
UC Davis
UC Davis Electronic Theses and Dissertations

Title
An Efficient and Modular Total Synthesis of Ibogaine and Related Alkaloids

Permalink
https://escholarship.org/uc/item/23r4k7vd

Author
Iyer, Rishab Narsi

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/23r4k7vd
https://escholarship.org
http://www.cdlib.org/


 i 
 

An Efficient and Modular Total Synthesis of Ibogaine and Related Alkaloids 
 

By 
 

RISHAB N. IYER 
DISSERTATION 

 
Submitted in partial satisfaction of the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
in 
 

Chemistry 
 

in the 
 

OFFICE OF GRADUATE STUDIES 
 

of the 
 

UNIVERSITY OF CALIFORNIA 
 

DAVIS 
 

Approved: 
 

         
David E. Olson, Chair 

 
         

Dean J. Tantillo 
 

         
Jared T. Shaw 

 
Committee in Charge 

 
2023 

 
 
 
 
 



 ii 
 

Abstract 
 

Few classes of natural products have inspired as many chemists and biologists as have 

the iboga alkaloids. This family of monoterpenoid indole alkaloids includes the anti-addictive 

compound ibogaine as well as catharanthine, a precursor to the chemotherapeutic vinblastine. 

Despite being known for over 120 years, these small molecules continue to challenge our 

assumptions about biosynthetic pathways, catalyze our creativity for constructing complex 

architectures, and embolden new approaches for treating mental illness. While significant 

progress regarding their chemistry and pharmacology has been made since the 1960s, there is 

an emerging need for the development of an efficient and scalable total synthesis of these 

alkaloids. Access to iboga alkaloids by means of isolation has been hindered by low yields and 

environmental challenges. Thus, an efficient and modular total synthesis would enable 

widespread access for analog development and biological testing.  Accordingly, we have 

developed a facile 5-7 step total synthesis that allows for the preparation of ibogaine and a variety 

of related alkaloids and analogs. Using substrate-induced radical selectivity, our synthesis offers 

multiple points for diversification to aid in analog library development. An asymmetric variant has 

also been developed to provide unprecedented access to both enantiomers of the iboga scaffold.  
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I 

Chapter 1 – Intro to Ibogaine and Related Alkaloids      

 

1.1 Introduction   

 
Figure 1.1. (A) Structure of iboga alkaloids (B) Dimeric iboga alkaloids vinblastine and vincristine 

 

Ibogaine was first isolated in 1901,1 and its structure was deduced by Bartlett, Dickel, and 

Taylor in 1958.2  In 1960, its absolute stereochemistry was unambiguously assigned by X-ray 

crystallography.3  The defining features of the iboga architecture include an indole, a 7-membered 

tetrahydroazepine, and a bicyclic isoquinuclidine (Figure 1.1A).  Since ibogaine’s initial discovery, 

hundreds of alkaloids bearing structural and/or biosynthetic similarities to ibogaine have been 

identified.  The chemical structures of some of the more common iboga alkaloids are highlighted 

in Figure 1.1A with the Le Men and Taylor numbering convention indicated.4  While our work will 

primarily focus on monomeric iboga alkaloids, dimeric structures containing at least one iboga 

component are also common and include the notable chemotherapeutics vincristine and 

vinblastine (Figure 1.1B).  For information on the chemistry and/or biology of this class of 

bisindole alkaloids, we point the reader to a recent review.5 

The unique structures of iboga alkaloids have captured the imagination of chemists for 

decades, while their unusual effects on the brain have challenged conventional ideas about 

treating substance use disorder.  Though substantial progress has been made concerning the 

chemistry and neuropharmacology of these alkaloids, many unresolved problems and 

unanswered questions remain.  Ibogaine—the prototypical iboga alkaloid with the most 
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neurobiological data—still lacks a truly robust, scalable, enantioselective total synthesis.  

Moreover, its biological mechanism of action is completely opaque, pushing the limits of what 

traditional neuropharmacology is capable of explaining.   

 

1.2 Isolation of Iboga Alkaloids 

Plant Species Ibogaine Ibogamine Voacangine Coronaridine Catharanthine 

T. iboga6,7,8,9 0.27-0.32 0.097-0.40 0.043-0.28 NR NR 

V. africana10 0.25 TR 1.67 TR NR 

T. arborea 0.27 0.036 0.96 0.073 NR 

C. roseus11 NR NR NR NR 0.003-0.099 

T. alba 0.046-0.22 

 
0.042-0.30 0.033-0.96 0.075-0.52 NR 

T. donnell-smithii 
0.069-0.74 0.028-0.032 0.21-0.44 0.046-0.23 NR 

T. amygdalifolia 0.047 0.76-0.96 0.19-0.22 1.092-1.38 NR 

Table 1.1: Approximate yields of iboga alkaloids isolated from the whole root bark of various 

sources.  Percentages indicate the weight of the alkaloid free base relative to the weight of the 

plant source.  TR = trace (< 0.01%). NR = Not Reported. 

 

Monoterpenoid indole alkaloids (MIA) of the iboga-type are found in a variety of plant 

species around the world, though historically, isolation of iboga alkaloids has generally been 

restricted to regions of West Africa.12  There are hundreds of iboga alkaloids, but the compounds 

shown in Figure 1.1A represent some of the most commonly reported in natural product isolation 

and total synthesis literature. Of these alkaloids, ibogaine has attracted significant attention due 

to its therapeutic potential. However, the isolation of ibogaine from natural sources has been 

plagued by ethical and environmental challenges,13 as it only accounts for approximately 0.3% of 

the root bark weight in Tabernanthe iboga (Table 1.1).  In contrast, significantly larger amounts 
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of voacangine can be extracted from the root bark of Voacanga africana (~1.7% of the root bark).  

As a result, ibogaine is often produced via semi-synthesis starting from voacangine.13 Conversion 

of voacangine to ibogaine generally requires a two-step protocol involving saponification of the 

C16 methyl ester followed by acidification and heating to induce decarboxylation.13,14  In addition 

to ibogaine, Table 1 details several other common iboga alkaloids found in the Tabernanthe and 

Voacanga genera.  Interestingly, catharanthine belongs to the opposite optical series compared 

to other reported iboga alkaloids and is exclusively found in the Catharanthus roseus plant 

species.  The isolated compounds in Table 1.1 have sparked interest in more recent efforts to 

determine the alkaloid profiles of plants in the broader Apocynaceae family. 

 

1.3 Biosynthesis of Iboga Alkaloids 

Unlike in prokaryotes, the genes encoding metabolic pathways in plants are not typically 

clustered, making the full elucidation of alkaloid biosynthesis quite challenging.  Typically, each 

individual plant-derived enzyme must be identified, cloned, and isolated to firmly establish a role 

in the synthesis of a particular alkaloid.  Though several enzymes in the production of iboga 

alkaloids still remain elusive, our knowledge of iboga alkaloid biosynthesis has improved 

drastically over the past 15 years due in large part to the pioneering work of Sarah O’Connor, 

Vincenzo De Luca, and others. 

 
Figure 1.2. Biosynthesis of iboga alkaloids 
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Like all monoterpenoid indole alkaloids (MIAs), the iboga alkaloids are derived from 

tryptamine (1.20), which is produced from the enzymatic decarboxylation of tryptophan (1.17) by 

tryptophan decarboxylase (TDC) (Figure 1.2).15,16,17  The remainder of the iboga carbon skeleton 

can trace its origins to secologanin (1.21), an iridoid synthesized from isopentenyl pyrophosphate 

(1.18) and dimethylallyl pyrophosphate (1.19) via the non-mevalonate pathway.18  Ten enzymes 

are required to produce 1.21,19,20,21,22,23,24,25 which subsequently reacts with tryptamine to form 

strictosidine (1.22).  This critical Pictet-Spengler reaction is catalyzed by strictosidine synthase 

(STR),26,27 producing 1.22 as a single enantiomer.  Strictosidine (1.22) is a key intermediate en 

route to a number of indole alkaloids including those of the ajmalan, corynanthe, aspidosperma, 

quinoline, and iboga families.  

Many of the enzymes in T. iboga and C. roseus share a high degree of sequence 

homology, and thus, the biosynthetic pathways leading to ibogaine and catharanthine are quite 

similar until their late-stage divergence from dehydrosecodine (1.24).  Dehydrosecodine is 

generated from fragmentation of stemmadenine (1.23) and isomerization of the resulting iminium. 

A final intramolecular cycloaddition generates the iboga framework with further functionalization 

possible through a number of pathways.  

 

1.4 Methods for Synthesizing Isoquinuclidine Ring System  

Since Büchi’s pioneering synthesis of ibogaine in 196627, there have been numerous 

synthetic approaches to iboga alkaloids.  For a comprehensive analysis of strategies prior to 2011, 

we refer the reader to an excellent review by Sinha and co-workers.28  Here, we focus on historical 

strategies for constructing the isoquinuclidine, tetrahydroazepine, and indole ring systems 

characteristic of this alkaloid family. 

 The isoquinuclidine ring system represents a structural focal point for the iboga alkaloids.29  

Methods to construct this [2.2.2] bicycle have centered around three fundamental strategies—

cycloaddition, transannular cyclization, and radical rearrangement. The cycloaddition strategy  
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Figure 1.3. Cycloaddition approaches to the isoquinuclidine of iboga alkaloids  
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to the tosylhydrazones 1.33 and 1.34 allowed for separation via crystallization.  Fukuyama and 

co-workers sought to avoid endo/exo diastereoselectivity issues altogether by performing the 

Diels-Alder reaction with a symmetrical dienophile (Figure 1.3).33  Treatment of trans-dibromide 

1.35 with DABCO afforded the requisite dihydropyridine 1.36, which was then reacted with 

dimethyl methylenemalonate to give isoquinuclidine 1.37 in 94% yield over two steps.  

In the approaches described above, the Diels-Alder reactions were uncatalyzed, leading 

to racemic mixtures of isoquinuclidines.  Recently, Batey and co-workers reported an 

enantioselective Diels-Alder reaction of dihydropyridine 1.38 with acrolein in the presence of a 

valine-derived organocatalyst (Figure 1.3),34 leading to a formal synthesis of (+)-catharanthine.  

In 2006, Borschberg and co-workers reported another enantioselective synthesis of an iboga 

alkaloid, although their approach involved an intramolecular nitrone-olefin [3+2] cycloaddition 

(Figure 1.3).35,36  Key intermediate 1.40 was synthesized from L-glutamic acid and (2S)-but-3-en-

2-ol.  A crucial chirality transfer in the Ireland-Claisen rearrangement of a silyl ketene acetal 

afforded intermediate 1.40 in high diastereoselectivity.  The subsequent 1,3-dipolar cycloaddition 

produced 1.41 in 67% yield. 

Another common approach to accessing the isoquinuclidine framework of iboga alkaloids 

involves the transannular cyclization of an amine derivative.  Huffman and co-workers were the 

first to employ this strategy in 1965.37,38  Ring opening of cyclic epoxy ester 1.42 followed by 

transannular amidation produced the isoquinuclidine in a single step.  Subsequent tosylation of 

the C16 alcohol afforded intermediate 1.44 in 57% yield over two steps (Figure 1.4).  However, 

when this strategy was applied to the synthesis of ibogamine, the yields were greatly reduced 

owing to the complex mixture of diastereomeric products obtained during the synthesis of epoxide 

1.43.39 

Variants of the transannular cyclization strategy have involved the preassembly of the 

indole and/or tetrahydroazepine rings prior to formation of the isoquinuclidine (Figure 1.4).  The 

approach taken by Grieco and co-workers mirrored that of Huffman and produced 1.47 in  
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Figure 1.4. Transannular cyclization approaches to the isoquinuclidine of iboga alkaloids   
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metal catalysis to access an iboga alkaloid, and it set precedent for many similar strategies to 

follow.  

 

1.5 Methods for Synthesizing Tetrahydroazepine Ring System  

 
Figure 1.5. Construction of the tetrahydroazepine through C2–C16 bond formation 
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catalyst instead of a combination of PdCl2(CH3CN)2 and AgBF4.32 This result suggests that silver 

is not directly involved in cyclization and serves merely to facilitate chloride exchange for a 

noncoordinating tetrafluoroborate, thus generating a more active catalyst.  Though interesting, 

the methods developed by Trost and Sames suffered several drawbacks such as low yields and 

the need for stoichiometric or supra-stoichiometric amounts of palladium (1–2 eq).  In 2012, Sinha 

employed a modified strategy using only catalytic amounts of palladium catalyst (Figure 1.5).49  

Pre-functionalization of the indole C2 position with an iodide (1.54) enabled a reductive Heck 

reaction to be performed using only 10 mol% of Pd(OAc)2.  This more economical approach 

towards the tetrahydroazepine ring system enabled the synthesis of ibogaine (1.10) in 66% yield. 

 
Figure 1.6. (A) Construction of the tetrahydroazepine through indole–isoquinuclidine linkage (B) 

Construction of the tetrahydroazepine through ring expansion 
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workers performed a debenzylation of a quaternary ammonium salt derived from 1.55 (Figure 

1.6A).51  Though they were able to isolate catharanthine, the route was low yielding as formation 

of the quaternary ammonium salt was challenging.  Fukuyama and co-workers took a slightly 

different approach by deprotecting the isoquinuclidine prior to alkylation.  They noticed that 

hydrogenolysis of 1.56 also resulted in the reduction of the endocyclic olefin.  Instead, a mild and 

chemoselective deprotection using triethylsilane and palladium acetate afforded catharanthine in 

a single step.  Interestingly, the desired intramolecular SN2 alkylation occurred readily following 

carbamate deprotection, presumably due to the highly rigidified nature of the intermediate amine. 

Sundberg and co-workers also chose to construct the tetrahydroazepine after the indole and 

isoquinuclidine rings had already been established (Figure 1.6A).52  However, their approach 

involved the generation of a radical through irradiation of chloroacetamide 1.57.  Radical 

cyclization afforded 1.58 in modest yield. 

The final strategy used to construct the tetrahydroazepine involves ring expansion, and 

this was the method by which Büchi first synthesized ibogaine (Figure 1.6B).  Treatment of 1.59 

with a mixture of Zn and AcOH resulted in reductive opening of the 6-membered ring.  Following 

protonation at the g-position, conjugate addition of the amine produced ibogaine in 57% yield.  

White and co-workers also synthesized the tetrahydroazepine through ring expansion.  Beckman 

rearrangement of 1.62 yielded 1.63 in good yield. 

 

1.6 Methods for Synthesizing Indole Ring System  

The indole ring system of the iboga alkaloids is biosynthetically derived from tryptophan, 

and most synthetic efforts toward the iboga alkaloids have started from tryptamine derivatives.  

For example, Büchi’s 1966 synthesis of ibogaine involved the coupling of an isoquinuclidine with 

indole acetic acid.30 More recently, alternative approaches to generating the indole have been 

explored (Figure 1.7).  In 2000, White and co-workers installed the indole at a late-stage through 

a Fischer indole cyclization of 1.49 to afford 1.64 in 66% yield over two steps.42 Fukuyama and  
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Figure 1.8. Construction of the indole 

 

co-workers built the indole through radical cyclization of thioanilide 1.65.33 They noticed that 

standard tin hydride conditions failed to produce the desired product in acceptable yields.  Instead, 

they found that a phosphorus-based hydrogen atom donor afforded the desired cyclization.  

Recently, Sinha and co-workers decided to synthesize the indole very early in their synthesis.28 

Larock annulation of aniline 1.67 and alkyne 1.68 provided 1.69 in modest yield.  Very few 

synthetic strategies towards iboga alkaloids have made the construction of the indole a focal point 

for the synthesis, perhaps because the 7-membered tetrahydroazepine and bicyclic 

isoquinuclidine ring systems are viewed as being more challenging to access. 

 In the past decade, numerous syntheses of iboga alkaloids have emerged utilizing the 

general strategies listed above. A formulated list of all iboga syntheses is listed in Table 1.2. For 

a comprehensive analysis of recent synthetic developments, we point the reader to our recent 

review.53   

 

 
 

N
H

MeO

N

N
H

Me
N

MeMeO
MeO

O O

Cbz
N

Me

CO2Me

N
H

S

AcO
Cbz
N

N
H

Me

CO2Me

AcO

IMeO

NH2

Et3Si
OSiEt3

SiEt3

OSiEt3

1. p-TsOH * H2O

2. PhNHNH2, AcOH
    BF3OEt2, 80 ºC

AIBN, H3PO2

Et3N

Pd(OAc)2
Na2CO3

DMF

White, 2000

Fukuyama, 1999

Sinha, 2012

66% yield
(2 Steps)

50% yield

48% yield

1.49 1.64

1.65 1.66

1.67

1.68 1.69
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Year Group Alkaloid(s) Formation Sequence Step Count Overall Yield (%) 

1965 Buchi (±)-Ibogamine (81) Q ® I ® A 14 1.3 

1966 Buchi (±)-Ibogaine (1) Q ® I ® A 15 0.2 

1967 Sallay (±)-Ibogamine (81) A ® Q ® I 14 NR 

1968 Nagata (±)-Ibogamine (81) Q ® I ® A 16 0.8 

1978 Trost (+)-Ibogamine (81) I ® Q ® A NR* NR* 

1981 Hanaoka (±)-Ibogamine (81) Q ® I ® A 17 3.9 

1985 Kuehne (±)-Ibogamine (81) I/Q ® A 10 2.6 

1985 Raucher (±)-Catharanthine (7) Q ® I ® A 11 9.0 

1991 Herdeis (±)-Ibogamine (81) Q ® I ® A 8 14 

1996 Grieco (±)-Ibogamine (81) I ® Q ® A 9 7.0 

1999 Fukuyama (±)-Catharanthine (7) Q ® I ® A 17 6.0 

2000 White (–)-Ibogamine (81) A ® Q ® I 15 4.6 

2001 Kuehne (–)-Coronaridine (4) I ® Q/A 10 NR 

2005 Hodgson (+)-Ibogamine (81) Q ® I ® A 11 2.0 

2006 Borschberg (–)-19-hydroxyibogamine Q ® I ® A 20 1.9 

2012 Sinha (±)-Ibogaine (1) 
(±)-Ibogamine (81) Q ® I ® A 9 

9 
9.4 
5.6 

2012 Takayama (–)-Voacangalactone (169) Q ® I ® A 25 3.2 

2014 Oguri (–)-Catharanthine (7) I ® Q/A 10 2.8 

2015 Sames (±)-Ibogamine (81) Q ® I ® A 9 7.3 

2016 Luo (+)-Ibogamine (81) I ® Q/A 12 4.2 

2016 She 

(±)-Ibogaine (1) 
(±)-Ibogamine (81) 

(±)-Tabertinggine (25) 
(±)-37 
(±)-51 

(±)-Iboluteine (177) 
(±)-Ervaoffines D (49) 

I ® Q/A 

12 
12 
10 
13 
13 
14 
14 

4.6 
6.0 
41 
3.2 
4.3 
3.9 
2.9 

 
2023 Townsend (±)-Ibogamine (81) I ® A/ Q 9 24 

 
Table 1.2. Total syntheses of iboga alkaloids.  The order in which the indole (I), isoquinuclidine (Q), 

and tetrahydroazepine (A) rings were formed is indicated.  A “ / ” indicates that two ring systems were 

formed in the same step.  NR = not reported (i.e., not enough information was provided to calculate 

an overall yield or determine step count).  *Trost synthesized (+)-ibogamine from an intermediate in 4 

steps (17% yield).  However, the synthesis of this intermediate from simpler precursors was not 

detailed, and thus, we cannot provide an overall step count and yield for the Trost synthesis. 
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1.7 Biological Activity of Ibogaine 

The anti-addictive properties of ibogaine have been known since the 1960s, though this 

initial information was based entirely on anecdotal reports from heroin users.  Since that time, 

several open-label and/or retrospective studies have suggested that ibogaine might be useful for 

treating substance use disorder (SUD) as it appears to reduce drug cravings, decrease symptoms 

of withdrawal, and prevent relapse.54,55,56,57,58  Moreover, rodent studies have confirmed the anti-

addictive potential of ibogaine by demonstrating the natural product reduces drug self-

administration, prevents drug-induced dopamine release in several brain regions, attenuates 

drug-induced conditioned place preference, and decreases signs of withdrawal.59,60,61
  However, 

double-blind, placebo-controlled clinical trials firmly establishing the efficacy of ibogaine are still 

lacking.  It is illegal to possess ibogaine in the United States, as it is classified as a schedule I 

drug.  As a result, many people have sought treatment from informal clinics in countries where 

ibogaine is not regulated.62  For information on the history and pharmacology of ibogaine, we 

point the reader to several excellent reviews on these subjects.63,64,65,66   

Despite ibogaine’s promising therapeutic efficacy, major safety concerns have tempered 

excitement for its clinical development.  First and foremost, ibogaine is known to cause long-

lasting hallucinations, and at very high doses it can lead to tremors and Purkinje cell death in 

rats.67  However, its cardiotoxicity has been the biggest concern.  Ibogaine inhibits hERG 

potassium channels in the heart,68,69 with several deaths being linked to its adverse effects on 

heart function.70,71  Ibogaine is very nonpolar, as evidenced by the fact that it readily accumulates 

in adipose tissue,72 and it is well known that hERG inhibition is a major liability for many non-polar, 

basic amines.73  Previously, ibogaine was sold in France as a neurotherapeutic, however its 

adverse effects led to its removal from the market.  Since that time, a major goal for the field has 

been to identify ibogaine congeners with similar therapeutic efficacies, but improved safety 

profiles.  
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1.8 Conclusion 

A number of advances have been made in the past 10 years regarding iboga chemistry 

and biology.  We now know how the antipodal series of these alkaloids are generated from a 

common achiral precursor, and biomimetic approaches are enabling the rapid synthesis of several 

iboga family members.  Furthermore, new clues have emerged regarding how iboga alkaloids 

might produce long-lasting neurotherapeutic effects.  However, there are still a number of 

chemical and biological challenges that need to be addressed if we are to rationally engineer safe 

and effective medicines for treating neuropsychiatric disorders based on the iboga core structure.  
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Chapter 2 – Synthesis of Des-ethylibogaine 
 
 
2.1 Retrosynthetic Analysis of Ibogaine and Initial Preparation of Isoquinuclidine 
 

 
Figure 2.1. (A) Structures of iboga alkaloids (B) Order in ring assembly in various synthetic routes 

towards iboga alkaloids (C) Late-stage synthetic strategies towards iboga alkaloids (D) Our 

retrosynthetic analysis of ibogaine. 

