OSH. The wavebands have very different 779 

bandwidths. The broadband NIR reflectance has differential sensitivity to increasing 780 

biomass as compared to 0.86, which ultimately led to saturation in NIRvbb compared with 781 

satellite NIRv at high FE. The consequence of the water stress on vis,bb and nir,bb 782 

estimation is described in Appendix A4 (Fig. A4-A6). 783 

4. Broader implications 784 

Overall, our analysis shows that continuous and combined measurement of Q and Rg 785 

components serves a robust proximal sensing capability for diagnosing the seasonal 786 

variability in NDVI across ecological and climatic gradients. The NDVIbb versus satellite 787 

NDVI relationship was highly significant when compared with satellite sensors at 788 

different spatial resolutions (Fig. 3 - 8), across a broad spectrum of managed and 789 

unmanaged ecological settings, crop management regimes (e.g., irrigated vs. rainfed) that 790 

experience dynamic water stress, productivity variability, and physiological variations. 791 

With the availability of PAR and Rg components worldwide from different FLUXNET 792 

sub-networks, a global comparison with satellite NDVI and other vegetation indices is 793 

foreseen in the future. Due to the nature of the broadband reflectance retrieval from the 794 

proximal sensing of hemispherical radiation components, the spectral differences 795 

between broadband versus narrowband reflectances at the selected band regions are 796 

obvious. Therefore, we do not anticipate a perfect one to one relation between NDVIbb 797 

versus satellite NDVI unless we have hyperspectral tower-based remote sensing, or 798 

custom built sensors of Q and Rg components at the narrowband wavelengths. In fact, 799 
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comparing different NDVI from different satellite sensors showed substantial differences 800 

across different ecosystems (Fan and Liu, 2016; Huang et al., 2021).  801 

The advantage of NDVIbb in comparison to spectrometer based NDVI became further 802 

evident when we compared NDVIbb and Planet Fusion NDVI with Apogee spectrometer 803 

NDVI at some flux tower sites covering four representative land cover types (alfalfa, 804 

corn, pasture, herbaceous vegetation) in California (Fig. 17b, d, f, h).  The consistent 805 

negative bias in Apogee NDVI (-0.07 to -0.26) is mainly attributed to weak relationship 806 

in Apogee versus Planet Fusion red and NIR spectral reflectance (Fig. 17a, c, e, g), 807 

confirming that exploring the radiation components to estimate in-situ vegetation 808 

attributes is credible.  809 
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Figure 17: (a, c, e, g) Illustrative examples of comparison between Apogee spectrometer 

versus Planet Fusion spectral reflectances in red and NIR wavelengths in four representative 

ecosystems in California. (b, d, f, h) Comparison between Apogee spectrometer versus Planet 

Fusion and broadband NDVI in four representative ecosystems in California. This clearly 

shows a tendency of systematic underestimation of Apogee NDVI with respect to satellite, 

which is attributed to the disagreement in spectral reflectances between Apogee spectrometer 

and Planet Fusion. 

 

Relatively greater disagreement of NDVIbb and NIRvbb with respect to HLS data is due to 810 

the relatively coarser spatial resolution of 30 x 30 m NDVI used in their comparison. 811 

Significant variability in greenness and fractional vegetation cover can be present at the 812 

sub-pixel scale depending on the ecosystem types (Turner et al, 2002). If HLS versus 813 

NDVIbb and NIRvbb agrees on a seasonal scale, we can assume that the greenness and 814 

vegetation fraction surrounding the tower is representative of the land cover within the 30 815 

x 30 m S2 and L8/9 pixel containing the tower location. For several sites that showed 816 

moderate agreement between the tower NDVIbb and HLS NDVI, the variability in 817 
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fraction ground cover within the 30 x 30 m S2 and L8/9 pixel might be responsible for 818 

such a behavior. This indicates the challenges and intricacies associated with respect to 819 

directly comparing flux tower NDVIbb with satellite NDVI at a coarser spatial scale in the 820 

presence of profound spatial variability in vegetation cover.  The extent to which the 821 

variability in fractional vegetation cover within one HLS pixel could impact such 822 

comparison, could only be estimated upon having coincident Planet Fusion (3 m) and 823 

HLS (30 m) data across all the sites. In the present study, only a small subset of sites 824 

(seven biomet sites) had both Planet fusion and HLS datasets. This led us examining the 825 

effects of the variability of vegetation fraction on NDVIbb versus satellite NDVI 826 

evaluation at four different ecosystems (Appendix A5; Fig. A7). The statistical 827 

comparison clearly showed the effects due to the variability in vegetation fraction when 828 

NDVI average from 10 x 10 pixels of Planet Fusion was used for the evaluation of 829 

