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DeepSAT: Learning Molecular Structures 
from Nuclear Magnetic Resonance Data
Hyun Woo Kim1,2, Chen Zhang1,3, Raphael Reher1,4, Mingxun Wang5,6,7, Kelsey L. Alexander1,8, 
Louis‑Félix Nothias9, Yoo Kyong Han10, Hyeji Shin10, Ki Yong Lee1,10, Kyu Hyeong Lee2, Myeong Ji Kim2, 
Pieter C. Dorrestein5, William H. Gerwick1,5* and Garrison W. Cottrell3* 

Abstract 

The identification of molecular structure is essential for understanding chemical diversity and for developing drug 
leads from small molecules. Nevertheless, the structure elucidation of small molecules by Nuclear Magnetic Reso‑
nance (NMR) experiments is often a long and non‑trivial process that relies on years of training. To achieve this 
process efficiently, several spectral databases have been established to retrieve reference NMR spectra. However, 
the number of reference NMR spectra available is limited and has mostly facilitated annotation of commercially avail‑
able derivatives. Here, we introduce DeepSAT, a neural network‑based structure annotation and scaffold prediction 
system that directly extracts the chemical features associated with molecular structures from their NMR spectra. Using 
only the 1H‑13C HSQC spectrum, DeepSAT identifies related known compounds and thus efficiently assists in the iden‑
tification of molecular structures. DeepSAT is expected to accelerate chemical and biomedical research by accelerat‑
ing the identification of molecular structures.
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Introduction
Small molecules are generally defined as any organic 
compound with low molecular weight (≤ 900 Da). Small 
molecules have been an important source of lead com-
pounds for drug discovery and medicinal applications as 
a result of their structural diversity and potent biologi-
cal activities [1]. Nowadays, small molecules contribute 
more than half of pharmaceutical drugs currently mar-
keted; this has occurred for diverse medical conditions 
including cancer, microbial infections, viral diseases, 
hyperlipidemia, diabetes, and many others [2, 3]. The 
chemical diversity of small molecules, also known as 
‘chemical space’, continues to expand as a result of con-
tributions from organic synthesis or natural products 
(NP) discovery. For instance, there are over 326,000 NPs 
reported from terrestrial and marine organisms, and on 
average there are 1600 new marine and microbial NPs 
reported annually [4, 5].

Identification of molecular structure is an essential 
aspect of small molecule-based drug discovery. How-
ever, this intensive and time-consuming activity can 
be costly and strongly dependent upon  a researcher’s 
expertise. To avoid rediscovering known compounds, 
a variety of methodologies have been developed at dif-
ferent stages of the isolation and identification process 
[6]. For example, the Global Natural Products Social 
(GNPS) Molecular Networking tool enables the match-
ing of fragmentation spectra from mass spectrometry 
experiments (MS) allowing researchers to annotate the 
metabolites in mixtures [7]. Other MS-based annota-
tion approaches have employed statistical or machine 
learning-based approaches to locate and target the iso-
lation of novel chemical entities [8–11]. Alternatively, 
genome mining approaches employ bioinformatic tools 
such as AntiSMASH [12] and BiG-SCAPE/CORASON 
[13] to gain insight into the chemical nature of NPs from 
genetic sequence information. These strategies accelerate 
the annotation of known compounds and can inform the 
targeted discovery of novel ones. Nevertheless, the pre-
cise structure elucidation of an unknown compound still 
requires isolation and NMR experiments which can rep-
resent a great deal of time, depending on the investiga-
tor’s experience [14].

The complete structure elucidation of novel molecules 
typically requires several types of information, includ-
ing NMR, MS, UV, IR, and ECD, as well as modifications 
from chemical reactions [15]. Among the spectroscopic 
methods, NMR experiments are central to establishing 
molecular structure, as they can reveal atom relation-
ships through bonds as well as through space [16, 17].

Known compounds can be identified by comparing 
their 1D 1H and 13C NMR data to reference spectra in the 
literature along with their molecular weight information. 