 

The vast majority of iboga alkaloid syntheses can be grouped into three main late-stage 

strategies:74 rearrangement to generate the isoquinuclidine, indole C2 to C16 cyclization, and 

transannular cyclization (Figure 2.1C). Unfortunately, these late-stage strategies are variable in 

yields and necessitate pre-functionalization of the indole; a strategy that is not ideal for the 

generation of analogs containing various indole substitution patterns. Therefore, we envisioned a 

synthesis that would deviate significantly from traditional routes by constructing the indole ring 

system last though a Fischer indole cyclization of tricyclic ketone 2.15 (Figure 2.1D). Late-stage 
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diversification using substituted phenylhydrazines or various other reactions of the carbonyl gives 

access to a large number of analogs from a single late-stage intermediate. We envisioned that 

tricyclic ketone 2.15 could be constructed through exploitation of strained cyclopropyl ketone 2.16 

to generate the 7-membered ring. Finally, the isoquinuclidine ring system would be prepared from 

an intermolecular Diels-Alder reaction between a commercially available pyridine derivative and 

cyclopropyl enone. A significant challenge associated with constructing the isoquinuclidine core 

is the inherent endo selectivity of the Diels-Alder reaction. In our retrosynthetic model, it is 

imperative that the cyclopropyl ketone of intermediate 2.16 is in the exo orientation for ring 

expansion with the basic amine. Thus, strategic placement of a ketone in intermediate 2.16 allows 

for epimerization of the C16 carbon to ultimately conduct a dynamic resolution in our ring closure.  

In order to establish a proof of concept for synthesizing the core iboga scaffold, we shifted 

our focus towards the preparation of desethylibogaine (2.18) as a model system for the eventual 

construction of ibogaine (2.1) (Figure 2.2A). This allowed us to establish a general route to the 

iboga framework without the regioselectivity challenges associated with forming a substituted 

dihydropyridine.  

 

Figure 2.2. (A) Desethylbogaine as a model system for the construction of ibogaine (B) Initial 

synthetic efforts towards free amine 2.21  
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Initial synthetic efforts commenced with preparation of the requisite diene and dienophile 

for our Diels-Alder reaction (Figure 2.2B). Pyridine was reduced using sodium borohydride and 

benzyl chloroformate to afford dihydropyridine 2.19 in high yield.75 Dihydropyridine 2.19 is prone 

to oxidation and must be used immediately upon isolation. We observed that samples of 2.19 

showed immediate discoloration after just 30 minutes of air exposure. Cyclopropyl enone 2.17 

was prepared from an enamine assisted aldol reaction with cyclopropyl methyl ketone and 

paraformaldehyde (PFA). We found that diisopropylammonium trifluoroacetate performed best in 

the aldol condensation and was needed in stoichiometric quantity. With intermediates 2.19 and 

2.17 in hand, a Diels-Alder reaction was conducted in a sealed microwave tube to afford a 70:30 

(endo:exo) epimeric mixture of isoquinuclidine 2.2 in 90% yield. Due to the high instability of 

dihydropyridine 2.19, it is critical that the reaction is degassed at -78 °C prior to heating. Reactions 

that were not degassed showed a reduction in yield and significant pyridinium byproduct. 

Isoquinuclidine 2.2 was then subjected to a base-mediated epimerization using sodium methoxide 

to produce a 50:50 (endo:exo) ratio of epimers at the C16 carbon. Concomitant carbamate 

deprotection and olefin saturation was accomplished by hydrogenation using Pd/C to give free 

amine 2.21 in good yield. Having devised an efficient and convergent 4 step route to 2.21, focus 

shifted towards ring expansion of the cyclopropane to our desired tetrahydroazepinone. 

 

2.2 Tetrahydroazapinone Synthesis by Lewis Acid and Photoredox Catalysis Strategy 

 

Figure 2.3. (A) Acceptor stabilized cyclopropanes (B) Cyclopropylcarbinyl cation stabilization and 
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Cyclopropanes are incredibly valuable synthetic intermediates generally utilized for their 

inherent ring strain.76,77 Often times a cyclopropane is activated by an acceptor with significant p 

orbital character such as a carbonyl or nitrile78 (Figure 2.3A). Formation of a cation adjacent to 

the cyclopropane is stabilized by the bent nature of the cyclopropane C-C bonds through electron 

donation of the cyclopropyl s orbital to the neighboring vacant p orbital (Figure 2.3B). This 

stabilized cyclopropylcarbinyl cation allows for a myriad of transformations including nucleophilic 

attack at the distal carbon of the cyclopropane.79   

 We envisioned a similar pathway for ring expansion of cyclopropyl ketone 2.21 to 

tetrahydroazepinone 2.22 (Figure 2.4A). Though this is a 7-endo-tet cyclization that is disfavored 

by Baldwin’s rules, we thought we could exploit an exception through the formation of the 

cyclopropylcarbinyl cation in 2.21a. Furthermore, we hoped Lewis acidic conditions would induce 

epimerization of endo 2.21 to achieve a kinetic resolution in our reaction.  

                      
Table 2.1 
 
 
 
 
 

Entry Additive Solvent Temp 2.22 

1a AlCl3 (0.1 – 0.5) CH3CN RT to 90 °C - 

2a Yb(OTf)3 (0.1 – 0.5) CH3CN RT to 90 °C - 

3a Sc(OTf)3 (0.1 – 0.5) CH3CN RT to 90 °C - 

4 TFA (0.1), MgI2 (0.6) HFIP 80 °C Trace 

5 TFA (0.1) HFIP RT to 90 °C - 

6 MgI2 (0.1) HFIP RT to 90 °C - 

7 RuCl3 (0.1 – 0.5) CH3CN 90 °C Trace 

8 Ti(O-iPr)4 (0.1) CH3CN 90 °C - 

9a AlMe3 CH3CN RT to 90 °C Trace 
aDCE, DCM, DMF, DMSO, DMA also screened as solvents. All 
reactions run at 0.1M solvent. 

 
Figure 2.4. (A) Proposed 7-endo-tet pathway to product 2.22 (B) Lewis acid coordination 

competition between carbonyl and basic amine (C) Geminal Acceptor-Acceptor di-activation of 

cyclopropane, chelate pathway (D) Vicinal Donor-Acceptor di-activation of cyclopropane  
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 A total of 45 different Lewis Acid, solvent and temperature combinations were screened 

with intermediate 2.21 to produce the desired ring expansion. Unfortunately, nearly all conditions 

screened were unsuccessful and primarily starting material was recovered. It became clear that 

there is likely a competition in coordination between the carbonyl and basic amine (Figure 2.4B). 

Lewis acid coordination to the nitrogen would effectively diminish the nucleophilicity of the amine 

and prevent ring opening of the cyclopropane. Oxophilic Lewis acids80 such as Yb(OTf)3 and 

Sc(OTf)3 (Table 2.1, 2—3) gave similar results owing to the possibility of a Lewis acid chelate 

between the basic amine and carbonyl (Figure 2.4B).  

A thorough examination of the literature reveals a limitation in adding hard nucleophiles to 

mono-activated cyclopropanes. Generally hard nucleophiles such as an amine or alkoxide can 

only be added to a di-activated system using an acceptor-acceptor or a donor-acceptor 

activator81,82. A geminal acceptor-acceptor system can produce a Lewis acid chelate making the 

cyclopropane very prone for attack (Figure 2.4C). In a vicinal donor-acceptor system, the 

synergistic “push-pull” effect of vicinal charge stabilizing groups boosts the high polarization of 

the cyclopropane C-C bond, allowing for rupture under mild conditions (Figure 2.4D). 83   

Final attempts for optimization included the use of MgI2 to induce ring opening of the 

cyclopropane (Table 2.1, 4—6).84 LCMS analysis indicated that in the presence of trifluoroacetic 

acid (TFA), the cyclopropane undergoes ring opening with MgI2 to produce to the corresponding 

alkyl iodide. Through this pathway we hoped that the basic amine would undergo Sn2 ring closure 

to furnish the desired product. Unfortunately, only a trace amount of product was detected, and 

this strategy was deemed unsuccessful.  

 We next investigated if inversing the polarity of our ring closure via photoredox catalysis 

would give the desired cyclization. In this strategy, an excited photocatalyst (PC) would oxidize 

basic amine 2.21 to the corresponding radical cation85 and induce subsequent ring opening of the 

exo- cyclopropyl ketone (Figure 2.5A). Cyclization through this pathway would produce an alpha 

stabilized radical that can be reduced to the corresponding enolate to ultimately furnish 
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tetrahydroazepinone 2.22. We postulated that kinetic resolution of the endo 2.21 could occur 

through a fragmentation of radical cation 2.21b. Fragmentation of the isoquinuclidine would 

effectively racemize the C16 epimeric center (2.21c) and subsequent recombination could allow 

for a resolution in our reaction mixture.   

 
Figure 2.5. (A) Mechanism for photoredox catalyzed ring expansion of 2.21, Pathway for kinetic 

resolution of 2.21b (B) UV light catalyzed ring expansion of 2.21, internal H bond in 2.21  

 

 A variety of photocatalyst, thiol and solvent combinations were screened, and none proved 

successful. In most reactions, starting material was recovered in appreciable amounts. Prolonged 

irradiation with 1,4-dicyanobenzene (1,4-DCB) and thiophenol (PhSH) in acetonitrile led to 

significant decomposition and possible fragmentation of the isoquinuclidine ring. Irradiation with 

UV light was unsuccessful as starting material was also recovered. We surmise that an internal 

hydrogen bond between the carbonyl and basic amine forces the cyclopropane away from the 

amine and prevents any tetrahydroazepinone formation (Figure 2.5B).  
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difference by substituting the carbonyl for a hydrazone. In this scenario, there would be a 

significantly smaller difference in acidity for the ammonium and iminium in intermediate 2.21e. 

We envisioned a strategy in which upon formation of cyclopropyl phenyl hydrazone 2.21f, ring 

opening of the cyclopropane would produce an intermediate (2.21g) perfectly templated for a 

Fischer indole cyclization (Figure 2.6B). Assuming that this would be an acid-catalyzed process, 

we hoped that the reduced difference in basicity between the amine and imine would increase 

the likelihood of cyclopropyl ring opening by the quinuclidine nitrogen. Finally, a [3 + 3] sigmatropic 

rearrangement of 2.21g would furnish the iboga framework in a “one-pot” sequence from  

intermediate 2.21. 

  

Figure 2.6. (A) pKa differences between 2.21d and 2.21e (B) Cyclopropyl hydrazone strategy for 

“one-pot” sequence from 2.21 to 2.23 
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the aromatic singlet at d 6.95 ppm and the indole N-H indicated that the isolated product was a 

C3 substituted indole analog (Figure 2.7B). Structure elucidation via 1D and 2D NMR 

experiments led to the determination that the isoquinuclidine ring system had been deconstructed 

to yield compound 2.24 (Figure 2.8A)   

 

 

 

 

Figure 2.7. (A) 1H-NMR spectra of unexpected product from cyclopropyl cascade route (B) 1H-

1H COSY NMR of unexpected product (C) 1H -13C HSQC NMR of unexpected product  
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Having ruled out the possibility of a cyclopropane migration, we propose a mechanism 

involving a Grob like fragmentation of hydrazone 2.25 (Figure 2.28C). Fragmentation of the 

isoquinuclidine ring produces imine 2.26 which can undergo addition and subsequent ring 

fragmentation to yield linear intermediate 2.28. Finally, amine condensation to the cyclopropyl 

hydrazone followed by elimination and Fischer indolization produces rearranged scaffold 2.25. To 

probe this mechanism further, we altered the substituents on the para- position of the 

phenylhydrazine (Figure 2.28B) and noticed that with para-methoxyphenylhydrazine there was a 

significant reduction in yield and an appreciable amount of starting material was recovered. In 

contrast, the rearrangement proceeded smoothly with para-nitrophenylhydrazine and was 

complete in roughly half the amount of time as our pilot experiment. We believe this lends 

evidence to the notion that the Grob fragmentation of intermediate 2.25 is the rate determining 

step in the mechanism and the presence of a para- electron withdrawing group significantly 

enhances the rate of fragmentation. When subjecting pure epimers of intermediate 2.21 to the  

 
Figure 2.8. (A) Unexpected product from cascade cyclization reaction (B) Substituent effects on 

reaction efficiency (C) Proposed mechanism for rearrangement   
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reaction conditions, the endo epimer outperformed the exo epimer likely due to the anti-periplanar 

geometry of the fragmentation. We do observe epimerization in the reaction mixture, owing to the 

possibility of some kinetic resolution of the exo epimer.  

 

  
Figure 2.9. (A) Conformationally restricted homotryptamine and SERT inhibition potency             

(B) Preparation of enantiopure homotryptamine (C) Racemic and enantiopure homotryptamine 

targets  
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accessed from enantiopure isoquinuclidine 2.21 which could be derived from an asymmetric 

Diels-Alder reaction (Figure 2.9B). Current work is underway to synthesize and assess the 

therapeutic potential of these analogs in both SERT inhibition and SERT efflux assays. 

 

2.4 Alkyl Halide Ring Closure and Completion of Desethylibogaine 

 

 

 

Figure 2.11. (A) Two-step process for preparation of 2.22 (B) Cycloreversion by-product from 

Sn2 ring closure (C) Alkyl halide anti-bonding orbital overlap hypothesis  
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disfavored pathway, we rationalized that this product is kinetically favored due to significant 

overlap between the enolate pi orbital and the halide antibonding orbital. When using alkyl 

bromide 2.32, we were able to obtain our desired product in 45% yield using cesium carbonate 

and sodium sulfate in acetonitrile. This reaction was especially sensitive to water (Entry 5) and 

nearly all of endo 2.32 had undergone cycloreversion to intermediate 2.21.  

We hypothesized that the antibonding orbital of a chloride leaving group would have less 

orbital overlap with the enolate pi orbital (Figure 2.11C) and minimize the likelihood of 

cycloreversion. Formation of alkyl chloride 2.31 was sluggish when using hydrogen chloride (HCl) 

 

 

  

Entry X = Base Additive Solvent Temp 2.22 2.21 

1 Br Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) CH3CN 60 °C 45% 38% 

2 Br Cs2CO3 (1.5 equiv) - CH3CN 60 °C 40% 41% 

3 Br Cs2CO3 (1.0 equiv) - CH3CN 60 °C 22% 64% 

4 Br Cs2CO3 (1.5 equiv) LiI CH3CN 60 °C 38% 48% 

5 Br Cs2CO3 (1.5 equiv) H2O (3 equiv.) CH3CN 60 °C 8% 78% 

6 Br Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) CH3CN 80 °C 28% 41% 

7 Br K2CO3 (1.5 equiv) Na2SO4 (3 equiv.) CH3CN 60 °C - 65% 

8 Br 2,6-lutidine (1.5 equiv) - CH3CN 60 °C - 18% 

9 Br DIPEA (1.5 equiv.) - CH3CN 60 °C - 34% 

10 Br Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) DMF 60 °C trace 66% 

11 Br Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) DME 60 °C trace trace 

12 Br Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) t-BuCN 60 °C 22% 44% 

13a Cl Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) CH3CN 60 °C - - 

14a Cl Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) DMF 60 °C - - 

15 I Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) CH3CN 60 °C trace 88% 

16 I Cs2CO3 (1.5 equiv) Na2SO4 (3 equiv.) DMF 60 °C trace 78% 

17 I K2CO3 (1.5 equiv) Na2SO4 (3 equiv.) CH3CN 60 °C trace 77% 
 
Table 2.2. Isolated yields shown. All reactions run at 0.1M solvent and chromatographed using gradient elution 

20:1→10:1 DCM/MeOH. Product S-3 was isolated as a mixture of endo and exo epimers. a Reaction run at 60 °C to 

120 °C 
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or trimethylsilyl chloride (TMSCl) due to the poor nucleophilicity of the chloride anion (Figure 

2.11A). Alkyl chloride 2.31 was unreactive in our ring closure conditions and elevated 

temperature, longer reaction times or additional base led to decomposition (Table 2.2, Entry 13 

and 14). Other leaving groups such as the dimethylsulfonium salt, tosylate, and mesylate gave 

similar results and minimal product was detected.   

 We elected to progress forward in the synthesis albeit our sub-par yields for the 

preparation of intermediate 2.22. We noticed that hydrazone formation of 2.22 did not go to 

completion in protic solvents with mineral acids. However, heating a mixture of 2.22 with para-

methoxyphenylhydrazine in acetic acid and DCE enabled full hydrazone formation and 

subsequent cyclization to produce desethylibogaine (2.18) in 84% yield (Figure 2.12). Fischer 

indolization with phenylhydrazine stalled at the hydrazone stage and needed stoichiometric 

BF3OEt2 to induce cyclization to desethylibogamine 2.23. Taken together, these strategic 

decisions have led to the development of a scalable and efficient 6-step synthesis to the iboga 

framework. Our route allows for late-stage diversification of the indole ring system and enables 

the production of des-ethyl iboga compounds in roughly 26-28% overall yield from commercially 

available pyridine.  

 

 

  

 

 

 

 

 

Figure 2.12. 6 step synthesis of desethylibogaine (2.18) and desethylibogamine (2.23)
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2.5. Methods  

General Information for Chemical Synthesis 

All reagents were obtained from commercial sources and reactions were performed using oven-

dried glassware (120°C) under an inert N2 atmosphere unless otherwise noted.  Air- and moisture-

sensitive liquids and solutions were transferred via syringe or stainless-steel cannula. Organic 

solutions were concentrated under reduced pressure (∼5 Torr) by rotary evaporation. Solvents 

were purified by passage under 12 psi N2 through activated alumina columns. Chromatography 

was performed using Fisher Chemical™ Silica Gel Sorbent (230–400 Mesh, Grade 60). 

Compounds purified by chromatography were typically applied to the adsorbent bed using the 

indicated solvent conditions with a minimum amount of added dichloromethane as needed for 

solubility. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 plates 

(250 μm). Visualization of the developed chromatogram was accomplished by fluorescence 

quenching or by staining with iodine, butanolic ninhydrin, aqueous potassium permanganate, or 

aqueous ceric ammonium molybdate (CAM). Irradiation of photochemical reactions was carried 

out using 2 HIGROW LED Aquarium Light Blub, Wolezek 30W LED Plant Grow Light Bulb with 

18x2W 450-460nm. 

 

Nuclear magnetic resonance (NMR) spectra were acquired on either a Bruker 400 operating at 

400 and 100 MHz, a Varian 600 operating at 600 and 150 MHz, or a Bruker 600 operating at 600 

and 150 MHz for 1H and 13C, respectively, and are referenced internally according to residual 

solvent signals. Data for 1H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s, 

singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet), coupling constant (Hz), and 

integration. Data for 13C NMR are reported in terms of chemical shift (δ, ppm). High-resolution 

mass spectra were obtained using a Thermo Fisher Scientific Q-Exactive HF Orbitrap. 
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Detailed Synthesis Procedures and Experimental Data 

 

benzyl pyridine-1(2H)-carboxylate  

A flask was charged with methanol (500 mL, ~0.5M) and pyridine (20.36 mL, 252.84 mmol, 1 

equiv.) and cooled to -78 °C after which sodium borohydride (11.47 g, 303.41 mmol, 1.2 equiv.) 

was added in one portion. Benzyl chloroformate (43.13 mL, 303.41 mmol, 1.2 equiv.) was added 

dropwise over 1 h to the reaction mixture. The reaction mixture was stirred at -78°C for an 

additional 3 h after which it was diluted in Et2O (200 mL), poured into 1M HCl (400 mL) and the 

layers were separated. The aqueous layer was extracted with Et2O (2 x 200 mL) and the combined 

organic extracts were washed with 1M NaOH (100 mL) followed by brine (100 mL). The organic 

extracts were dried over sodium sulfate, filtered and concentrated under reduced pressure. The 

residue (54.31 g, 98%) was immediately used without further purification.  

 

Note: Dihydropyridine is prone to oxidation and must be used immediately upon isolation  

 

 

1-cyclopropylprop-2-en-1-one  

A Schlenk tube was sequentially charged with THF (100 mL, 0.70M), cyclopropyl methyl ketone 

(7 mL, 70.65 mmol, 1 equiv.), diisopropylammonium trifluoroacetate (17 g, 78.99, 1.12 equiv.) 

and paraformaldehyde (5 g, 166.50 mmol, 2.35 equiv.) under a stream of nitrogen. The mixture 

was stirred and heated at 80 °C for 48 h, after which it was cooled to ambient temperature, diluted 

with DCM (200 mL) and filtered. The reaction vessel and filter cake were washed with additional 
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DCM. The filtrate was poured into water (200 mL) and the layers were separated. The aqueous 

layer was further extracted with DCM (2 x 100 mL) and the combined organic fractions were dried 

over sodium sulfate, filtered and concentrated under reduced pressure. Purification via 

chromatography on silica gel (3:2 hexanes/DCM) afforded cyclopropyl enone (5.50 g, 81%) as a 

light-yellow oil. 

 

Note: Enone 11 is volatile (60°C at 60 torr) and very pungent. Extreme caution should be used 

when handling.  

 

Rf = 0.35 (2:1 hexanes/DCM)  

1H NMR (400 MHz, CDCl3) δ (ppm) = 6.43 (dd, J = 17.6, 10.5 Hz, 1H), 6.24 (dd, J = 17.6, 1.2 Hz, 

1H), 5.77 (dd, J = 10.5, 1.2 Hz, 1H), 2.20 – 2.11 (m, 1H), 1.05 (td, J = 3.7, 1.0 Hz, 2H), 0.94 – 

0.86 (m, 2H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 200.39, 136.57, 127.44, 18.14, 11.12 

HRMS (ESI) = m/z [M + H]+ calcd. For C6H9O+, 97.0658; found, 97.0655 

 

 

benzyl (1S,4S)-7-(cyclopropanecarbonyl)-2-azabicyclo[2.2.2]oct-5-ene-2-carboxylate (17) 

A Schlenk flask was sequentially charged with compound dihydropyridine (15.50 g, 72.00 mmol, 

1 equiv.) and cyclopropyl enone (13.84 g, 144.01 mmol, 2 equiv.). The mixture was cooled to -78 

°C after which it was evacuated and refilled with nitrogen 3 times. The mixture was stirred and 

heated at 80 °C for 72 h. The reaction vessel was cooled to ambient temperature, diluted with 

methanol (240 mL, 0.3M) and solid sodium methoxide (1.16 g, 21.60 mmol, 0.3 equiv.) was added 

Cbz
N

neat, 80 ºC
then

NaOMe, MeOH

O

Cbz
N

O



 40 
 

in small portions over 5 min. The resulting solution was stirred at ambient temperature for an 

additional 12 h after which it was concentrated under reduced pressure to remove methanol and 

any volatiles. The crude residue was diluted in DCM (200 mL), poured into water (100mL) and 

the layers were separated. The aqueous layer was further extracted with DCM (2 x 100 mL) and 

the combined organic fractions were dried over sodium sulfate, filtered and concentrated under 

reduced pressure. The residue was purified via chromatography on silica gel (7:3 hexanes/EtOAc) 

to afford the product (20.17 g, 90%) as a clear yellow oil. The product was isolated as a 50:50 

mixture of exo:endo epimers.  

