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Towards an Empirical test of Realism in Cognition
James M. Yearsley (james.yearsley.1@city.ac.uk)

Emmanuel M. Pothos (emmanuel.pothos.1@city.ac.uk)
Department of Psychology, City University London

London, EC1V 0HB UK

Abstract

We discuss recent progress towards an empirical test of ‘real-
ism’ in cognition, ‘realism’ in this context being the property
that cognitive variables always have well defined (if unknown)
values at all times. Our main result is an inequality obeyed by
realist theories, which could be tested by a suitable experiment.
We focus our attention in this contribution on two particular
issues. The first is the exact notion of realism which is to be
tested, as this has received less attention in earlier work. The
second is an important technical issue about the inequality we
use; in earlier work Atmanspacher and Filk (2010) considered
a different expression, and we explain why our inequality is
more suitable for use under realistic experimental conditions.

Keywords: cognition; quantum probability; time perception;
memory.

Introduction
In this contribution we give an overview of recent work that
seeks to address the question of whether models of cognitive
processes can be realist, in relation to their time evolution. We
will define exactly what we mean by realist below, but the key
finding is that given a suitable definition this is an empirical
question. The interest in this question arises in part from at-
tempts to model certain aspects of cognition using quantum
probability theory (QT), which is famously non-realist (for a
review see Pothos and Busemeyer (2013)). Experimental evi-
dence of a violation of realism would therefore provide strong
evidence for the suitability of the QT approach.

This contribution (see also Yearsley and Pothos (2014)),
focuses on two particular issues. The first is the exact notion
of ‘realism’ being tested, since the notion of realism itself
is a novel one in cognitive psychology. This is particularly
pressing because the empirical test we propose, which has
been discussed before (Atmanspacher and Filk, 2010), is bor-
rowed from the physics literature, and it is not immediately
clear how this test is to be interpreted in the context of cogni-
tive models. The second issue we shall address concerns what
is at first sight a rather technical difference between our test
and and earlier one by Atmanspacher and Filk (2010). How-
ever the difference is important because our test is suitable
for application in a realistic experimental set up, with noisy
or imperfect measurements.

To save space and allow for the maximum of conceptual
discussion we omit technical details in this contribution; in-
terested readers may consult Yearsley and Pothos (2014).

The rest of this contribution is structured as follows; in Sec-
tion 2 we discuss the notion of realism in cognitive models in
a general way and in Sections 2 and 3 we introduce the two
smaller assumptions that together make up the assumption of

realism proper. In Section 4 we make some very brief com-
ments on the empirical test of realism we propose, and in
Section 6 we explain how our test differs from earlier work.
In Section 7 we then briefly discuss the options for cogni-
tive modelling should our empirical test rule out realism. We
conclude in Section 8.

Realism in Cognitive Models
Ours thoughts, feelings, memories and decisions arise ulti-
mately from the physical matter of our brains. It is generally
assumed that if it were possible to know exactly the physi-
cal specification of a person’s brain at any moment of time,
we should also be able to tell what that person was feeling
and predict their judgments. Of course, this is the stuff of
science fiction rather than current neuroscience. However the
key principle, that the behaviour of cognitive variables such
as feelings and judgments can be reduced to statements about
the physical specification of the brain does manifest itself in
an important way in current cognitive models. In brief, most
cognitive models have a property we term ‘realism’ - it is as-
sumed in these models that cognitive variables have definite
values at all times (cf Raijmakers and Molenaar, 2004).

This assumption arises in a natural way when we consider
the link between cognitive processes at the level of thoughts
and feelings, and the underlying neurophysiology of the brain
which we assume gives rise to these thoughts and feelings.
For the purposes of this contribution we assume the most fun-
damental processes in the brain relevant for cognition may be
described by classical physics. It is a key feature of classical
physics that the positions, electric charges, etc of all classical
particles are definite at all times, that is, whilst the values of
these quantities may be subjectively uncertain (since we have
only limited knowledge of them) they are nevertheless objec-
tively certain. Thus, one can argue, if cognition is ultimately
determined by brain neurophysiology, and if the most funda-
mental variables at the neurophysiological level have definite
but unknown values, then presumably all cognitive variables
must also have definite if unknown values. We will argue that
this assumption is in fact highly questionable.

