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ABSTRACT 
 

Plant-associated microbes form complex interactions within their microbial community 

as well as with the host, affecting processes such as nutrient and carbon cycling, abiotic stress 

protection, and disease resistance. Understanding the interactions of the host and host-associated 

microbiomes could potentially aid plant health in a variety of ways and is therefore of interest to 

the plant science community. Rice is a unique system to study plant-microbe interactions 

because of flooded conditions in which it is cultivated. This anoxic environment leads to a host 

of anaerobic microbial taxa associating with the rice host which harbor functions dependent on 

the anoxic conditions, including methanogenesis. In this thesis, I describe three studies where we 

profile the taxonomies and functions of rice-associated microbiomes and demonstrate how the 

knowledge gained from these methods can be applied in discovering microbial isolates that are 

beneficial to the plant host. 

In the first chapter, I present a study that characterizes the microbiomes of a high- and a 

low-methane-emitting rice cultivar throughout the growing season. We found that the high 

methane emitting cultivar had a higher relative abundance of methanogenic archaea in the 

rhizosphere, and additionally had a greater abundance of taxa associated with fermentation, 

which could be responsible for producing methanogenic precursor molecules. 

In the second chapter, I present a study that characterizes the effects of drought and 

recovery on the microbiome. We found that a Streptomyces taxa became the most abundant 

member of the endosphere community during and after drought, and that this member was 

prevalent in rice samples from various locations. We cultured a corresponding isolate and 

demonstrated that it had similar qualities to the Streptomyces from the study (it was endophytic 

and increased in relative abundance under drought stress) and promoted root growth, 
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demonstrating the enrichment of this microbe under drought could potentially mitigate drought 

effects. 

In the third chapter, I present a study demonstrating the effects of nitrogen on the 

microbiome in three different soils by profiling both the taxonomies and functions through 

genome-resolved metagenomics. We found that the response of rice-associated microbiomes to 

the nitrogen fertilizer was largely soil specific, though there were general increases in 

Gammaproteobacteria and decreases in Actinobacteria in response to nitrogen. Profiling the 

metagenome demonstrated that nitrogen fertilizer increased the abundance of genes related to 

aromatic compound degradation, fermentation, and methanogenesis. We also recovered 60 

metagenome assembled genomes, which to our knowledge is the first such dataset of its kind in 

rice, and can be a valuable resource to further understanding the dynamics of microbes 

associating with rice. 
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Chapter 1 

Comparative Analysis of Root Microbiomes of Rice Cultivars with High and Low 

Methane Emissions Reveals Differences in Abundance of Methanogenic Archaea 

and Putative Upstream Fermenters  

Zachary Liechtya, Christian Santos-Medellína, Joseph Edwardsa, Bao Nguyena, David Mikhaila, 

Shane Easonb, Gregory Phillipsb, Venkatesan Sundaresana,c 

aDepartment of Plant Biology, University of California, Davis, Davis, California, USA 
bDepartment of Agriculture, Arkansas State University, Jonesboro, Arkansas, USA 
cDepartment of Plant Sciences, University of California, Davis, Davis, California, USA 

 
Abstract 

Rice cultivation worldwide accounts for ∼7 to 17% of global methane emissions. Methane 

cycling in rice paddies is a microbial process not only involving methane producers 

(methanogens) and methane metabolizers (methanotrophs) but also other microbial taxa that 

affect upstream processes related to methane metabolism. Rice cultivars vary in their rates of 

methane emissions, but the influence of rice genotypes on methane cycling microbiota has been 

poorly characterized. Here, we profiled the rhizosphere, rhizoplane, and endosphere 

microbiomes of a high-methane-emitting cultivar (Sabine) and a low-methane-emitting cultivar 

(CLXL745) throughout the growing season to identify variations in the archaeal and bacterial 

communities relating to methane emissions. The rhizosphere of the high-emitting cultivar was 

enriched in methanogens compared to that in the low emitter, whereas the relative abundances of 

methanotrophs between the cultivars were not significantly different. Further analysis of cultivar-

sensitive taxa identified families enriched in the high emitter that are associated with 

methanogenesis-related processes. The high emitter had greater relative abundances of sulfate-
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reducing and iron-reducing taxa which peak earlier in the season than methanogens and are 

necessary to lower soil oxidation reduction potential before methanogenesis can occur. The high 

emitter also had a greater abundance of fermentative taxa which produce methanogenesis 

precursors (acetate, CO2, and H2). Furthermore, the high emitter was enriched in taxa related to 

acetogenesis which compete with methanogens for CO2 and H2. These taxa were enriched in a 

spatio-specific manner and reveal a complex network of microbial interactions on which plant 

genotype-dependent factors can act to affect methanogenesis and methane emissions. 

Author Contributions 

The initial project was conceptualized by VS, JE, SE, and GP. The field experiment was 

overseen by SE and GP in Arkansas. Samples were processed, and 16S region was sequenced by 

ZL, JE, CS-M, and BN. Sequences were processed and data was analyzed by ZL. ZL 

conceptualized and carried out the aerenchyma experiment, including the processing and analysis 

of pycnometer and cross sectioning results. DM analyzed performed image analysis on root 

section images. 
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Comparative Analysis of Root Microbiomes of Rice Cultivars
with High and Low Methane Emissions Reveals Differences in
Abundance of Methanogenic Archaea and Putative Upstream
Fermenters

Zachary Liechty,a Christian Santos-Medellín,a Joseph Edwards,a Bao Nguyen,a David Mikhail,a Shane Eason,b

Gregory Phillips,b Venkatesan Sundaresana,c

aDepartment of Plant Biology, University of California, Davis, Davis, California, USA
bDepartment of Agriculture, Arkansas State University, Jonesboro, Arkansas, USA
cDepartment of Plant Sciences, University of California, Davis, Davis, California, USA

Christian Santos-Medellín and Joseph Edwards contributed equally to this work.

ABSTRACT Rice cultivation worldwide accounts for !7 to 17% of global methane
emissions. Methane cycling in rice paddies is a microbial process not only involving
methane producers (methanogens) and methane metabolizers (methanotrophs) but
also other microbial taxa that affect upstream processes related to methane metabo-
lism. Rice cultivars vary in their rates of methane emissions, but the influence of rice
genotypes on methane cycling microbiota has been poorly characterized. Here, we
profiled the rhizosphere, rhizoplane, and endosphere microbiomes of a high-methane-
emitting cultivar (Sabine) and a low-methane-emitting cultivar (CLXL745) throughout
the growing season to identify variations in the archaeal and bacterial communities
relating to methane emissions. The rhizosphere of the high-emitting cultivar was
enriched in methanogens compared to that in the low emitter, whereas the rela-
tive abundances of methanotrophs between the cultivars were not significantly
different. Further analysis of cultivar-sensitive taxa identified families enriched in
the high emitter that are associated with methanogenesis-related processes. The
high emitter had greater relative abundances of sulfate-reducing and iron-
reducing taxa which peak earlier in the season than methanogens and are nec-
essary to lower soil oxidation reduction potential before methanogenesis can oc-
cur. The high emitter also had a greater abundance of fermentative taxa which
produce methanogenesis precursors (acetate, CO2, and H2). Furthermore, the
high emitter was enriched in taxa related to acetogenesis which compete with
methanogens for CO2 and H2. These taxa were enriched in a spatio-specific man-
ner and reveal a complex network of microbial interactions on which plant
genotype-dependent factors can act to affect methanogenesis and methane
emissions.

IMPORTANCE Rice cultivation is a major source of anthropogenic emissions of
methane, a greenhouse gas with a potentially severe impact on climate change.
Emission variation between rice cultivars suggests the feasibility of breeding low-
emission rice, but there is a limited understanding of how genotypes affect the mi-
crobiota involved in methane cycling. Here, we show that the root microbiome of
the high-emitting cultivar is enriched both in methanogens and in taxa associated
with fermentation, iron, and sulfate reduction and acetogenesis, processes that sup-
port methanogenesis. Understanding how cultivars affect microbes with meth-
anogenesis-related functions is vital for understanding the genetic basis for methane
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emission in rice and can aid in the development of breeding programs that reduce
the environmental impact of rice cultivation.

KEYWORDS endosphere, fermentation, methane, methanogenesis, microbiome,
rhizoplane, rhizosphere, rice, root

Methane (CH4), a potent greenhouse gas, has 28 times the global warming poten-
tial of CO2 (1). A major source of anthropogenic CH4 emissions is rice cultivation,

which accounts for approximately 7 to 17% of the global CH4 sources (25 to 100
terragrams [Tg] of CH4 per year) (2–4). Methane is produced by facultative anaerobic
archaea in the rice rhizosphere, which subsist predominantly on carbon sources
originating from the rice plant, such as root exudate (5, 6). After production in the
rhizosphere, CH4 diffuses into the root airspaces (aerenchyma) and is transported
through the plant and into the atmosphere. Up to 80% of the CH4 produced in soils of
paddy fields was found to be transported into the atmosphere through the aeren-
chyma of rice plants (7). Methanogens interact positively and negatively with several
microbial taxa that influence the rate of methanogenesis. Methanogens cannot directly
consume complex root exudates but rather rely on the fermentative activity of syn-
trophic microbes to produce methanogenic precursor molecules such as acetate, H2,
and CO2 (8, 9). On the other hand, methanotrophic bacteria oxidize CH4 and reduce the
amount of CH4 emitted by up to 60% (10). Methanogens can also be outcompeted by
microbes that consume the same precursor molecules, such as anaerobic respiring
microbes that reduce nitrate, sulfate, and iron (9, 11).

An effort to mitigate the environmental impact of rice cultivation using a transgenic
approach has been reported (12). An alternate approach is to exploit natural variation
in CH4 emissions between rice genotypes. A survey of different rice cultivars identified
varieties that exhibit divergence in CH4 emissions through the growing season, with up
to 2-fold variation in average seasonal CH4 emissions between the high- and low-
emitting cultivars (13). Understanding the underlying causes behind these genotype-
mediated differences in CH4 emissions could lead to mitigation strategies to curb the
environmental cost of rice cultivation. Genotypic variation has been shown to directly
affect the microbial composition of methanogens and methanotrophs, and low emit-
ters have been reported to have an increased abundance of methanotrophs (14, 15).
However, these studies were limited to only estimating methanogen and metha-
notrophs and did not survey the compositional profiles of all bacteria and archaea in
the root microbiomes. By profiling full bacterial and archaeal communities, we can
identify variations in the abundances not only of methanogens and methanotrophs but
also in other microbes fulfilling the above-mentioned niches related to methanogen-
esis. We have previously demonstrated that the rice root microbiome exhibits a
reproducible dependence on plant genotype (16, 17). Rice microbiomes are also
spatially structured in compositionally distinct compartments, namely, the rhizosphere
(soil directly influenced by root activity), the rhizoplane (surface of the root), and the
endosphere (interior of the root) (16–18). The composition of root microbiomes also
shifts throughout the life cycle of rice plants, with individual members displaying
reproducible temporal patterns across geographic regions and growing seasons (18,
19). Such highly dynamic spatiotemporal trends emphasize the need to incorporate
these sources of variation when exploring the root-associated taxa related to the
processes around methanogenesis.

Here, we characterized microbial differences between low- and high-CH4-emitting
rice cultivars through the growing season by in-depth 16S rRNA sequence analysis of
their root microbiomes. Based on previous studies by Simmonds et al. (13), we selected
the low-emission hybrid CLXL745 and the high-emission cultivar Sabine, which display
divergent CH4 emissions late in the season postheading (13). We investigated whether
the variation in CH4 emissions might be due to either a greater abundance of meth-
anogens, upstream fermenters, and syntrophs in the rhizosphere of Sabine or a greater
abundance of methanotrophs in the endosphere or rhizosphere of CLXL745. We also

Liechty et al.
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characterized the aerenchyma development in these two cultivars under controlled-
growth conditions. We conclude that the cultivars do not differ significantly in aeren-
chyma or in relative abundance of methanotrophs but that the high-emitting micro-
biome has an increased relative abundance of methanogenic microbes, as well as
compartment-specific consortia of microbes associated with fermentation, sulfate and
iron reduction, and acetogenesis.

RESULTS
The hybrid rice cultivar CLXL745 has been shown to consistently emit less CH4 than

do other cultivars in a variety of locations and conditions (13, 20–22), whereas Sabine,
an inbred cultivar grown in the southeastern rice-producing region of the United
States, has been shown to emit significantly more CH4 than CLXL745, particularly later
in the season (13). In this study, we utilized an experiment in which the two cultivars
were grown in an Arkansas field and sampled every 2 weeks over approximately 4
months, constituting the entire life cycle of the plants (18). At each time point, the bulk
soil, rhizosphere, rhizoplane, and endosphere were sampled. The rhizosphere and
endosphere samples were previously sequenced and analyzed to investigate the
dynamics of temporal succession of the microbiome over a growing season (18);
however, an in-depth analysis of cultivar variation, particularly in regard to CH4

metabolism, had not been performed in that study. Here, we included additionally
sequenced samples from the experiment corresponding to the rhizoplane, which
represents a critical plant-soil interface, and integrated the previously published
raw sequence data from the endosphere and rhizosphere to perform the new
analyses detailed below.

The microbial compositions of the root compartments vary throughout the
growing season between Sabine and CLXL745. Permutational multivariate analysis
of variance (PERMANOVA) on Bray-Curtis dissimilarities revealed that compartment,
time point, and cultivar were significant main effects and that the interactions between
time point and cultivar and between time point and compartment were significant as
well (see Table S1A in the supplemental material). To further confirm that the cultivar
effect was apparent in each compartment, the data were subsetted by compartment,
and PERMANOVA was run on each compartment individually (Table S1B to D). Cultivar
and time point were found to be significant in each compartment. To examine if the
variation between cultivars in each compartment could be confounded by the location
of the plots, PERMANOVA was run on bulk soil samples to check if bulk soils from plots
growing CLXL745 varied from bulk soils growing Sabine. The “cultivar effect” (meaning
plots growing each cultivar) was not significant, indicating that the variation observed
in the compartments is not due to their plots of origin (Table S1E). Principal-coordinate
analysis showed the separation of compartments along the first axis, with rhizoplane
samples falling between rhizosphere and endosphere samples (Fig. S1A). This obser-
vation followed patterns observed in rice microbiome samples in previous studies (16,
18). Furthermore, the rhizoplane samples showed similar temporal dynamics previously
elaborated on by Edwards et al. (18). Namely, the microbiota composition of the
rhizoplane stabilizes once the plants reach the reproductive stage (Fig. S1C) and have
similar temporal shifts in taxa, such as a seasonal increase in Deltaproteobacteria
(Fig. S1D). Although these samples were omitted from the previous experiment, these
analyses show that the rhizoplane microbiota is not aberrant in its composition or
successional patterns.

A canonical analysis of principal coordinates (CAP) was used to identify variation
between cultivars. Since the relative effect size of compartment is large, this variable
was partialled out. The results confirmed the significance of the cultivar effect and
cultivar-time interaction identified in the above-mentioned PERMANOVA (Fig. 1A and
S1B and Table S1F). The first principal-coordinate axis correlated with time, and the
second principal-coordinate axis displayed variation due to cultivar. A continual in-
crease in the divergence between the cultivars was observed, although this effect was
much larger in the rhizoplane and endosphere than in the rhizosphere (Fig. 1A).

Rice Methane-Cycling Microbiota

January/February 2020 Volume 5 Issue 1 e00897-19 msystems.asm.org 3
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To identify operational taxonomic units (OTUs) whose relative abundances differ
between cultivars, a likelihood ratio test (LRT) was performed. We found 141, 20, and
93 OTUs that significantly contributed to cultivar variation in the rhizosphere, rhizo-
plane, and endosphere communities, respectively (false-discovery rate [FDR], !0.05)
(Fig. 1B and Data Set S1). The majority of these cultivar-sensitive OTUs showed no
abundance differences between cultivars until after 28 days postgermination, confirm-
ing the patterns observed in the CAP analysis (Fig. 1B). The average seasonal log fold
change revealed that most of these cultivar-sensitive OTUs were Sabine enriched
(123/141 in the rhizosphere, 18/20 in the rhizoplane, and 85/93 in the endosphere).

FIG 1 Cultivar significantly shapes the root microbiome. (A) Canonical analysis of principal coordinates
controlling for compartment effects. Points are individual samples, whereas the line denotes the cultivar
average. The shaded ribbon denotes the standard error (n " 6 to 8). The x axis represents days after
germination and corresponds to the x axis in panel C. (B) The difference in Z-scores of each OTU
identified as significant (P ! 0.05) in the likelihood ratio test. Each column represents one time point, and
each row is an individual OTU within the compartment denoted on the right. The Z-score is calculated
within the OTU across all time points within both cultivars. The difference was calculated by subtracting
the Z-score of CLXL745 from Sabine, meaning that positive numbers (blue) are enriched in Sabine over
CLXL745, and negative numbers (red) are enriched in CLXL745. White indicates no difference in Z-score.
(C) Cumulative relative abundance of Sabine-enriched and CLXL745-enriched OTUs within each com-
partment. OTUs were defined as Sabine or CLXL745 enriched by averaging the seasonal fold change at
each time point between the two cultivars for each OTU in the LRT-derived list. Error bars indicate the
standard error (n " 6 to 8).

Liechty et al.
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Looking at their cumulative relative abundances further revealed that the magnitude of
difference between cultivars increased throughout the growing season within the
Sabine-enriched OTUs (Fig. 1C). The Sabine-enriched OTUs also increased in relative
abundance throughout the growing season, indicating that many of these OTUs
established themselves later in the growing season. These data show that the differ-
ence between cultivars becomes more pronounced later in the season, and this
difference is driven largely by Sabine-enriched late colonizers.

OTUs involved in methanogenesis contribute to the variation between culti-
vars in each compartment. Predictive software, such as the Functional Annotation of
Prokaryotic Taxa (FAPROTAX), can be used to identify OTUs in a data set which are likely
to display a phylogenetically linked trait of interest. We used FAPTROTAX, which has
recently been applied to the rice rhizosphere (23), to identify putative taxa associated
with methanogenesis and methanotrophy. FAPROTAX identified methanogenesis-
associated OTUs belonging to the genera Methanocella, Methanosarcina, and Metha-
nobacterium. Two methanogenesis-associated OTUs from the genera Methanocella and
Methanosarcina (OTUs 139580 and 706555, respectively) were identified as significant
contributors to cultivar variation in the rhizosphere samples (Fig. 2A). Both OTUs had a
higher average abundance in Sabine over CLXL745, and this variation was greater later
in the season during the growth stages where these cultivars have been shown to be
most divergent in CH4 emissions (13). No methanotrophic OTUs were significantly
differentially abundant between cultivars in any compartment.

FIG 2 Cultivars vary significantly in methanogen abundances in the rhizosphere but not methanotroph abundance in any compartment. (A) Seasonal trends
of OTUs 139580 and 706555, the two methanogens in the list of cultivar-sensitive OTUs detected in the rhizosphere. The colored line indicates the average
relative abundance, and the colored ribbon indicates the standard error (n ! 6 to 8). Asterisks indicate that the OTU was significant in the likelihood ratio test
(*, P " 0.05; **, P " 0.01; ***, P " 0.001). Statistical comparisons were only performed between Sabine and CLXL745 samples, and the bulk soil is shown for
reference. (B) Total relative abundances of methanogenic archaea and methanotrophic bacteria as defined by FAPROTAX. The shaded colored ribbon indicates
the standard error (n ! 6 to 8). Asterisks indicate that the cultivar term was significant in the ANOVA on variance-stabilized data (*, P " 0.05; **, P " 0.01; ***,
P " 0.001). Statistical comparisons were only performed between Sabine and CLXL745 samples. (C) Seasonal shifts in methanogen and methanotroph
compositions within each compartment. Color indicates the average relative proportion of methanogens or methanotrophs across both cultivars.

Rice Methane-Cycling Microbiota
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D
ow

nl
oa

de
d 

fro
m

 h
ttp

s:/
/jo

ur
na

ls.
as

m
.o

rg
/jo

ur
na

l/m
sy

ste
m

s o
n 

26
 O

ct
ob

er
 2

02
1 

by
 2

4.
7.

12
8.

17
0.



 

8 
 

 
  

The cumulative relative abundances of OTUs associated with methanogenesis and
methanotrophy were also compared using analysis of variance (ANOVA) with linear
models on data that were variance stabilized using DESeq2 (Fig. 2B and Table S2).
Methanogens were significantly enriched in the rhizosphere of Sabine at 98 and
112 days after germination (P ! 0.05). Methanogen- and methanotroph-associated OTU
compositions also changed throughout the season and between compartments
(Fig. 2C). Methanocella and Methanosarcina OTUs were most prominent in the rhizo-
sphere, decreased in abundance in the rhizoplane, and were depleted to an even
greater degree in the endosphere. Methanobacterium OTUs followed the opposite
trend, becoming more prominent from the exterior of the root inward. Similarly,
Methylosinus OTUs became the more prominent methanotrophs from the exterior of
the root in. In the endosphere, Methylosinus OTUs increased in prominence throughout
the season as well (Fig. 2C).

Although differences in methanogen relative abundances were identified between
the cultivars in the rhizosphere, it is possible that the relative abundance comparisons
between cultivars do not correlate to absolute abundances. For example, one cultivar
might support a diverse microbiome with increased microbial load in the rhizosphere
compared to another cultivar causing OTUs with relatively lower abundance to have a
larger absolute abundance. The absolute abundances of methanogens and metha-
notrophs are likely to be a better indicator of cultivar effects on CH4 emissions. To test
if the relative abundances of methanogens and methanotrophs observed correlate with
the absolute abundances, we performed quantitative PCR (qPCR) on a methanogen-
specific region of the 16S rRNA gene and the alpha subunit of the methane monoox-
ygenase gene (pmoA), which is necessary for methanotrophy. This procedure also
allowed us to assess whether the absolute abundances of methanogens and metha-
notrophs varied between cultivars. Since the final two time points showed the greatest
differences in cumulative methanogen relative abundances in the rhizospheres of the
two cultivars, qPCR was performed on the bulk soil and rhizosphere samples of both
cultivars at these time points (Fig. S2A). The bulk soil samples were subsetted by plots
growing each cultivar to check if the plots of origin could be affecting the abundances
of these markers in our samples; neither marker varied between bulk soils originating
from plots growing different cultivars (ANOVA, P " 0.3462 for the methanogen-specific
16S rRNA marker and P " 0.8469 for the pmoA marker), so for further analysis, these
samples were not distinguished from each other. The final time point was found to
have significant differences between Sabine and both the bulk soil and CLXL745 for the
methanogen marker. There was no significant difference between cultivars in pmoA
abundance (Fig. S2). Furthermore, there was a significant positive correlation between
the corresponding methanogen relative abundances from 16S rRNA gene amplicon
libraries and absolute abundances from qPCR (r " 0.480, P " 0.001) but not a signifi-
cant correlation between methanotroph 16S relative abundance and pmoA abundance
(r " 0.131, P " 0.425). This result validated the use of 16S rRNA gene amplicon relative
abundances to compare methanogen compositions in this context and confirmed that
the high-CH4-emitting cultivar had an increased abundance of methanogens over the
low emitter. Although there was a weak correlation between the OTUs associated with
methanotrophy identified through FAPROTAX and the pmoA abundances, both mea-
sures confirm that methanotroph abundances do not vary between cultivars.