 

Note: Separation of endo and exo epimers can be achieved by chromatography on silica gel 

using 10:1 DCM/EtOAc 

 

Rf = 0.42 (7:3 hexanes:EtOAc)  

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed)  = 7.38 – 7.30 (m, 10H), 6.58 – 6.44 (m, 

2H), 6.43 – 6.34 (m, 1H), 6.30 – 6.24 (m, 1H), 5.23 (d, J = 6.1 Hz, 1H), 5.18 – 5.02 (m, 4H), 4.70 

(d, J = 5.7 Hz, 1H),  3.38 – 3.25 (m, 3H), 3.05 – 2.71 (m, 5H), 2.27 – 2.16 (m, 1H), 2.14 – 2.02 

(m, 1H), 2.03 – 1.81 (m, 2H), 1.77 – 1.67 (1H), 1.48 – 1.41 (m, 1H), 1.06 – 0.81 (m, 8H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 209.36, 208.75, 208.49, 155.26, 154.76, 137.04, 136.85, 

136.78, 135.52, 135.35, 134.90, 134.72, 132.28, 131.88, 130.42, 130.15, 128.53, 128.50, 128.43, 

128.36, 128.18, 128.09,  127.99,127.84, 127.72, 127.57, 127.49, 66.93, 66.59, 52.49, 52.32, 

52.29, 47.91, 47.62, 47.50, 47.19, 47.00, 30.78, 30.55, 30.31, 30.13, 24.28, 23.62, 23.50, 20.05, 

19.73, 19.43, 19.27, 12.50, 11.82, 11.50, 11.36, 11.21, 10.86, 10.64 

HRMS (ESI) = m/z [M + H]+ calcd. For C19H22NO3
+, 312.1598; found, 312.1599 
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((1S,4R)-2-azabicyclo[2.2.2]octan-6-yl)(cyclopropyl)methanone  

A flask was charged with starting material (10.3 g, 33.07 mmol, 1 equiv.) and unreduced Pd/C 

(1.03 g, 10 wt%). The flask was evacuated and refilled with nitrogen 3 times. MeOH (330 mL, 

0.1M) was added in one portion and hydrogen gas was bubbled through the resulting solution for 

1 min. The reaction mixture was stirred at ambient temperature for 1 h after which it was filtered 

through a pad of celite. The reaction vessel and filter cake were washed with DCM (3 x 50 mL). 

The filtrate was concentrated under reduced pressure to afford compound the free amine (5.63 

g, 95%) as a yellow oil. The epimers were not separated nor characterized individually. 

 

Note: It was observed that prolonged reaction times (>1.5 h) gave an over reduced product with 

a m/z of 182. We surmise that the cyclopropyl ketone is prone to reduction to the corresponding 

alcohol. 

 

Rf = 0.10 (10:1 DCM/MeOH, 1% NH4OH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 3.38 (br. s, 1H), 3.29 – 3.23 (m, 1H), 3.14 (br. s, 1H), 3.08 

– 3.01 (m, 2H), 2.99 – 2.96 (m, 2H), 2.95 – 2.84 (m, 3H), 2.26 – 2.20 (m, 1H), 2.12 – 2.08 (m, 

1H), 2.05 – 1.95 (m, 3H), 1.93 (ddd, J = 7.7, 3.6, 1.7 Hz, 1H), 1.79–1.66 (m, 8H), 1.63 – 1.57 (m, 

3H), 1.57 – 1.47 (m, 1H), 1.09 – 0.98 (m, 3H), 0.95 (dd, J = 7.4, 4.2 Hz, 1H), 0.92 – 0.82 (m, 4H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 212.75, 210.44, 52.36, 51.28, 47.04, 46.74, 45.70, 45.41, 

27.58, 26.71, 25.41, 24.49, 24.44, 24.23, 24.04, 23.52, 19.89, 19.73, 11.23, 10.86, 10.81, 10.67 

HRMS (ESI) = m/z [M + H]+ calcd. For C11H18NO+, 180.1388; found, 180.1381 
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3-((6-cyclopropyl-2,3,4,5-tetrahydropyridin-3-yl)methyl)-1H-indole 

A microwave vial was charged with a 50:50 ratio of endo:exo epimers of the free amine (200 mg, 

1.1 mmol, 1 equiv.) and phenylhydrazine HCl (241 mg, 1.65 mmol, 1 equiv.) and evacuated and 

refilled with nitrogen 3 times. 1,2-dichloroethane (11 mL, 0.1M) was added in one portion followed 

by trifluoroacetic acid (0.841 mL, 11 mmol, 10 equiv.) and the resulting solution was heated in a 

microwave reactor at 120 °C for 12 h. The mixture was quenched with 4M NaOH and the layers 

were separated. The aqueous layer was further extracted with DCM (2 x 50 mL) and the combined 

organic fractions were dried over sodium sulfate, filtered and concentrated under reduced 

pressure. Purification via chromatography on silica gel (10:1 DCM/MeOH) afforded the product 

(155 mg, 56%) as an orange oil. 

 

Rf = 0.25 (10:1 DCM/MeOH, 1% NH4OH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 8.28 (s, 1H), 7.57 (dq, J = 7.9, 0.9 Hz, 1H), 7.35 (dd, J = 

8.0, 0.9 Hz, 1H), 7.18 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.10 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.96 

(d, J = 2.3 Hz, 1H), 3.77 (ddt, J = 16.8, 4.4, 2.0 Hz, 1H), 3.15 (ddt, J = 16.8, 9.9, 2.5 Hz, 1H), 

2.77 (dd, J = 14.4, 6.3 Hz, 1H), 2.61 (dd, J = 14.4, 7.6 Hz, 1H), 2.26 – 2.15 (m, 1H), 2.15 – 2.00 

(m, 1H), 1.96 – 1.77 (m, 1H), 1.55 (ddd, J = 13.4, 8.2, 5.0 Hz, 1H), 1.37 – 1.22 (m, 1H), 0.84 – 

0.67 (m, 4H) 
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3-((6-cyclopropyl-2,3,4,5-tetrahydropyridin-3-yl)methyl)-5-methoxy-1H-indole 

A microwave vial was charged with a 50:50 ratio of endo:exo epimers of the free amine (200 mg, 

1.1 mmol, 1 equiv.) and phenylhydrazine HCl (290 mg, 1.65 mmol, 1 equiv.) and evacuated and 

refilled with nitrogen 3 times. 1,2-dichloroethane (11 mL, 0.1M) was added in one portion followed 

by trifluoroacetic acid (0.841 mL, 11 mmol, 10 equiv.) and the resulting solution was heated in a 

microwave reactor at 120 °C for 12 h. The mixture was quenched with 4M NaOH and the layers 

were separated. The aqueous layer was further extracted with DCM (2 x 50 mL) and the combined 

organic fractions were dried over sodium sulfate, filtered and concentrated under reduced 

pressure. Purification via chromatography on silica gel (10:1 DCM/MeOH) afforded the product 

(68 mg, 22%) as an orange oil. 

 

Rf = 0.30 (10:1 DCM/MeOH, 1% NH4OH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.81 (s, 1H), 7.28 (s, 1H), 7.15 (dt, J = 1.68, 0.58 Hz, 

1H), 7.01(dt, J = 8.55, 0.51, 1H), 6.77 (dd, J = 8.2, 1.45 Hz, 1H), 3.77 (ddt, J = 16.8, 4.4, 2.0 Hz, 

1H), 3.65 (s, 3H), 3.15 (ddt, J = 16.8, 9.9, 2.5 Hz, 1H), 2.77 (dd, J = 14.4, 6.3 Hz, 1H), 2.61 (dd, 

J = 14.4, 7.6 Hz, 1H), 2.26 – 2.15 (m, 1H), 2.15 – 2.00 (m, 1H), 1.96 – 1.77 (m, 1H), 1.55 (ddd, 

J = 13.4, 8.2, 5.0 Hz, 1H), 1.37 – 1.22 (m, 1H), 0.84 – 0.67 (m, 4H) 
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3-((6-cyclopropyl-2,3,4,5-tetrahydropyridin-3-yl)methyl)-5-nitro-1H-indole 

A microwave vial was charged with a 50:50 ratio of endo:exo epimers of the free amine (200 mg, 

1.1 mmol, 1 equiv.) and para-nitrophenylhydrazine HCl (315 mg, 1.65 mmol, 1 equiv.) and 

evacuated and refilled with nitrogen 3 times. 1,2-dichloroethane (11 mL, 0.1M) was added in one 

portion followed by trifluoroacetic acid (0.841 mL, 11 mmol, 10 equiv.) and the resulting solution 

was heated in a microwave reactor at 120 °C for 12 h. The mixture was quenched with 4M NaOH 

and the layers were separated. The aqueous layer was further extracted with DCM (2 x 50 mL) 

and the combined organic fractions were dried over sodium sulfate, filtered and concentrated 

under reduced pressure. Purification via chromatography on silica gel (10:1 DCM/MeOH) afforded 

the product (258 mg, 56%) as a red oil. 

 

Rf = 0.20 (10:1 DCM/MeOH, 1% NH4OH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 8.66 (s, 1H), 7.91 (s, 1H), 7.69 (dt, J = 1.68, 0.51 Hz, 1H), 

7.54 (dt, J = 8.55, 0.44, 1H), 6.77 (dd, J = 8.2, 1.45 Hz, 1H), 3.77 (ddt, J = 16.8, 4.4, 2.0 Hz, 1H), 

3.15 (ddt, J = 16.8, 9.9, 2.5 Hz, 1H), 2.77 (dd, J = 14.4, 6.3 Hz, 1H), 2.61 (dd, J = 14.4, 7.6 Hz, 

1H), 2.26 – 2.15 (m, 1H), 2.15 – 2.00 (m, 1H), 1.96 – 1.77 (m, 1H), 1.55 (ddd, J = 13.4, 8.2, 5.0 

Hz, 1H), 1.37 – 1.22 (m, 1H), 0.84 – 0.67 (m, 4H) 
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octahydro-3,10-methanopyrido[1,2-a]azepin-9(6H)-one  

To a stirring solution of the free amine (5.63 g, 31.42 mmol, 1 equiv.) in DCM (31 mL, 1.0M) was 

added 33 wt% HBr/AcOH (16.27 mL, 94.27 mmol, 3 equiv.) in one portion. The solution was 

stirred at ambient temperature for 2 h after which it was concentrated under reduced pressure. 

The residue was dried under high vacuum for 1 h and then stirred vigorously in diethyl ether (50 

mL). The diethyl ether was decanted and the residue was dried under high vacuum. The alkyl 

bromide was used isolated as an orange foam and was used in the next reaction without any 

further purification or characterization.  

 

A flask was charged with compound alkyl bromide (10.71 g, 31.41 mmol, 1 equiv.), anhydrous 

Cs2CO3 (15.35 g, 47.13 mmol, 1.5 equiv.), and anhydrous Na2SO3 (13.38 g, 94.26 mmol, 3 equiv.). 

The flask was evacuated and refilled with nitrogen 3 times after which anhydrous CH3CN (314 

mL, 0.1M) was added in one portion. The reaction mixture was heated to 60 °C and stirred for 6 

h. The heterogeneous mixture was cooled to ambient temperature and filtered. The reaction 

vessel and filter cake were washed with DCM. The filtrate was concentrated under reduced 

pressure and the residue was purified via chromatography on silica gel (20:1 DCM/MeOH) to 

afford the product (2.31 g, 41% over 2 steps) as a light brown oil.  

 

Rf = 0.40 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 3.20 – 3.17 (m, 1H), 3.10 – 2.98 (m, 2H), 2.92 (dd, J = 9.6, 

4.1 Hz, 1H), 2.88 – 2.81 (m, 1H), 2.59 (d, J = 9.7 Hz, 1H), 2.54 (dd, J = 12.5, 6.8 Hz, 1H), 2.49 

(d, J = 12.5 Hz, 1H), 2.07 – 1.93 (m, 3H), 1.93 – 1.84 (m, 1H), 1.80 – 1.76 (m, 1H), 1.74 – 1.65 

(m, 1H), 1.61 – 1.47 (m, 3H). 

N

O

1. HBr/AcOH
    DCM, RT

2. Cs2CO3, Na2SO4
    CH3CN, 60ºC
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13C NMR (101 MHz, CDCl3) δ (ppm) = 216.49, 54.40, 51.61, 50.56, 50.37, 43.50, 29.56, 28.47, 

25.82, 23.74, 20.80 

HRMS (ESI) = m/z [M + H]+ calcd. For C11H18NO+, 180.1388; found, 180.1384 

 

 

Desethylibogaine  

A flask was charged with tetrahydroazepinone (1.25 g, 6.97 mmol, 1 equiv.) and para-

methoxyphenylhydrazine HCl (1.82 g, 10.45 mmol, 1.5 equiv.). The flask was evacuated and 

refilled with nitrogen 3 times after which anhydrous DCE (69.70 mL, 0.1M) and AcOH (5.98 mL, 

104.59 mmol, 15 equiv.) was added. The resulting mixture was degassed by bubbling nitrogen 

through the solution for 10 mins. The flask was heated to 80 °C and stirred for 12 h after which it 

was cooled to ambient temperature and diluted with DCM (30 mL). Saturated aq. NaHCO3 was 

added to the reaction mixture until the pH was adjusted to 7-8. The organic layer was separated, 

and the aqueous layer was further extracted with DCM (2 x 50 mL). The combined organic 

fractions were dried over sodium sulfate, filtered and concentrated under reduced pressure. 

Purification via chromatography on silica gel (gradient elution 20:1→10:1 DCM/MeOH, 0.25% 

NH4OH) afforded desethylibogaine (1.65 g, 84%) as a yellow foam.  

 

Rf = 0.38 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.61 (s, 1H), 7.14 (d, J = 8.6 Hz, 1H), 6.93 (s, 1H), 6.77 (d, 

J = 9.9 Hz, 1H), 3.86 (s, 3H), 3.42 – 3.33 (m, 1H), 3.32 – 3.19 (m, 3H), 3.17–3.09 (m, 2H), 2.98 

(dd, J = 11.8, 4.7 Hz, 1H), 2.73–2.65 (m, 1H), 2.19 – 2.08 (m, 2H), 1.95 – 1.88 (m, 1H), 1.82 –

1.57 (m, 4H) 

N
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13C NMR (101 MHz, CDCl3) δ (ppm) = 154.22, 142.34, 129.90, 129.75, 111.17, 111.13, 109.05, 

100.33, 56.15, 54.48, 54.25, 50.18, 39.23, 34.58, 29.16, 25.32, 23.41, 20.05 

HRMS (ESI) = m/z [M + H]+ calcd. For C18H23N2O+, 283.1808; found, 283.1815 

 

 

Desethyl-fluoroibogamine   

A flask was charged with tetrahydroazepinone (1.25 g, 6.97 mmol, 1 equiv.) and para-

fluorophenylhydrazine HCl (1.69 g, 10.45 mmol, 1.5 equiv.). The flask was evacuated and refilled 

with nitrogen 3 times after which anhydrous DCE (69.70 mL, 0.1M) and AcOH (5.98 mL, 104.59 

mmol, 15 equiv.) was added. The resulting mixture was degassed by bubbling nitrogen through 

the solution for 10 mins. The flask was heated to 80 °C and stirred for 12 h after which it was 

cooled to ambient temperature and diluted with DCM (30 mL). Saturated aq. NaHCO3 was added 

to the reaction mixture until the pH was adjusted to 7-8. The organic layer was separated, and 

the aqueous layer was further extracted with DCM (2 x 50 mL). The combined organic fractions 

were dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification 

via chromatography on silica gel (gradient elution 20:1→10:1 DCM/MeOH, 0.25% NH4OH) 

afforded desethyl-fluoroibogamine (1.65 g, 88%) as an orange foam.  

 

Rf = 0.11 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.87 (s, 1H), 7.14 (ddd, J = 14.3, 9.3, 3.4 Hz, 3H), 6.86 

(ddd, J = 9.3, 8.7, 2.5 Hz, 1H), 3.41 – 2.89 (m, 10H), 2.66 – 2.48 (m, 1H), 2.21 – 1.98 (m, 3H), 

1.91 (p, J = 2.9 Hz, 1H)	

N

O

N

N
H

C6H4N2H3F
BF3OEt2

AcOH 
    DCE, 80 ºC desethyl fluoroibogamine

F
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13C NMR (101 MHz, CDCl3) δ (ppm) = 159.43, 156.34, 143.87, 143.72, 130.96, 130.16, 130.03, 

110.74, 110.61, 109.73, 109.67, 109.11, 108.76, 103.06, 102.75, 54.04, 53.76, 50.03, 40.07, 

40.02, 34.70, 29.88, 29.72, 25.54, 23.64, 20.18	
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Chapter 3 – Synthesis of Epiibogaine 
 
 
3.1 Challenges with Translating Model System Towards Construction of Ibogaine 
 

 
 

Figure 3.1. (A) Desethylibogaine as a model system for construction of ibogaine (B) Reduction 

of 3-ethylpyridine to 1,3-dihydropyridine (C) Stereoselective reduction of ethylated isoquinuclidine  

 

 Having devised an efficient synthetic strategy to the iboga framework, we were tasked 

with translating our model system to the construction of ibogaine (Figure 3.1A). Two considerable 

challenges were faced when developing a route to ibogaine: a regioselective reduction of 3-

ethylpyridine to dihydropyridine 3.11 (Figure 3.1B) and a stereoselective reduction of the Diels-

Alder adduct to afford the ethyl group in the exo orientation (Figure 3.1C).  

Unlike our model system, the actual system employs an unsymmetrical pyridine to yield 

two 1,3-dhydropyridine regioisomers (Figure 3.1B).92  Evaluation of the ground state 

thermodynamic energies of the two isomers reveals that undesired dihydropyridine 3.12 is 1.4 

kcal/mol lower in energy than dihydropyridine 3.11. We hypothesize that this may be due to the 

slightly increased “push-pull” interactions between the ethyl group and nitrogen in 3.11. Reduction 

using the conditions developed in our model system afforded undesired dihydropyridine 3.12 as 

the predominant regioisomer (Entry 3, Table 3.1). Other sodium-based hydride reductants  
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Entry Reductant Solvent Temp 3.11 3.12 

1 NaBH4 (0.9 equiv.) ROHa -78 °C to RT <10% >90% 

2 NaBH4 (1.1 equiv.) ROHa -78 °C to RT <10% >90% 

3 NaBH4 (1.5 equiv.) ROHa -78 °C to RT <10% >90% 

4 NaBH4 (2.0 equiv.) ROHa -78 °C to RT <10% >90% 

5 NaBH4 (1.5 equiv.) THF -78 °C to RT <10% >90% 

6 NaBH(Et)3 (1.5 equiv.) THF -78 °C to RT N.R N.R 

7 NaBH(OAc)3 (1.5 equiv.) THF -78 °C 10% 90% 

8 LiBH4 (0.9 equiv.) THF -78 °C 35% 65% 

9 LiBH4 (1.1 equiv.) THF -78 °C 50% 50% 

10 LiBH4 (1.5 equiv.) THF -78 °C 60% 40% 

11 LiBH4 (1.5 equiv.) ROHa -78 °C 25% 75% 

12 DIBAL- H (1.1 equiv.) THF -78 °C to RT N.R N.R 
 
Table 3.1. Product distribution determined by LCMS. All reactions run at 0.1M. 

a Both methanol and ethanol were screened   

  

 

such as sodium triethylborohydride and sodium triacetoxyborohydride produced similar results 

irrespective of solvent or temperature (Entry 6 and 7, Table 3.1). It was hypothesized that 

substituting the sodium counterion may favor a kinetic pathway for the pyridine reduction.93,94 

Reduction with 1.5 equivalents of lithium borohydride (LiBH4) in THF produced the most favorable 

ratio for dihydropyridine formation (Entry 10, Table 3.1). As expected, a sub-stoichiometric 

amount of LiBH4 led to a more thermodynamic product distribution with dihydropyridine 3.12 being 

favored (Entry 8, Table 3.1). Alcoholic solvents negatively affected product distribution likely due 

to the reduced lithium counterion influence in polar protic solvents (Entry 11, Table 3.1).  

 Unsatisfied with only 60% conversion to dihydropyridine 3.11, we sought to circumvent 

regioselectivity issues by preparing our diene from an elimination of dihalide 3.14 (Figure 3.2A). 

In this scenario, our elimination would produce only the desired diene needed for our Diels-Alder  
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Figure 3.2. (A) Alternative approach to preparing dihydropyridine 3.11 (B) Previous methods to 

prepare tetrahydropyridine 3.13 (C) Efforts towards 3.11 (D) Synthesis of isoquinuclidine 3.17 

 

cycloaddition. Dihalide 3.14 can be synthesized from a standard bromination of tetrahydropyridine 

3.13, which could be obtained from a direct reduction of 3-ethylpyridine.  

 Previously utilized methods to prepare tetrahydropyridine 3.13 have involved a three-step 

protocol95 via formation of alkyl pyridinium 3.15 and alkyl tetrahydropyridine 3.16 (Figure 3.2B). 

An intermediary alkyl pyridinium is used because an acylated pyridinium is generally too 

withdrawn to tautomerize at the dihydropyridine stage for further reduction.96  We hypothesized 

that an acidic medium would facilitate tautomerization of a Cbz- acylated pyridinium to generate 

tetrahydropyridine 3.13 in one step from 3-ethylpyridine (Figure 3.2C). To our delight, reduction 

of 3-ethylpyridine with sodium cyanoborohydride (NaBH3CN) in DCM and acetic acid proceeded 

smoothly to furnish 3.13 in 65% yield. Subsequent bromination and dehydrohalogenation afforded 

dihydropyridine 3.11 in 71% yield over two steps. Dihydropyridine 3.11 was susceptible to 
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isomerization with excess base or prolonged reaction times. Mixing dihydropyridine 3.11 with 

cyclopropyl enone in a sealed vessel followed by treatment with sodium methoxide produced 

isoquinuclidine 3.17 in a 50:50 ratio of endo- and exo- epimers (Figure 3.2D). We did notice 

minimal dihydropyridine isomerization in the reaction mixture and isomerized Diels-Alder adduct 

3.18 was isolated in 12% yield.97  

 

3.3 Olefin Reduction Approach to Epiibogaine 

 Having prepared isoquinuclidine 3.17, we were now tasked with the challenge of 

developing a stereoselective reduction to afford our C20 ethyl group in the exo- orientation. Taking 

inspiration from our model system, we conducted a standard hydrogenation of intermediate 3.17 

and observed full endo selectivity to free amine 3.19 (Figure 3.3A). Unfortunately, addition of 

palladium hydride proceeded from the “top-face” of our isoquinuclidine to orient the C20 ethyl 

group in the endo position. It was clear that our Pd-H mediated hydrogenation proceeded via 

kinetic pathway98 and we sought to reduce our olefin using thermodynamic conditions. A cationic 

reduction99,100 using triethylsilane (Et3SiH) and trifluoroacetic acid (TFA) was performed to give a 

mmmm 

 

Figure 3.3. (A) Hydrogenation of 3.17 (B) Cationic reduction of 3.17 (C) Carbonyl directed 

hydroboration-protodeborylation strategy 
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mixture of C20 epimers and concomitant carbamate deprotection in 44% yield (Figure 3.3B). 

Unfortunately, even a reduction involving the generation of a cation intermediate produced the 

same selectivity as our Pd/C hydrogenation.  

