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1 Abstract

2 In spite of recent advances in the development of high performing piezoelectric materials, their 

3 applications are typically limited to the direct conversion of mechanical impact energy to electrical 

4 energy, potentially risking mechanical failures. In this study, we developed piezoelectric 

5 poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) nanofibers integrated with SiO2-

6 shelled Fe3O4 magnetic nanoparticles, to utilize magnetic energy to reliably drive the piezoelectric 

7 effect. Specifically, we show that the shape of the magnetic nanoparticle exerts a significant effect 

8 on the efficiency of the magno-mechano-electrical energy conversion as magnetic nanorods 

9 exhibit approximately 70% enhancement in the electric field generation under cyclic magnetic 

10 fields as compared to nanospheres. Under an alternating magnetic field of 200 mT, the magnetic 

11 nanorod-piezoelectric nanofiber composite generated a peak-to-peak voltage of approximately 30 

12 mVp-p with a superior durability without any performance degradation after over 1 million cycles. 

13 This study demonstrates the potential of magnetic-field responsive, piezoelectric-based materials 

14 in the energy harvesting applications from non-mechanical energy sources.

15

16 Keywords: Piezoelectric electrospun nanofiber, Magnetic nanoparticle, Waste energy harvesting
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1 Introduction

2 Energy demand for portable electronic devices has substantially increased due to the incorporation 

3 of power-guzzling features such as powerful computational capability, various sensors and larger 

4 screen size. To accommodate such a high energy demand, scavenging wasted energy sourced from 

5 daily-life activities has been explored with diverse approaches for efficient energy conversion. 

6 One of the most common and effective approaches is the conversion of mechanical energy to 

7 electrical energy. The mechanical energy mainly originates from human body or machine motions, 

8 and its energy output is considerably high among the other energy scavenging sources such as 

9 light, radio-frequency electromagnetic radiation, and thermal gradient.1, 2 Therefore, piezoelectric 

10 materials, capable of converting mechanical energy to electrical energy, are the key to efficiently 

11 harvest such wasted energy.3, 4 

12 For low frequency, high strain applications, polymer-based piezoelectric materials have 

13 significant advantages over piezo-ceramics due to their flexibility and impact resistance.5 Among 

14 various polymeric piezoelectric materials, poly(vinylidene fluoride) (PVDF) has shown to exhibit 

15 outstanding piezoelectric constants6 and fairly good thermal stability. Recently, the 

16 copolymerization of a phase stabilizer, trifluoride ethylene (TrFE), enables the maintenance of 

17 electrically active -phase at room temperature, achieving greater piezoelectric constants.4 We 𝛽

18 have further demonstrated that electrospinning process induces P(VDF-TrFE) nanofibers to form 

19 greater -phase content without additional mechanical stretching and/or electric poling for piezo-𝛽

20 ceramic compatible performances.7, 8 

21 To further improve its utilization, the addition of functional materials, i.e., magnetic 

22 materials in the PVDF matrix, may enable to exploit other extrinsic stimuli, i.e. magnetic fields, 

23 to actuate the piezoelectric polymer for energy generation. Indeed, several groups have attempted 
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1 to introduce Fe3O4 nanoparticles into PVDF films9 and nanofibers10, and demonstrated that the 

2 addition of the nanoparticle enhances the piezoelectric performance due to an increase in -phase 𝛽

3 formation and electret doping effect11. A few studies have reported to utilize magnetic fields to 

4 actuate piezoelectric devices at macroscale in combination with an additional magnetic materials12, 

5 13. However, to the best of our knowledge, no report has yet demonstrated the magneto-mechano-

6 electrical energy conversion at nanoscale by utilizing microscopic movement of the magnetic 

7 nanoparticles embedded within individual piezoelectric nanofibers, enabling a long-term structural 

8 stability. In this study, we developed a composite of P(VDF-TrFE) and Fe3O4 encapsulated by 

9 SiO2, and demonstrated its performance in producing electric fields under alternating magnetic 

10 fields via the microscopic movement of magnetic nanoparticles, embedded in the piezoelectric 

11 nanofibers. Specifically, the effects of the morphological anisotropy of the magnetic nanoparticles 

12 on the piezoelectric performance of piezoelectric-magnetic composites were investigated to 

13 enhance the energy conversion.

