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Introduction

Factor analysis, in the work of Spearman, Thomson, Burt, and
Thurstone, was essentially an algebraic technique used to describe
data matrices. Generalization aspects associated with statistical
modelling were only introduced much later, and have not played a
prominent role until quite recently. We think that a purely alge-
braic approach to factor analysis is perfectly respectable, and in
some cases the only reasonable alternative. On the other hand
embedding the equations into a statistical model has many advan-
tages, at least in situations were the idea of replication and
random sampling make sense. From the developments so far, two
different statistical factor analysis models have received most of
the attention. We present them in their strongest form, with the
assumption of multivariate normality, although recent theory
concentrates on studying weaker versions of both models (De Leeuw,
1983, Mooijaart, in press).

The first factor model, which is the most popular by far, is

the random score model. It supposes that the observed scores zij
(i=1,..., n; j=1,...,m) are realizations of random variables Eij

with the following structure.
p

Al: z,., =y, + 2 x. a. + 6.¢g..,

—1] J g=1] 1S Js J1]

A2: X0 and Eij are mutually independent standard normal.

Observe that we underline random variables, a convention which is
particulary convenient in this context (Hemelrijk, 1966). The
structural parameters of model A, i.e. the loadings ajs and the

. . 2 , . .
unique variances 67, can be estimated in various ways. The method

of maximum likelihood (ML) is currently most popular. It gives
consistent and efficient estimates of the structural parameters,
with asymptotically a multivariate normal sampling distribution.
Model A was introduced by Garnett (1919), and connected with modern
statistical theory by Lawley (1940) and Rao (1955). The first
practical algorithms were presented by J6reskog (1967).



An alternative model was presented by Young (1940), and gene-
ralized by Lawley (1941). It is

P
Bl: z.. =p. + 2 x. 0. +8.¢..,
=ij J g=1 1s Js J—1j

B2: Eij are mutually independent standard normal.

This is the fixed score model, because the factor scores X g in

this model are fixed quantities, i.e. additional parameters. Model
B is more complicated from a statistical point of view than model
A. Lawley (1941) derived the likelihood equations, but Anderson and
Rubin (1956) showed that the likelihood function is unbounded and
maximum likelihood estimates do not exist. Alternative estimates,
based on the distribution of the covariances of the zZ; > were also
derived by Anderson and Rubin. They showed that these alternative
estimates provided consistent asymptotically normal estimates of
the structural parameters, with a dispersion that was equal to that
of the ML estimates under model A. In fact they also showed that
the ML estimates under A have the same asymptotic distribution
under A as under B. All this material is reviewed in a recent very
interesting paper by Anderson (1984).

The results of Anderson and Rubin have made it somewhat futile
to look for alternative estimation methods for model B. Model A
estimates can be used in all cases. This fact has also tended to
make the model B somewhat unpopular, which is unfortunate. In fact
Young (1940) and Whittle (1952) both argued that model B is more
appropriate for most applications they could think of. And it is
true, of course, that factor scores can be estimated in the usual
sense only if they are parameters, i.e. only if model B is true. If
we are interested in the scores of individuals, or if we are unwil-
ling to make the assumption that individuals are a random sample
from a single well-defined population, then we must use model B.
It is not true, by the way, that there are only rather subtle
statistical differences between models A and B. Their conceptual
basis is quite different. This becomes more obvious if we introduce

replications in model B. The basic assumption Bl becomes
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This shows that the data matrix is interpreted in model B as
arising from a factorial design, with individuals and variables as
factors. The model imposes a particular bilinear structure on the
interaction parameters. The problem is, that under Bl we only have
a single replication in each cell. We have already seen that factor
scores can be 'estimated' only under B. Under A we can construct a
random variable as a (possibly randomized) function of the observed
variables which is close to the latent variable X, - The identifi-
cation situation is also quite different for models A and B,
because of the additional parameters in B.

Ultimately the distinction between A and B, and the greater
popularity of A, is perhaps of a philosophical nature. Factor
analysis has been dominated for a very long time by the nomothetic
approach that is familiar from psychophysics. Factor analysts
looked for general structural laws, individual differences were
just 'error'. Thus factor scores get almost no attention in the
classical books of Thurstone (1947) and Harman (1960). Model B is
much more idiographic, it can be used to describe individuals
succinctly. Thus model B is much closer to the spirit of many
factor analytic studies in applied social science, in which we want
to describe individuals in terms of a small number of factors. It
is clear that the distinction between A and B also has important
implications for the recent factor score controversy, which can be
studied much more clearly within B than within A.

The reason why the method of maximum likelihood fails if it is
applied directly to model B is by now well understood (cf Anderson,
1984). If n, the number of individuals, tends to infinity, then the
number of parameters tends to infinity too. Each new individual
adds his p factor scores to the set of parameters. For this reason

factor scores are called incidental parameters, and it is classical




that incidental parameters may cause the method of maximum like-
lihood to fail, even in estimating the structural parameters. There
is too much freedom in model B.