NDVIbb. Although a detailed spatial variability analysis could shed greater insight, such 830 

analysis is beyond the scope of the present study. Nevertheless, NDVIbb is a valid proxy 831 

of satellite NDVI for a wide range of conditions tested. 832 

We found that NIRvbb*Qi is a robust structural proxy for GPP by combining 28 site-833 

years of data (seven sites and four years for each site). NIRvbb*Qi tends to have higher 834 

signal quality (Baldocchi et al., 2020) as compared to NDVIbb, and NDVIbb is known to 835 

become invariant at high GPP (Baldocchi et al., 2020, Dechant et al., 2022). The 836 

correlative relationship between GPP and NDVI emerges because green leaves do 837 

photosynthesis, and there is a seasonality in greenness and photosynthesis. Therefore, one 838 

should be careful to use such correlative relationships to upscale GPP from the 839 

information of NDVI. A linear relationship between GPP and  NIRvbb*Qi was also 840 
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reported for croplands (Dechant et al., 2020, 2022; Liu et al., 2020; Wu et al., 2019), 841 

which could further be exploited to understand GPP variability at different spatio-842 

temporal scales. Our results confirm and considerably extend previous findings and 843 

demonstrated that the linearity between GPP and NIRvbb*Qi also holds for a range of 844 

ecosystems that experience variable water stress. The significant outcome of this analysis 845 

is that from the measurements of four radiation components, we are able to detect the 846 

most critical vegetation variables that have a direct link with ecosystem carbon 847 

assimilation across a range of climatic gradients. Our results also substantiate the findings 848 

of Pierrat et al. (2022) who showed that in the boreal ecosystems where seasonal 849 

downregulation of photosynthesis occurs without significant changes in canopy structure 850 

or chlorophyll content, NDVI scales poorly with carbon assimilation. We believe that 851 

more work is needed to develop a robust scaling function for GPP versus NIRvbb*Qi
 852 

relationship across a wide spectrum of ecological gradients. Such studies should use high 853 

spatial resolution satellite data, standardized PAR and Rg sensors and calibration 854 

methods. Nevertheless, our tower-based broadband NDVI and NIRv is promising enough 855 

to be treated as highly valuable and critical vegetation attributes relevant to flux 856 

measurement footprints for ecosystem modeling. 857 

Despite its own limitations, the present study could be seen promising enough that 858 

highlights the utility of shortwave and photosynthetically active radiation measurements 859 

to augment the proximal sensing capability at the flux tower sites. The in-situ broadband 860 

NDVI derived through transforming these radiation signals could make a stronger case 861 

for how these data could be used for handshaking between ecosystem-scale 862 

measurements and remote sensing for scaling and/or understanding satellite observables.  863 
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5. Summary and conclusion 864 

We conclude that the net fluxes of broadband shortwave radiation components in 865 

conjunction with the components of photosynthetically active radiation offer a novel 866 

proximal sensing perspective to directly retrieve a robust broadband NDVI and NIRv 867 

relevant to explain ecosystem productivity for a wide spectrum of ecosystems and 868 

climatic gradients. This novel perspective is obtained through a simplified method which 869 

neither needs explicit radiative transfer for solving canopy reflectance, nor does it need 870 

any additional spectrometer measurements. Our analysis revealed that the discrepancies 871 

between the broadband NDVI and operational satellite-based NDVI products are due to 872 

the differences in hemispherical versus directional reflectance, differential sensitivity of 873 

broad visible and near infrared reflectance to background soil exposure, water stress and 874 

biomass accumulation and resultant saturation of the hemispherical reflectance signals at 875 

high biomass.  876 

These critical insights and multiscale comparison with satellite products are highly 877 

significant to monitoring the intraseasonal and interannual variability of NDVI directly at 878 

the flux tower sites and relevant to validating operational NDVI products from the Earth 879 

observation mission. Statistical analysis over a range of ecosystems and climatic limits 880 

demonstrates the potential of the broadband NDVI and NIRv as a valid alternative to 881 

study the effects of vegetation seasonality on energy-water-carbon flux interactions and 882 

their interannual variability worldwide. This novel approach can be implemented across 883 

all the flux tower sites of AmeriFlux and Fluxnet subnetworks to generate insightful 884 

vegetation dynamics information for the ecosystem modeling community and 885 

complementing the PhenoCam observations. As more flux sites are equipped with the 886 
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necessary radiometric instrumentation, i.e., quantum sensors and pyranometers, we 887 

expect the available ground-based data to increase dramatically. This will provide the 888 

community with a critical tool to link flux tower measurements with satellite-borne 889 

observations.  890 
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Figure captions: 1211 

Figure 1: (a) Conceptual diagram showing the hypothesis for estimating broadband spectral reflectance 

from the measurements of hemispherical broadband radiation components in PAR and total shortwave 

spectral region. It also shows an example of the narrowband spectral reflectances that we obtain in red 

and near infrared spectral region from operational remote sensing satellite Landsat-9 (Source: 

https://landsat.usgs.gov/spectral-characteristics-viewer). VIS signified visible, NIR signifies near-

infrared, MIR signifies mid-wave infrared. (b) Figure showing the scaling factor for converting PAR 

(both incident and reflected) from µmols/m2/s to W/m2 for a range of NDVI as an example over rice 

crop in California. 