14

15 Results and discussion

16 In this study, we aimed to develop an electrospun piezoelectric P(VDF-TrFE) composite with 

17 magnetic nanoparticles (MNPs) and demonstrate the actuation of the piezoelectric nanofibers by 

18 the microscopic movements of the MNPs under magnetic fields for electric field generation 

19 (Figure 1a). We particularly focused on examining the effects of MNP shape factor on the 

20 efficiency of magneto-mechano-electrical conversion. The mechanism underlying the conversion 

21 of magnetic field to mechanical strain to electrical energy is based on the microscopic movement 

22 of the MNPs straining P(VDF-TrFE) nanofibers due to two major forces: attractive force and 
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1 torque. The attractive force (Fatt) occurs when the MNPs are placed in a magnetic field gradient, 

2 causing convectional movements, which can be described by the equation,

3   = ,                                                   (1)𝑭𝒂𝒕𝒕 = ∇(𝒎 ∙ 𝑩) ∇𝒎𝐁cosθ

4 where m is magnetic dipole moments, B is magnetic field, and  is angle between  and B vectors. θ 𝒎

5 Another force that the MNP will experience in the magnetic field is torque, 

6 ,                                                     (2)𝝉𝒎𝒂𝒈 = 𝒎 × 𝑩 = 𝒎𝑩𝑠𝑖𝑛θ

7 where its magnitude becomes maximum at 90  while the maximum of the attractive force is θ =  

8 at 0 . The torque induced by the magnetic field causes the rotation of an MNP, further θ =  

9 microscopically straining the nanofiber, in addition to the tensile straining by Fatt. Based on the 

10 equations (1 and 2), the total force applied to the nanofiber is determined by , B, and the 𝒎

11 magnetization orientation of MNPs. Therefore, the uniform alignment of MNP orientation is the 

12 key to maximize the overall force generated under magnetic fields. In this regard, the shape of 

13 MNP is essential for its alignment when embedded within an electrospun nanofiber; the MNP with 

14 an anisotropic morphology, i.e., rod shape, will promote the alignment of MNP magnetization 

15 along the long axis of the fiber while that with the spherical shape will result in statistically random 

16 magnetization orientation. 

17 To investigate the effects of the MNP shape factor with different aspect ratios on the torque 

18 strain generation to the nanofibers, numerical simulation using COMSOL Multiphysics was 

19 conducted. In this simulation, maximum possible torque strains induced by the rotation of MNPs 

20 were compared; the direction of the MNP dipoles is all aligned along the nanofiber axis regardless 

21 of the particle shape. Figure 1c shows that the strain increases almost linearly with the increase of 

22 the aspect ratio when the same magnitude of force was applied to the opposite sides of the MNP 

23 surfaces in the axis parallel to nanofibers as shown in Figure 1b. Based on this simulation result, 
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1 we synthesized magnetic nanoparticles with a rod shape (magnetic nanorod (MNR)) or a spherical 

2 shape (magnetic nanosphere (MNS)) as shown in Figure 2 to demonstrate the particle shape 

3 dependency of magnetic field-induced piezoelectric nanofiber strain and its consequent electric 

4 field generation. The average diameter and length of the MNRs are approximately 160 nm and 460 

5 nm, respectively, with 40 nm SiO2 layer, which was indispensable to form such a shape with high 

6 aspect ratio14. The average diameter of the MNSs was controlled to match that of the MNRs at 

7 approximately 168 nm with 30 nm SiO2 layer. These MNPs were separately dispersed in P(VDF-

8 TrFE) solution prior to being subjected to electrospinning. We have previously reported that the 

9 reduction of the nanofiber diameter results in the exponential enhancement of piezoelectric 

10 properties due to the enhanced -phase formation and Young’s modulus15. For the present study, 𝛽

11 nanofiber diameter is more significant factor in determining electric field generation as compared 

12 to typical direct mechanical force induced applications due to minute strains generated by the 

13 microscopic movements of MNPs. Therefore, the reduction of nanofiber diameter without 

14 significantly deteriorating MNP distribution within the nanofibers, is critical to enhance the 

15 piezoelectric performance by promoting the strain of individual fibers, and by improving 

