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Brain markers predicting response to cognitive‐
behavioral therapy for social anxiety disorder: an
independent replication of Whitfield-Gabrieli et al.
2015
Yoni K. Ashar 1, Joseph Clark2, Faith M. Gunning 1, Philippe Goldin3, James J. Gross4 and Tor D. Wager 5

Abstract
Predictive brain markers promise a number of important scientific, clinical, and societal applications. Over 600
predictive brain markers have been described in published reports, but very few have been tested in independent
replication attempts. Here, we conducted an independent replication of a previously published marker predicting
treatment response to cognitive-behavioral therapy for social anxiety disorder from patterns of resting-state fMRI
amygdala connectivity1. The replication attempt was conducted in an existing dataset similar to the dataset used in
the original report, by a team of independent investigators in consultation with the original authors. The precise
model described in the original report positively predicted treatment outcomes in the replication dataset, but with
marginal statistical significance, permutation test p= 0.1. The effect size was substantially smaller in the replication
dataset, with the model explaining 2% of the variance in treatment outcomes, as compared to 21% in the original
report. Several lines of evidence, including the current replication attempt, suggest that features of amygdala function
or structure may be able to predict treatment response in anxiety disorders. However, predictive models that explain a
substantial amount of variance in independent datasets will be needed for scientific and clinical applications.

Predictive brain markers promise a number of impor-
tant scientific, clinical, and societal applications2. Yet,
success in this domain will depend on the replicability and
generalizability of brain marker predictions3–6. Replic-
ability is at the foundation of scientific enterprise, and it
has recently become a subject of increased attention in a
number of fields including psychology7,8, translational
neuroscience9,10, medicine11,12, and more13–16. This focus
has generated a growing awareness that many published
findings cannot be replicated, along with a move towards
methods promoting replicability17–21.

The replicability of most brain markers has not been
assessed. A recent review found that of ~450 published
predictive brain markers, only ~10% have been tested on
independent data, and only two clinical markers (one for
Alzheimer’s disease and one for Parkinson’s disease) have
been subjected to broader tests of generalizability4. More
independent replication attempts of brain markers are
needed, both to assess the current state of replicability and
to spur the development of replicable predictive models.
Here, we conducted an independent replication of a

previous report that response to cognitive-behavioral
therapy (CBT) for social anxiety disorder (SAD) could
be accurately predicted from baseline brain connectivity1.
The authors reported that baseline amygdala-seeded
functional connectivity explained 21% of the variance in
treatment response, with incremental validity above and
beyond a paper-and-pencil measure of baseline symptom
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severity. Treatment response was predicted by a linear
combination of positive amygdala connectivity with a
subgenual cingulate/caudate/putamen cluster, negative
amygdala connectivity with bilateral central sulcus clus-
ters, and negative amygdala connectivity with a right
temporal-occipital cluster. We conducted our replication
attempt in an existing dataset22,23 which was similar to the
original study in key respects, with baseline resting-state
fMRI collected on SAD patients prior to CBT treatment,
though some differences in sample characteristics and
treatment implementations are noted, described further
below.
Alterations in amygdala function and structure have

been one of the most reliable findings that distinguish
SAD patients from healthy controls, including greater
amygdala responses to threatening social stimuli and
altered profiles of resting connectivity24,25. Several reports
have also highlighted functional or structural properties of
the amygdala that are impacted by CBT, often correlating
with improvements in clinical outcomes22,26–28. And,
paralleling the Whitfield-Gabrielli et al. findings studied
here, two other studies have reported that different fea-
tures of amygdala function predict SAD treatment
response to CBT29,30. Yet, to our knowledge, none of
these studies have been directly subjected to independent
replication attempts. Collectively, this has generated an
important set of findings with a coherent, consistent focus
on the amygdala—but with unknown replicability.
Independent replication attempts of precisely specified

models are needed to advance the field toward clinical and
societal applications. Scientific collaborations will support
this effort, leading to a cumulative science creating
research products with both clinical and scientific appli-
cations. Here, we test the precise model specified in the
original report. In addition, we also tested a variant of the
original model, to better understand how amygdala con-
nectivity predicts treatment response in the replication
dataset.