Figure 2: An illustrative diagram showing the sequence of results corresponding to the science 

questions (SQs) and the respective figure numbers associated with the description of results falling 

under individual science question. 

Figure 3: (a) Plots of NDVIbb and NIRvbb versus Planet Fusion NDVI and NIRV (3 m spatial resolution) 

in the Californian cropland ecosystems for NDVI>0.25 for a range of evaporative fraction (FE) 

representing stressed to unstressed conditions. FE is an indicator of water availability and denotes the 

ratio of evaporation (latent heat flux) to equilibrium evaporation. (b) Temporal dynamics of NDVIbb 

(black dots) and NDVI (green dots) along with daily precipitation (P) (blue stairs) shows close 

correspondence between them in Alfalfa [Bi1] and Corn [Bi2]. 

Figure 4: (a) Plots of NDVIbb and NIRvbb versus Planet Fusion NDVI and NIRV (3 m spatial resolution) 

in water-limited Californian grassland (GRA) and woody savanna (WSA) ecosystems for NDVI>0.25 

for a range of evaporative fraction (FE) representing stressed to unstressed conditions. FE is an indicator 

of water availability and denotes the ratio of evaporation (latent heat flux) to equilibrium evaporation. 

(b) Temporal dynamics of NDVIbb (black dots) and NDVI (green dots) along with daily precipitation 

(P) (blue stairs) shows close correspondence between them especially in the grassland [Var] and partly 

in woody savanna [Ton]. 

Figure 5: (a) Plots of NDVIbb and NIRvbb versus Planet Fusion NDVI and NIRV (3 m spatial resolution) 

in Californian wetland ecosystems (non-tidal) for NDVI>0.25 for a range of evaporative fraction (FE) 

representing stressed to unstressed conditions. FE is an indicator of water availability and denotes the 

ratio of evaporation (latent heat flux) to equilibrium evaporation. (b) Temporal dynamics of NDVIbb 

(black dots) and NDVI (green dots) along with daily precipitation (P) (blue stairs) shows close 

correspondence between them in both East End and Mayberry. 

Figure 6: Pooled evaluation plots of NDVIbb and NIRvbb versus Planet Fusion NDVI and NIRV (3 m 

spatial resolution) by combining all the seven sites of Californian ecosystems for a range of evaporative 

fraction (FE) representing stressed to unstressed conditions. FE is an indicator of water availability and 

denotes the ratio of evaporation (latent heat flux) to equilibrium evaporation. 

Figure 7: (a, c) Plots of NDVIbb and NIRVbb versus Landsat and Sentinel-2 NDVI and NIRV (30 m spatial 

resolution) in energy-limited ecosystems of Biomet and NEON sites. Color shading is done by 

evaporative fraction (FE) showing stressed to unstressed conditions which corresponds to water and 

energy limits within the energy-limited environment. (b, d) Illustrative examples of temporal dynamics 

of NDVIbb (black dots) and NDVI (green dots) along with daily precipitation (P) (blue stairs) showing 

close correspondence in the seasonal and interannual variability of NDVIbb and NDVI at the NEON sites 

Blandy Experimental Farm (xBL) and Dead Lake (xDL). 

 

https://landsat.usgs.gov/spectral-characteristics-viewer
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Figure 8: (a, c) Plots of NDVIbb and NIRVbb versus Landsat and Sentinel-2 NDVI and NIRV (30 m 

spatial resolution) in water-limited ecosystems of Biomet and NEON sites. Color shading is done by 

evaporative fraction (FE) showing stressed to unstressed conditions which corresponds to water and 

energy limits within the water-limited environment.  (b, d) Illustrative examples of temporal dynamics 

of NDVIbb (black dots) and NDVI (green dots) along with daily precipitation (P) (blue stairs) showing 

close correspondence in the seasonal and interannual variability of NDVIbb and NDVI over Bouldin 

corn (Bi2), Vaira ranch (Var) and two grasslands sites of NEON Konza Prairie Biological Station (xKA 

and xKZ). 

Figure 9: (a-b) Daily variation in NDVIbb, Planet Fusion NDVI, Green Chromatic Coordinate (GCC) 

(secondary y-axis), and evaporative fraction (FE) over agricultural ecosystems (alfalfa and corn) in 

California. Here we plot daily values, averaged over 4 years, normalized by the annual mean for that 

variable. (c-d) Correlation map showing the strength of seasonal relationship between individual 

variables. For corn, the correlation map is applicable for the growing season from March to September. 

Figure 10: (a-b) Daily variation in NDVIbb, Planet Fusion NDVI, Green Chromatic Coordinate (GCC) 
(secondary y-axis), and evaporative fraction (FE) over grassland (Vaira ranch) and woody savanna 

(Tonzi ranch) ecosystems in California. Here we plot daily values, averaged over 4 years, normalized 

by the annual mean for that variable. (c-d) Correlation map showing the strength of seasonal 

relationship between individual variables during the growing season from March to October. 