It was hypothesized that we could use the C16 cyclopropyl ketone as a directing group for 

endo- functionalization of our olefin. We envisioned a carbonyl directed hydroboration101,102 of 

intermediate 3.17a to afford alkyl boronate 3.17c (Figure 3.3C). Carbonyl directed syn addition 

of B-H across our alkene would force the C20 ethyl group into the exo- orientation and a 

subsequent protodeborylation103 using acetic acid (AcOH) should furnish product 3.20 in 2 steps 

from 3.17a. We sought to take advantage of the inherent endo selectivity in our Diels-Alder 

reaction by avoiding epimerization of 3.17a. When subjecting endo- 3.17a to hydroboration-

protodeborylation conditions, we noticed yet again a mixture of epimers for the C20 ethyl group. 

Furthermore, we also observed significant carbonyl reduction to the corresponding cyclopropyl 

alcohol and it was clear that this strategy was not useful for our total synthesis.  

We elected to continue with intermediate 3.19 (Figure 3.4) albeit the incorrect 

stereochemistry at C20. Ring opening was conducted with HBr/AcOH to furnish the corresponding 

alkyl bromide which was then subjected to a base mediated ring closure with cesium carbonate  

 
Figure 3.4. Synthesis of epiibogaine (3.22) 
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in acetonitrile to afford tetrahydroazapinone 3.21 in 40% yield over two steps. A Fischer indole 

cyclization with para-methoxyphenylhydrazine produced epiibogaine in 81% yield. Though this is 

one the most efficient syntheses of epiibogaine to date104, a route towards the construction of 

ibogaine still remained. 
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3.4 Methods  

General Information for Chemical Synthesis 

All reagents were obtained from commercial sources and reactions were performed using oven-

dried glassware (120°C) under an inert N2 atmosphere unless otherwise noted.  Air- and moisture-

sensitive liquids and solutions were transferred via syringe or stainless-steel cannula. Organic 

solutions were concentrated under reduced pressure (∼5 Torr) by rotary evaporation. Solvents 

were purified by passage under 12 psi N2 through activated alumina columns. Chromatography 

was performed using Fisher Chemical™ Silica Gel Sorbent (230–400 Mesh, Grade 60). 

Compounds purified by chromatography were typically applied to the adsorbent bed using the 

indicated solvent conditions with a minimum amount of added dichloromethane as needed for 

solubility. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 plates 

(250 μm). Visualization of the developed chromatogram was accomplished by fluorescence 

quenching or by staining with iodine, butanolic ninhydrin, aqueous potassium permanganate, or 

aqueous ceric ammonium molybdate (CAM). Irradiation of photochemical reactions was carried 

out using 2 HIGROW LED Aquarium Light Blub, Wolezek 30W LED Plant Grow Light Bulb with 

18x2W 450-460nm. 

 

Nuclear magnetic resonance (NMR) spectra were acquired on either a Bruker 400 operating at 

400 and 100 MHz, a Varian 600 operating at 600 and 150 MHz, or a Bruker 600 operating at 600 

and 150 MHz for 1H and 13C, respectively, and are referenced internally according to residual 

solvent signals. Data for 1H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s, 

singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet), coupling constant (Hz), and 

integration. Data for 13C NMR are reported in terms of chemical shift (δ, ppm). High-resolution 

mass spectra were obtained using a Thermo Fisher Scientific Q-Exactive HF Orbitrap. 
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Detailed Synthesis Procedures and Experimental Data 

 

benzyl 5-ethyl-3,6-dihydropyridine-1(2H)-carboxylate  

A stirred solution of 3-ethylpyridine (10.48 mL, 93.40 mmol, 1 equiv.) in DCM/AcOH (374 mL/187 

mL, 0.166M) was cooled to 0 °C and solid sodium cyanoborohydride (14.67 g, 233 mmol, 2.5 

equiv.) was added in one portion. Benzyl chloroformate (17.26 mL, 121 mmol, 1.3 equiv.) was 

added dropwise over 15 mins and the reaction mixture was slowly warmed to ambient 

temperature over the course of 16 h. The reaction mixture was quenched by the addition of 

aqueous saturated NaHCO3 (150 mL) and the organic layers were separated. The aqueous layer 

was extracted further with DCM (2 x 200 mL) and the combined organic fractions were dried over 

sodium sulfate, filtered and concentrated under reduced pressure. Purification via 

chromatography on silica gel (20:1 hexanes/ethyl acetate) afforded the product (14.89 g, 65%) 

as a colorless oil. 

 

Rf = 0.65 (7:3 hexanes/EtOAc)  

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed) = 7.40 – 7.28 (m, 5H), 5.53 (s, 1H), 5.16 

(s, 2H), 3.89 – 3.81 (m, 2H), 3.52 (t, J = 5.74 Hz, 2H), 2.12 (s, 2H), 1.98 (s, 2H), 1.03 (t, J = 7.4 

Hz, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 136.97, 128.49, 128.46, 127.95, 127.90, 118.11, 117.68, 

66.97, 49.75, 46.00, 44.76, 40.74, 40.47, 30.59, 27.38, 24.99, 24.65, 12.19, 11.29 

HRMS (ESI) = m/z [M + H]+ calcd. for C15H20NO2
+, 246.1498; found, 246.1490 
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benzyl 3,4-dibromo-3-ethylpiperidine-1-carboxylate  

Dibromo compound was synthesized using a referenced procedure. Compound S-1 (9.85 g, 96%) 

was isolated as a clear oil that crystallized into a white solid upon standing. Spectral data matches 

that reported in the literature.  

 

Rf = 0.45 (7:3 hexanes/EtOAc)  

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed) = 7.41 – 7.28 (m, 5H), 5.20 – 5.08 (m, 

2H), 4.63 – 4.59 (s, 1H), 4.31 – 3.97 (m, 2H) 3.52 – 3.25 (m, 2H), 2.85 – 2.70 (m, 1H), 2.08 – 1.80 

(m, 3H), 1.19 – 1.07 (m, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 155.42, 155.28, 137.19, 136.67, 128.58, 128.54, 128.15, 

128.05, 127.95, 127.85, 71.54, 67.53, 66.96, 55.99, 50.96, 50.59, 49.83, 44.84, 39.52, 39.37, 

33.83, 31.52, 31.19, 30.67, 11.38, 8.67 

 

 

benzyl 5-ethylpyridine-1(2H)-carboxylate  

A 2-neck flask was charged with dibromo starting material (8.50 g, 20.98 mmol, 1 equiv.) and 

anhydrous DABCO (8.14 g, 72.59 mmol, 3.46 equiv.). The flask was evacuated and refilled with 

nitrogen 3 times after which anhydrous acetonitrile (159 mL, 0.132M) was added. The resulting 

solution was stirred and heated at reflux for 3 h after which the reaction was allowed to cool to 

ambient temperature and filtered. The reaction vessel and filter cake were washed with DCM (2 

x 50 mL) and the filtrate was concentrated under reduced pressure to remove excess acetonitrile. 
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The resulting residue was diluted in DCM (75 mL) and extracted with brine (3 x 50 mL). The 

organic fractions were dried over sodium sulfate, filtered and concentrated under reduced 

pressure. The residue (3.77 g, 74%) was used immediately in the Diels-Alder reaction without 

further purification.  

 

Note: DABCO was recrystallized and dried prior to use. The dihydropyridine is prone to 

isomerization and the rigorous omission of water is critical to maintaining reproducibility. 

Prolonged reaction times can also result in isomerization to the undesired diene. It is advised to 

monitor the reaction via TLC and LCMS.  

 

 

1-cyclopropylprop-2-en-1-one  

A Schlenk tube was sequentially charged with THF (100 mL, 0.70M), cyclopropyl methyl ketone 

(7 mL, 70.65 mmol, 1 equiv.), diisopropylammonium trifluoroacetate (17 g, 78.99, 1.12 equiv.) 

and paraformaldehyde (5 g, 166.50 mmol, 2.35 equiv.) under a stream of nitrogen. The mixture 

was stirred and heated at 80 °C for 48 h, after which it was cooled to ambient temperature, diluted 

with DCM (200 mL) and filtered. The reaction vessel and filter cake were washed with additional 

DCM. The filtrate was poured into water (200 mL) and the layers were separated. The aqueous 

layer was further extracted with DCM (2 x 100 mL) and the combined organic fractions were dried 

over sodium sulfate, filtered and concentrated under reduced pressure. Purification via 

chromatography on silica gel (3:2 hexanes/DCM) afforded cyclopropyl enone (5.50 g, 81%) as a 

light yellow oil. 
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Note: Enone 11 is volatile (60°C at 60 torr) and very pungent. Extreme caution should be used 

when handling.  

 

Rf = 0.35 (2:1 hexanes/DCM)  

1H NMR (400 MHz, CDCl3) δ (ppm) = 6.43 (dd, J = 17.6, 10.5 Hz, 1H), 6.24 (dd, J = 17.6, 1.2 Hz, 

1H), 5.77 (dd, J = 10.5, 1.2 Hz, 1H), 2.20 – 2.11 (m, 1H), 1.05 (td, J = 3.7, 1.0 Hz, 2H), 0.94 – 

0.86 (m, 2H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 200.39, 136.57, 127.44, 18.14, 11.12 

HRMS (ESI) = m/z [M + H]+ calcd. For C6H9O+, 97.0658; found, 97.0655 

 

 

Benzyl(1R,4S,7R)-7-(cyclopropanecarbonyl)-6-ethyl-2-azabicyclo[2.2.2]oct-5-ene-2-

carboxylate  

A Schlenk flask was sequentially charged with dihydropyridine (3.77 g, 15.51 mmol, 1 equiv.) and 

cyclopropyl enone (2.98 g, 31.02 mmol, 2 equiv.). The mixture was cooled to -78 C after which it 

was evacuated and refilled with nitrogen 3 times. The mixture was stirred and heated at 40 °C for 

72 h. The reaction mixture was directly loaded onto silica gel and purified via flash column 

chromatography (gradient elution 10:1→7:3 hexanes/EtOAc) to afford the product (3.03 g, 64%) 

as clear yellow oil.  

 

Note: Purification is easiest when performed using “dry-load” method. 
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Rf = 0.40 (7:3 hexanes/ethyl acetate)  

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed) = 7.40 – 7.27 (m, 11H), 6.00 – 5.96 (m, 

1H), 5.96 – 5.91 (m, 1H), 5.20 – 4.99 (m, 6H), 4.95 – 4.88 (d, J = 9.05 Hz, 1H), 3.41 – 3.20 (m, 

3H), 3.02 – 2.90 (m, 2H), 2.88 – 2.65 (m, 3H), 2.32 – 2.01 (m, 7H), 1.98 – 1.79 (m, 3H), 1.71 – 

1.59 (m, 2H), 1.46 – 1.32 (m, 1H), 1.14 – 1.02 (m, 4H), 1.01 – 0.79 (m, 11H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 209.63, 209.09, 208.95, 208.58, 155.30, 147.44, 146.92, 

144.93, 137.24, 137.02, 128.68, 128.62, 128.59, 128.54, 128.45, 128.11, 128.05, 127.98, 127.94, 

127.80, 127.76, 127.64, 127.10, 125.75, 125.55, 125.20, 125.14, 67.05, 67.00, 66.97, 66.66, 

52.60, 52.51, 52.40, 51.87, 51.45, 51.20, 51.17, 48.36, 48.02, 47.91, 47.77, 30.77, 30.51, 30.00, 

26.74, 26.48, 26.39, 25.05, 24.96, 24.85, 20.15, 19.76, 19.60, 19.32, 12.56, 11.89, 11.88, 11.72, 

11.61, 11.50, 11.41, 11.33, 11.23 

HRMS (ESI) = m/z [M + Na]+ calcd. for C21H25NO3Na+, 362.1728; found, 362.1722 

 

 

cyclopropyl((1S,4R,7R)-7-ethyl-2-azabicyclo[2.2.2]octan-6-yl)methanone  

A flask was charged with the starting material (2.95 g, 8.69 mmol, 1 equiv.) and solid sodium 

methoxide (141 mg, 2.60 mmol, 0.3 equiv.). The flask was evacuated and refilled with nitrogen 3 

times after which MeOH (87 mL, 0.1M) was added in one portion. The resulting solution was 

stirred at ambient temperature for 12 h after which it was uncapped and unreduced Pd/C (295 

mg, 10 wt%) was added under a stream of nitrogen. Hydrogen gas was bubbled through the 

resulting solution for 1 min and the reaction mixture was stirred at ambient temperature for 6 h. 

The heterogeneous reaction mixture was filtered through a pad of celite and the reaction vessel 

and filter cake were washed with DCM (2 x 50 mL). The filtrate was concentrated under reduced 

pressure and purified via chromatography on silica gel (10:1 DCM:MeOH, 1% NH4OH) to afford 
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compound 13 (1.64 g, 91%) as a yellow oil. The epimers were not separated nor characterized 

individually.  

 

Note: It was noticed that using reduced Pd/C gave irreproducible results for carbamate removal. 

 

Rf = 0.1(10:1 DCM/MeOH)  

1H NMR (400 MHz, CDCl3) δ (ppm) = 3.09 – 3.01 (m, 1H), 2.97 (s, 1H), 2.88 – 2.77 (m, 2H), 

2.05 – 2.00 (m, 1H), 1.99 – 1.82 (m, 2H), 1.70 (s, 1H), 1.66 – 1.53 (m, 2H), 1.40 (tt, J = 13.5, 6.7 

Hz, 3H), 1.06 – 0.99 (m, 3H), 0.99 – 0.91 (m, 3H), 0.91 – 0.78 (m, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 212.53, 201.21, 49.20, 47.06, 46.99, 45.98, 45.79, 40.31, 

38.53, 36.06, 32.10, 30.02, 27.98, 27.71, 26.65, 24.88, 19.69, 19.62, 15.55, 12.11, 11.79, 11.04, 

10.86, 10.82, 10.75, 10.68 

HRMS (ESI) = m/z [M + H]+ calcd. for C13H22NO+, 208.1698; found, 208.1699 

 

 

(1S,4R,7R)-6-(4-bromobutanoyl)-7-ethyl-2-azabicyclo[2.2.2]octan-2-ium bromide  

To a stirring solution of the starting material (1.25 g, 6.03 mmol, 1 equiv.) in DCM (6.03 mL, 1.0M) 

was added 33 wt% HBr/AcOH (3.12 mL, 18.08 mmol, 3 equiv.) in one portion. The solution was 

stirred at ambient temperature for 2 h after which it was concentrated under reduced pressure. 

The residue was dried under high vacuum for 1 h and then stirred vigorously in diethyl ether (30 

mL). The diethyl ether was decanted and the residue was dried under high vacuum. The product 

(2.18 g, 98%) was used isolated as an orange foam and was used in the next reaction without 

any further purification or characterization.  
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1-ethyloctahydro-3,10-methanopyrido[1,2-a]azepin-9(6H)-one  

A flask was charged with the alkyl bromide (2.18 g, 5.90 mmol, 1 equiv.), anhydrous Cs2CO3 (2.88 

g, 8.85 mmol, 1.5 equiv.), and anhydrous Na2SO3 (2.52 g, 17.71 mmol, 3 equiv.). The flask was 

evacuated and refilled with nitrogen 3 times after which anhydrous CH3CN (59 mL, 0.1M) was 

added in one portion. The reaction mixture was heated to 60 °C and stirred for 6 h. The 

heterogeneous mixture was cooled to ambient temperature and filtered. The reaction vessel and 

filter cake were washed with DCM (2 x 30 mL). The filtrate was concentrated under reduced 

pressure and the residue was purified via chromatography on silica gel (20:1 DCM/MeOH) to 

afford the product (499 mg, 41%) as a light brown oil. 

 

Rf = 0.43 (20:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 3.18 – 2.92 (m, 3H), 2.80 (dd, J = 13.2, 2.7 Hz, 1H), 2.66 

– 2.51 (m, 3H), 2.06 – 1.75 (m, 7H), 1.61 – 1.49 (m, 1H), 1.39 – 1.19 (m, 2H), 1.08 (dd, J = 12.7, 

2.6 Hz, 1H), 0.90 (t, J = 7.4 Hz, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 216.98, 54.88, 53.83, 50.10, 46.87, 43.79, 41.70, 31.40, 

30.54, 27.92, 26.77, 21.24, 12.31 

HRMS (ESI) = m/z [M + H]+ calcd. For C14H26NO+, 208.1698; found, 208.1694 
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epiibogaine  

A flask was charged with the starting material (200 mg, 0.964 mmol, 1 equiv.) and para-methoxy 

phenylhydrazine (252 mg, 1.44 mmol, 1.5 equiv.). The flask was evacuated and refilled with 

nitrogen 3 times after which anhydrous DCE (9.64 mL, 0.1M) and AcOH (0.827 mL, 14.47 mmol, 

15 equiv.) was added. The resulting mixture was degassed by bubbling nitrogen through the 

solution for 10 mins. The flask was heated to 80 °C and stirred for 12 h after which it was cooled 

to ambient temperature and diluted with DCM (20 mL). Saturated aq. NaHCO3 was added to the 

reaction mixture until the pH was adjusted to 7-8. The organic layer was separated, and the 

aqueous layer was further extracted with DCM (2 x 50 mL). The combined organic fractions were 

dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification via 

chromatography on silica gel (gradient elution 20:1→10:1 DCM/MeOH, 0.25% NH4OH) afforded 

epiibogaine (242 mg, 81%) as a colorless oil. 

 

Rf = 0.33 (10:1 DCM/MeOH) 

1H NMR (400 MHz, MeOD) δ (ppm) = 7.16 (d, J = 8.7 Hz, 1H), 6.95 (d, J = 2.4 Hz, 1H), 6.73 (dd, 

J = 8.8, 2.4 Hz, 1H), 3.81 (s, 3H), 3.62–3.51 (m, 2H), 3.55 – 3.33 (m, 4H), 3.33 – 3.20 (m, 2H), 

3.16 – 3.06 (m, 1H), 2.28 (d, J = 2.6 Hz, 1H), 2.22 – 2.01 (m, 3H), 1.75 – 1.63 (m, 1H), 1.56 (td, 

J = 7.3, 3.1 Hz, 2H), 1.38 – 1.19 (m, 1H), 1.01 (t, J = 7.4 Hz, 3H) 

13C NMR (101 MHz, MeOD) δ (ppm) = 154.01, 139.67, 130.07, 128.55, 111.18, 111.01, 107.34, 

99.39, 59.08, 56.25, 54.92, 50.37, 48.27, 48.05, 47.91, 47.84, 47.70, 47.63, 47.41, 47.20, 46.99, 

37.60, 32.16, 29.14, 28.18, 26.49, 24.11, 17.90, 10.58 

HRMS (ESI) = m/z [M + H]+ calcd. For C20H27N2O+, 311.2128; found, 311.2126 
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Chapter 4 – Strategies Towards Ethyl Piece Installation and Synthesis of Ibogaine 
 
 
4.1 MHAT Hydrogenation Approach    
 

Analysis of our route to epiibogaine reveals that a Pd-H mediated hydrogenation of 

intermediate 4.1 produced exclusively the endo- epimer for the C20 ethyl group (Figure 4.1A). 

We also observed that hydrogenation of pure endo- cyclopropyl ketone 4.1a afforded the endo- 

epimer of the C20 ethyl group in high stereocontrol (Figure 4.1B). Intrigued by these 

observations, we sought to examine the relative thermodynamic ground state energies for the 

four possible stereoisomers formed from hydrogenation of 4.1 (Figure 4.1C). Computational 

studies revealed that when the C16 cyclopropyl ketone is in the endo orientation, there is a 2.3 

kcal/mol difference in ground state energy between the exo- (4.12c) and endo- (4.12d) C20 ethyl 

group conformers. This result was expected as we postulated that the 1,3-diaxial strain in 4.12d 

would be a destabilizing interaction.  It was clear that our hydrogenation proceeded via kinetic 

pathway to selectively position the C20 ethyl group in the endo- orientation.  

 

 

Figure 4.1. (A) Hydrogenation of 50:50 epimeric ratio of 4.1 (B) Hydrogenation of pure endo 4.1a 

(C) Computational evaluation of thermodynamic ground state energy, M06-2X/6-31+G(d,p) 
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A long-standing challenge in complex molecule synthesis is the hydrogenation of alkenes 

to a thermodynamically favored configuration when steric constraints of the substrate favor 

hydrogenation to a kinetic alkane product.105 Dissolving metal reductions provides a means to 

thermodynamic control but is seldom used due to poor chemoselectivity and the need for elevated 

temperatures when reducing electron-neutral alkenes.106 The origin of this poor chemoselectivity 

can be attributed to the low reduction potential of an electron-neutral alkene, thus resulting in the 

formation of a high energy radical anion (Figure 4.2A). Recent methodology developed by Shenvi 

and co-workers107 circumvents the formation of a radical anion via direct metal-hydride hydrogen 

atom transfer (MHAT) while producing the same stereochemical outcome as a dissolving metal 

reduction (Figure 4.2A). Thermodynamic selectivity is achieved through the formation of tertiary 

radical intermediate 4.13b which has lifetime and can adopt the most stable conformation upon 

hydrogen addition. Review of our previous computations indicate that the biggest difference in 

thermodynamic ground state energy is between the C16 endo- cyclopropyl ketone stereoisomers  

 

Figure 4.2. (A) Mechanism for dissolving metal reduction and Shenvi hydrogenation (B) 
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(4.12c and 4.12d, Figure  4.1c). We sought to utilize this pronounced difference to guide a 

thermodynamic HAT hydrogenation to our desired C20 stereoisomer. Subjecting pure endo 4.1a 

to a Shenvi hydrogenation using a metal catalyst and silane would produce a tertiary radical 

intermediate that could ultimately undergo stereoselective hydrogen atom transfer (HAT) to afford 

product 4.15. Because this reaction is governed by the thermodynamic stability of radical 4.1b, 

the second HAT process should give the more stable conformer 4.15 in high selectivity. 

Figure 4.3. (A) Endo-selective Diels-Alder and MHAT hydrogenation of 4.1a (B) Synthesis of 

epiibogaine from intermediate 4.16 

 

We sought to take advantage of the endo selectivity in our Diels-Alder reaction by 

conducting the cycloaddition at lower temperatures to kinetically favor endo- cyclopropyl ketone 

4.1a (Figure 4.3A). A subsequent MHAT hydrogenation was performed on intermediate 4.1a 

using Mn(dpm)3 and PhSiH3 to afford product 4.16 with the C20 ethyl group in the endo 

orientation, similar to that of our Pd-H mediated hydrogenations. To our surprise, product 4.15 

was not observed and thermodynamically unfavored isomer 4.16 was isolated in high 

diastereoselectivity. Compound 4.16 was taken through the rest of the synthesis to afford 

epiibogaine in 9 steps and 7.5% overall yield. Though this is one of the most efficient syntheses 
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of epiibogaine to date108, it was clear that we needed to reevaluate the mechanism of our HAT 

reduction and further examine the reactivity of our substrate. 