Overrepresented families enriched in Sabine are associated with methanogenesis-
related processes. Since there was a significant enrichment of methanogens in the
rhizosphere of the high emitter over the low emitter, we hypothesized that other
cultivar-sensitive OTUs might be playing a role in the upstream processes related to
methanogenesis (i.e., fermentation, syntrophy, etc.). To examine this, hypergeometric
tests were performed within each compartment to determine which taxa at each
taxonomic rank were overrepresented in the cultivar-sensitive OTUs to identify taxa
that are enriched in these lists more than expected by chance (Data Set S2). The
methanogenic class Methanomicrobia (the class containing methanogenic archaea) was
notably overrepresented in the rhizosphere, with two of five Methanomicrobia OTUs
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(OTUs 139580 and 706555 discussed above) present in the list of cultivar-sensitive OTUs
(P ! 0.05). At the family level, the rhizosphere, rhizoplane, and endosphere had five,
five, and 14 families overrepresented in the cultivar-sensitive OTUs, respectively (Fig. 3A
and Data Set S2). Almost all OTUs belonging to these overrepresented families had
greater relative abundance in Sabine than in CLXL745 (Fig. S3).

FAPROTAX was again used to identify functions associated with overrepresented
families. Only traits assigned to more than one OTU were further considered, but the
full list of functional trait assignments can be found in Data Set S1. The overrepresented
families mentioned above in all three compartments were associated with sulfate
respiration (Syntrophobacteraceae in the rhizosphere and Desulfovibrionaceae in the
rhizoplane and endosphere) (Fig. 3A). Families in both the rhizosphere and the endo-
sphere were associated with reductive acetogenesis and hydrogen oxidation (the
genus Sporomusa within Veillonellaceae in both the rhizosphere and endosphere)

FIG 3 Overrepresented families in the set of cultivar-sensitive OTUs are associated with various anaerobic metabolic traits. (A) Taxonomy dendrogram
displaying cultivar-sensitive OTUs in any compartment (P ! 0.05). The color of each dot represents the phylum (Phy) to which it belongs. A gray or black box
in the first three rings indicates that that OTU is cultivar sensitive in the rhizosphere, rhizoplane, or endosphere going from the inside out (RS, rhizosphere; RP,
rhizoplane; ES, endosphere). Additionally, a black box means that OTU belongs to a family that is overrepresented among the cultivar-sensitive OTUs in that
compartment. The larger numbered circles in the dendrogram are indicative of families that are overrepresented in at least one compartment (hypergeometric
test, P ! 0.05). The corresponding families are found at the end of this text block. The outer two rings indicate traits associated with overrepresented families
assigned using FAPROTAX. (B) Relative abundances of all OTUs associated with the traits identified in panel A. The colored shaded ribbon represents the
standard error (n " 6 to 8). Asterisks indicate that the cultivar term was significant in the ANOVA on variance-stabilized data (*, P ! 0.05; **, P ! 0.01; ***,
P ! 0.001). OTUs associated with respiration of sulfur compounds were not included because this list did not vary from the OTUs associated with sulfate
respiration. The overrepresented families represented by the numbered circles in panel A correspond to the following families: 1, Syntrophobacteraceae; 2,
Desulfovibrionaceae; 3, Geobacteraceae; 4, Rhodocyclaceae; 5, unclassified family in the order Ellin329; 6, Helicobacteraceae; 7, Anaerolineaceae; 8, Veillonellaceae;
9, Ruminococcaceae; 10, unclassified family in the order Clostridiales; 11, unclassified family in the order Bacteroidales; 12, BA008; 13, Bacteroidaceae; 14,
Cellulomonadaceae; 15, Nakamurellaceae; 16, Spirochaetaceae; 17, Sphaerochaetaceae; 18, TG3-1; 19, Ignavibacteriaceae; and 20, Phormidiaceae.
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(Fig. 3A). Families in the rhizoplane and endosphere were associated with fermentation
and chemoheterotrophy (Rhodocyclaceae in both the rhizoplane and endosphere and
Spirochaetaceae additionally in the rhizoplane) (Fig. 3A). The endosphere additionally
contained members of a family associated with iron respiration (Geobacteraceae)
(Fig. 3A). Although these traits were found to be associated with certain overrepre-
sented families within the cultivar-sensitive OTUs, we wanted to test whether the
overall trends of microbes associated with these traits were different between the
cultivars in each compartment (Fig. 3B). The data were variance stabilized using
DESeq2, and linear models in conjunction with ANOVA were used to identify significant
differences. We found taxa associated with reductive acetogenesis, hydrogen oxidation,
fermentation, chemoheterotrophy, iron respiration, and sulfur respiration to vary sig-
nificantly in relative abundance across cultivars and compartments (Table S2). Addi-
tional literature was searched to find other functions associated with the overrepre-
sented families of the rhizosphere (Table 1).

Clustering analysis identifies OTUs that show seasonal patterns similar to
those of methanogen OTUs. Previous studies have used 16S rRNA gene amplicon data
to identify OTUs that cluster with methanogen OTUs in samples in rice paddies or in
wetlands that were geographically or compartmentally separated (16, 24, 25). We
performed a time series-based clustering using global alignment kernels on the
cultivar-sensitive OTUs within the rhizosphere to identify consortia of OTUs that
showed similar temporal and cultivar-specific patterns (Fig. S4 and Data Set S1).
Methanogenic archaea partitioned to cluster 2, which contained 31 OTUs in total.
Eleven of the 31 OTUs in the cluster were of the class Anaerolineae, two of which are
of the genus Anaerolinea (from the overrepresented family Anaerolineaceae), two from
the genus Caldilinea, three from the order SBR1031, three from the order GCA004, and
one from the order WCHB1-50.

Sabine-enriched OTUs generally show an enrichment in the rhizosphere com-
pared to bulk soil samples. Although rhizosphere OTUs can be classified as enriched
in either CLXL745 (low emitter) or Sabine (high emitter), the question remains whether
the enrichment of these OTUs in one cultivar is due to an increase in abundance in that

TABLE 1 Fermentative functions associated with overrepresented families in the list of cultivar-sensitive OTUsa

Overrepresented taxon Compartment(s) Fermentative process (reference) Source
Rhodocyclaceae RP, ES Genus Propionivibrio (ES, 3/6 OTUs; RP, 2/3 OTUs) ferments sugars,

dicarboxylic acids, sugar alcohols, and aspartate to produce
propionate and acetate (68)

FAPROTAX

Spirochaetaceae RP Genus Spirochaeta (RP, 1/2 OTUs) produces acetate, ethanol, CO2,
and H2 as fermentative end products (69); previously identified
as enriched in endosphere and associated with cellulose
degradation (16)

FAPROTAX

Cellulomonadaceae ES Genus Actinotalea (ES, 2/2 OTUs) contains isolates that are
cellulose degrading and acetate and formate producing (70)

Literature search

Veillonellaceae RS, RP, ES Many isolates produce acetate and propionate as fermentative
end products (71)

Literature search

Desulfovibrionaceae RP, ES Produce acetate, CO2, and H2 through fermentation of lactate and
pyruvate (72); Desulfovibrio spp. (RP, 2/2 OTUs; ES, 7/7 OTUs)
have been characterized to have a syntrophic association with
Methanobacterium spp., the most abundant methanogens in
the endosphere (50)

Literature search

BA008 RS Produce acetate, propionate, formate, and H2 through
fermentation (73)

Literature search

Anaerolineaceae RS “Semisyntrophic,” in that coculture with methanogens
significantly stimulated growth (74); produce acetate through
fermentation (53)

Literature search

Syntrophobacteraceae RS Genus Syntrophobacter (RS, 5/8 OTUs) act syntrophically with
methanogens using H2/formate shuttling (75); acetate produced
by Syntrophobacteraceae consumption of propionate is
preferentially consumed by Methanosarcina spp. (35)

Literature search

aRS, rhizosphere; RP, rhizoplane; ES, endosphere.
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cultivar compared to bulk soil or to a depletion in the other cultivar compared to bulk
soil. To examine this question, the cultivar-sensitive OTUs on our list were compared
between the rhizosphere samples of each cultivar and the bulk soil samples originating
from corresponding plots (i.e., rhizospheres from CLXL745 plots compared to bulk soils
from CLXL745 plots). The majority of these OTUs had a greater abundance in the
rhizosphere of both cultivars than in bulk soil, and the majority of these rhizosphere-
enriched OTUs were also enriched in the rhizosphere of Sabine over CLXL745 (Fig. 4).
Conversely, OTUs that are depleted in rhizospheres are less abundant in the rhizo-
sphere of Sabine than in that of CLXL745 (Fig. 4). This indicates that Sabine had a larger
influence over both those OTUs that are enriched and those OTUs that are depleted.
Both methanogen OTUs showed significant enrichment in the rhizosphere of Sabine
compared to bulk soil, whereas the methanogens in the rhizosphere of CLXL745
compared to the bulk soil were not significantly different (Fig. 4). All overrepresented
families in the rhizosphere LRT-derived list discussed above were also enriched in the
rhizosphere over the bulk soil. The Syntrophobacteraceae followed a bimodal distribu-
tion, with OTUs 620224, 591709, and New.ReferenceOTU1528 showing much less
enrichment in the rhizosphere than in the bulk soil.

Root airspace measurements of cultivars display a complex relationship with
microbial taxa distribution and CH4 emissions. An unexpected result of the trait-
based analysis described above was an enrichment of microbes associated with fer-
mentation in the endosphere of the high-emitting Sabine over the low-emitting

FIG 4 Cultivar-sensitive OTUs are enriched or depleted in a greater degree in the rhizosphere of Sabine
than the rhizosphere of CLXL745 when compared to bulk soils (BS) from their respective plots. Each circle
represents one OTU that significantly differs between cultivars in the rhizosphere. Colored dots represent
the five families that are overrepresented in the list of cultivar-sensitive OTUs in the rhizosphere
compared to the total community (hypergeometric test, P ! 0.05), and the two methanogenic families
are represented in the same list. A full circle indicates that that OTU is significantly depleted or enriched
in the rhizospheres of both cultivars compared to bulk soil. A half circle filled on the left indicates
significant enrichment or depletion in the rhizosphere of Sabine compared to bulk soil but not CLXL745.
A half circle filled on the bottom indicates the opposite. An empty circle indicates that neither cultivar
is significantly enriched or depleted compared to bulk soil. FC, fold change.
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CLXL745. Since the endosphere is a relatively aerobic environment, and the fermenta-
tion processes that support methanogens are anaerobic, we hypothesized that the
observed variation might be due to either structural variation of the root between
cultivars allowing for greater activity of anaerobic metabolism or to an increased
substrate availability in the anaerobic or microaerobic sections of the root. In support
of the first hypothesis, Jiang et al. found that in a comparison of two cultivars, a
higher-performing cultivar had a greater airspace than did a lower-yielding cultivar,
which could account for increased oxygen diffusion into the root and potentially an
increase in methanotrophy (14).

We therefore investigated whether Sabine had a reduced airspace compared to
CLXL745, resulting in more anaerobic/microaerobic environments where fermentation
can occur. To test this, we measured aerenchyma in both cultivars during four monthly
time points throughout the life cycle in a greenhouse experiment. The proportion of
root space occupied by the aerenchyma was measured by two methods (26). The first
method was direct observation of cross-sections of similar-sized mature roots of the
two cultivars (Fig. 5A). The second method was indirect measurement, using the
pycnometer method, which measures total airspace volumes in a selection of roots;
the volumes were used to compute the proportional airspace in that selection of roots
(Fig. 5B).

We used ANOVA and linear modeling to determine significant factors affecting
aerenchyma variation using both methods (Table S3). Conflicting results were obtained,
which are likely due to the differences in measurement types, wherein the cross-
sections and the pycnometer measure the proportional air capacities of individual

FIG 5 Airspaces of Sabine and CLXL745 over time. (A) Cross-sections indicative of those used to quantify
the airspace in panel B. All images are at the same magnification. Black scale bar ! 100 !m. (B) Percent
airspace calculated using pycnometers (top) and area of sections (bottom). Dots in the top graph
represent individual pycnometer measurements (n ! 3 per plant). Dots in the bottom graph represent
measurements from individual cross-sections of roots (n ! 3 to 5 per root). Lines are the average of each
sample (determined by averaging the subsamples). The shaded ribbons indicates the standard error
(n ! 4).
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mature roots and of the total roots, respectively. For example, the pycnometer mea-
surements can be influenced by factors such as increased tillering, which produces a
greater fraction of younger roots with undeveloped aerenchyma. The cross-section
measurements indicated that there were no significant differences in aerenchyma sizes
between the cultivars, i.e., roots of similar diameter did not differ in aerenchyma area
in the cross-sections. We did observe a significant difference in the volume percentages
between the cultivars in the pycnometer measurements (Table S3). However, using this
assay, the high-emission cultivar Sabine showed a proportionately greater aerenchyma
volume than did CLXL745, which is the opposite of the result expected, both from our
hypothesis and from the predictions of Jiang et al. (14).

DISCUSSION
Microbial variation between cultivars suggests an increased relative abun-

dance of methanogens in the high-CH4-emitting Sabine. In this study, we investi-
gated the possible factors underlying differences in CH4 emissions between the high-
emission rice cultivar Sabine and the low-emission rice variety CLXL745. We identified
two methanogen OTUs belonging to the genera Methanocella and Methanosarcina that
were enriched in the rhizosphere of Sabine compared to the rhizosphere of CLXL745.
Both of these OTUs showed greater variation in relative abundance during the end of
the season, which correlated with increased variation in CH4 emissions posttransition to
the reproductive stage (Fig. 2) (13). Total methanogen relative abundance was shown
to be significantly enriched in the Sabine rhizosphere over the CLXL745 rhizosphere
during the final two time points. This divergence notably correlates with the seasonal
divergence in CH4 emissions, which is most prominent later in the season (13). These
findings were confirmed by qPCR, validating the conclusions drawn from the analysis
of the relative abundances of the 16S rRNA gene sequences. Furthermore, it was
demonstrated that these two methanogenic OTUs were significantly increased in the
rhizosphere of Sabine over bulk soil, whereas CLXL745 did not vary from bulk soil
(Fig. 4). This further supports the hypothesis that the methanogens are truly enriched
in the rhizosphere of the high emitter and not depleted in the rhizosphere of the low
emitter.

Methanocella spp., hydrogenotrophic methanogens formerly known as Rice Cluster
I have been shown to incorporate more plant-derived carbon than do other metha-
nogenic groups (27). The inclusion of this taxon among the enriched methanogens
could be indicative of differences in the exudation of plant carbon sources to be a large
contributor to the differences in methanogen abundances. Methanosarcina spp. are
able to utilize all three methanogenic pathways (utilization of H2 and CO2, methylated
compounds, and acetate) (4). Methanosarcina spp. have a low affinity for acetate but
outcompete the strictly acetoclastic methanogens Methanosaeta spp. at higher tem-
peratures, typical of those occurring during the growing season in this study (28, 29).
Methanosarcina spp. are also thought to dominate over Methanosaeta spp. at higher
acetate concentrations, which could be the case in the organic carbon-rich rhizosphere
(30). Methanosarcina spp. can oxidize acetate, producing the necessary components
for hydrogenotrophic methanogenesis (31). Thus, it is reasonable that in this study,
especially in the absence of strictly acetoclastic methanogens (Fig. 2C), that the
increased abundance of Methanosarcina OTUs could utilize hydrogen and CO2 or
acetate to produce CH4, or it could enable the oxidization of acetate to further promote
hydrogenotrophic methanogenesis by Methanocella spp.

Contrary to other studies investigating methanotrophs in rice hybrids, we observed
no variation between cultivars in methanotroph relative abundances using 16S rRNA
sequencing or in absolute abundances using qPCR on the pmoA gene. Furthermore, the
cultivars did not vary in methanotrophic syntrophs in the way they varied in metha-
nogenic syntrophs. For example, laboratory isolation or enrichment of methanotrophs
is often accompanied by species in the genus Hyphomicrobium (32). Hyphomicrobium
spp. can remove methanol, an inhibitor to methanotrophic growth. Although present
in our data set, no Hyphomicrobium OTUs were present in the cultivar-sensitive lists.
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Although methanotrophs abundances did not vary across cultivars, they did vary across
compartments. Notably, type I methanotrophs (Methylocaldum, Methylosinus, and
Crenothrix spp.) were in greater relative abundance in the rhizosphere, whereas type II
methanotrophs (Methylosinus spp.) were more abundant in the endosphere. It has been
shown that high concentrations of CH4 in soil stimulate type I but not type II metha-
notrophs, which supports our results (33). In addition, Methylosinus spp. may be
enriched within the endosphere due to their ability to utilize methanol, which is
produced by demethylation of pectin in the cell walls of plants (34).

Although the qPCR results comparing the relative abundances of methanogens and
absolute abundances of the methanogen-specific 16S rRNA correlated significantly, the
results for methanotrophs were less clear due to the weak correlation between 16S
rRNA relative abundance and pmoA absolute abundance. A previous study indicated
that the community composition of methanotrophs varies drastically when sequenced
with methanotroph-specific 16S rRNA genes or pmoA genes, which could contribute to
the variation seen here (33). It is also possible that the assignment of OTUs associated
with methanotrophy with FAPROTAX missed previously uncharacterized metha-
notrophs. Furthermore, FAPROTAX can only identify associations if OTUs are classified
at the family or genus level, so methanotrophic OTUs not classified at these levels
would be missed. This demonstrates some of the limitations of assigning traits based
on 16S rRNA gene amplicon data and should be taken into consideration when
considering the other trait associations discussed in this study.

Trait-based analysis suggests an increase in anaerobic microbial metabolism
across all compartments in Sabine, leading to better conditions for methanogen-
esis. Since methanogen OTUs are enriched in the rhizosphere of the high emitter, we
were able to identify patterns of microbial succession associated with processes
upstream of methanogenesis. Two factors could lead to an increased abundance of
methanogenesis, the availability of precursor substrates, and a highly reduced envi-
ronment. Anaerobic metabolism involving iron and sulfate is more energetically favor-
able than methanogenesis, meaning that these electron acceptors must be depleted
before methanogenesis can occur (9, 11). For example, it has been demonstrated in rice
paddies that the addition of sulfate can reduce CH4 emissions by 70% (35). Our study
found overrepresented families associated with both sulfate reduction (Syntrophobac-
teraceae in the rhizosphere and Desulfovibrionaceae in the rhizoplane and endosphere)
and iron reduction (Geobacteraceae in the endosphere). The overall seasonal trends of
taxa were associated with iron reduction peaking earlier in the season (70 days post-
germination), followed by a peak in sulfate reduction (98 days postgermination) and a
continued increase in the relative abundances of methanogens throughout the grow-
ing season (Fig. 2B and 3B). This follows the theoretical progression of electron acceptor
usage, since the reduction of iron is more favorable than the reduction of sulfate, which
is more favorable than methanogenesis. An increase in these activities earlier in the
season (as suggested by the association of overrepresented families with these traits)
could lead to more favorably reduced conditions earlier on in the season for metha-
nogenesis to occur.

An increased methanogen relative abundance could also be stimulated by an
increased substrate availability. Some microbes can ferment carbon inputs to a variety
of carbon sources, including organic acids, alcohols, propionate, acetate, H2, and CO2,
the last three of which can be used as the substrates for methanogenesis. The
production of acetate and propionate is particularly notable, because 70% and 23% of
emitted CH4 goes through acetate and propionate as intermediates, respectively (35,
36). A study comparing high- and low-CH4-emitting cultivars has found a greater
abundance of acetate in the rhizosphere of the high emitter, further confirming the
importance of acetate as an important intermediate (37). Our study identified several
taxa associated with fermentation, as summarized in Table 1 and Fig. 6. Furthermore,
the seasonal trends of the cumulative OTUs associated with fermentation are signifi-
cantly greater in the endosphere and rhizoplane of Sabine than in those of CLXL745.
This increased abundance of fermentation-associated OTUs could be indicative of a
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greater abundance of methanogenic precursor molecules which could stimulate
methanogenesis.

We hypothesized that this increase in fermentation-associated OTUs was due to a
greater microaerobic/anaerobic sections of the Sabine root due to a less-developed
root airspace; however, we found no significant difference in the proportion of root
cross-sections occupied by aerenchyma and a significantly greater proportion of aer-
enchyma volume in Sabine. This result differs from our expectations, as well as from the
model of Jiang et al. (14), which would predict that the higher-yielding/lower-emission
cultivar CLXL745 will have proportionally greater aerenchyma space than the lower-
yielding/higher-emission cultivar Sabine. Our data further diverge from the results of
Jiang et al. (14) in changes in methanogens and methanotroph abundances, in that we
found an increase in methanogen abundance in our high-emitting cultivar, whereas
they found an increase in methanotroph abundance in their low-emitting cultivar. We
conclude that the genetic factors involved in genotype-dependent fermentative OTU
abundance in our study are unlikely to act by a simple mechanism involving control of
root porosity. In our study, we focused on root airspace due to recent reports that
variation in airspace between hybrids and other rice cultivars influence CH4 emission
(14). In addition, other morphological and physiological traits have also been correlated
with CH4 emissions, including above- and below-ground biomass (38), root exudation
rate (39), and variation in the root-shoot transition zone (40). These traits could be
affecting the composition of methanogenic, methanotrophic, or other related taxa and
are physiological factors that could be further studied between these cultivars.

Another interesting trait associated with some overrepresented families of both the
rhizosphere and endosphere was reductive acetogenesis (Fig. 3). Acetogens use the

FIG 6 A summary of potential metabolic roles carried out by microbes enriched in Sabine (high emitter)
over CLXL745 (low emitter). The table shows fermentative end products of taxa listed on the left, as
discussed in the text. All microbes listed are from enriched families, except those indicated by an asterisk,
which are taxa that clustered with methanogens in the rhizosphere. Pr, propionate; Ac, acetate.
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Wood-Ljungdahl pathway to produce acetate from CO2 and H2 (41). This would put
them in competition with hydrogenotrophic methanogens, such as Methanocella spp.,
due to utilization of the same substrates; however, methanogenesis is more energet-
ically favorable than is acetogenesis, meaning that acetogens would be outcompeted
and must resort to other modes of metabolism (41). Interestingly, microbes that act
acetogenically in culture will oxidize acetate, running the Wood-Ljungdahl pathway in
reverse, when in the presence of a syntroph (41, 42). In both the rhizosphere and the
endosphere, Sporomusa is an overrepresented genus associated with acetogenesis. This
genus has previously been observed in experiments studying the incorporation of CO2

into acetate on rice roots (43). However, when Sporomusa spp. are grown in the
presence of Desulfovibrio spp., which is also an overrepresented genus in the endo-
sphere, no acetate is formed, and methanol is oxidized to CO2 and H2 (42). This is
indicative that the Sporomusa spp. in these samples might be performing activities
other than acetogenesis which could further promote methanogenesis. It is noteworthy
that taxa associated with acetogenesis peak in the middle of the season across all
compartments, which does not follow the trend of methanogens during that time
period, with whom they theoretically could be competing for substrates. Many aceto-
gens have high metabolic flexibility and are additionally able to ferment, which could
cause this initial peak (44).

It is surprising that taxa associated with methanogenesis, fermentation, and aceto-
genesis are enriched in the aerobic endosphere of one cultivar over the other, consid-
ering that these are anaerobic processes. This is also not the first time we have
observed strictly anaerobic taxa in the endosphere compartment; Edwards et al. (16)
identified an enrichment of methanogenic Methanobacterium OTUs in the endosphere,
which we again see in this study (Fig. 2). Furthermore, a study has recently shown that
Methanobacterium OTUs were more enriched in the endosphere of rice plants than in
other native plant species growing in the same field, indicating that Methanobacterium
spp. have a unique interaction with rice (45). Previous studies have correlated the
activity of superoxide dismutase with oxygen tolerance in some taxa, including Metha-
nobacterium, as well as some anaerobic taxa discussed above (e.g., Desulfovibrio and
Propionivibrio) (46–48). However, Methanosarcina OTUs, which have also been shown to
have a tolerance to oxygen via superoxide dismutase (49), are enriched in the rhizo-
sphere but not the endosphere, indicating that the above-mentioned taxa are able to
persist in the endosphere due to other unknown factors.