Figure 11: (a-b) Plots of intraseasonal variability (expressed as ‘coefficient of variation’, cv) in NDVI 

(NDVIbb) and NIRV (NIRVbb) versus intraseasonal variability in gross photosynthesis (AG) by 

combining all the site data in different ecosystems of California. Color shading is by precipitation (P) 

variability. This also shows the steeper slope of cv-NDVI (and cv-NDVIbb) vs. cv-AG and cv-NIRV (and 

cv-NIRVbb) vs. cv-AG relationship with increasing precipitation variability. 

Figure 12: (a, b) Site-level relationships of AG versus NDVIbb and AG versus NIRvbb*Qi at seven eddy 

covariance towers of UC Berkeley Biomet sites that includes 2 crop sites (one C4, one C3), one 

grassland site, one woody savanna and 3 wetland sites. (c, d) Similar plot is shown by plotting AG with 

Planet Fusion NDVI and NIRvbb*Qi. Here Qi and AG are the daily integrated Qi (MJ) and AG (gC/m2) 

obtained by summing up the half-hourly observation. Data points inside the red circle showed 

saturation in AG with increasing NIRvbb*Qi. These data points belong to corn crop and could 

presumably be associated with the diffuse component of Qi. (e) Scatter plot of AG versus NDVIbb
2*Qi. 

Figure 13: Plots of residual difference between NDVIbb and satellite NDVI (𝛅NDVI = NDVIbb - NDVI) 

versus Green Chromatic Coordinate (GCC) for a wide range of soil background conditions across diverse 

ecosystems. Color shading is by Soil Adjusted and Atmospherically Resistant Vegetation index (SARVI), 

which serves as an indicator of soil-canopy background. The black line indicates the average bias for each 

bin. This clearly indicates a consistent positive difference between NDVIbb and satellite NDVI during 

low vegetation or during vegetation senescence, which also coincides with low SARVI. The black line 

shows the mean bias pattern for different classes of GCC. 

 

Figure 14: Illustrative examples of comparison between vis,bb versus 0.66 for a range of incident and 

reflected PAR (Qi and Qr) over alfalfa (a, b) and corn (c, d) in California. This clearly shows a tendency 

of systematic underestimation of vis,bb with respect to 0.66, and the underestimation increases at high Qi 

and Qr. Figures in the inset shows a similar comparison between nir,bb versus 0.86 for a range Qi and Qr. 

This analysis was performed with Planet Fusion data. 
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Figure 15: Illustrative examples of comparison between vis,bb versus 0.66 for a range of incident and 

reflected PAR (Qi and Qr) over grassland (Vaira ranch) (a, b) and woody savanna (Tonzi ranch) (c, d) in 

California. This clearly shows a tendency of systematic underestimation of vis,bb with respect to 0.66, and 

the underestimation increases at high Qi and Qr. Figures in the inset shows a similar comparison between 

nir,bb versus 0.86 for a range Qi and Qr. This analysis was performed with Planet Fusion data. 

 

Figure 16: Illustrative examples of comparison between vis,bb versus 0.66 for a range of incident and 

reflected PAR (Qi and Qr) over deciduous broadleaf forests (DBF) (a, b), evergreen needleleaf forests 

(ENF) (c, d), and open shrubland (OSH) (e, f). This clearly shows a tendency of systematic 

underestimation of vis,bb with respect to 0.66, and the underestimation increases at high Qi and Qr. Figures 

in the inset shows a similar comparison between nir,bb versus 0.86 for a range Qi and Qr. This analysis 

was performed with HLS data since no Planet Fusion data was available for these ecosystems. 

 

Figure 17: (a, c, e, g) Illustrative examples of comparison between Apogee spectrometer versus Planet 

Fusion spectral reflectances in red and NIR wavelengths in four representative ecosystems in 

California. (b, d, f, h) Comparison between Apogee spectrometer versus Planet Fusion and broadband 
NDVI in four representative ecosystems in California. This clearly shows a tendency of systematic 

underestimation of Apogee NDVI with respect to satellite, which is attributed to the disagreement in 

spectral reflectances between Apogee spectrometer and Planet Fusion. 

 

Figure A1: Boxplot of statistical error metric of NDVIbb and NIRvbb with respect to satellite NDVI and 

NIRv by combining data of both L8/9 and S2 of HLS by combining data of different sites falling in 

different ecosystem categories. Here, nRMSD is the normalized root mean squared deviation. This is 

computed by normalizing RMSD with the range (maximum - minimum) of satellite NDVI and NIRv. 