Methods
The replication and original datasets were similar in key

respects, with a comparison provided in Table 1 and
discussed in greater detail below. The replication dataset
has been previously described in studies examining the
effects of cognitive-behavioral therapy (CBT) on brain
function (NCT00380731)22. No analyses aiming to predict
treatment response from baseline imaging have been
previously reported in the replication dataset.

Participants
Participants in the replication dataset were recruited

through referrals and web listings between 2007 and 2010.
Participants were required to have a principal diagnosis of a
SAD, with no current pharmacotherapy or psychotherapy.

SAD was assessed by a diagnostic interview conducted by
Ph.D.-trained clinical psychologists using the Anxiety Dis-
orders Interview Schedule for DSM-IV (ADIS- IV)31, which
has strong inter-rater reliability32. Diagnostic criteria for
SAD were defined as greater than moderate fear in five or
more distinct social situations, LSAS score of ≥60, and a
clinician-assigned ADIS-IV clinical severity rating of 4 or
greater (0–8 scale) for SAD. This was similar to the original
study, which used either the SCID or ADIS for DSM-IV to
confirm SAD diagnosis and also required LSAS score ≥60
(Table 1).
Exclusion criteria included current or past CBT, history

of neurological disorders, or meeting diagnostic criteria
for any current psychiatric condition other than general-
ized anxiety disorder, agoraphobia without panic attacks,
specific phobia, panic disorder, or dysthymia. This was
similar but not identical to the original study, which
allowed the presence of comorbid mood disorders if SAD
was judged to be the predominant disorder.
We required participants to be unmedicated for at least

1 year prior to the baseline scan; the original study
required a period of at least two weeks without psychiatric
medications. We also required participants to be right-
handed based on the Edinburgh Handedness Inventory33

and to pass an MRI safety screen. The original study did
not require right-handedness (though most participants
in the sample were right-handed). Participants in the
replication dataset provided informed consent in com-
pliance with the Stanford University Institutional Review
Board.

Procedures
After passing a telephone screen and an in-person

eligibility session, participants completed a baseline
assessment session including fMRI. Participants were then
randomly assigned using biased coin randomization to
either individual CBT (n= 38) or to a waitlist (WL)
control group (n= 37) who were subsequently offered
CBT. Pre-randomization resting-state fMRI data were
collected on n= 53 subjects of these subjects (n= 30 CBT
immediate, n= 23 CBT post-waitlist). All participants
who completed at least 12 of 16 CBT sessions were
included in analyses, with their last available measure of
social anxiety symptom severity used in analyses (last
observation carried forward).
CBT included 16 individual weekly sessions over

4 months. It was delivered using Managing Social
Anxiety: A Cognitive-Behavioral Therapy Approach, a
manualized treatment protocol that included a therapist
guide34 and a client workbook35. All four study thera-
pists had demonstrated proficiency in CBT with training
cases prior to treating study patients. Therapists were
trained and supervised by Richard Heimberg, PhD, an
expert in CBT for SAD and one of the developers of the
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treatment protocol used here. All four therapists
demonstrated adherence to treatment protocols, as
verified by independent raters, as detailed in the original
report23.
Participants in the WL group initiated individual

CBT~19 weeks after the baseline brain scan. We included
these participants in analyses as it is unknown whether
the biomarker tested here predicted the effects of CBT
specifically, placebo effects, the natural history of symp-
toms, or some combination of these factors since the
original report did not include a control group. Given the
likelihood that the biomarker predicted a combination of
these factors36, we reasoned that the post-waitlist CBT
participants also offered a fair test for the biomarker while
allowing us a larger sample size. Thus, considering

dropout, the final sample consisted of n= 42 (n= 25
CBT-immediate, n= 17 CBT post-waitlist). For com-
pleteness, we also conducted the replication in the CBT-
immediate group only.