In this paper we investigate various ways to impose
restrictions in model B, and we investigate the effect of these
restrictions on the behaviour of the maximum likelihood estimates.
If model B is preferable to model A, and if the restrictions make
sense, then our restricted forms of fixed score factor analysis are

useful additions to the literature.

Maximum likelihood estimation in the fixed score model

We first give a convenient reformulation of model B. It is

Cl: z, = Ax. + u.,
=i i =i
C2: u, independent,

C3: u, ~ N(0,Z%).

In model C the vector p has disappeared. Either the variables are
first centered, or M is absorbed into the other structural para-
meters. The disturbances u, are the unique factors of B. In B they
have the diagonal dispersion A2, but in C we do not necessarily
make this additional assumption. The negative logarithm of the

likelihood is, ignoring irrelevant constants,

£F(AX,5) =nlg 3 + tr (Z - XA X(Z - XA")". (1)
In this paper we shall be interested in minimizing f(A,X,2)

under various restrictions on the parameters. But first we show why

unrestricted minimization does not work. The problem arises because

we can find X and A such that

_!-_ - 1yt - VYA!
s (X,4) == (Z - XA")'(Z - XA")



is singular. Suppose u is a vector in its null space. Now choose ZO
of rank m - 1, with Zou = 0, and define ZS = ZO + 8Suu', with € >
0 and e, > 0 if s » », Then f(A,X,ZS) + - if § > ®, The problem
occurs because X and Sn(X,A) have null-spaces with non-empty
intersection.

The problem can be solved by restricting either 2 or X and A.
But the restrictions must be chosen with some care. In the
unrestricted fixed factor model, for instance, restricting 2 to be
diagonal is not sufficient to remedy the problem. Because we can
always choose X and A in such a way that one column of Z is fitted
perfectly, the unit vectors ej can all appear in the role of the
null-space vector u. By letting the corresponding diagonal element
of ZS tend to zero, we create intersecting null spaces, and the
negative likelihood tends to infinity. One radical solution,
advocated for instance by Whittle (1952), is to restrict 2 even
further. If we require X to be scalar, i.e. X = 02I, then (1)

simplifies to
£(A,X,02) = nm 1n 02 + (62) ' tr (Z - XA') (Z - XA")". (3).

Minimization of (3) over X and A and 0% only gives problems if we
can find X and A such that Z = XA', which will never be the case in
practice. In practice minimization of (3) defines, of course,
principal component analysis or singular value decomposition.
Although this certainly defines a respectable way out of the
problem, many people do not feel comfortable with the assumption
that all error variances are equal.

In 'confirmatory' factor analysis restrictions are imposed on
A, while keeping 2 diagonal. This will generally not prevent the
unbounded likelihood to occur. Even with the usual restrictions on
A it will often be possible to find X and A such that at least one
variable is fitted exactly. In the fixed factor score model con-
firmatory analysis is possible, but it usually does not solve the

incidental parameter problem.



In this paper we shall investigate the possibility of deriving
interesting results from another class of restrictions, more
specifically from restrictions on X. Before we go into in more
detail, we review another very interesting recent attempt to
salvage the method of maximum likelihood estimation in unrestricted
fixed score factor analysis. McDonald (1979) defines fl(A,X) as the
infimum of (1) over all diagonal X, and f2(A,X) as the infimum over
all Z. For X and A such that Sn(X,A) is nonsingular we have f2(X,A)
=n In Sn(X,A) + m and fl(X,A) =n 1ln dg(Sn(X,A)) + m. McDonald
suggests that we choose X and A to maximize the difference between
fz(X,A) and fl(X,A), which is f2(X,A) - fl(X,A) =n 1ln Rn(X,A) R
with Rn(X,A) the correlation matrix corresponding with Sn(X,A). The

resulting estimates are called maximum likelihood ratio estimates,

because they maximize the ratio of two partial likelihoods.
McDonald shows that the maximum likelihood ratio estimates of the
structural parameters are identical with the maximum likelihood
estimates in the random factor model. This makes them consistent,
because of the results of Anderson and Rubin mentioned earlier. The
estimates of the factor scores, the incidental parameters, are not
consistent, but this is hardly surprising. It seems to us that, on
the basis of these results, maximum likelihood ratio methods show
some promise also in other situations in which incidental para-
meters make maximum likelihood behave badly. From a practical point
of view, however, they do not give anything new in unrestricted
factor analysis. They merely tell us to use the structural maximum
likelihood estimates. Etezadi-Amoli and McDonald (1983) have some

additional discussion on maximum likelihood ratio estimation.