 

Figure A2: (a) Time series of daily broadband vegetation index (NDVIbb), LAI and canopy gap fraction 

(Pgap) at the oak grass savanna (Tonzi ranch). The data points inside the red rectangular box represent 

the periods when NDVIbb and LAI showed maximum divergence, which coincided with larger gap 

fraction during the winter season. (b) Scatterplot of NDVIbb versus LAI by averaging daily data for four 

years, showing significantly high correlation during the growing season. 

 

Figure A3: (a-f) Plots of intraseasonal variability (expressed as ‘coefficient of variation’, cv) in satellite 

(Planet Fusion) NDVI (NDVIbb) and NIRV (NIRVbb) versus intraseasonal variability in GPP (AG) in 

different ecosystems of California. Color shading is by precipitation (P) variability. This also shows the 

steeper slope of cv-NDVI (and cv-NDVIbb) vs. cv-AG and cv-NIRV (and cv-NIRVbb) vs. cv-AG 

relationship with increasing precipitation variability. 

 

Figure A4: Illustrative examples of comparison between vis,bb versus 0.66 and nir,bb versus 0.86 for a 

range of water stress (evaporative fraction, FE) over alfalfa and corn in California. This clearly shows a 

tendency of systematic underestimation of vis,bb with respect to 0.66, and the underestimation increases 

with elevated water stress. This analysis was performed with Planet Fusion data. 

 

Figure A5: Illustrative examples of comparison between vis,bb versus 0.66 and nir,bb versus 0.86 for a 

range of water stress (evaporative fraction, FE) over grassland (Vaira ranch) and woody savanna (Tonzi 

ranch) in California. This clearly shows a tendency of systematic underestimation of vis,bb with respect 

to 0.66, and the underestimation increases with elevated water stress. This analysis was performed with 

Planet Fusion data. 
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Figure A6: Illustrative examples of comparison between vis,bb versus 0.66 and nir,bb versus 0.86 for a 

range of water stress (evaporative fraction, FE) over deciduous broadleaf forest (DBF) and evergreen 

needleleaf forest (ENF). This clearly shows a tendency of systematic underestimation of vis,bb with 

respect to 0.66, in majority of the datapoints. This also shows a clear saturation of nir,bb signal at high 

0.86. This analysis was performed with HLS data since no Planet Fusion data was available for these 

ecosystems. 

 

Figure A7: Illustrative examples of the effects of variability (coefficient of variation, cv in percent) in 

fractional vegetation cover (fc) on broadband versus satellite NDVI comparison at four different 

ecosystems. We took the cluster average of 10 x 10 pixel NDVI from Planet Fusion surrounding the 

tower sites. To understand the impact of fc variability we took the standard deviation of fc of 10 x 10 

pixel and normalized with mean fc of the same pixels. 
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Appendix 1228 

A1. Assessment of NDVIbb and NIRvbb in different ecosystems  1229 

(a) NDVIbb vs. NDVI 

 

(b) NDVIbb vs. NDVI 

 

(c) NDVIbb vs. NDVI 

 

(d) NIRvbb vs. NIRv 

 

(e) NIRvbb vs. NIRv 

 

(f) NIRvbb vs. NIRv 

 

Figure A1: Boxplot of statistical error metric of NDVIbb and NIRvbb with respect to satellite NDVI and NIRv by 

combining data of both L8/9 and S2 of HLS by combining data of different sites falling in different ecosystem 

categories. Here, nRMSD is the normalized root mean squared deviation. This is computed by normalizing RMSD 

with the range (maximum - minimum) of satellite NDVI and NIRv.  

 Ecosystem wise analysis by combining data of both L8/9 and S2 revealed  (Fig. A1) 1230 

significantly high correlation between NDVIbb versus satellite NDVI in cropland (0.81 -  1231 

0.85), grassland (0.82 - 0.87), and wetlands (r = 0.68 - 0.78) (Fig. A1a). However, a 1232 

relatively degraded, yet significant relationship was noted in forest (r = 0.52 - 0.59) and 1233 

woody savanna-shrubland (0.48 - 0.64). The normalized RMSD (nRMSD) showed higher 1234 

percentage difference in cropland and forest (18 - 22%) as compared to the other 1235 

ecosystems (Fig. A1b). Boxplots also revealed high systematic negative mean bias in 1236 

forest and systematic positive mean bias in cropland, grassland, and woody savanna-1237 

shrubland (Fig. A1c). Although no systematic difference in error metrics was identified 1238 

with respect to L8/9 and S2 sensors, boxplot indicated relatively higher errors in NIRvbb 1239 
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as compared to NDVIbb. Error statistics of individual sites with both L8/9 and S2 HLS 1240 

data are listed in Table A1 (for L8/9) and Table A2 (for S2). 1241 

A2. Comparing NDVIbb with leaf area index (LAI)  1242 

To understand whether NDVIbb is able to capture the variation in leaf area index (LAI), 1243 

we also analyzed NDVIbb with respect to LAI observations at the Tonzi ranch site (oak 1244 

grass savanna). Significantly high correlation (r = 0.82) was found during the active 1245 

growing season between day of the year (DOY) 130 to 280 and for the canopy gap 1246 

fraction (Pgap) of 0.4 to 0.6 (Fig. A2). NDVIbb and LAI started to diverge with increasing 1247 

