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The Typology of Polysemy: A Multilingual Distributional Framework
Ella Rabinovich† Yang Xu†∗ Suzanne Stevenson†

†Department of Computer Science, ∗Cognitive Science Program
University of Toronto

{ella,yangxu,suzanne}@cs.toronto.edu

Abstract
Lexical semantic typology has identified important cross-
linguistic generalizations about the variation and commonal-
ities in polysemy patterns—how languages package up mean-
ings into words. Recent computational research has enabled
investigation of lexical semantics at a much larger scale, but
little work has explored lexical typology across semantic do-
mains, nor the factors that influence cross-linguistic similari-
ties. We present a novel computational framework that quan-
tifies semantic affinity, the cross-linguistic similarity of lexical
semantics for a concept. Our approach defines a common mul-
tilingual semantic space that enables a direct comparison of the
lexical expression of concepts across languages. We validate
our framework against empirical findings on lexical semantic
typology at both the concept and domain levels. Our results
reveal an intricate interaction between semantic domains and
extra-linguistic factors, beyond language phylogeny, that co-
shape the typology of polysemy across languages.
Keywords: semantic typology, cross-linguistic similarity,
word meaning, distributional semantics, multilingual word
embeddings

A central issue in cognitive science is the nature of the
mental mapping between language and the world. One oft-
studied question is how and why languages vary in the way
they use words to partition semantic space (e.g., Berlin &
Kay, 1969; Levinson & Meira, 2003). Polysemy—the use
of a single word form to express multiple related senses—
is a fundamental property of language that exemplifies this
variation. Figure 1 shows how word forms across languages
may differ in the sets of senses they cover. Despite this varia-
tion, there is also much cross-linguistic commonality in word
meanings, as seen in the overlap of sense expression in Fig-
ure 1. How much do languages vary in their lexical semantics,
and what contributes to the observed cross-linguistic patterns
of polysemy? Here we present a principled and large-scale
computational approach to these questions.

Work in typology—studies of the constrained variation
exhibited by languages—has identified important cross-
linguistic generalizations regarding polysemy patterns across
many semantic domains. For example, some research has fo-
cused on the primitives that underlie cross-linguistic lexical
categorization (e.g., Berlin & Kay, 1969; Levinson & Meira,
2003), while other work has studied the degree of universal-
ity of polysemy patterns (e.g., Majid, Jordan, & Dunn, 2015;
Youn et al., 2016). However, such studies have been restricted
in scope due to reliance on manual methods. To find robust
answers to the above questions on semantic typology, auto-
matic methods are required to enable larger scale study.

(1) A mobile mass of muscular tissue covered with mucous 

membrane and located in the oral cavity

(2) A human written or spoken language used by a community

(3) The tongue of certain animals used as meat (e.g., beef)

(4) A narrow strip of land that juts out into the sea

(5) The flap of material under the laces of a shoe or boot 

(6) A manner of speaking 

(7) In a bell: a metal rod that rings by striking the walls

English

tongue

Russian

язык

Hebrew

לשון

Figure 1: A partial list of meanings given in Babelnet for
the English word “tongue”, as well as for the corresponding
Russian and Hebrew word forms.

Computational research has proposed various methodolo-
gies to explore lexical semantic structure at a more compre-
hensive scale. Previous work exploiting distributional repre-
sentations has studied how language-pair semantic similarity
is influenced by various factors, including phylogeny (e.g.,
(Thompson, Roberts, & Lupyan, 2018; Beinborn & Choenni,
2019)), geography (Eger, Hoenen, & Mehler, 2016), cul-
ture (Thompson et al., 2018), and conceptual structure (Xu,
Duong, Malt, Jiang, & Srinivasan, in press). To the best of our
knowledge, the only study considering lexical variation at the
level of semantic domain is that by Thompson et al. (2018).
That study used monolingual word embeddings for quantify-
ing cross-linguistic semantic alignment in an inherently mul-
tilingual setting. Importantly, previous work has typically fo-
cused on descriptive analyses that are not evaluated against
the empirical generalizations reported in the literature.