To summarize, multiple enriched families in all three compartments of Sabine over
CLXL745 have been associated with fermentation and the production of propionate,
acetate, CO2, and H2. Interestingly, some of the enriched taxa have been previously
found to be associated with methanogenic archaea. The rhizosphere of Sabine is
enriched with Syntrophobacter OTUs, isolates of which have been shown to degrade
propionate to acetate and have been closely associated with Methanosarcina spp. (35),
of which one OTU is also enriched in the rhizosphere (35). The Sabine endosphere is
enriched for Desulfovibrio OTUs, which is associated both with the acetogens of
Sporomusa spp. as well as the dominant endosphere methanogens, Methanobacterium
spp. (42, 50). This demonstrates the potential for unique consortia in each compartment
contributing to an increase in abundance of methanogenic substrates for the corre-
sponding archaea.

Clustering analysis reveals a potential syntrophic relationship between the
class Anaerolineae and methanogens. In addition to OTUs that are generally over-
represented in one cultivar over the other, clustering analysis allows us to identify OTUs
that potentially interact more directly with methanogens. Previous studies have iden-
tified OTUs that cluster with methanogens that are spatially separated; this allows for
the identification of OTUs related to methanogens across a much larger diversity of
environments, including across diverse plant compartments and geographic locations
(16, 24, 25). Clustering across a season will identify OTUs more specifically linked to
methanogen metabolism as substrate availability and soil redox potential change over
time. Some of the taxonomies of methanogen-clustering OTUs have previously been
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identified as methanogen clustering or CH4 production clustering in other experiments
over a variety of conditions, including the phylum Planctomycetes, order iii1-15, Geo-
bacter, Sphingomonas, family Ignavibacteriaceae, class Phycisphaerae, and Anaerolineae
families Anaerolineaceae, A4b, and SHA-31 (16, 24, 25).

However, these studies did not show significant positive correlations or clustering
with other taxa identified in this study, including multiple families of the class An-
aerolineae. The Anaerolineae family Caldilinea isolates have been shown to produce
acetate, CO2, and H2 through fermentation (51, 52). Genome sequences from the
uncultured SBR1031 have been shown to contain key genes in pathways necessary for
acetate production through fermentation (53). These results show that temporal clus-
tering identifies key taxa that cooccur with methanogens and could produce fermen-
tation products that were not identified in previous spatial clustering analyses. Specif-
ically, the presence of 11 OTUs in the class Anaerolineae out of a total 30 OTUs in the
cluster suggest that this class could have a syntrophic relationship with methanogens.

In conclusion, this study utilized a high-emission cultivar and a low-emission cultivar
to investigate the relationships between emission differences and the abundances of
CH4-cycling microbes in their root-associated microbiomes. The high-CH4-emitting
cultivar, Sabine, had an increased relative abundance of methanogens, as well as taxa
associated with upstream processes related to methanogenesis (fermentation, aceto-
genesis, and iron and sulfate reduction) but no significant differences in methanotrophs
relative to the low emitter CLXL745. The enrichment of fermentative microbes in the
endosphere of the high emitter does not arise from reduced airspace in the roots,
suggesting that the cultivars vary in the abundances of fermentation-associated taxa
due to increased substrate availability in the exudates from the roots of the high
emitter. The identity of these upstream taxa and the factors that control their abun-
dance could provide avenues for efforts to manipulate plant influence over the
microbiome to reduce CH4 emissions in rice.

MATERIALS AND METHODS
Compartment separation, sample processing, and sequence processing have recently been pub-

lished in Bio-Protocols, and a more in-depth explanation of the 16S rRNA gene amplicon pipeline can be
found there (54).

Arkansas field experiment sampling and DNA extraction. Samples were grown in 8 different plots
with 4 plots per cultivar. Two individual plants were collected from each plot at each time point and
treated as individual replicates for a total of 8 replicates per factor combination. Bulk soils were also
sampled from the same 8 plots. The rhizosphere and endosphere data used in this paper were previously
published by Edwards et al. (54). The rhizoplane samples were not included in that study, though the
samples were collected at the same time as the endosphere and rhizosphere samples and frozen at
!80°C. These samples were not included in the original study because the authors were unsure if the
samples would be compromised in transport and were not necessary for the temporal dynamics
explored in that paper. Due to the significant insight rhizoplane samples could add to the taxa involved
in methane dynamics, the rhizoplane samples were sequenced to check for quality to include in further
analysis. Rhizoplane samples corresponding to 42 days after germination were compromised before
library preparation, so all samples corresponding to that time point were removed in downstream
analyses. Further information about the field setup and sample collection can be found in the paper by
Edwards et al. (54). Rhizoplane samples were thawed at room temperature, and extractions were
performed using the Mo Bio PowerSoil DNA isolation kits.

16S rRNA gene amplicon library preparation. Libraries were prepared using dual-index primers, as
previously described (16, 18, 55). PCR was performed using the Qiagen HotStar HiFidelity polymerase kit.
Touchdown PCR was used to amplify the samples with the following steps: 95°C for 5 min, 35 cycles of
95°C for 45 s, 50°C for 1 min, and 72°C for 1 min, and 72°C for 10 min. A negative control was included
for each sample to identify contamination, which was identified using a 1% agarose gel. AMPure beads
were used to remove the primer dimer, and the Qubit high-sensitivity (HS) assay kit was used to quantify
the concentrations. Samples were pooled, gel purified, and sequenced using the Illumina MiSeq machine
on a 2 " 250 paired-end run.

Sequence processing. The rhizoplane paired-end reads were combined with the rhizosphere and
endosphere paired-end reads and demultiplexed with custom scripts (https://github.com/Rice
Microbiome/Edwards-et-al.-2014/tree/master/sequencing_scripts). PANDAseq was used to align the en-
dosphere, rhizosphere, and rhizoplane reads (56). Sequences with ambiguous bases and reads over
275 bp were discarded. OTUs were clustered at 97% using UCLUST (57). An open-reference strategy was
used against the 13_8 Greengenes 16S rRNA sequence database (58). OTUs with a name beginning with
“New.ReferenceOTU” or “New.CleanUp.ReferenceOTU” were generated during the de novo clustering
stage of the open-reference algorithm. Chloroplast and mitochondrial OTUs were then removed, and
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OTUs occurring in less than 5% of the samples were removed as well. Sequencing depths varied from
3,985 to 161,535 reads, with a median of 37,239 reads. OTUs were divided by the sequencing depth and
multiplied by 1,000 to form relative abundances in units of per mille for analysis. However, all plot relative
abundances are shown in percentages. Some samples had large spikes of Gammaproteobacteria in all
compartments; however, the spikes did not correlate across compartments so were likely introduced
through contamination. These spikes were largely made up of a single OTU, 839235 of the family
Aeromonadaceae, which has been found in much lower abundances in another data set, which averaged
0.017% across all samples (17). Therefore, samples that had a relative abundance of Gammaproteobac-
teria two standard deviations greater than the mean were removed. No more than 2 samples were
removed from any factor combination, meaning that the replicates per factor combination ranged from
6 to 8 samples.

qPCR quantification. The weights of the original rhizosphere samples were not recorded during the
original sampling, so the remaining frozen rhizosphere samples were thawed and reextracted using the
Mo Bio PowerSoil DNA isolation kit. The protocol was followed as normal, but the initial weight was
recorded before the extractions were performed. The thawed rhizosphere samples were briefly dried in
an oven, and approximately 100 mg (dry weight) was extracted. Three samples did not have enough
remaining sample to be extracted (!50 mg) and were excluded from the extraction. The qPCR method
was derived from previously published methods for methanogen quantification using methanogen-
specific 16S rRNA primers (12). The samples were diluted 1/10 to reduce the effects of PCR inhibitors.
Previously published methanogen-specific primers were used (MET630F, GGATTAGATACCCSGGTAGT;
MET803R, GTTGARTCCAATTAAACCG) (12). A PCR-cloned 16S rRNA gene fragment extracted from envi-
ronmental samples was used as a standard. Triplicates of each sample were run, and replicates that
disagreed with the other two replicates were excluded. The gene copy number of each sample was
calculated using the values from the serially diluted standard. Those copy numbers were corrected to
reflect the DNA copy number per gram of dried soil. The qPCRs were prepared with Bio-Rad iTaq
Universal SYBR green Supermix, and the qPCR program for methanogen-specific 16S rRNA region was
that reported by Su et al. (12), as follows: 95°C for 7 min, followed by 54 cycles of 40 s at 95°C, 1 min at
60°C, and 40 s at 72°C. The melting curve was from 65°C to 95°C, increasing at 0.5°C increments for 5 s
each. The qPCR primers a189 and mb661 were used to amplify the pmoA gene, with thermocycler
settings of 94°C for 4 min and 35 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C for 1 min, followed by
the same melt curve described above.

Statistical analysis. All statistical analyses were carried out in R version 3.5.1 (59). PERMANOVA was
performed using the adonis() function, Bray-Curtis dissimilarities were calculated with the vegdist()
function, and canonical analyses of principal coordinates were performed with the capscale() function
from the vegan package (60). Unconstrained principal-coordinate analysis was performed using the
pcoa() function in the ape package (61). Likelihood ratio tests and differential abundance analyses were
performed using DESeq2 (62). The models used in the likelihood ratio test were the full model,
sequencing lane " time point " cultivar, compared to a reduced model, sequencing lane " time point.
These models were run on data subsetted by compartment. Hypergeometric tests were performed by
taking the list of taxonomies at each taxonomic level from the list of cultivar-sensitive OTUs and
comparing them to the list of the same taxonomic rank of all OTUs present within each compartment.
Hypergeometric tests were performed with the enricher() function from the package clusterProfiler using
default parameters with no upper or lower size cutoff (63). Variance stabilization was performed with the
vst() function from DESeq2, which normalizes the variance within each OTU while accounting for library
size (62). Clustering was performed on Euclidean distances of Z-score-transformed relative abundances
([value # mean]/standard deviation) using the function hclust from the stats package (59). Clusters were
determined using the function tsclust() from the package dtwclust (64). The number of clusters was
determined by graphing the mean sum of squares for a number of clusters ranging from 2 to 10 and
identifying where the slope leveled out. Linear models and ANOVA were performed using lm() and
anova(), respectively, from the stats package (59). qPCR results were analyzed using log-transformed
data, and posttransformation normalization was checked using normal Q-Q plots from the stats package.
All plots were generated with the ggplot2 package (65). All scripts are posted on GitHub (https://github
.com/zliechty/RiceCH4).

Greenhouse experiment setup. The aerenchyma measurement experiment was carried out in a UC
Davis greenhouse in the summer of 2018 in a randomized complete block design. Four 23-gallon tubs
were arranged in a 2 by 2 layout, with each tub holding 16 plants (8 of each cultivar) in 5.5- $ 5.5-in. pots.
Plants were sampled monthly, beginning 1 month after germination. At each time point, two plants of
each cultivar were sampled.

Pycnometer measurements. The pycnometer measurements followed an established protocol (66).
Soil was washed from the roots using tap water. Once all soil was removed, approximately 1 g of root
taken from the first 10 cm below the root-shoot junction was sampled. Three independent replicates per
plant were sampled. Samples were patted dry with paper towels, weighed, and cut into approximately
1-cm pieces. This was put into a pycnometer and weighed. The pycnometer was then vacuum infiltrated
for 5 rounds of 5-min intervals or until bubbles stopped rising upon vacuum initiation, and then they
were weighed again. The equation (P_vr – P_r)/(P_w " R – P_r) was used to calculate airspace, where
P_w is the weight of the pycnometer with only water, P_r is the weight of the pycnometer with roots and
water, P_vr is the weight of the pycnometer with vacuum-infiltrated roots, and R is the weight of the dry
roots. Water was brought to room temperature before beginning measurements. The three replicates per
plant were averaged before statistical analysis was performed.
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Cross-section preparation, imaging, and analysis. Plants were washed in the same fashion as
described above in “Pycnometer measurements.” A 3-cm section of root was cut with a razor blade and
vacuum infiltrated with FAA (50% ethanol 95%, 5% glacial acetic acid, 10% formalin, 35% water) for 10
min. The root sample was then embedded in 5% agarose and flash frozen with liquid nitrogen. The plug
was then vacuum infiltrated with FAA for 10 min and left in FAA overnight. The plugs were then
rehydrated in a series of 70%, 50%, 30%, and 10% ethanol washes, each lasting 30 min. The plugs were
then stored in water until sectioning. Sectioning was performed with a Leica VT1000 vibratome, with
sections ranging from 200 to 300 !m. Root sections were then dyed with 0.1% toluidine blue for 30 s
and rinsed with water. Images were taken using Zeiss Axioskoop2 plus microscope with an AxioCam
HRc camera. Images were analyzed in ImageJ (67) by dividing the area of airspace by the total area
of the root section. Multiple sections of each root were taken, analyzed, and then averaged for
statistical analysis.

Data availability. The rhizosphere and endosphere reads can be found at the Sequence Read
Archive of NCBI under BioProject accession number PRJNA392701. The rhizoplane reads can be found at
BioProject accession number PRJNA598892.
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Supplemental Figure 1 Rhizoplane samples follow previously established compartmental and 
temporal patterns. (A) Principal-coordinate analysis using Bray-Curtis distances. Points are 
colored by date, whereas shape is determined by compartment. The first two axes are shown. The 
first axis corresponds to compartment and the second to time. (B) Graphical depiction of CAP 
described in Fig. 1. The y axis is the same as in Fig. 1A. Here, the first axis is shown to 
correspond with time. (C) Heat map depicting the pairwise similarity between samples of 
different time points using the Z-score of 1-Bray dissimilarity. The Bray dissimilarity 
comparisons for the endosphere and rhizosphere samples can be found in Edwards et al. (18). 
(D) Bar plots of the 10 most abundant taxa in the rhizoplane. Colored dots underneath bars 
indicate sample age using the same colors as in panels A and B. 
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Supplemental Figure 2 Abundances of methanogen-specific 16S rRNA region and the 
methanotrophic-associated pmoA gene in the bulk soils and rhizospheres of Sabine and 
CLXL745 for the final two time points in counts per gram of dry weight. Letters above boxplots 
indicate which pairwise comparisons within that group are significant (P < 0.05, Tukey 
adjustment on log-transformed data). 
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Supplemental Figure 3 Difference in Z-scores of each OTU overrepresented within the list of 
cultivar-sensitive OTUs (P < 0.05). Each column represents one time point, and each row is an 
individual OTU within the compartment denoted on the right. The Z-score is calculated within 
the OTU across all time points within both cultivars. The difference was calculated by 
subtracting the Z-score of CLXL745 from Sabine, meaning positive numbers (blue) are enriched 
in Sabine over CLXL745, and negative numbers (red) are enriched in CLXL745. White indicates 
no difference in Z-score.  

Actinomycetales
Nakamurellaceae

Anaerolineales
Anaerolinaceae
Bacteroidales

BA008

Clostridiales
Veillonellaceae

Syntrophobacterales
Syntrophobacteraceae

14 28 42 56 70 84 98
Days After Germination

−1 0 1 2

Difference in z score

Rhizosphere

Bacteroidales
Bacteroidaceae

Desulfovibrionales
Desulfovibrionaceae

Oscillatoriales
Phormidiaceae
Rhodocyclales

Rhodocyclaceae

Spirochaetales
Spirochaetaceae 14 28 42 56 70 84 98

Days After Germination

0 1 2 3

Difference in z score

Rhizoplane

Bacteroidales
unclassified

Clostridiales
Ruminococcaceae

Clostridiales
Veillonellaceae

Desulfovibrionales
Desulfovibrionaceae

Desulfuromonadales
Geobacteraceae

Ignavibacteriales
Ignavibacteriaceae

Rhodocyclales
Rhodocyclaceae

Spirochaetales
Spirochaetaceae

TG3−1
TSCOR003−O20

14 28 42 56 70 84 98
Days After Germination

0 1 2 3

Difference in z score

Endosphere
Actinomycetales

Cellulomonadaceae

Campylobacterales
Helicobacteraceae

Clostridiales
unclassified

Ellin329
unclassified

Sphaerochaetales
Sphaerochaetaceae



 

25 
 

 
Supplemental Figure 4 Clustering analysis of the cultivar-sensitive rhizosphere OTUs. (A) The 
trend in Z-scores of OTUs within each cluster. The thick lines are the average trend of the 
cluster, and the faint lines are the seasonal trend of each individual OTU. Both methanogens are 
contained in cluster 2. (B) Composition of each cluster, with color indicating the phylum to 
which the OTUs in each cluster belong. 
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Supplemental Table 1 (A) PERMANOVA testing the effects of compartment, plot, days, 
cultivar, days by cultivar, compartment by days, and compartment by cultivar on Bray-Curtis 
distances. Bulk soil samples were removed prior to analysis. (B to D) PERMANOVA testing the 
effects of lane, plot, days, cultivar, and cultivar by days of interaction with the rhizosphere (B), 
rhizoplane (C), and endosphere (D) Bray-Curtis distances. Plot refers to the plots containing one 
cultivar or the other; cultivars were grown exclusively in four plots each, and therefore this factor 
is nested within the cultivar term. Lane refers to the library in which the samples were 
sequenced. The rhizosphere, endosphere, and bulk soil samples were spread out across 4 
libraries, so this term is included in the ANOVA, whereas the rhizoplane samples were all 
sequenced in the same library. This setup causes compartment to be nested in lane, meaning it 
cannot be included in Table S1A. (E) PERMANOVA testing the effects of time and cultivar 
(here meaning plots growing one cultivar or the other) and their interaction on bulk soil Bray-
Curtis distances. (F) ANOVA testing the effects of cultivar, time, and their interaction on Bray-
Curtis distances that have compartment partialled out in the CAP analysis. 
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Supplemental Table 2 ANOVA testing the effect of each trait assigned by FAPROTAX to the 
overrepresented cultivar-sensitive OTUs within each compartment. ANOVA was run on each 
trait individually, and then the cultivar term was extracted and corrected for multiple testing 
using the Benjamini-Hochberg method. 
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Supplemental Table 3 (A) ANOVA testing the effects of time, cultivar, and their interaction on 
section measurements. (B) ANOVA testing the effects of time, cultivar, and their interaction on 
pycnometer measurements. (C) Contrasts between CLXL745 and Sabine at each of the four time 
points. 
  



 

30 
 

Chapter 2 

Prolonged drought imparts lasting compositional changes to the rice root microbiome 
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Abstract 

Microbial symbioses can mitigate drought stress in crops but harnessing these beneficial 

interactions will require an in-depth understanding of root microbiome responses to drought 

cycles. Here, by detailed temporal characterization of root-associated microbiomes of rice plants 

during drought stress and recovery, we find that endosphere communities remained 

compositionally altered after rewatering, with prolonged droughts leading to decreased 

resilience. Several endospheric Actinobacteria were significantly enriched during drought and 

for weeks after rewatering. Notably, the most abundant endosphere taxon during this period was 

a Streptomyces, and a corresponding isolate promoted root growth. Additionally, drought stress 

disrupted the temporal dynamics of late-colonizing microorganisms, permanently altering the 

normal successional trends of root microbiota. These findings reveal that severe drought results 

in enduring impacts on rice root microbiomes, including enrichment of taxonomic groups that 

could shape the recovery response of the host, and have implications relevant to drought 

protection strategies using root microbiota. 
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Drought is the largest contributor to world-wide crop loss1. 
With an average of 25% yield reduction under drought2, rice 
is particularly susceptible to this abiotic stress, due in part 

to its semi-aquatic growth habit and its small root system3. Rice 
responds to drought episodes through a slew of molecular, physi-
ological and morphological changes aimed to mitigate stress and 
facilitate recovery after rewatering4. Plant–microbe symbioses can 
further boost stress resistance by enhancing the plant response to 
environmental perturbations5. As such, the harnessing of plant–
microbe interactions has emerged as a complementary approach to 
reduce crop losses associated with drought6 and understanding the 
ecological principles governing root microbiome assembly under 
environmental stressors has become a research priority7.

Drought triggers a compartment-specific restructuring of the 
rice root microbiota, with endosphere communities displaying a 
more pronounced response than rhizosphere communities8. This 
compositional shift is characterized by a prominent increase of a 
diverse group of monoderm bacteria, including Actinobacteria, 
Chloroflexi and aerobic Firmicutes. Such taxonomic signatures 
are consistent across multiple rice cultivars and soil types. Similar 
trends have been independently observed in a wide variety of plant 
species, across cereals and dicots9,10, indicating that monoderm 
enrichment is a phylogenetically conserved response in plants 
under drought stress. While these cross-sectional studies have shed 
light on the compositional changes that root-associated microbi-
omes undergo during drought, the temporal dynamics on rewater-
ing are less understood. This recovery period is particularly relevant 
as both plants and microbes undergo quick physiological changes 
that can reshape the underlying network of biotic interactions6. 
Furthermore, evaluating the resilience of root communities (that is, 
their rate of recovery after a disturbance) can help us determine the 
permanence of drought-mediated alterations.

In irrigated rice, root communities display a highly conserved 
temporal development characterized by a rapid turnover during 
the early vegetative stages followed by a relative stabilization as 
the host transitions into flowering11,12. These community dynam-
ics are driven by a phylogenetically diverse group of microbial taxa 
that experience consistent longitudinal shifts across multiple geo-
graphic regions and growing seasons11. Previously, we showed that 
drought-stressed rice root communities are developmentally paused 
compared to well-watered communities11, and similar trends were 
observed in sorghum13. Assessing the impact of this effect on the 
recovery period can reveal the extent to which drought disrupts the 
temporally coordinated interplay between host and root microor-
ganisms. In sorghum, the drought-mediated enrichment of mono-
derm bacteria was reported to rapidly return to predrought levels 
on rewatering13, suggesting that the impact might be short lived.

As drought episodes become longer and more frequent1, it will 
be important to gain detailed knowledge of the consequences of 
extended drought on plant-associated microbiomes, especially in 
drought-sensitive crops. As highlighted in a recent review, there 
is a ‘need for improved mechanistic understanding of the complex 
feedbacks between plants and microbes during, and particularly 
after, drought’6. Here, we conducted a detailed temporal profil-
ing of the rhizosphere and endosphere communities of rice plants 
grown under a range of drought-stress durations to investigate 
the following questions: (1) how does drought duration affect the 
recovery of root communities and how does this response vary 
across compartments, (2) what is the range of temporal dynamics 
displayed by drought-responsive microorganisms and (3) does the 
drought-mediated delay in microbiome development persist on 
recovery? We found that extended drought produces lasting changes 
to root microbiota composition, manifested by phyla-dependent 
patterns of enrichment and depletion, especially involving persistent 

Prolonged drought imparts lasting compositional 
changes to the rice root microbiome
Christian Santos-Medellín1,4,7, Zachary Liechty1,7, Joseph Edwards1,5, Bao Nguyen1,6, Bihua Huang2, 
Bart C. Weimer! !2 and Venkatesan Sundaresan! !1,3 ✉

Microbial symbioses can mitigate drought stress in crops but harnessing these beneficial interactions will require an in-depth 
understanding of root microbiome responses to drought cycles. Here, by detailed temporal characterization of root-associated 
microbiomes of rice plants during drought stress and recovery, we find that endosphere communities remained compositionally 
altered after rewatering, with prolonged droughts leading to decreased resilience. Several endospheric Actinobacteria were 
significantly enriched during drought and for weeks after rewatering. Notably, the most abundant endosphere taxon during 
this period was a Streptomyces, and a corresponding isolate promoted root growth. Additionally, drought stress disrupted the 
temporal dynamics of late-colonizing microorganisms, permanently altering the normal successional trends of root microbiota. 
These findings reveal that severe drought results in enduring impacts on rice root microbiomes, including enrichment of taxo-
nomic groups that could shape the recovery response of the host, and have implications relevant to drought protection strate-
gies using root microbiota.
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enrichment of specific taxa, of which the most abundant was found 
to be putatively beneficial by isolation and further characterization.