Pgap beyond 0.65, which corresponds to the period around DOY 300 onwards (autumn), 1248 

and this divergence remained until the warm spring around DOY 100. This is the time 1249 

when grasses at the understory start greening up and NDVIbb can be affected due to the 1250 

background effects. Differences in the nature of LAI measurement (upward looking 1251 

digital camera) versus the estimation of broadband NDVI (downward looking radiation 1252 

sensors) could be responsible for this divergence. The divergence between LAI and 1253 

NDVI in autumn is also because leaf browning results in lower NDVI while leaves can 1254 

still remain in the canopy affecting transmittance and LAI. This is one of the advantages 1255 

of using NDVI over direct measurements of LAI from transmittance, as NDVI is related 1256 

to the amount of green leaves and transmittance measures total LAI. 1257 

 1258 

 1259 

 1260 

 1261 
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(a) 
 

(b) 
 

Figure A2: (a) Time series of daily broadband vegetation index (NDVIbb), LAI and canopy gap fraction 

(Pgap) at the oak grass savanna (Tonzi ranch). The data points inside the red rectangular box represent the 

periods when NDVIbb and LAI showed maximum divergence, which coincided with larger gap fraction 

during the winter season. (b) Scatterplot of NDVIbb versus LAI by averaging daily data for four years, 

showing significantly high correlation during the growing season.  
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A3. NDVIbb and NIRVbb variability versus GPP variability across 1262 

ecosystems (SQ3)  1263 

This analysis is based on the continuous time series EC tower AG record of seven Biomet 1264 

lab sites and the Planet Fusion data and is linked with section 3.3. The intraseasonal 1265 

variability of both NDVIbb and NIRVbb was significantly correlated with the intraseasonal 1266 

variability of AG across different ecosystems (r = 0.51 - 0.65 and r = 0.49 - 0.74). Similar 1267 

pattern was also noted in satellite NDVI and NIRV versus AG for all the ecosystems (r = 1268 

0.40 - 0.79 and r = 0.52 - 0.84) (Fig. A3). 1269 

(a) NDVIbb & NDVI vs. AG (CRO) 

 

(b) NIRV & NIRVbb vs. AG (CRO) 

 

(c) NDVIbb & NDVI vs. AG (GRA-WSA) 

 

(d) NIRV & NIRVbb vs. AG (GRA-WSA) 

 

(e) NDVIbb & NDVI vs. AG (WET) 

 

(f) NIRV & NIRVbb vs. AG (WET) 
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Figure A3: (a-f) Plots of intraseasonal variability (expressed as ‘coefficient of variation’, cv) in satellite (Planet 

Fusion) NDVI (NDVIbb) and NIRV (NIRVbb) versus intraseasonal variability in GPP (AG) in different 

ecosystems of California. Color shading is by precipitation (P) variability. This also shows the steeper slope of 

cv-NDVI (and cv-NDVIbb) vs. cv-AG and cv-NIRV (and cv-NIRVbb) vs. cv-AG relationship with increasing 

precipitation variability. 

A4. Effects energy-water-limitations on broadband spectral reflectance 1270 

across different ecosystems? 1271 

(a) vis,bb vs. 0.66 (Alfalfa) 

 

(b) nir,bb vs. 0.86 (Alfalfa) 

 

(c) vis,bb vs. 0.66 (Corn) 

 

(d) nir,bb vs. 0.86 (Corn) 

 

Figure A4: Illustrative examples of comparison between vis,bb versus 0.66 and nir,bb versus 

0.86 for a range of water stress (evaporative fraction, FE) over alfalfa and corn in California. 

This clearly shows a tendency of systematic underestimation of vis,bb with respect to 0.66, and 

the underestimation increases with elevated water stress. This analysis was performed with 

Planet Fusion data. 

An analysis of vis,bb and nir,bb with respect to satellite narrowband red and NIR 1272 

reflectance (0.66 and 0.86) showed vis,bb was systematically less as compared to 0.66 1273 
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(vis,bb<0.66) for the majority of the data points (Fig. A3 – A5), and their differences were 1274 

magnified with increasing water stress (FE<0.3). 1275 

(a) vis,bb vs. 0.66 (GRA) 

 

(b) nir,bb vs. 0.86 (GRA) 

 

(c) vis,bb vs. 0.66 (WSA) 

 

(d) nir,bb vs. 0.86 (WSA) 

 

Figure A5: Illustrative examples of comparison between vis,bb versus 0.66 and nir,bb versus 0.86 for a 

range of water stress (evaporative fraction, FE) over grassland (Vaira ranch) and woody savanna 

(Tonzi ranch) in California. This clearly shows a tendency of systematic underestimation of vis,bb with 

respect to 0.66, and the underestimation increases with elevated water stress. This analysis was 

performed with Planet Fusion data. 