Using restrictions on the factor scores

Imposing restrictions on the factor scores can be done by
relating the factor analysis model to some other closely related
models, which have been studied mainly in econometrics. There is a

fairly extensive literature on reduced rank regression models and

linear functional errors-in-variables models in which




is used in combination with C2 and C3 and
C4: X = YB,

where Y is a known n x r matrix. If we combine Cl1 and C4 in a

single likelihood function we find
£(A,B,3) =n ln 3 + tr (Z - YBA')I 1(Z - YBA')'. (4).

The new data analysis problem becomes minimizing this loss function
over the parameters. In practical situations it will usually be
impossible to choose A and B such that Z - YBA' is singular. Thus
the unbounded likelihood problem is not too serious in these
situations. For interpretational purposes C4 can be very con-
venient. We can use design matrices for Y, or 'background'
variables. Restriction C4 then says, that the factor scores are in
the space spanned by the background or design variables.

We have interpreted C4 as a restriction on the factor scores,
which is natural in our formulation. But we can also rewrite the
assumptions as z; ~ N(Cyi,Z), where C is of the form C = AB', i.e.
C is an m x r matrix with rank(C) £ p. This explains the ter-

minology of reduced rank regression model, which is more natural in

other contexts. More precisely econometrists generally will prefer
to think of the model as a special regression model, psychometrists
will think of it as a special factor model. Anderson realized from
the start that the two models are essentially the same, he
brilliantly summarizes his work and that of others in Anderson
(1984).

Before we give concrete examples of the types of linear
restrictions that can be used we first deal with the estimation
problem. The model is usually extended by making assumptions about
the covariance of the errors. We have already discussed some

possibilities informally, and Anderson (1984) also distinguishes



approximately the same cases. For ease of reference we mention the

most important ones.

C5a: 3 = 0220, with 2, known, and 02 unknown.
C5b: 2 is diagonal.

C5c: 2 is completely known.

C5d: 2 is completely free.

C5e: X = 02I, with 02 unknown.

Of course many other possibilities can be distinguished. In fact a
very general model would allow for a general parametric covariance
structure of the errors. Anderson points out that reduced rank
regression models using C5c were used in econometrics by Tintner,
Geary, Malinvaud, and others. Interested recent work on models
which use C5a has been done by Gleser (1981) and Kelly (1984). The
key paper on reduced rank regression using C5d is, undoubtedly,
Anderson (1951), although Fisher already studied a special case
(multiple group discriminant analysis) in 1938. Interesting recent
work on C5d is by Tso (1981), who stresses the relationship with
canonical analysis. Again many historical remarks and references
can be obtained from Anderson (1984).

The problem of minimizing (4) is treated in two steps. We
first solve the problem of minimizing over A and B, with fixed 2,
which is of course assumed to be nonsingular. There are no
restrictions on A and B, but for convenience (or for identification
purposes) we require B'Y'YB = I (which means that we suppose that p
£ r). The optimal solution for A, given B, is independent of X, and
is equal to A = Z'YB. Substituting this in (4) gives the con-

ditional minimum
£(*,B,3) =n In 3 + tr Z3 'Z' - tr B'Y'Z3 'Z'¥B. (5)

This must be minimized over B with B'Y'YB = I. It follows that B
are the p eigenvectors corresponding with the p largest eigenvalues

of the eigen-problem Y'ZZ—lz'YB = Y'YBA. The eigenvalues Al,...,hp



can also be found as the eigenvalues of the matrix
-1 - -
) 25 2 Y (V'Y 2. Thus

- p 1 - -1
£05,%,5) =nln 3 +tr 23 2 - 3 A (YY) W25 YN (6)
s=1
These results provide a complete solution of the estimation
problem for known 2. In fact it is easy to see that they also solve
the problem essentially if we assume C5a or C5e. The additional

parameter 02 is simply
.2 -1 -1 P W | -y
¢ = (mm) " ftr z5,72'- A ((Y'Y) fY'zzo Z'Y(Y'Y) D}, (D

where ZO = I in case C5e.

In more complicated cases minimizing (6) over X may not be
simple at all. In these cases it is usually preferable to go back
to (5), and minimize this over 2 for given fixed B. This can be

done by rewriting (5) as
£(*,B,5) =n ln 3 + tr 3 'T(B), (8)

with T(B) = Z'Z - Z'YBB'Y'Z.

The minimum is attained for 5 = n_lT(B) and thus
£(*,B,) =n In T(B) + mm. (9

For diagonal I the minimum in (8) is attained if & = % dg(T(B)),
and for more complicated constraints more complicated methods of
minimizing (8) must be used. This immediately suggests a general
algorithmic strategy. In the first substep of each iteration we
minimize the function with respect to B for fixed 2. This means
that we must solve a generalized eigenproblem. In the second
substep we minimize loss, for fixed B, over 2. This means
minimizing (8). A whole class of methods to perform this
minimization is available from the analysis of covariance

structures methodology. After solving the two subproblems, possibly



only partially, we start a new major iteration, and we continue
until convergence. It is important to observe that in some of these
'alternating maximum likelihood' methods the subproblem of solving
for 2 can be done exactly, in other cases we need iterative methods
(and perhaps we can sometimes profit by splitting the 2-subproblem
into subproblems of smaller order).