We propose a novel framework1 for quantifying lexical se-
mantic variation that addresses these limitations in two re-
spects. First, we develop a measure of semantic affinity that
assesses the degree of semantic similarity of the correspond-
ing word forms for a concept across many languages. We
take an alternative approach to existing work in which we
construct a common multilingual semantic space that enables
a direct comparison of the lexical expression of concepts
across multiple languages. Second, we evaluate our approach
against known findings in the typological literature to assess
the validity of our measure.

1All code and data are available at
https://github.com/ellarabi/semantic-affinity
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Background on Lexical Semantic Variation
We focus on some key findings regarding lexical variation and
factors that influence it, at the level of individual concepts,
domains, and languages. We summarize these empirical find-
ings in Table 1, which we will assess our framework against.

Individual Concepts. Semantic change is an important
source of polysemy, and factors that influence that process
may also influence the degree of semantic affinity of con-
cepts. A number of studies have shown that the rate of se-
mantic change is correlated with the psycholinguistc factors
of frequency and degree of polysemy (estimated by num-
ber of senses), and minimally correlated with word length (a
proxy of frequency) when frequency and polysemy are both
controlled for (e.g., Hamilton, Leskovec, & Jurafsky, 2016).
Pagel, Atkinson, and Meade (2007) also found that numbers
(e.g., “two”) are slowest to change among the grammatical
categories, which follow a specified order (Table 1).

Semantic Domains. Recently, much research on lexical se-
mantic typology has studied cross-linguistic universals and
principles of variation in patterns of polysemy (e.g., Berlin
& Kay, 1969; Levinson & Meira, 2003; Majid et al., 2015;
Youn et al., 2016). Two studies in particular enable us to
assess the relative level of semantic affinity across different
semantic domains. First, Majid et al. (2015), using naming
tasks to elicit lexical data, manually determine an ordering of
the degree of semantic variation among four conceptual do-
mains across 12 Germanic languages; see Table 1. Second,
Youn et al. (2016), using manual translation across 81 lan-
guages, found that a set of 23 basic concepts pertaining to
the physical environment exhibits “universal tendencies” in
lexical semantics—i.e., has a high degree of cross-linguistic
similarity. In particular, they show that this similarity is un-
accounted for by phylogeny, geography, or climate (with one
exception, which we return to in our results). Interestingly,
Regier, Carstensen, and Kemp (2016) did find an effect of
environmental factors on the cross-linguistic lexicalization of
“snow” and “ice” (but this subdomain is too small to assess).

Language-Level Influences. Studies quantifying similar-
ity between pairs of languages have exploited distributional
properties extracted from monolingual (e.g., Beinborn &
Choenni, 2019; Thompson et al., 2018) or bilingual (Eger
et al., 2016) semantic spaces. The findings by and large high-
light the correlation between languages’ semantic and phylo-
genetic similarity (Beinborn & Choenni, 2019). Correlations
of geographical (Eger et al., 2016) and cultural (Thompson
et al., 2018) factors with cross-linguistic semantic similarity
have been shown. However, an analysis of their influence
across various semantic domains, and evaluation against em-
pirical observations, have been lacking.

Our Approach. Our work is closely related to that by
Thompson et al. (2018), who presented a large-scale study

of cross-linguistic semantic alignment at the level of the do-
main. That study used monolingual semantic spaces to quan-
tify cross-linguistic semantic alignment, where the similarity
between words representing a concept in two languages was
estimated indirectly through the proximity of these words to
their (partial) neighbourhood in individual spaces. Our work
explores an alternative approach based on semantic affinity,
which differs in that we: (1) quantify cross-linguistic seman-
tic similarity in a direct and unmediated way, by construct-
ing a common multilingual semantic space shared across lan-
guages of interest; (2) evaluate this framework against empir-
ical findings in the literature, a critical aspect that was not ex-
plored in the previous work; and (3) leverage this framework
to perform analysis of factors—both linguistic and extra-
linguistic—that influence semantic affinity of a concept, at
the levels of a single concept and a domain.