To make the argument more concrete consider a simple ex-
ample of a subject’s preference for crisps over chocolate. At
any given moment of time our subject will have a preference
for either crisps over chocolate, or vice versa. Let us denote
this cognitive variable by the function C(t), which takes val-
ues between +1 (definitely prefer crisps) and −1 (definitely
prefer chocolate.) The key assumption of classical models of
cognition is that the variable C(t) has a well defined value
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at all times. This may seem reasonable over the course of
some short lab experiment, but does it really make sense over
longer periods of time? What happens if we distract the sub-
ject so that they are no longer thinking about food? Does this
cognitive variable still possess a well defined value?

The alternative to such a realist account of cognitive vari-
ables is one where these quantities do not possess values until
they are measured, that is, measuring such cognitive variables
is a constructive process. The idea that measuring the value
of a cognitive variable can change that value has been con-
sidered before (see e.g. Ariely and Norton, 2008), and can
be easily incorporated within classical models of cognition.
However what we are suggesting here is something different,
it is not a question of measurements changing the values of
existing quantities, rather the process of measurement creates
those values, where previously there were none. Indeed it is
not so hard to imagine that a subject’s preference for crisps
over chocolate simply isn’t defined at time when they are not,
consciously or unconsciously, thinking about eating. Thus it
seems reasonable that there are at least some times when this
cognitive variable is not defined.

Should we care whether our cognitive theories are realist or
not? We argue that we should. There are two main reasons;
firstly it turns out there are certain types of behaviour possi-
ble in non-realist models which are impossible in realist ones.
This means there are limits to the types of cognitive processes
realist theories are able to describe. The second reason is po-
tentially more important; our aim in constructing cognitive
models is not just to describe or even predict cognitive pro-
cesses, but at some level to understand them. For this reason
it is important to have confidence that the structural features
of our models match or map in some sense the way cogni-
tion happens in the brain. Although our understanding of the
physiology of cognition is currently far too limited to be used
to impose detailed constraints on cognitive models, there are
nevertheless some basic constraints that we can impose that
do limit the classes of cognitive models we should consider
acceptable. One of these concerns the idea of ‘bounded cog-
nition’; we would argue a second one concerns realism (for
some work in this direction see Jones and Love, 2011.) In
summary, ‘realism’ is a property that we can choose to in-
clude, or not, in our models of cognition. The way cognition
happens in the brain may or may not display this property, and
if we try to model non-realist processes using realist models
then we may be severely limiting our ability to construct ac-
curate and faithful models of cognition.

Is it possible to prove whether cognition is realist or not?
We hinted at the answer earlier; there are some types of be-
haviour that are impossible to reproduce within a realist cog-
nitive model. In this contribution we will outline a test which
allows us to determine whether a given set of judgments can
be described by a realist cognitive model1. Before we do this

1Of course, many cognitive models are concerned with variables
other than judgment outcomes, e.g. reaction times, error rates, neu-
ral activity levels etc. It is an open question whether we can be realist
about these, our test does not immediately apply to these variables.

however we need to be clearer about exactly what we mean
by realism in cognitive models.

The next two sections introduce two reasonable assump-
tions which together form the joint assumption of ‘realism’ in
cognitive models. We will spend some time discussing these
assumptions in depth, because they are really the most im-
portant part of this work. Since our test of ‘realism’ is really
a joint test of these assumptions its significance depends en-
tirely on whether one believes these assumptions really cap-
ture the correct notion of realism in cognition. In addition, be-
cause there are two separate assumptions any purported fail-
ure of ‘realism’ leaves us the option of retaining one of them.
If we want to understand which one (if either) we should re-
tain we need first be clear on their meaning. Once we have
done this our empirical test of realism follows by some al-
gebra, which we shall skip, interested readers are invited to
consult Yearsley and Pothos (2014).

Realism Part 1: Cognitive Realism
Let us set out our first assumption which, together with the
assumption discussed in the next section, together define
‘realism’ in cognitive models.