There is one other case, in which analytic solution is
feasible. This is the very important one investigated by Anderson
(1951) and Tso (1981). If all parameters are unconstrained, going
from (4) to (5) to (9) shows that the problem we have to solve is
minimizing (9) over B. Equivalently we can also try to minimize (6)

over 2, but this seems less easy. Now
4 %
T(B) = 2'Z I - (Z'Z)°Z'YBB'Y'Z(Z2'Z) * . (10)

This must be minimized over all B such that B'Y'YB = I, and by
familiar matrix results (discussed, for instance, in Theobald,
1975) the minimum is attained for B equal to the solution of the
generalized eigenvalue problem Y'Z(Z'Z)-IZ'YB = Y'YBA, where we
need, again, the p largest eigenvalues. These are, of course, also
the p largest eigenvalues of (Y'Y)-%Y'Z(Z‘Z)_IZ'Y(Y'Y)_%, and the
squares of the p largest singular values of (Y'Y)_%Y'Z(Z’Z)_%. In

short, these are the p largest squared canonical correlations

between Y and Z. The case in which all parameters are unconstrained
can be solved by solving a canonical correlation problem. If A and
B are free, and 2 is required to be proportional to a known matrix,
then we have already seen earlier that we have to solve another
generalized eigen-problem. Compare e?uation (6). }f ZO = I we want
to compute the eigenvalues of (Y'Y)_éY'ZZ'Y(Y'Y)-ﬁ, which is
sometimes known as redundancy analysis of Y and Z (Van den

Wollenberg, 1977).

Thus canonical analysis of two matrices Y and Z can be inter-
preted as constrained fixed factor score maximum likelihood
estimation, with a free error covariance matrix. Redundancy
analysis can be interpreted as constrained fixed factor score

maximum likelihood estimation with covariance matrix equal to or



proportional to the identity. Of course we do not want to identify
the techniques of canonical analysis or redundancy analysis
completely with maximum likelihood estimation in the constrained
fixed factor model. The techniques have nice geometrical origins,
which makes their interpretation completely independent from
statistical assumptions such as multivariate normality. Never-
theless in some cases it may be useful to interprete the techniques
in the framework of maximum likelihood estimation, because
inferential statements can be made using the results of Anderson
(1951) and others.

Choice of linear restrictions

We still have to discuss the problem of choosing linear
restrictions, i.e. choosing an appropriate matrix Y, in factor
analytic contexts. This will also be illustrated in our examples
below. In principle a great many choices are possible, and seem in-
teresting. We just mention some which can be used on a more or less
routine basis. It is often the case that Y is composed from
information on background variables. These background variables can
be categorical, in which case Y is usually an ANOVA-type design
matrix with columns for main effects, interactions, and so on. The
background variables can also be numerical, in which case we can
collect them in columns of Y, and add columns with products,
powers, products of powers, and so on. If we have a single back-
ground variable, and use powers as columns of Y, then we require
the factor scores to be a degree p polynomial function of the
background. In stead of polynomials we can, of course, also use
other types of bases such as trigonometric functions or polynomial
splines. If Y is the design matrix derived from a single classi-
fication of the individuals, then we require all individuals in the
same class to have the same factor score. If 3 is free, then the
technique reduces to discriminant analysis. If > is restricted to
be diagonal we could call the resulting technique discriminant
factor analysis. In longitudinal situations we might observe the

same variables and the same individuals on a number of occasions.



It would then be possible to require that the factor scores of the
individuals are the same for the different occasions.

The above sampling of possibilities is hopefully illustrative
for the great number of possibilities one has. This can be
combined, of course, with many possible choices of 2. We have men-
tioned the usual ones above, but in some cases more exotic choices
are possible. We can require 2 to be block-diagonal, to be a
simplex, to have compound synmetry, or multitrait-multimethod form,
and so on. In fact we can use the LISREL-model to give even more
complicated structure to 2. We have to remember, however, that we
are modelling the distribution of errors, so very complicated

models may be somewhat far-fetched.

Example 1

The data for this example are the results of a survey, held in
1974, among 575 respondents (Veenhoven & Hentenaar, 1975). In this
survey people were asked to give their opinion with respect to
certain issues, such as abortion, capital punishment, euthanasia,
etc. Also some background information about the respondents was
recorded. The variables we choose for our analysis are described in
Table 1.

We will analyse these variables with a fixed factor score model
with restricted factor scores. These restrictions will be made by
using a design matrix, constructed out of the background variables.
The design matrix gives individuals the same factor score when they
have the same pattern on the background variables.