Results
Experimental design. To characterize the effect of drought on the 
temporal progressions of root-associated communities, we exposed 
rice plants (Oryza sativa ssp. japonica variety M-206), grown in agri-
cultural soil under controlled greenhouse conditions, to one of three 
increasingly longer drought-stress (DS) periods: DS1 (11 days), DS2 
(21 days) and DS3 (33 days). DS2 corresponds to the duration of 
drought stress used in a previous study that identified clear com-
positional shifts in the root microbiomes of drought-stressed rice 
plants grown under similar conditions8, and the duration of DS1 and 
DS3 were chosen to further explore the effects of mild and severe 
drought relative to this baseline. Given that microbiome succession 
is highly dynamic during the vegetative growth phase of rice11, all 
drought treatments were initiated at 41 days after transplantation, 
before plants transitioned to the reproductive stage and microbi-
ome composition stabilized. All plants experiencing drought treat-
ments survived and eventually entered the reproductive phase 
(Supplementary Fig. 1). As a control treatment (water control, 
WC), we kept an additional set of rice plants under well-watered 
conditions throughout the whole experiment. For each of the four 
watering regimes (WC, DS1, DS2 and DS3), plants were destruc-
tively sampled roughly every 10 days for a total of 13 collection time 
points spanning 136 days. This collection scheme covered the com-
plete life cycle of rice and allowed us to track microbiome succession 
before, during and after drought (Fig. 1a). For each plant sampled, 
we profiled the bacterial and archaeal diversity associated with the 
rhizospheric and endospheric communities via high-throughput 
amplicon sequencing of the V4 region of the 16S ribosomal RNA 
gene. After filtering organellar sequences and removing operational 
taxonomic units (OTUs) not present in at least 5% of all samples, 
we identified 4,135 OTUs (mean sequencing depth = 20,740 reads).

Beta-diversity patterns reveal root compartment differences in 
drought recovery. Root compartment was the main driver of micro-
biome composition as evidenced by a clear separation between rhi-
zosphere and endsophere communities across the first axis of an 
unconstrained principal coordinates analysis (PCoA) performed 
on weighted UniFrac distances (Extended Data Fig. 1a). Moreover, 
a permutational multivariate analysis of variance (PerMANOVA) 
indicated that root compartment explained most of the variation in 
the whole dataset (F1,400 = 1070.36, R2 = 0.628, P < 0.001). Therefore, 
to better explore the impact of drought treatment, collection time, 
and their interaction on each compartment, we ran a PerMANOVA 
on rhizosphere and endosphere samples independently. In both 
cases, all main and interaction effects were significant (Table 1).

We then explored the longitudinal trends of beta diversity cap-
tured by the first axis of independent PCoAs performed on each 
compartment (Fig. 1c,d and Extended Data Fig. 1c–f). In both rhi-
zosphere and endosphere communities, PCo1 tracked the compo-
sitional development that root communities underwent during the 
life cycle of rice plants as evidenced by the progressive transition of 
early to late time points along the axis. Additionally, PCo1 displayed 
drought-mediated shifts in community composition throughout 
time: while all watering regimes followed similar trajectories before 
drought onset (41-day-old mark), drought-treated plants started 
diverging from well-watered communities as soon as irrigation was 
suspended. The separation between control and stressed commu-
nities increased for as long as drought conditions were kept, with 
31-day drought-stressed communities (DS3) showing the largest 
deviation from well-watered samples. Finally, drought treatments 
presented differential recovery dynamics on rewatering: while both 
DS1 and DS2 samples recovered relatively quickly, DS3 communities  
remained significantly altered after drought stress was ceased 

(PFDR < 0.05, asterisks in Fig. 1c,d, Supplementary Table 1). This sig-
nificant deviation from controlled communities was sustained for 
50 days in the endosphere whereas it only lasted for 20 days in the 
rhizosphere, suggesting potential differences in community resil-
ience across compartments. In contrast, drought treatments had 
only a minor impact on the alpha diversity of root communities 
(Supplementary Fig. 2 and Supplementary Table 2).

Beta-diversity patterns in rhizosphere and endosphere micro-
biomes diverged from the temporal trends displayed by the water 
content in our samples. In particular, soil percentage moisture was 
significantly reduced for all drought treatments during the stress 
period but immediately returned to control levels after irrigation 
was resumed (Fig. 1b). Thus, despite soil moisture being fully 
restored, prolonged drought hindered the ability of root communi-
ties to quickly recover.

Drought-responsive taxa follow distinct longitudinal trends 
within and between compartments. To identify taxa affected by 
watering regime throughout time, we fitted negative binomial mod-
els to the abundances of individual OTUs and ran pairwise Wald 
tests contrasting well-watered controls against each drought-stess 
treatment (DS1, DS2 and DS3) in each compartment at each collec-
tion time point. We found a total of 214 rhizospheric OTUs and 221 
endospheric OTUs affected by treatment in at least one compari-
son (Fig. 2a and Supplementary Table 3, PFDR < 0.05). The temporal 
distribution of significant effects among these differentially abun-
dant OTUs followed distinct patterns in each compartment: in the 
rhizosphere, significance was mostly observed during the drought 
period; in the endosphere, it widely extended to the recovery phase 
of the experiment, especially for treatment DS3.

While this approach detected clear ecological signals driven by 
drought stress (for example, the number of differentially abun-
dant OTUs was proportional to duration of stress), it also identi-
fied OTUs affected by other, potentially stochastic, processes. For 
example, multiple OTUs were found to be significantly affected by 
watering treatment in the collection time points preceding drought 
onset, when conditions were identical across treatments (Fig. 2a). 
This effect was more pronounced in the endosphere communities, 
which exhibited greater within-compartment variation than rhi-
zosphere communities (Extended Data Fig. 1b). Thus, to identify 
coherent patterns of drought response in the set of differentially 
abundant OTUs, we performed hierarchical clustering on the log2 
fold changes computed across all comparisons (Supplementary 
Table 4 and Extended Data Fig. 2). This method distinguished three 
rhizospheric and two endospheric modules displaying clear longi-
tudinal trends across drought treatments (Fig. 2b).

One rhizospheric module consisted of 100 OTUs whose relative 
abundances increased under drought stress. Such enrichment was 
proportional to the duration of stress and was mostly constrained 
to the span of suspended irrigation in each treatment. The OTUs 
exhibiting this transient enrichment belonged mainly to the phyla 
Actinobacteria, Gemmatimonadetes and Chloroflexi. In contrast, 
the other two rhizospheric modules showed clear signatures of 
depleted abundance under drought conditions, although each with 
unique recovery dynamics: while 64 OTUs were transiently depleted, 
that is their relative abundances were quickly restored after irrigation 
was resumed, 26 OTUs were persistently depleted, that is their rela-
tive abundances remained decreased weeks after stress was ceased. 
This latter pattern was particularly conspicuous in rhizospheres of 
plants that underwent 31 days of drought (DS3). While both deple-
tion modules were enriched in OTUs classified as Acidobacteria, 
Betaproteobacteria and Deltaproteobacteria, each one featured a 
unique pattern at a lower taxonomic resolution (Extended Data 
Fig. 3). On one hand, most transiently depleted Betaproteobacteria 
belonged to order MND1, whereas almost all persistently depleted 
were Rhodocyclales. On the other hand, Deltaproteobacteria  
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classified as Myxococcales and Desulfuromonadales were promi-
nent in the transient and persistent modules, respectively.

Out of the two endospheric modules, one encompassed 21 OTUs 
enriched under drought while the other one contained 64 OTUs 
depleted under drought. In both cases, these shifts in abundances 
persisted after drought stress was suspended, albeit to different 
extents for each module. For OTUs positively impacted by drought, 
the increase in relative abundances persisted, depending on the 
specific treatment, from 10 to 20 days after irrigation was resumed. 
More than 80% of OTUs in this semipersistently enriched mod-
ule belonged to the phylum Actinobacteria. In contrast, for OTUs 
negatively affected by drought, depleted abundance relative to 
well-watered controls was observed throughout the whole recovery 
phase. Moreover, similar to the results observed in the rhizosphere, 
several persistently depleted OTUs were classified as Myxococcales 
and Rhodocyclales (Extended Data Fig. 3). Together, these results 
indicate that phylogenetically distinct groupings of bacterial taxa 
follow diverse trajectories throughout drought stress and recovery 
in root-associated compartments.

A highly occurring Streptomyces becomes the most abundant 
taxon in endosphere communities during and after drought. 
Given the strong taxonomic signature displayed by the set of semi-
persistently drought-enriched OTUs (Fig. 2b), we further explored 
the compositional trends of each individual Actinobacteria within 
this module. In particular, we calculated the abundance-occupancy 
curves of rhizosphere and endosphere communities, and located 
each OTU along these spectra (Fig. 3a). Overall, semipersistently 
enriched Actinobacteria were among the most highly abundant and 
occurring members of root-associated communities, especially in 
the endosphere. One Streptomyces taxon, OTU 1037355, was notably 
predominant: not only was it detected in all collected samples, but 
also its mean relative abundance was greater than that of 99 and 97% 
of all OTUs in the endosphere and rhizosphere communities, respec-
tively. Furthermore, analysing its temporal dynamics across treat-
ments, we found that OTU 1037355 became the most abundant taxon 
in endosphere communities by the end of the DS2 and DS3 drought 
periods, reaching a mean relative abundance of 13.5% (Fig. 3b).  
Additionally, OTU 1037355 remained the most abundant taxon in 
the endosphere during the early stages of recovery. In rhizosphere 
communities, the drought-mediated enrichment of OTU 1037355 
was less prominent as it only reached a maximum relative abun-
dance of 1.3% in drought-stressed samples. Moreover, even though 
the abundance of this OTU increased during the drought period, 

it immediately declined after irrigation was resumed. Thus, despite 
being significantly affected by drought in both communities, OTU 
1037355 exhibited compartment-specific recovery trends.
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Fig. 1 | Compositional dynamics of rhizosphere and endosphere 
communities before, during and after drought. a, Timeline of the watering 
regimes followed by control (WC) and drought-stressed (DS1, DS2 and 
DS3) plants. Horizontal lines represent the watering status during the 
experiment: solid segments indicate periods of constant irrigation while 
dotted segments indicate periods of suspended irrigation. Upside-down 
triangles mark each of 13 collection time points spanning the complete 
life cycle of rice plants. b, Soil percentage moisture as measured by 
gravimetric water content c,d, Beta-diversity patterns in the rhizosphere 
(c) and endosphere (d) communities. In both cases, the y axis displays the 
position of each sample across the first principal coordinate (PCo) from a 
weighted UniFrac PCo analysis and the x axis displays the age of the plant 
at the moment of sample collection. The trend lines in b, c and d represent 
the mean values for each treatment throughout the experiment. Asterisks 
on top indicate a significant difference (PFDR!<!0.05 where FDR is false 
discovery rate) between the control and each of the drought treatments at 
a specific time point. Statistical significance was determined by ANOVA 
and pairwise contrasts (two-sided) corrected with the Benjamini–Hochberg 
procedure. Supplementary Table 1 contains the effect sizes, standard errors 
and P values for all pairwise contrasts performed for b, c and d.
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We then assessed if the pattern of sustained enrichment displayed 
by OTU 1037355 was a reproducible feature of endosphere com-
munities by analysing its longitudinal dynamics in an independent 
drought experiment performed on the same rice cultivar grown in 
the same agricultural soil. Briefly, 1-month-old plants were drought 
stressed for 21 days and allowed to recover for 7 days (Methods). 
Samples were collected each week to track the drought-mediated 
temporal shifts and postdisturbance trends. The microbial profiles 
confirmed that this OTU was significantly enriched during and 
after the imposition of drought conditions (Extended Data Fig. 4). 
This shift was even more conspicuous as the mean relative abun-
dance of OTU 1037355 reached up to 24.0% of the total community 
in drought-stressed samples.

The high occupancy displayed by OTU 1037355 in both 
drought-stressed and well-irrigated plants suggests a strong asso-
ciation of this taxon with rice plants. To evaluate the presence of 
this OTU in the root-associated communities of a diverse panel of 
rice cultivars grown in a set of compositionally distinct soils, we 
re-analysed rhizosphere and endosphere profiles derived from two 
previously published studies: a cross-sectional experiment assess-
ing the effects of drought on rice microbiomes across three distinct 
California soils (including the soil used in this experiment)8, and 
a time series characterizing the microbial dynamics of rice plants 
grown in Arkansas11,14 (see Methods for a detailed description of the 
datasets). In all cases, we found that OTU 1037355 displayed high 
occupancies in both rhizosphere and endosphere communities, sug-
gesting that this taxon is a core member of the rice root microbiome 
(Extended Data Fig. 5a). The ubiquitous presence of this taxon in 
the Arkansas samples also demonstrates that the consistent inter-
action with this OTU throughout the plant life cycle is not limited 
to the soil source used in this experiment. In addition, on compar-
ing the relative abundances of OTU 1037355 in drought-stressed 
and well-watered plants, we confirmed that the drought-mediated 
enrichment of this taxon was conserved across the different 
California soils tested in the study (Extended Data Fig. 5b).

A Streptomyces isolate classified as OTU 1037355 is a root 
growth-promoting bacteria. To assess if this highly occurring 
Streptomyces taxon was part of the readily culturable fraction of 
the root microbiota, we screened a set of bacterial isolates previ-
ously collected from rice-associated rhizosphere and endosphere 
communities (Methods) and found nine isolates classified as OTU 
1037355. We then compared these isolates against the most preva-
lent sequence variant that mapped to OTU 1037355 in our longitu-
dinal drought experiment; this sequence variant comprised 63.4% 
of all sequences mapping to that OTU (Supplementary Fig. 3a). 
Five of the isolates differed by a single nucleotide, and one isolate, 
SLBN-177, was additionally derived from the same soil source as 
the longitudinal drought experiment. The full 16S rRNA gene of 
SLBN-177 was sequenced and compared against the NCBI 16S 
rRNA gene database to further refine its taxonomic classification. 
We found that SLBN-177 shared 100% similarity with sequences 
from Streptomyces pratensis, Streptomyces anulatus and Streptomyces 
praecox (S. praecox has been proposed as a synonym of S. anulatus15).

Due to the sequence similarity and source of isolate, we further 
investigated the effects of SLBN-177 on rice growth phenotypes. 
First, seeds were inoculated with one of three microbial treat-
ments: SLBN-177, SLBN-111 or a mock control. SLBN-111 is an 
Actinobacteria isolate from the genus Microbacterium and its asso-
ciated OTU, 1108350, was found in low abundance in both the rhi-
zosphere and endosphere communities (Supplementary Fig. 3b). 
Unlike many other Actinobacteria taxa, OTU 1108350 was not sig-
nificantly altered by drought in any compartment. Due to the weak 
association of OTU 1108350 with the plant and its stability under 
drought, SLBN-111 was selected to distinguish the effects of SLBN-
177 on rice seedlings from a general response caused by the intro-
duction of a foreign microorganism at high abundance. Inoculated 
seeds were grown for 10 days in an axenic closed system, followed 
by a 14-day period of non-sterile drought stress in an open system 
(with WC plants still fully watered), followed by 7 days of recovery. 
Plants were then harvested, and root and leaf growth parameters 
were measured (Fig. 4a and Supplementary Fig. 4). A principal com-
ponent analysis revealed that both watering and microbial treat-
ments influenced the phenotypes of rice plants (Fig. 4b). Watering 
treatment was the driving factor separating samples along the first 
axis while microbial treatment distinguished samples along the 
second axis. SLBN-177-inoculated plants clustered separately from 
mock- and SLBN-111-inoculated plants. Furthermore, root length 
was the main variable distinguishing microbial treatments (Fig. 4b  
and Supplementary Table 5). Notably, contrasts demonstrated that 
roots of SLBN-177-treated plants were significantly longer than 
mock- and SLBN-111-treated plants in both well-watered and 
drought conditions (Fig. 4c and Supplementary Table 6). Microbial 
treatments did not significantly affect any other measured trait; 
however, all phenotypic measurements were significantly reduced 
by drought (Extended Data Fig. 6a and Supplementary Table 5).

To explore potential mechanisms responsible for the root elonga-
tion, the genome of SLBN-177 was sequenced, assembled and anno-
tated. The assembly yielded 7.78 megabases of sequence and 6,975 
putative coding sequences. Mapping genes to Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways identified genes 
involved in the production of indole-3-acetic acid (IAA) through 
the indole-3-acetamide pathway, including iaaM (a tryptophan 
2-monooxygenase) and amiA2 (a putative amidase). The iaaM gene 
shared 93, 88.9 and 88.5% amino acid similarity with homologues 
from S. sp. ADI96-02, S. coelicolor and S. scabiei, respectively, of 
which the last two have previously been implicated in IAA biosyn-
thesis16,17 (Extended Data Fig. 6b). Additionally, we identified gene 
clusters potentially involved in the biosynthesis of siderophores 
(83% similarity to known desferroxamin B/E gene clusters; 90% 
similarity to coelichelin) and antimicrobials (65% similarity to car-
bapenem MM4550) (Supplementary Table 7). While the presence 
of these genes alone does not implicate them in host-associated 
responses to SLBN-177, they are potential targets for further study.

To confirm that SLBN-177 colonized the roots of rice plants, we 
performed 16S rRNA gene profiling on the endospheres of a subset 
of samples and compared the relative abundance of microbial reads 
to organellar reads. The mean relative abundance of OTU 1037355 on 

Table 1 | Influence of experimental factors and their interaction on the beta diversities of rhizosphere and endosphere communities

Rhizosphere Endosphere

Time Treatment Time × Time Treatment Time ×
Treatment Treatment

F12,156!=!7.397 F3,156!=!4.806 F36,156!=!1.532 F12,156!=!8.132 F3,156!=!6.273 F36,156!=!1.258
R2!=!0.283 R2!=!0.046 R2!=!0.176 R2!=!0.307 R2!=!0.059 R2!=!0.143

P!=!0.001 P!=!0.001 P!=!0.001 P!=!0.001 P!=!0.001 P!=!0.006
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SLBN-177-treated plants reached 5.7 and 30.7% in well-watered and 
drought-recovered samples, respectively, suggesting the enrichment of 
SLBN-177 persists in the recovery phase, as observed in OTU 1037355 
in the previously described experiments (Extended Data Fig. 6c). In 
contrast, OTU 1108350 was barely detected in SLBN-111-treated 
samples, reaching a maximum relative abundance of 0.001%. Two 
drought-recovered control plants also had notable relative abundances 
of OTU 1037355, which could be a consequence of the open system 
portion of the experiment or carry over as seed endophytes not elimi-
nated by surface sterilization, as has recently been reported in rice18. 

Regardless of the cause, the relative abundances of OTU 1037355 in 
these plants were much lower than drought-recovered plants inocu-
lated with SLBN-177 (Extended Data Fig. 6c). Collectively, these 
results indicate that OTU 1037355 is a plant-growth promoting 
Streptomyces that is a key contributor to the compositional dynamics 
of endosphere communities during drought and recovery.

Drought permanently alters root-associated microbiome devel-
opment. Relative abundances of root-associated taxa follow 
reproducible longitudinal trends that can be used to track root 
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microbiome maturation throughout time by training random for-
ests models11. Using this approach on field-grown samples, we have 
previously shown that drought-stressed plants host a developmen-
tally immature microbiota11. However, whether microbiome imma-
turity persists on rewatering is currently unknown. To explore this 
possibility, we used samples from well-watered plants to train sepa-
rate full random forest models for each compartment by regress-
ing OTU relative abundances as a function of host chronological 
age. For each compartment, we ranked each OTU on the basis of 
age-predicting importance and selected the top 65 (a threshold 
identified through cross-validation, Extended Data Fig. 7a) to gen-
erate sparse random forest models (Supplementary Table 8). Similar 
to the age-discriminant taxa detected in our previous field study11, 
these top OTUs could be classified as early, late or complex root 
colonizers on the basis of their relative abundance patterns through 
time: early colonizers displayed initial high abundances that progres-
sively declined, late colonizers exhibited initial low abundances that 
progressively increased and complex colonizers comprised OTUs 
that did not fit either of these two trends (Extended Data Fig. 7c and 
Supplementary Table 8). Among the set of early endosphere colo-
nizers, most were classified as Chloroflexi and Betaproteobacteria 
(mainly Burkholderiales), whereas the set of early rhizosphere colo-
nizers were more phylogenetically diverse. In contrast, both com-
partments had a clear enrichment of Deltaproteobacteria (mainly 
Myxococcales) and Betaproteobacteria (mainly Rhodocyclales) in 
the set of late colonizers (Extended Data Fig. 8).

The 65-taxon sparse models explained the 89.06 and 90.08% 
of variance related to plant age in the rhizosphere and endosphere 
communities, respectively. Furthermore, these models accurately 
predicted plant age on a validation set of well-watered samples, 
indicating that this approach was able to capture the consistent 
taxonomic shifts observed during normal root microbiome succes-
sion. We then applied the sparse random forest models to each of 
three drought regimes to assess the effect of drought on microbi-
ome succession. We observed a clear deviation from the baseline 
development established by well-watered controls (Fig. 5a). To fur-
ther measure this divergence, we calculated the relative microbiome 

maturity of each sample as the difference between the predicted 
microbiome age and the baseline microbiome age of well-watered 
plants collected at the same chronological age (Fig. 5b and 
Supplementary Table 9). The results showed that, before drought 
onset, all watering regimes tracked normal microbiome develop-
ment. However, microbiome progression was interrupted during 
drought and relative microbiome maturity became increasingly 
delayed. Furthermore, the extent of this microbiome immaturity was 
proportional to the duration of stress, with DS3 communities show-
ing the highest departure from baseline development. For DS2 and 
DS3 samples, this microbiome immaturity persisted throughout the 
rest of the life cycle, even after irrigation was resumed. This pattern 
coincided with a delay in flowering displayed by drought-stressed 
plants, with DS2 and DS3 samples reaching developmental stages 
later than WC plants (Extended Data Fig. 9).

To understand the compositional changes driving the drought- 
mediated delay in root microbiome development, we analysed 
the abundance patterns of age-discriminant taxa across water-
ing treatments. In both compartments, we observed a clear shift  
in the transition of dominance between early and late colonizers  
(Fig. 5c). In the rhizosphere, this transition was detected at the 
roughly 50- and 90-day-old marks in WC and DS3 plants, respec-
tively; in the endosphere, the transition was detected at approxi-
mately the 70 and 120-day-old marks in WC and DS3 plants, 
respectively. This temporal shift in root microbiome assembly was 
mostly linked to a delay in the onset of late colonizers as evidenced 
by a persistent decrease in their relative abundances on drought 
stress. Additionally, there was a considerable overlap between the 
set of late colonizers and the differentially abundant OTUs assigned 
to the persistently depleted modules detected in the rhizosphere and 
endosphere communities (Extended Data Fig. 7b). Overall, these 
results indicate that drought stress permanently delayed micro-
biome development by affecting the recruitment of late colonizers.

