Lawrence Berkeley National Laboratory
Recent Work

Title
THE CONNECTION BETWEEN SUPERSYMMETRY AND ORDINARY LIFE SYMMETRY GROUPS

Permalink
https://escholarship.org/uc/item/23r0d8z\

Author
Goddard, Peter.

Publication Date
1974-09-12

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/23r0d8zv
https://escholarship.org
http://www.cdlib.org/

GV Jd U420 4135

Submitted to Nuclear Physics B b LBL-3347
el Preprint c_\

THE CONNEC TION BETWEEN SUPERSYMMETRY AND
ORDINARY LIFE SYMMETRY GROUPS

Peter Goddard

September 12, 1974

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

4 )
For Reference

Not to be taken from this room

_ | _

7o

LyEE-T19T



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



DO 0042041 36

LBL-3347

' THE CONNECTION BETWEEN SUPERSYMMETRY AND ORDINARY
. . )
LIE SYMMETRY GROUPS
Peter GoddardT
lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

September 12, 1974
ABSTRACT

The mathematical structure of supersymmetry
groups and their representations is discussed. It
is shown that corresponding ordinary Lie symmetry
groups may be used instead. O'Raifeartaigh's
theorem applies aﬁd these groups realize one of the
possibilities it permits, namely, the Lie algebra is
the semidirect product of a sémisimple Lie algebra
and a solvable non-Abelian Lie algebra. The theorem
of Coleman and Mandula is not directly applicable
because the‘ﬁilbert space of physical states is not
invariant under the action of the group. It is

. poséible to consider an extended space of states
and to define an 'inner product'ywhich is preserved
by the action of the group, but this prodﬁct is not

positive definite.
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1. INTRODUCTION

| One of the techniques, developed in the invesﬁigation of dual
models, which seems to have other applications is that of supersymmetry
groups.. Whereas ordinary Lie gfoups are generated by élgebras involving
only gommutator (Lié) products, these groups are generated by a. |

(graded) algebra involving commutators and anticommutators. It has

the form:
: k
[Li’ Lj] = oy L
S
[Li’ Gr] - fir Gs
G,c) = a F (1.1)
r’ s rs Lk * :

When exponentiated to form & group the anticommuting elements of the
algebra, G, bave anticommuting "parameters” associated with them.
The object of this paper is to examine the structure of this group and
its parameter space, and to show that it may easily be regarded as an
ordinary Lie group, with no loss of structure.

| An algebra of the form of egs. (1.1) was first discussed by
Ramond and Neveu and Schwarz [1] in the investigation of a dual model
for pions. The algebra is related to coordihate transformations in an
internal space [2]. Wess and Zﬁmino [3] showed th a similar algebra,
having the Ebh$ﬁré'algebra of four-dimensionaijspaceftime as a sub-
algebfa, might be constructed. Subsequently a number of Lagrangian
models possessing the corresponding symmetry have been constructed
[(4,5] and shown to have remarkable renormalization properties [5,6}.
Thus, apparently, a symmetry group containing the Lorentz group as a

subgroup in a nontrivial way (i.e. other than as a direct factor of the

Com
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algebra) has been found and, secondly, interacting field theories
having this symmetry to all orders of perturbation theory have been
constructed. The first of these results would appear tb.be at variance
with O'Raifeartaigh's theorem [7] and the sécohd with that of Coleman
and Mandula [8]. It has often been suggested [45,9] that these
potential paradoxes are avoided because a supersymmetry algebra, such
as that defined by egs. (1.1} is not an ordinafy Lie algebra--it
involves anticommutators. One of the main points of the present paper
is to show that this is not the case. The presence of anticommutators
is not an essential factor in understanding the relationship of super;
symmetries to these theorems (although it may be important in other
aspects of their application).

The algebra introduced by Wess and Zumino and subsequently

studied by other authors including Salam and Strathdee [10] takes the

form

i

M
(Qbf QB} 2(y C)aa Pu

[, ')

(1.2)

\O} [#‘L} Qa] = 0.