16 piezoelectric coefficients through dimensional reduction. In this regard, the diameters of both 

17 MNR and MNS composite nanofibers were carefully controlled, minimized, and matched to 

18 compare the magneto-mechano-electrical energy conversion induced by the MNP-derived 

19 actuation on piezoelectric nanofibers under alternating magnetic fields. The SEM images of 

20 Fe3O4@SiO2 MNS and MNR/PVDF-TrFE nanofiber composites show that MNPs are uniformly 

21 distributed along the individual nanofibers (Figure 2c-d). The average diameters of MNP-

22 containing fibers were approximately 58 nm (MNR) and 63 nm (MNS), respectively. It should be 

23 noted that MNPs are not embedded in the center of the nanofibers. The height profiles of the AFM 
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1 images show that MNPs are surrounded with at least 20 ~ 30 nm thick-layer of P(VDF-TrFE) 

2 resulting in robust mechanical bonding between MNPs and nanofibers, stable under strains (Figure 

3 2e-f). Indeed, we did not observe any mechanical failure of MNPs separated from the nanofiber 

4 matrix in the subsequent experiments. 

5 The piezoelectric properties of the nanofibers were determined by piezo-response force 

6 microscopy (PFM) (Figure 3a-b). Piezoelectric properties were analyzed by monitoring the 

7 amplitude changes with respect to the applied electric bias and showed a relatively similar response 

8 from MNR- and MNS-containing nanofibers.  The values of the d33 for MNR-nanofiber and MNS-

9 nanofiber were 36  7 and 40  14 pm/V, respectively, with around 60 nm fiber diameter. It is 

10 expected that the difference in the electric outputs under the same strain due to the discrepancy in 

11 d33 between MNR and MNS will be within the range of 10%.

12 Shape-dependent magnetization was analyzed by magnetic hysteresis loops (MHLs) to 

13 compare the magnetic properties of the MNR and MNS in nanofiber in Figure 3c-d. Higher 

14 remanence to saturation magnetization ratio (Mr/Ms) and coercivity indicates an easy 

15 magnetization direction or preferential direction of the magnetic dipole of the magnetic materials. 

16 The MHLs were conducted in two magnetic field directions: in-plane (H//) and out-of-plane (H

17 . Asymmetric shape of MNRs makes them aligned along the nanofiber axis during ⊥ )

18 electrospinning. In the MHLs under H , the angle between MNRs and Ha is 90 º. The parallel ⊥

19 MHLs of MNR show higher Mr/Ms and  than perpendicular MHLs elucidating that the easy 𝐻𝑐

20 magnetization direction of the NR is the long axis of the NR (Figure 3c). Contrary to the MNRs, 

21 the polarity of the MNS is randomly oriented in the nanofibers due to its spherically symmetry 

22 structure. As expected from the structure, MHLs of MNS show that magnetic isotropy between 

23 the in-plane and out-of-plane field orientation, resulting in almost the same Mr/Ms and (Figure 𝐻𝑐 

Page 10 of 29Nanoscale



1 3d). The identical curves regardless of the direction of the applied magnetic fields elucidate that 

2 there is no preferential orientation of the MNS in the nanofiber mat (Figure 3f). These results 

3 confirm the superiority of MNR to maximize force generated under magnetic fields as described 

4 earlier (Figure 1). The amount of torqueing by MNPs under magnetic fields can be estimated by 

5 the MHL. The total mechanical work by the torque for the cyclic integral  is 𝜏𝑑𝜃 = ―𝑑𝑊

6 proportional to the area of M-H loop.16, 17 When comparing the area (A) of perpendicular MHLs 

7 of MNR and MNS, which represents the actual operating scheme of the experiment (perpendicular 

8 approach of the magnet to the surface of nanofiber mats), the ratio of AMNR/AMNS is approximately 

9 1.4. Given the ratio, it is expected that 1.4 times larger torsional work is induced by the MNRs 

10 during the approach of the external magnet. 