Discussion
Drought-induced changes to the microbiome persist into the 
recovery period. Here we provide a detailed characterization of 
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the drought-mediated changes and postdisturbance dynamics of 
root microbiomes through the life cycle of rice plants (Oryza sativa 
ssp. japonica cv. M-206). We show that both the magnitude of 
compositional changes undergone during drought and the capac-
ity to fully recover on rewatering are significantly affected by the 
duration of drought stress experienced by the host and its associ-
ated bacterial and archaeal communities. In particular, we show 
that prolonged drought led to a severe microbiome restructuring 
that persisted even after irrigation was re-established, a trend that 
was more pronounced in the endosphere than in the rhizosphere. 
Previous cross-sectional studies performed on rice8 and other 
plant species10 have shown that, relative to the rhizosphere, endo-
sphere communities are more strongly impacted by drought. This 
differential response has been attributed to a closer interaction of 
endosphere microorganisms with their host10. Similarly, the delay 
in endosphere recovery observed in this study might stem from the 
long-term effects induced by drought episodes at the whole plant 
level. Alternatively, differences in microbiome resilience between 
compartments could stem from the range of microbe–microbe 

interactions supported by rhizosphere and endosphere communi-
ties. For example, a recent study in soil communities linked net-
work topological properties such as high network connectivity and 
low modularity to decreased bacterial community stability under 
drought19.

Hierarchical clustering of differentially abundant OTUs further 
revealed modules of drought-responsive taxa that followed distinct 
longitudinal shifts within and between compartments (Fig. 2b) 
Such patterns might stem from differences in the life strategies of 
these taxa. For instance, copiotrophs could recover more quickly 
than oligotrophs as they exhibit higher growth rates and lower 
resource use efficiency20. Moreover, the presence or absence of rel-
evant functional traits could also impact recovery rate. Rewetting 
of dry soils, for example, releases specific forms of carbon and 
nitrogen to the environment21, and the ability to metabolize these 
liberated resources could facilitate a quick recovery. In contrast, 
the reoxygenation of soils during drought could inhibit the growth 
and activity of the anaerobic microorganisms that colonize rice 
roots later in the season14,22,23. Several taxa persistently depleted 
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by drought included members of Desulfovibrio, Geobacter and 
Anaeromyxobacter, known anaerobic genera24–27 that could have 
been negatively affected by drought-induced reoxygenation.

Additionally, plant–microbe interactions could impact the 
responses of rhizosphere and endosphere microorganisms during 
and after drought. Root exudation is a temporally dynamic pro-
cess that can promote or inhibit the growth of particular microbial 
taxa28. It has been shown that drought and rewetting can modify 
exudate composition29, which in turn could alter the activity of 
microorganisms at the root–soil interface30. A metabolomic profile 
of drought-stressed rice roots has shown an increased abundance 
of uridine and raffinose, as well as numerous unidentified metabo-
lites during drought stress31, which could alter host–microbe inter-
actions in the endosphere. Drought can also potentially reshape 
microbiome composition through altering the growth and archi-
tectural properties of roots32. Finally, as evidenced by the delayed 
flowering observed across drought-stressed plants in our study 
(Extended Data Fig. 9a), rice can respond to drought by pausing 
its transition from vegetative to reproductive growth33 This devel-
opmental arrest could impact root microbiome assembly processes 

that rely on temporally staged host-mediated signalling. Using a 
random forest approach, we found that the temporal progressions 
of rhizosphere and endosphere communities were also interrupted 
during prolonged drought stress (Fig. 5). While drought-induced 
delays in microbiome development have been reported by us and 
others11,13, our postdisturbance sampling scheme allowed us to fur-
ther evaluate if this drought-associated microbiome immaturity 
persisted after irrigation was resumed. We found that root com-
munities remained underdeveloped throughout the whole recovery 
period due to a delay in the arrival of late root colonizers, many 
of which were part of the OTUs identified as persistently depleted 
in our differential abundance analysis. Late-colonizing taxa have 
been recently shown to follow reproducible temporal abundance 
patterns in the rhizosphere and endosphere communities of differ-
ent rice genotypes grown across geographically distant areas and 
over multiple growing seasons11. This high degree of conservation 
suggests that plant selectivity might play a key role in the late-stage 
assembly dynamics of root microbiomes, further suggesting that 
the drought-induced delay of late colonizers observed in our study 
might be linked to host-mediated processes.
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A defining characteristic of drought recovery dynamics is persis-
tent enrichment of Actinobacteria. The drought-mediated enrich-
ment of Actinobacteria in root-associated microbiomes, a pattern 
broadly shared across a wide diversity of plants8–10, has been shown 
to correspond to an increase in the absolute abundance of members 
of this phylum13,34. Here, we have found that several Actinobacteria 
remained enriched in endosphere communities after rewatering, 
for up to 3 weeks before declining, a distinct recovery trend that 
was both compartment-specific and dependent on the degree of 
drought stress. Among these taxa, Streptomyces OTU 1037355 
reached relative abundances as high as 24% of the total community 
(Fig. 3b and Extended Data Fig. 4b), becoming the most abundant 
member in the endosphere during drought and persisting through 
recovery. Our findings contrast with the rapid resilience recently 
reported for the root microbiomes of sorghum, in which the rela-
tive abundances of Actinobacteria quickly returned to well-watered 
levels within a week of concluding an 8-week period of drought13. 
Sorghum is naturally drought tolerant, so the conflicting results of 
the root microbiomes might reflect differential responses of the host 
to drought treatments and recovery. Drought-induced molecular 
changes that persist into recovery have been observed in both rice 
and sorghum35,36, and investigating how these persistent changes 
alter root and exudate chemistry and subsequently interface with 
the microbiome could further our understanding of these contrast-
ing results. Alternatively, the differences in microbiome recovery 
observed between rice and sorghum could be independent of the 
host and caused by differences in soil properties and/or starting 
microbial community.

An interesting facet of OTU 1037355 was its ubiquitous pres-
ence across all drought-stressed and well-watered plants profiled in 
this study, which indicates that this taxon is part of the core root 
microbiome of rice. Core microorganisms have been proposed to 
establish closer associations with their hosts that can result in mutu-
alistic interactions37, a trait that could be exploited to develop pro-
biotic approaches to improve the performance of agroecosystems38. 
However, limitations in the experimental design (in this instance, 
samples originating from a single soil source and a single geno-
type) can erroneously inflate the occurrence of a microorganism in 
host-associated communities39. By analysing previously published 
datasets, we identified that OTU 1037355 also displayed high occu-
pancies in rhizosphere and endosphere communities from plants 
grown in multiple California and Arkansas soils (Extended Data 
Fig. 5a). These samples encompassed multiple rice genotypes, fur-
ther suggesting that the close association between OTU 1037355 
and its host is preserved across a diverse panel of rice cultivars. 
Furthermore, OTU 1037355 was found to be impacted by drought 
in the roots of plants grown in other California soils, indicating that 
its response during drought is conserved across different microbi-
ome backgrounds. While the recovery dynamics of OTU 1037355 
are only known for the particular soil and cultivar combination used 
in this study, the presence and enrichment observed across multiple 
soils and cultivars (Extended Data Fig. 5) suggest these interactions 
might potentially be broadly applicable to rice plants across differ-
ent soil types. Expanding the characterization of recovery dynamics 
to a broader range of rice cultivars, other host plants and soils will 
be needed to evaluate the influence of host genotype and soil source 
on root microbiome resilience.

Root colonization by SLBN-177, an isolate corresponding 
to the most abundant drought-enriched OTU (OTU 1037355), 
significantly increased root length in both well-watered and 
drought-stressed rice seedlings. This pattern contrasts with that 
displayed by a sorghum-associated Streptomyces recently found to 
exclusively promote root growth under drought13, suggesting that 
SLBN-177 is a general root growth-promoting strain whose effects 
on the host could be amplified under drought due to its increased 
relative abundance rather than a mechanism directly triggered by 

drought. Thus, the root growth promotion by SLBN-177 can poten-
tially persist into the postdrought period during which it remains 
enriched. In a previous study, drought-mediated root elongation 
was associated with a more robust response by rice plants to sub-
sequent drought events40. Specifically, root growth initiated in the 
recovery period allowed rice roots to penetrate hardpan soil, allow-
ing greater access to water on recurrent droughts40. Furthermore, 
a recent study found a positive correlation between drought toler-
ance and the relative abundance of endospheric Streptomyces across 
a diversity of angiosperms10, indicating that the potential beneficial 
role of Actinobacteria enrichment in root microbiomes might be 
more general. Many of the other Actinobacteria genera persistently 
enriched under drought, including Actinoplanes, Catellatospora, 
Dactylosporangium, Pseudonocardia and Amycolaptopsis, have been 
previously associated with plant-growth promotion41, and are there-
fore potential targets for future studies.

The mechanism by which root elongation occurs is currently 
unknown, but the genome sequence provides candidate targets 
for future studies. The SLBN-177 genome contains putative auxin 
biosynthesis genes, a phytohormone previously demonstrated to be 
produced by microbes and benefit plants under drought stress16,42. 
Further research is necessary to determine whether these genes 
are involved with root growth promotion between SLBN-177 and 
the host, or whether root growth promotion is triggered by other 
molecular mechanisms acting through other uncharacterized genes 
in the genome. Furthermore, while root growth promotion was an 
observed phenotype here, it is possibly not the exclusive interac-
tion occurring between SLBN-177 and the host. For example, the 
genome of SLBN-177 also contained gene clusters involved in the 
synthesis of antibiotics, which could inhibit the activity of opportu-
nistic pathogens; and siderophores, which could provide iron to the 
host as well as trigger induced systemic resistance43–45.

As extreme climate events become more prevalent, crops will 
probably experience multiple periods of intermittent drought 
within a growing season46 and the ability to quickly recover and 
prepare for future drought events could be vital for survival. Plants 
are able to prepare for these future drought events through the 
development of a ‘stress memory,’ a series of morphological, molec-
ular and physiological modifications that plants undergo during 
an initial drought episode that prime a more robust response to 
subsequent drought events47,48. As an extended root phenotype49, 
rhizosphere and endosphere communities might also contrib-
ute to this stress memory by preserving aspects of their compo-
sitional response to drought on rewatering. Our results suggest 
that a ‘memory’ of drought is retained in the endospheric root 
microbiome through the patterns of overall diversity, underde-
velopment of late communities and differences in abundances of 
key taxa, such that plants that have undergone drought stress are 
distinguishable by microbiome compositions from those that have 
not. These findings also have implications for strategies to harness 
microbial communities to confer drought tolerance in field crops. 
For example, as drought-responsive microorganisms can display 
compartment-specific recovery trends, identifying taxa that are 
effective at colonizing the endosphere might be important for sus-
tained protection. Furthermore, in conditions where intermittent 
drought events are frequent, it would be preferable to select candi-
dates for beneficial taxa from the subset of taxa that persist within 
the root beyond the drought period and avoid those that rapidly 
disappear at the end of the drought event.

Methods
Experimental design. All data presented in this study were gathered from 
two controlled greenhouse experiments and one controlled growth chamber 
experiment performed at the University of California-Davis. !e main study was 
carried out in the winter/spring of 2018, the complementary study was a small 
pilot experiment carried out in the summer of 2017 and the growth chamber 
experiment was carried out in the winter of 2019.
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Main experiment. To account for potential thermal gradients previously associated 
with evaporative cooling systems50, we defined four experimental blocks 
covering the area between the cooling pad and the extracting fans installed in 
our greenhouse. Each block consisted of five plastic containers, each holding 16 
potted plants. Watering treatments were assigned to individual plastic containers 
following the arrangement displayed in Supplementary Fig. 5: each drought 
treatment (DS1, DS2, DS3) was assigned to four plastic containers while the 
well-watered control treatment (WC) was assigned to eight plastic containers. 
The additional WC replicates were exclusively used to train the random forests 
models. Ten days after seedling transplantation, samples were collected roughly 
every 10 days (Fig. 1a) for a total of 13 collection time points spanning 136 d. This 
design resulted in four biological replicates per treatment and collection time 
point combination.

Complementary experiment. Fifty potted plants were randomly assigned to one 
of two watering regimes: DS or WC. Samples were collected at the 28-, 350-, 
42-, 49- and 56-d marks, encompassing one predrought, three drought and one 
postdrought time points. This design resulted in five biological replicates per 
treatment and collection time point combination.

Semisterile phenotyping experiment. One hundred and fifty-six seeds were 
inoculated with SLBN-177, SLBN-111 or a mock treatment in closed, sterile 75-ml 
culture tubes with an initial total of 28 WC and 24 DS replicates for each isolate 
treatment. After 10 d, a 2-week period of drought stress was initiated followed by a 
week of recovery, at which point the plants were harvested.

Plant growth. Oryza sativa subsp. japonica cv. M-206, the most commonly grown 
rice cultivar in California, was used for all experiments described in this study. 
Dehulled seeds were treated with a 50% commercial bleach solution (Clorox, final 
concentration of NaOCl 3.7%) for 5 min followed by five washes with sterile water. 
Surface-sterilized seeds were plated on Murashige and Skoog agar, and germinated 
in a growth chamber for 7 d. Individual seedlings were then transplanted to 
pots holding agricultural soil collected from a rice field in Arbuckle, California 
(39°0’42.235”N, 121°55’19.632”W). This field had a history of 8 years of rice 
monoculture before sampling, and chemical analysis on this soil had previously 
been performed51 (Supplementary Table 10).

Watering regimes. During non-drought periods, deionized water was added 
directly to the plastic containers holding the individual potted plants to keep 
the soil under submergence. Given that the amount of water needed varied 
throughout the life cycle of rice plants, irrigation was performed ad libitum 
every other day. Drought was initiated by draining all water from the plastic 
containers and allowing soils to dry. In the main experiment, DS1, DS2 and DS3 
drought treatments started 41 d after transplantation and lasted for 11, 21 and 
33 d, respectively (Fig. 1a). In the complementary study, drought started 28 d after 
transplantation and lasted for 21 d. Similar to the approach used in our previous 
drought study8, once plants started exhibiting drought stress symptoms (leaf 
curling and senescence), enough deionized water (roughly 250 ml) was added to 
each tub to ensure plants remained alive but under stress (as evidenced by the 
wilting displayed by plants receiving drought treatments, Supplementary Fig. 1). 
At the end of the drought period, water was added to the plastic containers to 
recover the plants.

Gravimetric water content measurements. For each pot collected, soil samples 
were harvested and placed in 15-ml Falcon tubes. After recording the initial 
weight, samples were allowed to dry inside a 42 °C oven for 4 months to ensure 
equal drying across samples collected at different time points. The dry weight of 
the samples was recorded and the percentage of moisture was calculated.

Isolation of microbes. Bacterial colonies were isolated from rhizosphere and 
endosphere communities of rice plants derived from a previous study8. Briefly, rice 
plants were grown in three different agricultural soils (including the one used in 
this experiment) under controlled greenhouse conditions. One-month-old plants 
were drought stressed for 3 weeks and root systems were harvested. Isolates were 
then collected by plating both rhizosphere soil and ground root tissue resuspended 
in sterile PBS on Actinomycete Isolation Agar (Himedia).

Semisterile phenotyping experiment. Glass culture tubes (75 ml) filled with 15 g 
of wetted calcined clay were autoclaved twice for 1 h with 24 h between autoclave 
cycles. Dehulled rice seeds were sterilized with a 15-min bleach treatment (3.7% 
NaOCl), followed by a 5-min ethanol treatment (70% EtOH), followed by five 
washes with sterile water. Isolates SLBN-177 and SLBN-111 were grown in 
Luria-Bertani liquid media and diluted in half-strength Murashige and Skoog 
media with no added sugar to an optical density (OD600) of 0.01. Individual 
surface-sterilized seeds were placed in each tube and treated with 10 ml of sterile 
or inoculated Murashige and Skoog medium. Tubes were placed in four trays 
with seven tubes designated for the WC treatment and six tubes designated for 
the drought treatment. Plants were grown in sterile conditions for 10 d. After 
this period, the culture tube lids were removed and drought-treated plants were 

allowed to dry out for 14 d, while WC plants were irrigated periodically with sterile 
water (2–3 d to maintain a water level approximately even with the height of the 
clay, approximately 2–4 ml per tube). After the drought period, all plants were 
well watered for a 7-d recovery period. Plants were then harvested, and growth 
phenotypes (shoot and root length and fresh weight, as well as the number of 
leaves and roots) measured. Additionally, sections of the roots were washed with 
sterile water and flash frozen for 16S rRNA gene amplicon sequencing. Tubes with 
non-germinating seeds or early seedling death (plants that never grew larger than 
5 cm) were excluded from the analysis. This resulted in a final replication of 25 and 
18 for SLBN-177-treated plants, 20 and 17 for SLBN-111-treated plants, and 18 and 
nine for control plants for watered and drought conditions, respectively.

Microbiome sample collection, processing and DNA extraction. Root sample 
collection, compartment processing and DNA extraction were performed as 
previously described52. Briefly, we scooped whole plants outside the pots and 
shook them vigorously to remove all the soil not firmly attached to the roots. We 
then collected the 5 cm of root tissue immediately below the shoot–root junction 
in a 50-ml Falcon tube filled with 15 ml of sterile PBS. Rhizosphere samples 
were collected by vortexing the roots and collecting 500 µl of the resulting soil 
suspension in PowerBead tubes (Mo Bio Laboratories). Endosphere samples were 
collected by washing the roots in fresh PBS to further discard any remaining 
soil and sonicating them three times (50 to 60 Hz for 30 s). Sonicated roots were 
placed in PowerBead tubes and homogenized by intense agitation for 1 min (Mini 
Beadbeater. BioSpec Products). DNA extractions were performed immediately 
after compartment separation, following the PowerSoil DNA isolation kit 
(Mo Bio Laboratories) protocol. No negative controls were included during 
DNA extractions, although the same kit reagents were used when processing 
samples collected at the same time point. As such, we do not expect microbial 
contamination to confound comparisons between drought-treated and control 
samples within individual time points.

16S rRNA gene amplicon library preparation. Library construction 
followed a previously described dual-indexing strategy52,53. For 16S rRNA 
gene libraries, the V4 region was amplified using the universal primers 515F 
(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT)53. 
No measures were taken to minimize amplification of host chloroplast and 
mitochondria sequences. Amplification was carried out with the following 
touchdown PCR program: a first phase consisting of 95 °C for 5 min, followed by 
seven cycles of 95 °C for 45 s, 65 °C for 1 min (decreasing at 2 °C per cycle) and 
72 °C for 90 s, with a second phase consisting of 30 cycles of 95 °C for 45 s, 50 °C 
for 30 s and 72 °C for 90 s, followed by a final extension at 72 °C for 10 min. All 
PCR amplifications were performed using the HotStar HiFidelity polymerase kit 
(Qiagen). After running a 1% agarose gel to verify proper amplification, libraries 
were cleaned with AmPure XP magnetic beads (Beckman Coulter, Inc.), quantified 
(Qubit double-stranded DNA HS assay kit, Thermo Fisher Scientific) and pooled 
in equimolar concentrations. Pooled libraries were then concentrated, gel purified 
(nucleoscopic gel and PCR cleanup kit, Macherey-Nagel), quality checked 
(BioAnalyzer HS DNA kit, Agilent Technologies) and submitted for 2- by 250-bp 
Miseq sequencing (Illumina).

16S rRNA gene amplicon sequence processing. Sequence processing followed 
a similar workflow as the one implemented in previous studies characterizing 
the root communities or rice plants8,11,14. Briefly, the paired-end reads were 
demultiplexed with custom scripts (https://github.com/bulksoil/BananaStand) and 
assembled into single sequences with PANDAseq54. Chimeric sequences were then 
detected and discarded with usearch61 (ref. 55). OTU clustering at 97% identity was 
performed with the QIIME56 implementation of UCLUST55, using a close reference 
strategy against the 13_8 release of the Greengenes 16S rRNA gene sequence 
database57. OTUs classified as mitochondria and chloroplast were discarded 
from the OTU table (except in the semisterile phenotyping experiment), and 
non-prevalent OTUs (defined as OTUs not present in at least 5% of our samples) 
were filtered out. On removal of reads classified as mitochondria or chloroplast, 
38.3% of endosphere reads and 99.2% of rhizosphere reads were kept. On removal 
of non-prevalent OTUs, 38.1% of endosphere reads and 98.5% of rhizosphere reads 
remained. Thus, prevalence filtering removed less than 1% of reads classified  
as microbial

Reanalysis of published datasets. Data from Santos-Medellin et al.8 and 
Liechty et al.14 (from the same experiment as Edwards et al.11) were processed 
independently as described above, up until clustering. The first dataset included 
rhizosphere and endosphere profiles derived from four rice cultivars (Oryza 
glaberrima TOg7102 and CG14, and Oryza sativa ssp. indica IR20 and ssp. japonica 
M-206) grown in agricultural soils from Arbuckle, Biggs and Davis, California. 
Samples from this study encompassed well-watered and drought-stressed plants 
collected at the end of a 21-day drought treatment. The second dataset consisted 
of rhizosphere and endosphere profiles associated with two rice cultivars (Oryza 
sativa Sabine and the commercial cultivar CLXL745) grown in an agricultural 
field in Arkansas. Samples from this study spanned eight time points collected 
every 2 weeks throughout the life cycle of rice plants. Processed sequences from all 
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studies (including the ones derived from this work) were concatenated and OTU 
clustering was performed following the same parameters as described above.

Genome sequencing. SLBN-177 was grown in liquid Luria-Bertani for 24 h and 
DNA was extracted with a Qiagen Blood and Tissue kit. DNA sequencing was done 
in the laboratory of B. Weimer (UC Davis) as part of the 100K Pathogen Genome 
Project58 as previously described59. Approximately 600 ng of purified genomic DNA 
was used to construct a sequencing library using the KAPA HyperPlus library 
preparation kit (Roche Diagnostics). Library size distribution verification was 
done on Caliper LabChip GX (Perkin Elmer) and library quantification was done 
with the KAPA Library Quantification Kit (Roche Diagnostics). Pooled libraries 
were sequenced on the Illumina HiSeq X Ten using a PE150 protocol. Reads 
were trimmed with Trimmomatic60, assembled with SPAdes61 and annotated with 
prokka62, all with default settings. Contigs shorter than 1,000 bp or with an average 
coverage less than 20× were excluded. KEGG Ontology terms were extracted from 
the prokka output using the script Prokka2KEGG (https://github.com/SilentGene/
Bio-py/tree/master/prokka2kegg). Secondary metabolite biosynthesis gene clusters 
were identified using antiSMASH63.

Statistical analyses. All analyses were conducted in the R Environment v.3.5.1  
(ref. 64). For beta-diversity analyses, we used phyloseq65 to calculate weighted UniFrac 
distances66 on OTU counts normalized via variance-stabilizing transformation67,68 
using the prebuilt ‘97_otu.tree’ phylogeny included in the Greengenes database57. 
We carried out unconstrained principal coordinate analysis using the pcoa() 
function from the ape package69. PerMANOVA analyses were performed with 
the adonis() function implemented in the vegan package70. For all PerMANOVA 
tests, permutations were constrained to each experimental block (Supplementary 
Fig. 5), using the strata argument. For alpha-diversity analyses, we used vegan to 
calculate the Shannon index on OTU counts normalized via variance-stabilizing 
transformation. All plots were generated with ggplot2 (ref. 71).

Linear mixed models. Linear mixed models were implemented with the lmerTest 
package72 to assess the effect of the experimental factors on percentage of soil 
moisture, community composition (as captured by the first principal coordinate) 
and microbiome age. In all models, watering treatment, collection time point 
and their interaction were treated as fixed effects, while experimental blocks 
(Supplementary Fig. 5) were treated as random effects. Within each time point, 
pairwise contrasts comparing individual drought treatments (DS1, DS2 and 
DS3) against WCs were performed using the emmeans package73. False discovery 
rate (Benjamini–Hochberg procedure) was used to correct for multiple testings. 
Similarly, in the semisterile experiment, watering treatment and isolate inoculation 
were treated as fixed effects and ‘tray’ was treated as a random effect. Games–
Howell P value adjustment was used to determine post hoc contrast significance 
using the rstatix package74. Compact letter display was determined with the 
multcompLetters() function from the multcompView package75.

