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LETTER OPEN

MYELODYSPLASTIC NEOPLASM

5G2 mutant mice model loss of a commonly deleted segment
of chromosome 7q22 in myeloid malignancies
Jasmine C. Wong1, Kelley M. Weinfurtner1, Tamara Westover 2, Jangkyung Kim1, Eric J. Lebish1, Maria del pilar Alzamora1,
Benjamin J. Huang 1, Michael Walsh2, Sherif Abdelhamed 2, Jing Ma2, Jeffery M. Klco 2✉ and Kevin Shannon1,3✉

© The Author(s) 2024

Monosomy 7 and del(7q) are among the most common and poorly understood genetic alterations in myelodysplastic neoplasms
and acute myeloid leukemia. Chromosome band 7q22 is a minimally deleted segment in myeloid malignancies with a del(7q).
However, the rarity of “second hit” mutations supports the idea that del(7q22) represents a contiguous gene syndrome. We
generated mice harboring a 1.5 Mb germline deletion of chromosome band 5G2 syntenic to human 7q22 that removes Cux1 and
27 additional genes. Hematopoiesis is perturbed in 5G2+/del mice but they do not spontaneously develop hematologic disease.
Whereas alkylator exposure modestly accelerated tumor development, the 5G2 deletion did not cooperate with KrasG12D, NrasG12D,
or the MOL4070LTR retrovirus in leukemogenesis. 5G2+/del mice are a novel platform for interrogating the role of hemopoietic stem
cell attrition/stress, cooperating mutations, genotoxins, and inflammation in myeloid malignancies characterized by monosomy 7/
del(7q).

Leukemia (2024) 38:1182–1186; https://doi.org/10.1038/s41375-024-02205-x

TO THE EDITOR:
Monosomy 7 (Mo7) and del(7q) [Mo7/del(7q22)] are highly

prevalent chromosomal abnormalities in de novo pediatric and
adult myelodysplastic neoplasm (MDS) and acute myeloid
leukemia (AML) that are associated with an aggressive clinical
course and therapeutic resistance [1, 2]. In addition, Mo7/del(7q) is
highly enriched in myeloid malignancies that develop in patients
with aplastic anemia or germline mutations in genes such as NF1,
SAMD9/9L, and GATA2 or following treatment with radiation or
alkylating agents [3, 4]. In patients with Mo7/del(7q), the
transformation from MDS to AML is characterized by recurring
cooperating mutations in NRAS/KRAS, SETBP1, RUNX1, and other
genes [5]. The lack of accurate in vitro and in vivo models is a
major barrier to understanding how Mo7/del(7q) contributes to
leukemogenesis.
Chromosome band 7q22 is a minimally deleted segment in

MDS and AML samples that is syntenic with mouse chromosome
band 5A3 [6] (Supplementary Fig. 1). Based on the rarity of
“second hit” mutations in any 7q gene in myeloid malignancies
with Mo7/del(7q), loss of 7q22 likely represents a contiguous gene
syndrome whereby haploinsufficiency for multiple genes con-
tributes to leukemogenesis [2]. Utilizing chromosome engineering,
we previously generated 5A3+/del mice harboring a heterozygous
germline deletion corresponding to part of this minimally deleted
segment, which is bounded by Fbxl13 and Srpk2 [7] (Supplemen-
tary Fig. 1). The 5A3 deletion impairs lymphoid repopulation and

perturbs the hematopoietic stem cell (HSC) compartment without
enhancing repopulating potential or initiating hematologic
disease [7]. Studies of MDS and AML patient samples have
implicated a second region of 7q22 flanked by EPO and UPK3BL in
leukemogenesis. This interval contains CUX1 and 27 other genes
and is syntenic to mouse chromosome band 5G2 (Supplementary
Fig. 1). Here we report the generation and analysis of 5G2+/del

mice harboring a heterozygous germline Epo-Upk3bl deletion
(Supplementary Fig. 2).
The frequency of bone marrow (BM) c-kit+, lin-, Sca+ (KLS) cells

is reduced in 5G2+/del mice compared to wild-type (WT)
littermates, which is primarily due to a decrease in CD150neg

multi-potent progenitors (Figs. 1a, b). Further analysis of the KLS
CD48neg HSC population showed an increase in the myeloid-
biased CD150hi cells (Fig. 1c). Interestingly, 5-bromo-2’-deoxyur-
idine (BrdU) labeling revealed a significant reduction in the
proportion of 5G2+/del KLS CD48neg HSC in the S phase of the cell
division cycle and an increase in the G0/G1 fraction (Fig. 1d). After
backcrossing 5G2+/del mice to the C57BL/6 strain, we mixed WT or
5G2+/del BM cells (CD45.2) with WT CD45.1 competitors from
congenic BoyJ mice at a 1:1 ratio and transplanted them into
irradiated recipients. 5G2+/del cells showed a modest reduction in
competitive fitness that did not achieve statistical significance
(Fig. 1e). Consistent with RT-PCR analysis of individual 5G2 genes
(Supplementary Fig. 2d), RNA sequencing revealed a ~50%
reduction in the expression levels of genes within the deleted
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5G2 interval (Fig. 1f) and showed that gene sets associated with
interferon responses/inflammation were uniquely and significantly
down-regulated in KLS, CD48-, CD150neg cells from 5G2+/del mice
in comparison to WT controls (Supplementary Fig. 3).
5G2+/del mice and their WT littermates remained well with