However, those reference spectra are highly dispersed 
such that searching and comparing with reference spec-
tra is a challenging process. To improve the retrieval of 
reference NMR spectra, open-sourced spectral libraries 
have been introduced, such as NMRShiftDB (n = 53,954 
reference spectra) [18], BioMagResBank (n = 11,900) 
[19], HMDB (n = 4036) [20], CH-NMR-NP (n = 35,500) 
[21], the NP-MRD (n = 19,840) [22], and CSEARCH 
(n = 340,554) [23]. These databases provide 1H, 13C and/
or 2D NMR data for NPs and other metabolites. Addi-
tionally, comprehensive spectral reference search tools 
such as MetaboMiner (n = 502) and COLMAR (n = 701) 
were developed in order to search 1D and 2D NMR data 
with reference spectra from important metabolites [24, 
25]. Nonetheless, the number of chemical entities and the 
structure diversity in these databases is limited and does 
not cover the enormous chemical diversity of nature.

To overcome this lack of reference data, commer-
cial and non-commercial computer assisted structure 
elucidation (CASE) tools have been developed, such 
as the ACD/structure elucidator (ACD/Labs), CMC-
se (Bruker), the MNOVA structure elucidation tool 
(Mestrelab), and LSD [26, 27]. Using CASE programs, 
the most probable structures are generated by analysis 
of 1D and 2D NMR data along with molecular formula 
information for the target molecule. However, confi-
dently identifying the molecular formula of a new mol-
ecule often requires high resolution mass spectra, and 
sometimes such information can be ambiguous or dif-
ficult to obtain. Additionally, 13C NMR chemical shifts 
with their associated carbon type (C, CH,  CH2 and  CH3), 
and 2D NMR experiments such as 1H-1H COSY, 1H-13C 
HSQC, 1H-13C HMBC, and 1H-1H NOESY are required 
to establish atom connectivity and propose a structure 
with high confidence [28]. Kuhn et al. [29, 30] presented 
the proof-of-concept methods of substructure prediction 
and compound classification from NMR spectra using 
a convolutional neural network.

Previously, we introduced SMART 2.0, an artificial 
intelligence-based tool for retrieving structure candidates 
from an in-house NMR database called the Moliverse, 
specifically constructed from 1H-13C HSQC spectra 
[31]. SMART 2.0 increased the accuracy of the method 
compared to the first SMART 1.0 prototype, which was 
trained using a very limited dataset [32]. Since its intro-
duction, the SMART tools have supported natural prod-
ucts researchers in their discoveries of molecules from 
marine and terrestrial organisms [33–35]. However, even 
though SMART 2.0 has shown very good performance 
over other spectral library retrieval systems, all available 
NMR spectra in the Moliverse covered around 130,000 
compounds. Further expansion of the library is limited 
because of the unavailability of reference compounds or 
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the extensive time required to accurately calculate large 
numbers of NMR spectra using quantum mechanics. On 
the other hand, molecular structure databases such as 
Pubchem [36] contain millions of compounds. If molec-
ular structures could be searched directly in these data-
bases using NMR-based structural representations as the 
input, then the coverage of the resulting system would be 
vastly improved. 

Consequently, in this study we introduce DeepSAT 
(https:// deeps at. ucsd. edu), an NMR-based structure 
searching tool that uses NMR spectra as the user input. 
In DeepSAT, large numbers of molecules are searchable 
even if no authentic NMR spectra are available. Deep-
SAT outperforms all other available NMR-based tools for 
identification of small molecular structures or for finding 
similar structures. DeepSAT was trained using a convo-
lutional neural network (CNN)-based multi-task super-
vised learning architecture with 143,467 1H-13C HSQC 
spectra collected or calculated from diverse molecules. 
This neural network uses the 1H-13C HSQC spectra as 
input and predic  its chemical fingerprints, molecular 
weights, and structure classes of molecules. These three 
features are then used to search for small molecules with 
similar chemical characteristics from chemical databases. 
Thus, DeepSAT has the potential to further accelerate 
the efficiency and accuracy of structure identification in 
small molecule-based drug discovery (Fig. 1).