11 To confirm the superior piezoelectric performance of MNR-nanofiber expected from the 

12 piezoelectrical and magnetic characterization, electric outputs from the MNS and MNR composite 

13 nanofibers with a similar thickness of approximately 25 m were measured under the cyclic 

14 movement of the magnet as shown in Figure 4a. The movement of the magnet was limited to the 

15 perpendicular direction to the nanofiber mat, thereby minimizing the contribution from electro-

16 magnetic interference (EMI) on the electric output. The control experiment with P(VDF-TrFE) 

17 nanofibers without any MNPs confirmed that the influence of EMI is negligible (Figure 4b). Au-

18 coated glass substrates were used as electrodes, sandwiching the samples to prevent macro-scale 

19 deformation of the nanofiber mat during the measurement. Representative electric outputs from 

20 MNR and MNS were plotted to compare their amplitude difference in Figure 4b. To validate the 

21 reproducibility, five independent nanofiber mats with either MNRs or MNSs were independently 

22 prepared and the electric outputs of each device were measured (Figure S1). The resultant electric 

23 outputs from MNR were an average of 30 mVp-p, approximately 70 % higher than that of MNS at 
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1 an average of 21 mVp-p. The electric outputs from as-spun PVDF-TrFE nanofiber showed 

2 negligible voltages, confirming that the generated voltages from MNP-containing fibers originates 

3 from the strain induced by the movement of the MNPs in the nanofibers. The output voltage with 

4 switching-polarity test further confirms that the signals were generated by the piezoelectric 

5 response of the devices (Figure S2). This electric output difference is above the level of 40% 

6 enhancement predicted from the magnetization area comparison in MHLs (Figure 3c-d), likely due 

7 to the combination of slightly higher piezoelectric constant, enhanced torqueing and different 

8 distribution of MNRs within the nanofiber matrix.

9 The electric outputs (voltage and current) of the current system under magnetic fields are 

10 considerably lower than that generated under direct mechanical actuation (Figure S3). However, 

11 this energy harvesting strategy has a significant advantage by providing a means to produce 

12 electrical energy without a macro-scale mechanical actuation that typically leads to mechanical 

13 failure and/or poor electrical contact after a long period usage. To demonstrate its long-term 

14 durability, the system was subjected to over 1 million cycles and showed a consistent electric 

15 output without any degradation as shown in Figure 4c. We expect that the electric output can be 

16 further improved by optimizing the load of the MNPs or the mat thickness. 

17

18 Conclusion

19 In this work, we investigated MNPs with different morphologies embedded within piezoelectric 

20 P(VDF-TrFE) nanofibers for the magneto-mechano-electrical energy conversion. MNRs aligned 

21 along the nanofiber by the electrospinning process, which resulted in their uniform magnetization 

22 orientation in the direction of the long axis of MNR, enabling a full utilization of torque strain to 

23 enhance electric field generation under cyclic magnetic fields. The combination of enhancements 
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1 in the out-of-plane magnetization, the torque-induced strain generation, and the piezoelectric 

2 constant resulted in the enhanced energy conversion performance of the MNRs, generating 70% 

3 greater electric outputs as compared to MNS. These results demonstrate the significant impact of 

4 the particle shape factor on the MNP-based energy harvesting. Furthermore, the result from the 

5 durability test demonstrates that the microscopic movement of the nanofibers without macro-scale 

6 bending or compression enables long-term energy harvesting capability without degradation of 

7 piezoelectric performance over 1 million cycles. Therefore, this work opens another revenue as a 

8 waste energy harvesting strategy using a piezo electric polymer combined with magnetic 

9 nanoparticles.

10

11 Experimental

12 Synthesis of magnetic Fe3O4@SiO2 nanorods (NRs)

13 The synthesis of FeOOH NRs was based on a previously reported methods14, 18 with some 

14 modifications. In a typical synthesis of 460 nm FeOOH NRs, 100 mL of 0.1 M FeCl3 aqueous 

15 solution was added into a glass vial, which was tightly sealed and kept at 87 °C for 24 h. After 

16 cooling to room temperature, the particles were collected by centrifugation, washed with water for 

17 several times, and dispersed in 20 mL of water. The surface of as-synthesized FeOOH NRs were 

18 functionalized with polyacrylic acid (PAA). To 20 mL of the above FeOOH dispersions, 20 mL 

19 of PAA solution (7.2 mg/mL) was added. The mixture was then stirred for 12 h, followed by 