Here € denotes the charge conjugation operator and Q satisfies the
Ma jorana condition:

e =, = @. ‘, (1.3)

Additionally the‘operators %z and the momentuﬁ operators, PL,
transform as a Dirac spinor and a vector, respectively, under the
generato;s Mpv of the homogeneous Lorentz grouﬁ. In order to form
finite elements of the.corresponding super symmetry group which involve

the Qbf these operators arebmultiplied by perameters €y 7 which are

regarded as anticommuting amongst themselves:



.

ley &) = O o ()
and exponentiaﬁed to form exp(e Q).

Tﬁe quantities thus obtained have been said to fofm an
"extended group."” It is certainly possible to regard this structure .
as a generalization of a Lie group, involving enticommuting parameters
[11]. Meanwhile, it is still & group in that it satisfies the
appropriate axioms. Moreover the parameters have a manifold structure
irrespective of how they are multiplied, and this structure is
respected by the group operations. Thus it must also be a Lie group
in the usual sense. Thus one can ask what is the corresponding Lie
- algebra and whether this algebra may be used equally well as that of
egs. (1.2).

To obtain the corresponding Lie algebra we take a basis for the
space of anticommuting parameters € and then consider products of
these basis elements with the basis of the generalized Lie algebra.

Thus precisely which Lie algebra is_obtained depénds on the choice of

the space of parameters, € . Clearly, one would try to choose this

in the most economical way consistent with retaining all of the

structure of the original generalized Lie algebra. In general, this

results in an increase in the dimension of the algebra, but for the -
specific case of interest here, egs. (1.2), it is possible to avoid »

any increase. The details of the construction are discussed in

Section 2. The result is to replace egs. (1.2) by

[So? SB] = -2(75 7, C)06 E“ (159
[, 7 0, [, sa} = 0.

]
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The commutation relations of .Sa and ?h with the homogeneous Lorentz

generators Mpv are again those appropriate for a Dirac spinor and a

- vector, but iﬁ ‘is not, strictly speaking, the usual momentum

operator. However the hypotheses of O'Raifeartaigh's theorem (7] are

still satisfied, as We have a Lie algebra (S '1‘5”, Mw) containing an

algebra isomorphic to the Poincaré algebra as a subalgebra, and one may
enquire how the resulting algebra egs. (1.5) relates to his conclusions.
In these copclusions O'Raifeartaigh classified the possibilities for
Lie algebras containing the Poincaré algebra into four cases. This
algebra falls into case (iii), that of a semidirect sum of a semi-
simple Lie algebra (ﬁhich in this case is just the algebra M of the
homogeneous Lorentz group) and a solvable non-Abelian algebra (which

here is the algebra of the Q, and the %ﬁ). 'o'Raifeartaigh argued

that case (iii) was unlikely to be interesting mainly because hermitian

conjugatibn could not be defined in the usual way, and that such
algebras Wére unfamiliar in physical applicatibns; In section'B we will
discuss further why the first of these reasons is not a hinderance in
supersymmetries, showing that they have finite dimensional representa-
tions that respect generalized inner products.

The theorem of Coleman and Mandula [8] is more stringent than
that of O'Raifeartaigh. Once its hypotheses are satisfied no pos-
sibility is left except that the algebra be the diréct sum of the
Poincaré algebra and a semisimple Lie algebra. It might not be réa-
sonable to apply the theorem to the group generated by (Sof ?L, Mpv)
since the subgroup generated by (?L, M“V) does not have the physical
significance of the Poincaré algebra in the ﬁheories recently

constructed; it is merely isomorphic to it. However we could consider
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group generated by (Sof EL;‘PL, Muv)" where PL genuinely are the
translgtion generators. _IL commutes with E} and Qa aﬁd has the
usual commutation relations with the Loreptz generators Mpv' The
problem with this group is that it takes us out of the space of
physical states. lSa' and ?u. have the effect of taking physical .
stétes to states which have been ﬁultiplied by anticommuting numbers '
and so are no longer ‘'physical!.