Materials and method
NMR data preparation for DeepSAT dataset
The NMR spectra for the training dataset were estab-
lished from a combination of literature and computed 
NMR spectra. The literature data was from the CH-
NMR-NP database where the 1H and 13C NMR spectra 
of 29,500 natural products and 6,000 organic compounds 
were compiled from published papers. Incomplete or 
incorrect data were manually filtered. In order to increase 
the number of spectra for training, computed NMR 
spectra were generated using ACD/Spectrus Processor 
2017.2.1 software (File Version S70S41, Build 99684, 21 
Feb 2018; Advanced Chemistry Development, Inc.), in 
which 113,967 compounds were randomly chosen from 
the Universal Natural Product Database, NPATLAS 
(https:// www. npatl as. org), NPASS (http:// bidd. group/ 
NPASS), GNPS (http:// gnps. ucsd. edu), and NPClassifier 
(http:// npcla ssifi er. ucsd. edu). All selected structures were 
submitted as SMILES strings and their HSQC spectra 
were calculated by using the corrected weighted average 
experimental algorithm in the ACD software. The com-
putational parameters were set as follows; ‘correlation’ 
was set as C-H COSY, ‘experimental’ was set as HSQC-
DEPT, ‘spectrometer frequency’ was set to 600  MHz, 
‘spectrum size’ was 128 by 128 pixels, ‘spectrum bounds’ 

was signal-dependent, ‘line width’ was 3 Hz, and ‘solvent’ 
was chloroform-d as default.

Chemical properties calculation
The Morgan fingerprint method was chosen for the 
DeepSAT analysis and modified as described below 
to generate chemical fingerprints using RDKit version 
2020.03.2. The range of radius was set from 0 to 2 with 
hydrogen atoms added to the molecular graphs, and a 
total of 6144 chemical features were identified for the 
training. Molecular weights were also calculated using 
RDKit and rounded up to the second digit after the deci-
mal point. All molecules in this study were classified to 
“superclass” using the NPClassifier ontology (http:// npcla 
ssifi er. ucsd. edu).

Convolutional Neural Network Architecture 
and Hyperparameters
The training of DeepSAT was performed on a server with 
an  Intel® Core™ i7-6850 K CPU, three  NVIDIA® GeForce 
GTX 1080 with 8  GB video memory GPUs, and 64  GB 
RAM. Python programming was used in this project, 
and the TensorFlow 2.3.0 deep learning framework was 
used. The CNN for DeepSAT was comprised of two dif-
ferent networks that were designed for normal HSQC 
and multiplicity-edited HSQC, respectively. The convo-
lutional layers along with the fully connected ones were 
the same in both networks with different input shapes; 
the normal HSQC had a shape of (128,128,1) whereas 
the Edited HSQC had a shape of (128,128,2). A drop-
out layer was applied to the global max pooling layer to 
improve generalization. The activation function for the 
hidden layers used the ReLU function and all hidden 
layers were normalized by batch normalization to avoid 
overfitting and vanishing gradients. Hyperparameters for 
training the deep neural networks for DeepSAT were set 
as follows: the optimizer was Adam with a learning rate 
of  10–5 (decay =  10–6). Activation functions were ReLU 
(hidden layers), sigmoid (fingerprint prediction layer), 
and softmax (classification layer). Loss functions were 
binary cross entropy (fingerprint prediction layer), sparse 
categorical cross entropy (classification layer), and mean 
absolute percentage error (molecular weight prediction 
layer). Dropout rate was 0.2 and Batch size was 16 (See 
Additional file 1).