Measures
The Liebowitz Social Anxiety Scale (LSAS) self-report

form37,38 was the primary outcome, as in the original
report. LSAS scores range from 0 to144, with traditional
cutoffs for mild, moderate, and severe symptom severity
at 30, 50, and 90. Treatment response was defined as the
pre-to-post-treatment change in LSAS. The LSAS has
excellent reliability and construct validity39, and its
internal consistency was excellent in this study (Cron-
bach’s alpha= 0.91).

Table 1 Comparison of original and replication datasets.

Original report Replication dataset

Primary reference Whitfield-Gabrieli et al.1 Goldin et al., 2012, 2013

Patient population Social anxiety disorder Social anxiety disorder

Sample size 38 42

Age, years M= 29.2, range 18–49 M= 34.5, SD= 8.89, range 21–53

Gender 63% male 45.2% male

Race/Ethnicity Not reported 54.8% Caucasian, 26.2% Asian,

7.2% Filipino/Pacific Islander,

7.1% Hispanic/Latinx, 2.4% Black, 2.4% more than one

Education, years Not reported M= 17.0, SD= 2.20, range 13–21

Treatment 12 weeks of group CBT 16 weeks of individual CBT

SAD definition and inclusion

criteria

SAD diagnosis confirmed using either the SCID or ADIS

for DSM-IV; LSAS ≥60

SAD diagnosis confirmed using the ADIS for DSM-IV, with ≥4

ADIS clinical severity rating; LSAS≥60

Primary clinical outcome LSAS LSAS (baseline M= 82.0 [SD= 17.9]; post-CBT M= 51.3

[24.2])

Medication status Unmedicated for at least 2 weeks prior to baseline fMRI Unmedicated for at least 1 year prior to baseline fMRI

Psychiatric comorbidities Other mood or anxiety disorders permitted if SAD

judged to be the predominant disorder; other

psychiatric conditions excluded.

GAD, agoraphobia, specific phobia, panic disorder, and

dysthymia permitted; other psychiatric conditions excluded.

11.9% with current Axis I comorbidity; 26.2% with past Axis I

diagnosis.

Age of SAD onset, mean

(SD), years

12.2 14.26 (8.32)

SAD duration, mean

(SD), years

17.4 20.45 (12.91)

Scanner 3 T Siemens Trio Tim GE 3-T Signa

Headcoil Siemens 32-channel Quadrature coil

Scan parameters 6 min, TR= 6 s, 2x2x2 mm resolution, gradient echo 5 min, TR= 1.5 s, 3.4 ×3.4 ×4.5 mm resolution, spin echo

Task Fixate on crosshairs Fixate on crosshairs

Recruitment region Boston area San Francisco Bay Area

CBT cognitive behavioral therapy, LSAS Liebowitz Social Anxiety Scale, GAD generalized anxiety disorder, SAD social anxiety disorder.

Ashar et al. Translational Psychiatry          (2021) 11:260 Page 3 of 9



Data acquisition
Imaging was performed on a GE 3-T Signa magnet with

a T2*-weighted gradient-echo spiral-in/spiral-out pulse
sequence and a custom-built quadrature “dome” elliptical
birdcage head coil (GE Healthcare, Milwaukee, Wiscon-
sin). Participants completed a 5-min resting-state func-
tional run while fixating on cross-hair visual stimuli. 200
functional volumes were obtained from 22 sequential
axial slices (repetition time= 1.5 s, echo time= 30 ms, flip
angle=60°, field of view= 22 cm, matrix= 64×64, single-
shot, resolution= 3.438 mm2 × 4.5 mm). Three-
dimensional high-resolution anatomical scans were
acquired using fast spin-echo spoiled gradient recall
(0.85942 ×1.5 mm; field of view= 22 cm, frequency
encoding= 256).
In the original report, a 6-min resting-state scan was

collected on a 3 T Siemen’s Trio Tim scanner was col-
lected while participants fixated on a cross-hair (T2*
weighted gradient echo repetition time/echo time/Flip
angle = 6000ms/30 ms/90°, 67 contiguous interleaved
oblique slices, voxel size: 2.0 mm3).