One could try to eniarge the space of states, for the purpose
of applying this theorem to include all those obtained by the action
of the group on physical states. However then the 'inner-product'
respected by the group action is not positive definite. This positive
definitenéss is crucial in the proof of Coleman and Mandula. (See
ref. 8, proof of lemms 6.) Thus, however considered, the applications
of supersymmetry groups fail to meet the hypotheses of this theorem.
Information is here being obtained about physical states by symmetrieé
realized in a larger space. This is not an unusual situation in
quantum physics (¢f. isotopic spin, gauge invariance in Yang-Mills
theories,'etc.), but thé precise way it is dome here is somewhat novel.

The relation to O'Raifeartaigh's theorem is discussed somewhat
further in section 2, which is devoted to construcﬁing the Lie algebra
for the supersymmetry group of Wess and Zumino [4] and understanding v
its use, with reference to the theorems mentioned above. Section 3
discusses the construction of inmer products respected by the action
of the group, and the hermitian conjugation of operators involving the
anticommuting parameters. Section U4 deals briefly with constructions

for a general algebra of the type of egs. (1.1). Section 5 contains

some concluding comments.
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2., THE LIE ALGEBRA OF A SUPERSYMMETRY GROUP

_The supersymmetfy transformations introduced b& Wess and
Zumino [4] may be regerded as acting on an eight-dimensional space with
coordinates [10] (x“, Qj). (The labels u and « are Lorentz
vector and Dirac spinor indices respectively and refer to the action
of the homogeneous Lorentz group on this space.) The coordinates
iu, Sa afe not ordinary‘complex numbers, but rather the elements of a
Grassmenn algebra. This algebra is constructed as follows. (Cf. the
discussion of fepresentations of generalized Lie gfbups given in [11].)

Introduce ‘N anticommuting elements Wy Wy wov, W

(0,5 wj} = 0. , ‘ _ (2.1)

With these we can construct EN independent products, 1, ® w,w,

i’ i
(1 <§), *++, @ @, *** @y, and take linear combinations of these with

complex numbers. In this way we have defined an algebra, Q , say, over
the complex numbers in which we can add, multiply two elements, and
multiply by complex numbers. We can define a 'parity' operation on

this algebra by sending wy - «bi and so on consistently with

multiplication. Only the linear combinations of products of even

numbers of the w; are left invariant under this operation. These

form a linear Subspace Q(+). Linear combinations of products of odd
al=),

numbers of the wi change sign and form a linear subspace

Clearly .
2 = o) 4 o) | (é.e)

The xp are elements of Q(+); the -qa are elements of

o)

. Clearly the division (2.2) gives 'Q. a graded structure similar

to that of the algebras defined by egs. (1.1), (1.2) and (1.5) in that
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FOMOR=INC)

b4

) o) & oo,

J

, (2.3)
ot) o(+) < (+)

In order to have reality conditions we define an operation of
complex conjugation on @ . Under this operation complex numbers z
i ’ ¥*
go to their ordinary complex conjugates z , and products of elements

in Q satisfy

* * * . .
. ‘ *
Then to determine the operation we need only specify a)i‘ . The
*
simplest prescription is wi = a)i; this means we have chosen a real

basis for Q as an aigebra. However for notational purposes below it
* .

will be convenient to allow ®, = Ai,j @y where A 1is a fixed matrix

o, 1

satisfying A =A ",

»We divide the w, into two sets, the first m of them and

i
their products are to span the parameter épace SZO . The remaining

n=N-m of them and their products span a space Q_L

The infinitesimal element of the group corresponding to €Q

has an action on the coordinate space given by

(2.5)