Evaluation
For evaluation, 3982 HSQC spectra were randomly 
chosen for the test set and separated from the training 
and validation dataset. The test set was used to evalu-
ate the prediction performance of DeepSAT in com-
parison with the performance of other available tools, 
including SMART 2.0 and NMRShiftDB. For searching 

https://deepsat.ucsd.edu
https://www.npatlas.org
http://bidd.group/NPASS
http://bidd.group/NPASS
http://gnps.ucsd.edu
http://npclassifier.ucsd.edu
http://npclassifier.ucsd.edu
http://npclassifier.ucsd.edu
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NMRShiftDB with queried NMR data, a Python script 
was established to automate the search process and all 
queried data were established from the HSQC data. 
For searching 1H NMR spectra from NMRShiftDB, the 
search type was set as 1H in the complete mode. For the 
search of 13C NMR spectra, the search type was set as 13C 
in the subspectrum mode because HSQC spectra provide 
only partial 13C data. All results from NMRShiftDB were 
sorted by similarity scores calculated by the database. The 
structure similarities were calculated using the chemical 

fingerprint method with cosine scoring. The threshold 
values were set as 1.0 for identical compounds and 0.8 
for the similar compounds, and these values were used 
to evaluate identification and annotation rates, respec-
tively. The correct identification and annotation rates at 
top k were computed by percentage of correctly identi-
fied or annotated structures found in the top k output. 
The precision@k, recall@k, and F1-score@k of structure 
annotation were calculated from the annotation results. 
The definition of precision@k in this study is:

Fig. 1 Overview of DeepSAT. a Web‑based platform of DeepSAT analysis (https:// deeps at. ucsd. edu). b The multi‑task learning architecture 
of DeepSAT. In the feature extraction step, the convolutional neural network extracts the features from HSQC spectra. Based on the extracted 
features, fully connected layers predict Morgan fingerprints, molecular weights, and chemical classes. By using the predicted properties, structure 
annotation is accelerated

https://deepsat.ucsd.edu
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The recall@k is defined as the percentage of correctly 
annotated structures from all similar structures in the 
database when k structures were annotated. The exact 
definition of recall@k is:

F1-score@k defined as the harmonic mean of precision 
and recall.

Evaluation of Different Solvents on DeepSAT 
Predictions

In order to evaluate for the experiment evaluating 
DeepSAT’s sensitivity to the solvent used, we obtained 
36 HSQC spectra for the same 18 NPs dissolved in two 
solvents: methanol-d4 (n = 18) and chloroform-d (n = 18). 
NMR spectra were measured using a Bruker SPECTRO-
SPIN 600 spectrometer equipped with 5  mm probes. 
Compounds were dissolved in 0.6  mL of chloroform-d 
or methanol-d4. HSQC spectra were measured at room 
temperature (298.15 oK, 25.0  °C). NMR experiments 
were performed using standard Bruker pulse programs 
(XWinNMR). HSQC spectra were obtained using the 
Bruker library pulse sequence ‘hsqcetgpsi’ conditions: ns 
16, d1 1.5 s, SWH 12019.23 Hz and td = 1024.

Results
Chemical properties can be accurately predicted from 
NMR spectra.

To evaluate the performance of DeepSAT, we estab-
lished a test set (n = 3982) of HSQC spectra that were 
randomly chosen and excluded from the training of 
SMART 2.0 and other tools used in the evaluation. Evalu-
ation of the performance of DeepSAT predictions was 
carried out in two ways. First, the chemical fingerprint 
prediction, molecular weight prediction, and structure 
classification were evaluated by specific metrics. Second, 
the identification and annotation results were bench-
marked with the other methods (Fig. 2).

As the fingerprints predicted from our method con-
sisted of strings containing 6144 binary bits, cosine 