The effects of water limitations on nir,bb was also evident at low 0.86 and nir,bb >0.86 at 1276 

high water stress. This implies substantial overestimation of the numerator in NDVIbb as 1277 

compared to satellite NDVI (nir,bb – vis,bb>0.86 – 0.66) with increasing water limitation, 1278 

ultimately leading to a large positive difference between them when water stress 1279 

progresses. 1280 
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(a) vis,bb vs. 0.66 (DBF) 

 

(b) nir,bb vs. 0.86 (DBF) 

 

(c) vis,bb vs. 0.66 (ENF) 

 

(d) nir,bb vs. 0.86 (ENF) 

 

(e) vis,bb vs. 0.66 (OSH) 

 

(f) nir,bb vs. 0.86 (OSH) 

 

Figure A6: Illustrative examples of comparison between vis,bb versus 0.66 and nir,bb versus 0.86 for a 

range of water stress (evaporative fraction, FE) over deciduous broadleaf forest (DBF) and evergreen 

needleleaf forest (ENF). This clearly shows a tendency of systematic underestimation of vis,bb with 

respect to 0.66, in majority of the datapoints. This also shows a clear saturation of nir,bb signal at high 

0.86. This analysis was performed with HLS data since no Planet Fusion data was available for these 

ecosystems. 
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A5. Effects of variability of vegetation fraction on NDVIbb versus 1281 

satellite NDVI relationship 1282 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure A7: Illustrative examples of the effects of variability (coefficient of variation, cv in 

percent) in fractional vegetation cover (fc) on broadband versus satellite NDVI comparison at 

four different ecosystems. We took the cluster average of 10 x 10 pixel NDVI from Planet Fusion 

surrounding the tower sites. To understand the impact of fc variability we took the standard 

deviation of fc of 10 x 10 pixel and normalized with mean fc of the same pixels. 

A simple analysis is conducted to examine the effects of coarser spatial resolution on the 1283 

agreement between NDVIbb versus satellite NDVI. This analysis reveals the reasons for 1284 

relatively higher errors in NDVIbb when it was compared with 30 m spatial resolution 1285 

L8/9 and S2 NDVI from HLS datasets (as compared to Planet Fusion). This analysis is 1286 

only possible over a small subset of sites in California where coincident data from both 1287 

Planet Fusion and HLS is available. Therefore, investigation is made at four different 1288 

ecosystems using data of UC Berkeley Biomet sites. 1289 
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Figure A7 shows the effects of variability in fractional vegetation cover (fc) on the 1290 

comparison between NDVIbb versus satellite NDVI. To understand the impact of fc 1291 

variability, we estimated the coefficient of variation of fc (cv-fc, in percent.). We took the 1292 

standard deviation of Planet Fusion (3 m spatial resolution) fc over 10 x 10 pixel cutouts 1293 

surrounding the towers and normalized it with mean fc of the same numbers of pixels. 1294 

Taking the cluster average of 10 x 10 pixel NDVI from Planet Fusion surrounding the 1295 

tower sites, we found that the difference between NDVIbb versus satellite NDVI to be 1296 

sensitive to high cv-fc (≥20%). This showed overestimation of NDVIbb for low values of 1297 

satellite NDVI at GRA and WSA (Fig. A6c, d). Overall, high systematic RMSD was 1298 

found in both these ecosystems (45% in GRA and 74% in WSA) as compared to the 1299 

errors obtained from NDVI averaging over 3x3 pixels (40% in GRA and 61% in WSA). 1300 

The variability of fc was very little over alfalfa and no significant difference due to pixel 1301 

averaging was found at this site. For corn, the difference was found only at the start of the 1302 

growing season when cv-fc was high (≥20%) and the positive difference between NDVIbb 1303 

versus satellite NDVI was narrowed down with full vegetation growth.  1304 

 1305 

 1306 

 1307 

 1308 

 1309 

 1310 

 1311 
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Table A1: Site wise error statistics of NDVIbb and NIRvbb (parenthesis) with respect to 1312 

L8/L9 Harmonized Landsat and Sentinel (HLS) data 1313 

Ecosystem Site r bias RMSD nRMSD (%) 

CRO US-Bi1 0.81 (0.78) 0.02 (-0.03) 0.10 (0.08) 14 (17) 

 US-Bi2 0.89 (0.86) 0.10 (0.01) 0.13 (0.04) 23 (14) 

 US-Ne3 0.69 (0.69) 0.08 (0.05) 0.16 (0.10) 23 (19) 

 US-UiA 0.94 (0.89) -0.06 (-0.09) 0.12 (0.14) 18 (31) 

 US-UiB 0.82 (0.80) 0.08 (-0.04) 0.17 (0.11) 24 (22) 

 US-xSL 0.90 (0.73) 0.06 (0.00) 0.07 (0.02) 24 (14) 