Previous knowledge about the data made us decide just to
analyse the variables described in Table 1. A practical reason is
also that taking more background variables would have enlarged our
problem too much. The first problem is to determine which model
should be appropriate using this set of variables: one can think of
models with and without interactions, using two instead of three
background variables etc. By manipulating the design matrix we have

investigated the various possibilities.



Table

1. Description of the variables in the analysis.

- Three statements on capital punishment (CP):

CP1.
CP2.
CP3.

Taking hostages should be punishable by death.
Murder should be punished by death.

In times of war killing people is justifiable.

- Four statements about abortion (AB):

AB1.
AB2.

AB3.

It is the woman's right to have an abortion if she wants it.
Medical practitioners who perform abortion are not better
than murderers.

People who agree with abortion have little respect for life.

AB4. Abortion is justifiable under no circumstances.

These

statements have the response from (1) = agree completely to

(5) = disagree completely. The responses of AB1 are reordered, so

as to

- Thr
1.

get a positive correlation with AB2, AB3 and AB4.

ee background variables:
Religion (REL) with categories: (1) = Protestant (PRO), (2) =
Reformed (REF), (3) = Roman Catholic (RC), (4) = none (NON).

. Political preference (POL) with categories: (1) = left (LEF),

(2) = denominational (DEN), (3) = liberal (LIB), (4) = right
(RI), (5) = none (NON).

. Educational level (EDU) with categories: (1) = LO, VGLO* (A),

(2) = ULO (B), (3) = VHMO (C), (4) = professional training or

university (D).

* L0

, VGLO, ULO, VHMO are abbreviations of typical Dutch school-

types. Therefore we have not tried to translate them. These

sC
we

hi

hooltypes are ranging from elementary school to university and
will denote them bij A, B, C and D, with D indicating the
ghest level.



Table 2. Background variables, interactions, - 2 log likelihood-
values and the total number of parameters to be estimated

for the various models

variables, interactions -2 log likelihood total number of
parameters to

be estimated

REL 12,981.17 23
POL 12,830.39 25
EDU 13,133.65 23
REL, POL 12,731.49 31
REL, POL, REL*POL 12,679.92 53
REL, EDU 12,802.83 29
REL, EDU, REL*EDU 12,767.41 47
POL, EDU 12,659.64 31
POL, EDU, POL*EDU 12,606.20 53
REL, POL, EDU 12,563.99 37
REL, POL, EDU

REL*POL, REL*EDU, POL*EDU  12,416.63 99

REL, POL, EDU
REL*POL, REL*EDU, POL*EDU,
REL*POL*EDU 12,306.95 141

Table 2 summarizes the results of this "model-hierarchy” by giving
for each model the variable(s) and interactions involved, minus two
times the log of the likelihood function and the total number of
parameters that is estimated. We can decide which model is the best
by looking at the differences between the - 2 log likelihood -
values. These differences are chi-square distributed with degrees
of freedom equal to the differences between the total number of
parameters to be estimated (Anderson, 1951). Because there is no
proper null-model it is impossible to establish the actual fit of a
model in an absolute sense. However, by differencing we can test

models against each other.



From Table 2 it becomes clear that all differences between the last
model and the others are significant. So for our analysis we choose
the model with all (background) variables and all interactions.

Table 3 gives the results of the two factor solution.

Table 3. Factor loadings for the two factor solution applied to
the questions about capital punishment (CP) and
abortion (AB)

variables F1 F2
CP1 .223 -.627
CP2 .161 -.624
CP3 .249 -.173
AB1 .730 .281
AB2 .669 -.006
AB3 .885 .093
AB4 . 737 .013

In Table 3 we see that the four abortion items have very much in
common with the first factor, while the second factor deals with
capital punishment. CP3 does not fit well in the model. A possible
explanation for this could be that killing people in times of war
is a somewhat different issue than punishing people by death for a
committed crime.

Combining our three background variables yields eighty pos-
sibilities for grouping the individuals and for calculating the
corresponding factor scores. Of course not all combinations really

exist in the data and we will only consider those combinations with

non-zero frequency. In our case 63 of such combinations are left
for interpretation. Another reason for not getting as many com-
binations as one might expect is that with a design matrix of this
size linear dependence among the dummy variables may occur. Those

linearly dependent dummy's have to be removed.
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Figure 1.

Centroids over categories of the variable educational level:

combinations of religion and political preference.
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One way to interpret the estimated factor scores is to make
plots. A plot of all 63 points, however, would be too complicated;
i.e. one can find four different points for all educational levels
with the combination Reformed/Right. This can make it a bit obscure
to see what effects really exist. Therefore we have plotted the
centroids of the scores of the categories of each background
variable. This reduces the combinations just mentioned to one
point, Reformed/Right in the plot where all categories of the
variable educational level have been taken together. In fact, by
doing so, one reduces the interaction effect of that variable. The
centroids for each pair of background variables are plotted in
Figure 1, 2 and 3.