Precision@k =

#Of correctly annoated structures at k

k

Recall@k =

#Of correctly annotated structures at k

#Of similar structures in the database

similarity was used as the metric for measuring the simi-
larity between predicted fingerprints and actual ones. As 
shown in Fig. 2a, the average cosine score was 0.8450 for 
the normal HSQC model, and 0.8574 for the Multiplicity 
Edited HSQC model. The molecular weight prediction 
results are represented by R-squared values, and for the 
normal and multiplicity edited HSQC models the results 
were 0.9183 and 0.9336, respectively (Fig. 2b). Finally, we 
evaluated and analyzed the classification performance 
using an accuracy metric and a confusion matrix for 
the 59 structure class categories from the NPClassifier 
ontology. In the compound class prediction from HSQC 
spectra, the Top-1 accuracy of normal and Edited HSQC 
models were 90.4% and 90.8%, respectively. To further 
evaluate the performance of the network, we  created 
confusion matrices where the rows correspond to the 
ground-truth classes and the columns correspond to the 
predicted class. We show these in Fig. 2c, d (enlarged ver-
sions of these are in the supplementary material). As can 
be seen from the figure, the diagonal elements generally 
showed high values, indicating excellent performance. 
The F1-scores of the classifier on each element are given 
in the supplementary material in Tables S2 and S3. Sev-
eral compound classes, such as diazotetronic acids and 
derivatives (F1-score of 0.64) and naphthalenes (F1-score 
of 0.66), showed low values. These results appear to be 
related to their proton-deficient nature (diazotetronic 
acids and derivatives) or that the structural category is 
too broad (naphthalenes). The precision and recall of 
classification and glycoside prediction are provided in 
Table  1. As expected, the multiplicity edited HSQC-
based model showed slightly better results than the 
normal HSQC model in predicting compound class (Sup-
plemental File S17). However, predictions of the presence 
of a glycoside were similar in both experiments.

 In the molecular structure search, our new method 
using predicted chemical properties including chemical 
fingerprints, molecular weights and compound classes 
outperformed all other existing tools of a similar nature 
(Fig.  2e). Compared with SMART 2.0, the number of 
correct identifications was over 2-fold higher (41.0% vs 
18.7%) when using normal HSQC spectra (SMART 2.0 
does not support multiplicity edited HSQC data). In the 
Top-5 outputs, DeepSAT with standard HSQC spectra 

(See figure on next page.)
Fig. 2 Evaluation of DeepSAT using a test set. a Average (orange line) and median (blue line) of cosine scores between predicted and ground 
truth fingerprints for HSQC and Edited HSQC data input. b Linear regression between measured (x axis) and predicted molecular weights (y axis). c 
and d Confusion matrix of classification results using DeepSAT with normal HSQC data and multiplicity edited HSQC data. e Percentage of correctly 
identified structures in the top k output of several different tools, for maximum rank k = 1, 2, …, 50. f Percent of correctly annotated structures 
in the top k. For the measurement of annotation rate, cosine score of 0.8 was set as the threshold. g Experimental HSQC spectrum of the natural 
product, neoline dissolved in chloroform‑d (blue) and methanol‑d4 (red). h Identification (solid) and annotation (dashed) rates in total experimental 
data. i Identification (solid) and annotation (dashed) rates in compounds with NMR data recorded in both solvents. j and k HSQC spectra 
and predicted results of previously undescribed compounds 1 and 2 
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achieved 60.6% correct identifications. When using mul-
tiplicity edited HSQC as the input, this was increased 
to 45.2% as the Top-1 output and 64.9% in the top 5 

outputs. The results from searching NMRshiftDB by pro-
ton and carbon NMR shifts, however, achieved under 
3% of correct identifications. As a baseline against which 

Fig. 2 (See legend on previous page.)
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to compare the performance of DeepSAT, the in-house 
reference HSQC spectral library (n=143,467) was used 
to retrieve candidate molecular structures by a simple 
matching of the query compound chemical shifts with 
those in the library. The thresholds for the peak shift dif-
ferences were set as 0.5 ppm for carbon signals and 0.05 
ppm for proton signals. This baseline analysis gave nearly 
equal results to SMART 2.0, and overall showed that 
the reengineered implementation of DeepSAT greatly 
improved the correct identification rate of the predicted 
structures and properties.

While identifying known molecules is of paramount 
importance, structure annotation of novel structures is 
also important, as this can facilitate structure elucidation 
by allowing comparison of spectroscopic data sets with 
previously described molecules. Generally, we consider 
two structures to be “similar” if the cosine score is over 
0.8 based on the predicted and known Morgan finger-
prints [37–39]. Using this condition, DeepSAT showed 
outstanding performance compared to other available 
tools. Compared to SMART 2.0 (40.3%), the number of 
Top-1 correct annotations was almost 1.8 fold higher 
in DeepSAT (70.4%); this reached 73.5% when using 
the Multiplicity Edited HSQC as input. The result from 
searching NMRshiftDB by chemical shifts was under 
5% for both carbon (3.7%) and proton (1.6%) data. The 
baseline experiment described above provided 50.6% for 
Top-1 correct annotations, a higher value than SMART 
2.0, but it was still 20% lower than DeepSAT (Fig. 2f ).