Preprocessing of fMRI data
Preprocessing followed the same procedures and tools

described in the original report, using the Conn toolbox40

wrapping SPM12 for preprocessing routines. We per-
formed slice time correction, motion estimation and
realignment, normalization to MNI305 space, and spatial
smoothing with an 8mm FWHM Gaussian filter. GLM
regression was used to remove the influence of with the
following nuisance covariates: six head motion parameters
and their first-order temporal derivatives, the first three
components of white matter and CSF tissue compart-
ments, and spike regressors identifying volumes flagged as
outliers by the Artifact Detection Tool40 (an image was
defined as an outlier if the head displacement in any
direction was ≥ 0.5 mm from the previous frame, or if the
global mean image intensity ≥ 3 standard deviations above
the mean image intensity for the scan). The resulting
residual BOLD time-series were then band-pass filtered
(0.01 Hz < f < 0.10 Hz). The replication dataset had
acceptable levels of head motion, quantified as framewise
displacement (FD) (MFD= 0.13 mm, MedianFD=
0.06 mm, SDFD= 0.13 mm).

Comparison of the original and replication datasets
The original and replication datasets were similar in key

respects. They also differed in some characteristics, such
as group vs. individual CBT, scan acquisition parameters,
the geographic region from which patients were recruited,
and other characteristics (see Table 1 for a full
comparison).
In addition, the original study randomized subjects to

receive either D-cycloserine or placebo in conjunction

with CBT. No drug vs. placebo differences emerged, and
the authors collapsed across conditions in their analyses.
The treatment in the original study might thus be con-
sidered “placebo-enhanced” CBT. While meta-analyses
show a placebo effect of g= 0.39 in SAD41, it is unknown
to what extent this effect is additive, interacting, or fully
overlapping with psychotherapy effects36, and so it cannot
be determined to what extent drug administration
impacted outcomes in the original study. Importantly,
randomization to D-cycloserine or placebo occurred after
the baseline imaging session in the original study, so there
were no drug effects on functional connectivity. No
medication was administered in the replication study, a
potentially important difference between the two datasets.

Model specification
Details regarding the predictive model specification and

the cluster masks were provided in personal commu-
nications with the original authors. Mean connectivity
between the amygdala and the single positive connectivity
cluster was averaged with mean amygdala connectivity
with the three negative connectivity clusters. This formed
a single connectivity term, which was Fisher-transformed
and Z-scored across subjects. This connectivity term was
then submitted to a GLM along with baseline symptom
severity (LSAS) to predict treatment response, oper-
ationalized as the pre-to-post-treatment change in LSAS
(ΔLSAS). The final predictive model derived in the ori-
ginal report was:
ΔLSAS= 0.6194 * baseline_LSAS+ 8.6290 * amyg_-

conn − 9.9763 (1), where amyg_conn refers to the
amygdala connectivity term. The original report com-
pared predictions from (1) to a compact model including
only baseline LSAS and an intercept term as predictors.
Precisely specified models are necessary for a replicable,

cumulative science. We thus sought to apply this exact
model to our data. We made one modification, dropping
the intercept term from the model (and mean-centering
all model variables in the replication dataset). This
removed intercept effects in treatment response, as these
are reasonably expected to vary from study to study.
The original model included dependence between a

predictor (baseline LSAS) and the outcome (change in
LSAS from baseline to post-treatment). Thus, we first
tested whether the covariance between baseline and
change in LSAS was similar across the original and
replication datasets. We compared model predictions
derived from the optimal OLS model fit in the replication
data to predictions using the parameter estimate from the
original model (i.e., βbaseline_LSAS= 0.6194).
In addition, to explore a more flexible form of replica-