Cognitive Realism: The reason for any judgement at the
cognitive level is ultimately (in principle, if not in practice)
reducible to processes at the neurophysiological level.

Cognitive Realism is perhaps what one might think of if
one is asked to characterise realism. Indeed it might seem
like this completely captures the notion or realism, we will
explain why this is not the case below. For now let us instead
introduce some notation to help put this assumption on the
required mathematical footing needed for our empirical test.
Consider again our example cognitive variable C(t). Let us
denote the complete neurophysiological state of a given sub-
ject as λ. Cognitive Realism means that there is a function
which, given that the neurophysiological state of the subject
is initially λ, will tell us the value of C(t), let us denote this
by c(λ, t). This is what we mean when we say that realism
means that, in principle, were we to know the physical state of
a subject’s brain (λ) we would know all their feelings and be
able to predict their judgments (C(t)). However in practice of
course we cannot know a subject’s exact neurophysiological
state, the best we can do is give some probability distribution
based on the limited knowledge we do have. Let us denote
the probability distribution representing our knowledge of a
subject’s λ as ρ(λ). Then our best guess about the value of
C(t) given our knowledge of the neurophysiological state is,

〈C(t)〉= ∑
λ

c(λ, t)ρ(λ), (1)

that is, the expected value of C(t) is just the expectation value
of c(λ, t), given the probability distribution ρ(λ).

Let us make few comments about this assumption, and its
mathematical consequence Eq.(1).
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• The observant reader may find the time dependence in
Eq.(1) rather odd, in that is is contained in the cognitive
variable rather than in the distribution over neurophysio-
logical states. This is purely notational, the current nota-
tion fits present purposes better.

• There is no expectation that we can know a subject’s λ,
and also no requirement that we know the function c(λ, t).
Even if Cognitive Realism is true a subject’s λ need not
be knowable even in principle, but the λ’s should be well
defined and c(λ, t) must exist.

• Suppose we have unreliable measurements. That is, there
is some uncertainty in the measured value of C(t) that
comes from the measurement process, and not from ρ(λ).
This can be modelled by via c(λ, t), so that even if the cog-
nitive variable can only take values, e.g. ±1, c(λ, t) need
not equal ±1 for all λ, t.

• It is very difficult to see how this assumption could fail to
be valid at some level. After all, if the values of cognitive
variables are not determined by the brain, what are they
determined by?

It may seem as though Cognitive Realism totally captures
the notion of realism in cognition. However there is some-
thing missing from the discussion so far. What one does in
practice when constructing a cognitive model is not to con-
sider all possible cognitive variables, but rather to model only
a tiny subset of them. Cognitive Realism by itself does not
guarantee that we can do this in a self consistent way. We
need a guarantee that we can take finite collections of cogni-
tive variables and model them without having to continually
reference the neurophysiological state. In other words, Cog-
nitive Realism is the assumption that the cognitive level can
be connected to the neurophysiological level; what we also
need is an assumption that the cognitive level can be discon-
nected from the neurophysiological level, and modelled on its
own (for related ideas see Marr, 1982). That is the content of
our second assumption.

Realism Part 2: Cognitive Completeness
Our second assumption is a little harder to state than our
first. It concerns the cognitive state of a subject. This is
defined to be the object within a given cognitive model that
encodes the information needed to make predictions about
a particular subject (or group of subjects.) For dynamical
models it is equivalent to a set of initial conditions. The
cognitive state is therefore equivalent to an exhaustive set
of probabilities for future measurement outcomes within the
context of a particular model2. The exact form the cogni-
tive state takes will depend on the model, and we want to
state our assumption without reference to any particular form.

2The idea of defining the state of a system in this way occurs
frequently in physics, see e.g. Hardy (2001).

Cognitive Completeness: The probabilities for the
outcomes of any judgment within a cognitive model may
be expressed in terms of a so-called cognitive state. The
cognitive state of a person responding to such a set of
judgements can be determined by a finite set of probabilities
for the judgement outcomes.