Datasets
Translation Sets. Measuring cross-linguistic semantic
affinity of a concept requires a set of words representing that
concept in various languages. We used NorthEuralex (Dellert
et al., 2017), a large lexicostatistical database providing ac-
curate (manual) translations of over 1000 basic concepts in
107 languages from 20 distinct language families of Northern
Eurasia, including over 30 Indo-European languages. Each
concept, represented by a corresponding German term, is an-
notated for part-of-speech (POS), and links to a set of word
forms representing this concept in other languages. This
yields a set of common concepts, spanning multiple domains,
and including accurate translations of the same concept into
words across multiple languages. Since these words naturally
have various additional meanings across the languages, re-
flecting various patterns of polysemy, this introduces a natu-
ral testbed for our analysis. Despite limitations due to known
quality control issues,2 this is one of the most comprehensive
multilingual datasets, suitable for this study.

Cross-Linguistic Polysemy Data. BabelNet (Navigli &
Ponzetto, n.d.) is a very large multilingual semantic network
in which each node represents a language-independent mean-
ing, to which words across the represented languages can
link. For example, as illustrated in Figure 1, the node for
the meaning “A human written or spoken language used by a
community” will be linked from the English word “tongue”,
as well as the corresponding words in Russian and Hebrew.
Crucially, as seen in the figure, our target words that repre-
sent the same NorthEuralex concept in different languages
may cluster different (sub)sets of meanings – sharing a com-
mon set of meanings, but deviating in language-specific ones.
For each of our concepts, we document the total number of
distinct meanings associated with it cross-linguistically, as
accessed through the words representing this concept in the
set of languages used in this work. We restricted the list of
concepts to those supported in Babelnet by at least 30 of

2See note at http://northeuralex.org/.
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Level of analysis Summary of empirical findings from the literature
Individual Rate of semantic change correlates with frequency (-), polysemy (+), word length (≈0)
concepts Lexical evolution rate: number<pro.<adv.<noun<verb<adj.<conj.<prep.
Semantic Semantic variation: Color, Body Parts<Containers<Spatial Relations
domains Universal tendencies in lexicalizing basic concepts of the physical environment
Language-level Language phylogeny correlates with semantic similarity across languages
influences Environmental factors (geography/climate) influence lexical semantic typology

Table 1: Condensed summary of recent findings on lexical semantic typology to which we compare our approach.

the 35 languages considered in this study (i.e., at least 30
of languages have a corresponding word-form entity in the
database). This results in 697 concepts across many domains.

Computational Framework
Our goal is to measure the degree of semantic similarity of the
corresponding words for a concept across many languages.
We adopt a distributional semantics approach given the suc-
cess of such models in capturing subtleties of word meaning
(e.g., Hollis & Westbury, 2016; Pereira, Gershman, Ritter,
& Botvinick, 2016). We construct multilingual common se-
mantic spaces that enable the projection of words from mul-
tiple languages into a shared space (e.g., Conneau, Lample,
Ranzato, Denoyer, & Jégou, 2017). Specifically, words in
different languages that have roughly the same meaning are
brought close to each other within a single vector space. For a
given concept, we operationalize its semantic affinity across
languages by the degree of similarity of the corresponding
words’ representations in the common semantic space. This
notion of affinity can be extended to a semantic domain (a
collection of concepts) and to languages (across all concepts).

Building a Multilingual Semantic Space. We use the
Facebook MUSE framework (Conneau et al., 2017), shown to
obtain good results on many tasks (e.g., Artetxe & Schwenk,
2019; Beinborn & Choenni, 2019), for construction of a mul-
tilingual semantic space. The model uses a set of automat-
ically extracted bilingual dictionaries between pairs of lan-
guages to project monolingual word representations in two
languages onto a common space. It does so while optimizing
the mutual proximity of representations of an automatically
extracted set of translation equivalents (words referring to the
same entity; e.g., English “apple”, French “pomme”). Us-
ing English as a pivot language, the procedure can then be
scaled to any number of languages L, assuming an English–
L bilingual dictionary, and ultimately resulting in a common
massively multilingual semantic space. Further details on this
procedure can be found in Appendix A.