To compare the annotation performance of Deep-
SAT with other tools, we varied the top k values of the 

precision, recall, and F1 score to evaluate how each algo-
rithm identifies relevant structures from their predicted 
features (Table  2). The precision values of the columns 
k = 1, k = 5, and k = 10 show the number of relevant struc-
tures retrieved at the top 1, top 5, and top 10 catego-
ries. In the top 1 output, the two versions of DeepSAT 
achieved 30.0% (HSQC) and 33.5% (Multiplicity Edited 
HSQC) higher precision values than those of SMART 
2.0. The recall values show approximately 5.6% and 6.9% 
improvements on recall of the top 1 compared with 
SMART 2.0. The F1 score, which is the harmonic mean 
of the precision and recall, was also higher in DeepSAT. 
Accordingly, DeepSAT provided annotations of relevant 
molecular structures with higher overall similarity scores.

Another issue to consider in the identification/anno-
tation of molecules from NMR data is that chemical 
shifts can be altered by a change in solvent, and espe-
cially between protic/aprotic solvent conditions. To 
explore this in the context of DeepSAT, we evaluated 
its performance under different solvent conditions. We 
acquired the 78 HSQC spectra for small molecules dis-
solved in methanol-d4 (n = 39) or chloroform-d (n = 39), 
respectively; among these, 18 compounds were dissolved 
in both solvents. As expected, the chemical shifts of 
the same compound were different in the two solvents 
(Fig.  2g). For example, several chemical shifts for the 
diterpene alkaloid neoline were shifted in a nonparallel 
manner over 0.1 ppm in the proton dimension and 1 ppm 
in the carbon dimension. The correct identification rate 
of the top 1 output was 74.4% in chloroform-d, and this 
decreased to 66.7% in methanol-d4 (Fig.  2h). However, 

Table 1 The precision and recall rates of classification and glycosides prediction results (n = 3982)

 Best values in each column are bolded

Model Classification Glycosides

Precision Recall F1-score Precision Recall F1-score

DeepSAT (Normal 
HSQC)

0.8788 0.8733 0.8726 0.9372 0.9376 0.9364

DeepSAT (Multiplicity 
Edited HSQC)

0.9120 0.9047 0.9046 0.9315 0.9284 0.9251

Table 2 The precision@k, recall@k, and F1 score@K of structure annotation from different versions of DeepSAT compared with SMART 
2.0. 

Best values in each column are bolded

Model Precision@k Recall@k F1 score@K

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

DeepSAT (multiplicty edited HSQC) 0.7351 0.6283 0.5358 0.1289 0.3917 0.5349 0.2193 0.4826 0.5353
DeepSAT (normal HSQC) 0.7037 0.6056 0.5232 0.1153 0.3585 0.5036 0.1981 0.4504 0.5132

SMART 2.0 0.4032 0.2800 0.2225 0.0596 0.1565 0.2131 0.1038 0.2008 0.2177
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the annotation rates for the top 5 compounds were sim-
ilar in the two solvents. This trend in the data was also 
observed for those compounds for which NMR data was 
recorded in both solvents (Fig.  2i). The increased accu-
racy in chloroform-d is reasonable because most the cal-
culated NMR spectra in the training set were performed 
in this solvent. Nevertheless, the identification rates were 
still higher than 65% for the top 1 result, indicating that 
DeepSAT is still capable of predicting useful structural 
information in different solvent conditions.