GRA US-xAE 0.65 (0.72) 0.01 (-0.01) 0.08 (0.02) 12 (16) 

 US-xCP 0.65 (0.70) 0.05 (0.01) 0.08 (0.02) 14 (13) 

 US-xKA 0.81 (0.84) 0.01 (-0.02) 0.09 (0.04) 15 (14) 

 US-xKZ 0.83 (0.80) 0.01 (-0.03) 0.13 (0.08) 20 (19) 

 US-Var 0.92 (0.86) -0.01 (-0.02) 0.08 (0.04) 10 (13) 

 US-Wkg 0.67 (0.36) -0.03 (-0.02) 0.07 (0.03) 13 (24) 

WSA US-Ton 0.65 (0.56) 0.10 (0.02) 0.13 (0.03) 13 (15) 

 US-xSJ 0.51 (0.61) -0.03 (-0.02) 0.10 (0.03) 13 (16) 

OSH US-xJR 0.72 (0.69) 0.07 (0.02) 0.08 (0.02) 20 (20) 

 US-xNQ 0.36 (0.47) 0.04 (0.00) 0.07 (0.01) 8 (17) 

 US-xSR 0.39 (0.28) 0.00 (-0.01) 0.06 (0.02) 14 (15) 

FOR US-xAB 0.62 (0.65) -0.09 (-0.09) 0.14 (0.11) 24 (37) 

 US-xBL 0.72 (0.90) -0.10 (-0.10) 0.15 (0.12) 25 (27) 

 US-xDL 0.72 (0.82) -0.06 (-0.09) 0.13 (0.12) 18 (29) 

 US-xHa 0.54 (0.74) -0.05 (-0.09) 0.18 (0.13) 20 (26) 

 US-xJE 0.54 (0.68) -0.12 (-0.08) 0.17 (0.10) 20 (26) 

WET US-Myb 0.69 (0.66) 0.05 (0.01) 0.09 (0.03) 12 (13) 

 US-TW1 0.74 (0.74) -0.01 (-0.05) 0.07 (0.06) 10 (25) 

 US-TW4 0.69 (0.21) 0.04 (-0.02) 0.10 (0.09) 14 (38) 

 1314 
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Table A2: Site wise error statistics of NDVIbb and NIRvbb with respect to S2 Harmonized 1315 

Landsat and Sentinel (HLS) data 1316 

Ecosystem Site r bias RMSD nRMSD 

CRO US-Bi1 0.85 (0.79) 0.02 (-0.02) 0.09 (0.07) 10 (13) 

 US-Bi2 0.81 (0.88) 0.09 (0.01) 0.15 (0.04) 15 (14) 

 US-Ne3 - - - - 

 US-UiA - - - - 

 US-UiB - - - - 

 US-xSL 0.87 (0.71) 0.04 (-0.01) 0.07 (0.04) 13 (19) 

GRA US-xAE 0.90 (0.81) 0.02 (0.01) 0.05 (0.02) 10 (16) 

 US-xCP 0.65 (0.74) 0.09 (0.02) 0.11 (0.02) 1 (5) 

 US-xKA 0.82 (0.78) 0.03 (-0.01) 0.09 (0.03) 12 (14) 

 US-xKZ 0.81 (0.83) -0.01 (-0.02) 0.14 (0.07) 21 (19) 

 US-Var 0.85 (0.79) 0.03 (0.01) 0.11 (0.04) 18 (13) 

 US-Wkg 0.55 (0.23) -0.02 (-0.01) 0.07 (0.03) 6 (16) 

WSA US-Ton 0.46 (0.37) 0.17 (0.04) 0.19 (0.05) 30 (30) 

 US-xSJ 0.56 (0.46) -0.01 (-0.01) 0.11 (0.03) 12 (12) 

OSH US-xJR 0.79 (0.75) 0.11 (0.04) 0.12 (0.04) 26 (32) 

 US-xNQ 0.32 (0.40) 0.07 (0.01) 0.09 (0.01) 6 (19) 

 US-xSR 0.41 (0.22) 0.01 (-0.01) 0.06 (0.02) 14 (16) 

FOR US-xAB - - - - 

 US-xBL 0.77 (0.87) -0.05 (-0.05) 0.12 (0.07) 19 (21) 

 US-xDL 0.75 (0.86) 0.01 (-0.04) 0.13 (0.08) 19 (23) 

 US-xHa 0.53 (0.44) -0.16 (-0.06) 0.26 (0.12) 26 (28) 

 US-xJE 0.67 (0.74) -0.03 (-0.05) 0.11 (0.07) 15 (25) 

WET US-Myb 0.83 (0.65) 0.08 (0.03) 0.10 (0.04) 14 (23) 

 US-TW1 0.82 (0.78) 0.03 (-0.02) 0.10 (0.04) 12 (19) 

 US-TW4 0.92 (0.80) 0.06 (-0.01) 0.08 (-0.03) 10 (11) 
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