20 centrifugation to remove excess PAA and re-dispersing in 20 mL of water. A 20 ml aqueous 

21 dispersion of PAA-modified FeOOH NRs was added into 100 mL of ethanol, followed by the 

22 addition of 3 mL of ammonium hydroxide (~28 % wt) and 4 mL of tetraethyl orthosilicate. After 

23 4 h of reaction, the FeOOH@SiO2 NRs were isolated by centrifugation, washed with ethanol and 
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1 water for several times, and dried at 60 °C. The FeOOH@SiO2 NRs was reduced at 360 °C by 5% 

2 H2 for 2 h to produce the Fe3O4@SiO2 NRs.

3

4 Synthesis of magnetic Fe3O4@SiO2 nanospheres (NSs)

5 Similar synthetic protocols were employed for the preparation of Fe3O4@SiO2 NSs. In a typical 

6 synthesis, 100 mL of mixed aqueous solution of 0.2 M FeCl3 and 0.08 M cetyltrimethylammonium 

7 chloride was tightly sealed in a glass bottle and kept at 87 °C for 24 h. The FeOOH NSs were then 

8 collected and washed, functionalized with PAA, coated with silica, and finally converted to 

9 Fe3O4@SiO2 NSs by using the same protocols as for Fe3O4@SiO2 NRs. 

10

11 Electrospinning of MNP composite P(VDF-TrFE) nanofibers

12 0.36g of P(VDF-TrFE) (70/30 mol%, Solvay Group, France) was dissolved in 2.13g of N,N-

13 dimethylformamide (DMF) (Fisher Scientific, Pittsburgh, PA) and 1.19g of acetone, supplemented 

14 with 0.31g of pyridinium formate (PF) buffer (Sigma-Aldrich, St Louis, MO) to increase the 

15 solution conductivity. After complete dissolution of P(VDF-TrFE) under magnetic stirring, 0.252 

16 g of MNPs were added to the solution and sonicated for 1 hour. The solution was then elecrospun 

17 for 4 hours at applied voltage of ~15 kV with the distance of 20 cm between the needle and 

18 substrate at around 20 °C and a relative humidity of 9 g m−3. The deposited electrospun nanofibers 

19 were then placed in an oven at 90 °C for 24 hours.

20

21 Numerical simulations

22 Solid mechanics module in COMSOL Multiphysics 5.3a was used for the numerical simulation 

23 (Figure 1b-c). The diameter of MNR and MNS was set at 160 nm. Nanofibers of 60 nm in diameter 
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1 and 4 µm in length were used, and their Young’s modulus, Poisson’s ratio, and density of the 

2 nanofiber were set at 50 GPa15, 0.39, and 1780kg/m3 19, respectively. To calculate the torque strain 

3 induced by the rotation of MNPs, the same magnitude of force (1N) was applied to the opposite 

4 sides of the MNP surfaces in the axis parallel to nanofibers. The average of the first principle strain 

5 in nanofibers was calculated with respect to the aspect ratio of the MNPs.

6

7 Characterization of MNP composite P(VDF-TrFE) nanofibers

8 The morphology of MNPs and MNP composite P(VDF-TrFE) nanofibers were characterized using 

9 transmission electron microscope (TEM, Tecnai 12) and scanning electron microsocope (SEM, 

10 FEI NNS450). MFP-3D AFM (Asylum Research, Santa Barbara, CA) was used for topographic 

11 images and piezoelectric coefficient measurement. The topographic images were obtained under 

12 tapping imaging mode, and the probe was then placed on the top of the individual fiber in contact 

13 mode subsequently by switching AFM to PFM mode. Under our PFM measurement system, single 

14 point spectroscopy was measured on the nanofibers on Au substrate and step voltages from -3 to 

15 +3 V were applied to the fiber and the amplitude change of the PFM cantilever (AC240TM, 

16 Olympus) was recorded in the same direction to the electric field which corresponds to the 

17 piezoelectric constant, d33. Taking into account the quality factor (Q) of the AFM cantilever, the 

18 d33 of the nanofibers was calculated using the following relation,

19                                                   (3)𝑑33 =
𝐴

𝑉𝑄𝑓

20 where A is the amplitude of the piezoresponse, V is the applied bias, and  is the correctional 𝑓