As we have already mentioned, one can identify two factors: the
first factor deals with abortion, the second with capital punish-
ment. When we look at Figure 1, the plot of the centroids over
educational categories on the first dimension, going from left to
right, one finds points whose projections are ordered from very
religious (Reformed, Protestant) and political "right" towards
religious, and no political preference towards non-religious and
political "left" or "liberal". This is also illustrated in Table 4,
in which the mean scores on the abortion variables and the scores
on the first factor are given for all combinations of "religion"
and "political preference", a high mean score indicating a pro-
abortion opinion.

From Table 4 it is evident that the mean scores for all com-
binations of both background variables and the corresponding scores
on the first factor can be ordered almost perfectly in a double-
monotone way. It is also possible to make an almost perfect
monotone ordening of these scores over all cells. These facts
support our conclusion that on the first factor at the left side
one finds individuals who are anti-abortion, politically at the
"right" and religious versus individuals who are pro-abortion,
politically at the "left" or "liberal” and non-religious at the
right side.




Table 4. Mean scores on the abortion variables, scores on the

first factor and frequencies.

R1 DEN NON LEF LIB
1.57 3.08 3.11 3.25 3.25
REF -2.951 -.762 -.700 -.355 -.444
11 33 7 4 5
1.75 2.77 3.46 3.73 3.90
PRO -2.468 -1.257 -.313 -.024 .185
5 28 24 31 12
2.75 2.76 3.64 3.95 4.02
RC -1.540 -1.106 -.013 369 410
1 60 46 31 26
-- 4.88 4.14 4.34 4.52
NON -- 1.555 .533 834 1.016
-- 2 65 102 42

To interpret the second factor we look at Figure 2 and 3. From
these plots it becomes clear that the educational level is most
important for this factor. One can see that for both background
variables, political preference and religion, the centroid points
are roughly ordered from low educational level at the top towards
high educational level at the bottom of the plot. On the contrary,
the corresponding categories of the other variables have no clear
ordering on the second dimension. It appears that people with a
higher educational level are much more against capital punishment
than those with a lower educational level. It also appears that the
centroid points of both figures can only be ordered over all cells

according to the mean score on the capital punishment variables.



[

NO-0OP™m OZONMUB MO UMIOOU IO-H0PT

Figure 2.

Centroids over categories of the variable religion:

combinations of political preference and educational level.
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Figure 3.

Centroids over categories of the variable political preference:

combinations of religion and educational level.
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Such an ordering will be somewhat less perfect than the one on

the abortion factor, but a double monotone ordering cannot be
accomplished. The horizontal spread of the points in Figure 2 and 3
can be explained by interaction with "religion" and "political pre-
ference'". Roughly one finds again religious and political "right"
versus non-religious and political "left" or "liberal". So con-
cluding one can say that on the second dimension (at the top) one
finds individuals with a low educational level who favour capital
punishment versus (at the bottom) individuals with a high

educational level who are strongly against capital punishment.

Example 2

For our second example we have analyzed data collected with a
63-item suicide-attitude questionnaire.
This questionnaire has been constructed and used by Diekstra and
Kerkhof in a large-scale study on attitudes towards suicide
(Diekstra and Kerkhof, 1985). The data we used are the results of
the administration of this questionnaire, in 1975, to a sample of
712 subjects from the population of Nijmegen, a medium size town in
the eastern part of the Netherlands.
We analyzed the same 19 scales that Diekstra and Kerkhof con-
structed out of the original 63 items.
These scales combine so called "referents" and "attitude-
components’. The term "referents'" refers to the fact that people
may differ in their opinions about suicide with respect to
themselves, their most beloved, and people in general. As
"attitude-components" one can distinguish between affective,
cognitive and instrumental components.
O0f course in this context it is not possible to go into further
detail with regard to the content of the scales. In the following
we will denote them by abbreviations such as "affective-beloved",

"instrumental-self", etc.



For our designmatrix we used the background variables age,
educational level and membership of broadcasting organization.

In this case age is a numerical variable, collected in the first
column of the designmatrix and we also added the second and third

power of this variable.

In Table 5 a brief description of the scales and the background

variables is given.

Table 5. Description of the variables in the analysis.

- Nineteen scales with respect to suicide:
AFFS. affective-self  AFFB. affective-beloved AFFP. affective-people
ABNS. abnormality-self ABNB. abnormality-beloved ABNP. abnormality-people

CONS. consequences-self - CONP. consequences-people
RIS. right to -self - RIP right to-people
INSS. instrumental-selfINSB. instrumental-beloved INSP. instrumental-people
FYSS-fysical-self FYSB. fysical-beloved FYSP. fysical-people
SOCS. social. self SOCB. social-beloved SOCP. social-people

- Three background variables:
1. Age (AGE), numerical, ranging from 16 to 71 years.
2. Educational level (EDU) with categories: (1) = LO*(A),
(2)= LBO/MAVO (B), (3)=MBO/HAVO (C), (4)= HBO (D), (5)= University (E).
3. Broadcasting organization (BO) with categories: (1) = none (NON),
(2) = KRO*, (3)=VARA, (4)= AVRO, (5)= NCRV, (6) = VPRO, (7) =
EO, (8) = TROS.