 

4.2 Investigation of MHAT Olefin Reduction Pathway 

 
Figure 4.4. (A) Transition metal catalysts containing weak field supporting ligands (B) Use of          

-OR, -NR groups provide strong Si-Z bond for uphill M-H bond formation (C) Concerted 

mechanism for metal-hydride formation  

 

A variety of synthetic advances have originated from the development of organometallic 

reagents that contain strong-field ligands (i.e cyclopentadienyl, carbonyl, phosphine) and are 

governed by the 18-electron rule.109 However, a new generation of organometallic reagents have 

surfaced in which weak field ligands are utilized and the availability of multiple oxidation sates 

facilitate homolysis to form radical intermediates (Figure 4.4A).110 Drago and Mukaiyama initially 

studied Fe, Mn, and Co catalysts containing weak field supporting ligands based on N or O 

donors.111,112 In these systems, a reductant is added to generate a transition metal-hydride (M-H) 

complex. In weak field systems, the M-H bond is thought to be relatively weak and must be 

accompanied by the formation of a strong bond in another product (Figure 4.4B). Thus, 

reductants in weak field systems are generally silanes or borohydrides, which have Si-H or B-H 
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bonds that can be broken to form much stronger Si-O or B-O bonds. Seminal reports of metal-

hydride hydrogen atom transfer (MHAT) hydrofunctionalizations noted the importance of an 

alcoholic solvent or co-solvent.113 An important role of the alcohol may be to provide the alkoxide 

that supplies the driving force for Si-O or B-O bond formation. DFT calculations have revealed a 

concerted mechanism for the exchange of a hydride for an alkoxide between (acac)2Fe-OMe and 

phenylsilane (Figure 4.4C).114  

 
Figure 4.5. (A) Solvent-caged radical pair formed from addition of metal-hydride to alkene; 

hydrofunctionalizations from resulting metalloradical (B) Asymmetric MHAT epoxidation 

developed by Pronin and co-workers  

 

 Upon formation of the metal-hydride, the next step in the MHAT cycle involves the collision 

between the metal-hydride and an alkene, whereby a hydrogen atom is transferred to generate a 

carbon-centered radical and a metal complex that is formally reduced by one electron (Figure 

4.5A). The resulting metal species is commonly described as a metal-centered radical or 

metalloradical.115 It is likely that the radical and metal behave together as a “radical pair” through 

solvent caged pairing. The original conception of solvent-caged radical pairs was introduced by 

Franck and Rabinowitsch116 in 1934, and explains the rate-viscosity correlations, isotope 

scrambling, and stereochemistry of certain radical based reactions. In 2019, the Pronin group 

reported the first example of an asymmetric MHAT reaction by influence of a solvent caged radical 
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pair (Figure 4.5B).117,118 Enantioenriched epoxides (80-95% ee) were accessed from 

dialkyl(vinyl)carbinols using a modified cobalt salen catalyst. The authors propose an 

enantiodetermining organocobalt intermediate supported by an Erying analysis of 

enantioselectivity, which showed that enantioselectivity was enthalpically controlled and that 

electron-rich and polarizable salen ligands of similar steric bulk exhibited higher levels of 

asymmetry. 

 
Figure 4.6. (A) Mechanistic proposal for MHAT hydrogenation selectivity; coordination stabilized 

metalloradical (B) Alternative proposal for hydroethylation using coordination directed selectivity   

 
 
 We suggest that the selectivity observed in our MHAT hydrogenation is also influenced by 

a solvent caged radical pair after initial hydrogen atom transfer to alkene 4.1 (Figure 4.6A). The 

resulting metalloradical (4.20) may be stabilized in the exo-orientation by the neighboring 

carbamate protecting group, consequently forcing the C20 ethyl group into the endo- position. 

Subsequent addition of a second metal-hydride is influenced by the exo- metalloradical to 

ultimately afford hydrogenation from the “top-face” of the isoquinuclidine. Using this mechanistic 

knowledge, we hypothesized that we could use the exo-stabilized metalloradical to our advantage 

by guiding addition into an electron-deficient alkene (Figure 4.6B). A MHAT catalyzed Giese 

conjugate addition of 4.21 with an acceptor alkene would provide the necessary carbons needed 

N

O

BnO
O

Me

N

O

BnO
O

Me

Metal Cat.
PhSiH3

  
 ROH

N

O
Me

MLn

BnO
O

N

O
Me

BnO
O

HH M

radical generated 
from HAT process

Coordination of 
metalloradical to carbamate 
through solvent cage pair

Metalloradical selectivity 
guides second hydride 

addition

N

O

BnO
O

N

O

BnO
O

EWG

Metal Cat.
PhSiH3

  
 ROH

EWG

N

O

MLn

BnO
O

EWG

Coordination directed 
stereoselectivity and regioselectivity 

Avoids issues with 3-ethylpyridine 
reduction 

Increased range of functional group 
diversification

Metalloradical Giese 
conjugate addition

4.1 4.19 4.20 4.16

4.21 4.21a

4 steps to make 
(29-35% yield)

2 steps to make 
(88.2% yield)

4.21b
hydroalkylation

A.

B.

C20



 72 
 

for our C20 ethyl group. We propose that metalloradical coordination to the carbamate in 4.21b 

would dictate the regioselectivity and stereoselectivity in the coupling. This strategy would 

circumvent the issues with reducing 3-ethylpyridine and allow us to use a reactant (4.21) that was 

previously accessed in our model system. Furthermore, the development of a stereoselective and 

regioselective hydrofunctionalization of 4.21 would enable another point of modularity in our 

synthesis for the preparation of iboga analogs bearing a C20 substituent.  

 

4.3 Phenyl Vinyl Sulfone MHAT Olefin-Olefin Coupling Strategy  

 
Figure 4.7. (A) Two-step (MHAT coupling, hydrodefunctionalization) sequence to afford C20 ethyl 

group (B) Olefin-Olefin coupling with phenyl vinyl sulfone and subsequent desulfonylation 
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our delight, the exo-stabilized metalloradical had influenced the regiochemical and 

stereochemical outcome of this reaction to generate only one out of four possible products. Next, 

we were tasked with reductively eliminating the phenyl sulfone to un-mask our desired C20 ethyl 

group. A standard reductive desulfonylation with SmI2 was performed on intermediate 4.22 to 

yield 4.23 as the major product. Unfortunately, the hydrodefunctionalization with SmI2 was not 

chemoselective and a reductive ring opening of the cyclopropyl ketone was also observed.120 

Optimization proved futile as product 4.15 was not detected in a variety of desulfonylation 

conditions (Table 4.1) 

 
Entry Condition 4.15 4.23 4.24 

1 SmI2, THF/MeOH, 0 ºC - 66% 12% 

2 SmI2, THF/MeOH, -78ºC - 31% 44% 

3 SmI2, THF, -78 - 0 ºC - 12% 18% 

4 Raney Ni., MeOH - - 10% 

5 Raney Ni., THF - 12% Trace 
 
Table 4.1: Isolated yields shown. All reactions run at 0.1M. All reactions chromatographed using gradient elution 

10:1→7:3 hexanes/EtOAc.  

 

 We speculated that altering the aryl attachment to the sulfone could improve redox activity 

and allow for milder desulfonylation conditions (Figure 4.8A). Redox active phenyl tetrazole (PT) 

sulfone can undergo single electron transfer (SET) to ultimately form a sulfinic acid by-product 

and carbon-centered radical.121 We noticed that coupling 4.21 with PT vinyl sulfone was sluggish 

and 4.25 was isolated in 34% yield (Figure 4.8B). Optimization of this reaction was unsuccessful 

as it appeared that the steric constraints of the phenyl tetrazole attachment negatively affected 

the MHAT coupling. We elected to forgo the phenyl tetrazole strategy and return back to our 

phenyl sulfone for a late-stage desulfonylation. It was clear that desulfonylation was not   
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Figure 4.8. (A) Redox activity of -SO2Ph vs -SO2PT; SET desulfonylation pathway to sulfinic acid 

(B) MHAT coupling with PT vinyl sulfone (C) Subjecting 4.22 through iboga synthesis for late-

stage desulfonylation  

 

compatible with a cyclopropyl ketone in place; thus, we proposed constructing the iboga 

framework first and performing the desulfonylation at the end of the synthesis (Figure 4.8C). Ring 

opening and closing of 4.22 afforded tetrahydroazapinone 4.26 in 12% yield over two steps. This 

dramatic decrease in yield compared to the defunctionalized congener can be attributed to the 

acidic protons adjacent to the sulfone.122 We suspect that a variety of side reactions take place in 

the base mediated ring closure to diminish the yield of 4.26. It was clear that the sulfone strategy 

was unsuccessful and a different withdrawing group with better redox activity was needed instead.  

 

 
4.4 Methyl Acrylate MHAT Olefin-Olefin Coupling Strategy  

 Having realized that the desulfonylation strategy was not viable due to issues with 

chemoselectivity, we elected to search for an alternative electron-withdrawing group with better 

redox capability. Inspired by recent developments in decarboxylative cross couplings via redox-

active esters,123,124 we envisioned that we could synthesize product 4.15 from a radical mediated  
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Figure 4.9. (A) Radical decarboxylation strategy to prepare 4.15 (B) MHAT coupling of 4.21 and 

acrylic acid (B) Optimized MHAT coupling of 4.21 and methyl acrylate (C) “One-pot” MHAT 

coupling of 4.21 and methyl acrylate followed by ester hydrolysis  

 

hydrodecarboxylation of a carbonyl derived precursor (Figure 4.9A). Preparation of our 

decarboxylation precursor would come from the corresponding carboxylic acid generated from 

our MHAT coupling. MHAT olefin-olefin coupling of 4.21 with acrylic acid was sluggish and 

carboxylic acid 4.28 was isolated in only 34% yield (Figure 4.9B). Further attempts at optimization 

were unsuccessful and it was evident that acrylic acid was not a suitable substrate for this 

reaction. We noticed that masking the free acid in the form of an ester dramatically improved the 

MHAT coupling to afford product 4.28 in 77% yield after optimization (Figure 4.9C).  This reaction 

was sensitive to the relative equivalences of catalyst, silane and acceptor alkene (Entry 3, 15 

and 16, Table 4.2) and found to perform best at 70 ºC in isopropanol. When subjecting pure 

epimers of 4.21 to the coupling, the exo epimer outperformed the endo epimer by a dramatic 

margin (Entry 4—5, Table 4.2). We hypothesize that there is significant orbital overlap between 

the cyclopropane and alkene in endo- 4.21, thus stalling initiation of the MHAT cycle. 

Epimerization was not observed in this reaction; however, endo- 4.21 can be recovered, 
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Entry Deviation     4.27 4.28 4.21 

1 none 77% 4% 17% 

2 EtOH (0.2M) 69% 18% 8% 

3 1 equiv. Fe(acac)3 28% 56% 8% 

4 Pure Exo SM 90% 5% 5% 

5 Pure Endo SM 23% 12% 58% 

6 i-PrOH (0.1M) 62% 21% 11% 

7 Ph(i-PrO)SiH2 (1 equiv.) 58% 34% - 

8 0.3 equiv. Fe(dibm)3 22% 46% 25% 

9 1:1 DCE/(CH2OH)2 8% 15% 71% 

10 60 °C 61% 8% 20% 

11 80 °C 58% 21% 14% 

12 10 mol% Na2HPO4 as additive 55% 24% 18% 

13 1 equiv. Na2HPO4 as additive 31% 31% 15% 

14 0.6 equiv. Fe(acac)3 71% 24% - 

15 1.5 equiv. PhSiH3 43% 18% 35% 

16 3 equiv. methyl acrylate 41% 45% trace 
 
Table 4.2: Isolated yields shown. All reactions run on 1.0 mmol scale for 17 (312 mg). All reactions chromatographed 

using gradient elution 10:1→7:3 hexanes/EtOAc.  

 

epimerized and re-subjected to a subsequent MHAT coupling. In an effort to reduce overall step 

count, we postulated that we could “un-mask” our carboxylic acid by performing ester hydrolysis 

in the same reaction vessel. Upon completion of the MHAT coupling with methyl acrylate, the 

reaction mixture was diluted with water and lithium hydroxide was added to generate carboxylic 

acid 4.28 in 74% yield after isolation (Figure 4.9D). We noticed that in situ hydrolysis assisted 

chromatography of 4.28 by converting residual Fe(acac)3 to more polar Fe(H2O)6.125  We were 

now tasked with developing a chemoselective hydrodecarboxylation of 4.28 to obtain our desired 

C20 ethyl group. 
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4.5 Photoredox Hydrodecarboxylation 

 
Figure 4.11. (A) Classic substrates for decarboxylation reactions (B) Barton radical mediated 

decarboxylation using thiohydroxamic anhydride  

 

 Decarboxylation reactions are amongst the oldest known organic transformations and are 

pervasive in numerous industrial and biological processes. Traditional reports of decarboxylations 

have involved a b-keto, a-aryl, a-nitro or a-cyano acids and are accelerated due to the formation 

of a zwitterionic tautomer or stabilized anion (Figure 4.11A).126 In 1983, Sir Derek Barton rapidly 

expanded the paradigm of decarboxylation reactions by enlisting radical reactivity to selectively 

remove carboxylic acids on unfunctionalized alkyl systems (Figure 4.11B).127 The invention of 

the Barton ester utilizes a thiohydroxamic anhydride and the presence of a weak N—O bond (BDE 

= ~45 kcal/mol) that can undergo visible light-induced fragmentation to liberate carbon dioxide 

while furnishing alkyl radicals that can be converted to a myriad of functional groups.128 Though 

pioneering, chemists have transitioned away from Barton esters due to their limited thermal 

stability and the need for toxic and odorous reductants for decarboxylation. In recent years, N-

hydroxyphthalimide redox active esters (RAE) have been used for their ability to undergo facile 

single electron transfer (SET) reduction with inexpensive metal catalysts while obviating the need 

for toxic reductants or elaborate specialized equipment.129  

 

 

O

O
N

S
O

O
N

S
Sn(n-Bu)3 N S R

R2

R1OH

O

R2

R1

R2

R1

OH

OO

R1
OH

O

OH

O
R1

CN
OH

O
R1

NO2

A. Classic Decarboxylation Substrates

B. Barton Decarboxylation

R2

R1

R2

R1 H

thiohydroxamic 
anhydride

AIBN

HSnBu3

HAT

radical N—O 
cleavage



 78 
 

 
Figure 4.12. Hydrodecarboxylation of 4.28 using N-hydroxypthalimide redox active ester  

 

 We envisioned that converting carboxylic acid 4.28 to the corresponding N-

hydroxyphthalimide derived RAE would allow for a facile hydrodecarboxylation to intermediate 

4.15 (Figure 4.12). Redox active ester 4.29 was prepared in 86% yield from a coupling reaction 

using N’,N”-diisopropylcarbodiimide (DIC) and catalytic N,N-dimethylaminopyridine (DMAP). 

Subjecting 4.29 to Baran’s reductive decarboxylation24 conditions afforded product 4.15 in 41% 

yield. Intrigued by the possibility of using photochemical single electron transfer to 4.29, we 

noticed a significant increase in conversion and yield when conducting the reductive 

decarboxylation with Hantzsch ester in DMA with blue LED light irradiation.130 We suspect that 

the Hantzsch ester serves as a potent photoreductant by generating an electron donor-acceptor 

(EDA) complex with the phthalimide to enable radical cleavage.  

 Though we had completed an efficient two-step protocol for hydrodecarboxylation, we 

postulated whether we could avoid the phthalimide RAE altogether and directly decarboxylate 

4.28 to its saturated alkyl congener. In 2015, Nicewicz131 and co-workers developed a pioneering 

photochemical hydrodecarboxylation of homobenzylic carboxylic acids using an organic 

acridinium photocatalyst and blue LED irradiation (Figure 4.13A). This method involves Hunig’s 

base for generation of the carboxylate salt and a disulfide for hydrogen atom transfer (HAT) upon 

radical generation. Hydrodecarboxylation of 4.28 using Nicewicz’s conditions proved challenging 

as product 4.15 was isolated in only 22% yield and significant starting material was recovered.  
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Figure 4.13. (A) Nicewicz photochemical hydrodecarboxylation of homobenzyl carboxylic acid; 

hydrodecarboxylation of 4.28 using Nicewicz conditions (B) Cyclic voltammetry of carboxylic acid 

and carboxylate salts (C) Optimized conditions for hydrodecarboxylation of 4.28  

 

This result was expected since 4.28 is a primary unactivated carboxylic acid with very different 

redox capability compared to Nicewicz’s homobenzyl carboxylic acids. In 2021, Zhu and 

coworkers132 performed cyclic voltammetry on 4-phenylbutanoic acid and noticed a significant 

peak at 0.74 V vs SCE for the oxidation potential when stoichiometric amount of base is added 

(Figure 4.13B). It appeared that addition of cesium hydroxide formed a cesium carboxylate that 

can undergo single electron oxidation with a photocatalyst.  The oxidation potential of the cesium 

salt is more pronounced likely due to the weakened ion pairing compared to sodium or potassium 

salts. In situ generation of the cesium carboxylate salt followed by addition of photocatalyst and 

disulfide produced our desired product in 71% yield after 48 hours (Figure 4.13C).  

 Thorough optimization revealed that our hydrodecarboxylation performed best when ran 

using a biphasic solvent system (Entries 6 and 14—17, Table 4.3) and the cesium carboxylate 

was critical as yield diminished when using NaOH, KOH or Hunig’s base (Entry 3—5, Table 4.3). 
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We found that Ir(dF(CF3)ppy2(dtbpy)PF6 also produced decarboxylation but choose to use the 

organic acridinium photocatalyst for cost-efficiency on gram-scale. Initial decarboxylation screens 

were run with rigorous omission of oxygen but were later found to be compatible with air 

atmosphere.   

 
 

 
 
 
 
 
 
 
 

Entry Deviation 20 

1 None 71% 

2 2 mol% Ir(dF(CF3)ppy2(dtbpy)PF6 76% 

3 1 equiv. KOH <5% 

4 1 equiv. NaOH <5% 

5 1 equiv. DIPEA, no H2O 12% 

6 No H2O 21% 

7 10 mol% Mes-Acr-Me in one portion 55% 

8 10 mol% Mes-Acr-Ph in one portion 41% 

9 5 mol% 4-CzIPN trace 

10 1.5 equiv. PhSH 62% 

11 1.5 equiv. Ph2S2 69% 

12 0.5 equiv. Ph2S2 34% 

13 1.5 equiv. TRIP thiol 57% 

14 CH3CN (0.1M) 22% 

15 4:1 CH3CN/H2O (0.1M) 31% 

16 MeOH (0.1M) trace 

17 EtOAc (0.1M) 25% 

18 Nitrogen atmosphere 70% 
 
Table 4.3: Isolated yields shown. All reactions run at 250 mg scale for compound 19. All reactions chromatographed 

using gradient elution 10:1→7:3 hexanes/EtOAc.  

 

 During our pilot experiments, we experienced numerous issues when performing the 

hydrodecarboxylation of 4.28 on gram scale.  Initial reactions were run using phenyl disulfide and 

only 40% conversion was observed after 24 hours when adding 10 mol% acridinium catalyst at 

Cbz
N

O

O

OH

19

Cbz
N

O Me

20

then
10 mol% Mes-Acr-Mea

  
1.5 equiv. (p-tolyl)2S2
DCM (5.2 mL)b, RT

60 W Blue LED
air atmosphere

1 equiv. CsOH, H2O (1.3 mL)

250 mg

a Mes-Acr-Me added in 2 portions in 24 h intervals
b Reaction ran with 4:1 DCM/H2O (0.1 M) concentration



 81 
 

the beginning of the reaction. As denoted in Figure 4.14A, our pilot experiments first involved 

stirring the carboxylic acid with cesium hydroxide in water before adding a solution of catalyst and 

disulfide in DCM to generate a biphasic reaction medium. The biphasic reaction mixture is then 

stirred vigorously between two 30W blue LED lamps with a cooling fan positioned above the flask. 

After 24 hours, we noticed that the reaction mixture was black and observed only 40% conversion 

via LCMS. Subjection to further blue LED irradiation had minimal effect and it appeared that 

reaction conversion had plateaued. An additional 10 mol% of catalyst can be added after 24 hours 

to increase the overall conversion to 65% after 48 hours. However, it was suspected that our 

acridinium catalyst had undergone decomposition to transition from a vibrant yellow to black 

colored solution. We hypothesize two modes of catalyst decomposition: nucleophilic attack on the 

Figure 4.14. (A) Gram Scale hydrodecarboxylation using phenyl disulfide and 10 mol% acridinium 

– after 24 h reaction mixture has turned black; pathways for decomposition of acridinium catalyst 

(B) disulfide screen for hydrodecarboxylation (C) Mechanism of hydrodecarboxylation  
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C3/C6 carbons of the acridinium core or demethylation by the thiolate produced in the reaction.133 

Analysis of the mechanism reveals that the disulfide plays a critical role in hydrogen atom transfer 

and catalyst turnover. Blue LED irradiation of the disulfide generates a thiol radical that oxidizes 

the acridinium catalyst and gets converted to a thiol for hydrogen atom transfer. We postulated 

that reducing nucleophilicity and increasing thiyl- radical stability of our disulfide would minimize 

catalyst decomposition and facilitate higher catalyst turnover. To our delight, we noticed a 

significant increase in reaction conversion with para-tolyl disulfide and triisopropylphenyl disulfide 

when conducting our hydrodecarboxylation on gram scale (Figure 4.14B). The mixture had 

maintained its vibrant yellow color throughout the reaction and 70—75% conversion was 

observed. Furthermore, we also noticed that we could lower the overall catalyst loading to 10 

mol% over two 24-hour intervals to achieve roughly 90% conversion and 71% yield of our product. 

Having devised an efficient two step (MHAT coupling, hydrodecarboxylation) protocol for ethyl 

group installation, we were now tasked with completing our total synthesis of ibogaine.  

 

4.6 Completion of Ibogaine and Related Analogs 

Our efforts thus far have culminated in an efficient 4 step protocol for the preparation of 

intermediate 4.15 in 46.3% overall yield (Figure 4.15). Each reaction can be run on gram-scale 

and is reproducible with a high degree of selectivity for the C20 ethyl group. Decarboxylated 

product 4.15 was subjected to the remaining iboga synthesis to afford ibogaine (4.31) in 7 steps 

starting from pyridine. We noticed that isolation of 4.30 via chromatography led to reduced yields 

and an unpurified mixture should be taken through the final three steps of the synthesis. On gram-

scale there is a slight decrease in yield for the final three steps, but we suspect that this could be 

amended though rigorous temperature control of the ring closure.  

 

 

 



 83 
 

 

 
Figure 4.15 7 step total synthesis of ibogaine starting from pyridine 
 

To fully showcase the modularity of our synthetic design, several structural derivatives of 

ibogaine were also prepared. Replacing para-methoxyphenylhydrazine with other substituted 

phenylhydrazines afforded several iboga natural products (4.31—4.34, Figure 4.16A) and related 

analogs (4.35, 4.37, Figure 4.16A). Our late-stage diversification approach grants unprecedented 

access to functionalizing the indole ring system of the iboga skeleton. Taken together, this 

completes the shortest and most efficient route to ibogaine (Figure 4.16B).  