For building our multilingual space, we use the
set of 35 geographically-diverse languages supported by
NorthEuralex, Babelnet and MUSE bilingual dictionaries,
and the corresponding fastText monolingual embeddings
(Grave, Bojanowski, Gupta, Joulin, & Mikolov, 2018). In
training and validation, we excluded the entire set of words
representing our target concepts from the list of translation

equivalents whose proximity is optimized by MUSE in cre-
ating the common embedding space. Figure 2 illustrates
that different concepts can have differing degrees of cross-
linguistic similarity in the resulting common semantic space.

Figure 2: t-SNE projections of multilingual embeddings, cor-
responding to English terms “daughter” and “edge”.

Quantifying Semantic Affinity. The semantic affinity of a
concept w.r.t. a set of languages amounts to the mutual prox-
imity of embeddings representing the concept across various
languages; that is, the “tighter” the cluster of embeddings,
the more (cross-linguistically) similar the concept is (cf. Fig-
ure 2). Formally, given a concept c and a set of N word forms
representing c across a set of languages L={L1,L2, ...,LN},
we denote its corresponding 300-dimensional vector repre-
sentations by Vc = {vc

1,vc
2, ...,vc

N}. Using cosine similarity as
our similarity metric, we compute the centroid of Vc by cal-
culating the average of its constituents. This procedure results
in a vector in the direction of the cluster centroid:

Cent(Vc) =
1
N ∑

i
vc

i , i∈[1..N],‖vc
i ‖=1 (1)

We then estimate cross-linguistic semantic affinity of c
with respect to L by computing its cluster density, specifi-
cally, we average over individual words’ cosine similarities
to the (virtual) cluster centroid in Equation 1 (i ∈ [1..N]):

SemAff(Vc) =
1
N ∑

i
cos(vc

i ,Cent(Vc)) (2)

Intuitively, semantic affinity mirrors the extent of meaning
similarity of a concept as expressed across a set of languages.
For example, as expected from Figure 2, we find higher se-
mantic affinity for the concept corresponding to “daughter”
(0.766) than for that corresponding to “edge” (0.572).
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Results on Concepts and Domains
We first evaluate how well our measure of cross-linguistic se-
mantic affinity matches empirical findings at the level of in-
dividual concepts and semantic domains (Table 1).

Semantic Affinity of Concepts
We hypothesize that factors that play a role in lexical seman-
tic change (within a language) may also influence the degree
of semantic affinity across languages. We thus suggest the
following variables as predictors of cross-linguistic affinity:
Mean Word Rank. We derive a ranked list of the top-N
words in each language using frequencies recorded in word-
freq3 For a given concept c, we then average the ranks of its
corresponding words across the languages.4

Degree of Polysemy. We computed the total number of
unique senses of the words associated with a concept across
our languages (see the Datasets section for details).
Mean Word Length. We computed the average length of
word forms corresponding to a concept across our languages.

We perform multiple regression analysis using the seman-
tic affinity of concepts (SemAff, Equation 2) as the dependent
variable, and the predictors above as independent variables;
see Table 2. All variables together explain nearly 40% (adj.
r2=0.381) of the variance. Our results are in line with pre-
vious findings on the relation of these psycholinguistic vari-
ables to semantic change (cf. Table 1), as we expected since
lexical evolution is an important source of polysemy. Mean
word rank is negatively correlated with semantic affinity, im-
plying that less frequently used concepts have lower cross-
linguistic semantic affinity. As well, concepts with a higher
degree of polysemy exhibit higher cross-linguistic semantic
diversity. Finally, mean word length shows the weakest cor-
relation with affinity among the variables.

predictor coef.(β×10) std err(β) t-stat
coeff 6.615 0.001 445.747
mean word rank -0.242 0.002 -13.294
degree of polysemy -0.200 0.002 -16.037
mean word length 0.129 0.001 8.640

Table 2: Multiple regression analysis. The response variable
is concept semantic affinity, a real value in the 0–1 range.
p < .001 in all cases.