As we have already mentioned we will not translate these categories. Although
compared with EDU in example 1, there is a slightly different division of
categories, E indicates the highest level.

** Tn the Dutch broadcasting system a number of broadcasting organizations or
"unions" operate at the same time. People can obtain membership of these
“unions" and each one is having its own identity. Roughly speaking KRO, NCRV
and EO are religious and politically ranging from "the middle™ (KRO) to "the
right™ (EO), AVRO and TROS are liberal and VARA and VPRO are non~religious and
politically at “the left™,



All scales are recoded to five-point scales, a high score indi-
cating a tolerant attiude towards suicide. Note that all possible
combinations are included. According to Diekstra and Kerkhof these

missing combinations are not possible or meaningful.

After removing the respondents with missing observations on the
scales and the background variables, 545 cases were left for
analysis.

As in the previous example we applied various two-factor models to
the data in order to establish which model would fit the best.

Table 6 summarizes the results.

Table 6. Background variables, interactions, - 2 log likelihood-values
and the total number of parameters to be estimated for the

various models.

variables, interactions - 2 log likelihood total number
of parameters

to be estimated

AGE 33,364.03 55
AGE, AGE2 33,316.38 57
AGE, AGE2, AGE3 33,304.01 59

EDU, BO, AGE

EDU* BO, EDU*AGE, BO*AGE

EDU*BO + AGE 32,52434 175
EDU, BO, AGE, AGE2

EDU*BO, EDU*AGE, EDU*AGE2

BO*AGE, BO*AGEZ,

EDU*BO*AGE, EDU*BO*AGE2 32,286.49 233
EDU, BO, AGE, AGE2, AGE3

EDU*BO,EDU*AGE, EDU*AGE2,EDU*AGE3

BO*AGE, BO*AGE2, BO*AGE3

EDU*BO*AGE, EDU*BO*AGE2, EDU*BO*AGE3 33,099.91 287




Table 7. Factor loadings (covariances) for the two factor solution
with regard to the "AGE, AGE?, AGE3"-model(1) and the

most complex model (2).

(1) (2)
Variables F1 F2 F1 F2
AFFS .35 -.03 47 -.200
AFFB .32 .01 .46 -.16
AFFP .18 -.09 .30 -.16
ABNS .34 .05 .60 .28
ABNB .20 -.06 .34 -.05
ABNP .27 .04 .65 .03
CONS .26 .05 .49 .41
CONP .24 .13 47 .46
RIS .17 .01 .30 -.04
RIP .35 .06 .65 .06
INSS .12 .08 .23 ~-.04
INSB .06 .10 .28 .10
INSP .24 .11 .42 .01
FYSS .39 -.03 .61 -.22
FYSB .24 -.03 47 -.25
FYSP .02 -.01 .26 -.05
S0Cs .39 -.23 .39 -.38
SOCB .36 -.10 .36 -.38

SOCP .15 .05 .19 -.02




Again, all differences between the -2 log likelihood-values of the
most complex model and the other models are significant, so this
model is the most appropriate.

In order to illustrate our technique we have included the models of
which the designmatrix is constructed only out of the variable
"AGE". So in the case of the "AGE, AGE2"-model for instance, one
can think of this matrix as having only two columns.

Table 7 gives the factor loadings for the "AGE, AGE2, AGE3'"-model
and the most complex one. Note that we have analyzed a covariance-

matrix, so the loadings are also covariances.

In table 7 we see that the loadings of model (1) are much lower
than those of model (2). In fact, one can hardly speak of a second
factor in model (1).

For model (2) we can try to identify the factors. On the first
factor all loadings are positive and most of them are moderately
high. The scales dealing with "the right to commit suicide for
people in general and "the question whether people who commit
suicide are abnormal" have the highest loadings.

The second factor roughly distinguishes between the affective,
fysical and social components on the one hand and the abnormality-

self and consequences components on the other hand.

Such an interpretation supports the conclusion of Diekstra and
Kerkhof, that the first factor deals with general tolerance towards
suicide, while the second factor makes a distinction between
emotional and rational arguments.

In terms of factorscores this means that a high score on the first
factor indicates tolerance towards suicide. A high score on the
second factor means more emphasis on rational rather then on
emotional aspects.

In order to illustrate the importance of the interaction of the
backgroundvariables, in fig. 4 we have plotted the factorscores of
model (1) against the variable AGE for the first factor. Also in
this plot the centroids are marked for most combinations of the

variables EDU and BO.
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Figure L,

Factorscores of the first factor against the values of AGE

for model (1). Centroids for some combinations of EDU and BO.
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Table 8 shows the contingency table of these variables.