Differential abundance testing. The DESeq2 package67,68 was used to implement 
negative binomial generalized models to test the effect of experimental factors 
on the abundance of individual OTUs. The models included watering treatment, 
collection time point and their interaction as fixed effects. Within each time point, 
pairwise Wald tests were performed to compare individual drought treatments 
(DS1, DS2 and DS3) against WCs. For each contrast, effect size shrinkage was 
performed using the lfcShrink() function. To account for multiple testings within 
and across contrasts, all comparisons performed within each compartment 
were pooled together before using false discovery rate (Benjamini–Hochberg 
procedure) to adjust P values. Groups of differentially abundant OTUs with 
similar drought responses were identified by performing hierarchical clustering 
(Ward’s algorithm) on shrunken log fold changes with the hclust() function64. 
Finally, an additional taxonomic classification was performed by recovering the 
representative sequences of each differentially abundant OTU and comparing 
their V4 region against the SILVA database (132 release)76 via the UCLUST 
taxonomy assigner55. These alternative taxonomic assignments are provided in 
Supplementary Table 4 as a complement to the Greengenes-based classification 
used for all the analyses in this study.

Random forest models. The randomForest package77 was used to develop random 
forest models for each compartment following an approach previously used to 
characterize the age of rice plants as a function of root-associated microbiome 
composition11. Briefly, a training dataset consisting of 52 rhizosphere and 52 
endosphere profiles derived from an additional batch of well-watered plants  
(WC_TRN in Supplementary Fig. 5) was used to generate full random forest models 
by regressing the relative abundances of individual OTUs against the chronologic 
age of rice plants. To estimate the optimal number of age-discriminant OTUs 
needed to perform accurate predictions, we first used the importance() function 
to rank individual OTUs on the basis of their contribution to the accuracy of the 
models. We then used the rfcv() function to perform a tenfold cross-validation that 
evaluated model performance as a function of the number of top-age-discriminant 
OTUs included in the model. This approach revealed that optimal performance 
was achieved when models included the top 65 age-discriminant OTUs (Extended 

Data Fig. 7a). Therefore, the top 65 OTUs identified in each compartment were 
used to train compartment-specific sparse models that were then applied to a 
validating dataset encompassing the rest of well-watered WC samples not used 
to train the models. Finally, these sparse models were applied to DS samples to 
estimate the microbiome ages before, during and after drought.

To calculate the relative microbiome maturity of drought-stressed plants, we 
adapted an approach previously used to study the effect of malnourishment on 
gut microbiome succession of infants during early development78. First, for each 
compartment, we used the validating dataset of WC plants to fit a loess curve 
between host chronological age and the microbiome age predicted by our sparse 
models (Extended Data Fig. 10a). These curves served as baselines of microbiome 
development during the life cycle of well-watered rice plants. Relative microbiome 
maturity was then estimated by calculating the difference between the predicted 
microbiome age of each drought-stressed plant and the baseline microbiome age of 
well-watered plants of the same chronological age (Extended Data Fig. 10b,c).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw reads have been deposited in the Sequene Read Archive under BioProject 
PRJNA551661. The SLBN-177 sequence has been deposited within the 100K 
Project BioProject PRJNA743693 with accession number SRR15049341. The 
Greengenes database (v.13_8) can be downloaded from http://qiime.org/home_
static/dataFiles.html. The SILVA database (v.132) can be downloaded from https://
www.arb-silva.de/download/archive/qiime/.

Code availability
All scripts and intermediate files are available in GitHub (https://github.com/
cmsantosm/RiceDroughtRecovery).
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Extended Data Figure 1 Compartments harbor compositionally distinct microbial 
communities. a, Principal coordinates analysis (PCoA) performed on weighted UniFrac 
distances across the whole dataset. Colours indicate compartment. b, Distribution of rhizosphere 
and endosphere within-group distances, that is distances between samples within each treatment 
and time point combination. The large variation displayed by endospheres in panels a and b is, in 
part, a result of the strong effect that drought treatments had on this compartment. c-f, PCoA 
performed on the rhizosphere (c & e) and endosphere (d & f) subsets. In panels c and d, colours 
indicate plant age. In panels e and f, data points are faceted by plant age and coloured by drought 
treatment. 
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Extended Data Figure 2 Complete set of drought-responsive OTUs. Heatmap displaying the 
log2 fold-changes between water controls and drought treatments: depletion under drought tends 
towards green while enrichment under drought tends toward brown. Each row represents a 
differentially abundant OTU detected as significant (Wald test, FDR < 0.05) in at least one pair-
wise comparison. Horizontal facets indicate each of the modules detected through hierarchical 
clustering in the rhizosphere (RS) and endosphere (ES). Clusters shown in Fig. 2b are 
highlighted in black. Vertical dotted lines delimit the periods of suspended irrigation for each of 
the drought treatments. 
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Extended Data Figure 3 Modules of drought responsive OTUs exhibit a strong taxonomic 
signature. Classification of the differentially abundant OTUs in each of the distinct drought 
modules detected through hierarchical clustering. Each tile indicates the number of classified 
OTUs in a particular module, while the colour represents membership to a specific Phylum / 
Proteobacteria class. Orders with only one representative have been excluded to ease 
visualization. 
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Extended Data Figure 4 OTU 1037355 displays reproducible trends in an independent 
experiment. a, Timeline of the watering regimes followed by control (WC) and drought-stressed 
(DS) plants. Horizontal lines represent the watering status during the experiment: solid segments 
indicate periods of constant irrigation while dotted segments indicate periods of suspended 
irrigation. Upside down triangles mark each of 5 collection time points. b, Ranked relative 
abundances of individual community members throughout time. Each ribbon represents a single 
OTU in the community: for each time point, width indicates its relative abundance while the 
position across the y axis indicates its rank within the community. The most abundant member of 
the semipersistent enrichment module, Streptomyces sp. (OTU ID: 1037355), is highlighted. In 
all panels, the vertical dotted lines delimit the periods of suspended irrigation in each of the 
drought treatments. c,d, Beta-diversity patterns in the rhizosphere (c) and endosphere (d) 
communities. In both cases, the y axis displays the position of each sample across the first 
principal coordinate (PCo) from a weighted UniFrac PCo analysis and the x axis displays the age 
of the plant at the moment of sample collection. In all panels, the vertical dotted lines delimit the 
periods of suspended irrigation for the drought treatment. 
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Extended Data Figure 5 OTU 1037355 is highly occurring and displays a significant 
drought enrichment across compositionally distinct soils. a, Occupancy-abundance curves for 
rhizosphere and endosphere communities of rice plants grown in three California soils 
(Arbuckle, Biggs, and Davis), and one Arkansas field. The x axis displays the log-transformed 
mean relative abundance of each OTU while the y axis displays the percent of samples in which 
each OTU was detected. OTU 1037355 is highlighted in orange. b, Relative abundance of OTU 
1037355 in rhizosphere and endosphere communities of 49-day-old rice plants grown under well 
irrigated (WC) or drought-stressed (DS) conditions. Asterisks on top indicate a significant 
difference (PFDR < 0.001) between WC and DS treatments. Statistical significance was 
determined by negative binomial generalized linear models and pairwise Wald tests (two-sided) 
corrected with the Benjamini-Hochberg procedure. 



 

50 
 

 
 
Extended Data Figure 6 Other phenotypic traits were not impacted by Streptomyces sp. 
SLBN-177. a, Distribution of measured plant phenotypes (number of roots, root weight, shoot 
weight, and shoot length) across microbial treatments and watering regimes. b, Protein alignment 
of putative iaaM genes from SLBN-177, S. coelicolor, S. scabiei, and S. sp ADI96-02 
(refs. 16,17). Black lines indicate an amino acid mismatch with a negative score on the 
BLOSUM62 matrix, and dark grey bars represent a mismatch with a positive score. The vertical 
black dashed lines indicate the bounds of the amino oxidase functional domain. c, Relative 
abundances of inoculated isolates in the endospheres of rice plants. Reads identified as 
mitochondria or chloroplast (collapsed as organellar reads and represented in black) were not 
discarded in order to measure the degree of colonization. Reads classified as OTUs other than 
1037355 (SLBN-177) and 1108350 (SLBN-111) were collapsed and are represented in gray. 
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Extended Data Figure 7 Random forests can identify age discriminant OTUs. a, Cross 
validation error as a function of the number of OTUs used in each model. For both 
compartments, the lowest error was detected when using the 65 most important taxa. b, Overlap 
between the age-discriminant OTUs and the drought-responsive OTUs detected in each module 
(Fig. 2b). c, Hierarchical clustering of the relative abundances of the age-discriminant OTUs. 
The heatmap displays the z-transformed mean relative abundances of each OTU across drought 
treatments and time points. The colours at the left end of each vertical facet indicate the 
longitudinal trends exhibited by each taxa. In all panels, the vertical dotted lines delimit the 
periods of suspended irrigation for the drought treatment. 
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Extended Data Figure 8 Taxonomic classification of the age-discriminant OTUs in each of 
the longitudinal trends. Each tile indicates the number of classified OTUs in a particular 
module, while the colour represents membership to a specific Phylum / Proteobacteria class. 



 

53 
 

 
 
Extended Data Figure 9 Drought stress delayed transition to flowering. a, Developmental 
growth stages of well-watered and drought-stressed rice plants through the experiment. Photos of 
each sample were taken at each time point and defined as either pre-panicle emergence (no 
portion of the panicle visible), panicle emergence (panicle partially emerged from flag leaf), 
anthesis (panicle fully emerged and anthers visible), grain filling (panicles bent over instead of 
standing upright), or maturity (flower colour appears yellow). b, Developmental growth stage 
and microbiome age predictions of rhizosphere and endosphere communities across drought 
treatments (D1, D2, and D3). The dashed curve represents the baseline microbiome development 
under well-irrigated conditions and was calculated by fitting a loess curve between the predicted 
microbiome age and the chronological plant age in the control (WC) test set. 
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Extended Data Figure 10 Calculation of relative microbiome maturity of drought-stressed 
samples. a, After applying the sparse random forest models to the validating set of well-watered 
plants, a loess curve (dashed green line) was fit between host chronological age (x axis) and 
microbiome predicted age (y axis). b, Using the fitted loess curve as a baseline of microbiome 
development, relative microbiome maturity was estimated by calculating the difference between 
the predicted microbiome age of an individual sample and the corresponding baseline 
microbiome age of well-watered plants. c, Using the approach described in B, relative 
microbiome maturity was calculated for all drought-stressed samples. 
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Supplementary Figure 1. 
Plant status throughout the experiment. Representative set of plants across all watering treatments during 
and after drought. Yellow vertical lines indicate the drought period for each treatment. In all cases, drought-
stressed plants survived and resumed their development during recovery.  
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Supplementary Figure 2. 
Alpha diversity trends across treatments. Alpha diversity trends the rhizosphere (a) and endosphere (b) 
communities. In both cases, the y-axis displays the Shannon index of each sample and the x-axis displays 
the age of the plant at the moment of sample collection. Trend lines represent the mean values for each 
treatment throughout the experiment. Asterisks on top indicate a significant difference (PFDR < 0.05, 
Benjamini-Hochberg correction) between the control and each of the drought treatments at a specific time 
point. Statistical significance was determined by ANOVA and pairwise contrasts (two-sided) corrected with 
the Benjamini-Hochberg procedure. Supplementary Table 2 contains the effect sizes, standard errors, and 
P-values for all pairwise contrasts. 
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Supplementary Figure 3. 
Streptomyces sp. SLBN-177 clusters with OTU 1037355. (a) Sequence similarity along the V4 region of 

the 16S rRNA gene. The upper band represents the most abundant sequence of OTU 1037355 detected in 

the main drought experiment while the rest of the bands represent individual isolates collected from rice 

roots. Black lines indicate single nucleotide polymorphisms relative to OTU 1037355. All isolates 

highlighted in red cluster with OTU 1037355 at a 97% identity, while the isolate highlighted in yellow 

clusters with OTU 1108350. (b) Occupancy-abundance curves for the rhizosphere and endosphere 

communities. The x-axis displays the log-transformed mean relative abundance of each OTU while the y-

axis displays the percent of samples in which each OTU was detected. OTU 1037355 and 1108350 are 

highlighted.  
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Supplementary Figure 4. 
Experimental setup for the phenotyping experiment. Calcined clay, inoculum, and a surface sterilized 
seed were placed in 75 ml glass culture tubes, and were grown axenically for 10 days, followed by growth 
in an open system under drought or well-watered conditions. This diagram corresponds to the timeline in 
Figure 4a and depicts an example tube under each condition at each stage of the experiment. 
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Supplementary Figure 5. 
Experimental design for the main drought experiment. Spatial distribution of experimental treatments 
in the main greenhouse experiment. Watering treatments were assigned to plastic containers (colored 
boxes), each holding 16 individual potted plants. WC_TRN refers to the well-watered samples that were 
used to train the random forest models. Black outlines delineate 4 experimental blocks spanning the area 
between the cooling pad and extracting fans installed in the greenhouse.  
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Abstract 

Nitrogen is a limiting nutrient in rice paddy soil and optimizing fertilizer use is necessary to 

avoid waste and environmental harm. A key factor in understanding the nitrogen cycle is the 

microbiome, which can nitrify, denitrify, and fix nitrogen from the environment, thus altering the 

available forms of nitrogen for the plant. Nitrogen fertilizer in rice paddies can lead to the 

emission of the greenhouse gasses nitrous oxide and methane. Many studies have investigated 

the effects of nitrogen on methane emissions, though the results are often conflicting: some 

studies demonstrate an increase in methane emissions with the addition of fertilizer while others 

demonstrate a decrease. One possible explanation for these various results is that soils from 

different geographic locations harbor unique microbial communities, and the addition of nitrogen 

could affect these communities and functions in a soil-dependent fashion. The unique impacts on 

different taxa or functions could then subsequently impact the syntrophic relationships with and 

production of precursor molecules for methanogenesis. To investigate this possibility, we grew 

rice in three different soils originating from different rice paddies across northern California and 
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tested the effect of urea fertilizer on the root associated microbiomes. We identified both shared 

and soil-specific responses among the fertilizer-affected taxa. We further profiled the shifting 

abundances of microbial functions in the rhizosphere samples of a single soil through shotgun 

metagenomics and found that the high nitrogen treatment samples had a greater abundance of 

genes associated with methanogenesis pathways, fermentation pathways that produce 

methanogenic precursor molecules, and phenolic degradation pathways that produce the 

precursor molecules for the fermentation pathways. These results shed light on how urea 

fertilizer affects nitrogen and carbon cycling in rice-associated microbiomes. 

Author Contributions 

This study was conceptualized by ZL, RM, and VS. RM setup the experiment, and ZL harvested 

samples and took phenotypic measurements with the assistance of CS-M and EV. ZL extracted 

DNA, sequenced the 16S region, and analyzed the data. ZL and CS-M processed reads and 

assembled the metagenome into contigs, and ZL was responsible for binning contigs into MAGs, 

and all downstream analysis. 

 
Introduction 

Rice is a staple crop for over half of the world population1, and optimizing yields is necessary to 

meet future demands2. Nitrogen is often the most limiting nutrient in rice paddy soil3, and the addition of 

nitrogen fertilizer robustly increases yield4. However, optimizing nitrogen use is necessary, as 

overfertilization is ecologically harmful. Over fertilization in rice paddies can lead to pollution of nearby 

bodies of water through runoff and leaching5–7, and nitrification of fertilizer leads to the production of 

nitrous oxide, a potent greenhouse gas with 273 times the global warming potential of carbon dioxide8. 

Over fertilization leads to exponential growth in the rate of nitrous oxide emissions2, demonstrating the 

importance of optimizing fertilizer application. Understanding the factors affecting the assimilation of 
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nitrogen fertilizer by rice is necessary in order to increase yields while mitigating the environmental costs 

of the application of nitrogen fertilizer. The assimilation of nitrogen in rice is mediated by root-associated 

microbes as they can nitrify, denitrify, and fix nitrogen, altering the availability of nitrogen for the host3,9, 

so it is necessary to understand how microbes are affecting and influenced by nitrogen fertilization in 

order to optimize fertilizer use.  

Nitrogen application can also directly or indirectly affect the rate of emissions of another 

microbially-produced greenhouse gas, methane. Methane has a global warming potential 27 times higher 

than carbon dioxide8, and is produced to a higher degree than nitrous oxide in rice paddies10. 

Methanogenic archaea produce methane from carbon sources originating from the rice plant11. Up to 60% 

of the methane produced by methanogens can also be oxidized by methanotrophs12. Methane emissions 

can be directly impacted by nitrogen fertilizers by either positively stimulating the activity of 

methanotrophs, or negatively by causing competition between methane and ammonia as substrates for 

methane monooxygenase, the key enzyme in methane oxidation13,14. Fertilizer can indirectly affect 

methane emissions by increasing root exudation in rice, thus providing a greater carbon pool available to 

methanogens15. Increased fertilization is associated with more methane originating from carbon from the 

plant rather than soil organic matter, further demonstrating the link between nitrogen fertilizer, exudation, 

and methane16. Many studies have investigated the overall effect of fertilizer on methane emissions, and 

have found conflicting results, with some studies showing a positive correlation, and others a negative 

correlation between application rate and methane emissions17, demonstrating that a variety of factors 

likely contribute to this relationship. 

One factor that could affect the differences in observed methane emissions and nitrogen cycling 

processes is variation in the initial microbial community structure. Studies of rice associated microbiomes 

have demonstrated that the soil source is a major factor in determining community composition18–21. 

These studies have shown that soil communities can respond to stimuli in a soil specific manner19 and that 

differences in soil communities can also affect plant phenotypes20. Further consideration must also be 

given to the spatial aspect of the microbiome, as community functions likely vary significantly between 
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the semi-anaerobic rhizosphere (soil directly surrounding the root) and the aerobic endosphere (root 

interior). In this study, we fertilized rice plants grown in three agricultural soils with three different 

treatments of urea to determine to what degree responses of rhizosphere and endosphere communities 

were soil specific or universal. We further profile the full metagenome of rhizosphere samples from 

one of the soils through genome-resolved metagenomics to determine microbial functions affected by 

nitrogen fertilizer. Our results demonstrate that responses to urea are largely soil-specific, though general 

trends are identified in the Gammaproteobacteria and Actinobacteria. Furthermore, we find that the 

addition of nitrogen increased the abundances of pathways and genes associated with aromatic compound 

degradation, fermentation, and methanogenesis. These results further elucidate how urea fertilizer affects 

the interactions of the microbiome and its host. 

 
Results 

Experimental Design and Treatment effects on plant phenotype 

To characterize the effects of urea fertilizer on the rice microbiome, we grew rice (Oryza sativa 

subsp. japonica cv. Kitaake) in 3 different California paddy soils originating from Arbuckle, Biggs, and 

Davis, California in a greenhouse, and exposed them to one of three nitrogen treatments: no added urea 

(no N), low addition of urea (low N) and a high addition of urea (high N) applied before transplanting 

seedlings (see methods). The “no N” plants began to show signs of nitrogen stress (reduced growth and 

yellow-colored leaves) after 36 days post transplantation, and samples were harvested after 50 days post 

transplantation. For each plant, we profiled the endosphere and rhizosphere associated bacterial and 

archaeal communities through high-throughput amplicon sequencing of the V4 region of the 16S 

ribosomal RNA gene. Amplicon sequence variants (ASVs) corresponding to plant organellar reads, as 

well as ASVs not present in more than 5% of samples were removed, resulting in 2221 ASVs, with a 

mean sequencing depth of 21,335 reads. 
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The height, shoot weight, number of tillers, and leaf color were measured in all plants before 

sampling the microbiome. ANOVA demonstrated that the height, weight, number of tillers, and some 

color aspects (the R and G values of the RGB color spectrum, as well as lightness and hue) were affected 

by the nitrogen treatment (Figure 1, Figure S1, Table S1). Investigating the contrasts demonstrated that 

the number of tillers and weight increased in both nitrogen treatments across all soils, and the height 

increased in both treatments in the Biggs and Arbuckle samples and in the high N treatment in the Davis 

samples (Table S2). The R and G components of the RGB color value were similarly decreased in both 

treatments in Arbuckle and Biggs, and in the high N treatment in Davis (Table S2). A greater value of 

both R and G is indicative of more yellow coloring, which is indicative of nitrogen stress22. The hue was 

significantly increased in the Biggs samples with added nitrogen, further indicating a shift from yellow to 

green colors, and lightness was reduced in all comparisons to the high N treatment (Table S2). 

Figure 1 
Phenotypic responses to nitrogen fertilizer of plants grown in three agricultural soils. (A) The number of 
Tillers, height, and weight of plants grown in each condition. Colors represent the soils. Dots represent 
individual samples and the line represents the average. (B) Average leaf color of plants grown in each 
treatment combination. The columns correspond to each soil and each row corresponds to a nitrogen 
treatment. 
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Diversity patterns reveal soil-specific and soil-independent responses of the microbiome to urea 

at the phylum and ASV levels 

Permutational multivariate analysis of variance (PERMANOVA) on Bray-Curtis dissimilarities 

demonstrated that the microbial composition was significantly affected by soil, compartment, and 

nitrogen level, as well as all second level interactions of the listed factors (Table 1). PERMANOVA ran 

on samples separated by compartment further demonstrated that nitrogen level significantly altered 

microbial composition in the endosphere and rhizosphere samples, but not the bulk soil samples (Table 

S3). The samples grown in Davis soil harbored a more divergent community compared to the Arbuckle 

and Biggs grown samples, as demonstrated by principal coordinate analysis (Figure 2A). Constrained 

analysis of principal coordinates with the data conditioned on soil shows a gradient response to the level 

of nitrogen in both the rhizosphere and endosphere samples, but not the bulk soil samples (Figure 2B), 

demonstrating that microbial response to nitrogen is dependent on host association. 

Phyla-level analysis further revealed differences between soils and nitrogen treatments (Figure 

2C). Of particular note is the Myxococcota in the endosphere of Arbuckle-grown samples compared to 

Biggs- and Davis-grown endospheres. To identify significant responses to nitrogen fertilizer at the phyla 

level, beta regression was performed within each soil and compartment, with no N, low N, and high N 

assigned the numbers 0, 0.5, and 1 respectively (Figure 2D). This analysis revealed similar patterns 

between the soil, with a significant increased relative abundance (with increasing N) of 

Gammaproteobacteria in both the rhizosphere and endosphere samples with all soils, as well as a 

significant decrease in Actinobacteria in the endospheres with all soils. Other phyla had varying 

responses, such as Verrucomicrobiota in the endosphere, which was not significantly affected in 

Arbuckle, significantly decreased in relative abundance in Biggs, and significantly increased in Davis. 
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Figure 2 
Beta diversity patterns show responses of the microbiome to nitrogen and soil source. (A) PCoA of Bray-
Curtis distances. Shapes correspond to compartment and color corresponds to soil. (B) Constrained 
analysis of principal coordinates plot conditioned on soil source and colored by treatment. Facets are 
showing the response of the communities to nitrogen in each compartment. (C) Phylum profiles in each 
treatment combination. Colors correspond to percent belonging to each of the top 10 phyla in the dataset. 
(D) Beta regression of each phylum within each compartment and soil in response to nitrogen. The dots 
represent the beta regression coefficient (showing an increase in abundance in response to nitrogen with a 
coefficient greater than 0 and vice-versa). Filled dots are significant responses of phyla to nitrogen, and 
white dots are not significant (P < 0.05). Lines are connecting phyla within each soil to show the trends of 
that phyla through the compartments. BS = bulk soil, RS = rhizosphere, ES = endosphere. 
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Differential abundance analysis identified 161 ASVs that were affected by the nitrogen treatment 

in either the endosphere or rhizosphere in at least one soil. The nitrogen-responsive ASVs were almost 

entirely soil source specific, with there being two nitrogen-responsive ASVs shared between Arbuckle 

and Davis rhizospheres, and one ASV uniquely shared in each pair of soils in endosphere samples. Even 

though there was little overlap in ASVs with a significant nitrogen response between soils, we 

characterized the broad trends of ASVs that were nitrogen responsive in at least one soil by clustering the 

z score of their relative abundance across all soils to identify similar global trends among ASVs. 