We further computed cross-linguistic semantic affinity for
various POS categories; that is, by averaging SemAff over
concepts that share the same POS in the NorthEuralex dataset,
requiring a minimum of five concepts per tag. Table 3 (left)
reports the results. Here too we find that our relative rankings
replicate the relative stability over time of these categories as
found by Pagel et al. (2007), with a single exception of a swap
in ordering between verbs and nouns (cf. Table 1).

3https://pypi.org/project/wordfreq/
4Word frequency (which strictly correlates with rank in a lan-

guage) is incomparable across different languages.

To provide a fine-grained qualitative view of our frame-
work, we visualize semantic affinities of 10 common con-
cepts in the domain of kinship. Figure 3 reveals an interest-
ing symmetry in this domain. Specifically, semantic affinity is
higher for kin terms that are more closely related to ego than
those farther away, and this trend is symmetric between male
and female kin types. Concretely, “aunt” and “uncle” (and
“grandmother” and “grandfather”) show the lowest semantic
affinity across languages, in comparison to the closer kin re-
lations such as children, siblings, and parents of ego. This
observation is consistent with independent empirical findings
suggesting that remote kin terms, e.g., “aunt” and “uncle”, are
most often extended to unrelated persons (Ballweg, 1969).
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Figure 3: Semantic affinity of kinship female and male terms
located by their relatedness to ego (left-to-right).

Semantic Affinity across Domains
We derive cross-linguistic semantic affinity at the level of a
domain by averaging the SemAff of its individual concepts.
We use semantic domains similar5 to those used by Majid
et al. (2015) and Pagel et al. (2007), as well as the set of
23 concepts analysed by Youn et al. (2016), denoting this of
words set as the “Youn et al. Set” hereafter.

Table 3 (right) reports the SemAff of each domain along
with its number of concepts. The results generally sup-
port fundamental observations in the literature: specifically,
that words used for Numerals, Colors, and Body Parts have
greater semantic affinity across languages than Spatial Rela-
tions (relational words) and Containers (artifacts). Our ap-
proach thereby provides additional empirical evidence for
theoretically-motivated hypotheses on the nature of lexical
semantic structure across semantic domains. However, our
findings do not strictly mirror the results reported by Majid et
al. (2015), e.g., spatial relations and containers are ranked in
the opposite order; that, possibly due to the slightly different
set of concepts in both categories, and the much larger set of
languages used in our experiment. The relatively high affinity
of the Youn et al. Set reflects the empirical finding by Youn
et al. (2016) regarding the universal semantic structure of the
underlying set of words—a finding that our results suggest
does not systematically generalize to additional domains.

5Restricted by the set of words used in this study, and by limited
availability of data used in previous work.
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domain count SemAff SD POS count SemAff SD
NUMERAL 21 0.701 0.034 Numerals 21 0.701 0.034
ADVERB 37 0.672 0.050 Youn et al. Set 22 0.683 0.031
VERB 204 0.668 0.041 Colors 9 0.675 0.028
NOUN 474 0.656 0.052 Body Parts 42 0.643 0.033
ADJECTIVE 102 0.645 0.038 Spatial Relations 8 0.621 0.043
PREPOSITION 5 0.631 0.046 Containers 9 0.611 0.030

Table 3: Cross-linguistic semantic affinity and standard deviation by part-of-speech and domain.

Results on Language-level Influences
Above we considered semantic affinity of concepts and do-
mains; we can also calculate a measure of semantic affin-
ity between languages (across concepts from a range of do-
mains). As noted earlier, there is much evidence that such
broad semantic affinity between languages is correlated with
phylogenetic similarity, but the evidence is sparser and less
clear regarding the influence of other factors, such as geog-
raphy and climate. Here, we extend both these strands of
work, by considering the influence of phylogeny, geography,
and/or climate on a large scale sample of concepts and do-
mains across languages. We expect genealogical similarities
between languages to be predictive of their semantic affinity.
Moreover, we hypothesize that geography and climate exhibit
predictive power on semantic similarity above and beyond
genealogy, thereby highlighting the effect of environmental
factors on shaping lexical semantic systems.