normal hematologic parameters at >1 year of age (Supplementary
Fig. 4). Likewise, thymus and spleen weights and BM cellularity
were similar in 5G2+/del and WT mice at euthanasia (data not
shown). Given the frequent occurrence of NRAS and KRAS
mutations in myeloid malignancies with Mo7/del(7q), we gener-
ated cohorts of Mx1-Cre; KrasG12D/+ and Mx1-Cre; NrasG12D/+ mice
either lacking or harboring the 5G2 deletion and induced Cre
recombinase expression by injecting them with a single dose of
polyI-polyC at weaning [8, 9]. As expected [8], Mx1-Cre; KrasG12D/+

mice developed a fully penetrant myeloproliferative disorder
characterized by splenomegaly and leukocytosis that was similar
in both 5G2 genotypes (Supplementary Figs. 5a–c). Additionally,
the heterozygous 5G2 deletion did not modify survival or
hematologic phenotypes in Mx1-Cre; NrasG12D/+ mice [9](Supple-
mentary Fig. 5d). Furthermore, WT and 5G2+/del mice injected with
the MOL4070LTR retrovirus [10] had similar survival and devel-
oped the same spectrum of hematologic malignancies (Supple-
mentary Fig. 5e).
Mo7/del(7q) is strongly associated with therapy-induced MDS/

AML following treatment with radiation and/or alkylating agents
[4]. Accordingly, we injected 5G2+/del mice and WT littermates with
the alkylating agent N-nitroso-N-ethylurea (ENU). This experiment
revealed modest cooperativity between the 5G2 deletion and ENU
exposure in tumorigenesis (Fig. 2a). To investigate if ENU

treatment modulates competitive fitness, we mixed 5G2+/del or
WT BM with WT competitor cells and transplanted them into
irradiated syngeneic mice. Beginning five weeks after transplanta-
tion, these recipients received two doses of ENU or control vehicle
separated by 7 days and were euthanized four weeks later to
measure BM chimerism. The proportion of 5G2+/del cells was
significantly reduced in recipient mice after ENU treatment in
comparison to mice transplanted with WT competitors (Fig. 2b)
and this difference was maintained over time (Supplementary
Fig. 6). We next used s similar experimental design to assess the
impact of the 5G2 deletion on the competitive fitness of HSC
expressing NrasG12D from the endogenous locus. Specifically,
mice were transplanted with CD45.2 BM cells from Mx1-Cre;
NrasG12D/+;5G2+/del or control Mx1-Cre; NrasG12D/+ mice at a 1:1
ratio with WT CD45.1 competitors, and half of them were injected
with ENU 5 and 6 weeks later (Fig. 2c). Recipient mice were
monitored for 5 months after transplantation or until they became
moribund and required euthanasia. In the absence of ENU
treatment, the contribution of NrasG12D/+;5G2+/del double mutant
cells to the HSC and myeloid compartments was reduced in
recipient mice compared to control NrasG12D/+ cells while
lymphoid repopulation was similar (Fig. 2d). By contrast, most of
the recipients transplanted with either NrasG12D/+;5G2+/del or
NrasG12D/+WT cells that received ENU died prematurely, primarily
from lymphoid malignancies, which precluded assessing compe-
titive fitness.
Aly and colleagues identified 55 mutations and 6 microdele-

tions in the 7q22 gene CUX1 in 1480 adults with MDS, MPN, or
AML (4.1%) [11]. Of these mutations, 85% were heterozygous
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and 75% encoded missense amino acid substitutions. Patients
with MDS had the highest incidence of CUX1 mutations (~25%).
Mo7/del(7q) was present in 81 additional cases (5.5%), including
5 with CUX1 mutations [11]. By contrast, a comprehensive
molecular analysis of 77 pediatric MDS and MDS/MPN patient
samples revealed Mo7/del(7q) in 40% and PTPN11, NRAS, and
other Ras pathway mutations in 55% [12]. Germline mutations in
the 7q21.2 genes SAMD9 and SAMD9L were identified in 17% of
these pediatric cases and were strongly associated with loss of
the chromosome 7 homolog harboring the mutant allele. The
two CUX1 mutations occurred in samples with concurrent Ras
pathway mutations and Mo7/del(7q) [12]. These data and other
studies indicate that monosomy 7 is more common than CUX1
mutations in adult and pediatric myeloid malignancies, and
demonstrate that CUX1 is only rarely mutated in patients with
monosomy 7 [2].
Cux1 was independently investigated by two groups in mice