Table 8. Contingency table of the variables EDU and BO.

BO

NONE KRO  VARA AVRO NCRV VPRO EO TROS

A 33 28 8 34 6 - - 19

B 79 43 17 46 10 1 - 18

EDU C 49 31 6 16 13 8 2 10
D 18 11 2 7 1 7 1 3

E 6 3 3 1 1 3 - 1

185 116 36 104 31 19 3 51

128
214
135
50
18

545

Fig. 4 reveals two arguments for the existence of interaction:

- Ordering the variable BO along the curve given one category of
EDU and vice versa, gives a different ordering for each
combination.

- AGE has a different distribution for each group of respondents
determined by a combination of BO and EDU.

Although, as we can see from table 8, there exist a number of

really small groups, which will be very unstable, a trend is still

visible. In general, one can conclude that older individuals tend
to be less tolerant towards suicide.

Subsequently we have plotted the factorscores of the most complex

model but one (the model with AGE, AGE2? and all interactions),

against the values of AGE for the eight largest groups of
respondents as determined by the combination of BO and EDU (see
table 8). Although model (2) see table 7) is the most appropriate,
for reasons of interpretation we decided not to plot the factor-

scores of this model.



The reason for doing so is that the inspection of the third degree
polynomials revealed that the extreme points of these curves were
strongly determined by very few individuals and therefore very
unstable.

So the factorscores will be on polynomials of second instead of
third degree. For each factor the plots of the factorscores are

given in figure 5 and 6.

As can be seen from figure 5 and 6 the polynomials indicate
different relationships between factorscore and age for the various
groups of respondents. These differences become visible while in
drawing polynomials for specific combinations of EDU and BO one
removes the interaction of these variables.

For the first factor (figure 5), some polynomials behave corres-
ponding to the general trend: older people tend to have lower
factorscores indicating less tolerance towards suicide. For some
groups there is a slight increase in tolerance with increasing age,
but only to the age of approximately 35 years. Finally for the
other groups there is an increase in tolerance starting somewhere
around the ages between 40 and 50 years.

Looking at figure 6 it becomes clear that for the second factor
there is a general trend in older people having higher factorscores
indicating a more rational attitude towards suicide. For some
groups however there is a change towards a more emotional view,
starting somewhere around the age of 45 years {except for the
C/NON-group, probably due to a somewhat unfortunate distribution of
AGE). There is also one group {A/AVRO) which shows more emotion
with increasing age up to approximately 45 years and then becomes
rational again.

When we want to have more information regarding factorscores and
background variables, these plots do not give much insight. There-
fore we calculated the mean factorscores for each possible group

for both factors. Tables 9 and 10 show the results.
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Figure 5. Factorscores of the first factor against the values of AGE

for the eight largest groups of respondents.
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Figure 6.

Factorscores of the second factor against the values of AGE

for the eight largest groups of respondents.
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Table 9 Mean factorscores on first factor for all combinations of

the variables EDU and BO.

BO

NONE KRO VARA AVRO NCRV VPRO EO TROS

A -.01 -.95 -.42 -.76 -.51 - - -.29
B 46 =172 .38 -.23 -.1.11 1.25 - =.37
EDU C .86 -.08 72 -.23 -.94 1.94 -.50 -.95
D .87 -.50 -.40 -.21 .39 1.02 -.12 -.36
E 2.20 .34 1.45 .46 1.87 3.64 - A

From table 9 it becomes clear that higher educated people show more
tolerance towards suicide. Also people who are no member of any
broadcasting organization or have a membership of progressive
broadcasting organizations (VARA, VPRO) tend to be more tolerant.
People with lower educational level and people who favour religious
or political "at the right" broadcasting organizations tend to be
more restrictive. Combinations of EDU and BO speak for themselves.
Interpretation of table 10 is much less clear. It looks as if with
increasing educational level there is a change from a rational
towards a more emotional argumentation. A relation between mean
factorscore and broadcasting organization does not seem to exist.
We must keep in mind however that this second factor is not so
important. Also because of the possibly unstable, small groups of

respondents we have to be very careful with our interpretation.



Table 10 Mean factoscores on second factor for all combinations of the

variables EDU and BO.

BO

NONE KRO VARA AVRO NCRV VPRO EO TROS

A .87 .52 2.23 48 -.31 - - 1.30
B 42 =24 -1.17 .23 -1.0 -.52 - -.12
EDU C -.63 -.58 -1.08 -.45 -.27 -.04 -.71 .38
D -.87 .20 -.14 -1.54 =-2.49 -.48 3.0 .21

E -.71 .15 -1.31 -1.90 -1.76 ~-.01 ~ 1.04




Reference notes

Diekstra, R.F.W. & Kerkhof, A.J.F.M. (1985). Attitudes towards
suicide. The development of a suicide-attitude questionnaire
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