Semantic Distance Between Languages
We can measure semantic affinity between two languages
w.r.t. a single concept as the cosine similarity between the
projection of the two words representing that concept onto
our common semantic space. We then define semantic affin-
ity between two languages across a set of concepts as the av-
erage such similarity across the individual concepts. Finally,
to align with terminology in the literature on phylogenetic
distance (as opposed to similarity), we convert this semantic
affinity measure to a semantic distance by subtracting it from
1. Then, given a set of concepts C , semantic distance (SDist)
between two languages Li and Lj w.r.t. C is defined as:

SDist(Li,Lj) = 1 –
1
|C |∑

cos(vc
i ,vc

j ), c∈C (3)

We limit the following analysis to 22 IE languages in our
set,6 which have well-established historical data.

Phylogenetic and Environmental Factors
We use a well-accepted tree (Gray & Atkinson, 2003)
for computing phylogenetic distances between pairs of lan-
guages. We define phylogenetic distance between two lan-
guages as their (unweighted) path length in the tree. We
further model two environmental factors: geographical and

6We excluded English and Spanish because their widespread na-
tive use prevents isolating their geographic and climate data.

climate distances between languages.We model language-
pairwise geographical distance as the Euclidean distance be-
tween their corresponding (longitude, latitude) coordinates in
the NorthEuralex database. We model language-pairwise cli-
mate distance as the Euclidean distance between their climate
vectors. These vectors are formed from temperature and pre-
cipitation data in a climate database (Kottek, Grieser, Beck,
Rudolf, & Rubel, 2006). For each language, we extract this
data from the region whose (longitude, latitude) coordinates
are closest to those of the language in NorthEuralex.

Language-level Results and Discussion
Pairwise correlations show that the three predictor
variables—phylogeny (PHY), geography (GEO), and
climate (CLM)—are correlated with each other as expected:
a high correlation between PHY and GEO (Pearson’s
r = 0.559; genetically related languages are often close in
space), and between GEO and CLM (0.807; regions close in
space generally have similar climates). Importantly, all three
predictors also exhibit a significant association with semantic
distance (SDist): 0.402 for PHY, 0.518 for GEO and 0.516
for CLI. Notably, a higher correlation of SDist is found with
geographical and climate predictors than with phylogenetic
distance, suggesting that these have a considerable effect on
lexical semantic structure.

We next perform a multiple regression analysis to estimate
the relative contribution of each of the three factors to pre-
dicting language-pair semantic distance. The three indepen-
dent variables together explain 30% of SDist variance (adj.
r2=0.301); Table 4 reports the details. Although all predictors
share similar coefficients, the highest coefficient is assigned
to climate distance, implying its substantial predictive power
on semantic diversity of concepts in our data. The contribu-
tion of geographical distance appears only marginally signif-
icant, likely due to its interaction with climate.

coeff. std err
predictor (β×10) (β) t-stat pval
coeff 5.589 0.003 202.396 <0.001
PHY 0.086 0.003 2.587 0.005
GEO 0.087 0.006 1.452 0.063
CLM 0.141 0.006 2.505 0.006

Table 4: Multiple regression analysis predicting SDist.

Evidence beyond Language Phylogeny. We hypothesize
that the effects of environmental factors (GEO and CLM) are
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Figure 4: Partial correlation tests across focused domains. Each bar shows the correlation of language-pair SDist with one of
the factors (PHY, GEO, and CLM) while controlling for the other two. Empty bars show non-sig. correlation (p>0.05).

not uniformly distributed across domains: we expect them
to be most evident in concepts that are more subject to in-
terpretation associated with environmental conditions. We
construct focused sets of concepts that represent a variety of
semantic domains presumed to be affected by environmen-
tal factors to a varying extent. For example, the Clothing
domain includes words like “shirt”, “cap” and “boot”; Mo-
tion&Activity includes words like “ski”, “boat”, “sway”; and
the Weather domain includes words like “cloud”, “frost” and
“thunder”. We perform partial correlation tests of the predic-
tive power of each of the predictors—PHY, GEO and CLM—
on pairwise language distance within each domain (while
controlling for the other two). Figure 4 presents the results.