This map preserves x, < Q(+), 6, € SZ(')‘ if ea_é SZO(') and

further!will preserve reality conditions on xu a.nd ea

-
v



% " * :
X = X and & = ¢ 7OT & = © (2.6)
provided that € satisfies a similar Majorana condition: IR
To discuss the corresponding Lie group structure we must
specify m. We must force m ﬁo be at least .2; otherwise every

will be proportional to w;, and so any two

1
infinitesimal elements €Q, €'Q will commute: [eq, €'Q] = 0. This

parameter €y
will result in the Q algebra losing its structure and becoming
.Abélian. If we take m = 2, varying the real degrees of freedom
contained in € would seem to single out the products aﬁ_Qof i=1,2
implying that we would have to conmsider two four-component spinor
opefators rather than one. We can take advantage of the special
structure of eqs. (1.2) to avoid this doubling. It is easily seen from
T

5¢=C7y5

components of (1 + 75)Q anticommute. (We are taking 7

egs. (1.2) and the relation 7 that the two independent

52 =1.) Thus

we will lose no structure if we multiply the components of (1 + 75)Q
by the same anticommuting element W . Similarly the two independent
components of (1 - 75)Q anticommute and may be considered to be

multiplied always by w,. Because of Majorana condition and the fact

2
that _
c C
(@2r)e) = Girge 2.7)

¥*
we need ®y to be proportional to Wy - So define complex conjugation

* *
so that ai = ab, ab = wl. We then place the condition on the

parameters € +that they are of the form
€ = ot : (2.8)

where the matrix o is defined by
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L L : .
o = 5Q+rday + 30 -r5)0, o (2.9)
and the ga are ordinary complex numbers. Because

-

% _ | .
Yo © = o 7OT and Cal = o« , " (2.10)

following from eq. (2.9), the Majorana condition € is equivalent to

the same condition on ¢ . If we define
S = ogQ o o (2.11)
Q= EwQ = ES ' - ' (2.12)

and we may regard S as replacing €Q . We can calculate the algebra

of the Sa from egs. (1.2),.using {§of' QBJ = 0,
[Sa" sB] = ‘”ay[Qy’ Qg NS

M Ty
-2 P
(wy Cw)Oﬁ f

M 3 ‘ ,
-2 C P 2.1
(75 7 )O‘3 f | (2.13)
where Pu = @, Pu .

Thus we have an algebra consisting of Sof'ﬁu’
is an ordinary Lie algebra. The subalgebras consisting of (?L,'Muv)

P“, Muv and it

and (Pu, Muv) are isomorphic to the Poincare algebra. The closed
algebra consisting of (Sof Mpv’ iu). is ;articulafly interesting
because it contains the Poincare algebra (Muv’ %h) in a nontrivial
way. As we discusséd in the Introduction, O'Raifeartaigh's theorem
limits the ways in which this can be done.  O'Raifeartaigh started from

Levi's theorem which étates that every Lie algebra E can be written
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as the semidirect sum of a semisimple Lie algebra and a solvable

algebra which we will call A and X respectively:
E = A + X. _ | | (2.14)

‘ (To define a semidirect sum replace the anticommutator in egs.
(1.1) by a commutator; the algebra is then the semidirect sum L + G .
The algebra I being solvable means that if we define 1nduct1vely

(l) Z(n) (n l) (n l) then Z(n) O for some n .)
The Poincaré algebra 1is @%) of the fbrm of a semidirect sum
é;) =M+ P where M 1is the algebra of the homogeneous Lorentz group
and P the translation algebra. O'Raifeartaigh showed that if
M+PC E=A+ % one could by redefinition take M= A and then
either P& = or P /1 £ = 0. The latter po‘s'sibility involves

embedding & as = subalgebra of a simple algebra. The former

possibility was split into three cases. In case (i) P = £ and then

-

y

E is the direct sum of(gffand & semisimple algebra. In case (ii) =
was Abelian but larger than P . Case (iii) ié the one realized here.
In the present example I = (Sof %u) is solvablé but non-Abelian.
Actually it satisfies the stronger condition of being nilpotent (that
is, if ve define % =3, % = [5 1 ], thvenv»"zn -0 for
some n). | |