Nitrogen-responsive ASVs were clustered into five different clusters and the cumulative relative 

abundance of each cluster was compared between soils (Figure 3). Clusters two and four show an 

increasing cumulative relative abundance with addition of nitrogen in the endosphere and the rhizosphere, 

whereas cluster five decreased in cumulative relative abundance with the addition of nitrogen. Clusters 

one and three have soil-dependent responses to the nitrogen treatment. The two clusters that increase in 

relative abundance have many Gammaproteobacteria, with 19 and 9 ASVs assigned to cluster two and 

four respectively. Many of these ASVs belong to the families Comamonadaceae and Rhodocyclaceae, 

with 9 and 6 ASVs respectively in cluster two and 3 and 3 in cluster four. The number of 

Gammaproteobacteria in these nitrogen-responsive clusters aligns with the overall increase in 

Gammaproteobacteria in response to nitrogen seen in the phyla profiles discussed above. Isolates from 

both Comamonadaceae and Rhodocyclaceae are known to use nitrate as a reducing agent in 

respiration, are capable of aromatic compound degradation, and produce methanogenic precursor 

molecules through fermentation23,24. 
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Figure 3 
Responses of clusters of ASVs to nitrogen treatment. Each row represents a different cluster of nitrogen-
responsive ASVs, and each column shows the trends of the cumulative relative abundance of that cluster 
in each soil, in each compartment. The color within each box represents the cumulative relative 
abundance in each treatment. The black bars represent standard error. The stacked boxplot on the right 
shows the count and composition of each cluster at the phylum level. BS = bulk soil, RS = rhizosphere, 
ES = endosphere. 
 
 
Differentially abundant ASVs are not exclusively a result of a stronger rhizosphere effect in 

nitrogen treatments 

We next investigated some underlying drivers of the observed changes by comparing bulk soil to 

rhizosphere fold changes to fold changes of nitrogen treatments within the rhizosphere. The addition of 
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nitrogen to bulk soils alone was not sufficient to alter the microbiome (Figure 2B), meaning the observed 

changes are likely also dependent on changes to carbon output from the host. The addition of nitrogen 

fertilizer increases the rate of exudation in the roots25,26, so we hypothesized that the nitrogen-responsive 

changes we observed were either due to an overall increase in exuded carbon (i.e. a stronger rhizosphere 

effect), or due to specific nitrogen-induced changes to the exudate composition. To test this, we compared 

the rhizosphere effect (by comparing the fold change of ASVs in the no N bulk soil to the no N 

rhizosphere samples) to the effect of nitrogen in the rhizosphere (comparing no N, low N, and high N 

rhizosphere samples). If the changes in relative abundance observed in response to nitrogen were due 

mostly to a stronger rhizosphere response, we expected to see a positive correlation between the 

rhizosphere effect in the no N samples and the effect of adding nitrogen to the rhizosphere samples. 

Instead, we observed that almost none of the ASVs affected by the nitrogen treatment were ASVs 

enriched in the no N rhizospheres over the bulk soils with the exception of two Arbuckle ASVs (Figure 

4). Furthermore, the ASVs in Davis and Biggs that were significantly affected in both situations had a 

negative correlation. The ASVs found in quadrant IV of figure 4 are ASVs that are enriched in the 

rhizosphere of no nitrogen samples, but then decrease in relative abundance as nitrogen is added. The lack 

of positive correlation found in this analysis demonstrates that the response seen in these samples is not 

due solely to a general stronger rhizosphere effect. 
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Figure 4 
Comparison of log fold changes between rhizospheres and bulk soils with no nitrogen to rhizospheres in 
response to nitrogen. Each dot represents an ASV that is significantly affected by the nitrogen treatment 
in the rhizosphere. Solid larger dots represent ASVs which are also significantly enriched or depleted in 
the rhizosphere compared to bulk soil in the no N treatment. The x axis represents those fold changes, 
whereas the y axis represents the average of No N rhizosphere vs low N rhizosphere, and No N 
rhizosphere vs high N rhizosphere to get the average response to nitrogen in the rhizospheres. 
 
 
Functional profiling reveals nitrogen, fermentation, and aromatic degradation processes 

enriched in the rhizospheres of the high nitrogen treatment 

To further profile the functions affected by nitrogen treatment, full shotgun metagenome 

sequencing was performed on a subset of samples. Three high N and 3 no N treatments of the Arbuckle 

rhizosphere samples were sequenced. Using HUMAnN3, we quantified genes, enzymes corresponding to 

the enzyme commission numbers (ECs), and pathways in the Metacyc database27. In total, 400,564 genes, 

2,744 ECs, and 521 pathways were identified in the samples. Principal component analysis (PCA) 

demonstrated there was a clear separation of the no N and high N samples in each case (Figure 5A-C). 
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The second axis of the PCA corresponded to the sequencing depth of each sample (Figure S2), indicating 

that deeper sequencing would likely reveal more diverse low-count genes in this dataset. 

Differential abundance analysis was performed in order to identify differentially abundant 

pathways associated with the Metacyc parent classes biosynthesis, degradation/utilization/assimilation, 

generation of precursor metabolites and energy, and macromolecule modification. Since Metacyc 

pathways are often complex and branching, we explored pathways that were differentially abundant with 

a P cutoff value of 0.1 in order to explore more general trends in the data and capture situations where 

one branch of a pathway is significantly enriched where another is not (see Figure S3 for an example of 

this observation). In total, 11 pathways were differentially abundant at P < 0.05, 86 at P < 0.07, and 94 at 

P < 0.10 (Figure 5D). Most differentially abundant pathways were more abundant in the high N 

treatment. Only one pathway was enriched at P < 0.05 in the no N treatment: PWY-6098, the biosynthesis 

of the terpene diploterol. Differential abundance of individual ECs was also performed and identified 40 

ECs differentially abundant at P < 0.05 and 394 at P < 0.07. 

Some of the most significantly enriched pathways in the high N treatment were all related to the 

degradation of phenolic compounds, including the degradation of toluene, catechol, protocatuate, gallate, 

methylgallate, vanillin, and syringate (Table 2). Many pathways associated with fermentation and the 

production of short chain fatty acids (SCFAs) were also enriched in the high N treatment (Table 2). These 

pathways include the fermentation of glutamate, pyruvate and acetylene among others to produce 

methanogenic precursor molecules acetate, propionate, and butyrate. Methanogenesis was also enriched, 

as demonstrated by the enrichment of EC 2.8.4.1 (which is associated with Methyl coenzyme M 

reductase, which catalyzes the final step of methanogenesis) in the high N treatment (P = 0.053). 

Pathways associated with methanogenesis were enriched in the high N treatment, including 

tetrahydromethanopterin biosynthesis, a coenzyme in methanogenesis28 (P= 0.052). Furthermore, the 
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Figure 5 

Beta diversity and differential abundance of nitrogen-responsive pathways in the metagenome dataset. 
Principal coordinate analysis of the metagenome dataset when quantified at the (A) pathway level, (B) 
enzyme (EC) level, and (C) gene level. Colors represent the two treatments. (D) each pathway was 
represented by the parent class (box on the right) and subclass (y axis). The x axis demonstrates the 
number of pathways identified in each subclass. Pathways are colored by significance and wheth er they 
were enriched in the high N treatment (red) or no N treatment (blue). M.M.= Macromolecule 
Modification. 

 

M.M. 
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methanogenesis from acetate pathway has a lower P value than the methanogenesis from H2 and CO2 

(P=0.089 vs P=0.47 respectively). 

Only a few differences were observed in pathways and ECs related to nitrogen cycling. Nitrate 

assimilation was more abundant in the high N treatment (P=0.078). Additionally, EC 1.7.2.4 (Nitrous-

oxide reductase, which reduces nitrous oxide to nitrogen gas) was significantly enriched in the high N 

treatment (P=0.043), although no pathways associated with this enzyme were enriched overall. 

Furthermore, EC 1.18.6.1 (nitrogenase, which reduces nitrogen gas to ammonia) was enriched in the high 

N treatment (P=0.062). Two nitrogenase-associated enzymes, ADP-ribosyl-[dinitrogen reductase] 

hydrolase (EC 3.2.2.24) and NAD(+)-dinitrogen-reductase ADP-D-ribosyltransferase (EC 2.4.2.37) were 

also enriched in the high N treatment (P=0.053, P=0.049 respectively). These genes positively and 

negatively regulate the activity of nitrogenase respectively29,30. 

 
Assembly of Sixty metagenome-assembled genomes provide insights into the connectivity of 

nitrogen-responsive pathways 

In total, 85 MAGs with more than 60% completeness and less than 15% contamination were 

recovered from the assemblies of each sample. After dereplication, 60 MAGs remained, spanning a broad 

taxonomic range, and covering many of the most abundant taxa in our samples (Fig 6A). Comparisons on 

the relative abundances of 16S genes derived from amplicon sequencing, shotgun metagenomics, and 

MAGs show similar taxonomic profiles among the three datasets (Figure 6B). Notably, 

Gammaproteobacteria increases in abundance in the high N treatment in all three datasets. Also, notably 

absent from the MAGs are Actinobacteria, which were found to universally decrease with the addition of 

nitrogen fertilizer in the 16S amplicon dataset (Figure 2B-C). In total, 743 Metacyc pathways were found 

across all MAGs. Notable among these pathways were multiple pathways associated with aromatic 

compound degradation, fermentation to SCFAs, and nitrogen cycling (Figure 6C). Thirty-nine pathways 

found to be differentially abundant in the HUMANn3 analysis were also present in the MAGs, 9 of which 

were aromatic compound degradation pathways, and 1 of which was a fermentation pathway (glutamate 
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fermentation to butanoate) (Figure 6C). In total, 28 different MAGs contained significantly enriched 

pathways related to aromatic degradation. Ten of these MAGs were classified as Gammaproteobacteria, 

which was the class most consistently enriched in the 16S amplicon data. Half of these 

Gammaproteobacteria were also found to be significantly enriched among the MAGs, with the other half 

showing no differential abundance. Many of these Gammaproteobacteria belonged to the order 

Burkholderiales, which also contained enriched ASVs in the 16S amplicon analysis. The other two major 

phyla found to contain significantly enriched aromatic degradation pathways were Bacteroidota and 

Myxococcota, with 4 MAGs each. Many of the MAGs that contained aromatic compound degradation 

pathways also contained various fermentation pathways (Figure S4).  

Since we are profiling metagenomes and not metatranscriptomes, it is possible that the 

differentially abundant genes, enzymes, or pathways discussed here are not directly enriched by the 

treatment, but rather enriched due to hitchhiking on a function that truly responds to the nitrogen 

treatment by co-occurring in the same genome. We investigated the co-occurrence of pathways found in 

the MAGs to see whether differentially abundant pathways were likely direct targets of selection or 

enriched as a result of hitchhiking. We measured the Jaccard similarity coefficient between each pathway 

and constructed a co-occurrence network from the significant coefficients (Figure 6D). Of the 39 enriched 

pathways identified in the MAGs, 21 had no significant co-occurrences with other pathways. The 

differentially abundant pathways that had significant co-occurrences generally had very low betweenness 

centrality (Figure S5B). Furthermore, modules of co-occurring pathways were determined (Figure S5A), 

and the majority of differentially abundant pathways are not found in the same modules. Assuming that 

the co-occurrence relationships observed in the MAGs is applicable to the community at large, the 

differentially abundant pathways are unlikely to be differentially abundant as a result of hitchhiking. 
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Figure 6 
(A) The taxonomic classification of the 60 MAGs recovered from the metagenome dataset. (B) 
Taxonomic profiles derived from the 16S amplicon dataset, the 16S sequences extracted from the 
metagenome dataset, and MAGs. (C) Pathways belonging to the Metacyc sub classes Aromatic 
Compound Degradation, Fermentation to Short-Chain Fatty Acids, and Inorganic Nutrient Cycling. Each 
row is a different pathway, and each column is a MAG. Each box represents the presence of that pathway 
in the corresponding MAG. Boxes with thick black outlines represent pathways that were found to be 
significantly enriched in the high N treatment in the HUMAnN3 analysis. (D) Co-occurrence network of 
pathways found in MAGs. Only pathways with at least one significant connection are depicted. The size 
of the lines are weighted by the Jaccard similarity, and the size of the dots represent the number of MAGs 
containing that pathway. A black outline of a dot indicates that that pathway was found to be 
differentially abundant in the HUMAnN3 analysis. The different colors represent the 13 largest modules 
of pathways. The composition of these clusters can be found in Figure S5A. A grey color indicates that 
that pathway is not a member of one of the 13 largest clusters. 
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Discussion 

The microbiome has soil-specific and soil-independent responses to nitrogen fertilizer 

Here we provide a characterization of rice root-associated microbiomes grown in three different 

soils in response to nitrogen. The differences of the microbial community in response to nitrogen fertilizer 

observed in the endosphere and rhizosphere but not bulk soil (Figure 2B) suggests that the differences 

were not due solely to nitrogen, but rather the interaction of nitrogen and the carbon compounds exuded 

by the host. The responses to fertilizer were largely dependent on soil source, indicating that taxonomic 

responses to nitrogen are not as global as responses to other external factors, such as drought19. This could 

explain some of the differences in nitrogen-sensitive taxa seen here compared to other studies profiling 

the effects of nitrogen on rice-associated microbiomes31,32, though differences could also be due to 

different methodologies, as these studies rely on methods that do not profile the community as deeply as 

the profiling done here.  

The differential responses to nitrogen between the soils could be due to various factors, including 

differences in soil chemistry or differences in microbial interactions arising from the unique initial 

compositions of the various communities. The three soils used in this study have distinct chemical 

properties20 which could interact uniquely with the microbiome upon nitrogen fertilization. The release of 

exudates into the soil primes the soil by liberating carbon sources previously unavailable33, meaning that 

fertilizer-induced exudation could liberate different compounds depending on the soil source. However, 

the addition of nitrogen fertilizer increases the amount of carbon taken up by the microbiome originating 

from the rice plant compared to soil organic carbon16, suggesting differences due to soil chemistry might 

decrease with increasing nitrogen. However, we found that comparisons of Bray-Curtis dissimilarity 

between the soils were just as dissimilar at no or low N levels as high N levels (Figure S6). Assuming the 

ratio of soil-derived to plant-derived carbon decreases upon application of fertilizer in this study, the lack 

of convergence of the community at high N levels perhaps indicates that the differences seen are 

independent of soil chemistry, or that soil chemistry directly impacts root exudate composition and is 
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thereby indirectly impacting the community. Furthermore, it is possible that while soils vary in taxa that 

are responsive to the treatment, the different taxa enriched in each soil could perform the same 

metabolic functions. Further metagenome and metatranscriptome profiling of other soils would be 

necessary to evaluate if these divergent taxa have convergent functions in response to nitrogen. 

While there were many unique responses to nitrogen fertilizer between soil sources, some 

consistent patterns were observed, namely the increase of Gammaproteobacteria (specifically the families 

Comamonadaceae and Rhodocyclaceae) and decrease of Actinobacteria in response to nitrogen (Figure 

2C-D,3). These taxa could be those most directly impacted by nitrogen fertilizer and could be interesting 

targets to further understand nitrogen and carbon cycling in the rice rhizosphere. However, more research 

is needed to understand the consistency of these trends in a variety of circumstances. For example, rice-

associated microbiomes shift in composition through the growing season21,34, meaning that the growth 

stage at which fertilizer is applied could significantly impact nitrogen-responsive taxa. Furthermore, the 

fertilizer used in this study was sown into the soil before planting, meaning that we sampled plants long 

after fertilization. While this experimental design allows us to evaluate the long-term impacts of nitrogen 

on the microbiome, it does not profile the initial responses of the microbiome to nitrogen fertilizer. For 

example, while urea was the fertilizer used in this study, the urease-related genes were not enriched in the 

high N treatment. Furthermore, fertilizer has been shown to affect the activity and abundances of 

methanotrophs that can use ammonia as a substrate13,14; in this study, we found neither differences in 

methanotrophic taxa in the 16S amplicon data, nor differences in the abundance of genes corresponding to 

methane monooxygenase. Profiling the community at multiple timepoints after fertilizer application could 

further elucidate microbial turnover in response to nitrogen. 

 
Rhizosphere communities alter carbon cycling functions in response to nitrogen 

The 16S amplicon data can describe which taxa are affected by nitrogen fertilizer, whereas 

metagenomics can describe which functions are affected. The most striking trends in the results were the 

alterations in aromatic compound degradation, fermentation, and methanogenesis. Increasing nitrogen 
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increases the amount of methane that is derived from plant carbon rather than soil organic carbon16, so 

seeing shifts in carbon cycling pathways could provide information as to how carbon is being 

incorporated into the microbiome, and how carbon sources are degraded to methanogenic precursor 

molecules. The broad enrichment of degradation of aromatic compound pathways suggest that nitrogen 

fertilizer is increasing the amount of aromatic compounds in the rhizosphere. In maize, the presence of 

aromatic compounds (specifically phenolics) in the exudate correlates with the amount of nitrogen 

fertilizer applied26, and a similar change in rice exudation could explain the enrichment of degradation 

pathways observed here. Furthermore, it has been shown that aromatic compound degradation is 

syntrophically coupled to methanogenesis in rice paddies35. Perhaps the enrichment of aromatic 

degradation pathways in these samples could be contributing to the observed increase in reads associated 

with Methyl coenzyme M reductase, the key enzyme involved in methanogenesis. 

Further related to methanogenesis is the production of methanogenic precursor SCFAs. We found 

an enrichment of pathways fermenting glutamate, pyruvate and acetylene to produce acetate, propionate, 

and butyrate, which have all previously been shown to be produced and utilized in methanogenesis during 

the degradation of rice carbon sources36. Also of note is the greater enrichment of reads mapping to 

acetoclastic methanogenesis over hydrogenotrophic methanogenesis; previously it had been shown that 

plant-produced carbon is normally incorporated into the hydrogenotrophic methanogen11, but here we 

identified an enrichment of acetoclastic methanogenesis. Perhaps this indicates that the addition of 

nitrogen alters which form of methanogenesis becomes dominant. This could be the result of changes in 

the recruitment of methanogenic syntrophs, which could contain the above-described fermentative 

pathways. Furthermore, many of the MAGs containing aromatic degradation pathways also contain 

fermentative pathways (Figure S6), meaning they could be capable of producing SCFAs and act 

syntrophically with methanogens. Two of the enriched fermentation pathways were glutamate 

fermentation to propionate and glutamate fermentation to butyrate. The majority of assimilated nitrogen 

often passes through the GOGAT pathway, which incorporates nitrogen into glutamine which is then 

catalyzed into glutamate37. While very few nitrogen cycling genes were differentially abundant between 
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samples, perhaps the assimilation of nitrogen before the time of sampling led to increases in glutamate, 

and subsequent increase of microbes containing glutamate fermentation pathways as observed in this data. 

While an increase in glutamate could also be due to an increased exudation of glutamate, a recent study 

found a reduced glutamate content in the exudates of nitrogen-fertilized rice compared to unfertilized 

rice38 suggesting this response is not a direct result of altered exudation. 

While we have found many differentially abundant genes and pathways in this data, the 

interpretation is limited since metagenomic data only counts abundances and not expression of genes. 

While genes can be differentially abundant, it does not mean that they are expressed or that expression of 

them is responding to a stimulus; rather, differentially abundant genes could be enriched due to 

hitchhiking off other genes that are truly responsive by occurring in the same genome. An example of this 

is the above mentioned enrichment of both nitrogenase, the negative regulator of nitrogenase (NAD(+)-

dinitrogen-reductase ADP-D-ribosyltransferase), and the positive regulator of nitrogenase (ADP-ribosyl-

[dinitrogen reductase] hydrolase). It is unlikely that all three products are simultaneously expressed to a 

greater degree in the high N treatment, but genomes containing nitrogenase likely contain these regulators 

as well, so enrichment of nitrogenase would also cause the enrichment of these associated genes. The 

enrichment of nitrogenase genes is unexpected, since it has been shown in multiple crops that the addition 

of synthetic fertilizers reduces the activity of nitrogenase, or abundances of taxa associated with 

nitrogenase39–41. 

While we are able to identify pathways that are overall enriched, another challenge with 

metagenomic datasets is that we cannot confirm that all of the relevant genes for a given pathway are 

found in the same microbe, and thus the identified pathway is truly complete. One way to alleviate these 

issues and gain further insight into differentially abundant pathways is through the construction of MAGs. 

We were able to confirm that some of the differentially abundant pathways were fully present in different 

MAGs, and that the differentially abundant pathways did not co-occur to a large degree with other 

pathways within the MAGs. Assuming the co-occurrence relationships observed within the MAGs are 

representative of the whole community, this result implies that the differentially abundant pathways were 
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directly enriched rather than enriched through hitchhiking. While the results obtained from this 

metagenome sequencing describe interesting interactions potentially stimulated by urea fertilizer, 

including the enrichment of methangenesis, fermentation, and aromatic compound degradation in the high 

N treatment, the varying results between soil of the 16S data suggests that these results might not be 

universal, and metagenome sequencing must be performed similarly in other soils to understand global 

responses of the rice microbiome to nitrogen. Further researching the effects of nitrogen on methane 

cycling microbes coupled with the effects of different rice cultivars on methane cycling microbes as 

outlined in the first chapter could lead to an improved nitrogen use efficiency while reducing 

methanogenesis. 

 
Methods 

 
Experimental Design 

Kitaake seedlings were germinated on ½ murashige skoog agarose plates on June 13, 2019. Six-

day old seedlings were transplanted to pots containing one of three agricultural soils originating from 

Arbuckle, Biggs, and Davis, California, which have all been described previously19,20. Three planted pots 

and two bulk soil pots of each soil were placed in each of six bins for a total of 9 plants and 6 bulk soils in 

each bin. Two bins each were treated with one of three nitrogen treatments (no N, low M, and high N). 

This resulted in an initial replication of 6 plants per factor combination and 4 bulk soils per factor 

combination for a total of 54 plants and 36 bulk soil samples. The low nitrogen treatment consisted of 1.5 

g urea mixed into the soil of each pot pre-planting, and an additional 25 g urea mixed directly into the 

water filling the bins. The high N treatment consisted of 3 g Urea mixed in each pot, and 50 g Urea in 

each bin. One of the high N bins was located in a different section of the greenhouse and did not grow as 

well as indicated by reduced growth and leaf discoloration; for this reason, this bin was excluded from 

further analyses, meaning the high N treatment had a replication of three instead of six. 
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Plant Phenotype measurements 

The plants were measured and samples collected on August 8, 2019, fifty days after 

transplantation. The height and number of tillers were recorded during collection. The shoot of each plant 

was placed in an oven, and full weight and vegetative weight (weight after removing any panicles) were 

measured after one week of drying. Three small leaf fragments were removed before processing and 

photographed using a Canon EOS 6D with an X-Rite ColorChecker Classic (MSCCC). Photographs were 

color corrected using the X-Rite ColorChecker software, and the average pigment of each leaf fragment 

and rgb values were determined using Adobe Photoshop. Hue, saturation and lightness values were 

determined using the rgb2hsl function in the plotwidgets package42. 