This assumption comes in two parts. The first part is sim-
ply the assumption that we can write the probabilities for
judgment outcomes in terms of an object we call the cog-
nitive state. This is just an algebraic step and is in fact always
true, but it is useful to include it as part of the assumption
anyway3. The second part of this assumption is the crucial
part, here we demand that not only does the cognitive state
encode the probabilities for judgment outcomes, but it can
itself be determined from a finite set of them. That is, we as-
sume observing participant behaviour can fully determine the
underlying cognitive state, without the need to invoke neuro-
physiological variables. The ‘finite number’ caveat ensures
that we need only a finite number of judgment outcomes to
determine the cognitive state, i.e. we might need to observe
participants make 3,4 or 100 judgments, but after some point
we can say we have enough information to begin to predict
future judgments.

The reason this assumption is more vague than the first is
that we have not defined exactly what the cognitive state is
supposed to be. Generally this will depend on the model.
However whatever the form of the cognitive state, if this is the
object that allows us to predict judgment outcomes then it is
important that it can be determined entirely in terms of them,
otherwise it is not possible to establish this state empirically,
making prediction impossible.

This assumption has an important consequence. Consider
any measurement made on a group of participants that does
not change the probabilities for the outcomes of any future
judgement in the relevant cognitive model. Let us call such
measurements non-disturbing. Whether a given measurement
is non-disturbing can always be established empirically.

Cognitive Completeness means that, as long as a measure-
ment is non-disturbing, it can be assumed to have no effect on
the neurophysiological state of a participant. This is because
Cognitive Completeness tells us that the cognitive state of
the participants may be fully determined by knowledge of the
outcomes of all judgements in the relevant cognitive model.
Thus, at most, a non-disturbing measurement may change the
underlying neurophysiological state in a way that gives rise to
the same cognitive state. However, any such change is unde-
tectable by any measurement relevant to the cognitive model,
and thus for the purposes of our model we may assume no
change in the neurophysiological state occurred.

It is useful to express this in a more mathematical way.
Cognitive Completeness means that every cognitive model

3Crucially we do not assume that the cognitive state is a proba-
bility distribution over judgment outcomes, this is a non-trivial as-
sumption, see below.
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defines a set of similarity classes on the set of all probabil-
ity distributions over the neuropsychological variables, with
two distributions ρ(λ) and ρ′(λ) being similar, ρ(λ)∼ ρ′(λ),
if they lead to the same predictions for all judgements con-
tained in the cognitive model. In general measurement of the
cognitive variable C(t1) at t1 will change the distribution of
neurophysiological variables so that a subsequent measure-
ment of, e.g. C(t2) with t2 > t1, will depend on whether or
not the first measurement was made. Denote the new distri-
bution over the λ after measurement at t1 as ρ(λ; t1). Then
joint measurement of C(t1) and C(t2) yields,

〈C(t1)C(t2)〉= ∑
λ

c(λ, t1)c(λ, t2)ρ(λ; t1) (2)

However if the measurement at t1 was non-disturbing this is
equal to

〈C(t1)C(t2)〉= ∑
λ

c(λ, t1)c(λ, t2)ρ(λ). (3)

This is the mathematical result used in the derivation of our
empirical test. For details see Yearsley and Pothos (2014).

Given the assumptions of Cognitive Realism and Cognitive
Completeness we may show that the cognitive state is in this
case equivalent to a probability distribution over the cognitive
variables. Details are given in Yearsley and Pothos (2014b).

The Empirical Test
Now we have stated our assumptions we describe how they
can be empirically tested. The test takes the form of a set of
inequalities satisfied by realist systems but which may be vi-
olated by non-realist ones. These inequalities may be derived
from the mathematical expressions of Cognitive Realism and
Cognitive Completeness (for the derivation see the appendix
of Yearsley and Pothos (2014)). We quote the result in terms
of our example variable C(t), which recall takes values ±1.

| 〈C(t1)C(t2)〉+〈C(t2)C(t3)〉+〈C(t3)C(t4)〉−〈C(t1)C(t4)〉 |≤ 2
(4)

Eq.(4) is one of a collection of inequalities known as the tem-
poral Bell4, or Leggett-Garg inequalities, first derived as con-
straints on physical systems by Leggett and Garg (1985).