21 factor (f=23.96) from the periodically poled lithium niobite (PPLN) standard20 which has a known 

22 piezoelectric coefficient. Room temperature magnetic hysteresis loops of the MNR and MNS in 

23 nanofiber were conducted with a vibrating sample magnetometer (DMS). Because the NR and NS 
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1 are integrated with the nanofiber mats with the same weight % and their thicknesses are similar 

2 (~25 m), nanofiber mat area was based instead of mass for the direct comparison of the MNR 

3 and MNS in nanofiber. Hence, 1.5 cm by 1.5 cm nanofiber mats were cut into 9 small pieces (5 

4 mm by 5 mm). The 9 small pieces of nanofibers were stacked and placed in the center of the 

5 magnetic hysteresis. The fibers were placed in two direction: in-plane (H//) and out-of-plane (H

6  and the external magnetic field was applied to the film at 10 Oe increment and 3s dwell time.⊥ )

7

8 Electric output measurement under magnetic stimulus

9 100 nm Au was deposited on the both sides of the nanofiber mats (Area: 2.25 cm2, Thickness: 25 

10 m) by sputtering and the samples were sandwiched with Au coated glasses for efficient collection 

11 of the generated charges from the nanofibers. A cube Neodymium magnet (N42 1-1/2”) was used 

12 for the stimulus of the MNP-nanofiber mat. The magnetic field intensity measured using a gauss 

13 meter (HT20, Resolution: 1mT) on the surface of the south pole was ~ 200mT. To minimize 

14 electromagnetic interference and induced current due to the magnet, the magnet moved vertically 

15 to the fiber mat and the fiber was completely sealed with grounded aluminum (Al) film. The 

16 generated voltage was measured with an oscilloscope (Pico Technology, St Neots, United 

17 Kingdom) under the magnetic stimulation by a vertical cyclic movement of the magnet at 3.3Hz.

18
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1 Figure Captions

2 Figure 1. Conversion of magnetic energy to electric energy by utilizing dynamic strains induced 

3 by microscopic movements of magnetic Fe3O4@SiO2 nanorod (MNR)- and nanosphere (MNS)- 

4 composite P(VDF-TrFE) nanofibers under magnetic fields. (a) Schematic illustration of MNR and 

5 MNS embedded in P(VDF-TrFE) nanofibers under magnetic fields. (b) A schematic of nanofiber 

6 strain induced by the torque of the magnetic nanoparticles. (c) Average first principle strain in 

7 nanofibers due to the torque of the MNRs with different aspect ratio. Finite element analysis in 

8 COMSOL Multiphysics was used to obtain the simulation results of (b) and (c). The values are 

9 normalized to that of MNS (i.e., aspect ratio = 1). 

10

11 Figure 2. Morphological characterization of magnetic nanoparticles (MNPs) and P(VDF-TrFE) 

12 nanofibers. TEM images of magnetic Fe3O4@SiO2 (a) nanorods (MNRs) and (b) nanospheres 

13 (MNSs). SEM images of electrospun P(VDF-TrFE) nanofibers with (c) MNRs and (d) MNSs. 

14 AFM images of (e) MNR and (f) MNS embedded in P(VDF-TrFE) nanofibers. Insets show the 

15 cross-sectional topography of the fiber (A) with and (B) without MNPs. 

16

17 Figure 3. Piezoelectric and magnetic characterization of electrospun P(VDF-TrFE) nanofibers 

18 embedded with magnetic Fe3O4@SiO2 nanorods (MNRs) and nanospheres (MNSs). Piezoelectric 

19 responses of the nanofibers with (a) MNRs and (b) MNSs (top graphs) in response to applied 

20 electric biases (bottom graphs). In-plane (H//) and out-of-plane (H  magnetic hysteresis loops ⊥ )

21 of the nanofibers with (c) MNRs and (d) MNSs. Schematic illustration of magnetic nanoparticle 

22 polarization under H// and H  showing that (e) all MNRs are aligned in the direction of ⊥

23 nanofibers and their magnetization orientation are also in the same direction with the nanofibers 

24 while (f) MNSs have randomly oriented magnetization.