Our methodology reveals an intricate interaction between
the semantic domains and the influencing factors. We found
that each factor—not just phylogeny—plays a non-trivial role
in explaining the cross-language semantic affinities, and our
results are in accord with some independent findings from
the literature. In particular, phylogeny is the strongest and
the only significant predictor in the domain of Body Parts.
This finding is consistent with evidence that semantic shifts
in body-part terms provide important clues to proto-language
reconstruction (Matisoff, 1985). In contrast, we observed that
phylogeny alone is not sufficient to account for affinity of
Clothing, where climate would naturally co-shape the seman-
tic typology. Additionally, geography is a salient factor in the
domains of Kinship and Numerals, which relates to findings
that suggest kinship networks vary along geographical areas
(Murphy, 2008), and that numeral systems in a language fam-
ily are shaped by areal diffusion (Epps, 2005). Finally, the
significant effect of climate on the Youn et al. Set—a do-
main that is reported to exhibit cross-linguistic “universals”—
mirrors their own finding that the split of languages by humid
and arid areas was an exceptional case to their universal se-
mantics hypothesis (cf. Youn et al., 2016).

Conclusions
Lexical semantic typology reflects both variation and com-
monalities in the patterns of polysemy across languages. We
proposed a principled and large-scale approach to the study
of cross-linguistic lexical semantic structure at the levels
of individual concept and semantic domain. We evaluated
our framework against existing findings in previous stud-
ies, demonstrating results that conform to established fun-
damentals pertaining to semantic variation across languages.
Through the analysis of a subset of Indo-European languages,
our framework discovered that extra-linguistic factors of ge-
ography and climate carry over explanatory value regarding
semantic variation between languages—above and beyond
genealogical relations. Our work suggests that the environ-
ment may play an important role in explaining the cross-
linguistic variation in polysemy.

Despite these advances, our approach is currently limited
by the reliance on a manually curated dataset to provide the
translation equivalents across languages of the concepts we
investigate. In the future, we plan to apply our framework
on translation equivalents extracted automatically (e.g., via
word alignment in bilingual corpora), thereby extending it to
additional concepts and languages.
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Appendix A
In this appendix we lay out some intuition regarding the con-
struction of a multilingual semantic space. The procedure in-
volves fixing a pivot language (e.g., English), and performing
multiple steps of alignment of two semantic spaces (e.g., En-
glish and French), thereby generating a bilingual space. The
process can be further scaled up to an arbitrary number of lan-
guages, pairwise aligned with the pivot, and, therefore, with
each other. The essence of the construction of a bilingual se-
mantic space lies in aligning two monolingual spaces. The
input to the alignment process includes an (automatically or
manually constructed) dictionary of n words in two languages
{xi,yi}, i∈{1, ..,n}, and two matrices—X and Y—containing
d-dimensional representations (embeddings) of the n words
in the two languages: source (represented by the matrix X)
and target (represented by Y). The alignment procedure then
learns a linear mapping (matrix W∗) between the source and
the target semantic space such that:

W∗ = argmin
W∈Md(R)

||WX – Y||F, (4)

where d is the dimension of the embeddings, Md(R) is the
space of d×d matrices of real numbers, and X and Y are two
matrices of size d×n containing the embeddings of the words
in the aligned vocabulary (Conneau et al., 2017). The ‘F’ no-
tation on the right-hand side of Equation 4 denotes extracting
the matrix norm (a single number) by applying the Frobenius
norm (Datta, 2010), defined as:

||A||F =

√√√√ m

∑
i=1

n

∑
j=1
|aij|2 (5)

for an arbitrary matrix A with m×n dimensions.
Polysemous extensions are preserved in the bilingual dic-

tionaries by mapping a single word form with multiple mean-
ings in a certain language into distinct words in another
language, i.e., m×n mapping. As such, the French word
‘mandat’ is mapped into two English translation equivalents:
‘mandate’, ‘warrant’ in the automatically extracted French-
English dictionary. All binlingual dictionaries used in this
work are those provided by Conneau et al. (2017).
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