tion, we conducted a GLM estimating new parameter
estimates for the original model terms. Here, we tested
whether the amygdala connectivity term significantly
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predicted treatment response, controlling for baseline
LSAS.
The original report also reported successful prediction

of treatment response from multivoxel pattern analyses
(MVPA) of resting fMRI and from diffusion tensor ima-
ging (DTI). We were unable to apply the MVPA-derived
model to our data: One of the predictive clusters in the
MVPA model was an inferior cerebellar region for which
we had incomplete coverage in the replication dataset.
Similarly, DTI was not collected in the replication dataset.

Model assessment
We assessed performance by comparing predictions

from the full model to a compact model including only
the baseline LSAS term. Prediction performance was
measured using two metrics, following recent
recommendations3,42.
First, we computed an absolute measure of improve-

ment in prediction, normalized mean square error
(NMSE). We computed the mean squared error (MSE)
between the observed data and the predictions from the
full model, divided by MSE between the observed data
and the predictions from the compact model. We then
computed “prediction R2”, defined as 1 – NMSE, pro-
viding the proportional reduction in error for the full
model vs. the compact model42.
The second metric we used was a model-based R2. We

computed the squared Pearson correlation between the
observed data and the full model predictions, as compared
to the squared correlation between the observed data and
the compact model predictions. Correlation provides a
scale-free measure of predictive accuracy, which may be
appropriate for testing the model in independent data,
though in doing so it provides increased model flexibility.
Squaring the correlation coefficient provided a model-
based estimate of R2.
Statistical significance of prediction and model-based R2

was assessed by repeatedly permuting the amygdala con-
nectivity term across subjects, generating a null distribu-
tion, and comparing the unpermuted result to the 95th
percentile of the null distribution (10,000 permutations).
Analyses were conducted using the CanlabCore toolbox, a
freely available MATLAB© toolbox for flexible neuroi-
maging analyses: https://github.com/canlab/CanlabCore.
Data and code for analyses are publicly available at https://
github.com/yonestar/WhitfieldGabrieli2015_replication.

Results
Predicting treatment response from baseline symptoms
In the original report, the model including only baseline

social anxiety symptom scores (“compact model”) pre-
dicted 12% of the variance in pre-to-post-treatment
change scores: Higher pre-treatment scores predicted
greater pre-to-post-treatment symptom reductions, owing

both to regression to the mean and to dependence
between the two variables.
In the replication dataset, baseline social anxiety

symptoms explained 20% of the variance in pre-to-post-
treatment change scores. The OLS parameter estimate for
baseline symptom scores in the replication dataset was
βbaseline_LSAS= 0.66, numerically similar to the parameter
estimate from the original model (βbaseline_LSAS= 0.62).
We confirmed that the OLS parameter estimate provided
only a very small improvement in prediction over the
original parameter estimate (<1%, prediction R2= 0.0012).
Since both the OLS-derived and the original parameter
estimate for baseline social anxiety symptoms performed
very similarly in predicting treatment response in the
replication data, we used the original parameter estimate
in the replication analyses to provide the most direct test
of model replication.

Predicting treatment response from amygdala
connectivity
In the original report, the addition of the amygdala

connectivity term led to a total 33% variance explained, a
substantial increase of 21% over the variance explained by
baseline social anxiety symptoms alone. In the replication
dataset, the amygdala connectivity term explained an
additional 2% of the variance (Fig. 1C; prediction R2=
0.016, model-based R2= 0.020). This improvement in
prediction was marginally significant, model-based p=
0.097 and prediction R2 p= 0.101, rendering it unclear
whether the small increase in predictive power afforded
by amygdala connectivity was due to chance.
Visual inspection of the data confirmed that findings

were not driven by outliers (Fig. 1D). We confirmed that
all three terms in the model were approximately normally
distributed, Anderson-Darling test, ps > 0.4.