25

26

27 Figure 4. Electric outputs of approximately 25 µm-thick electrospun mats composed of magnetic 

28 Fe3O4@SiO2 nanoparticle embedded P(VDF-TrFE) nanofibers under magnetic stimulation by a 

29 vertical cyclic movement of a neodymium magnet. (a) Schematic of the device assembly to 

30 measure electric outputs under magnetic stimulation. (b) Comparison of electric outputs from as-

Page 19 of 29 Nanoscale



1 spun P(VDF-TrFE) nanofiber mat, its composite with MNSs, or MNR. (c) A long-term durability 

2 test of P(VDF-TrFE) nanofibers embedded with MNRs.
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Figure 1. Conversion of magnetic energy to electric energy by utilizing dynamic strains induced by 
microscopic movements of magnetic Fe3O4@SiO2 nanorod (MNR)- and nanosphere (MNS)- composite 
P(VDF-TrFE) nanofibers under magnetic fields. (a) Schematic illustration of MNR and MNS embedded in 

P(VDF-TrFE) nanofibers under magnetic fields. (b) A schematic of nanofiber strain induced by the torque of 
the magnetic nanoparticles. (c) Average first principle strain in nanofibers due to the torque of the MNRs 

with different aspect ratio. Finite element analysis in COMSOL Multiphysics was used to obtain the simulation 
results of (b) and (c). The values are normalized to that of MNS (i.e., aspect ratio = 1). 
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Figure 2. Morphological characterization of magnetic nanoparticles (MNPs) and P(VDF-TrFE) nanofibers. TEM 
images of magnetic Fe3O4@SiO2 (a) nanorods (MNRs) and (b) nanospheres (MNSs). SEM images of 

electrospun P(VDF-TrFE) nanofibers with (c) MNRs and (d) MNSs. AFM images of (e) MNR and (f) MNS 
embedded in P(VDF-TrFE) nanofibers. Insets show the cross-sectional topography of the fiber (A) with and 

(B) without MNPs. 
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Figure 3. Piezoelectric and magnetic characterization of electrospun P(VDF-TrFE) nanofibers embedded with 
magnetic Fe3O4@SiO2 nanorods (MNRs) and nanospheres (MNSs). Piezoelectric responses of the nanofibers 
with (a) MNRs and (b) MNSs (top graphs) in response to applied electric biases (bottom graphs). In-plane 

(H//) and out-of-plane (H⊥) magnetic hysteresis loops of the nanofibers with (c) MNRs and (d) MNSs. 
Schematic illustration of magnetic nanoparticle polarization under H// and H⊥ showing that (e) all MNRs are 
aligned in the direction of nanofibers and their magnetization orientation are also in the same direction with 

the nanofibers while (f) MNSs have randomly oriented magnetization. 
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Figure 4. Electric outputs of approximately 25 µm-thick electrospun mats composed of magnetic 
Fe3O4@SiO2 nanoparticle embedded P(VDF-TrFE) nanofibers under magnetic stimulation by a vertical cyclic 

movement of a neodymium magnet. (a) Schematic of the device assembly to measure electric outputs 
under magnetic stimulation. (b) Comparison of electric outputs from as-spun P(VDF-TrFE) nanofiber mat, its 

composite with MNSs, or MNR. (c) A long-term durability test of P(VDF-TrFE) nanofibers embedded with 
MNRs. 
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Figure S1. Reproducibility test of the piezoelectric output voltage measured from five independent 

P(VDF-TrFE) nanofiber mats with MNRs (a-e) and MNSs (f-j). 
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Figure S2. Piezoelectric output voltage measured from the magnetic Fe3O4@SiO2 nanorodes 

embedded P(VDF-TrFE) nanofiber mats by (a) forward and (b) reverse connections. 
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Figure S3. Piezoelectric (a) open-circuit voltage and (b) short-circuit current measured from the 

magnetic Fe3O4@SiO2 nanorodes embedded P(VDF-TrFE) nanofiber mats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b)

0 1 2 3 4
-4

-3

-2

-1

0

1

2

 

 

C
ur

re
nt

 (n
A)

Time (s)
0 1 2 3 4

-40

-30

-20

-10

0

10

20

Vo
lta

ge
 (m

V)

Time (s)

Page 29 of 29 Nanoscale