The main reason for régarding this possibility as uninteresting
before was the difficulty in defining hermitian conjugation for the
representations and this will\be discussed for the case at hand in the
next section. ‘ |

The representations of the supersymmetry‘aigebra of egs. (1.1)

leve been found using supeffields [10]. These are functions P(x, ©)

defined on the coordinate space taking wvalues in'the algebra & . They
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maey be taken to have prescribed Lorentz transformation properties and
the simples possibility to comsider is a scalar superfield. The action

of an infinitesimal element of the group €Q = €S 1is given by

¢(xu, ea) - ;6(xu -1€ 7,8 9, - ) - (2.15)

In order to obtain a representation in which Pp = -1 5/8x“

we need to take n to be at least four. We may write

Bx, - 1E78 6, -¢5) = Blx, 8,) - 18703 fx, o)

- €, 8, ﬁ(xu, ea) + 0(62)
(2.16)
where 3" = B/Bxx and the differential operator & 1is defined on a
function of an anticommuting variable X, P(X) = bo + Xﬁlk by
8p(X) = ﬁi . The corresponding operator.fo? 6, 1is denoted by 8 .
Before evaluating the action of &, all quéntities © must be

replaced by C 0. Then we may verify directly from this definition

(8, 66} = 0 | (5, eB} = By - (2.17)

i
In this way we see that €S 1is represented by theoperator
TCH - iEyueaﬁ* = Ew(czs-iyuea_“) (2.18)
or '

s, = ‘(w[cs -1y, a“])a . (2.19)

Following Selam and Strathdee [10] further we may perform a
decomposition of the superfield @(x, ©) into component fields by

expanding in ©



6G (x)

H(x, 8) = A(x) + 6 ¥v(x) + % (O F(x)+186 7s

+ % 8 757ue AM(x))

+ L (86) B X(x) + = (30)° D(x) .
FE) e f @

The action of the group on. the component fields A, ¥, ete., still

involves the anticommuting quantities @, W e.g.
8A = EovV. ‘ _ _ (2.21)

This means that even if we remove the variables © Dby the expansion of
eq. (2.20) the fields A,V¥, etc., still contain anticommuting elements.
Thus the realization of the group generated by Sa is in a space where
the coordinates are elements of the algebra Sb .  We use the fields

to create a Fock apace,céﬁA , in the usual way but take combinations

of the states using elements of Sb instead of complex numbers as
coefficiénts. The physical states are those with complex numbers as
coordinates only, because it is only such states which will give
complex numbers for probability amplitudes. We can define an 'inner
product' on the whole of the Fock space in the usual way starting from
the orthonormal basis of states and using the complex. conjugation
operation on Sb . This inner product will take values in %y but
wiil reduce to the usual inner product on the physical states.

S, satisfies the hermiticity condition

(L, T8%,) = (Es¥, L, ). , o (2.22)



i .

The action of the'grouﬁ is thﬁs unitary in the semse of
preserving this generalized inner product. The theorem of Coleman and
‘Mandula [8] is not applicable because we have a representation in some-

thing ﬁore general than a Hilbert space. It has an inner product

satisfying the hermiticity condition
- ) *
(¥, B, ) = (&, iy ) - o (2.23)

but this product takes values in.S%. The physical states do form a
conventional Hilbert space but this is not invariant under the action
of the group.

In the next section we will discuss a .method of defining a
complex valued inner product on é;; and regarding it as an ordinary

Hilbert space by expahding each state in terms of aﬁ,' w This will

h e
result in a quadrupling of the states and we will find that the

appropriate inner product is not positive definite.