To better understand route modularity and synthetic efficiency, we analyzed the changes 

in molecular complexity (Cm) over the course of the synthesis (Figure 4.16B). Bottcher’s 

complexity index (Cm)134, 135 is a value calculated by assigning information content (mcbits) to each 

non-hydrogen atom to formalize the intrinsic information content of a molecule on a per-atom 

basis. Analysis of complexity changes throughout our synthesis reveals two distinct points of 

modularity for the preparation of analogs: diversification through olefin chemistry and 

diversification via carbonyl functionalization (i.e Fischer indole cyclization). Both modular points 

are at an intermediate with lower molecular complexity than their respective iboga derivatives; 

indicating that diversification can occur at a simplified intermediate that ultimately produces a 

greater-than-additive product.   
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Figure 4.16. (A) Natural products and unnatural analogs synthesized from general ibogaine or 

desethylibogaine synthesis (B) Efficiency of our ibogaine synthesis; route modularity indicating 

two distinct points for diversification    

 

The development of an efficient, scalable and modular total synthesis of racemic ibogaine 

is instrumental for the field of pharmacology and neurobiology. Though racemic ibogaine is highly 
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it was clear we needed to develop an asymmetric variant of our iboga alkaloid synthesis to fully 

showcase our synthetic tractability. 
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4.7 Methods  

General Information for Chemical Synthesis 

All reagents were obtained from commercial sources and reactions were performed using oven-

dried glassware (120°C) under an inert N2 atmosphere unless otherwise noted.  Air- and moisture-

sensitive liquids and solutions were transferred via syringe or stainless-steel cannula. Organic 

solutions were concentrated under reduced pressure (∼5 Torr) by rotary evaporation. Solvents 

were purified by passage under 12 psi N2 through activated alumina columns. Chromatography 

was performed using Fisher Chemical™ Silica Gel Sorbent (230–400 Mesh, Grade 60). 

Compounds purified by chromatography were typically applied to the adsorbent bed using the 

indicated solvent conditions with a minimum amount of added dichloromethane as needed for 

solubility. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 plates 

(250 μm). Visualization of the developed chromatogram was accomplished by fluorescence 

quenching or by staining with iodine, butanolic ninhydrin, aqueous potassium permanganate, or 

aqueous ceric ammonium molybdate (CAM). Irradiation of photochemical reactions was carried 

out using 2 HIGROW LED Aquarium Light Blub, Wolezek 30W LED Plant Grow Light Bulb with 

18x2W 450-460nm. 

 

Nuclear magnetic resonance (NMR) spectra were acquired on either a Bruker 400 operating at 

400 and 100 MHz, a Varian 600 operating at 600 and 150 MHz, or a Bruker 600 operating at 600 

and 150 MHz for 1H and 13C, respectively, and are referenced internally according to residual 

solvent signals. Data for 1H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s, 

singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet), coupling constant (Hz), and 

integration. Data for 13C NMR are reported in terms of chemical shift (δ, ppm). High-resolution 

mass spectra were obtained using a Thermo Fisher Scientific Q-Exactive HF Orbitrap. 
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Quantum Chemical Calculations 

Structures were optimized at the M06-2X/6-31+G(d,p) level of theory, which is known to perform 

well for organic reactions. [refs:] Stationary points were characterized as minima via vibrational 

frequency analysis. Energies shown in the text are relative free energies at 298 K. All 

computations were carried out using Gaussian16.  

 

[ref: Gaussian 16, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. 

Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. 

Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. 

Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, 

A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. 

Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, 

O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. 

Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. 

Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. 

Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, 

J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.]  
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Detailed Synthesis Procedures and Experimental Data 

 

Benzyl(1S,4R,6S,7R)-6-(cyclopropanecarbonyl)-7-ethyl-2-azabicyclo[2.2.2]octane-2-

carboxylate  
To a stirring solution of the starting material (1.50 g, 4.42 mmol, 1 equv.) in anhydrous iPrOH 

(8.84 mL, 0.5M) was added phenylsilane (0.817 mL, 6.63 mmol, 1.5 equiv.) and a 5.5 M solution 

of tert-butyl hydroperoxide in decane (1.20 mL, 6.63 mmol, 1.5 equiv.). The resulting mixture was 

degassed by bubbling nitrogen through the solution for 10 mins. Mn(dpm)3 (267 mg, 0.442 mmol, 

0.1 equiv.) was added in one portion and the reaction was further degassed for an additional 30 

seconds. The mixture was stirred at ambient temperature for 2 h after which it was concentrated 

under reduced pressure. The residue was purified via chromatography on silica gel (gradient 

elution 10:1→7:3 hexanes/EtOAc) to afford the product (1.26 g, 84%) as a clear oil.  

 

Rf = 0.37 (7:3 hexanes/ethyl acetate)  

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed) = 7.40 – 7.27 (m, 5H), 5.25 – 4.98 (m, 

2H), 4.72 – 4.35 (m, 1H), 3.46 – 3.18 (m, 2H), 3.15 – 2.86 (m, 1H), 2.35 (d, 1H), 2.40 – 2.16 (m, 

1H), 2.03 – 1.80 (m, 3H), 1.57 – 1.35 (m, 2H), 1.31 – 1.21 (m, 1H), 1.05 – 0.76 (m, 7H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 210.06, 209.68, 155.15, 154.71, 137.27, 137.05, 128.64, 

128.51, 128.09, 127.95, 127.84, 127.77, 127.56, 66.97, 51.62, 51.45, 50.11, 49.76, 48.06, 47.96, 

46.38, 40.67, 40.54, 31.87, 31.85, 27.51, 27.48, 26.69, 26.55, 24.92, 24.77, 19.78, 19.57, 12.73, 

12.63, 12.46, 12.26, 10.92 

HRMS (ESI) = m/z [M + Na]+ calcd. For C21H27NO3Na+, 364.1888; found, 364.1889 
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(1S,4R,7R)-6-(4-bromobutanoyl)-7-ethyl-2-azabicyclo[2.2.2]octan-2-ium bromide  

To a stirring solution of the starting material (1.25 g, 6.03 mmol, 1 equiv.) in DCM (6.03 mL, 1.0M) 

was added 33 wt% HBr/AcOH (3.12 mL, 18.08 mmol, 3 equiv.) in one portion. The solution was 

stirred at ambient temperature for 2 h after which it was concentrated under reduced pressure. 

The residue was dried under high vacuum for 1 h and then stirred vigorously in diethyl ether (30 

mL). The diethyl ether was decanted and the residue was dried under high vacuum. The product 

(2.18 g, 98%) was used isolated as an orange foam and was used in the next reaction without 

any further purification or characterization.  

 

 

1-ethyloctahydro-3,10-methanopyrido[1,2-a]azepin-9(6H)-one  

A flask was charged with the alkyl bromide (2.18 g, 5.90 mmol, 1 equiv.), anhydrous Cs2CO3 (2.88 

g, 8.85 mmol, 1.5 equiv.), and anhydrous Na2SO3 (2.52 g, 17.71 mmol, 3 equiv.). The flask was 

evacuated and refilled with nitrogen 3 times after which anhydrous CH3CN (59 mL, 0.1M) was 

added in one portion. The reaction mixture was heated to 60 °C and stirred for 6 h. The 

heterogeneous mixture was cooled to ambient temperature and filtered. The reaction vessel and 

filter cake were washed with DCM (2 x 30 mL). The filtrate was concentrated under reduced 

pressure and the residue was purified via chromatography on silica gel (20:1 DCM/MeOH) to 

afford the product (499 mg, 41%) as a light brown oil. 
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Rf = 0.43 (20:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 3.18 – 2.92 (m, 3H), 2.80 (dd, J = 13.2, 2.7 Hz, 1H), 2.66 

– 2.51 (m, 3H), 2.06 – 1.75 (m, 7H), 1.61 – 1.49 (m, 1H), 1.39 – 1.19 (m, 2H), 1.08 (dd, J = 12.7, 

2.6 Hz, 1H), 0.90 (t, J = 7.4 Hz, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 216.98, 54.88, 53.83, 50.10, 46.87, 43.79, 41.70, 31.40, 

30.54, 27.92, 26.77, 21.24, 12.31 

HRMS (ESI) = m/z [M + H]+ calcd. For C14H26NO+, 208.1698; found, 208.1694 

 

 

epiibogaine  

A flask was charged with the starting material (200 mg, 0.964 mmol, 1 equiv.) and para-methoxy 

phenylhydrazine (252 mg, 1.44 mmol, 1.5 equiv.). The flask was evacuated and refilled with 

nitrogen 3 times after which anhydrous DCE (9.64 mL, 0.1M) and AcOH (0.827 mL, 14.47 mmol, 

15 equiv.) was added. The resulting mixture was degassed by bubbling nitrogen through the 

solution for 10 mins. The flask was heated to 80 °C and stirred for 12 h after which it was cooled 

to ambient temperature and diluted with DCM (20 mL). Saturated aq. NaHCO3 was added to the 

reaction mixture until the pH was adjusted to 7-8. The organic layer was separated, and the 

aqueous layer was further extracted with DCM (2 x 50 mL). The combined organic fractions were 

dried over sodium sulfate, filtered and concentrated under reduced pressure. Purification via 

chromatography on silica gel (gradient elution 20:1→10:1 DCM/MeOH, 0.25% NH4OH) afforded 

epiibogaine (242 mg, 81%) as a colorless oil. 
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Rf = 0.33 (10:1 DCM/MeOH) 

1H NMR (400 MHz, MeOD) δ (ppm) = 7.16 (d, J = 8.7 Hz, 1H), 6.95 (d, J = 2.4 Hz, 1H), 6.73 (dd, 

J = 8.8, 2.4 Hz, 1H), 3.81 (s, 3H), 3.62–3.51 (m, 2H), 3.55 – 3.33 (m, 4H), 3.33 – 3.20 (m, 2H), 

3.16 – 3.06 (m, 1H), 2.28 (d, J = 2.6 Hz, 1H), 2.22 – 2.01 (m, 3H), 1.75 – 1.63 (m, 1H), 1.56 (td, 

J = 7.3, 3.1 Hz, 2H), 1.38 – 1.19 (m, 1H), 1.01 (t, J = 7.4 Hz, 3H) 

13C NMR (101 MHz, MeOD) δ (ppm) = 154.01, 139.67, 130.07, 128.55, 111.18, 111.01, 107.34, 

99.39, 59.08, 56.25, 54.92, 50.37, 48.27, 48.05, 47.91, 47.84, 47.70, 47.63, 47.41, 47.20, 46.99, 

37.60, 32.16, 29.14, 28.18, 26.49, 24.11, 17.90, 10.58 

HRMS (ESI) = m/z [M + H]+ calcd. For C20H27N2O+, 311.2128; found, 311.2126 

 

 

benzyl(1S,4R)-6-(cyclopropanecarbonyl)-7-(2-(phenylsulfonyl)ethyl)-2-azabicyclo [2.2.2] 

octane-2-carboxylate 

A flask was sequentially charged with the starting material (3.3 g, 10.59 mmol, 1 equiv.), ethanol 

(53 mL, 0.2M), phenylvinyl sulfone (2.67 g, 15.88 mmol, 1.5 equiv.), and Fe(acac)3 (1.12 g, 3.18 

mmol, 0.3 equiv.). To this solution was added phenylsilane (3.91 mL, 31.79 mmol, 3 equiv.) in 

one portion. The mixture was stirred and heated at 60 °C under air atmosphere for 24 h, after 

which it was cooled to ambient temperature. The reaction mixture was concentrated under 

reduced pressure and the resulting residue was purified via chromatography on silica gel (gradient 

elution 10:1→1:1 hexanes/EtOAc) to afford the product (4.38g , 86%) as a clear foam.  

Rf = 0.33 (10:1 hexanes/EtOAc) 

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed)  = 7.38 – 7.27 (m, 5H), 5.20 – 4.96 (m, 

2H), 4.70 – 4.36 (m, 1H), 3.54 – 3.15 (m, 2H), 3.06 – 2.85 (m, 1H), 2.59 – 2.16 (m, 4H), 2.11 – 

1.84 (m, 3H), 1.81 – 1.41 (m, 4H), 1.17 – 0.66 (m, 4H) 

Cbz
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13C NMR (101 MHz, CDCl3) δ (ppm) = 210.17, 209.45, 178.74, 156.21, 137.09, 128.62, 128.56, 

128.52, 128.33, 128.20, 127.92, 127.69, 127.66, 127.62, 67.23, 66.86, 52.14, 48.95, 48.74, 37.79, 

37.68, 33.64, 32.26, 31.99, 31.53, 31.39, 30.02, 29.88, 29.69, 26.06, 25.96, 24.14, 24.03, 19.99, 

19.88, 19.62, 12.55, 11.66, 11.36, 11.20 

HRMS (ESI) = m/z [M + H]+ calcd. For C22H28NO5
+, 387.1968; found, 387.1962 

 

 

Benzyl(1S,4R)-6-(cyclopropanecarbonyl)-7-(3-methoxy-3-oxopropyl)-2 azabicyclo [2.2.2] 

octane-2-carboxylate 

A flask was sequentially charged with the starting material (3.3 g, 10.59 mmol, 1 equiv.), 

isopropanol (53 mL, 0.2M), methyl acrylate (5.76 mL, 63.58 mmol, 6 equiv.), and Fe(acac)3 (1.12 

g, 3.18 mmol, 0.3 equiv.). To this solution was added phenylsilane (3.91 mL, 31.79 mmol, 3 equiv.) 

in one portion. The mixture was stirred and heated at 70 °C under air atmosphere for 24 h, after 

which it was cooled to ambient temperature. The reaction mixture was concentrated under 

reduced pressure and the resulting residue was purified via chromatography on silica gel (gradient 

elution 10:1→1:1 hexanes/EtOAc) to afford the product (3.25 g, 77%) as a clear foam.  

 

Rf = 0.40 (7:3 hexanes/EtOAc) 

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed)  = 7.38 – 7.27 (m, 5H), 5.20 – 4.96 (m, 

2H), 4.70 – 4.36 (m, 1H), 3.54 – 3.15 (m, 2H), 3.06 – 2.85 (m, 1H), 2.59 – 2.16 (m, 4H), 2.11 – 

1.84 (m, 3H), 1.81 – 1.41 (m, 4H), 1.17 – 0.66 (m, 4H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 210.17, 209.45, 178.74, 156.21, 137.09, 128.62, 128.56, 

128.52, 128.33, 128.20, 127.92, 127.69, 127.66, 127.62, 67.23, 66.86, 52.14, 48.95, 48.74, 37.79, 

Cbz
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37.68, 33.64, 32.26, 31.99, 31.53, 31.39, 30.02, 29.88, 29.69, 26.06, 25.96, 24.14, 24.03, 19.99, 

19.88, 19.62, 12.55, 11.66, 11.36, 11.20 

HRMS (ESI) = m/z [M + H]+ calcd. For C22H28NO5
+, 387.1968; found, 387.1962 

 

 

3-((1S,4R)-2-((benzyloxy)carbonyl)-7-(cyclopropanecarbonyl)-2-azabicyclo[2.2.2]octan-6-

yl)propanoic acid  

A flask was sequentially charged with the starting material (3.3 g, 10.59 mmol, 1 equiv.), 

isopropanol (53 mL, 0.2M), methyl acrylate (5.76 mL, 63.58 mmol, 6 equiv.), and Fe(acac)3 (1.12 

g, 3.18 mmol, 0.3 equiv.). To this solution was added phenylsilane (3.91 mL, 31.79 mmol, 3 equiv.) 

in one portion. The mixture was stirred and heated at 70 °C under air atmosphere for 24 h, after 

which it was cooled to ambient temperature. The reaction mixture was diluted in H2O (100 mL) 

and LiOH (2.53 g, 105.97 mmol, 10 equiv.) was added in one portion. The solution was stirred at 

ambient temperature for 12 h after which it was acidified with 1M HCl (100 mL). The mixture was 

poured into DCM (200 mL) and the layers were separated. The aqueous layer was further 

extracted with DCM (2 x 100 mL) and the combined organic fractions were dried over sodium 

sulfate, filtered, and concentrated under reduced pressure. The residue was purified via 

chromatography on silica gel (gradient elution 10:1→1:1 hexanes/EtOAc) to afford the product 

(3.02 g, 74%) as a clear foam.  

 

Note: Vigorous bubbling is observed upon 5 min of heating. 
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Rf = 0.15 (7:3 hexanes/EtOAc) 

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed)  = 7.38 – 7.27 (m, 5H), 5.20 – 4.96 (m, 

2H), 4.70 – 4.36 (m, 1H), 3.54 – 3.15 (m, 2H), 3.06 – 2.85 (m, 1H), 2.59 – 2.16 (m, 4H), 2.11 – 

1.84 (m, 3H), 1.81 – 1.41 (m, 4H), 1.17 – 0.66 (m, 4H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 210.17, 209.45, 178.74, 156.21, 137.09, 128.62, 128.56, 

128.52, 128.33, 128.20, 127.92, 127.69, 127.66, 127.62, 67.23, 66.86, 52.14, 48.95, 48.74, 37.79, 

37.68, 33.64, 32.26, 31.99, 31.53, 31.39, 30.02, 29.88, 29.69, 26.06, 25.96, 24.14, 24.03, 19.99, 

19.88, 19.62, 12.55, 11.66, 11.36, 11.20 

HRMS (ESI) = m/z [M + H]+ calcd. For C22H28NO5
+, 387.1968; found, 387.1962 

 

 

benzyl (1S,4R)-6-(cyclopropanecarbonyl)-7-ethyl-2-azabicyclo[2.2.2]octane-2-carboxylate  

A glass reaction tube was charged with the starting material (1.85 g, 4.79 mmol, 1 equiv.). A 

solution of CsOH•H2O (806 mg, 4.79 mmol, 1 equiv.) in H2O (9.6 mL) was added and the milky 

white heterogeneous mixture was stirred vigorously for 1 h. In a separate flask, 9-Mesityl-10-

methylacridinium tetrafluoroborate (96 mg, 0.23 mmol, 0.05 equiv.) and p-tolyl disulfide (1.77 g, 

7.19 mmol, 1.5 equiv.) was dissolved in DCM (38.4 mL). The acridinium/disulfide solution was 

added to the stating material in one portion. The biphasic solution was tightly capped under air 

atmosphere and stirred (1000 rpm) between two 30W blue LED lamps (8 cm distance between 

reaction vessel and lamp) for 24 h at ambient temperature. After 24 h, another portion of 9-Mesityl-

10-methylacridinium tetrafluoroborate (96 mg, 0.23 mmol, 0.05 equiv.) was added to the reaction 

mixture and the resulting solution was placed in the photoreactor for an additional 24 h. Upon 

reaction completion, the reaction mixture was poured into water (50 mL) and the layers were 

separated. The aqueous layer was further extracted with DCM (2 x 50 mL) and the combined 

CsOH, H2O, RT
then
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organic fractions were dried over sodium sulfate, filtered and concentrated under reduced 

pressure. The residue was purified via chromatography on silica gel (7:3 hexanes/EtOAc) to afford 

the product as an orange oil. The product was further purified by dissolution in ethyl acetate and 

subsequent addition of activated charcoal (50 mg). Heating the stirred solution at 50 °C for 30 

min, followed by filtration and concentration under reduced pressure afforded the product (1.21 

g, 74%) as a light yellow oil.   

 

Note: Conversion rate is highly dependent on the diameter of the reaction vessel. We have found 

best results when using a reaction vessel to reaction volume ratio of 1.5cm/15 mL. A fan was 

used to cool the reaction vessel during irradiation and it is advised to seal the reaction tube cap 

with electrical tape. It is essential that the biphasic reaction is stirred vigorously (>1000 rpm) so 

that the two layers mix properly. Inadequate mixing will result in poor transfer of the carboxylate 

salt into the organic layer and ultimately lead to poor reaction conversion. Heating the product in 

excess activated charcoal for longer than 30 minutes will lead to reduced yields.  

  

Rf = 0.65 (7:3 hexanes/EtOAc) 

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed)  = 7.40 – 7.27 (m, 5H), 5.27 –4 .97 (m, 

2H), 4.70 – 4.37 (m, 1H), 3.46 – 3.11 (m, 2H), 3.03 – 2.84 (m, 1H), 2.38 – 2.17 (m, 1H), 2.13 – 

1.63 (m, 3H), 1.54 – 1.16 (m, 4H), 1.16 – 1.06 (m, 1H), 1.05 – 0.72 (m, 7H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 210.37, 209.65, 156.00, 155.72, 137.35, 136.94, 128.48, 

128.21, 127.80, 127.73, 66.95, 66.55, 52.44, 51.78, 51.08, 50.30, 49.35, 49.03, 46.88, 46.41, 

46.31, 43.78, 40.78, 40.59, 36.50, 36.34, 36.03, 35.96, 35.40, 35.16, 34.87, 34.72, 32.38, 32.23, 

29.53, 28.28, 28.14, 27.90, 26.58, 26.43, 26.15, 26.05, 24.26, 24.15, 19.88, 19.57, 12.41, 11.77, 

11.75, 11.24, 11.09 

HRMS (ESI) = m/z [M + H]+ calcd. For C21H28NO3
+, 342.2068; found, 342.2065 
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General procedure for preparation of iboga derivatives 

 

 

33 wt% HBr/AcOH (3 equiv.) was added in one portion to the starting material (1 equiv.) while 

stirring. The dark orange mixture was stirred at ambient temperature for 2 h after which it was 

concentrated under reduced pressure. The residue was dried under high vacuum for 1 h and then 

stirred vigorously in diethyl ether (30-50 mL). The diethyl ether was decanted, and the resulting 

alkyl bromide was dried under high vacuum. This process was repeated 3x to ensure all the benzyl 

bromide was removed. A flask was charged with alkyl bromide (1 equiv.), anhydrous Cs2CO3 (1.5 

equiv.), and anhydrous Na2SO3 (3 equiv.). The flask was evacuated and refilled with nitrogen 3 

times after which anhydrous CH3CN (0.1M) was added in one portion. The reaction mixture was 

heated to 60 °C and stirred for 6 h. The heterogeneous mixture was cooled to ambient 

temperature and filtered. The reaction vessel and filter cake were washed with DCM (2 x 10 mL). 

The filtrate was concentrated under reduced pressure and the resulting residue was dissolved in 

DCM (10 mL) and washed with sat. NaHCO3 (3 x 5 mL). The organic extract was dried over 

sodium sulfate, filtered and concentrated under reduced pressure to yield the tetrahydroazepine 

as a crude brown oil.  

 

A flask was charged with crude tetrahydroazepine (1 equiv.) and substituted phenylhydrazine (1.5 

equiv.). The flask was evacuated and refilled with nitrogen 3 times after which anhydrous DCE 

(0.1M) and AcOH (15 equiv.) was added. The resulting mixture was degassed by bubbling 

nitrogen through the solution for 10 mins. The flask was heated to 80 °C and stirred for 1 h after 

which it was cooled to ambient temperature and BF3OEt2 (1.2 equiv.) was added in one portion. 

The resulting mixture was heated at 80 °C for 12 h after which it was cooled to ambient 

Cbz
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O Me
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temperature and diluted with DCM (10 mL). Saturated aq. NaHCO3  was added to the reaction 

mixture until the pH was adjusted to 7-8. The organic layer was separated, and the aqueous layer 

was further extracted with DCM (2 x 20 mL). The combined organic fractions were dried over 

sodium sulfate, filtered and concentrated under reduced pressure. Purification via 

chromatography on silica gel (gradient elution 20:1→10:1 DCM/MeOH, 0.25% NH4OH) afforded 

iboga derivates.  