Predicting treatment response with increased model
flexibility
To provide a more flexible test of model replication, we

estimated a GLM including the same model terms as in the
original report. Controlling for baseline LSAS, the amygdala
connectivity term did not significantly predict treatment
response, βamyg_conn= 4.78, t(40) = 1.31, p= 0.20.

Testing model predictions in CBT-immediate subset
In the subset of 25 participants who received CBT

immediately after the baseline neuroimaging session
(CBT-immediate), the model did not predict treatment
response. In this subset, predictions from baseline
LSAS alone (compact model), the OLS estimate for
βbaseline_LSAS= 0.65, highly similar to original model value
(βbaseline_LSAS= 0.62). We thus used the original model
value for βbaseline_LSAS, as with the full sample attempt.
Relative to the compact model, the full model including
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amygdala connectivity did not improve the prediction of
treatment response, prediction R2=−0.019, p= 0.18,
model-based R2= 0.007, p= 0.20. Fitting the predictive
model in this subset of participants, the amygdala con-
nectivity term did not significantly predict treatment
response controlling for baseline symptom severity,
βamyg_conn= 3.84, t(40) = 0.81, p= 0.43.

Discussion
We conducted an independent replication of a model

previously shown to predict response to CBT for SAD
from resting-state amygdala-seeded fMRI connectivity1.
We tested the precise model developed in the original
report. This model provided a small improvement in the
prediction of treatment response. It explained an

additional 2% of the variance beyond baseline symptom
severity, which attained marginal statistical significance
and was approximately 1/10th of the effect size in the
original report. A more flexible test of model replication,
which used the amygdala connectivity target regions from
the original report and estimated model parameters on
the replication dataset, found no significant prediction of
treatment response. Overall, our results support the
hypothesis that some features of the amygdala might
predict treatment response in SAD, but that more
strongly predictive models must be developed for scien-
tific and clinical applications.
The original and replication datasets were similar in

many characteristics, and at the same time, differences
between them in patient characteristics, treatment

Fig. 1 The predictive model and independent replication results. A The seed region for the connectivity-based predictive model: bilateral,
anatomically defined amygdala (red). B Treatment response was predicted by a linear combination of greater amygdala connectivity with a
subgenual cingulate/caudate/putamen cluster (yellow) and reduced amygdala connectivity with bilateral central sulcus clusters and right temporal-
occipital clusters (blue). C Predicted treatment response for the compact model (including only baseline symptom severity, red points) vs. the full
model (also including amygdala connectivity, blue points). Successful replication would be indicated by an improved prediction for the full model vs.
the compact model. D Changes in prediction errors for the full vs. compact model for each subject. The inclusion of amygdala connectivity slightly
improved model predictions (increase of 2% variance explained), with marginal statistical significance. Brain images were created using MRICroGL.
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implementations, and fMRI parameters may have con-
tributed to the current findings. The samples were similar
in SAD age of onset, SAD duration, and inclusion/
exclusion criteria (Table 1). And yet, different symptom
profiles within a diagnostic category, as well as different
patterns of psychiatric comorbidities, have been asso-
ciated with functional connectivity differences43–46. CBT
implementations also varied between the two studies,
including individual vs. group CBT and the “placebo
enhancement” of CBT in the original dataset, another
important difference. And scanner hardware and acqui-
sition parameters differed between the two studies. While
this was not an exact replication, we believe that pre-
dictive markers will need to be robust to reasonable var-
iations in many of these characteristics for practical
scientific and clinical applications.
We focus our discussion here on five factors of interest

that likely influenced the current findings and can also
guide future attempts to develop generalizable predictive
biomarkers. These include: (a) sample size, (b) reliability
of fMRI connectivity measures, (c) dimensional rather
than categorical models of dysfunctional phenotypes, (d)
incremental validity and “broad” data, and (e) data sharing
and multi-team collaborations.
First, both the original and replication datasets were