What would a concrete experimental set up to test these in-
equalities look like? Firstly we require a cognitive variable
which takes two distinct values and whose expected value we
can manipulate. Depending on the variable we use it may
be more accurate to think of the ‘t’ variable in Eq.(4) as a
parameter rather than as a physical time. The next ingredi-
ent is a reliably non-disturbing measurement process, in the
sense outlined above. This might be hard to invent in general,
but it is easy to establish whether a given measurement pro-
cess is non-disturbing, so it presents no problem in principle.
We mention in passing that it is not necessary that the mea-
surement process be completely non-disturbing, being able to

4This name comes from the similarity between these expressions
and the usual Bell inequalities (see e.g. Bell (2004)).

bound the disturbance to some low level is sufficient (Years-
ley and Pothos (in preparation)).

The final ingredient is a cognitive variable which we ex-
pect to behave in a non-classical way. It may be possible to
use variables which have previously been shown to behave in
non-classical ways, such as the ones investigated in quantum
cognitive models (see e.g. Busemeyer et al (2011), Pothos
and Busemeyer (2009), Trueblood and Busemeyer (2011),
Wang and Busemeyer (2013)), or variables which have previ-
ously been seen to deviate from the prescription of classical
probability theory (e.g. Tversky and Kahneman, 1983).

Some Comments on an Earlier Inequality of
Atmanspacher & Filk

We wish to comment briefly on the difference between our in-
equality, Eq.(4) and an earlier one proposed by Atmanspacher
and Filk (2010). The inequality they considered was5,

〈C(t1)C(t2)〉+ 〈C(t2)C(t3)〉−〈C(t1)C(t3)〉 ≤ 1 (5)

Roughly this expression is analogous to Bell’s original for-
mulation of the Bell inequalities (Bell, 2004), while our ex-
pression is analogous to the CHSH inequalities (Clauser et al,
1969.) On the face of it Atmanspacher and Filk’s expression
seems more attractive, since it requires measurements at only
three rather than four times. Why then should we prefer our
expression? We can see the problem with Eq.(5) by consid-
ering how one might derive it from Eq.(4). We can do this in
two steps, firstly we choose t4 = t3. With this choice of times
Eq.(4) includes the term,

〈C(t3)C(t3)〉= ∑
λ

c(λ, t3)2
ρ(λ). (6)

In order to arrive at Atmanspacher and Filk’s expression we
need to assume that Eq.(6) is equal to 16. The justification
is that this is the correlation between two measurements per-
formed immediately after one another. Whatever the result
of the first experiment (±1), performing it again immedi-
ately should yield the same result, therefore the correlation
should be perfect. However this justification fails in general
because for a realistic experiment there will be unavoidable
noise in the measurement of a judgment. This means that
even if we knew a participant’s λ exactly we could predict
only probabilities for the measurement outcomes. In terms of
the mathematics this means we have−1 < c(λ, t)< 1, so that
c(λ, t)2 < 1. Thus Eq.(6) will be less than 1 and Eq.(5) will
not hold for realistic experiments.

We have seen that for realistic experiments with unavoid-
able experimental noise, our inequality is a better place to
look for violations of realism than the original one proposed
by Atmanspacher and Filk (2010). This should serve as a

5Atmanspacher and Filk actually gave their expression in terms
of a different variable.

6Atmanspacer and Filk (2010) did not obtain their inequality this
way. However the direct derivation of their expression still requires
the right hand side of Eq.(6) equal 1 (see Bell 2004 for details.)
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cautionary tale not to oversimplify the analysis in the effort
to make the modelling look more appealing. As the quote
attributed to Einstein7 goes, “Everything should be made as
simple as possible, but not simpler.”

What Should we Conclude if ‘Realism’ Fails?
Suppose we were to conduct a test of realism in the way out-
lined above and find a convincing violation of Eq.(4). What
should we conclude? Assuming one accepts the arguments
which lead to Eq.(4) then the only conclusion is that one or
both of our assumptions, Cognitive Realism and Cognitive
Completeness, must be incorrect. But which one?

It might seem as though one could salvage some notion of
realism at the price of dropping Cognitive Completeness. The
problem with this approach is that it is Cognitive Complete-
ness that means that the cognitive state can be empirically de-
termined, and thus it is Cognitive Completeness that ensures
that any model has genuine predictive power.