 

Note: The solvent volume for extraction and dilution are representative of a 200 mg scale for 

intermediate the stating material. On larger scales, it was found that sonicating the alkyl bromide 

in diethyl ether allowed for more efficient benzyl bromide removal. We noticed a considerable 

decrease in yield (10-15%) when purifying the tetrahydroazepine via chromatography on silica 

gel (20:1 DCM/MeOH). Instead, the tetrahydroazepine was used as a crude mixture in the 

subsequent Fischer indole reactions. For obtaining biologically pure iboga alkaloids, a second 

purification via chromatography on silica gel was used with an 8:2 EtOAC/MeOH mobile phase. 
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Ibogaine – 500 mg scale  

Synthesized from the stating material (500 mg, 1.46 mmol, 1 equiv.) following the general 

procedure for iboga derivative preparation. Para-methoxyphenylhydrazine HCl (382 mg, 2.19 

mmol, 1.5 equiv.) was used and BF3OEt2 was omitted from the Fischer indole reaction. Ibogaine 

(140 mg, 31% over three steps) was isolated as an orange foam.  

 

Ibogaine – 1.33g scale  

Synthesized from the stating material (1.33 g, 3.86 mmol, 1 equiv.) following the general 

procedure for iboga derivative preparation. Para-methoxyphenylhydrazine HCl (1.020 g, 5.84 

mmol, 1.5 equiv.) was used and BF3OEt2 was omitted from the Fischer indole reaction. Ibogaine 

(263 mg, 22% over three steps) was isolated as an orange foam.  

 

Note: Para-methoxyphenylhydrazine HCl (PMPH) is prone to decomposition and should be 

prepared fresh before use. Yields were diminished when using older bottles of PMPH.  

 

Rf = 0.33 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.53 (s, 1H), 7.14 (d, J = 8.7 Hz, 1H), 6.93 (m, 1H), 6.77 

(dd, J = 8.6, 2.4 Hz, 1H), 3.86 (s, 3H), 3.41 – 3.30 (m, 2H), 3.17–3.10 (m, 1H), 3.09 – 3.05 (m, 

1H), 3.00 – 2.95 (m, 1H), 2.93 – 2.87 (m, 1H), 2.85 (s, 1H), 2.61 (dd, J = 17.3, 5.4 Hz, 1H), 2.09 

– 2.00 (m, 1H), 1.85 (s, 1H), 1.83 – 1.77 (m, 1H), 1.65 (dq, J = 13.3, 3.5 Hz, 1H), 1.55 (q, J = 7.2 

Hz, 2H), 1.48 – 1.43 (m, 1H), 1.24 – 1.18 (m, 1H), 0.90 (t, J = 7.1 Hz, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 153.98, 142.89, 130.13, 129.71, 110.75, 110.69, 109.17, 

100.39, 57.48, 56.02, 54.19, 49.98, 41.97, 41.61, 34.22, 32.11, 27.84, 26.51, 20.71, 11.91	

N

N
H

MeO

Me

ibogaine
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HRMS (ESI) = m/z [M + H]+ calcd. For C20H27N2O+, 311.2128; found, 311.2127 

 

 

Ibogamine  

Synthesized from the stating material (500 mg, 1.46 mmol, 1 equiv.) following the general 

procedure for iboga derivative preparation. Phenylhydrazine HCl (317 mg, 2.19 mmol, 1.5 equiv) 

was used in the Fischer indole reaction. Ibogamine (118 mg, 29% over 3 steps) was isolated as 

a yellow foam.  

 

Rf = 0.37 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.69 (br. s., 1H), 7.48 – 7.44 (dd, J = 6.95 Hz, 1.61 Hz, 

1H), 7.27 – 7.24 (m, 1H), 7.14 – 7.05 (m, 2H), 3.47 – 3.28 (m, 2H), 3.22 – 3.12 (dt, J = 13.61 Hz, 

3.71 Hz), 3.10 – 3.02 (m, 2H), 2.99 – 2.86 (m, 3H), 2.76 – 2.68 (m, 1H), 2.11 – 2.01 (m, 1H), 1.90 

– 1.78 (m, 2H), 1.69 – 1.48 (m, 4H), 1.26 – 1.20 (m, 1H), 0.90 (t, J = 7.10 Hz, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 141.37, 134.67, 129.55, 121.10, 119.18, 117.89, 110.12, 

109.04, 57.83, 54.35, 49.95, 41.76, 40.95, 33.97, 31.79, 27.59, 26.23, 20.44, 11.90 

HRMS (ESI) = m/z [M + H]+ calcd. For C19H25N2
+, 281.2018; found, 281.2026 

 

 

 

10-fluoroibogamine  

Synthesized from the stating material (200 mg, 0.585 mmol, 1 equiv.) following the general 

procedure for iboga derivative preparation. 4-fluorophenylhydrazine HCl (143 mg, 0.876 mmol, 

N

N
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1.5 equiv.) was used in the Fischer indole reaction. 10-fluoroibogamine (56 mg, 32% yield over 

3 steps) was isolated as a clear orange oil.   

 

Rf = 0.42 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.64 (s, 1H), 7.15 (dd, J = 8.7, 4.4 Hz, 1H), 7.10 (dd, J = 

9.8, 2.5 Hz, 1H), 6.84 (td, J = 9.1, 2.5 Hz, 1H), 3.43 – 3.27 (m, 2H), 3.20 – 2.98 (m, 3H), 2.96 – 

2.86 (m, 2H), 2.63 – 2.54 (m, 1H), 2.10 – 2.04 (m, 1H), 1.90 – 1.77 (m, 2H), 1.66 (m, 1H), 1.59 – 

1.46 (m, 3H), 1.22 (m, 1H), 0.90 (t, J = 7.1 Hz, 3H)	
13C NMR (101 MHz, CDCl3) δ (ppm) = 157.89 (1JCF = 234.29 Hz), 143.72, 131.08, 130.11, 110.58 

(1JCF = 9.60 Hz), 109.53, 109.01 (1JCF = 26.29 Hz), 103.03 (1JCF = 22.72 Hz), 57.53, 54.19, 50.01, 

41.89, 41.38, 34.08, 31.95, 27.77, 26.38, 20.59, 11.92 

HRMS (ESI) = m/z [M + H]+ calcd. For C19H24N2F+, 299.1928; found, 299.1925 

 

 

Tabernanthine  

Synthesized from the stating material (200 mg, 0.585 mmol, 1 equiv.) following the general 

procedure for iboga derivative preparation. 3-methoxyphenylhydrazine HCl (153 mg, 0.876 mmol, 

1.5 equiv.) was used in the Fischer indole reaction. Tabernanthine (24 mg, 13.3% yield over 3 

steps) was isolated as a clear orange oil.  

 

Rf = 0.35 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.54 (s, 1H), 7.35 (d, J = 8.5 Hz, 1H), 6.82 – 6.76 (m, 

2H), 3.86 (s, 3H), 3.49 – 3.29 (m, 2H), 3.19 (td, J = 13.1, 3.7 Hz, 1H), 3.09 (d, J = 10.4 Hz, 2H), 

N

N
H

MeMeO

tabernanthine
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3.02 – 2.85 (m, 2H), 2.69 (d, J = 16.3 Hz, 1H), 2.10 – 2.02 (m, 2H), 1.91 – 1.80 (m, 2H), 1.70 – 

1.49 (m, 4H), 1.27 – 1.22 (m, 1H), 0.93 (t, J = 7.1 Hz, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 155.86, 140.47, 135.35, 124.19, 118.46, 108.83, 108.48, 

94.37, 57.77, 55.84, 54.11, 49.82, 41.88, 41.28, 34.19, 32.06, 27.67, 26.45, 20.72, 11.89	

HRMS (ESI) = m/z [M + H]+ calcd. For C20H27N2O+, 311.2128; found, 311.2127 

 

 

12-methoxyibogamine 

Synthesized from the stating material (200 mg, 0.585 mmol, 1 equiv.) following the general 

procedure for iboga derivative preparation. 2-methoxyphenylhydrazine HCl (153 mg, 0.876 mmol, 

1.5 equiv.) was used in the Fischer indole reaction. 12-methoxyibogamine (32 mg, 17.4% yield 

over 3 steps) was isolated as a clear yellow oil.  

 

Rf = 0.31 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.85 (s, 1H), 7.09 (d, J = 7.9 Hz, 1H), 7.00 (t, J = 7.8 Hz, 

1H), 6.59 (dd, J = 7.7, 0.9 Hz, 1H), 3.94 (s, 3H), 3.41 – 3.31 (m, 2H), 3.19 – 3.05 (m, 2H), 3.02 – 

2.92 (m, 2H), 2.86 (d, J = 2.0 Hz, 1H), 2.69 – 2.62 (m, 1H), 2.08 – 2.00 (m, 1H), 1.86 – 1.78 (m, 

2H), 1.67 – 1.47 (m, 4H), 1.21 – 1.17 (m, 1H), 0.90 (t, J = 7.1 Hz, 3H) 
13C NMR (101 MHz, CDCl3) δ (ppm) = 145.49, 141.51, 131.02, 124.72, 119.47, 110.89, 109.74, 

101.25, 57.55, 55.33, 54.21, 49.97, 41.94, 41.47, 34.23, 32.10, 27.81, 26.51, 20.84, 11.89	

HRMS (ESI) = m/z [M + H]+ calcd. For C20H27N2O+, 311.2128; found, 311.2127 
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Ibogaline  

Synthesized from the stating material (200 mg, 0.585 mmol, 1 equiv.) following the general 

procedure for iboga derivative preparation. 3,4-dimethoxyphenylhydrazine HCl (179 mg, 0.876 

mmol, 1.5 equiv.) was used in the Fischer indole reaction. Ibogaline (32 mg, 16.4% yield over 3 

steps) was isolated as a brown oil.  

 

Rf = 0.22 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 6.86 (s, 1H), 6.84 (s, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.47 

– 3.27 (m, 2H), 3.26 – 2.94 (m, 4H), 2.09 – 1.87 (m, 4H), 1.83 – 1.57 (m, 4H), 1.56 – 1.37 (m, 

3H), 0.96 – 0.82 (m, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 147.19, 145.45, 137.15, 128.90, 120.90, 108.05, 99.82, 

94.93, 60.54, 56.62, 56.45, 56.38, 47.28, 34.20, 33.36, 27.91, 26.93, 21.19, 18.64, 14.33, 11.93 

HRMS (ESI) = m/z [M + H]+ calcd. For C21H29N2O2
+, 341.2228; found, 341.2231 
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Chapter 5 – Asymmetric Synthesis of Ibogaine     

 
5.1 Efforts Towards Chiral Resolution of Ibogaine  
 

 
Figure 5.1. (A) Efficient and scalable racemic total synthesis of ibogaine (B) Chiral separation of 

racemic ibogaine; salt formation or chiral auxiliary placement 

  

The biosynthesis of iboga alkaloids involves a late stage cycloaddition catalyzed by 

coronaridine synthase (CorS) to furnish the isoquinuclidine with precise enantioselectivity.136 A 

thorough analysis of the literature reveals that only (-)-ibogaine has be isolated from nature and 

its antipode has never been synthesized nor studied. Furthermore, chiral HPLC analysis of a 

naturally sourced sample of (-)-ibogaine showed nearly 100:0 enantiopurity demonstrating the 

selectivity of the cycloaddition catalyzing enzyme. Having devised an efficient and scalable 

racemic synthesis of ibogaine (Figure 5.1A), we were intrigued by the possibility of performing a 

late-stage chiral separation of our natural product (Figure 5.1B). We postulated that enantiomer 

separation could most likely be achieved through either salt formation or chiral auxiliary 

placement. Racemic ibogaine is a semi-solid that can be converted into a pure crystalline solid 

upon acidification with hydrochloric acid. An alternative counterion for the ammonium salt could 

enable enantioselective crystallization in a specified solvent. In contrast, chiral auxiliary placement 

on the indole nitrogen of racemic ibogaine could produce two diastereomers separable by  
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Figure 5.2. (A) Salt preparation of racemic ibogaine and enantioselective crystallization (B) Chiral 

auxiliary strategy for preparation of enantiopure ibogaine  

 

chromatography. Separation of the diastereomers followed by removal of the auxiliary would 

ultimately afford enantiomerically pure ibogaine.  

Several different salt forms of racemic ibogaine were prepared for a series of 

crystallization solvent screens (Figure 5.2A). We noticed that the hydrochloride and fumarate 

salts of racemic ibogaine produced fine crystals while the trifluoroacetate salt yielded an opaque 

oil. Numerous crystallization techniques (i.e recrystallization, solvent diffusion, evaporative 

crystallization) were examined; however, chiral LCMS analysis indicated minimal separation in all 

of our attempts. Having experienced such difficulty early on, we rendered this technique 

ineffective for separation.    
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Based on a report by Glick and co-workers137, we elected to prepare a chiral sulfonamide 

for separation of racemic ibogaine (Figure 5.2B). Racemic ibogaine was treated with (+)-

camphorsulfonyl chloride to afford a mono-sulfonylated mixture of diastereomers in 55% yield. 

The di-sulfonylated product was also observed in 36% yield as we were unable to prevent 

sulfonylation at the isoquinuclidine nitrogen during our optimization. Separation of the mono-

sulfonylated diastereomers produced 5.13a and 5.13b in 31% and 24% yield, respectively. 

Removal of the sulfonamide with hydroxide was sluggish and enantiopure ibogaine was isolated 

in only 12-15% yield. Though this strategy can produce enantiomerically pure ibogaine, numerous 

issues with reproducibility and scalability indicated that this method was not ideal for large scale 

preparation. It was abundantly clear that we would need to develop an asymmetric total synthesis 

to ensure wide-spread access to enantiopure ibogaine.  

 

5.2 Development of Asymmetric Diels-Alder Reaction 

  
Figure 5.3. (A) Asymmetric synthesis of ibogaine from asymmetric Diels-Alder reaction (B) Chiral 

additive to induce asymmetry in Diels-Alder reaction (C) Chiral auxiliary placement on diene (D) 
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A key feature of our racemic ibogaine synthesis is an early stage construction of the 

isoquinuclidine ring system via Diels-Alder cycloaddition. It was clear that an asymmetric variant 

of our synthesis would be dependent on the development of an asymmetric Diels-Alder reaction 

to make the isoquinuclidine (Figure 5.3A). We postulated three possible strategies for achieving 

stereoselectivity in our cycloaddition: use of a chiral additive, chiral auxiliary placement on the 

diene, and chiral auxiliary placement on the dienophile. Pioneering work by MacMillan and co-

workers138 demonstrated an organocatalyzed Diels-Alder reaction with an a,b-unsaturated 

aldehyde and cyclopentadiene (Figure 5.3B). In this reaction, an imidazolidinone catalyst reacts 

with the aldehyde to form an intermediary iminium dienophile for subsequent cycloaddition. 

Seminal reports by Batey and co-workers139 applied this strategy towards the preparation of the 

isoquinuclidine ring system by using a valine derived catalyst. In similar fashion, an intermediary 

iminium is formed to achieve high enantioselectivity in the Diels-Alder reaction.  

Rather than using a chiral additive to achieve high enantioselectivity, we hypothesized 

that we could use a chiral auxiliary on the diene or dienophile to achieve high diastereoselectivity 

in our Diels-Alder reaction. Subsequent removal of the chiral auxiliary would then produce an 

enantiomerically pure intermediate for our ibogaine synthesis. We envisioned using a menthol 

derived carbamate for the diene since both enantiomers of the respective chloroformate precursor 

are readily available (Figure 5.3C). Alternatively, auxiliary placement on the enone in the form of 

an oxazolidinone or camphorsultam could also induce diastereoselectivity in our cycloaddition 

(Figure 5.3D).  

When treating cyclopropyl enone 5.14 with a chiral amine catalyst, we noticed conjugate 

addition rather than imine formation (Figure 5.4A). This was observed with both MacMillan and 

Batey’s organocatalyst and conjugate addition was favored irrespective to solvent and 

temperature. This phenomenon is attributed to the reduced electrophilicity of the carbonyl in 5.14 

compared to acrolein. Conducting the subsequent Diels-Alder reaction with the conjugate addition 

product was unsuccessful, thus suggesting that regeneration of the dienophile via in situ  
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Figure 5.4. (A) Chiral additive strategy; amine organocatalysis and chiral catalyst (B) Chiral 

auxiliary strategy using menthol derived carbamate (C) Chiral auxiliary strategy using 

oxazolidinone dienophile  

 

elimination was not possible. Several other chiral catalysts were screened,140,141 and minimal 

product was observed in a variety of reaction conditions. We ascribe the difficulty in achieving 

selectivity to the marked difference in reactivity of the cyclopropyl ketone moiety compared to 

other commonly utilized ketones.    

Having realized that the inclusion of a chiral additive was not a feasible strategy, we 

elected to make structural modifications to our reactants for the Diels-Alder reaction. Reduction 

of pyridine in the presence of (+)-menthol chloroformate afforded dihydropyridine 5.16 with a 
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tethered chiral auxiliary (Figure 5.4B). Diels-Alder cycloaddition of 5.15 with cyclopropyl enone 

5.14 afforded product 5.16 in 42% yield after optimization.  At first glance this reaction appeared 

diastereoselective; however, subjecting product 5.16 to the rest of the iboga synthesis produced 

a near racemic mixture of ibogaine. Unfortunately, chiral auxiliary placement on the diene did not 

exert any diastereoselectivity in our cycloaddition.  

Inspired by the work of Evans and co-workers142, we envisioned that a chiral oxazolidinone 

would be the ideal auxiliary for our dienophile (Figure 5.4C). Chiral oxazolidinone 5.18 was 

prepared from readily available S-phenylalanine on decagram quantities. Titanium catalyzed 

cycloaddition of 5.18 with dihydropyridine 5.17 afforded our desired product 5.19 in 97% yield.143 

Analysis of the crude 1H-NMR spectra revealed that our cycloaddition proceeded with an 80:20 

diastereomeric ratio and greater than 95:5 for the endo epimer. Optimization revealed that       

Ti(O-iPr)2Cl2 was crucial for the reaction as the yield and dr decreased substantially in its absence 

or with other catalysts (Entry 2—4, Table 5.1). We noticed that the inclusion of a dioxolane ligand 

increased the diastereoselectivity in our reaction though slightly diminishing the yield (Entry 5, 

Table 5.1). For practical purposes, we opted to omit the ligand and separate our diastereomers  

 

 
Entry Deviation Yield  dr 

1 none 97% 80:20 

2 No Ti(O-iPr)2Cl2 31% 50:50 

3 TiCl4 for Ti(O-iPr)2Cl2 88% 65:45 

4 Cu(OTf)2 for Ti(O-iPr)2Cl2 38% 50:50 

5 1 equiv. TADDOL additive  83% 95:5 

6 Camphorsultam auxiliary 63% 50:50 

7 Cbz fr Ph Carbamate 44% 60:40 
 
Table 5.1: Isolated yields shown. All reactions run on 1.0 mmol scale for 17 (312 mg). All reactions chromatographed 

using gradient elution 10:1→7:3 hexanes/EtOAc.  
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manually via chromatography. A key element to ensuring high diastereoselectivity is the choice 

of carbamate for the dihydropyridine. When conducting the Diels-Alder reaction with a benzyl 

carbamate, we observed a significant reduction in yield and selectivity (Entry 7, Table 5.1). We 

suspect that the acid labile benzyl carbamate is prone to cleavage during the reaction, thus 

reducing the amount of available diene for cycloaddition. Furthermore, free rotation about the 

methylene bridge in the benzyl carbamate could also be a factor for diminished selectivity. Having 

developed a strategy to inducing asymmetry, 5.19 was separated via chromatography with nearly 

full recovery of each diastereomer. With diastereomerically pure 5.19 in hand, we were now 

tasked with completing the remaining steps of our ibogaine synthesis.    

 

5.3 Asymmetric Synthesis of Ibogaine 

 
Figure 5.5. Asymmetric Total synthesis of (+)-ibogaine 

 

Upon diastereomeric separation of 5.19, subsequent hydrolysis of the chiral 

oxazolidinone144 was conducted using LiOOH and Na2SO3 to give the parent carboxylic acid 

(5.20) in near quantitative yield (Figure 5.5). Conversion to the Weinreb amide followed by 

addition of cyclopropyl magnesium bromide proceeded smoothly to furnish cyclopropyl ketone 32 

11 steps 
(9.2% oveall yield)
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in 86% yield over two steps. To verify enantiopurity, chiral LCMS analysis was conducted on 5.21 

to reveal a 98:2 enantiomeric ratio. Initial attempts to deprotect the carbamate were met with 

difficulty as the phenyl carbamate was resistant to acidic conditions and base mediated removal 

resulted in decomposition. However, a carbamate swap performed with KOH and benzyl alcohol 

allowed us to intercept isoquinuclidine 5.22 from our racemic route. Isoquinuclidine 5.22 was 

subjected through the remaining synthesis to ultimately afford (+)-ibogaine (5.1b) in 11 steps and 

9.2% overall yield. Taken together, these strategic decisions complete the first asymmetric 

synthesis of ibogaine and the first ever synthesis of the unnatural enantiomer (5.1b). When using 

the R enantiomer of oxazolidinone 5.18, iboga alkaloids of the opposite optical series can also be 

obtained with similar selectivity.  

 

5.4 Conclusion 

The development of an asymmetric route to ibogaine and related analogs has the ability 

to change the landscape of neurobiology and pharmacology. Our strategic decisions have 

enabled access to a wide array of analogs for structure-activity-relationship (SAR) studies 

accessed from readily available pyridine in only 7-11 steps. Current efforts are underway to 

synthesize a library of enantiomerically pure analogs and alkaloids for various assays relating to 

plasticity and addiction. We hope that the work presented in this dissertation can aid in the 

discovery of a novel and efficacious therapeutic for combating substance use disorders.   
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5.4 Methods  

General Information for Chemical Synthesis 

All reagents were obtained from commercial sources and reactions were performed using oven-

dried glassware (120°C) under an inert N2 atmosphere unless otherwise noted.  Air- and moisture-

sensitive liquids and solutions were transferred via syringe or stainless-steel cannula. Organic 

solutions were concentrated under reduced pressure (∼5 Torr) by rotary evaporation. Solvents 

were purified by passage under 12 psi N2 through activated alumina columns. Chromatography 

was performed using Fisher Chemical™ Silica Gel Sorbent (230–400 Mesh, Grade 60). 

Compounds purified by chromatography were typically applied to the adsorbent bed using the 

indicated solvent conditions with a minimum amount of added dichloromethane as needed for 

solubility. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 plates 

(250 μm). Visualization of the developed chromatogram was accomplished by fluorescence 

quenching or by staining with iodine, butanolic ninhydrin, aqueous potassium permanganate, or 

aqueous ceric ammonium molybdate (CAM). Irradiation of photochemical reactions was carried 

out using 2 HIGROW LED Aquarium Light Blub, Wolezek 30W LED Plant Grow Light Bulb with 

18x2W 450-460nm. 