underpowered due to relatively small sample sizes. With
approximately N= 40 in each dataset, these studies pro-
vide only 50% power to detect a medium effect (ρ= 0.3).
Stable estimates for correlation coefficients describing
medium effects require N= 100–250, depending on the
desired confidence interval47. The original findings—21%
variance explained by amygdala connectivity in a sample
of size N= 38—are accompanied by wide 95% confidence
intervals ranging from 2.7 to 46%.
A second factor is the reliability of fMRI connectivity

measures. In the original and replication datasets, scans
were 6 and 5min, lengths unlikely to yield reliable seed-
based connectivity estimates48,49. Recent work with highly
sampled subjects has found that 30–40min of motion-
censored data per subject provides reliable connectivity
estimates50,51, with perhaps twice this scan length needed
for subcortical structures52. In addition to longer scans,
advances in acquisition and analysis technologies, such as
multi-echo fMRI53 and custom head molds54, improve
data quality. Analytic approaches can also improve relia-
bility, with multivariate markers likely providing a broader
base of support relative to single regions of interest6,55. In
addition, methods for improved inter-subject align-
ment56,57 and systematic approaches for developing bio-
marker pipelines58,59 will improve performance. Finally,
spatial resolution is an additional consideration, especially
for smaller structures like the amygdala, and effective
resolution will be determined by the smoothing kernel
applied.

Third, both and the original and replication studies
considered the SAD diagnosis as a categorical indicator of
a shared dysfunction. However, it is well known that
psychiatric patient populations are heterogenous: a shared
diagnosis does not require shared mechanisms or even
shared symptoms60,61. Predictive markers focused on
patient subtypes or dimensional descriptions of dysfunc-
tion may relate more strongly to biology, providing
greater traction for predictive biomarkers46. Several
dimensional models have been recently proposed,
including the NIH research domain criteria62 and the
Hierarchical Taxonomy of Psychopathology63, and some
recent studies have adopted a dimensional subtyping
approach with encouraging results43,64,65.
A fourth factor is an incremental validity and “broad”

data66. Biomarkers will be most useful if they have pre-
dictive utility above and beyond measures that are
cheaper and easier to acquire. Demonstration of incre-
mental validity requires collecting a “broad” set of mea-
sures from multiple channels (ecological momentary
assessment, behavior, physiology, smartphone usage data,
etc.) to compare with neuroimaging-based prediction.
Critically, “broad” data will advance understanding of how
environmental influences mediate the relationship
between biology and phenotypic measures of dysfunction
(e.g., biomarkers predictions may only hold in a particular
socioeconomic group or only for subjects with high
inflammation67).
Fifth, for a cumulative scientific process to yield gen-

eralizable predictive biomarkers, data sharing and colla-
borative replication efforts are needed, such as the current
effort4,17,19,21. Software tools, data sharing platforms, and
reproducibility pipelines are needed to support this
effort21,68,69. We believe it is important to replicate pre-
cisely defined models70. For example, the amygdala is a
sensible focus point for predictive models relating to SAD,
given the large body of research indicating amygdala
alterations in SAD and other anxiety disorders24,25, and
with several studies reporting that features of amygdala
function predict CBT response in SAD patients1,29,30.
However, the particular predictive amygdala features have
varied widely from study to study, often with little overlap.
It is not enough to know that “something about the
amygdala” predicts treatment response—precisely speci-
fied models are needed. An aggregation of all relevant
datasets with resting-state fMRI prior to CBT in SAD will
provide a strong foundation for collaborative efforts to
develop predictive models. While the specific model tested
here may not explain sufficient variance in independent
datasets for scientific or clinical applications, we believe
our results can support a continued focus on amygdala
connectivity in developing improved predictive models.
There are many exciting opportunities as well as chal-

lenges in the effort toward building generalizable
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predictive biomarkers. We believe collaborative indepen-
dent replication attempts, such as the one undertaken
here, will play a critical role in this process, regardless of
replication results.
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