Structure annotation of previously undescribed 
natural products

To illustrate the usefulness of annotations in the 
molecular structure assignment of previously unde-
scribed molecules of which NMR data have never been 
reported before, we applied DeepSAT to the HSQC spec-
tra of natural products from a terrestrial medicinal plant 
(Agrimonia pilosa) and a marine brown algae (Dictyota 
sp.). The annotation results for two molecules were com-
pared with the fully assigned structures (i.e. based on 1H, 
13C, COSY, HSQC, HMBC, and NOESY experiments). 
The molecular structure of compound 1 was annotated 
by DeepSAT as 3-hydroxy-30-norolean-12,19-dien-28-
oic acid and its scaffold was predicted as a triterpenoid 
(Fig. 2j). However, the reference NMR spectrum from the 
literature for 3-hydroxy-30-norolean-12,19-dien-28-oic 
acid did not match that of compound 1 [40]. By detailed 
NMR analysis, the structure of compound 1 was assigned 
as 1,2,3-trihydroxyursa-12,18-dien-28-oic acid, a previ-
ously undescribed ursane-type triterpenoid. DeepSAT 
analysis predicted the structure of compound 2 as puli-
canadiene C and its scaffold as a diterpenoid (Fig.  2k). 
By analysis of the full NMR dataset, compound 2 was 
assigned as 14,15-dihydroxy acutilol A 8-acetate. Inter-
estingly, even though the annotated structure was pre-
dicted to be a sequiterpenoid diacetate, the scaffold was 
correctly predicted as a diterpenoid. These results reveal 
that using DeepSAT with previously undescribed small 
molecules can be useful, as DeepSAT gives clues as to 
scaffolds and structural motifs that can be compared with 
the data in the literature and accelerate the structure elu-
cidation process.

Interpretation of convolutional neural networks 
in DeepSAT
Computer programs or algorithms are typically debugged 
or error checked using print, assert, or try-catch tools. 
However, deep neural networks have been criticized 
as ‘black boxes’, making it difficult to understand the 

model and how it works. Nevertheless, understanding or 
explaining how the neural network works is an important 
aspect of improving its reliability. For this purpose, we 
evaluated the CNNs used for DeepSAT by visualizing the 
correlation between NMR signals and substructures. To 
understand how DeepSAT makes its decision about sub-
structures from NMR spectra, the occlusion sensitivity 
technique was applied to analyze which parts of an image 
are most important for a deep network’s prediction [41]. 
In occlusion sensitivity, some inputs are masked and the 
changes in results are then correlated with these changes 
in inputs. Thus, each peak on the HSQC spectrum was 
sequentially removed and the changes in the predicted 
results were observed.

As a result of this analysis, the change in probabil-
ity of each atom was mapped onto the source molecule, 
thereby providing an indication of which substructures 
are strongly influenced by the selected NMR signals. In 
Fig.  3, we show the result of this analysis for the com-
pound quercetin. As shown in Figs. 3a, b, the two HSQC 
peaks at δC/δH 92.9/6.30 (peak 0) and 97.8/6.19 (peak 
1) were significantly correlated with the A ring sub-
structure of quercetin. Peak 0 was correlated with C-13, 
C-14, C-15 and O-16 whereas peak 1 was associated with 
C-11, C-12 and C-13. Several characteristic correlations 
between the signals and substructures were observed 
from this analysis as well. The HSQC signal at δC/δH 
102.0/4.30 was strongly correlated with the anomeric 
carbon and proton on the glucose moiety of platyphyllo-
side (Fig. 3c). The aldehyde signal at δC/δH 207.6/9.73 was 
highly correlated with the aldehyde group on cyanobufa-
lin A (Fig. 3d), and the iodomethylene group of dichotel-
lide B was associated with the signals at δC/δH 28.7/5.51 
(Fig.  3e).  Interestingly, these  results suggested that the 
neural network correctly understood the correlation 
between the functional group and its HSQC signals.

Discussion
Structure identification from NMR data analysis is an 
essential process in elucidating the planar and sometimes 
3-dimensional structures of organic compounds. Under-
standing molecular structures provides chemists with the 
properties of the molecule, which can inform the devel-
opment of new drugs, the design of new materials, and 
the understanding of chemical processes in the nature. 
Thus, the rapid and accurate structure identification and 
annotation of small molecules by DeepSAT can signifi-
cantly accelerate such efforts.