using either an inducible knockdown approach [13, 14] or the

Vav-iCre transgene to inactivate a conditional mutant allele [15]. In
the first model, aged Cux1Mid mice with a 45% reduction in Cux1
protein levels developed an indolent MDS-like disorder character-
ized by normal survival and blood leukocyte counts, an increase in
the percentage of myeloid cells, anemia, dysplasia, and modest
splenomegaly. HSC from these mice showed impaired self-
renewal and Cux1 knockdown cooperated with both ENU
treatment and NrasG12D expression in leukemogenesis [13, 14].
In the second model, heterozygous Vav-iCre; Cux1+/- mice had
normal blood leukocyte and erythrocyte numbers with macro-
cytosis at one year of age [15]. In agreement with these studies,
we show that the heterozygous 5G2 deletion that removes Cux1
neither alters lifespan nor causes acute leukemia. However, our
findings in Mx1-Cre; KrasG12D/+ and Mx1-Cre; NrasG12D/+ mice
haploinsufficient for the 5G2 deletion contrast with previous
studies showing that Flt3ITD or NrasG12D cooperated with reduced
Cux1 expression in leukemogenesis [14, 15]. Haploinsufficiency for
additional genes in the 5G2 interval - as commonly observed in
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human myeloid malignancies with Mo7/del(7q) - might account
for these differences.
The HSC compartment of 5G2+/del mice is characterized by an

increased percentage of CD150hi myeloid-biased cells, delayed/
reduced entry of HSC into the S phase of the cell cycle, and
impaired competitive fitness after ENU treatment and in the
context of NrasG12D expression. The consistent absence of an
in vivo growth advantage of 5A3del/+, 5G2+/del, and Cux1Mid HSCs
under steady-state conditions is both intriguing and counter-
intuitive as clonal outgrowth is a hallmark of myeloid malig-
nancies. The discovery of germline SAMD9 and SAMD9L mutations
as a cause of familial MDS and AML suggests an alternative
explanation for how Mo7/del(7q) might contribute to leukemo-
genesis [3]. HSC upregulate SAMD9 and SAMD9L as an adaptive
response to inflammatory signals in the BM microenvironment.
The SAMD9 and SAMD9L mutations identified in pediatric MDS
and AML encode biochemical gain-of-function proteins that
inhibit Ras/mitogen-activated protein kinase (MAPK) signaling,
suppress cell growth, perturb protein translation, and promote
apoptosis, which favors the survival of Mo7/del(7q) clones that
delete the mutant allele [3, 16, 17]. Knock-in mice harboring a
conditional Samd9l mutant allele that models a mutation in
familial MDS and AML develop BM aplasia with impaired HSC
function that is exacerbated by inflammatory stress and asso-
ciated with loss of the chromosomal segment harboring the
mutant allele [18]. Our observation that gene sets associated with
interferon signaling are down-regulated in 5G2+/del HSC provides a
biologic rationale for why 7q22 deletions might be co-selected
with loss of mutant SAMD9/9L alleles in response to inflammatory
stress. Similarly, it is possible that haploinsufficiency for SAMD9,
SAMD9L, and 7q22 cooperatively provide Mo7/del(7q) stem and
progenitor cells with a survival – but not a proliferative -
advantage in other disease settings characterized by chronic
HSC stress/attrition [1, 19].
Together with a previous analysis of 5A3+/del mice [7], the

studies of 5G2+/del mice reported here and observations in
human patients suggest that Mo7/del(7q) functions as an
“opportunistic” molecular abnormality in the context of HSC
damage and dysfunction [1]. This idea is conceptually con-
cordant with the outgrowth of TP53 mutant clones in therapy-
induced AML [20]. The prevalent mutations in NRAS and other
signaling genes in myeloid disorders with monosomy 7/del(7q)
may partially overcome the fitness disadvantage associated with
CUX1 haploinsufficiency and loss of the 7q22/5G2 interval by
promoting cell cycle progression [14]. The distinct effects of the
5G2 and 5A3 deletions on HSC homeostasis is likely due to the
fact that they independently removed 28 and 13 non-
overlapping genes syntenic to different human 7q22 DNA
segments. 5G2+/del mice are a genetically accurate model of the
proposed 7q22 contiguous gene deletion syndrome for inter-
rogating the role of Mo7/del(7q) in HSC homeostasis and for
characterizing how a pro-inflammatory BM microenvironment
shapes HSC survival, clonal evolution, and progression to MDS
and AML. Future studies may also further elucidate the
respective biologic and phenotypic consequences of haploin-
sufficiency for Cux1 and other individual 5G2 genes versus loss
of the entire Upk3bl-Epo interval.
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