3. 'CONSTRUCTION OF INNER PRODUCTS

To construct inmer products on the space of functions @(x, )
we use the technique of integrating over the anticommuting variables
which has previously been used in similar contexts by Berezin and
Kac (111, and by Montonen [12]. The integral of sﬁch a function is to
be thought of as a linear functional on the space of functions, .
attaching to a function a quantity as follows. If @(X) is a function
of the single anticommuting variable X, ¢(X) = bo + X¢l s we define

the integral

[ | (5.1)
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¢l may contain other anticommuting quantities. For a function of

several anticommuting quantities Xl’ XE’ ceey, Xn’ we define multiple

integration with respect to them by'repeated application of this rule.

Thus only the coefficient of Xl’ XQ’ "-,Xh survives.

Suppose complex conjugation is defined so that the Xi are

real: Xi* = Xi . We may define a bilinear form on the functions
¢(r)(x) by
<¢(l)’ ¢(2)> = j[fé*(-l) ¢(2)]dxl .o dX#v. (3.2) .

(For even n . For odd we replace ¢* by %* where B is

| (1) (1) (1)
obtained from ¢(1) by applying the parity operation to all the
coefficients if these are not just complex numbers.) The inner product

satisfies the hermiticity condition

<¢(l)’ ¢(2)> .= ﬂ<¢(2);.¢(l)> : (3.3)

where

n o= (e

Thus for n =2, 3, 6, 7, **+ we have a symplectic inner product, while
for n=1, 4 5, <+- it is truly hermitian. Even in this latter case
and when the coefficients in the ¢(i) are complex numbers the.
resulting inner product is not positive definite for any n . Because
they are real, the Xi are hermitian with respect to the inner

product:

<Xi ¢(l)’ ¢(2)) = <¢(l)) Xi ¢(2)> . (3.)4-)
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Further, the differential operator B

A corresponding to Xi is easily
shown to be hermitian 51T = 51 . Note that it has the important
rroperty

ees gX = . )
f[si plax, ax_ 0 (3.5)

For the specific case of the superfield ¢(x,'e) we integrate
with respect to the four real degrees ofvfreedom contained in the
Majorana spinor © and further integrate with respect to the four real

variables xu to obtain an inner product taking values in Sb .
' ) * b4 |
<¢(l); ¢(2)) = j[¢(l) ¢(2)]d Ga 4 XU- . (3.6)

For the Ga the operation of hermitian conjugation coincides

with complex conjugation and the §1 also satisfy

8 = cy. - 8 = &, (3.7)

C T
0
So with réspect to this inner product thé Sa safisfy the Majorana
condition and the group action is unitary. Note however that we have
had to generalize this concept to apply to a space with an inner
product taking values in % and even then it is not '"positive
definite" in any sense.

We could get a conventional inner product by integrating out
the dependence on ai and aé but this would be antihermitian rather
than hermitian. Thus we can not make the Fock spéce\ég of the last
section into a conventional Hilbert space in this way.

By copsidering the subspace of fixed momentum we get a rep-
resentation of the group which is finite dimensional and unitary in

this generalized sense.

™
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4, GENERAL SUPERSYMMETRY ALGEBRAS

For a general algebra of the form of egs. (1.1) we can always
construct a corresponding Lie algebra by introducing two anticommuting
element;, @ and ®. Define Gra = &G, and L, = uiaéLi . Then

Lis G "ITJ close to form a Lie algebra of twice the size.

by
Ly, 1,0 = ey 1, B 1) = e KT
[Li’ Gra] = f1rs Csa
[Gra’ Gv'sb] = %ap drsklzk
| | ' (k.1)
and [T, 6 1= T, 'f,j] = 0. Here €, =-c, =1; €, =¢€,, = 0.