 

Nuclear magnetic resonance (NMR) spectra were acquired on either a Bruker 400 operating at 

400 and 100 MHz, a Varian 600 operating at 600 and 150 MHz, or a Bruker 600 operating at 600 

and 150 MHz for 1H and 13C, respectively, and are referenced internally according to residual 

solvent signals. Data for 1H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s, 

singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet), coupling constant (Hz), and 

integration. Data for 13C NMR are reported in terms of chemical shift (δ, ppm). High-resolution 

mass spectra were obtained using a Thermo Fisher Scientific Q-Exactive HF Orbitrap. 
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Detailed Synthesis Procedures and Experimental Data 

 

phenyl pyridine-1(2H)-carboxylate  

A flask was charged with methanol (200 mL, 0.5M) and pyridine (8.05 mL, 100 mmol, 1 equiv.) 

and cooled to -78 °C after which sodium borohydride (4.54 g, 120 mL, 120 mmol) was added in 

one portion. Phenyl chloroformate (15.05 mL, 120 mmol, 1.2 equiv.) was added dropwise over 1 

h to the reaction mixture. The reaction mixture was stirred at -78°C for an additional 3 h after 

which it was diluted in Et2O (100 mL), poured into 1M HCl (200 mL) and the layers were separated. 

The aqueous layer was extracted with Et2O (2 x 100 mL) and the combined organic extracts were 

washed with 1M NaOH (50 mL) followed by brine (50 mL). The organic extracts were dried over 

sodium sulfate, filtered and concentrated under reduced pressure. The residue was recrystallized 

from ethanol to afford the product (18.71 g, 93%) as a crystalline white solid.   

 

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed) = 7.39 (t, J = 7.9 Hz, 2H), 7.28 – 7.21 

(m, 1H), 7.20 – 7.12 (m, 2H), 6.95 – 6.79 (m, 1H), 5.91 (m, 1H), 5.66 – 5.53 (m, 1H), 5.33 – 5.21 (m, 

1H), 4.60 (dd, J = 4.1, 2.1 Hz, 1H), 4.47 (dd, J = 4.1, 2.1 Hz, 1H) 
13C NMR (101 MHz, CDCl3) δ (ppm) = 152.46, 151.43, 150.88, 150.70 (d, J = 10.0 Hz), 129.29, 

125.99, 125.61 (d, J = 4.5 Hz), 125.29, 122.16, 121.77, 121.48, 119.39, 118.84, 105.94, 105.75, 

44.21, 43.73	

HRMS (ESI) = m/z [M + H]+ calcd. For C12H13NO2
+, 202.0868; found, 202.0866 

 

 

 

N
ClCO2Ph
NaBH4

MeOH, -78 ºC

N

O O Ph



 117 
 

 

(S)-3-acryloyl-4-benzyloxazolidin-2-one  

A flask was sequentially charged with THF (250 mL, ~0.2M), acrylic acid (4.44 mL, 64.77 mmol, 

1.3 equiv.) and triethylamine (17.36 mL, 124.57 mmol, 2.5 equiv.) under nitrogen atmosphere and 

cooled to -40 °C using a dry ice/acetonitrile cooling bath. Acryloyl chloride (4.83 mL, 59.78 mmol, 

1.2 equiv.) was added dropwise to the reaction mixture and the resulting milky yellow solution 

was stirred at -40 °C for 1 h. Lithium chloride (2.64 g, 62.27 mmol, 1.25 equiv.) followed by (S)-4-

benzyloxazolidin-2-one (8.83 g, 49.82 mmol, 1 equiv.) was added in one portion to the reaction 

mixture and the solution was slowly warmed to ambient temperature over the course of 24 h. The 

reaction mixture was then concentrated under reduced pressure and the resulting residue was 

dissolved in DCM (200 mL) and poured into a solution of 2M HCl (100 mL). The layers were 

separated and the aqueous layer was washed with DCM (2 x 100 mL). The organic extracts were 

combined, dried over sodium sulfate, filtered and concentrated under reduced pressure. The 

residue was purified via chromatography on silica gel (gradient elution hexanes→7:3 

hexanes/EtOAc) to afford the product (7.83 g, 68%) as a white solid.  

 

Rf = 0.6 (7:3 hexanes/EtOAc) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.51 (dd, J = 17.0, 10.4 Hz, 1H), 7.40 – 7.17 (m, 5H), 6.61 

(dd, J = 17.0, 1.8 Hz, 1H), 5.94 (dd, J = 10.4, 1.8 Hz, 1H), 4.74 (ddt, J = 9.5, 7.0, 3.4 Hz, 1H), 

4.30 – 4.14 (m, 2H), 3.35 (dd, J = 13.4, 3.3 Hz, 1H), 2.81 (dd, J = 13.4, 9.5 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ (ppm) = 164.91, 153.34, 135.23, 131.94, 129.46, 129.01, 127.41, 

127.38, 66.29, 55.32, 37.82 
HRMS (ESI) = m/z [M + H]+ calcd. For C13H14NO3

+, 232.0978; found, 232.0971 
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N O
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Phenyl (1R,4R,7R)-7-((S)-4-benzyl-2-oxooxazolidine-3-carbonyl)-2-azabicyclo[2.2.2]oct-5-

ene-2-carboxylate  

A flask was sequentially charged with activated 4A molecular sieves (16 g), dihydropyridine (6.5 

g, 28.10 mmol, 1 equiv.), and  Ti(O-iPr)2Cl2 (13.31 g, 56.20 mmol, 2 equiv.). The flask was 

evacuated and refilled with nitrogen 3 times after which DCM (175 mL) was added and the 

resulting milky solution was stirred at ambient temperature for 1 h. The flask was then cooled to 

0 °C in an ice bath and a solution of dienophile (11.31 mmol, 56.20 mmol, 2 equiv.) in DCM (175 

mL) was added dropwise over 30 min. The reaction mixture was stirred at -10 °C to 0 °C for 48 h 

after which it was quenched with saturated aq. NaHCO3 (200 mL). The organic layer was 

separated and the aqueous layer was washed with DCM (2 x 200 mL). The combined organic 

extracts were dried over sodium sulfate, filtered and concentrated under reduced pressure. The 

reside was purified via chromatography on silica gel (gradient elution 10:1→7:3 hexanes/EtOAc) 

to afford the product (11.91 g, 98%, 77:23) as a white foam. The diastereomeric ratio of the crude 

residue is 77:23 (1H-NMR) and the major diastereomer (9.17 g, 75%) can be separated via 

chromatography.  

 

Note: The reaction was performed in a NaCl/ice bath placed in a cold room  (~5 °C). Cooling bath 

temperatures ranged from -10 °C to 0 °C over the course of 48 hours. On larger scales, it is 

advised to filter the quenched reaction mixture over a bed of celite to remove the molecular sieves.    

 

N

O O
Ph

O N

OO

Bn
N

O

N O

O

Bn

O O Ph

Ti(O-iPr)2Cl2
DCM 

-5 to 0ºC, 24 h



 119 
 

Rf = 0.25 (7:3 hexanes/EtOAc) 

1H NMR (400 MHz, MeOD) δ (ppm) = 7.46 – 7.10 (m, 10H), 6.65 – 6.43 (m, 2H), 5.28 (ddd, J = 

6.1, 2.8, 1.3 Hz, 0.5H), 5.12 (ddd, J = 5.8, 2.7, 1.5 Hz, 0.5H), 4.73 – 4.58 (m, 1H), 4.34 – 4.13 (m, 

3H), 3.59 (dd, J = 10.3, 2.0 Hz, 0.5H), 3.38 (dd, J = 10.5, 2.0 Hz, 0.5H), 3.28 – 3.20 (m, 0.5H), 

3.14 (dd, J = 13.5, 3.3 Hz, 1H), 3.07 – 3.01 (m, 0.5H), 2.92 (dtd, J = 15.0, 7.8, 4.1 Hz, 2H), 2.24 

– 2.14 (m, 0.5H), 2.10 – 1.99 (m, 0.5H), 1.97 – 1.87 (m, 0.5H), 1.82 – 1.71 (m, 0.5H) 

13C NMR (101 MHz, MeOD) δ (ppm) = 173.93, 173.53, 155.26, 154.85, 154.71, 152.72, 152.68, 

137.01, 136.95, 136.69, 135.83, 132.05, 130.84, 130.59, 130.57, 130.31, 130.29, 129.83, 129.78, 

128.20, 126.46, 123.02, 122.92, 67.88, 67.81, 56.64, 56.56, 45.81, 45.39, 38.48, 38.33, 32.20, 

31.95, 28.34, 27.44. 

HRMS (ESI) = m/z [M + H]+ calcd. For C25H25N2O5
+, 433.1768; found, 433.1760 

 

 

(1R,4R,6R)-2-(phenoxycarbonyl)-2-azabicyclo[2.2.2]oct-7-ene-6-carboxylic acid   

A flask was sequentially charged with the starting material (8.50 g, 19.65 mmol, 1 equiv.), THF 

(260 mL) and 30% aq. H2O2 (9.23 mL, 90.39 mmol , 4.6 equiv.) and cooled to 0 °C in an ice bath. 

A solution of LiOH (753 mg, 31.44 mmol, 1.6 equiv.) in H2O (130 mL) was added via syringe pump 

(30 mL/hr) to the reaction and the resulting solution was slowly warmed to ambient temperature 

over 5 h. A solution of Na2SO3 (12.35 g, 98.05 mmol, 4.98 equiv.) in H2O (50 mL) was added and 

the reaction mixture was stirred at ambient temperature for 1 h. A 5M solution of aq. NaOH (75 

mL) was added and the resulting mixture was poured into DCM (100 mL) and the layers were 

separated. The aqueous layer was washed with DCM (2 x 50 mL) and then acidified to pH 3 with 

4M HCl (100 mL). The acidic aqueous layer was then extracted with DCM (3 x 150 mL) and the 

N

O O
Ph

O N

OO

Bn

LiOH, H2O2
THF/H2O, 0 ºC  

 
then

Na2SO3, RT

N

O O
Ph

O OH



 120 
 

organic extracts were combined, dried over sodium sulfate, filtered and concentrated under 

reduced pressure to afford the product (5.21 g, 97% ) as a white solid.  

 

1H NMR (400 MHz, MeOD) δ (ppm) (rotamers observed) = 7.44 – 7.30 (m, 2H), 7.25 – 7.06 (m, 

3H), 6.55 (ddd, J = 8.2, 6.6, 1.5 Hz, 1H), 6.43 (tdd, J = 8.0, 5.9, 1.5 Hz, 1H), 5.24 (ddd, J = 5.9, 

3.3, 1.3 Hz, 0.4H), 5.11 (ddd, J = 5.9, 3.3, 1.4 Hz, 0.6H), 3.54 (dd, J = 10.3, 2.2 Hz, 0.6H), 3.35 –

3.32 (m, 0.4H), 3.29 – 3.10 (m, 1.6H), 3.03 – 2.88 (m, 1.4H), 2.06 – 1.80 (m, 2H) 

13C NMR (101 MHz, MeOD) δ (ppm) = 175.85, 155.52, 154.90, 152.68, 137.08, 137.00, 131.23, 

131.10, 130.39, 130.33, 126.55, 126.51, 122.89, 44.89, 44.59, 32.09, 31.80, 26.95, 26.83 

HRMS (ESI) = m/z [M + H]+ calcd. For C15H16NO4
+, 274.1078; found, 274.1071 

 

 

Phenyl(1R,4R,7R)-7-(methoxy(methyl)carbamoyl)-2-azabicyclo[2.2.2]oct-5-ene-2-

carboxylate  

To a stirring solution of the starting material (4.85 g, 17.74 mmol, 1 equiv.) in DCM (88 mL, 0.2M) 

was added CDI (3.74 g, 23.06 mmol, 1.3 equiv.) in one portion. The resulting clear solution was 

stirred at ambient temperature for 1 h after which N,O-dimethylhydroxylamine hydrochloride (3.46 

g, 35.48 mmol, 2 equiv.) was added in one portion. The mixture was stirred at ambient 

temperature for 12 h after which 4M HCl (100 mL) was added and the layers were separated. The 

aqueous layer was further washed with DCM (2 x 100 mL) and the combined organic extracts 

were dried over sodium sulfate, filtered and concentrated under reduced pressure to afford the 

product (5.55 g, 99%) as a white solid. 
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1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed) = 7.32 (ddd, J = 8.2, 7.2, 2.3 Hz, 2H), 

7.19 – 7.07 (m, 3H), 6.54 – 6.38 (m, 2H), 5.20 – 5.03 (m, 1H), 3.70 (d, J = 4.4 Hz, 3H), 3.53 – 3.32 

(m, 2H), 3.22 – 3.03 (m, 4H), 2.87 (dq, J = 5.1, 2.6 Hz, 1H), 1.97 (dddd, J = 12.5, 9.6, 5.6, 2.6 Hz, 

1H), 1.77 (dddd, J = 12.3, 9.3, 4.7, 2.9 Hz, 1H)	
13C NMR (101 MHz, CDCl3) δ (ppm) = 153.50, 152.92, 151.34, 134.66, 134.18, 130.96, 130.50, 

129.28, 129.23, 125.19, 121.74, 121.63, 61.41, 61.30, 47.76, 47.36, 47.32, 47.05, 42.38, 41.82, 

30.87, 30.60, 27.56, 27.34	

HRMS (ESI) = m/z [M + H]+ calcd. For C17H21N2O4
+, 317.1498; found, 317.1499 

 

 

phenyl(1R,4R,7R)-7-(cyclopropanecarbonyl)-2-azabicyclo[2.2.2]oct-5-ene-2-carboxylate  

A flask was charged with the starting material (5.55 g, 17.56 mmol, 1 equiv.) after which THF (175 

mL, 0.1M) was added under a stream of nitrogen. A solution of  1.0M cyclopropyl magnesium 

bromide (52.68 mL, 52.68 mmol, 3 equiv.) was added dropwise over 2 h to the reaction mixture 

at ambient temperature. The resulting solution was stirred at ambient temperature for 1 h after 

which it was quenched with saturated aq. NH4Cl (100 mL). The mixture was diluted in DCM (200 

mL) and poured into water (100 mL). The layers were separated and the aqueous layer was 

further washed with DCM (2 x 100 mL). The organic fractions were collected, dried over sodium 

sulfate, filtered and concentrated under reduced pressure. The resulting residue was purified via 

chromatography on silica gel (7:3 hexanes/EtOAc) to afford the product (5.01 g, 96%) as a white 

solid.  
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Rf = 0.45 (7:3 hexanes/EtOAc) 

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed) = 7.36 (tt, J = 6.9, 2.1 Hz, 2H), 7.19 (td, 

J = 7.2, 1.3 Hz, 1H), 7.16 – 7.09 (m, 2H), 6.50 – 6.27 (m, 2H), 5.32 (dq, J = 3.0, 1.3 Hz, 1H), 3.56 – 

3.36 (m, 2H), 3.23 – 3.06 (m, 1H), 2.92 (s, 1H), 2.10 – 1.77 (m, 3H), 1.08 – 0.84 (m, 4H)	
13C NMR (101 MHz, CDCl3) δ (ppm) = 208.72, 208.37, 151.33, 135.03, 130.13, 129.29, 129.25, 

125.28, 121.73, 52.69, 52.17, 47.67, 47.17, 30.83, 30.54, 25.12, 24.32, 19.45, 19.34, 11.52, 

11.39, 10.97, 10.71 

HRMS (ESI) = m/z [M + H]+ calcd. For C18H20NO3
+, 298.1438; found, 298.1433 

Specific Rotation = [a]D20 = 12.5 (c = 0.15 in MeOH) 

 

 

benzyl (1S,4S)-7-(cyclopropanecarbonyl)-2-azabicyclo[2.2.2]oct-5-ene-2-carboxylate  

A flask was sequentially charged with the starting material (5 g, 16.81 mmol, 1 equiv.), toluene 

(84 mL, 0.2M) and benzyl alcohol (2.09 mL, 20.17 mmol, 1.2 equiv.). Powdered KOH (1.13 g, 

20.17, 1.2 equiv.) was added to the reaction mixture in one portion and the resulting solution was 

stirred at ambient temperature for 12 h. The reaction was diluted in DCM (100 mL), poured into 

water (50 mL) and the layers were separated. The aqueous layer was washed with DCM (2 x 50 

mL) and the combined organic extracts were dried over sodium sulfate, filtered and concentrated 

under reduced pressure. The resulting residue was purified via chromatography on silica gel (7:3 

hexanes/EtOAc) to afford the product (4.92 g, 94%) as a light yellow oil.  
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Rf = 0.42 (7:3 hexanes:EtOAc) 

1H NMR (400 MHz, CDCl3) δ (ppm) (rotamers observed)  = 7.38 – 7.30 (m, 10H), 6.58 – 6.44 (m, 

2H), 6.43 – 6.34 (m, 1H), 6.30 – 6.24 (m, 1H), 5.23 (d, J = 6.1 Hz, 1H), 5.18 – 5.02 (m, 4H), 4.70 

(d, J = 5.7 Hz, 1H),  3.38 – 3.25 (m, 3H), 3.05 – 2.71 (m, 5H), 2.27–2.16 (m, 1H), 2.14 – 2.02 (m, 

1H), 2.03 – 1.81 (m, 2H), 1.77 – 1.67 (1H), 1.48 – 1.41 (m, 1H), 1.06 – 0.81 (m, 8H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 209.36, 208.75, 208.49, 155.26, 154.76, 137.04, 136.85, 

136.78, 135.52, 135.35, 134.90, 134.72, 132.28, 131.88, 130.42, 130.15, 128.53, 128.50, 128.43, 

128.36, 128.18, 128.09,  127.99,127.84, 127.72, 127.57, 127.49, 66.93, 66.59, 52.49, 52.32, 

52.29, 47.91, 47.62, 47.50, 47.19, 47.00, 30.78, 30.55, 30.31, 30.13, 24.28, 23.62, 23.50, 20.05, 

19.73, 19.43, 19.27, 12.50, 11.82, 11.50, 11.36, 11.21, 10.86, 10.64 

HRMS (ESI) = m/z [M + H]+ calcd. For C19H22NO3
+, 312.1598; found, 312.1599 

 

 

Ibogaine  

Rf = 0.33 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.53 (s, 1H), 7.14 (d, J = 8.7 Hz, 1H), 6.93 (m, 1H), 6.77 

(dd, J = 8.6, 2.4 Hz, 1H), 3.86 (s, 3H), 3.41 – 3.30 (m, 2H), 3.17–3.10 (m, 1H), 3.09 – 3.05 (m, 

1H), 3.00 – 2.95 (m, 1H), 2.93 – 2.87 (m, 1H), 2.85 (s, 1H), 2.61 (dd, J = 17.3, 5.4 Hz, 1H), 2.09 

– 2.00 (m, 1H), 1.85 (s, 1H), 1.83 – 1.77 (m, 1H), 1.65 (dq, J = 13.3, 3.5 Hz, 1H), 1.55 (q, J = 7.2 

Hz, 2H), 1.48 – 1.43 (m, 1H), 1.24 – 1.18 (m, 1H), 0.90 (t, J = 7.1 Hz, 3H) 

13C NMR (101 MHz, CDCl3) δ (ppm) = 153.98, 142.89, 130.13, 129.71, 110.75, 110.69, 109.17, 

100.39, 57.48, 56.02, 54.19, 49.98, 41.97, 41.61, 34.22, 32.11, 27.84, 26.51, 20.71, 11.91	

HRMS (ESI) = m/z [M + H]+ calcd. For C20H27N2O+, 311.2128; found, 311.2128 

Note: Enantiopurity determined by HPLC 

N

N
H

MeO

Me
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10-fluoroibogamine  

Rf = 0.42 (10:1 DCM/MeOH) 

1H NMR (400 MHz, CDCl3) δ (ppm) = 7.64 (s, 1H), 7.15 (dd, J = 8.7, 4.4 Hz, 1H), 7.10 (dd, J = 

9.8, 2.5 Hz, 1H), 6.84 (td, J = 9.1, 2.5 Hz, 1H), 3.43 – 3.27 (m, 2H), 3.20 – 2.98 (m, 3H), 2.96 – 

2.86 (m, 2H), 2.63 – 2.54 (m, 1H), 2.10 – 2.04 (m, 1H), 1.90 – 1.77 (m, 2H), 1.66 (m, 1H), 1.59 – 

1.46 (m, 3H), 1.22 (m, 1H), 0.90 (t, J = 7.1 Hz, 3H)	
13C NMR (101 MHz, CDCl3) δ (ppm) = 157.89 (1JCF = 234.29 Hz), 143.72, 131.08, 130.11, 110.58 

(1JCF = 9.60 Hz), 109.53, 109.01 (1JCF = 26.29 Hz), 103.03 (1JCF = 22.72 Hz), 57.53, 54.19, 50.01, 

41.89, 41.38, 34.08, 31.95, 27.77, 26.38, 20.59, 11.92 

HRMS (ESI) = m/z [M + H]+ calcd. For C19H24N2F+, 299.1928; found, 299.1925 

Specific Rotation for (-)-fluoroibogamine = [a]D20 = -35.3 (c = 0.01 in MeOH) 

Specific Rotation for (+)-fluoroibogamine = [a]D20 = 34.6 (c = 0.01 in MeOH) 
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Chiral HPLC Chromatograms  
 
 
 
 
 
 
 
 
 
 
(±)-32 
(Chiralpak IA 90:10 Hexanes/i-PrOH, 1 mL/min, l 254nm) 
tR1 = 9.49 min, tR2 = 12.16 min 
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(+)-32 
(Chiralpak IA 90:10 Hexanes/i-PrOH, 1 mL/min, l 254nm) 
tRmajor = 9.48 min, tRminor = 12.23 min 
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(-)-32 
(Chiralpak IA 90:10 Hexanes/i-PrOH, 1 mL/min, l 254nm) 
tRminor = 9.53 min, tRmajor = 12.18 min 
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(±)-ibogaine  
(Poroshell 120 Chiral-V MeOH/15mM NH4HCO2, 0.8 mL/min, 40 °C, l 254nm) 
Concentration: 0.9 mg/mL 
tR1 = 6.97min, tR2 = 7.39 min 
 
 
 
 

 
 
 

Peak Ret. Time Area Area% 
1 6.97 1824 49.808 
2 7.39 1838 50.192 

Total   3662 100.000 
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(-)-ibogaine  
(Poroshell 120 Chiral-V MeOH/15mM NH4HCO2, 0.8 mL/min, 40 °C, l 254nm) 
Concentration: 0.5 mg/mL 
tRmajor = 7.34min, tRminor = N/A 
 
 
 

 
 
 

Peak Ret. Time Area Area% 
1 - 0 0 
2 7.39 3620 100.000 

Total   3620 100.000 
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(+)-ibogaine  
(Poroshell 120 Chiral-V MeOH/15mM NH4HCO2, 0.8 mL/min, 40 °C, l 254nm) 
Concentration: 0.5 mg/mL 
tRmajor = 7.34min, tRminor = N/A 
 
 
 
 

 
 
 

Peak Ret. Time Area Area% 
1 6.92 4877 100.00 
2 - 0 0 

Total   4877 100.000 
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