DeepSAT resulted in significantly better accuracies 
than other currently available NMR-based annotation 
methods. Compared to the next best method, SMART 
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2.0 or spectral matching with 143,467 reference spectra, 
DeepSAT showed significantly higher structure iden-
tification and annotation rates. Additionally, DeepSAT 
supports the use of Multiplicity Edited HSQC spectra 
as inputs, and this provides even higher levels of perfor-
mance. Because searching and providing the structures 
from queried spectra is a ‘recommendation system’, we 
used the appropriate evaluation metrics, including pre-
cision, recall, and F1-score @k calculated by consider-
ing only the subset of the recommended results from 
rank 1 through k. These metrics revealed the significantly 

improved performance of DeepSAT over SMART 2.0 
with a two-fold higher F1-score. These results suggest 
that DeepSAT produces an excellent prediction of chemi-
cal fingerprints and molecular weights as well as struc-
ture class prediction from the NMR data.

Because shielding and spin–spin coupling constants 
in NMR are influenced by the interaction between sol-
vent and solute, the choice in solvent can conceptually 
influence the results of prediction programs. In evalu-
ating this aspect of the DeepSAT tool, the different sol-
vent conditions were found to only modestly impact the 

Fig. 3 Correlations of HSQC spectra and structural moieties interpreted by the convolutional neural network used by DeepSAT. a and b HSQC 
peaks of quercetin are correlated with specific atoms in the molecular structure. The heatmap on the right shows the correlation between the HSQC 
peaks and atoms on the molecule. Peak 0 was strongly correlated with atom 13,14,15, and 16 (red box). c–e, Examples of the correlations 
interpreted by DeepSAT. The boxed regions of the HSQC spectra on the left are correlated to the functional groups or partial structures on the right 
and are highlighted by green contour plots. The assigned positions are also marked by red arrows
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identification and annotation results; over 65% of the 
results were still correctly identified even though the data 
were recorded in different solvents, and the annotation 
rates were even higher. These results indicate that Deep-
SAT can be a useful identification and annotation tool 
irrespective of the NMR solvent that is used.

We made initial investigations into how the DeepSAT 
convolutional neural network recognizes the structural 
properties of molecules from their NMR spectra using 
the ‘occlusion sensitivity’ method on the compound 
quercetin. This analysis provided some basis for under-
standing how the model recognizes chemical moieties 
from NMR data. Organic chemists involved in NMR-
based structure elucidation commonly correlate chemi-
cal shifts and structural motifs based on their experience 
[42, 43]. Interestingly, this is similar to what was found 
for DeepSAT. Based on the training of the neural network 
with large datasets of HSQC spectra, functional groups 
and structural moieties of small molecules were cor-
rectly correlated to their NMR signals. Even though these 
results do not fully explain the decision-making process 
of DeepSAT, they suggest that the trained CNN uses 
empirical correlations similar to those used by human 
researchers.

Conclusion
In this study, we introduce DeepSAT, a new tool for the 
identification and annotation of small molecules using 
a convolutional deep neural network. DeepSAT pos-
sesses a novel architecture in that DeepSAT learned to 
recognize features of a molecule from HSQC spectra 
that could be used to populate fingerprint bit strings. 
As these fingerprints can also be easily generated from 
all known small molecules to which DeepSAT results 
can be compared for similarity, it essentially over-
comes the data limitation issue present in SMART 1.0, 
2.0 and other tools created for this purpose. Further-
more, DeepSAT predicts compound class information 
for both known and unknown compounds which pro-
vides additional insights that are useful in determining 
molecular structures. In order to validate the perfor-
mance of DeepSAT, we provided a number of examples 
of its use, and evaluated its performance using appro-
priate metrics. The results demonstrate that DeepSAT 
provides not only structure identification and annota-
tion, but also provides accurate information on the 
type of small molecules. This state-of-the-art tool for 
expanding the use of NMR data outperforms all other 
available tools for identification/annotation of small 
molecules, and provides multiple types of information 

that support the structure elucidation process. We 
anticipate that DeepSAT will be widely used to investi-
gate small molecules for drug discovery applications as 
well as in ecology and environmental studies.
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