Thé Jacobi identities for the original supersymmetry algebra
will imply them for this ordimary Lie algebra. If we had introduced -
mére anticommuting quantities the resulting algébra,would have a more
complicated structure of grading. Clearly one can introduce concepts
of solvability and nilpotency for supersymmetry algebras. The
associated Lie algebras will possess the corresponding properties when
the supersymmetry algebras do. The converse is not true; it is
possible for (4.1) to be nilpotent while (1.1) is not. However the
specific case discussed in section 2 is not of this type; both

algebras (1.2) and (1.5) are nilpotent.

5. COMMENTS

We have discussed how supersymmetry groups and algebras may be
replaced by conventional Lie groups and algebras. In general, as we
saw in section U4, this results in a loss of economy; we need a larger

algebra to contain the same structure. However for the algebra of
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Wess and ‘Zumino this is not the case: the Lie slgebra has the same
dimension as the original supersymmetry algebra.

Rephrasing the symmetry operations in'terms of Lie groups has
the advantage that the language is more familiar, even if it needs a
larger algebra in general. For tne specific case discussedlit
clarifies the relation of supersymmetric'theories fo she theorems
limiting the way internal and space-time symmetries may be combined.
It is seen that rather than avoiding O'Raifeartaigh's theorem [7] it
exploits one of the possibilities it admits: +the use of solvable non-
Abelisn subgroups. It might be thought that the solvability or, in
this case, the nilpotency, "results" from insistiné on writing the
‘algebrs as an ordinary Lie algebra. It is clear that this is in no
sense the case because the ordinary supersymmetry algebravis nilpotent.

Such groups were previously discarded because of the difficulty
lof construcing useful finite dimensional representations. The other
novel feature of supersymmetries is that they avoid this pr_oblem by
using representations in an extended Hilbert space,(é? , with
coefficients in a Grassmann algebra. Sb. Again thisvfeature does not
result from rewriting the representations in Lie group terms, but is
inherent in the use of the original generalized Lie algebra. The inner
product takes values in Sb. “We canvregard this spaee as -an ordinary
complex spaee by regarding iﬁ uiw, aby and uiaéy as independent.
This gives a quadrupling of the dimension. As we discussed in section
3 a_nontrivisl complex inner product can be defined but it is not
positive definite. The physical states forn a subspace ofgg; regarded
as a“complexvvector space but not in the sense that we can take

combinations of them with elements of Sb. We can regard 55 as a
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complex vector space with representations of both the symmetry groﬁp
and the algebra Sb defined on it in such a way that any representation
matrix of the group commuées with any element of the'algebra. However
it seems more natural to ;egard the structure associated with Sb as
intrinsic to éﬁ , that is to regardf§1 as a sort of vector space with
coordinates in Q. Such an object is called an g -module. (The
concept of a module is essentially the same as that of abrepresentation
space.) We then hafe a representation of the group in a g -module
(such that the action of the group commutesvwith the module structure).
Thus the physical states from a complex vector subspace but not a
submodule, It is the fact that the physical states are not left
invariant by the group that avoids the theorem of.Coleman and Mandula
8], |

Theridea of considering the physical states to be a subspace of
the representation.space (that is of using a subsidiary condition) has
been discussed before in the context of combining space and internal
symmetries. Typically there are difficulties with unitarity [(13].
With supersymmefries these'are avoided because_the physical unitarity
is a vestige of unitérity with respect to the géneralized inner product

on (the sb-module)} rather than unitarity with respect to an ordinary

-complex inner product on a larger space.

The purpose df the present discussion has not been to arrive
at a more elegant description of supersymmetries, but a more familiar
one. Rephrasing their use in terms of Lie groups has the advantage of
meking clear their relation to previous theorems.on Lie algebra and Lie
groups; It shows that solvable groups may have applications in particle

physics, at least if suitably represented.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




e
~* TECHNICAL INFORMATION DIVISION
- . LAWRENCE BERKELEY LABORATORY
" UNIVERSITY OF CALIFORNIA -
- BERKELEY, CALIFORNIA 94720