Nevertheless one might argue that this problem can be cir-
cumvented. If we cannot fix the cognitive state in terms of
the outcomes of judgments contained in our cognitive model,
can we not simply add more judgments, the probabilities for
which would be enough to fix the cognitive state? The answer
is that we cannot. The full argument is given in Yearsley and
Pothos (2014), but the essence is that adding cognitive vari-
ables which can be measured in a non-disturbing way sim-
ply gives an extended cognitive model from which the orig-
inal one can be recovered by coarse-graining, but since the
original model isn’t realist the extended one cannot be either.
Adding in cognitive variables which cannot be measured in
a non-disturbing way solves this problem, but having cog-
nitive variables which cannot in principle be measured in a
non-disturbing way means the new model still lacks predic-
tive power. In summary, Cognitive Completeness is possibly
even more central to cognitive modelling than realism.

So if we cannot drop Cognitive Completeness, can we drop
Cognitive Realism? With certain caveats, discussed below,
the answer is yes. Instead of using classical theories, we
can model cognition with non-realist theories like quantum
probability theory (QT) that include a constructive role for
judgment. QT is often described as quantum theory without
the physics (see e.g. Aerts and Aerts, 1995, Atmanspacher
et al, 2006), and is potentially applicable in any situation
where there is a need to quantify uncertainty (see e.g. beim
Graben and Atmanspacher, 2009). Indeed there has been no
small measure of success modelling some aspects of cogni-
tion in this way (e.g. Busemeyer et al, 2011, Pothos and
Busemeyer, 2009, Trueblood and Busemeyer, 2011, Wang
and Busemeyer, 2013, Bruza et al, 2009. For an overview see
Busemeyer and Bruza, 2011, Pothos and Busemeyer, 2013.)
We note in passing that QT does satisfy Cognitive Complete-
ness; the cognitive state is the quantum state |ψ〉 and can be
determined via a finite number of probabilities for judgments.

However we need to be cautious. There are theories other

7Alas probably apocryphal.

than QT which could account for a violation of our test of re-
alism. Indeed our experimental test of realism could be used
to rule out not just realist theories of cognition but also quan-
tum ones!8 Even if the results of our test are in agreement
with QT our test may rule out realist models of cognition, but
it cannot ‘rule in’ quantum models. We need to search else-
where for convincing evidence for the correctness of quan-
tum approaches to cognition (one promising possibility is the
q-test developed by Wang and Busemeyer (2013)).

It is also important to note that, unlike the corresponding
case in physics, rejecting the idea that cognitive variables can
be modelled in a realist way does not force us to reject the
claim that these judgments or feelings arise from neurophysi-
ology. This is a subtle point, but the essence is that the values
of cognitive variables, i.e. thoughts, feelings, judgments, are
brought into being by the interplay between both the neuro-
physiological state and the process of measurement. This is
what we mean when we say that judgment is a constructive
process in these non-realist theories.

Finally we should mention that a failure of realism in cog-
nition could have great significance for models of memory. If
judgment is a constructive process then it is easy to imagine
that memory retrieval may also be modelled constructively in
a similar way (this has been suggested before, e.g. Howe and
Courage (1997)). This could open up exciting new possibili-
ties for modelling memory processes.

Conclusion
We have discussed some of the conceptual issues involved in
recent work on the question of realism in cognitive models.

What can we conclude from this discussion? We have ar-
gued that the standard notion of realism in cognition might
be well motivated, but it is open to empirical challenge. The
success of the QT programme to date suggests, although it
does not prove, that realism may have to be abandoned as an
assumption in models of cognition. The proposed empirical
test will hopefully bring us closer to resolving the issue. This
test is tricky to implement, but should be possible with the
right choice of cognitive variable and measurement.

If our tests do rule out realism, this is not by itself rea-
son to adopt QT models of cognition. However such models
can give valuable insight into more general non-realist ap-
proaches. In particular contextually and constructive judg-
ments are central parts of QT (Kitto, 2008, Busemeyer and
Bruza, 2011, White et al, 2014) and these will also be key
features of any non-realist theory, quantum or otherwise.
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