 
Microbiome compartment separation and collection 

Rhizosphere and Endosphere samples were collected as previously described43. Roots were 

shaken to remove excess soil and placed in a 50 mL falcon tube containing 20 mL of phosphate buffered 

solution (PBS). The rhizosphere samples were collected by vortexing the roots and removing 500 uL of 

the resulting suspension. Roots were then washed three times with PBS and sonicated for 30 seconds to 

isolate the endosphere. 

 
16S rRNA gene amplicon library construction 

DNA was extracted from the rhizosphere, endosphere, and bulk soil samples using the PowerSoil 

DNA isolation kit (Qiagen) following the manufacturer’s protocol. Libraries were prepared as previously 

described using dual-indexing primers18. PCR was performed using the Qiagen HotStar HiFidelity 

polymerase kit, and touchdown PCR was used to amplify the libraries with the following parameters: 

95°C for 5 min, 35 cycles of 95°C for 45 s, 50°C for 1 min, and 72°C for 1 min, and 72°C for 10 min. 

Contamination was identified by running negative controls of each sample on a 1% agarose gel. Samples 

were purified with AMPure beads, and samples were quantified with a Qubit high-sensitivity assay 
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kit. AMPure beads were used to purify the samples, which were then pooled and sequenced in a 2 x 250 

paired-end Illumina MiSeq run. 

 
16S rRNA gene amplicon processing and analysis 

Samples were demultiplexed using a custom script 

(https://github.com/RiceMicrobiome/Edwards-et-al.-2014/tree/master/sequencing_scripts). Samples were 

clustered into ASVs using DADA244, and taxonomy was assigned using the AssignTaxonomy() function 

in dada2 with the SILVA_138 database45. This update of the database includes some changes to 

taxonomy compared to previous studies from our lab, including splitting up the Deltaproteobacteria into 

the new phyla Desulfobacterota, Myxococcota, Bdellovibrionota, and SAR324, and the merging of order 

Betaproteobacteria into the order Gammaproteobacteria. All statistical analyses were performed in R 

version 4.1.146. The vegan package47 was used to perform PERMANOVA with the adonis() function, 

calculation of Bray-Curtis dissimilarities with the vegdist() function, and canonical analysis of principal 

coordinates with the capscale() function. The ape package48 was used for unconstrained principal 

coordinate analysis using the pcoa() function. Beta Regression on phyla was performed using the package 

betareg49. Differentially abundant ASVs were identified through the combination of two methodologies: 

treating nitrogen treatment as a continuous variable and correlating ASV abundance with nitrogen 

treatment using DESeq250, and performing pairwise Wald tests (also with DESeq2) with nitrogen 

treatment treated as a categorical variable between the no N and low N and the no N and high N 

treatments. The second method was included to capture nitrogen-responsive ASVs that were responsive to 

nitrogen treatments, but not in a linear fashion, e.g. an increase from no N to low N, but a plateau from 

low N to high N. Overall, 125 ASVs were identified as differentially abundant in at least one treatment 

and compartment in the correlation test, and 116 ASVs were similarly identified as differentially 

abundant between the wald tests, with 80 ASVs overlapping between the two datasets. The results from 

these two methods were combined for a total of 161 nitrogen-responsive ASVs. Clustering was performed 

with the cutreeHybrid() function from the dynamicTreeCut package51 using a minimum cluster size of 10. 
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Genome-resolved metagenome sequence processing 

Libraries were constructed by the UC Davis Sequencing core using the Takara HV Thruplex kit, 

and sequenced in a 2 x 150 paired-end Novaseq run. Trimmomatic52 was used to remove adapters and 

quality trim, with a phred score of 33, minimum length of 50, and a sliding window of 4 to 30. The PhiX 

reads were removed with bbduk53 with a k value of 31. Reads from each sample were assembled 

independently into contigs using MEGAHIT54 with the preset “meta-large” and a minimum contig length 

of 1000. 

For binning contigs into MAGs, assemblies of each sample were first concatenated into a single 

file using the concatenate.py script from VAMB55, then the trimmed reads for each sample were aligned 

to the concatenated file using minimap256 using the sr presets and keeping 5 secondary alignments. Bins 

were then generated using VAMB with default settings. Bins were quality checked using CheckM57, then 

dereplicated using dRep58, both with default settings except for setting a completeness cutoff at 60%. All 

bins remaining after dereplication were considered MAGs. Coverage of each of the MAGs was 

determined using CoverM59 v0.6.1. Taxonomy was assigned using GTDB-Tk60. Each MAG was then 

annotated using prokka61 using the default settings, and the complete Metacyc pathways in each MAG 

were determined using MinPath62. 

Assembly-independent functional characterization was performed using HUMAnN363 on forward 

and reverse reads concatenated into a single file, with default settings using the EC filtered uniref90 

database. Enzyme numbers associated with each gene were determined using the humann_regroup_table 

function, and enzyme numbers associated with each pathway were determined using the 

humann_unpack_pathways function. Differential abundances of pathways and enzyme numbers were 

determined by general linear models using MaAsLin264, using log transformation and treating nitrogen 

treatment as a fixed effect. To extract 16S profiles from the metagenomic dataset, 16S reads were 

identified using SortMeRNA65, and were classified with RDP classifier66. 
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Supplemental Figures and Tables 

Supplemental Figure 1 
RGB (red, green, blue) and HSL (hue, saturation, lightness) of the leaf values in each soil (colors) at each 
treatment level (x axis). 
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Supplemental Figure 2 
Depiction of the relationship between the second axis of PCAs from figure 5 A-C and sequencing depth. 
The x axis represents which PCA was is being depicted, and the y axis is the z score of the second axis of 
the corresponding PCA. The z score was calculated in order to normalize values between the different 
PCAs. The color represents the sequencing depth, and lines connecting dots represent the same samples in 
each of the different PCAs. 
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Supplemental Figure 3 
An example of a branching Metacyc pathway. White boxes represent different compounds and blue boxes 
represent enzymes that catalyze reactions along the black arrows. The EC number as well as the 
corresponding p value are provided. All enzymes in this pathway had a greater abundance in the high N 
treatment than the no N treatment. 
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Supplemental Figure 4 
MAGs that contain both aromatic degradation pathways and fermentation pathways, as depicted by the 
two titles at the top. Black boxes mean that the corresponding MAG (y axis) contains the specific 
pathway (x axis). 
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Supplemental Figure 5 
(A) The thirteen most abundant modules identified in the co-occurrence network. The height of each bar 
corresponds to how many pathways are present in each module. The colored dot below the bar 
corresponds to the colors in the co-occurrence network (Figure 6D). The colors of each bar shows the 
parent class of each pathway in the module. (B) the betweenness centrality of each pathway in the co-
occurrence network (Figure 6D). The color of the bar depicts the metacyc parent class that the pathway 
belongs to. Asterisks on the bottom highlight pathways that were differentially abundant in the 
HUMAnN3 analysis. 
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Supplemental Figure 6 
Comparison of Bray-Curtis dissimilarity between soils at each time point. Each color represents a 
pairwise comparison between the three soils. Dots represent a comparison of two individual samples and 
the line is the average. 
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Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

 

Soil 2 10.7859 5.393 60.494 0.35817 0.001 *** 
Compartment 1 5.6141 5.6141 62.974 0.18643 0.001 *** 

N_level 1 0.9463 0.9463 10.615 0.03142 0.001 *** 
Soil:Compartment 2 4.4256 2.2128 24.821 0.14696 0.001 *** 

Soil:N_level 2 0.8753 0.4376 4.909 0.02907 0.001 *** 
Compartment:N_level 1 0.2257 0.2257 2.532 0.00749 0.016 * 

Soil:Compartment:N_level 2 0.2875 0.1437 1.612 0.00955 0.061 . 
Residuals 78 6.9536 0.0891 

 
0.23091 

  

Total 89 30.114 
  

1 
  

 
Table 1 
PERMANOVA results testing the effects of Nitrogen treatment (N_level), Soil, and 
Compartment on the Bray-Curtis distances. 
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Pathway Pathway Description Metacyc 
Class 

logFC log.stderr p.adjusted 

PWY-5180 toluene degradation I 
(aerobic) (via o-cresol) 

A.C.D. 1.0559 0.0410 0.0030 

PWY-5182 toluene degradation II 
(aerobic) (via 4-
methylcatechol) 

A.C.D. 1.0559 0.0410 0.0030 

PWY-5415 catechol degradation I 
(meta-cleavage pathway) 

A.C.D. 0.7621 0.0476 0.0079 

GALLATE-
DEGRADATION-I-
PWY 

gallate degradation II A.C.D. 1.7742 0.2913 0.0521 

P184-PWY protocatechuate 
degradation I (meta-
cleavage pathway) 

A.C.D. 1.9248 0.3171 0.0521 

METHYLGALLATE-
DEGRADATION-
PWY 

methylgallate 
degradation 

A.C.D. 2.1590 0.3759 0.0536 

PWY-6338 superpathway of vanillin 
and vanillate degradation 

A.C.D. 0.9958 0.1899 0.0602 

PWY-7097 vanillin and vanillate 
degradation I 

A.C.D. 0.9958 0.1899 0.0602 

PWY-7098 vanillin and vanillate 
degradation II 

A.C.D. 0.9664 0.1833 0.0602 

PWY-6339 syringate degradation A.C.D. 2.0335 0.3941 0.0604 
PWY-5179 toluene degradation V 

(aerobic) (via toluene-
cis-diol) 

A.C.D. 1.4500 0.2903 0.0622 

PWY-5420 catechol degradation II 
(meta-cleavage pathway) 

A.C.D. 1.0317 0.2132 0.0622 

PWY-6957 mandelate degradation to 
acetyl-CoA 

A.C.D. 2.4556 0.5072 0.0622 

PWY-5183 superpathway of aerobic 
toluene degradation 

A.C.D. 2.8686 0.7195 0.0739 

PWY-5419 catechol degradation to 
2-hydroxypentadienoate 
II 

A.C.D. 1.0887 0.2996 0.0780 

PWY-6210 2-aminophenol 
degradation 

A.C.D. 2.4779 0.8138 0.0954 

PWY-7383 anaerobic energy 
metabolism 
(invertebrates, cytosol) 

Fermentation 0.6562 0.0718 0.0395 

P161-PWY acetylene degradation 
(anaerobic) 

Fermentation 1.4644 0.1782 0.0486 

CENTFERM-PWY pyruvate fermentation to 
butanoate 

Fermentation 1.6664 0.2265 0.0514 

PWY-6590 superpathway of 
Clostridium 
acetobutylicum 
acidogenic fermentation 

Fermentation 1.6185 0.2207 0.0514 
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PWY-5497 purine nucleobases 
degradation II 
(anaerobic) 

Fermentation 1.1218 0.1788 0.0521 

PWY-7003 glycerol degradation to 
butanol 

Fermentation 1.6361 0.2718 0.0521 

GLUDEG-II-PWY L-glutamate degradation 
VII (to butanoate) 

Fermentation 2.0342 0.3792 0.0602 

PWY-5088 L-glutamate degradation 
VIII (to propanoate) 

Fermentation 2.0231 0.3714 0.0602 

P164-PWY purine nucleobases 
degradation I (anaerobic) 

Fermentation 3.1012 0.7079 0.0625 

PWY-5100 pyruvate fermentation to 
acetate and lactate II 

Fermentation 0.6274 0.1599 0.0742 

FERMENTATION-
PWY 

mixed acid fermentation Fermentation 0.5247 0.1472 0.0780 

PWY-7111 pyruvate fermentation to 
isobutanol (engineered) 

Fermentation 0.3481 0.0994 0.0780 

PWY-7389 superpathway of 
anaerobic energy 
metabolism 
(invertebrates) 

Fermentation 0.2750 0.0777 0.0780 

ANAEROFRUCAT-
PWY 

homolactic fermentation Fermentation 0.2870 0.0831 0.0784 

PWY-5109 propanoate fermentation 
to 2-methylbutanoate 

Fermentation 0.7354 0.2180 0.0797 

 
Table 2 
Pathways belonging to the Metacyc classes fermentation and aromatic compound degradation 
(A.C.D.). A log fold change greater than zero indicates the pathway is enriched in the high N 
treatment. 
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Measurement term df sumsq meansq statistic p.value 

# Tillers Soil 2 7.42E+02 3.71E+02 83.1601246 3.20E-14 

# Tillers Treatment 2 2.75E+03 1.37E+03 308.2205607 2.25E-23 

# Tillers Soil:Treatment 4 2.18E+02 5.46E+01 12.2392523 2.21E-06 

# Tillers Residuals 36 1.61E+02 4.46E+00 NA NA 

Height (cm) Soil 2 1.19E+03 5.97E+02 17.7085267 4.42E-06 

Height (cm) Treatment 2 5.97E+03 2.98E+03 88.5035837 1.27E-14 

Height (cm) Soil:Treatment 4 8.53E+02 2.13E+02 6.3273926 5.80E-04 

Height (cm) Residuals 36 1.21E+03 3.37E+01 NA NA 

Vegetative Weight (g) Soil 2 8.46E+02 4.23E+02 65.1016653 1.10E-12 

Vegetative Weight (g) Treatment 2 2.59E+03 1.30E+03 199.6397873 3.28E-20 

Vegetative Weight (g) Soil:Treatment 4 1.48E+02 3.70E+01 5.6893599 1.18E-03 

Vegetative Weight (g) Residuals 36 2.34E+02 6.50E+00 NA NA 

H Soil 2 3.56E+01 1.78E+01 4.2710141 2.17E-02 

H Treatment 2 1.44E+02 7.21E+01 17.2987715 5.44E-06 

H Soil:Treatment 4 8.30E+01 2.08E+01 4.9831951 2.66E-03 

H Residuals 36 1.50E+02 4.17E+00 NA NA 

S Soil 2 2.56E-02 1.28E-02 1.0862279 3.48E-01 

S Treatment 2 6.44E-02 3.22E-02 2.7352363 7.84E-02 

S Soil:Treatment 4 1.08E-01 2.69E-02 2.2866062 7.90E-02 

S Residuals 36 4.24E-01 1.18E-02 NA NA 

L Soil 2 6.32E-03 3.16E-03 2.0262749 1.47E-01 

L Treatment 2 1.07E-01 5.33E-02 34.1321091 4.86E-09 

L Soil:Treatment 4 5.89E-03 1.47E-03 0.943839 4.50E-01 

L Residuals 36 5.62E-02 1.56E-03 NA NA 

R Soil 2 2.16E+03 1.08E+03 6.7894542 3.15E-03 

R Treatment 2 2.38E+04 1.19E+04 74.7582487 1.52E-13 

R Soil:Treatment 4 2.78E+03 6.96E+02 4.3728652 5.52E-03 

R Residuals 36 5.73E+03 1.59E+02 NA NA 

G Soil 2 2.03E+03 1.02E+03 7.7653759 1.57E-03 

G Treatment 2 2.64E+04 1.32E+04 101.0109909 1.72E-15 

G Soil:Treatment 4 2.04E+03 5.11E+02 3.905302 9.82E-03 

G Residuals 36 4.71E+03 1.31E+02 NA NA 

B Soil 2 1.45E+02 7.27E+01 0.5421969 5.86E-01 

B Treatment 2 6.23E+01 3.12E+01 0.2325293 7.94E-01 

B Soil:Treatment 4 5.99E+02 1.50E+02 1.1161664 3.64E-01 

B Residuals 36 4.83E+03 1.34E+02 NA NA 

Table S1 
ANOVAs testing the effects of soil and treatment on different plant phenotypes (first column)  
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Measurement contrast Soil estimate SE df t.ratio p.value p.adjusted 

# Tillers Low N - None Arbuckle 13.33333333 1.21906157 36 10.9373748 9.50E-13 5.70E-12 

# Tillers High N - None Arbuckle 24.83333333 1.49303941 36 16.6327381 0.00E+00 0.00E+00 

# Tillers Low N - None Biggs 8 1.21906157 36 6.5624249 2.47E-07 1.48E-06 

# Tillers High N - None Biggs 24.66666667 1.49303941 36 16.5211089 0.00E+00 0.00E+00 

# Tillers Low N - None Davis 3.83333333 1.21906157 36 3.1444953 6.48E-03 3.89E-02 

# Tillers High N - None Davis 14.5 1.49303941 36 9.711733 2.68E-11 1.61E-10 

Height (cm) Low N - None Arbuckle 19 3.35249124 36 5.6674272 3.85E-06 2.31E-05 

Height (cm) High N - None Arbuckle 21.66666667 4.10594646 36 5.2768995 1.28E-05 7.67E-05 

Height (cm) Low N - None Biggs 27 3.35249124 36 8.0537123 2.86E-09 1.72E-08 

Height (cm) High N - None Biggs 31.5 4.10594646 36 7.6718 8.79E-09 5.27E-08 

Height (cm) Low N - None Davis 9.5 3.35249124 36 2.8337136 1.45E-02 8.68E-02 

Height (cm) High N - None Davis 34.66666667 4.10594646 36 8.4430391 9.29E-10 5.57E-09 

Vegetative Weight (g) Low N - None Arbuckle 14.59833333 1.47179045 36 9.918758 1.53E-11 9.18E-11 

Vegetative Weight (g) High N - None Arbuckle 23.57333333 1.80256781 36 13.0776403 3.11E-15 1.87E-14 

Vegetative Weight (g) Low N - None Biggs 11.29333333 1.47179045 36 7.6731938 8.75E-09 5.25E-08 

Vegetative Weight (g) High N - None Biggs 22.12333333 1.80256781 36 12.2732323 2.00E-14 1.20E-13 

Vegetative Weight (g) Low N - None Davis 6.04666667 1.47179045 36 4.1083747 4.33E-04 2.60E-03 

Vegetative Weight (g) High N - None Davis 14.63833333 1.80256781 36 8.1208226 2.36E-09 1.41E-08 

H Low N - None Arbuckle 3.15597971 1.17833614 36 2.6783357 2.13E-02 1.28E-01 

H High N - None Arbuckle 3.38960329 1.44316115 36 2.3487351 4.63E-02 2.78E-01 

H Low N - None Biggs 4.13526924 1.17833614 36 3.5094139 2.40E-03 1.44E-02 

H High N - None Biggs 7.4755661 1.44316115 36 5.179994 1.72E-05 1.03E-04 

H Low N - None Davis -1.99793071 1.17833614 36 -1.6955524 1.77E-01 1.00E+00 

H High N - None Davis 3.82798109 1.44316115 36 2.6524973 2.27E-02 1.36E-01 

S Low N - None Arbuckle -0.10959732 0.06264677 36 -1.7494487 1.60E-01 9.62E-01 

S High N - None Arbuckle -0.10756264 0.07672632 36 -1.4019002 2.92E-01 1.00E+00 

S Low N - None Biggs -0.05874721 0.06264677 36 -0.9377531 5.51E-01 1.00E+00 

S High N - None Biggs -0.03646858 0.07672632 36 -0.4753073 8.38E-01 1.00E+00 

S Low N - None Davis 0.07743783 0.06264677 36 1.2361025 3.75E-01 1.00E+00 

S High N - None Davis -0.16633845 0.07672632 36 -2.1679452 6.90E-02 4.14E-01 

L Low N - None Arbuckle -0.06862745 0.02280737 36 -3.009003 9.24E-03 5.55E-02 

L High N - None Arbuckle -0.10217865 0.02793321 36 -3.6579627 1.59E-03 9.51E-03 

L Low N - None Biggs -0.10424837 0.02280737 36 -4.5708188 1.10E-04 6.57E-04 

L High N - None Biggs -0.16143791 0.02793321 36 -5.7794251 2.73E-06 1.64E-05 

L Low N - None Davis -0.05577342 0.02280737 36 -2.4454119 3.71E-02 2.22E-01 

L High N - None Davis -0.11111111 0.02793321 36 -3.977742 6.34E-04 3.81E-03 

R Low N - None Arbuckle -37.55555556 7.28181727 36 -5.1574427 1.84E-05 1.11E-04 

R High N - None Arbuckle -50.66666667 8.91836836 36 -5.6811588 3.69E-06 2.21E-05 
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R Low N - None Biggs -51.05555556 7.28181727 36 -7.0113755 6.33E-08 3.80E-07 

R High N - None Biggs -75 8.91836836 36 -8.40961 1.02E-09 6.13E-09 

R Low N - None Davis -12.44444444 7.28181727 36 -1.7089751 1.73E-01 1.00E+00 

R High N - None Davis -55.11111111 8.91836836 36 -6.179506 7.97E-07 4.78E-06 

G Low N - None Arbuckle -39.44444444 6.60383197 36 -5.9729631 1.50E-06 9.02E-06 

G High N - None Arbuckle -54.44444444 8.08800934 36 -6.7315012 1.48E-07 8.86E-07 

G Low N - None Biggs -51.16666667 6.60383197 36 -7.7480267 7.02E-09 4.21E-08 

G High N - None Biggs -74.72222222 8.08800934 36 -9.2386419 9.84E-11 5.90E-10 

G Low N - None Davis -18.33333333 6.60383197 36 -2.7761659 1.67E-02 1.00E-01 

G High N - None Davis -60.22222222 8.08800934 36 -7.4458646 1.72E-08 1.03E-07 

B Low N - None Arbuckle 4.44444444 6.68467219 36 0.664871 7.25E-01 1.00E+00 

B High N - None Arbuckle 2.33333333 8.18701798 36 0.2850041 9.30E-01 1.00E+00 

B Low N - None Biggs -2 6.68467219 36 -0.2991919 9.24E-01 1.00E+00 

B High N - None Biggs -7.61111111 8.18701798 36 -0.9296561 5.56E-01 1.00E+00 

B Low N - None Davis -10.11111111 6.68467219 36 -1.5125814 2.44E-01 1.00E+00 

B High N - None Davis 3.55555556 8.18701798 36 0.4342919 8.60E-01 1.00E+00 

 
Table S2 
Contrasts derived from linear models testing the effects of nitrogen treatment (high N and low N 
compared to no N) for the various plant phenotypes. 
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Bulk Soil: 
       

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

 

Soil 2 5.5202 2.7601 32.576 0.69452 0.001 *** 
N_level 1 0.1489 0.14886 1.757 0.01873 0.117 

 

Soil:N_level 2 0.2457 0.12286 1.45 0.03091 0.162 
 

Residuals 24 2.0335 0.08473 
 

0.25584 
  

Total 29 7.9482 
  

1 
  

        

Rhizosphere: 
       

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

 

Soil 2 8.1133 4.0566 54.097 0.67741 0.0001 *** 
N_level 1 0.4619 0.4619 6.16 0.03857 0.0006 *** 
Soil:N_level 2 0.4772 0.2386 3.182 0.03985 0.0046 ** 
Residuals 39 2.9245 0.075 

 
0.24418 

  

Total 44 11.977 
  

1 
  

        

Endosphere: 
       

 
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 

 

Soil 2 7.0982 3.5491 34.354 0.56682 0.0001 *** 
N_level 1 0.7101 0.7101 6.873 0.0567 0.0001 *** 
Soil:N_level 2 0.6855 0.3428 3.318 0.05474 0.0018 ** 
Residuals 39 4.0291 0.1033 

 
0.32174 

  

Total 44 12.523 
  

1 
  

 
Table S3 
PERMANOVA results testing the effects of Nitrogen treatment (N_level) and Soil on the Bray-
Curtis distances of each compartment individually. 
 




